WO2012002566A1 - 加工性に優れた高強度鋼板およびその製造方法 - Google Patents

加工性に優れた高強度鋼板およびその製造方法 Download PDF

Info

Publication number
WO2012002566A1
WO2012002566A1 PCT/JP2011/065415 JP2011065415W WO2012002566A1 WO 2012002566 A1 WO2012002566 A1 WO 2012002566A1 JP 2011065415 W JP2011065415 W JP 2011065415W WO 2012002566 A1 WO2012002566 A1 WO 2012002566A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
strength steel
hot
mass
composition
Prior art date
Application number
PCT/JP2011/065415
Other languages
English (en)
French (fr)
Inventor
河村 健二
英尚 川邉
瀬戸 一洋
教幸 片山
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to US13/704,781 priority Critical patent/US20130233453A1/en
Priority to EP11801026.3A priority patent/EP2589678B1/en
Priority to CN201180032346.4A priority patent/CN102971443B/zh
Priority to KR1020127032907A priority patent/KR101485237B1/ko
Publication of WO2012002566A1 publication Critical patent/WO2012002566A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the present invention relates to a high-strength steel sheet suitable for use as a strength member for automobile parts, which requires excellent workability (stretch flangeability), and a method for producing the same.
  • DP steel sheet duplex steel sheet having a two-phase structure composed of a ferrite phase and a martensite phase
  • a steel sheet having a composite structure including a ferrite phase, a martensite phase, and a bainite phase Composite steel sheets have been proposed.
  • Patent Document 1 C: 0.08 to 0.30%, Si: 0.1 to 2.5%, Mn: 0.5 to 2.5%, P: 0.01 to 0.15 the cold-rolled steel sheet of percent composition containing, recrystallization annealing at a c1 point or higher, then, after forced cooling to a temperature range in the range of a r1 point to 600 ° C., the cooling rate of more than 100 ° C.
  • the quenching start temperature is increased to increase the volume ratio of the low-temperature transformation generation phase, and then an overaging treatment is performed at 350 to 600 ° C. to precipitate C in the ferrite, and the low temperature
  • the transformation generation phase is softened to reduce Hv (L) / Hv ( ⁇ ) and improve local elongation.
  • Patent Document 2 C: 0.02 to 0.25%, Si: 2.0% or less, Mn: 1.6 to 3.5%, P: 0.03 to 0.20%, S : 0.02% or less, Cu: 0.05 to 2.0%, sol.
  • a steel slab containing Al: 0.005 to 0.100% and N: 0.008% or less is hot-rolled to form a hot-rolled coil. After pickling, the hot-rolled coil is 720 to 950 ° C. in a continuous annealing line. Describes a method for producing a low-yield ratio, high-tensile hot-rolled steel sheet excellent in corrosion resistance that is annealed at a temperature of 5 ° C. According to the technique described in Patent Document 2, a high-tensile hot-rolled steel sheet having a composite structure that maintains a low yield ratio, high ductility, and good hole expandability, and has excellent corrosion resistance can be manufactured.
  • Patent Document 3 discloses that C: 0.03 to 0.17%, Si: 1.0% or less, Mn: 0.3 to 2.0%, P: 0.010% or less, S: 0.0.
  • a high-strength cold-rolled steel sheet having a structure and satisfying (second-phase Vickers hardness) / (ferrite-phase Vickers hardness) less than 1.6 and having an excellent strength-stretch flangeability balance is described.
  • the high-strength cold-rolled steel sheet described in Patent Document 3 is obtained by hot rolling a steel (slab) having the above composition, winding it at a temperature of 650 ° C. or lower, pickling it, and then cold rolling, , a 1 point or more, (a 3 point + 50 ° C.) soaking at a temperature, then slowly cooled below 20 ° C. / s until temperature T 1 of between the range of 750 ⁇ 650 ° C., then, from T 1 It is said that it can be obtained by performing an annealing treatment of cooling to 500 ° C. at a rate of 20 ° C./s or more, and subsequently overaging at a temperature of 500 to 250 ° C.
  • JP-A-63-293121 JP 05-111282 A Japanese Patent Laid-Open No. 10-60593
  • Patent Document 1 requires a continuous annealing facility capable of rapid cooling (quenching) after recrystallization annealing and suppresses a rapid strength decrease due to an overaging treatment at a high temperature.
  • a large amount of alloying element is required.
  • Patent Document 2 it is essential to add a large amount of P and Cu in combination.
  • P has a strong tendency to segregate in the steel, and this segregated P has a problem of causing embrittlement of the welded part in addition to lowering the stretch flangeability of the steel sheet.
  • the high-strength cold-rolled steel sheet described in Patent Document 3 is excellent in stretch flangeability, but in the case of a high strength of 540 MPa or more, the elongation is less than 26%, and the desired excellent workability can be maintained. There is a problem that sufficient growth cannot be secured.
  • An object of the present invention is to solve such problems of the prior art and to provide a high-strength steel sheet having a thin plate thickness of about 1.0 to 1.8 mm and excellent workability, and a method for producing the same.
  • “high strength” refers to a case where the tensile strength TS is 540 MPa or more, preferably 590 MPa or more, and “excellent workability” means elongation El: 30% or more. (When a JIS No. 5 test piece is used), the hole expansion rate ⁇ in a hole expansion test in accordance with Japan Iron and Steel Federation standard JFST 1001-1996 is 80% or more.
  • the present inventors conducted extensive research on the influence of the composition and the microstructure on the strength and workability.
  • the hot-rolled sheet with the alloy element amount adjusted to an appropriate range is subjected to an annealing process and an appropriate cooling process, which are heated to an appropriate two-phase temperature range, without performing cold rolling.
  • the main phase and the second phase can be made mainly of fine pearlite, which can ensure the desired high strength, greatly improve the workability, and achieve the desired elongation and desired hole expansion. It was found that a high-strength steel sheet excellent in workability that combines the efficiency can be obtained.
  • the present invention has been completed based on such findings and further studies. That is, the gist of the present invention is as follows. (1) In mass%, C: 0.08 to 0.15%, Si: 0.5 to 1.5%, Mn: 0.5 to 1.5%, P: 0.1% or less, S: 0.01% or less, Al: 0.01 to 0.1%, N: 0.005% or less, the composition composed of the balance Fe and inevitable impurities, the ferrite phase as the main phase, and at least pearlite The ferrite phase is 75 to 90%, the pearlite is 10 to 25%, and the average particle size of the pearlite is 5 ⁇ m or less. Furthermore, the high-strength steel sheet excellent in workability, wherein the pearlite is 70% or more in terms of the area ratio with respect to the total area of the second phase.
  • a method for producing a high-strength steel sheet having excellent workability characterized by performing a continuous annealing step for performing a cooling treatment with a residence time of 30 to 400 s.
  • the method further comprises mass: B: 0.0003 to 0.0050%. .
  • a high-strength steel sheet excellent in workability which has a high strength of tensile strength TS: 540 MPa or more, an elongation of El: 30% or more, and an elongation flangeability of ⁇ : 80% or more. It can be manufactured easily and inexpensively, and has a remarkable industrial effect.
  • the present invention has an effect that cold rolling can be omitted, and the manufacturing cost can be reduced and productivity can be greatly improved.
  • the steel sheet according to the present invention is applied particularly to automobile body parts, it can greatly contribute to weight reduction of the automobile body.
  • C 0.08 to 0.15%
  • C is an element that contributes to an increase in the strength of the steel sheet and effectively acts on the formation of a composite structure composed of a ferrite phase and a second phase other than the ferrite phase.
  • the desired tensile strength In order to ensure a high strength of 540 MPa or more, it is necessary to contain 0.08% or more. On the other hand, if the content exceeds 0.15%, spot weldability is lowered, and workability such as ductility is further lowered. Therefore, C is limited to the range of 0.08 to 0.15%. Note that the content is preferably 0.10 to 0.15%.
  • Si 0.5 to 1.5% Si is an element that dissolves in steel and effectively acts to strengthen the ferrite, and also contributes to the improvement of ductility.
  • the content of Si is 0.8. It needs to contain 5% or more.
  • an excessive content exceeding 1.5% promotes the generation of red scale and the like, lowers the surface properties of the steel sheet, and lowers the chemical conversion treatment property.
  • excessive inclusion of Si is accompanied by an increase in electrical resistance during resistance welding, and impedes resistance weldability. For this reason, Si was limited to the range of 0.5 to 1.5%. In addition, Preferably it is 0.7 to 1.2%.
  • Mn 0.5 to 1.5%
  • Mn is an element that contributes to an increase in the strength of the steel sheet and that effectively acts in the formation of a composite structure.
  • the Mn content needs to be 0.5% or more.
  • a content exceeding 1.5% tends to form a martensite phase in the cooling process during annealing, and causes deterioration in workability, particularly stretch flangeability.
  • Mn was limited to the range of 0.5 to 1.5%. In addition, Preferably it is 0.7 to 1.5%.
  • P 0.1% or less
  • P is an element that has the effect of increasing the strength of the steel sheet by solid solution in steel, but has a strong tendency to segregate to the grain boundary, lowering the bonding strength of the grain boundary, and processing
  • it concentrates on the surface of the steel sheet to reduce chemical conversion properties, corrosion resistance, and the like.
  • Such an adverse effect of P becomes remarkable when the content exceeds 0.1%.
  • P was limited to 0.1% or less.
  • P is preferably 0.1% or less and preferably reduced as much as possible.
  • excessive reduction leads to an increase in manufacturing cost, so it should be about 0.001% or more. Is preferred.
  • S 0.01% or less S forms sulfides (inclusions) such as MnS mainly in steel and lowers the workability of the steel sheet, particularly the local elongation. In addition, the presence of sulfide (inclusions) also reduces weldability. Such an adverse effect of S becomes remarkable when the content exceeds 0.01%. For this reason, S was limited to 0.01% or less. In order to avoid such an adverse effect of S, S is preferably 0.01% or less, and is preferably reduced as much as possible. However, excessive reduction leads to an increase in manufacturing cost, so it should be about 0.0001% or more. Is preferred.
  • Al acts as a deoxidizer and is an essential element for improving the cleanliness of the steel sheet, and also effectively acts for improving the yield of carbide forming elements.
  • 0.01% or more of content is required. If the content is less than 0.01%, the removal of Si-based inclusions that are the starting point of delayed fracture becomes insufficient, and the risk of delayed fracture increases. On the other hand, even if the content exceeds 0.1%, the above-described effect is saturated, an effect commensurate with the content cannot be expected, and it becomes economically disadvantageous, workability is reduced, and surface defects tend to occur. Increase. For this reason, Al was limited to the range of 0.01 to 0.1%.
  • the content is preferably 0.01 to 0.05%.
  • N 0.005% or less N is an element that is essentially harmful in the present invention, and it is desirable to reduce it as much as possible, but up to 0.005% is acceptable. For this reason, N was limited to 0.005% or less. In addition, since excessive reduction of N causes a rise in manufacturing cost, it is preferable to make it about 0.0001% or more.
  • the above components are basic components.
  • Cr 0.05 to 0.5%
  • V 0.005 to 0.2%
  • Mo 0.005 to One or more selected from 0.2% and / or one selected from Ti: 0.01 to 0.1% and Nb: 0.01 to 0.1% Or 2 and / or B: 0.0003 to 0.0050% and / or Ni: 0.05 to 0.5%
  • Cu 0.05 to 0.5% 1 type or 2 types and / or 1 or 2 types selected from Ca: 0.001 to 0.005% and REM: 0.001 to 0.005% are selected and contained.
  • Can do
  • Cr 0.05 to 0.5%, V: 0.005 to 0.2%, Mo: 0.005 to 0.2% Cr, V, and Mo are Any of them is an element that increases the strength of the steel sheet and contributes to the formation of the composite structure, and can be selected as necessary and contained in one or more kinds.
  • excessive content exceeding Cr: 0.5%, V: 0.2%, Mo: 0.2%, respectively makes it difficult to produce a desired amount of pearlite during the cooling treatment after the annealing treatment, A desired composite structure cannot be secured, stretch flangeability is lowered, and workability is lowered.
  • it may be limited to the ranges of Cr: 0.05 to 0.5%, V: 0.005 to 0.2%, and Mo: 0.005 to 0.2%, respectively. preferable.
  • Ti and Nb are both elements that increase the steel sheet strength by precipitation strengthening. These can be selected as necessary and can be contained alone or in combination. In order to obtain such an effect, it is desirable to contain Ti: 0.01% or more and Nb: 0.01% or more, respectively, but Ti: 0.1% and Nb: more than 0.1%, respectively. Containment reduces processability and shape freezing property. For this reason, when it contains, it is preferable to limit in the range of Ti: 0.01-0.1% and Nb: 0.01-0.1%, respectively.
  • B 0.0003 to 0.0050%
  • B is an element that segregates at the austenite grain boundary and has an action of suppressing the formation and growth of ferrite from the grain boundary, and can be contained as necessary. In order to acquire such an effect, it is desirable to contain 0.0003% or more, but inclusion exceeding 0.0050% reduces workability. For this reason, when contained, B is preferably limited to a range of 0.0003 to 0.0050%. In addition, in order to acquire the effect of B as mentioned above, it is necessary to suppress the production
  • Ni and Cu both have an action of increasing the strength of the steel sheet, It is an element that also has an effect of promoting oxidation and improving plating adhesion, and can be selected and contained as necessary. In order to obtain such an effect, it is desirable to contain Ni: 0.05% or more and Cu: 0.05% or more, respectively, but Ni: 0.5% and Cu: 0.5% are exceeded. Containment makes it difficult to produce a desired amount of pearlite during the cooling treatment after the annealing treatment, making it impossible to secure a desired composite structure, lowering stretch flangeability, and lowering workability. For this reason, when it contains, it is preferable to limit to Ni: 0.05-0.5% and Cu: 0.05-0.5%.
  • REM One or two selected from 0.001 to 0.005%
  • Ca and REM are elements that contribute to sulfide morphology control. It has the effect of suppressing the adverse effect on the workability of sulfides, particularly the stretch flangeability, by making the shape of sulfides spherical.
  • Excessive inclusion causes an increase in inclusions, resulting in frequent occurrence of surface defects and internal defects. For this reason, when it contains, it is preferable to limit to Ca: 0.001-0.005% and REM: 0.001-0.005%.
  • the balance other than the components described above consists of Fe and inevitable impurities.
  • the steel sheet of the present invention has the above-described composition and a structure composed of a ferrite phase as a main phase and a second phase containing at least pearlite.
  • the area ratio of the ferrite phase that is the main phase is 75 to 90% in terms of the area ratio with respect to the entire structure. If the area ratio of the ferrite phase is less than 75%, the desired elongation and the desired hole expansion rate cannot be ensured, and the workability deteriorates. On the other hand, if the area ratio of the ferrite phase exceeds 90%, the area ratio of the second phase decreases, and a desired high strength cannot be ensured. For this reason, the area ratio of the ferrite phase as the main phase is limited to a range of 75 to 90%. A preferable area ratio of the ferrite phase is 80 to 90%.
  • the second phase contains at least pearlite.
  • the area ratio of pearlite is the area ratio with respect to the whole structure, and is 10 to 25%. If the area ratio of pearlite is less than 10%, a desired hole expansion rate cannot be ensured, the stretch flangeability is lowered, and the workability is lowered. On the other hand, when the area ratio of pearlite exceeds 25%, the interface between the ferrite phase and pearlite increases, voids are likely to be generated during processing, stretch flangeability decreases, and workability decreases.
  • pearlite is a fine particle having an average particle size of 5 ⁇ m or less.
  • the average grain size of pearlite exceeds 5 ⁇ m and becomes coarse, stress concentrates on the pearlite grains (interface) during the processing of the steel sheet, and microvoids are generated, so that stretch flangeability is lowered and workability is lowered.
  • the average particle size of pearlite was limited to 5 ⁇ m or less.
  • Preferably it is 4.0 micrometers or less.
  • the second phase in the structure of the steel sheet of the present invention is a phase mainly composed of pearlite that contains at least pearlite, and the pearlite has an area ratio of 70% or more with respect to the total area of the second phase. If the pearlite is less than 70% in area ratio with respect to the total area of the second phase, the hard martensite phase, bainite phase, or residual ⁇ increases too much, and the workability tends to be lowered. For this reason, pearlite was limited to 70% or more in the area ratio with respect to the total area of a 2nd phase. Preferably, it is 75 to 100%.
  • the second phase may contain bainite, martensite, retained austenite (residual ⁇ ), etc., but in particular, bainite and martensite are hard phases, and residual ⁇ is transformed during processing. It transforms into martensite, which degrades workability. For this reason, it is desirable that these bainite, martensite and retained austenite be as small as possible, and the total area ratio with respect to the entire structure is preferably 5% or less. More preferably, the total content is 3% or less.
  • a steel material having the above composition is used as a starting material.
  • the method for producing the steel material is not particularly limited, but the molten steel having the above composition is melted by a conventional melting method such as a converter or an electric furnace, and a slab or the like is obtained by a conventional casting method such as a continuous casting method. It is preferable to use a steel material from the viewpoint of productivity. It is also possible to apply an ingot-bundling rolling method, a thin slab casting method, or the like.
  • the steel material having the above composition is subjected to a hot rolling process to obtain a hot rolled sheet.
  • the steel material is heated to a temperature in the range of 1100 to 1280 ° C., and then hot rolled to a hot rolling finish temperature of 870 to 950 ° C. to form a hot rolled sheet,
  • the hot-rolled sheet is preferably a step of winding at a winding temperature of 350 to 720 ° C. If the heating temperature of the steel material is less than 1100 ° C., the deformation resistance becomes too high, the rolling load becomes excessive, and hot rolling may be difficult.
  • the heating temperature for hot rolling is preferably set to a temperature in the range of 1100 to 1280 ° C. More preferably, it is less than 1280 degreeC.
  • the hot rolling finish temperature is less than 870 ° C.
  • ferrite ( ⁇ ) and austenite ( ⁇ ) are generated during rolling, and a band-like structure is easily generated on the steel sheet.
  • This band-like structure remains even after annealing, and may cause anisotropy in the obtained steel sheet characteristics or cause a decrease in workability.
  • the hot rolling end temperature is preferably 870 to 950 ° C.
  • the winding temperature after the hot rolling is less than 350 ° C.
  • bainitic ferrite, bainite, martensite, etc. are generated, and it is easy to form a hard and non-sized hot rolled structure, and in the subsequent annealing treatment In some cases, it inherits the hot-rolled structure, tends to become a non-sized structure, and cannot secure the desired workability.
  • the winding temperature is preferably set to a temperature in the range of 350 to 720 ° C. More preferably, the temperature is 500 to 680 ° C.
  • the hot-rolled sheet obtained through the hot-rolling process is subjected to pickling according to a conventional method, and then cold-rolling the hot-rolled sheet.
  • the continuous annealing process which performs an annealing process and a subsequent cooling process in a continuous annealing line directly is performed.
  • the annealing process is a process of holding for 5 to 400 s in the first temperature range from the A c1 transformation point to the A c3 transformation point.
  • the temperature (heating temperature) in the first temperature range of the annealing treatment is less than the Ac1 transformation point, or the holding time (annealing time) in the first temperature range is less than 5 s, hot rolling Since the carbide in the plate does not dissolve sufficiently, or the ⁇ ⁇ ⁇ transformation does not occur or is insufficient, the desired composite structure cannot be secured by the subsequent cooling treatment, so the desired elongation and hole expansion rate are satisfied. A steel sheet having ductility and stretch flangeability cannot be obtained.
  • the heating temperature of the annealing process becomes higher than the Ac3 transformation point, coarsening of the austenite grains becomes remarkable, the structure generated by the subsequent cooling process becomes coarse, and workability may be lowered.
  • the annealing treatment is limited to a treatment for holding for 5 to 400 s in the first temperature range from the A c1 transformation point to the A c3 transformation point.
  • the A c1 transformation point of each steel plate is the following equation (1), and the A c3 transformation point is the value calculated by the following equation (2).
  • the element is calculated as zero.
  • a c1 transformation point (° C.) 723 + 29.1Si-10.7Mn-16.9Ni + 16.9Cr + 6.38W + 290As (1)
  • Ac 3 transformation point (° C.) 910 ⁇ 203 ⁇ C + 44.7Si-30Mn + 700P + 400Al-15.2Ni-11Cr-20Cu + 31.5Mo + 104V + 400Ti + 13.1W + 120As (2)
  • C, Si, Mn, Ni, Cr, W, As, C, P, Al, Cu, Mo, V, Ti Content of each element (mass%)
  • the cooling treatment after the annealing treatment is performed by cooling from the first temperature range to 700 ° C. at an average cooling rate of 5 ° C./s or more, and further in the second temperature range of 700
  • the cooling rate from the first temperature range to 700 ° C. is less than 5 ° C./s, the amount of ferrite produced increases too much, the desired composite structure cannot be obtained, the workability decreases, and the desired tensile strength is further reduced.
  • the strength (540 MPa or more) may not be ensured.
  • the cooling rate from the first temperature range to 700 ° C. was limited to 5 ° C./s or more on average.
  • the temperature is preferably 20 ° C./s or less, more preferably 5 to 15 ° C./s.
  • the residence time in the second temperature range of 700 ° C. to 400 ° C. is an important factor for the formation of pearlite contained in the second phase.
  • the “residence time” means the time of staying in the above-mentioned second temperature range, and when holding at the specific temperature of the second temperature range, The case where it cools with a cooling rate and the case where it cools with the pattern which mixed them are included. If the residence time in the second temperature range is less than 30 s, pearlite transformation does not occur or the amount of pearlite produced is insufficient, so a desired composite structure cannot be ensured. On the other hand, when the residence time in the second temperature range is longer than 400 s, productivity is lowered.
  • the residence time in the second temperature range is limited to the range of 30 to 400 s. In addition, Preferably it is 150 s or less.
  • the cooling time in the temperature range of 700 to 550 ° C. is 10 s or more, that is, the cooling rate in the temperature range of 700 to 550 ° C. is 15 ° C./s or less on average. It is preferable for securing a desired amount of pearlite. If the cooling time in the temperature range of 700 to 550 ° C. is less than 10 s, the formation of pearlite becomes insufficient, the desired composite structure cannot be obtained, and the desired workability may not be ensured.
  • Molten steel having the composition shown in Table 1 was melted and used as a steel material by a conventional method. These steel materials are hot-rolled at the heating temperature and hot rolling end temperature shown in Table 2 to form a 1.6 mm thick hot rolled sheet, and after hot rolling, coiled at the winding temperature shown in Table 2 Rolled up. Thereafter, pickling was performed. Some hot-rolled sheets (thickness: 3.2 mm) were pickled and then cold-rolled at a reduction ratio of 50% to obtain 1.6 mm-thick cold-rolled sheets as comparative examples. .
  • the obtained hot-rolled sheet or cold-rolled sheet is further heated to the temperature in the first temperature range under the conditions shown in Table 2, and the annealing treatment to be held, from the temperature in the first temperature range to 700 ° C, Cooling is performed at the average cooling rate shown in Table 2, and 700 to 550 ° C. of the second temperature range is further cooled at the cooling rate (cooling time) shown in Table 2, and then the second temperature of 700 to 400 ° C.
  • the region residence time is shown in Table 2 and the residence time is used. Cooling treatment is performed, and a continuous annealing step is performed to obtain an annealing plate.
  • the transformation point of each steel plate shown in Table 2 is a value calculated using the above-described equations (1) and (2).
  • Specimens were collected from the obtained annealed plate and subjected to a structure observation, a tensile test, and a hole expansion test.
  • the test method was as follows.
  • the average crystal grain size of pearlite is determined by measuring the area of each pearlite grain, calculating the equivalent circle diameter from the area, arithmetically averaging the equivalent circle diameter of each obtained grain, It was.
  • the measured number of pearlite particles was 20 or more.
  • the area ratio with respect to the total area of the second phase of pearlite was also calculated.
  • All of the examples of the present invention have high tensile strength TS: 540 MPa or more, elongation El: high ductility of 30% or more, and excellent stretch flangeability of hole expansion ratio ⁇ : 80% or more. It is a high-strength steel sheet with excellent properties.
  • the desired high strength is not obtained, the desired elongation is not obtained, or the desired hole expansion ratio ⁇ is not obtained. , Workability is degraded.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

薄肉の、加工性に優れた高強度鋼板およびその製造方法を提供する。mass%で、C:0.08~0.15%、Si:0.5~1.5%、Mn:0.5~1.5%、Al:0.01~0.1%、N:0.005%以下を含む組成を有する鋼素材に、熱間圧延を行い熱延板とする熱延工程と、前記熱延板に酸洗を施したのち、該熱延板に、冷間圧延を省略して、連続焼鈍ラインで、Ac1変態点~Ac3変態点の第一の温度域で5~400s間保持する焼鈍処理と、第一の温度域~700℃までを、5℃/s以上の平均冷却速度で冷却し、さらに700℃~400℃の第二の温度域での滞留時間を30~400sとする冷却処理を行う。これにより、組織全体に対する面積率で、75~90%のフェライト相と、10~25%のパーライトを含む第二相とからなる組織を得ることができる。なお、パーライトは、第二相全体に対する面積率で70%以上を占め、パーライトの平均粒径は5μm以下となる。これにより、TS:540MPa以上の高強度と、優れた伸びと伸びフランジ性とを兼備する、加工性に優れた高強度鋼板となる。

Description

加工性に優れた高強度鋼板およびその製造方法
 本発明は、優れた加工性(伸びフランジ性)が要求される、自動車部品の強度部材等用として好適な、高強度鋼板およびその製造方法に関する。
 近年、地球環境保全の観点から、自動車の燃費向上が重要な課題となっている。このため、使用する材料を高強度化し、部材の薄肉化を図り、車体自体を軽量化しようとする動きが活発化している。使用する材料としては、とくに、引張強さ:540MPa以上の高強度鋼板が要求されている。しかし、鋼板の高強度化は、加工性の低下を招くことから、優れた加工性を有する高強度鋼板が要望されており、とくに薄肉の鋼板(薄鋼板)ではこの要望が高い。
 このような要望に対し、フェライト相とマルテンサイト相からなる二相組織を有する二相鋼板(DP鋼板)や、フェライト相とマルテンサイト相、さらにベイナイト相を含む複合組織を有する鋼板など、種々の複合組織鋼板が提案されている。
 例えば、特許文献1には、C:0.08~0.30%、Si:0.1~2.5%、Mn:0.5~2.5%、P:0.01~0.15%を含む組成の冷延鋼板を、Ac1点以上の温度にて再結晶焼鈍し、次いで、Ar1点乃至600℃の範囲の温度域まで強制空冷したのち、100℃/s以上の冷却速度で急冷し、フェライト相と低温変態生成相からなる複合組織とし、この後、所定の関係式で求められる、フェライト硬さHv(α)に対する低温変態生成相硬さHv(L)の比、Hv(L)/Hv(α)、が1.5~3.5を満足するように、350~600℃の範囲の温度にて過時効処理を行う局部延性にすぐれる高強度冷延鋼板の製造方法が記載されている。特許文献1に記載された技術では、焼入れ開始温度を高くし低温変態生成相の体積率を高め、その後、350~600℃で過時効処理を行って、フェライト中にCを析出させるとともに、低温変態生成相を軟化させて、Hv(L)/Hv(α)を小さくし、局部伸びを改善するとしている。
 また、特許文献2には、C:0.02~0.25%、Si:2.0%以下、Mn:1.6~3.5%、P:0.03~0.20%、S:0.02%以下、Cu:0.05~2.0%、sol.Al:0.005~0.100%、N:0.008%以下を含有する鋼スラブを熱間圧延し熱延コイルとし、酸洗後、その熱延コイルを連続焼鈍ラインで720~950℃の温度で焼鈍する、耐食性に優れた低降伏比高張力熱延鋼板の製造方法が記載されている。特許文献2に記載された技術によれば、低降伏比、高延性および良好な孔拡げ性を維持し、しかも耐食性に優れた、複合組織を有する高張力熱延鋼板を製造できるとしている。
 また、特許文献3には、C:0.03~0.17%、Si:1.0%以下、Mn:0.3~2.0%、P:0.010%以下、S:0.010%以下、Al:0.005~0.06%を含み、C(%)>(3/40)×Mnを満足する組成と、ベイナイト又はパーライトを主とする第二相とフェライト相からなる組織を有し、(第二相のビッカース硬さ)/(フェライト相のビッカース硬さ)が1.6未満を満たす、強度−伸びフランジ性バランスに優れる高強度冷延鋼板が記載されている。特許文献3に記載された高強度冷延鋼板は、上記した組成を有する鋼(スラブ)を熱間圧延した後、650℃以下の温度で巻取り、酸洗したのち、冷間圧延し、ついで、A点以上、(A点+50℃)以下の温度で均熱し、次いで、750~650℃の範囲の間の温度Tまで20℃/s以下で徐冷し、次いで、Tから500℃までを20℃/s以上の速度で冷却する焼鈍処理を行い、引続いて500~250℃の温度で過時効処理することにより得られるとしている。
特開昭63−293121号公報 特開平05−112832号公報 特開平10−60593号公報
 しかしながら、特許文献1に記載された技術では、再結晶焼鈍後に、急速冷却(焼入れ)が可能な連続焼鈍設備を必要とするうえ、高温での過時効処理による急激な強度低下を抑制するために、多量の合金元素添加を必要とするという問題がある。
 また、特許文献2に記載された技術では、多量のP、Cuを複合して添加することを必須としているが、Cuの多量含有は、熱間加工性を低下させ、また、Pの多量含有は、鋼を脆化させる。また、Pは、鋼中に偏析する傾向が強く、この偏析したPは、鋼板の伸びフランジ性を低下させるほか、溶接部の脆化を引き起こすという問題がある。
 また、特許文献3に記載された高強度冷延鋼板は、伸びフランジ性に優れるが、540MPa以上の高強度の場合、伸びは26%未満であり、所望の優れた加工性を維持できる程度に十分な伸びを確保できていないという問題がある。
 本発明は、かかる従来技術の問題を解決し、板厚:1.0~1.8mm程度の薄肉の、加工性に優れた高強度鋼板およびその製造方法を提供することを目的とする。なお、ここでいう「高強度」とは、引張強さTS:540MPa以上、好ましくは590MPa以上の強度を有する場合をいい、また、「加工性に優れた」とは、伸びEl:30%以上(JIS5号試験片を用いた場合)、日本鉄鋼連盟規格JFST 1001−1996に準拠した穴拡げ試験における穴拡げ率λ:80%以上である場合をいうものとする。
 本発明者らは、上記した目的を達成するため、強度と加工性に及ぼす組成とミクロ組織の影響について、鋭意研究を行った。その結果、合金元素量を適正範囲に調整した熱延板に、冷間圧延を施すことなく、適正な二相温度域に加熱する焼鈍処理と適正な冷却処理とを施すことにより、フェライト相を主相とし、第二相を微細なパーライトを主体とする組織とすることができ、これにより、所望の高強度を確保できるとともに、加工性が大幅に向上し、所望の伸び、所望の穴拡げ率とを兼備した、加工性に優れた高強度鋼板が得られるという知見を得た。
 熱延板に、冷間圧延を省略して直接、適正な焼鈍処理を施すことにより、加工性が大幅に向上することについての詳細な機構については、現在までのところ明確ではないが、本発明者らは、つぎのように考えている。
 熱延板に、冷間圧延を施すことなく、二相温度域に加熱する焼鈍処理を施す場合は、焼鈍加熱時には、α→γ変態が生じるだけであり、新たに再結晶が生じることはない。この場合、C濃度が高い箇所で優先的にα→γ変態が生じるのみであり、より均一な組織を得ることができるうえ、拡散速度の速いCは、焼鈍処理時に平衡組成までαとγに再分配される。このため、粒界でのフィルム状セメンタイトの析出が抑制され、とくに伸びフランジ性の向上に有利に作用したと考えられる。一方、熱延板に冷間圧延を施したのちに、焼鈍処理を施す場合は、焼鈍加熱時に再結晶と、α→γ変態が競合して生じるため、不均一な組織となりやすく、大幅な加工性の向上は期待できにくい。
 本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次のとおりである。
 (1)mass%で、C:0.08~0.15%、Si:0.5~1.5%、Mn:0.5~1.5%、P:0.1%以下、S:0.01%以下、Al:0.01~0.1%、N:0.005%以下を含み、残部Feおよび不可避的不純物からなる組成と、主相であるフェライト相と、少なくともパーライトを含む第二相とからなる組織と、を有し、組織全体に対する面積率で、前記フェライト相が75~90%、前記パーライトが10~25%で、かつ該パーライトの平均粒径が5μm以下であり、さらに前記パーライトが、前記第二相の全面積に対する面積率で70%以上であることを特徴とする加工性に優れた高強度鋼板。
 (2)(1)において、前記組成に加えてさらに、mass%で、Cr:0.05~0.5%、V:0.005~0.2%、Mo:0.005~0.2%のうちから選ばれた1種または2種以上を含有することを特徴とする高強度鋼板。
 (3)(1)または(2)において、前記組成に加えてさらに、mass%で、Ti:0.01~0.1%、Nb:0.01~0.1%のうちから選ばれた1種または2種を含有することを特徴とする高強度鋼板。
 (4)(1)ないし(3)のいずれかにおいて、前記組成に加えてさらに、mass%で、B:0.0003~0.0050%を含有することを特徴とする高強度鋼板。
 (5)(1)ないし(4)のいずれかにおいて、前記組成に加えてさらに、mass%で、Ni:0.05~0.5%、Cu:0.05~0.5%のうちから選ばれた1種または2種を含有することを特徴とする高強度鋼板。
 (6)(1)ないし(5)のいずれかにおいて、前記組成に加えてさらに、mass%で、Ca:0.001~0.005%、REM:0.001~0.005%のうちから選ばれた1種または2種を含有することを特徴とする高強度鋼板。
 (7)mass%で、C:0.08~0.15%、Si:0.5~1.5%、Mn:0.5~1.5%、P:0.1%以下、S:0.01%以下、Al:0.01~0.1%、N:0.005%以下を含み、残部Feおよび不可避的不純物からなる組成を有する鋼素材に、熱間圧延を行い熱延板とする熱延工程と、前記熱延板に酸洗を施したのち、該熱延板を、連続焼鈍ラインで、Ac1変態点~Ac3変態点の第一の温度域で5~400s間保持する焼鈍処理と、該焼鈍処理後、前記第一の温度域から700℃までを、5℃/s以上の平均冷却速度で冷却し、さらに700℃~400℃の第二の温度域での滞留時間を30~400sとする冷却処理を行う連続焼鈍工程と、を施すことを特徴とする加工性に優れた高強度鋼板の製造方法。
 (8)(7)において、前記熱延工程が、前記鋼素材を1100~1280℃の範囲の温度に加熱したのち、熱間圧延終了温度:870~950℃とする熱間圧延を行い熱延板とし、該熱間圧延の終了後、該熱延板を、巻取り温度:350~720℃として巻き取る、工程であることを特徴とする高強度鋼板の製造方法。
 (9)(7)または(8)において、前記第二の温度域のうち、700~550℃の温度域での冷却時間を10s以上とすることを特徴とする高強度鋼板の製造方法。
 (10)(7)ないし(9)のいずれかにおいて、 前記組成に加えてさらに、mass%で、Cr:0.05~0.5%、V:0.005~0.2%、Mo:0.005~0.2%のうちから選ばれた1種または2種以上を含有することを特徴とする高強度鋼板の製造方法。
 (11)(7)ないし(10)のいずれかにおいて、前記組成に加えてさらに、mass%で、Ti:0.01~0.1%、Nb:0.01~0.1%のうちから選ばれた1種または2種を含有することを特徴とする高強度鋼板の製造方法。
 (12)(7)ないし(11)のいずれかにおいて、前記組成に加えてさらに、mass%で、B:0.0003~0.0050%を含有することを特徴とする高強度鋼板の製造方法。
 (13)(7)ないし(12)のいずれかにおいて、前記組成に加えてさらに、mass%で、Ni:0.05~0.5%、Cu:0.05~0.5%のうちから選ばれた1種または2種を含有することを特徴とする高強度鋼板の製造方法。
 (14)(7)ないし(13)のいずれかにおいて、前記組成に加えてさらに、mass%で、Ca:0.001~0.005%、REM:0.001~0.005%のうちから選ばれた1種または2種を含有することを特徴とする高強度鋼板の製造方法。
 本発明によれば、引張強さTS:540MPa以上の高強度と、El:30%以上の伸びと、λ:80%以上の伸びフランジ性とを兼備する、加工性に優れた高強度鋼板を、容易にしかも安価に製造でき、産業上格段の効果を奏する。また、本発明は、冷間圧延を省略することができ、製造コストの低減、生産性の向上などにも、大きく寄与することができるという効果もある。また、本発明になる鋼板を、とくに自動車車体部品に適用すれば、自動車車体の軽量化に大きく貢献できる。
 まず、本発明鋼板の組成限定の理由について説明する。以下、とくに断わらない限り、mass%は単に%で記す。
 C:0.08~0.15%
 Cは、鋼板強度の増加に寄与するとともに、組織をフェライト相とフェライト相以外の第二相とからなる複合組織の形成に有効に作用する元素であり、本発明では、所望の引張強さ:540MPa以上の高強度を確保するために、0.08%以上の含有を必要とする。一方、0.15%を超える含有は、スポット溶接性を低下させ、さらに延性等の加工性を低下させる。このため、Cは0.08~0.15%の範囲に限定した。なお、好ましくは0.10~0.15%である。
 Si:0.5~1.5%
 Siは、鋼中に固溶してフェライトの強化に有効に作用するとともに、延性向上にも寄与する元素であり、所望の引張強さ:540MPa以上の高強度を確保するためには、0.5%以上の含有を必要とする。一方、1.5%を超える過剰な含有は、赤スケール等の発生を促進し、鋼板の表面性状を低下させるとともに、化成処理性を低下させる。また、Siの過剰な含有は、抵抗溶接時の電気抵抗の増加を伴い、抵抗溶接性を阻害する。このため、Siは0.5~1.5%の範囲に限定した。なお、好ましくは0.7~1.2%である。
 Mn:0.5~1.5%
 Mnは、鋼板強度の増加に寄与するとともに、複合組織の形成に有効に作用する元素であり、このような効果を得るためには、0.5%以上の含有を必要とする。一方、1.5%を超える含有は、焼鈍時の冷却過程でマルテンサイト相を形成しやすくなり、加工性、とくに伸びフランジ性の低下を招く。このため、Mnは0.5~1.5%の範囲に限定した。なお、好ましくは0.7~1.5%である。
 P:0.1%以下
 Pは、鋼中に固溶して鋼板強度を増加させる作用を有する元素であるが、粒界へ偏析する傾向が強く、粒界の結合力を低下させて、加工性の低下を招くとともに、鋼板表面へ濃化して、化成処理性、耐食性などを低下させる。このようなPの悪影響は、0.1%を超える含有で顕著となる。このため、Pは0.1%以下に限定した。なお、このようなPの悪影響を避けるため、Pは0.1%以下で、できるだけ低減することが好ましいが、過度の低減は製造コストの高騰を招くため、0.001%程度以上とすることが好ましい。
 S:0.01%以下
 Sは、鋼中では主としてMnS等の硫化物(介在物)を形成し、鋼板の加工性、とくに局部伸び、を低下させる。また、硫化物(介在物)の存在は、溶接性をも低下させる。このようなSの悪影響は、0.01%を超える含有で顕著となる。このため、Sは0.01%以下に限定した。なお、このようなSの悪影響を避けるため、Sは0.01%以下で、できるだけ低減することが好ましいが、過度の低減は製造コストの高騰を招くため、0.0001%程度以上とすることが好ましい。
 Al:0.01~0.1%
 Alは、脱酸剤として作用し鋼板の清浄度向上に必須の元素であり、さらに炭化物形成元素の歩留り向上に有効に作用する。このような効果を得るためには、0.01%以上の含有を必要とする。0.01%未満の含有では、遅れ破壊の起点となるSi系介在物の除去が不十分となり、遅れ破壊発生の危険性が増加する。一方、0.1%を超えて含有しても、上記した効果は飽和し、含有量に見合う効果が期待できなくなり経済的に不利となるとともに、加工性が低下し、表面欠陥の発生傾向が増大する。このため、Alは0.01~0.1%の範囲に限定した。なお、好ましくは0.01~0.05%である。
 N:0.005%以下
 Nは、本発明では本質的に有害な元素として、できるだけ低減することが望ましいが、0.005%までは許容できる。このため、Nは0.005%以下に限定した。なお、過度のNの低減は、製造コストの高騰を招くため、0.0001%程度以上とすることが好ましい。
 上記した成分が基本の成分であるが、基本成分に加え、必要に応じてさらに、Cr:0.05~0.5%、V:0.005~0.2%、Mo:0.005~0.2%のうちから選ばれた1種または2種以上、および/または、Ti:0.01~0.1%、Nb:0.01~0.1%のうちから選ばれた1種または2種、および/または、B:0.0003~0.0050%、および/または、Ni:0.05~0.5%、Cu:0.05~0.5%のうちから選ばれた1種または2種、および/または、Ca:0.001~0.005%、REM:0.001~0.005%のうちから選ばれた1種または2種、を選択して含有することができる。
 Cr:0.05~0.5%、V:0.005~0.2%、Mo:0.005~0.2%のうちから選ばれた1種または2種以上
 Cr、V、Moはいずれも、鋼板強度を増加させ、複合組織の形成に寄与する元素であり、必要に応じて選択して、1種または2種以上含有できる。このような効果を得るためには、Cr:0.05%以上、V:0.005%以上、Mo:0.005%以上、それぞれ含有することが望ましい。一方、Cr:0.5%、V:0.2%、Mo:0.2%、をそれぞれ超える過剰な含有は、焼鈍処理後の冷却処理中に、所望量のパーライトの生成が困難となり、所望の複合組織を確保できなくなり、伸びフランジ性が低下し、加工性が低下する。このため、含有する場合には、Cr:0.05~0.5%、V:0.005~0.2%、Mo:0.005~0.2%の範囲に、それぞれ限定することが好ましい。
 Ti:0.01~0.1%、Nb:0.01~0.1%のうちから選ばれた1種または2種
 Ti、Nbはいずれも、析出強化により鋼板強度を増加させる元素であり、必要に応じて選択して、1種または2種含有できる。このような効果を得るためには、Ti:0.01%以上、Nb:0.01%以上、それぞれ含有することが望ましいが、Ti:0.1%、Nb:0.1%をそれぞれ超える含有は、加工性、形状凍結性が低下する。このため、含有する場合には、Ti:0.01~0.1%、Nb:0.01~0.1%の範囲に、それぞれ限定することが好ましい。
 B:0.0003~0.0050%
 Bは、オーステナイト粒界に偏析して、粒界からのフェライトの生成、成長を抑制する作用を有する元素であり、必要に応じて含有できる。このような効果を得るためには、0.0003%以上含有することが望ましいが、0.0050%を超える含有は、加工性を低下させる。このため、含有する場合には、Bは0.0003~0.0050%の範囲に限定することが好ましい。なお、上記したようなBの効果を得るためには、BNの生成を抑制することが必要であり、Tiとともに含有させることが好ましい。
 Ni:0.05~0.5%、Cu:0.05~0.5%のうちから選ばれた1種または2種
 Ni、Cuはいずれも、鋼板強度を増加させる作用を有するとともに、内部酸化を促進させめっき密着性を向上させる作用も有する元素であり、必要に応じ選択して含有できる。このような効果を得るためには、Ni:0.05%以上、Cu:0.05%以上それぞれ含有することが望ましいが、Ni:0.5%、Cu:0.5%、をそれぞれ超える含有は、焼鈍処理後の冷却処理中に、所望量のパーライトの生成が困難となり、所望の複合組織を確保できなくなり、伸びフランジ性が低下し、加工性が低下する。このため、含有する場合には、Ni:0.05~0.5%、Cu:0.05~0.5%の範囲に限定することが好ましい。
 Ca:0.001~0.005%、REM:0.001~0.005%のうちから選ばれた1種または2種
 Ca、REMはいずれも、硫化物の形態制御に寄与する元素であり、硫化物の形状を球状化し、硫化物の加工性、とくに伸びフランジ性への悪影響を抑制する作用を有する。このような効果を得るためには、Ca:0.001%以上、REM:0.001%以上、それぞれ含有することが望ましいが、Ca:0.005%、REM:0.005%、をそれぞれ超える含有は、介在物の増加を招き、表面欠陥および内部欠陥の多発を招く。このため、含有する場合には、Ca:0.001~0.005%、REM:0.001~0.005%の範囲に限定することが好ましい。
 上記した成分以外の残部は、Feおよび不可避的不純物からなる。
 本発明鋼板は、上記した組成を有するとともに、主相であるフェライト相と、少なくともパーライトを含む第二相とからなる組織を有する。
 本発明鋼板では、主相であるフェライト相の面積率は、組織全体に対する面積率で、75~90%とする。フェライト相の面積率が75%未満では、所望の伸び、所望の穴拡げ率を確保できず、加工性が低下する。一方、フェライト相の面積率が90%を超えると、第二相の面積率が低下し、所望の高強度を確保できなくなる。このため、主相であるフェライト相の面積率は75~90%の範囲に限定した。なお、好ましいフェライト相の面積率は80~90%である。
 また、本発明鋼板では、第二相に、少なくともパーライトを含む。パーライトの面積率は、組織全体に対する面積率で、10~25%とする。パーライトの面積率が10%未満では、所望の穴拡げ率を確保できず、伸びフランジ性が低下し加工性が低下する。一方、パーライトの面積率が25%を超えて多くなると、フェライト相とパーライトとの界面が増加し、加工時にボイドが生成しやすくなり、伸びフランジ性が低下し加工性が低下する。
 なお、パーライトは、平均粒径が5μm以下の、微細粒とする。パーライトの平均粒径が5μmを超えて粗大となると、鋼板の加工に際して、パーライト粒(界面)に応力が集中し、マイクロボイドが生成するため、伸びフランジ性が低下し加工性が低下する。このようなことから、パーライトの平均粒径は5μm以下に限定した。なお、好ましくは4.0μm以下である。
 本発明鋼板の組織における第二相は、少なくともパーライトを含み、パーライトが第二相の全面積に対する面積率で70%以上となる、パーライトを主体とする相とする。パーライトが第二相の全面積に対する面積率で70%未満では、硬質なマルテンサイト相、ベイナイト相あるいは残留γが多くなりすぎて、加工性が低下しやすい。このため、パーライトは第二相の全面積に対する面積率で70%以上に限定した。なお、好ましくは、75~100%である。
 第二相には、パーライト以外に、ベイナイト、マルテンサイト、残留オーステナイト(残留γ)など、を含んでもよいが、とくに、ベイナイト、マルテンサイトは硬質相であり、また残留γは加工時に変態してマルテンサイトに変態し、それぞれ加工性を低下させる。このため、これらベイナイト、マルテンサイトおよび残留オーステナイトは極力少ないことが望ましく、組織全体に対する面積率で合計で5%以下とすることが好ましい。なお、更に好ましくは合計で3%以下である。
 つぎに、本発明鋼板の好ましい製造方法について説明する。
 上記した組成を有する鋼素材を出発素材とする。鋼素材の製造方法はとくに限定する必要はないが、上記した組成の溶鋼を転炉、電気炉等の常用の溶製方法で溶製し、連続鋳造法等の常用の鋳造方法でスラブ等の鋼素材とすることが、生産性の観点から好ましい。なお、造塊−分塊圧延法、薄スラブ鋳造法などを適用することもできる。
 上記した組成を有する鋼素材に、熱延工程を施し、熱延板とする。熱延工程は、鋼素材を、1100~1280℃の範囲の温度に加熱したのち、熱間圧延終了温度:870~950℃とする熱間圧延を行い熱延板とし、熱間圧延終了後、該熱延板を、巻取り温度:350~720℃として巻き取る、工程とすることが好ましい。
 鋼素材の加熱温度が、1100℃未満では、変形抵抗が高くなりすぎて、圧延荷重が過大となり、熱間圧延が困難となる場合がある。一方、1280℃を超えると、結晶粒が粗大化しすぎて、熱間圧延を施しても所望の微細な鋼板組織を確保できにくくなる。このため、熱間圧延のための加熱温度は、1100~1280℃の範囲の温度とすることが好ましい。より好ましくは1280℃未満である。
 また、熱間圧延終了温度が870℃未満では、圧延中にフェライト(α)とオーステナイト(γ)が生成し、鋼板にバンド状組織を生成し易くなる。このバンド状組織は、焼鈍後にも残留し、得られる鋼板特性に異方性を生じさせたり、加工性を低下させる原因となる場合がある。一方、熱間圧延終了温度が950℃を超えると、熱延板組織が粗大となり、焼鈍後においても所望の組織が得られない場合がある。このため、熱間圧延終了温度は、870~950℃とすることが好ましい。
 また、熱間圧延終了後の巻取り温度が、350℃未満では、ベイニティックフェライト、ベイナイト、マルテンサイト等が生成し、硬質かつ非整粒な熱延組織となりやすく、その後の焼鈍処理においても、熱延組織を継承し、非整粒組織となりやすく、所望の加工性を確保できなくなる場合がある。一方、720℃を超えるような高温では、鋼板の長手方向および幅方向の全域にわたり均一な機械的特性を確保することが難しくなる。このため、巻取り温度は、350~720℃の範囲の温度とすることが好ましい。なお、より好ましくは、500~680℃である。
 熱延工程を経て得られた熱延板に、ついで、鋼板表面に生成しているスケールを除去するために、常法に従い、酸洗を施したのち、熱延板に冷間圧延を施すことなく、直接、連続焼鈍ラインで、焼鈍処理とその後の冷却処理を行う連続焼鈍工程を施す。
 焼鈍処理は、Ac1変態点~Ac3変態点の第一の温度域で5~400s間保持する処理とする。
 焼鈍処理の第一の温度域の温度(加熱温度)が、Ac1変態点未満であるか、あるいは第一の温度域での保持時間(焼鈍時間)が5s未満である場合には、熱延板中の炭化物が十分に溶解しなかったり、α→γ変態が生じないか不十分であるため、その後の冷却処理で所望の複合組織を確保できないため、所望の伸び、穴拡げ率を満足する、延性、伸びフランジ性を有する鋼板を得ることができない。一方、焼鈍処理の加熱温度がAc3変態点を超えて高くなると、オーステナイト粒の粗大化が著しくなり、その後の冷却処理によって生じる組織が粗大化し、加工性が低下する場合がある。また、第一の温度域での保持時間(焼鈍時間)が400sを超えると、処理時間が長くなり、消費エネルギーが多大となり、製造コストの高騰を招く。このようなことから、焼鈍処理は、Ac1変態点~Ac3変態点の第一の温度域で、5~400s間保持する処理に限定した。
 なお、各鋼板のAc1変態点は次(1)式で、Ac3変態点は次(2)式で算出した値を用いるものとする。なお、式中の元素で含有しない元素がある場合には、当該元素は零として計算するものとする。
c1変態点(℃)=723+29.1Si−10.7Mn−16.9Ni+16.9Cr+6.38W+290As‥‥(1)
c3変態点(℃)=910−203√C+44.7Si−30Mn+700P+400Al−15.2Ni−11Cr−20Cu+31.5Mo+104V+400Ti+13.1W+120As  ‥‥(2)
 ここで、C,Si,Mn,Ni,Cr,W,As,C,P,Al,Cu,Mo,V,Ti:各元素の含有量(mass%)
 また、焼鈍処理後の冷却処理は、上記した第一の温度域から700℃までを、平均で、5℃/s以上の冷却速度で冷却し、さらに700℃~400℃の第二の温度域での滞留時間を30~400sとする処理とする。
 第一の温度域から700℃までの平均冷却速度が、5℃/s未満では、フェライト生成量が増加しすぎて、所望の複合組織が得られず、加工性が低下し、さらに所望の引張強さ(540MPa以上)を確保できない場合がある。このため、第一の温度域から700℃までの冷却速度を平均で5℃/s以上に限定した。なお、好ましくは20℃/s以下、さらに好ましくは5~15℃/sである。
 また、700℃~400℃の第二の温度域での滞留時間は、第二相に含まれるパーライトの形成に重要な要因である。ここで「滞留時間」とは、上記した第二の温度域に滞留している時間を意味し、該第二の温度域の特定温度で保持する場合や、該第二の温度域を特定の冷却速度で冷却する場合や、それらを混合したパターンで冷却する場合を含む。第二の温度域での滞留時間が30s未満では、パーライト変態が生じないか、パーライトの生成量が不十分となるため、所望の複合組織を確保できない。一方、第二の温度域での滞留時間が400sを超えて長くなると、生産性が低下する。このため、第二の温度域での滞留時間は30~400sの範囲に限定した。なお、好ましくは150s以下である。なお、第二の温度域のうち、700~550℃の温度域での冷却時間は10s以上、すなわち700~550℃の温度域での冷却速度を平均で15℃/s以下、とすることが、所望のパーライト量を確保するうえで好ましい。700~550℃の温度域での冷却時間が10s未満では、パーライトの生成が不十分となり、所望の複合組織が得られず、所望の加工性を確保できない場合がある。
 以下、実施例に基づいて、本発明をさらに具体的に説明する。なお、本発明は、これらの実施例に限定されるものではない。
 表1に示す組成の溶鋼を溶製し、常法にて鋼素材とした。これら鋼素材に、表2に示す加熱温度、熱間圧延終了温度で熱間圧延を行い、1.6mm厚の熱延板とし、熱間圧延終了後、表2に示す巻取り温度でコイル状に巻き取った。その後、酸洗を施した。なお、一部の熱延板(板厚:3.2mm)には、酸洗後、さらに、圧下率:50%の冷間圧延を施し1.6mm厚の冷延板とし、比較例とした。
 得られた熱延板あるいは冷延板に、さらに表2に示す条件で、第一の温度域の温度に加熱し、保持する焼鈍処理と、第一の温度域の温度から700℃までを、表2に示す平均冷却速度で冷却し、さらに第二の温度域のうちの700~550℃を、表2に示す冷却速度(冷却時間)で冷却し、さらに700~400℃の第二の温度域の滞留時間を表2に示す、滞留時間とする、冷却処理を行う、連続焼鈍工程を施し、焼鈍板とした。なお、表2に示す各鋼板の変態点は上記した(1)式、(2)式を用いて算出した値である。
 得られた焼鈍板から、試験片を採取し、組織観察、引張試験、穴拡げ試験を実施した。試験方法はつぎの通りとした。
(1)組織観察
 得られた焼鈍板から、組織観察用試験片を採取し、圧延方向に平行な断面(L断面)を研磨し、ナイタール液で腐食し、走査型電子顕微鏡(倍率:3000倍)で3視野以上、組織観察し、撮像して、組織の種類、各相の組織全体に対する面積率を測定し、さらに第二相全面積の、組織全体に対する面積率を算出した。また、第二相に含まれるパーライトの平均結晶粒径も算出した。なお、パーライトの平均結晶粒径は、各パーライト粒の面積を測定し、該面積から円相当直径を算出し、得られた各粒の円相当直径を算術平均し、パーライト粒の平均結晶粒径とした。なお、測定したパーライトの粒数は20個以上とした。また、パーライトの第二相全面積に対する面積率も算出した。
(2)引張試験
 得られた焼鈍板から、引張方向が、圧延方向に直角方向と一致するように、JIS5号試験片を採取し、JIS Z 2241の規定に準拠して引張試験を実施し、引張特性(降伏点YP、引張強さTS、伸びEl)を求めた。
(3)穴拡げ試験
 得られた焼鈍板から、100mm角の穴拡げ試験片を採取した。そして、日本鉄鋼連盟規格JFST 1001−1996の規定に準拠して、穴拡げ試験を実施し、穴拡げ率λ(%)を求めた。
 得られた結果を表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-I000005
 本発明例はいずれも、引張強さTS:540MPa以上の高強度と、伸びEl:30%以上の高延性と、穴拡げ率λ:80%以上の優れた伸びフランジ性と、を兼備する加工性に優れた高強度鋼板となっている。これに対し、本発明の範囲を外れる比較例は、所望の高強度が得られていないか、あるいは所望の伸びが得られていないか、所望の穴拡げ率λが得られていないかして、加工性が低下している。

Claims (14)

  1.  mass%で、
    C :0.08~0.15%、         Si:0.5~1.5%、
    Mn:0.5~1.5%、           P :0.1%以下、
    S :0.01%以下、            Al:0.01~0.1%、
    N :0.005%以下
    を含み、残部Feおよび不可避的不純物からなる組成と、主相であるフェライト相と、少なくともパーライトを含む第二相とからなる組織と、を有し、組織全体に対する面積率で、前記フェライト相が75~90%、前記パーライトが10~25%で、かつ該パーライトの平均粒径が5μm以下であり、さらに前記パーライトが、前記第二相の全面積に対する面積率で70%以上であることを特徴とする加工性に優れた高強度鋼板。
  2.  前記組成に加えてさらに、mass%で、Cr:0.05~0.5%、V:0.005~0.2%、Mo:0.005~0.2%のうちから選ばれた1種または2種以上を含有することを特徴とする請求項1に記載の高強度鋼板。
  3.  前記組成に加えてさらに、mass%で、Ti:0.01~0.1%、Nb:0.01~0.1%のうちから選ばれた1種または2種を含有することを特徴とする請求項1または2に記載の高強度鋼板。
  4.  前記組成に加えてさらに、mass%で、B:0.0003~0.0050%を含有することを特徴とする請求項1ないし3のいずれかに記載の高強度鋼板。
  5.  前記組成に加えてさらに、mass%で、Ni:0.05~0.5%、Cu:0.05~0.5%のうちから選ばれた1種または2種を含有することを特徴とする請求項1ないし4のいずれかに記載の高強度鋼板。
  6.  前記組成に加えてさらに、mass%で、Ca:0.001~0.005%、REM:0.001~0.005%のうちから選ばれた1種または2種を含有することを特徴とする請求項1ないし5のいずれかに記載の高強度鋼板。
  7.  mass%で、
    C :0.08~0.15%、         Si:0.5~1.5%、
    Mn:0.5~1.5%、           P :0.1%以下、
    S :0.01%以下、            Al:0.01~0.1%、
    N :0.005%以下
    を含み、残部Feおよび不可避的不純物からなる組成を有する鋼素材に、熱間圧延を施し熱延板とする熱延工程と、前記熱延板に酸洗を施したのち、該熱延板を、連続焼鈍ラインで、Ac1変態点~Ac3変態点の第一の温度域で5~400s間保持する焼鈍処理と、該焼鈍処理後、前記第一の温度域から700℃までを、5℃/s以上の平均冷却速度で冷却し、さらに700℃~400℃までの第二の温度域での滞留時間を30~400sとする冷却処理を行う連続焼鈍工程と、を施すことを特徴とする加工性に優れた高強度鋼板の製造方法。
  8.  前記熱延工程が、前記鋼素材を1100~1280℃の範囲の温度に加熱したのち、熱間圧延終了温度:870~950℃とする熱間圧延を行い熱延板とし、該熱間圧延の終了後、該熱延板を、巻取り温度:350~720℃として巻き取る、工程であることを特徴とする請求項7の記載の高強度鋼板の製造方法。
  9.  前記第二の温度域のうち、700~550℃の温度域での冷却時間を10s以上とすることを特徴とする請求項7または8に記載の高強度鋼板の製造方法。
  10.  前記組成に加えてさらに、mass%で、Cr:0.05~0.5%、V:0.005~0.2%、Mo:0.005~0.2%のうちから選ばれた1種または2種以上を含有することを特徴とする請求項7ないし9のいずれかに記載の高強度鋼板の製造方法。
  11.  前記組成に加えてさらに、mass%で、Ti:0.01~0.1%、Nb:0.01~0.1%のうちから選ばれた1種または2種を含有することを特徴とする請求項7ないし10のいずれかに記載の高強度鋼板の製造方法。
  12.  前記組成に加えてさらに、mass%で、B:0.0003~0.0050%を含有することを特徴とする請求項7ないし11のいずれかに記載の高強度鋼板の製造方法。
  13.  前記組成に加えてさらに、mass%で、Ni:0.05~0.5%、Cu:0.05~0.5%のうちから選ばれた1種または2種を含有することを特徴とする請求項7ないし12のいずれかに記載の高強度鋼板の製造方法。
  14.  前記組成に加えてさらに、mass%で、Ca:0.001~0.005%、REM:0.001~0.005%のうちから選ばれた1種または2種を含有することを特徴とする請求項7ないし13のいずれかに記載の高強度鋼板の製造方法。
PCT/JP2011/065415 2010-06-29 2011-06-29 加工性に優れた高強度鋼板およびその製造方法 WO2012002566A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/704,781 US20130233453A1 (en) 2010-06-29 2011-06-29 High strength steel sheet having excellent formability and method for manufacturing the same
EP11801026.3A EP2589678B1 (en) 2010-06-29 2011-06-29 High-strength steel sheet with excellent processability and process for producing same
CN201180032346.4A CN102971443B (zh) 2010-06-29 2011-06-29 加工性优良的高强度钢板及其制造方法
KR1020127032907A KR101485237B1 (ko) 2010-06-29 2011-06-29 가공성이 우수한 고강도 강판 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-147419 2010-06-29
JP2010147419A JP5018934B2 (ja) 2010-06-29 2010-06-29 加工性に優れた高強度鋼板およびその製造方法

Publications (1)

Publication Number Publication Date
WO2012002566A1 true WO2012002566A1 (ja) 2012-01-05

Family

ID=45402263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065415 WO2012002566A1 (ja) 2010-06-29 2011-06-29 加工性に優れた高強度鋼板およびその製造方法

Country Status (7)

Country Link
US (1) US20130233453A1 (ja)
EP (1) EP2589678B1 (ja)
JP (1) JP5018934B2 (ja)
KR (1) KR101485237B1 (ja)
CN (1) CN102971443B (ja)
TW (1) TWI431124B (ja)
WO (1) WO2012002566A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102719755A (zh) * 2012-05-31 2012-10-10 攀钢集团攀枝花钢铁研究院有限公司 高强度高成型性能的汽车结构用热轧酸洗板及其生产方法
CN104060169A (zh) * 2014-06-18 2014-09-24 攀钢集团攀枝花钢铁研究院有限公司 一种热轧钢板及其生产方法
EP2808412A4 (en) * 2012-01-18 2015-12-16 Jfe Steel Corp STEEL BAND FOR SPIRAL TUBING AND METHOD FOR MANUFACTURING THE SAME
WO2023121181A1 (ko) * 2021-12-20 2023-06-29 주식회사 포스코 진공열차 튜브용 열연강판 및 그 제조방법

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5018935B2 (ja) * 2010-06-29 2012-09-05 Jfeスチール株式会社 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5316634B2 (ja) * 2011-12-19 2013-10-16 Jfeスチール株式会社 加工性に優れた高強度鋼板およびその製造方法
KR101417260B1 (ko) * 2012-04-10 2014-07-08 주식회사 포스코 재질 균일성이 우수한 고탄소 열연강판 및 이의 제조방법
CN103741067B (zh) * 2013-12-26 2016-08-31 马钢(集团)控股有限公司 一种卡车用高韧性轮毂用钢及轮毂的制备方法
CN104060167A (zh) * 2014-06-18 2014-09-24 攀钢集团攀枝花钢铁研究院有限公司 一种热轧钢板及其生产方法
WO2016021195A1 (ja) * 2014-08-07 2016-02-11 Jfeスチール株式会社 高強度鋼板およびその製造方法
CN104264038A (zh) * 2014-09-23 2015-01-07 攀钢集团西昌钢钒有限公司 一种440MPa级连退冷轧结构钢板及其生产工艺
CN104674138A (zh) * 2015-03-20 2015-06-03 苏州科胜仓储物流设备有限公司 一种用于窄道式货架的耐摩擦钢板及其热处理工艺
CN104694854A (zh) * 2015-03-20 2015-06-10 苏州科胜仓储物流设备有限公司 一种用于悬臂式货架的高强度钢板及其热处理工艺
CN105619025A (zh) * 2015-12-30 2016-06-01 浙江吉利汽车研究院有限公司 一种高强度耐疲劳扭力梁的热成形方法
KR101726130B1 (ko) 2016-03-08 2017-04-27 주식회사 포스코 성형성이 우수한 복합조직강판 및 그 제조방법
CN105839001A (zh) * 2016-05-30 2016-08-10 苏州双金实业有限公司 一种具有良好加工性能的钢
CN106435384A (zh) * 2016-09-28 2017-02-22 河钢股份有限公司承德分公司 一种含钒汽车结构钢及其生产方法
CN110405372B (zh) * 2019-07-09 2021-02-09 中国石油大学(华东) 一种基于残余应力调控的双相不锈钢换热板复合焊接方法
KR102307946B1 (ko) * 2019-12-09 2021-09-30 주식회사 포스코 내해수성이 우수한 구조용 강판 및 이의 제조방법
CN111187985A (zh) * 2020-02-17 2020-05-22 本钢板材股份有限公司 一种具有高扩孔性能和疲劳寿命的热轧延伸凸缘钢及其制备工艺
KR102484995B1 (ko) * 2020-12-10 2023-01-04 주식회사 포스코 진공열차 튜브용 열연강판 및 그 제조방법
CN117897513A (zh) * 2021-08-31 2024-04-16 浦项股份有限公司 真空列车管用热轧钢板及其制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63293121A (ja) 1987-05-25 1988-11-30 Kobe Steel Ltd 局部延性にすぐれる高強度冷延鋼板の製造方法
JPH05112832A (ja) 1991-10-18 1993-05-07 Nisshin Steel Co Ltd 耐食性に優れた低降伏比高張力熱延鋼板の製造方法
JPH0762487A (ja) * 1993-08-26 1995-03-07 Kawasaki Steel Corp 焼付け硬化性、耐時効性およびノンイヤリング性に優れた高強度高加工性製缶用鋼板およびその製造方法
JPH1060593A (ja) 1996-06-10 1998-03-03 Kobe Steel Ltd 強度−伸びフランジ性バランスにすぐれる高強度冷延鋼板及びその製造方法
JP2000219937A (ja) * 1999-01-29 2000-08-08 Sumitomo Metal Ind Ltd 加工用高強度Ti添加熱延鋼板とその製造方法
JP2002012947A (ja) * 2000-06-28 2002-01-15 Nkk Corp 伸びフランジ性に優れた溶融亜鉛めっき鋼板およびその製造方法
JP2006233309A (ja) * 2005-02-28 2006-09-07 Jfe Steel Kk 焼付硬化性及び成形性に優れた高張力熱延鋼板およびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09118952A (ja) * 1995-10-20 1997-05-06 Kobe Steel Ltd 降伏比の低い高強度熱延鋼板部材
JP2003193188A (ja) * 2001-12-25 2003-07-09 Jfe Steel Kk 伸びフランジ性に優れた高張力合金化溶融亜鉛めっき冷延鋼板およびその製造方法
JP4023225B2 (ja) * 2002-06-11 2007-12-19 Jfeスチール株式会社 回転しごき加工用熱延鋼板およびその製造方法ならびに自動車用部品
JP4967360B2 (ja) * 2006-02-08 2012-07-04 住友金属工業株式会社 熱間プレス用めっき鋼板およびその製造方法ならびに熱間プレス成形部材の製造方法
CN100519808C (zh) * 2007-12-05 2009-07-29 攀钢集团攀枝花钢铁研究院 一种含钒热轧钢板及其制备方法
KR100928782B1 (ko) * 2007-12-26 2009-11-25 주식회사 포스코 용접열영향부의 저온인성과 인장강도가 우수한 고강도구조용 강재 및 그 제조방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63293121A (ja) 1987-05-25 1988-11-30 Kobe Steel Ltd 局部延性にすぐれる高強度冷延鋼板の製造方法
JPH05112832A (ja) 1991-10-18 1993-05-07 Nisshin Steel Co Ltd 耐食性に優れた低降伏比高張力熱延鋼板の製造方法
JPH0762487A (ja) * 1993-08-26 1995-03-07 Kawasaki Steel Corp 焼付け硬化性、耐時効性およびノンイヤリング性に優れた高強度高加工性製缶用鋼板およびその製造方法
JPH1060593A (ja) 1996-06-10 1998-03-03 Kobe Steel Ltd 強度−伸びフランジ性バランスにすぐれる高強度冷延鋼板及びその製造方法
JP2000219937A (ja) * 1999-01-29 2000-08-08 Sumitomo Metal Ind Ltd 加工用高強度Ti添加熱延鋼板とその製造方法
JP2002012947A (ja) * 2000-06-28 2002-01-15 Nkk Corp 伸びフランジ性に優れた溶融亜鉛めっき鋼板およびその製造方法
JP2006233309A (ja) * 2005-02-28 2006-09-07 Jfe Steel Kk 焼付硬化性及び成形性に優れた高張力熱延鋼板およびその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2808412A4 (en) * 2012-01-18 2015-12-16 Jfe Steel Corp STEEL BAND FOR SPIRAL TUBING AND METHOD FOR MANUFACTURING THE SAME
CN102719755A (zh) * 2012-05-31 2012-10-10 攀钢集团攀枝花钢铁研究院有限公司 高强度高成型性能的汽车结构用热轧酸洗板及其生产方法
CN104060169A (zh) * 2014-06-18 2014-09-24 攀钢集团攀枝花钢铁研究院有限公司 一种热轧钢板及其生产方法
WO2023121181A1 (ko) * 2021-12-20 2023-06-29 주식회사 포스코 진공열차 튜브용 열연강판 및 그 제조방법

Also Published As

Publication number Publication date
EP2589678A4 (en) 2017-07-19
KR20130021409A (ko) 2013-03-05
JP2012012623A (ja) 2012-01-19
EP2589678B1 (en) 2018-09-05
TWI431124B (zh) 2014-03-21
KR101485237B1 (ko) 2015-01-22
EP2589678A1 (en) 2013-05-08
US20130233453A1 (en) 2013-09-12
CN102971443B (zh) 2015-03-25
CN102971443A (zh) 2013-03-13
JP5018934B2 (ja) 2012-09-05
TW201207126A (en) 2012-02-16

Similar Documents

Publication Publication Date Title
JP5018934B2 (ja) 加工性に優れた高強度鋼板およびその製造方法
JP5018935B2 (ja) 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
TWI412605B (zh) 高強度鋼板及其製造方法
JP5126326B2 (ja) 耐疲労特性に優れた高強度熱延鋼板およびその製造方法
JP5463685B2 (ja) 加工性および耐衝撃性に優れた高強度冷延鋼板およびその製造方法
JP5724267B2 (ja) 打抜き加工性に優れた高強度熱延鋼板およびその製造方法
JP6179461B2 (ja) 高強度鋼板の製造方法
JP4640130B2 (ja) 機械特性ばらつきの小さい高強度冷延鋼板およびその製造方法
JP5003785B2 (ja) 延性に優れた高張力鋼板およびその製造方法
JP5924332B2 (ja) 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
WO2013051238A1 (ja) 高強度鋼板およびその製造方法
JP5316634B2 (ja) 加工性に優れた高強度鋼板およびその製造方法
KR20120023129A (ko) 고강도 강판 및 그 제조 방법
JP2010248565A (ja) 伸びフランジ性に優れた超高強度冷延鋼板およびその製造方法
JP5509909B2 (ja) 高強度熱延鋼板の製造方法
JP2013241636A (ja) 低降伏比型高強度溶融亜鉛めっき鋼板、低降伏比型高強度合金化溶融亜鉛めっき鋼板、低降伏比型高強度溶融亜鉛めっき鋼板の製造方法、および低降伏比型高強度合金化溶融亜鉛めっき鋼板の製造方法
JP2013139591A (ja) 加工性に優れた高強度熱延鋼板及びその製造方法
JP4710558B2 (ja) 加工性に優れた高張力鋼板およびその製造方法
JP5338257B2 (ja) 延性に優れた高降伏比超高張力鋼板およびその製造方法
JP2007224408A (ja) 歪時効硬化特性に優れた熱延鋼板およびその製造方法
JP5515623B2 (ja) 高強度冷延鋼板およびその製造方法
JPWO2018168618A1 (ja) 高強度冷延鋼板とその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180032346.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11801026

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3724/KOLNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20127032907

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011801026

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13704781

Country of ref document: US