WO2011161816A1 - ハイブリッド車両およびその制御方法 - Google Patents

ハイブリッド車両およびその制御方法 Download PDF

Info

Publication number
WO2011161816A1
WO2011161816A1 PCT/JP2010/060854 JP2010060854W WO2011161816A1 WO 2011161816 A1 WO2011161816 A1 WO 2011161816A1 JP 2010060854 W JP2010060854 W JP 2010060854W WO 2011161816 A1 WO2011161816 A1 WO 2011161816A1
Authority
WO
WIPO (PCT)
Prior art keywords
upper limit
vehicle speed
storage device
travel
vehicle
Prior art date
Application number
PCT/JP2010/060854
Other languages
English (en)
French (fr)
Other versions
WO2011161816A9 (ja
Inventor
山本 雅哉
優 仲尾
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2010/060854 priority Critical patent/WO2011161816A1/ja
Priority to US13/520,061 priority patent/US8718849B2/en
Priority to EP10853676.4A priority patent/EP2586672B1/en
Priority to CN201080060193.XA priority patent/CN102712313B/zh
Priority to JP2012521242A priority patent/JP5278614B2/ja
Publication of WO2011161816A1 publication Critical patent/WO2011161816A1/ja
Publication of WO2011161816A9 publication Critical patent/WO2011161816A9/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/50Input parameters for engine control said parameters being related to the vehicle or its components
    • F02D2200/501Vehicle speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a hybrid vehicle and a control method therefor, and more specifically, to a traveling control of a hybrid vehicle that can select traveling by only the output of the rotating electrical machine and traveling by the output of the rotating electrical machine and the engine.
  • Hybrid vehicles configured such that a rotating electric machine generates vehicle driving force by electric power from a secondary battery mounted on the vehicle are attracting attention.
  • Patent Document 1 describes a hybrid vehicle that selects at least a mode that travels by operating an engine and a mode that travels only by the output of a motor generator with the engine stopped. ing. Patent Document 1 describes that in the above hybrid vehicle, the replacement timing of consumable parts related to the engine is determined based on the operation performance of the engine.
  • Patent Document 2 describes a vehicle control device and a vehicle control method.
  • the upper limit value or the lower limit value of the amount of change in torque generated by a drive motor that is a rotating electrical machine that generates vehicle drive force is set as the output value or input power limit value of the secondary battery and the vehicle speed. It describes that it sets based on.
  • the drive motor is directed to output the torque required by the driver without causing overcharge / discharge of the secondary battery.
  • the upper limit values of the input power and output power of the secondary battery are generally set based on the state of charge (SOC) and temperature of the secondary battery. It is.
  • the output of the drive motor is set so that the output power of the secondary battery does not exceed the upper limit value. For this reason, when the output power upper limit value is limited due to the SOC decrease or temperature increase of the secondary battery, the output of the drive motor is also limited.
  • hybrid traveling In the hybrid vehicle, traveling using only the output of the rotating electrical machine (hereinafter also referred to as “motor traveling”) and traveling based on the output of the rotating electrical machine and the engine (hereinafter also referred to as “hybrid traveling”) are selectively used. Thereby, energy efficiency is improved (that is, fuel efficiency is improved) by limiting the operation of the engine to the high efficiency region while effectively using the stored power of the secondary battery.
  • a so-called plug-in hybrid vehicle that can charge an in-vehicle secondary battery with a power source external to the vehicle has attracted attention.
  • a plug-in hybrid vehicle it is directed to apply motor travel using only the output of a rotating electrical machine for a long period of time.
  • the present invention has been made to solve such problems, and an object of the present invention is to improve the energy efficiency and emission performance of the hybrid vehicle by appropriately securing the opportunity of motor driving.
  • the upper limit vehicle speed of vehicle travel only by the output of the rotating electrical machine is set appropriately.
  • a hybrid vehicle includes a rotating electrical machine for generating vehicle driving force, a power storage device mounted on the vehicle, and power control for performing power conversion between the power storage device and the rotating electrical machine.
  • a unit an internal combustion engine for generating vehicle driving force, an external charging unit for charging a power storage device with a power supply external to the vehicle, and a control device for controlling vehicle travel.
  • the control device includes a travel mode selection unit, an upper limit vehicle speed setting unit, and a travel control unit.
  • the traveling mode selection unit includes a first traveling mode in which the internal combustion engine and the rotating electrical machine are used so as to travel mainly by the output of the rotating electrical machine regardless of the remaining capacity of the electrical storage device, depending on the state of charge of the electrical storage device, One of the second traveling modes using the internal combustion engine and the rotating electric machine is selected so as to travel while maintaining the remaining capacity of the device within a predetermined control range.
  • the upper limit vehicle speed setting unit is configured to set an upper limit vehicle speed for vehicle travel based only on the output of the rotating electrical machine according to the travel mode selected by the travel mode selection unit.
  • the travel control unit is configured to control the vehicle travel so that the outputs of both the internal combustion engine and the rotating electrical machine are used when the vehicle speed exceeds the upper limit vehicle speed.
  • the upper limit vehicle speed setting unit sets the upper limit vehicle speed in the first travel mode to be lower than the upper limit vehicle speed in the second travel mode.
  • the travel control unit travels by the output of only the rotating electrical machine when the torque and the vehicle speed of the hybrid vehicle are within the first region, while outside the first region.
  • the rotating electrical machine and the internal combustion engine are controlled so as to travel by the outputs of both the rotating electrical machine and the internal combustion engine.
  • the traveling control unit travels by the output of only the rotating electrical machine when the torque and the vehicle speed of the hybrid vehicle are inside the second region, while when the outside is outside the second region.
  • the rotating electrical machine and the internal combustion engine are controlled so as to travel by the outputs of both the rotating electrical machine and the internal combustion engine.
  • the 1st and 2nd field is set reflecting the upper limit vehicle speed by the upper limit vehicle speed setting part.
  • the upper limit vehicle speed setting unit is configured to set an upper limit in the first traveling mode based on at least one of the charging state of the power storage device and the input / output current within a range lower than the upper limit vehicle speed in the second traveling mode. Set the vehicle speed variable.
  • the control device further includes a charge state estimation unit, a current load estimation unit, and a charge / discharge control unit.
  • the charge state estimation unit is configured to calculate an estimated value of the remaining capacity of the power storage device based on an output of a sensor arranged in the power storage device.
  • the current load estimation unit is configured to calculate a current load parameter indicating a thermal load of the device due to the passage of the input / output current based on the input / output current of the power storage device.
  • the charge / discharge control unit is configured to variably set the output power upper limit value of the power storage device based on the calculated remaining capacity estimation value and the current load parameter.
  • the upper limit vehicle speed setting unit variably sets the upper limit vehicle speed based on at least the calculated current load parameter.
  • the upper limit vehicle speed setting unit is set according to a first upper limit speed variably set according to the current load parameter and a minimum value of the second upper limit speed variably set according to the remaining capacity estimation value.
  • An upper limit vehicle speed in the first travel mode is set.
  • the hybrid vehicle further includes a display unit for allowing the driver to visually recognize the vehicle information.
  • the display unit includes a display area for displaying a vehicle speed range to which vehicle travel using only the output of the rotating electrical machine can be applied based on at least the upper limit vehicle speed set by the upper limit vehicle speed setting unit.
  • the hybrid vehicle further includes a power generation mechanism configured to generate charging power of the power storage device by the output of the internal combustion engine.
  • the travel control unit controls the rotating electrical machine and the internal combustion engine so that the power generation mechanism generates charging power for the power storage device when the remaining capacity of the power storage device falls below the control range.
  • a rotating electrical machine and an internal combustion engine for generating vehicle driving force, a power storage device mounted on the vehicle, and power control for performing power conversion between the power storage device and the rotating electrical machine.
  • a control method for a hybrid vehicle including a unit and an external charging unit for charging the power storage device with a power supply external to the vehicle, mainly depending on the state of charge of the power storage device regardless of the remaining capacity of the power storage device
  • the outputs of both the internal combustion engine and the rotating electrical machine are used. And controlling the urchin vehicle travel.
  • the upper limit vehicle speed in the first travel mode is set lower than the upper limit vehicle speed in the second travel mode.
  • the step of selecting is in the first traveling mode, when the torque and the vehicle speed of the hybrid vehicle are within the first region, while traveling by the output of only the rotating electrical machine, the step of selecting is performed outside the first region.
  • the rotary electric machine and the internal combustion engine are controlled to run by the outputs of both the rotary electric machine and the internal combustion engine, and in the second running mode, the torque and the vehicle speed of the hybrid vehicle are within the second region. Controls the rotating electrical machine and the internal combustion engine so as to travel by the outputs of both the rotating electrical machine and the internal combustion engine when outside the second region.
  • the first and second areas are set reflecting the upper limit vehicle speed by the setting step.
  • the step of setting is, in the first travel mode, an upper limit vehicle speed based on at least one of a charging state of the power storage device and an input / output current within a range lower than the upper limit vehicle speed in the second travel mode. Is set to be variable.
  • the control method indicates a step of calculating an estimated remaining capacity of the power storage device based on an output of a sensor arranged in the power storage device, and indicates a thermal load of the device based on an input / output current of the power storage device.
  • the step of setting the upper limit vehicle speed variably sets the upper limit vehicle speed based on at least the calculated current load parameter.
  • the step of setting the upper limit vehicle speed includes a step of variably setting the first upper limit speed according to the current load parameter, and a step of variably setting the second upper limit speed according to the remaining capacity estimation value; And setting an upper limit vehicle speed in the first travel mode according to the minimum values of the first upper limit speed and the second upper limit speed.
  • the hybrid vehicle further includes a display unit for allowing the driver to visually recognize the vehicle information.
  • the control method further includes a step of displaying, on the display unit, a vehicle speed range to which the vehicle traveling based only on the output of the rotating electrical machine can be applied based on at least the set upper limit vehicle speed.
  • the hybrid vehicle further includes a power generation mechanism configured to generate charging power of the power storage device by the output of the internal combustion engine.
  • the controlling step controls the rotating electrical machine and the internal combustion engine so that when the remaining capacity of the power storage device falls below the control range, the power generation mechanism generates charging power for the power storage device.
  • the present invention it is possible to appropriately set the upper limit vehicle speed of vehicle travel based only on the output of the rotating electrical machine so that the energy efficiency and emission performance of the hybrid vehicle are improved.
  • FIG. 1 is a block diagram showing a schematic configuration of a hybrid vehicle according to a first embodiment of the present invention.
  • FIG. 2 is a schematic configuration diagram of a power split mechanism shown in FIG. 1.
  • FIG. 2 is a collinear diagram showing a relationship between rotational speeds of the engine shown in FIG. 1 and MG1 and MG2.
  • It is a functional block diagram explaining the traveling control in the hybrid vehicle by Embodiment 1 of this invention.
  • It is a conceptual diagram explaining the heat load design of an apparatus.
  • FIG. 6 is a waveform diagram illustrating an example of selection of a travel mode for SOC transition in the hybrid vehicle according to the first embodiment.
  • 5 is a conceptual diagram illustrating selection of motor travel and hybrid travel in the hybrid vehicle according to Embodiment 1.
  • FIG. 1 is a block diagram showing a schematic configuration of a hybrid vehicle according to a first embodiment of the present invention.
  • FIG. 2 is a schematic configuration diagram of a power split mechanism shown in FIG. 1.
  • FIG. 2 is
  • FIG. 3 is a flowchart showing a processing procedure of travel control in the hybrid vehicle according to the first embodiment.
  • 5 is a flowchart showing a setting process procedure of a motor traveling upper limit vehicle speed in the hybrid vehicle according to the first embodiment.
  • FIG. 10 is a conceptual diagram illustrating setting of a motor traveling upper limit vehicle speed in a hybrid vehicle according to a second embodiment.
  • 6 is a flowchart showing a setting processing procedure of a motor traveling upper limit vehicle speed in a hybrid vehicle according to a second embodiment. It is a conceptual diagram explaining the setting of the motor driving
  • FIG. 10 is a conceptual diagram showing an example of vehicle speed restriction in motor travel of a hybrid vehicle according to a second embodiment.
  • FIG. 1 is a block diagram showing a schematic configuration of a hybrid vehicle 5 according to Embodiment 1 of the present invention.
  • hybrid vehicle 5 is equipped with an internal combustion engine (engine) 18 and motor generators MG1 and MG2, and travels with their outputs controlled to optimum ratios.
  • the hybrid vehicle 5 further includes a power storage device 10.
  • the power storage device 10 is a rechargeable power storage element, and typically includes a secondary battery such as a lithium ion battery or nickel metal hydride. Or you may comprise the electrical storage apparatus 10 by electric power storage elements other than secondary batteries, such as an electric double layer capacitor.
  • FIG. 1 shows a system configuration related to charging / discharging of the power storage device 10 in the hybrid vehicle 5.
  • Power storage device 10 can input and output electric power to and from motor generators MG1 and MG2 through power conversion by power control unit 20 in the system start-up state of hybrid vehicle 5 (hereinafter also referred to as “IG on state”). is there.
  • the power storage device 10 is connected to a power source (not shown, hereinafter referred to as “not shown”) by electrical connection via the connector unit 3 while the hybrid vehicle 5 is stopped (hereinafter also referred to as “IG off state”). It can also be charged by an external power source.
  • the external power supply supplied to the hybrid vehicle 5 via the connector unit 3 may be power generated by a solar cell panel installed on a roof of a house or the like instead of or in addition to a commercial power supply. . Details of charging the power storage device 10 by an external power source (hereinafter also referred to as “external charging”) will be described later.
  • the monitoring unit 11 outputs the temperature Tb, the voltage Vb, and the current Ib as the state detection values of the power storage device 10 based on the outputs of the temperature sensor 12, the voltage sensor 13, and the current sensor 14 provided in the power storage device 10.
  • the temperature sensor 12, the voltage sensor 13, and the current sensor 14 collectively indicate the temperature sensor, the voltage sensor, and the current sensor provided in the power storage device 10. That is, in practice, at least a part of the temperature sensor 12, the voltage sensor 13, and the current sensor 14 will be described in detail in terms of being generally provided.
  • the power split mechanism 22 will be further described with reference to FIG.
  • the power split mechanism 22 is constituted by a planetary gear including a sun gear 202, a pinion gear 204, a carrier 206, and a ring gear 208.
  • the pinion gear 204 engages with the sun gear 202 and the ring gear 208.
  • the carrier 206 supports the pinion gear 204 so that it can rotate.
  • Sun gear 202 is coupled to the rotation shaft of motor generator MG1.
  • the carrier 206 is connected to the crankshaft of the engine 18.
  • Ring gear 208 is connected to the rotation shaft of motor generator MG 2 and reduction gear 95.
  • the engine 18, the motor generator MG1 and the motor generator MG2 are connected via a power split mechanism 22 made of planetary gears, so that the rotational speeds of the engine 18, motor generator MG1 and motor generator MG2 are as shown in FIG. In the collinear diagram, the relationship is a straight line.
  • the power split mechanism 22 divides the driving force generated by the operation of the engine 18 into two parts, and distributes one of them to the motor generator MG1 side and the remaining part to the motor generator MG2.
  • the driving force distributed from power split mechanism 22 to motor generator MG1 side is used for the power generation operation.
  • the driving force distributed to the motor generator MG2 side is combined with the driving force generated by the motor generator MG2 and used to drive the drive wheels 24F.
  • the hybrid vehicle 5 further includes a power control unit 20.
  • Power control unit 20 is configured to be capable of bi-directional power conversion between motor generator MG1 and motor generator MG2 and power storage device 10.
  • Power control unit 20 includes a converter (CONV) 6, and an inverter (INV1) 8-1 and an inverter (INV2) 8-2 respectively associated with motor generators MG1 and MG2.
  • Converter (CONV) 6 is configured to be able to perform bidirectional DC voltage conversion between power storage device 10 and positive bus MPL that transmits the DC link voltage of inverters 8-1, 8-2. That is, the input / output voltage of power storage device 10 and the DC voltage between positive bus MPL and negative bus MNL are boosted or lowered in both directions.
  • the step-up / step-down operation in converter 6 is controlled according to switching command PWC from control device 100.
  • a smoothing capacitor C is connected between the positive bus MPL and the negative bus MNL.
  • the DC voltage between positive bus MPL and negative bus MNL is detected by voltage sensor 16.
  • Inverter 8-1 and inverter 8-2 perform bidirectional power conversion between DC power of positive bus MPL and negative bus MNL and AC power input / output to / from motor generators MG1 and MG2.
  • inverter 8-1 converts AC power generated by motor generator MG1 into DC power in response to switching command PWM1 from control device 100, and supplies the DC power to positive bus MPL and negative bus MNL.
  • inverter 8-2 converts DC power supplied via positive bus MPL and negative bus MNL into AC power in accordance with switching command PWM2 from control device 100, and supplies the AC power to motor generator MG2.
  • motor generator MG2 is configured to receive electric power from power storage device 10 and generate vehicle driving force.
  • Motor generator MG1 is configured to generate charging power for power storage device 10 based on the output of engine 18.
  • a system main relay 7 that is inserted and connected to the positive line PL and the negative line NL.
  • the system main relay 7 is turned on / off in response to a relay control signal SE from the control device 100.
  • the control device 100 is typically an electronic control device mainly composed of a CPU (Central Processing Unit), a storage unit such as a RAM (Random Access Memory) and a ROM (Read Only Memory), and an input / output interface. (ECU: Electronic Control Unit) Then, control device 100 executes control related to vehicle travel and external charging by reading out and executing a program stored in advance in a ROM or the like from RAM. Note that at least a part of the ECU may be configured to execute predetermined numerical / logical operation processing by hardware such as an electronic circuit.
  • FIG. 1 shows the temperature Tb, voltage Vb, and current Ib of the power storage device 10 from the monitoring unit 11 and the line between the positive bus MPL and the negative bus MNL.
  • the system voltage Vh from the measured voltage sensor 16 is illustrated.
  • battery temperature Tb, battery voltage Vb, and battery are described for temperature Tb, voltage Vb, and current Ib of power storage device 10. Also referred to as current Ib.
  • the control device 100 continuously estimates the SOC of the power storage device 10.
  • the SOC indicates the amount of charge (remaining charge amount) when the power storage device 10 is based on the fully charged state.
  • the SOC is expressed as a ratio (0 to 100%) of the current charge amount to the full charge capacity. It is.
  • Hybrid vehicle 5 further includes a connector receiving unit 35 and an external charging unit 30 for charging power storage device 10 with an external power source.
  • connector unit 3 When external charging is performed on power storage device 10, connector unit 3 is connected to connector receiving unit 35, so that power from an external power source is connected to external charging unit via positive charging line CPL and negative charging line CNL. 30.
  • the connector receiving unit 35 includes a connection detection sensor 35a for detecting the connection state between the connector receiving unit 35 and the connector unit 3, and the control device 100 uses the connection signal CON from the connection detection sensor 35a to Detect that charging is possible with an external power supply.
  • a connection detection sensor 35a for detecting the connection state between the connector receiving unit 35 and the connector unit 3, and the control device 100 uses the connection signal CON from the connection detection sensor 35a to Detect that charging is possible with an external power supply.
  • a single-phase AC commercial power supply is used as an external power supply is illustrated.
  • the connector unit 3 typically constitutes a coupling mechanism for supplying an external power source such as a commercial power source to the hybrid vehicle 5.
  • the connector unit 3 is connected to a charging station (not shown) provided with an external power source via a power line PSL made of a cabtire cable or the like.
  • the connector part 3 is electrically connected with the external power supply and the external charging part 30 mounted in the hybrid vehicle 5 by being connected with the hybrid vehicle 5 at the time of external charging.
  • the hybrid vehicle 5 is provided with a connector receiving portion 35 connected to the connector portion 3 for receiving an external power supply.
  • External charging unit 30 is a device for receiving power from an external power source to charge power storage device 10 and is disposed between positive line PL and negative line NL and positive charge line CPL and negative charge line CNL. .
  • the external charging unit 30 includes a current control unit 30a and a voltage conversion unit 30b, and converts power from the external power source into power suitable for charging the power storage device 10.
  • the voltage conversion unit 30b is a device for converting the supply voltage of the external power source into a voltage suitable for charging the power storage device 10, and typically includes a winding transformer having a predetermined transformation ratio, And AC-AC switching regulator.
  • current control unit 30a rectifies the AC voltage after voltage conversion by voltage conversion unit 30b to generate a DC voltage, and controls the charging current supplied to power storage device 10 in accordance with the charging current command from control device 100. To do.
  • the current control unit 30a typically includes a single-phase bridge circuit or the like. Note that the external charging unit 30 may be realized by an AC-DC switching regulator or the like instead of the configuration including the current control unit 30a and the voltage conversion unit 30b.
  • the external power supply may be received by a configuration in which the external power supply and the vehicle are electromagnetically coupled in a non-contact manner to supply electric power.
  • the configuration for external charging of the hybrid vehicle is not particularly limited.
  • the hybrid vehicle 5 travels by selecting one of two travel modes, an EV (Electric Vehicle) mode and an HV (Hybrid Vehicle) mode.
  • EV Electric Vehicle
  • HV Hybrid Vehicle
  • Hybrid vehicle 5 selects the EV mode until the SOC of power storage device 10 falls below a predetermined mode determination value, and travels mainly using only the driving force from motor generator MG2.
  • this EV mode since it is not necessary to maintain the SOC, basically, the power generation operation by motor generator MG1 receiving the driving force of engine 18 is not performed.
  • the EV mode is intended to improve the fuel consumption rate by maintaining the engine 18 in a stopped state. However, when a driving force request such as acceleration from the driver is given, the catalyst is warmed up or air-conditioned. When a request that is not related to a driving force request such as a request is given, or when other conditions are satisfied, the engine 18 is allowed to start.
  • the traveling mode is switched to the HV mode.
  • the power generation by motor generator MG1 is controlled such that the SOC of power storage device 10 is maintained within a predetermined control range. That is, the engine 18 also starts to operate in response to the start of power generation by the motor generator MG1. A part of the driving force generated by the operation of the engine 18 may be used for traveling of the hybrid vehicle 5.
  • the control device 100 determines the rotational speed of the engine 18 and the amount of power generated by the motor generator MG1 based on the signals from the sensors, the traveling state, the accelerator opening, etc. so that the overall fuel efficiency is optimized. And a target value for the torque of motor generator MG2.
  • the user can select the travel mode by operating the selection switch 26 provided in the vicinity of the driver's seat. That is, the user can forcibly select the HV mode or the EV mode by an operation input to the selection switch 26.
  • the hybrid vehicle 5 further includes a display unit 102 for allowing the driver to visually recognize the vehicle information.
  • the display unit 102 is typically configured by a display panel disposed in front of the driver.
  • the display unit 102 displays indicators indicating various information such as a speedometer for displaying the vehicle speed and a fuel gauge indicating the remaining fuel amount.
  • the display unit 102 is provided with a display area 105 for displaying a vehicle speed range in which the hybrid vehicle 5 can travel by motor, as will be described later.
  • the power storage device 10 corresponds to a “power storage device”
  • the motor generator MG2 corresponds to a “rotating electric machine”
  • the engine 18 corresponds to an “internal combustion engine”.
  • the motor generator MG1 corresponds to a “power generation mechanism”.
  • the “EV mode” corresponds to the “first travel mode”
  • the “HV mode” corresponds to the “second travel mode”.
  • FIG. 4 is a functional block diagram illustrating travel control in the hybrid vehicle according to the first embodiment of the present invention. Note that each functional block described in FIG. 4 can be realized by executing software processing by the control device 100 in accordance with a preset program. Alternatively, a circuit (hardware) having a function corresponding to the functional block can be configured in the control device 100.
  • state estimation unit 110 estimates the SOC of power storage device 10 based on battery data (Tb, Ib, Vb) from monitoring unit 11. For example, state estimating unit 110 sequentially calculates the SOC estimated value (#SOC) of power storage device 10 based on the integrated value of the charge / discharge amount of power storage device 10. The integrated value of the charge / discharge amount can be obtained by temporally integrating the product (power) of the battery current Ib and the battery voltage Vb. Alternatively, the estimated SOC value (#SOC) may be calculated based on the relationship between the open circuit voltage (OCV) and the SOC.
  • OCV open circuit voltage
  • the current load estimation unit 120 calculates a current load parameter MP indicating the thermal load of the device due to the passage of the battery current Ib based on the battery current Ib.
  • the current load parameter MP is reflected in the charge / discharge control of the power storage device 10, thereby generating heat from components of the electric system (components such as a reactor, a capacitor, and a switching element that constitute the power control unit 20). Control so that does not become excessive.
  • the thermal load of each device is designed by defining a limit line indicating an allowable time for the moving average value of the energized current. That is, according to the level of the energization current, an allowable time in which the current can be continuously energized is designed in advance, so that the load indicated by the product of the energization current and the energization time does not exceed the limit line. Charge / discharge of the power storage device 10 is limited as necessary.
  • the current load parameter MP is defined as a parameter for quantitatively evaluating the thermal load in each device due to the passage of the battery current Ib.
  • the current load parameter MP is calculated by smoothing the temporal transition of the square value of the battery current Ib with a low-pass filter. For example, the current load parameter MP is calculated according to the following equation (1) for each constant control cycle by using a low-pass filter as a first-order lag system.
  • MP (n) (K ⁇ 1) / K ⁇ MP (n ⁇ 1) + Ib 2 (n) / K (1)
  • MP (n) is a calculated value in the current control cycle
  • MP (n ⁇ 1) is a calculated value in the previous control cycle
  • Ib 2 (n) is a square value of the battery current Ib in the current control cycle.
  • the coefficient K is a value determined by a first-order delay time constant and a control cycle. The time constant increases as the coefficient K increases. The larger the time constant, the greater the change in the current load parameter MP with respect to the change in the square value of the battery current Ib.
  • traveling mode selection unit 205 is configured to select one of the HV mode and the EV mode according to the SOC of power storage device 10.
  • FIG. 6 shows an example of selection of the travel mode for the SOC transition in the hybrid vehicle 5.
  • the EV mode is selected.
  • the SOC control range at each timing is a range from a control lower limit value SOCl to a control upper limit value SOCu.
  • An intermediate value between the control lower limit SOCl and the control upper limit SOCu is the control center value SOCr.
  • the SOC of the power storage device 10 gradually decreases due to running in the EV mode.
  • the control center value SOCr of the SOC control range is set corresponding to the current SOC estimated value (#SOC). That is, in the EV mode, the SOC control range also decreases as the SOC decreases.
  • engine 18 is not started for the purpose of charging power storage device 10.
  • the traveling mode shifts from the EV mode to the HV mode.
  • the control center value SOCr is set to a constant value for the HV mode.
  • the control lower limit SOCl is also kept constant.
  • the power storage device 10 When the HV mode is forcibly selected by operating the selection switch 26 during the EV mode (#SOC> Sth), the power storage device 10 is charged / discharged so as to maintain the SOC at that time. Be controlled. That is, the SOC control range is set such that control center value SOCr is fixed to the estimated SOC value (#SOC) when selector switch 26 is operated.
  • traveling mode selection unit 205 selects the EV mode during a period in which the SOC estimation value (#SOC) by state estimation unit 110 is higher than mode determination value Sth.
  • traveling mode selection unit 205 switches the traveling mode from the EV mode to the HV mode.
  • the traveling mode selection unit 205 forcibly selects the HV mode or the EV mode according to the user operation.
  • the travel mode selection unit 205 outputs a travel mode signal MD indicating which one of the EV mode and the HV mode is selected.
  • the charge / discharge control unit 150 sets the input power upper limit value Win and the output power upper limit value Wout based on the state of the power storage device 10.
  • SOC estimated value #SOC
  • the output power upper limit value Wout is limited from the default value
  • the input power upper limit value Win becomes smaller. More limited than the default value.
  • the battery temperature Tb is low or high
  • the input power upper limit value Win and the output power upper limit value Wout are suppressed as compared to the normal temperature.
  • the charge / discharge control unit 150 further sets the input power upper limit value Win and the output power upper limit value Wout, further reflecting the current load parameter MP by the current load estimation unit 120. For example, when the current load parameter MP is smaller than the determination value (threshold value) Mp, the charge / discharge control unit 150 does not limit the output power upper limit value Wout from the viewpoint of the current load (thermal load due to current). When MP exceeds determination value Mp, output power upper limit Wout is limited.
  • Charging / discharging control unit 150 variably sets input power upper limit value Win and output power upper limit value Wout based on at least one of SOC of power storage device 10 and battery current Ib reflected in current load parameter MP. Configured.
  • the charge / discharge control unit 150 determines whether or not the power storage device 10 needs to be charged while the vehicle is traveling. As described above, in the EV mode, a charge request for the power storage device 10 is not generated. In the HV mode, a charge request for power storage device 10 is generated according to the relationship between the estimated SOC value (#SOC) and the SOC control range (SOCl to SOCu).
  • Motor traveling upper limit vehicle speed setting unit 210 separately sets upper limit vehicle speed VMmax in motor traveling based only on the output of motor generator MG2 in the EV mode and the HV mode based on traveling mode signal MD.
  • the traveling control unit 200 calculates a vehicle driving force and a vehicle braking force necessary for the entire hybrid vehicle 5 according to the vehicle state of the hybrid vehicle 5 and the driver operation.
  • the driver operation includes an amount of depression of an accelerator pedal (not shown), a position of a shift lever (not shown), an amount of depression of a brake pedal (not shown), and the like.
  • the traveling control unit 200 controls output distribution between the motor generators MG1 and MG2 and the engine 18 so as to realize the requested vehicle driving force or vehicle braking force.
  • an output request to motor generators MG1 and MG2 and an output request to engine 18 are determined.
  • either motor traveling or engine traveling is selected.
  • the output request to motor generators MG1 and MG2 is set after limiting the charging / discharging of power storage device 10 within the power range (Win to Wout) in which power storage device 10 can be charged / discharged. Is done. That is, when the output power of power storage device 10 cannot be secured, the output from motor generator MG2 is limited. Further, when a charge request for power storage device 10 is generated from charge / discharge control unit 150, the output of engine 18 for use in power generation by motor generator MG1 is ensured.
  • the distribution unit 250 calculates the torque and rotation speed of the motor generators MG1 and MG2 in response to the output request to the motor generators MG1 and MG2 set by the traveling control unit 200.
  • a control command for torque and rotation speed is output to inverter control unit 260, and at the same time, a control command value for DC voltage Vh is output to converter control unit 270.
  • the distribution unit 250 generates an engine control instruction indicating the engine power and the engine target rotational speed determined by the travel control unit 200.
  • this engine control instruction fuel injection, ignition timing, valve timing, etc. of the engine 18 (not shown) are controlled.
  • Inverter control unit 260 generates switching commands PWM1 and PWM2 for driving motor generators MG1 and MG2 in accordance with a control command from distribution unit 250.
  • the switching commands PWM1 and PWM2 are output to inverters 8-1 and 8-2, respectively.
  • Converter control unit 270 generates switching command PWC such that DC voltage Vh is controlled according to the control command from distribution unit 250.
  • the charge / discharge power of power storage device 10 is controlled by voltage conversion of converter 6 in accordance with switching command PWC.
  • traveling control of the hybrid vehicle 5 with improved energy efficiency is realized in accordance with the vehicle state and driver operation.
  • the horizontal axis represents the vehicle speed V of the hybrid vehicle 5
  • the vertical axis represents the drive torque T.
  • the maximum output line 300 of the hybrid vehicle 5 is defined by the vehicle speed V and the drive torque T.
  • the curved portion of the maximum output line 300 corresponds to the upper limit output power.
  • each of maximum output lines 340 and 350 for motor travel are defined.
  • each of maximum output lines 340 and 350 includes a straight line portion that defines upper limit torque TMmax and upper limit vehicle speed VMmax in motor travel, and a curve portion that defines upper limit output power.
  • the motor travel region is set relatively narrow in order to drive the engine 18 in the engine high efficiency region.
  • the maximum output line 350 is set relatively wide in order to positively select motor travel.
  • hybrid travel is selected at each of the operating points 302 to 306.
  • the EV mode at the operating point 302, motor travel is selected.
  • the hybrid vehicle is selected because it is outside the maximum output line 350. That is, the engine 18 is started.
  • engine 18 is operated for use in power generation by motor generator MG1 even if the operating point is inside maximum output lines 340 and 350. To do.
  • the curved portions of the maximum output lines 340 and 350 change according to the output power upper limit value Wout of the power storage device 10. Specifically, when the output power upper limit value Wout is limited, a region inside the maximum output lines 340 and 350, that is, a region where motor travel is selected is narrowed.
  • V> VMmax is satisfied, and the vehicle is outside the maximum output line 350, so that hybrid travel is selected. That is, when vehicle speed V exceeds motor travel upper limit vehicle speed VMmax, start of engine 18 is instructed and hybrid travel is selected. As a result, further increase in the output of motor generator MG2 is prohibited.
  • Motor generators MG1 and MG2 have low efficiency because iron loss increases in the high rotation speed region.
  • the running resistance increases at high vehicle speeds, it is likely to be in a high load state. For this reason, in motor driving at a high vehicle speed, the energy efficiency (fuel consumption) of the hybrid vehicle 5 deteriorates, and the current for obtaining the same output, that is, the battery current Ib increases. Therefore, by setting the motor travel upper limit vehicle speed VMmax, the vehicle travel is controlled so as to avoid continuous motor travel in the high speed region.
  • the motor travel upper limit vehicle speed VMmax (EV) in the EV mode is set lower than the motor travel upper limit vehicle speed VMmax (HV) in the HV mode.
  • FIG. 8 shows a process procedure of travel control in the hybrid vehicle 5 in the embodiment of the present invention.
  • the processing of each step shown in FIG. 8 can be realized by the control device 100 executing a predetermined program stored in advance or operating a dedicated electronic circuit.
  • the series of control processes shown in FIG. 8 are repeatedly executed at regular control cycles.
  • control device 100 estimates the SOC of power storage device 10 in step S100. That is, in step S100, the estimated SOC value (#SOC) is calculated by the same function as that of state estimation unit 110 in FIG. Further, in step S110, control device 100 calculates current load parameter MP based on battery current Ib in accordance with (1) above. That is, the processing in step S110 corresponds to the function of the current load estimation unit 120 in FIG.
  • Control device 100 sets input power upper limit value Win and output power upper limit value Wout of power storage device 10 in step S120. That is, in step S120, the input power upper limit value Win and the output power upper limit value Wout are variably set by the same function as the charge / discharge control unit 150 in FIG. As described above, when the current load parameter MP exceeds the threshold value Mt, the input power upper limit value Win and the output power upper limit value Wout are limited. Further, in step S140, control device 100 sets the travel mode of hybrid vehicle 5 to either the HV mode or the EV mode based on the SOC of power storage device 10 by the same function as travel mode selection unit 205 in FIG. Choose crab.
  • Control device 100 sets motor travel upper limit vehicle speed VMmax of hybrid vehicle 5 according to the state of power storage device 10 in step S150.
  • the processing in step S150 corresponds to the function of the motor travel upper limit vehicle speed setting unit 210 in FIG.
  • FIG. 13 is a flowchart for explaining in detail the processing in step S150 of FIG.
  • control device 100 determines whether or not the traveling mode is the EV mode.
  • control device 100 advances the process to step S153.
  • step S153 the motor travel upper limit vehicle speed VMmax for the EV mode is set.
  • control device 100 sets motor travel upper limit vehicle speed VMmax for HV mode in step S158.
  • the motor travel upper limit vehicle speed VMmax for the HV mode is higher than the motor travel upper limit vehicle speed VMmax for the EV mode.
  • control device 100 controls output distribution among motor generators MG1, MG2 and engine 18 by the same function as travel control unit 200 in FIG.
  • steps 340 and 350 are set. Then, according to the maximum output lines 340 and 350, selection of motor travel and engine travel, that is, whether or not the engine 18 is required to be operated is determined. Further, output requests to motor generators MG1 and MG2 and output requests to engine 18 are determined.
  • control device 100 controls engine 18 and motor generators MG1 and MG2 in accordance with an engine control command, an MG1 control command, and an MG2 control command according to the output distribution control in step S160, respectively.
  • the control apparatus 100 displays the vehicle speed range which can apply motor drive on the display area 105 by step S180.
  • the display area 105 the entire vehicle speed range of the hybrid vehicle 5 is displayed, and the vehicle speed range to which motor traveling can be applied is displayed in a specific color (for example, green).
  • the display area 105 may be configured using a part of a speedometer (not shown) (for example, a numeric plate part).
  • the vehicle speed range to which motor travel can be applied can be a vehicle speed range lower than the motor travel upper limit vehicle speed VMmax, for example.
  • the SOC and / or the current load parameter MP is reflected in the motor travel upper limit vehicle speed VMmax.
  • the vehicle speed range defined by the maximum output lines 340 and 350 in which the motor travel upper limit vehicle speed VMmax is reflected may be displayed in the display area 105 in correspondence with the current operating point.
  • the vehicle speed range to which the motor travel displayed in the display area 105 can be applied can be determined based at least on the motor travel upper limit vehicle speed VMmax.
  • motor travel upper limit vehicle speed VMmax is set lower than in HV mode.
  • the output power upper limit value Wout is set lower than in HV mode.
  • the motor traveling upper limit vehicle speed VMmax can be appropriately set so that the opportunity of motor traveling can be appropriately secured.
  • FIG. 10 is a conceptual diagram illustrating the setting of the motor traveling upper limit vehicle speed in the hybrid vehicle according to the second embodiment.
  • motor travel upper limit vehicle speed VMmax in EV mode is changed according to the state of power storage device 10 by motor travel upper limit vehicle speed setting unit 210 (FIG. 4). .
  • motor travel upper limit vehicle speed setting unit 210 FIG. 4
  • the frequency with which the output power upper limit Wout is limited is reduced.
  • FIG. 11 is a flowchart for explaining the procedure for setting the motor traveling upper limit vehicle speed VMmax in the hybrid vehicle according to the second embodiment.
  • the process according to the flowchart of FIG. 11 is performed instead of the flowchart of FIG. Execute.
  • control device 100 determines whether or not the traveling mode is the EV mode.
  • control device 100 advances the process to step S154.
  • step S154 the motor travel upper limit vehicle speed VMmax (1) is set according to the current load parameter MP according to the characteristics of FIG.
  • the upper limit vehicle speed VMmax is set to a default value.
  • the motor travel upper limit vehicle speed VMmax is decreased stepwise. By creating a map corresponding to FIG. 12 in advance, the motor travel upper limit vehicle speed VMmax can be set corresponding to the current load parameter MP. Alternatively, the motor travel upper limit vehicle speed VMmax may be decreased continuously corresponding to the decrease in ⁇ MP.
  • control device 100 sets motor travel upper limit vehicle speed VMmax (2) according to the estimated SOC value (#SOC) in accordance with the characteristics shown in FIG.
  • the horizontal axis represents the estimated SOC value (#SOC) calculated by state estimating unit 110.
  • SOC the estimated SOC value
  • #SOC> S1 upper limit vehicle speed VMmax is set to a default value.
  • #SOC is lower than determination value S1
  • motor traveling upper limit vehicle speed VMmax is decreased stepwise in response to the decrease in SOC.
  • motor traveling upper limit vehicle speed VMmax can be set corresponding to the estimated SOC value (#SOC). Note that the motor travel upper limit vehicle speed VMmax may be continuously decreased with respect to the decrease in the SOC.
  • control device 100 sets the minimum value of motor travel upper limit vehicle speed VMmax (1) and VMmax (2) as motor travel upper limit vehicle speed VMmax.
  • control device 100 sets motor travel upper limit vehicle speed VMmax for HV mode in step S158.
  • motor travel upper limit vehicle speed VMmax in HV mode is fixed to a constant value with respect to the state of power storage device 10. Note that the range in which the motor travel upper limit vehicle speed VMmax changes in the EV mode is lower than the motor travel upper limit vehicle speed VMmax in the HV mode.
  • FIG. 14 shows an example of the vehicle speed limit of the hybrid vehicle 5 during continuous motor travel in the EV mode.
  • the SOC estimated value (#SOC) gradually decreases with time by continuing the motor running. Due to the continuous discharge of the power storage device 10 as the motor travels, the current load parameter MP also gradually increases according to the battery current Ib.
  • the motor traveling upper limit vehicle speed VMmax (1) corresponding to the current load parameter MP is sequentially set according to the map shown in FIG.
  • motor traveling upper limit vehicle speed VMmax (2) corresponding to the estimated SOC value (#SOC) is sequentially set according to the map shown in FIG.
  • the minimum value of VMmax (1) and VMmax (2) is set to the motor travel upper limit vehicle speed VMmax.
  • the VMmax (1) decreases at each of the times t1, t3, t4, and t5 according to the increase in the current load parameter MP.
  • VMmax (2) decreases at times t2 and t6 in accordance with the decrease in estimated SOC value (#SOC). Since the motor travel upper limit vehicle speed VMmax decreases due to the decrease in VMmax (1) or VMmax (2), the vehicle speed of the hybrid vehicle 5 is also gradually limited and decreases.
  • the output power upper limit value Wout is lowered.
  • the engine 18 is started and a transition is made from motor travel to hybrid travel.
  • hybrid travel the output from motor generator MG2 decreases.
  • the output power from the power storage device 10 and the battery current Ib also decrease.
  • the current load parameter MP starts to decrease.
  • the hybrid travel is selected until the current load parameter MP is sufficiently decreased and the limitation of the output power upper limit value Wout is released or the vehicle speed and / or the drive torque of the hybrid vehicle 5 is decreased.
  • the traveling control in which the motor traveling upper limit vehicle speed VMmax is fixed, it is predicted that the current load parameter MP reaches the threshold value Mt at an early stage as compared with the example shown in FIG.
  • the starting frequency of the engine 18 may increase thereafter. That is, in hybrid vehicle 5 according to the second embodiment, by changing (decreasing) motor traveling upper limit vehicle speed VMmax according to the state of power storage device 10, the period during which output power from power storage device 10 can be secured can be extended. It is understood that
  • upper limit vehicle speed VMmax for motor travel is set to the state of power storage device 10 (SOC and current load parameter MP). It can be variably set accordingly.
  • the configuration of power control unit 20 is not limited to the configuration illustrated in FIG. 1, and is a configuration for driving motor generators MG and MG2 by the power of power storage device 10. If there is any, it will be described in a confirming manner that any configuration can be applied. Further, the configuration of the drive system of the hybrid vehicle 5 will be described in terms of points that are not limited to the illustration of FIG. Similarly, a “power generation mechanism” different from the motor generator MG1 of FIG. 1 can be applied as long as it is configured to generate charging power for the power storage device by engine output.
  • any other parameter reflecting the battery current Ib can be applied instead of the current load parameter MP.
  • any state quantity or parameter relating to the power storage device 10 that is reflected in the limitation of the output power upper limit value Wout can be used instead of the current load parameter MP.
  • the present invention can be applied to a hybrid vehicle that can travel only with the output of a rotating electrical machine that uses the electric power of the in-vehicle power storage device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 ハイブリッド車両は、EVモードではモータ走行の最大出力線(350)の内側の領域、EVモードではモータ走行の最大出力線(340)の内側の領域で、車載蓄電装置の電力を用いた回転電機の出力のみによるモータ走行が適用できる。各最大出力線(340、350)は、モータ走行での上限トルク(TMmax)および上限車速(VMmax)を規定する直線部分と、上限出力パワーを規定する曲線部分から構成される。したがって、EVモードおよびHVモードのそれぞれにおいて、車速がモータ走行の上限車速を超えると、エンジンが始動される。EVモードでのモータ走行の上限車速(VMmax(EV))は、HVモードでのモータ走行の上限車速(VMmax(HV))よりも低く設定される。

Description

ハイブリッド車両およびその制御方法
 この発明は、ハイブリッド車両およびその制御方法に関し、より特定的には、回転電機の出力のみによる走行と、回転電機およびエンジンの出力による走行とが選択できるハイブリッド車両の走行制御に関する。
 車両に搭載した二次電池からの電力によって回転電機が車両駆動力を発生するように構成されたハイブリッド車両が注目を集めている。
 特開2008-285011号公報(特許文献1)には、少なくともエンジンを作動させることにより走行するモードと、エンジンを停止してモータジェネレータの出力のみで走行するモードとを選択するハイブリッド車両が記載されている。特許文献1では、上記ハイブリッド車両において、エンジンの動作実績に基づいて、エンジンに関連する消耗部品の交換時期を定めることが記載されている。
 また、ハイブリッド車両では、車載二次電池の過充放電の回避と、ドライバ要求に応じた運転性能の確保とを両立するような走行制御が必要となる。特開2006-109650号公報(特許文献2)には、車両用制御装置および車両用制御方法が記載されている。特許文献2は、車両駆動力を発生する回転電機である駆動モータが生成するトルクの変化量の上限値または下限値を、二次電池の出力電力または入力電力の制限値と車両の速度とに基づいて設定することを記載する。これにより、二次電池の過充放電を起こすことなく、ドライバが要求するトルクを駆動モータが出力することが指向される。
 特許文献2にも記載されるように、二次電池の充電状態(SOC:State of Charge)や温度に基づいて、二次電池の入力電力および出力電力の上限値が設定されることが一般的である。駆動モータの出力は、二次電池の出力電力が上限値を超えない範囲で設定される。このため、二次電池のSOC低下や温度上昇によって、出力電力上限値が制限されると、駆動モータの出力も制限されることになる。
特開2008-285011号公報 特開2006-109650号公報
 ハイブリッド車両では、回転電機の出力のみによる走行(以下、「モータ走行」とも称する)と、回転電機およびエンジンの出力による走行(以下、「ハイブリッド走行」とも称する)とが使い分けられる。これにより、二次電池の蓄積電力を有効に使用しつつ、エンジンの作動を高効率領域に限定することによって、エネルギ効率の向上(すなわち、燃費の改善)が図られる。また、ハイブリッド車両の一態様として、車両外部の電源によって車載二次電池を充電可能である、いわゆるプラグインハイブリッド車両が注目されている。特に、プラグインハイブリッド車両では、回転電機の出力のみによるモータ走行を長期間適用することが指向される。
 一方、ハイブリッド車両の高車速時には、走行抵抗が高まるため加速を伴わない定常走行であっても高負荷状態となる傾向がある。このため、回転電機の出力のみによる高車速走行が継続されると、二次電池からの出力電流、すなわち、回転電機を駆動制御するための電気システムの通過電流が比較的大きくなる状態が継続する虞がある。この結果、当該電気システムの構成部品の温度上昇や二次電池の負荷増大を抑制するために、上述のような二次電池からの出力電力の制限値が厳しく制限される状態となり易い。
 したがって、モータ走行の上限車速を設定して、当該上限車速を超えたときには、エンジンを始動してハイブリッド走行を適用することが好ましい。単純には、この上限車速を高く設定する方が、モータ走行の機会を増やすことにつながると理解される。
 しかしながら、上限車速を高く設定し過ぎると、高車速でのモータ走行が許容されることによって、二次電池からの出力電流が比較的大きい状態が継続し易くなるため、上述のような二次電池の出力電力が厳しく制限される状態を招き易くなる。そして、一旦このような状態となると、SOC低下や温度上昇が回復するまで出力電力の制限が長期間継続することが懸念される。この制限期間中には、出力や加速性能を確保するために、エンジンの作動が通常よりも頻繁になる虞がある。このため、上限車速を高く設定し過ぎることにより、モータ走行の機会が却って確保できなくなって、エネルギ効率の低下(すなわち、燃費の悪化)やエミッションの悪化が生じる虞がある。
 この発明は、このような問題点を解決するためになされたものであって、この発明の目的は、モータ走行の機会を適切に確保することによってハイブリッド車両のエネルギ効率やエミッション性が向上するように、回転電機の出力のみによる車両走行の上限車速を適切に設定することである。
 この発明のある局面によれば、ハイブリッド車両は、車両駆動力を発生するための回転電機と、車両に搭載された蓄電装置と、蓄電装置および回転電機の間で電力変換を行なうための電力制御ユニットと、車両駆動力を発生するための内燃機関と、車両外部の電源によって蓄電装置を充電するための外部充電部と、車両走行を制御するための制御装置とを備える。制御装置は、走行モード選択部と、上限車速設定部と、走行制御部とを含む。走行モード選択部は、蓄電装置の充電状態に応じて、蓄電装置の残容量にかかわらず主に回転電機の出力によって走行するように内燃機関および回転電機を使用する第1の走行モードと、蓄電装置の残容量を所定の制御範囲内に維持して走行するように内燃機関および回転電機を使用する第2の走行モードとの一方を選択するように構成される。上限車速設定部は、走行モード選択部によって選択された走行モードに応じて、回転電機の出力のみによる車両走行の上限車速を設定するように構成される。走行制御部は、車速が上限車速を超えているときは、内燃機関および回転電機の両方の出力を用いるように車両走行を制御するように構成される。上限車速設定部は、第1の走行モードでの上限車速を、第2の走行モードでの上限車速よりも低く設定する。
 好ましくは、走行制御部は、第1の走行モードでは、ハイブリッド車両のトルクおよび車速が第1の領域の内部であるときは回転電機のみの出力によって走行する一方で、第1の領域の外部であるときは回転電機および内燃機関の両方の出力によって走行するように、回転電機および内燃機関を制御する。走行制御部は、第2の走行モードでは、ハイブリッド車両のトルクおよび車速が第2の領域の内部であるときは回転電機のみの出力によって走行する一方で、第2の領域の外部であるときは回転電機および内燃機関の両方の出力によって走行するように、回転電機および内燃機関を制御する。そして、第1および第2の領域は、上限車速設定部による上限車速を反映して設定される。
 また好ましくは、上限車速設定部は、第1の走行モードでは、第2の走行モードでの上限車速よりも低い範囲内で、蓄電装置の充電状態および入出力電流の少なくとも一方に基づいて、上限車速を可変に設定する。
 さらに好ましくは、制御装置は、充電状態推定部と、電流負荷推定部と、充放電制御部とをさらに含む。充電状態推定部は、蓄電装置に配置されたセンサの出力に基づいて、蓄電装置の残容量推定値を算出するように構成される。電流負荷推定部は、蓄電装置の入出力電流に基づいて、入出力電流の通過による機器の熱負荷を示す電流負荷パラメータを算出するように構成される。充放電制御部は、算出された残容量推定値および電流負荷パラメータに基づいて、蓄電装置の出力電力上限値を可変に設定するように構成される。そして、上限車速設定部は、第1の走行モードでは、算出された電流負荷パラメータに少なくとも基づいて、上限車速を可変に設定する。
 さらに好ましくは、上限車速設定部は、電流負荷パラメータに応じて可変に設定される第1の上限速度および、残容量推定値に応じて可変に設定される第2の上限速度の最小値に従って、第1の走行モードにおける上限車速を設定する。
 また好ましくは、ハイブリッド車両は、車両情報を運転者に視認させるための表示部をさらに備える。表示部は、上限車速設定部によって設定された上限車速に少なくとも基づいて、回転電機の出力のみによる車両走行が適用可能な車速範囲を表示するための表示エリアを含む。
 あるいは好ましくは、ハイブリッド車両は、内燃機関の出力によって蓄電装置の充電電力を発生するように構成された発電機構をさらに備える。走行制御部は、第2の走行モードでは、蓄電装置の残容量が制御範囲よりも低下したときには発電機構によって蓄電装置の充電電力を発生するように、回転電機および内燃機関を制御する。
 この発明の他の局面によれば、車両駆動力を発生するための回転電機および内燃機関と、車両に搭載された蓄電装置と、蓄電装置および回転電機の間で電力変換を行なうための電力制御ユニットと、車両外部の電源によって蓄電装置を充電するための外部充電部とを備えたハイブリッド車両の制御方法であって、蓄電装置の充電状態に応じて、蓄電装置の残容量にかかわらず主に回転電機の出力によって走行するように内燃機関および回転電機を使用する第1の走行モードと、蓄電装置の残容量を所定の制御範囲内に維持して走行するように内燃機関および回転電機を使用する第2の走行モードとの一方を選択するステップと、選択された走行モードに応じてが上限車速を超えているときは、内燃機関および回転電機の両方の出力を用いるように車両走行を制御するステップとを備える。そして、設定するステップは、第1の走行モードでの上限車速を、第2の走行モードでの上限車速よりも低く設定する。
 好ましくは、選択するステップは、第1の走行モードでは、ハイブリッド車両のトルクおよび車速が第1の領域の内部であるときは回転電機のみの出力によって走行する一方で、第1の領域の外部であるときは回転電機および内燃機関の両方の出力によって走行するように、回転電機および内燃機関を制御し、第2の走行モードでは、ハイブリッド車両のトルクおよび車速が第2の領域の内部であるときは回転電機のみの出力によって走行する一方で、第2の領域の外部であるときは回転電機および内燃機関の両方の出力によって走行するように、回転電機および内燃機関を制御する。第1および第2の領域は、設定するステップによる上限車速を反映して設定される。
 また好ましくは、設定するステップは、第1の走行モードでは、第2の走行モードでの上限車速よりも低い範囲内で、蓄電装置の充電状態または入出力電流の少なくとも一方に基づいて、上限車速を可変に設定する。
 さらに好ましくは、制御方法は、蓄電装置に配置されたセンサの出力に基づいて、蓄電装置の残容量推定値を算出するステップと、蓄電装置の入出力電流に基づいて、機器の熱負荷を示す電流負荷パラメータを示す電流負荷パラメータを算出するステップと、算出された残容量推定値および電流負荷パラメータに基づいて、蓄電装置の出力電力上限値を可変に設定するステップとをさらに備える。そして、上限車速を設定するステップは、第1の走行モードでは、算出された電流負荷パラメータに少なくとも基づいて、上限車速を可変に設定する。
 さらに好ましくは、上限車速を設定するステップは、電流負荷パラメータに応じて第1の上限速度を可変に設定するステップと、残容量推定値に応じて第2の上限速度を可変に設定するステップと、第1の上限速度および第2の上限速度の最小値に従って、第1の走行モードにおける上限車速を設定するステップとを含む。
 また好ましくは、ハイブリッド車両は、車両情報を運転者に視認させるための表示部をさらに備える。そして、制御方法は、設定された上限車速に少なくとも基づいて、回転電機の出力のみによる車両走行が適用可能な車速範囲を表示部に表示するステップをさらに備える。
 あるいは好ましくは、ハイブリッド車両は、内燃機関の出力によって蓄電装置の充電電力を発生するように構成された発電機構をさらに備える。そして、制御するステップは、第2の走行モードでは、蓄電装置の残容量が制御範囲よりも低下したときには発電機構によって蓄電装置の充電電力を発生するように、回転電機および内燃機関を制御する。
 この発明によれば、ハイブリッド車両のエネルギ効率やエミッション性が向上するように、回転電機の出力のみによる車両走行の上限車速を適切に設定することができる。
本発明の実施の形態1によるハイブリッド車両の概略構成を示すブロック図である。 図1に示した動力分割機構の概略構成図である。 図1に示したエンジンおよびMG1,MG2の回転速度の関係を示す共線図である。 本発明の実施の形態1によるハイブリッド車両における走行制御を説明する機能ブロック図である。 機器の熱負荷設計を説明する概念図である。 実施の形態1によるハイブリッド車両におけるSOC推移に対する走行モードの選択の一例を説明する波形図である。 実施の形態1によるハイブリッド車両におけるモータ走行およびハイブリッド走行の選択を説明する概念図である。 実施の形態1によるハイブリッド車両における走行制御の処理手順を示すフローチャートである。 実施の形態1によるハイブリッド車両におけるモータ走行上限車速の設定処理手順を示すフローチャートである。 実施の形態2によるハイブリッド車両におけるモータ走行上限車速の設定を説明する概念図である。 実施の形態2によるハイブリッド車両におけるモータ走行上限車速の設定処理手順を示すフローチャートである。 電池負荷パラメータに対するモータ走行上限車速の設定を説明する概念図である。 蓄電装置のSOCに対するモータ走行上限車速の設定を説明する概念図である。 実施の形態2によるハイブリッド車両のモータ走行における車速制限の例を示す概念図である。
 以下に、本発明の実施の形態について図面を参照して詳細に説明する。なお、以下図中の同一または相当部分には同一符号を付して、その説明は原則として繰返さないものとする。
 [実施の形態1]
 図1は、本発明の実施の形態1によるハイブリッド車両5の概略構成を示すブロック図である。
 図1を参照して、ハイブリッド車両5は、内燃機関(エンジン)18とモータジェネレータMG1、MG2とを搭載し、それぞれの出力を最適な比率に制御して走行する。ハイブリッド車両5は、さらに、蓄電装置10を搭載する。
 蓄電装置10は、再充電可能な電力貯蔵要素であり、代表的にリチウムイオン電池やニッケル水素などの二次電池で構成される。あるいは、電気二重層キャパシタなどの二次電池以外の電力貯蔵要素によって、蓄電装置10を構成してもよい。図1には、ハイブリッド車両5のうちの蓄電装置10の充放電に関連するシステム構成が記載されている。
 蓄電装置10は、ハイブリッド車両5のシステム起動状態(以下、「IGオン状態」とも称する)において、電力制御ユニット20による電力変換を介して、モータジェネレータMG1、MG2に対して電力を入出力可能である。
 さらに、蓄電装置10は、ハイブリッド車両5のシステム停止中(以下、「IGオフ状態」とも記す)において、コネクタ部3を介した電気的な接続によって、車両外部の電源(図示せず、以下「外部電源」とも称する)により充電可能である。なお、コネクタ部3を介してハイブリッド車両5に供給される外部電源は、商用電源に代えて、もしくはこれに加えて住宅の屋根などに設置された太陽電池パネルによる発電電力などであってもよい。外部電源による蓄電装置10の充電(以下、「外部充電」とも称する)の詳細については、後ほど説明する。
 監視ユニット11は、蓄電装置10に設けられた温度センサ12、電圧センサ13および電流センサ14の出力に基づいて、蓄電装置10の状態検出値として、温度Tb、電圧Vb、電流Ibを出力する。なお、温度センサ12、電圧センサ13および電流センサ14については、蓄電装置10に設けられる温度センサ、電圧センサ、および電流センサのそれぞれを包括的に示すものである。すなわち、実際には、温度センサ12、電圧センサ13および電流センサ14の少なくとも一部については、複数個設けられることが一般的である点について確認的に記載する。
 エンジン18と、モータジェネレータMG1と、モータジェネレータMG2とは、動力分割機構22を介して機械的に連結される。そして、ハイブリッド車両5の走行状況に応じて、動力分割機構22を介して上記3者の間で駆動力の分配および結合が行なわれ、その結果として、駆動輪24Fが駆動される。
 図2を参照して、動力分割機構22についてさらに説明する。動力分割機構22は、サンギヤ202と、ピニオンギヤ204と、キャリア206と、リングギヤ208とを含む遊星歯車によって構成される。
 ピニオンギヤ204は、サンギヤ202およびリングギヤ208と係合する。キャリア206は、ピニオンギヤ204が自転可能であるように支持する。サンギヤ202はモータジェネレータMG1の回転軸に連結される。キャリア206はエンジン18のクランクシャフトに連結される。リングギヤ208はモータジェネレータMG2の回転軸および減速機95に連結される。
 エンジン18、モータジェネレータMG1およびモータジェネレータMG2が、遊星歯車からなる動力分割機構22を介して連結されることで、エンジン18、モータジェネレータMG1およびモータジェネレータMG2の回転速度は、図3に示すように、共線図において直線で結ばれる関係になる。
 ハイブリッド車両5の走行時において、動力分割機構22は、エンジン18の作動によって発生する駆動力を二分割し、その一方をモータジェネレータMG1側へ配分するとともに、残部をモータジェネレータMG2へ配分する。動力分割機構22からモータジェネレータMG1側へ配分された駆動力は、発電動作に用いられる。一方、モータジェネレータMG2側へ配分された駆動力は、モータジェネレータMG2で発生した駆動力と合成されて、駆動輪24Fの駆動に使用される。
 このように、ハイブリッド車両5では、エンジン18を停止してモータジェネレータMG2の出力のみを用いたモータ走行と、エンジン18を作動させてエンジン18およびモータジェネレータMG2の両方の出力を用いたハイブリッド走行とを選択できる。
 再び図1を参照して、ハイブリッド車両5は、電力制御ユニット20をさらに備える。電力制御ユニット20は、モータジェネレータMG1およびモータジェネレータMG2と、蓄電装置10との間で双方向に電力変換可能に構成される。電力制御ユニット20は、コンバータ(CONV)6と、モータジェネレータMG1およびMG2にそれぞれ対応付けられたインバータ(INV1)8-1およびインバータ(INV2)8-2とを含む。
 コンバータ(CONV)6は、蓄電装置10と、インバータ8-1、8-2の直流リンク電圧を伝達する正母線MPLとの間で、双方向の直流電圧変換を実行可能に構成される。すなわち、蓄電装置10の入出力電圧と、正母線MPLおよび負母線MNL間の直流電圧とは、双方向に昇圧または降圧される。コンバータ6における昇降圧動作は、制御装置100からのスイッチング指令PWCに従ってそれぞれ制御される。また、正母線MPLおよび負母線MNLの間には、平滑コンデンサCが接続される。そして、正母線MPLおよび負母線MNL間の直流電圧は、電圧センサ16によって検知される。
 インバータ8-1およびインバータ8-2は、正母線MPLおよび負母線MNLの直流電力と、モータジェネレータMG1およびMG2に入出力される交流電力との間の双方向の電力変換を実行する。主として、インバータ8-1は、制御装置100からのスイッチング指令PWM1に応じて、モータジェネレータMG1で発生する交流電力を直流電力に変換し、正母線MPLおよび負母線MNLへ供給する。一方、インバータ8-2は、制御装置100からのスイッチング指令PWM2に応じて、正母線MPLおよび負母線MNLを介して供給される直流電力を交流電力に変換して、モータジェネレータMG2へ供給する。すなわち、ハイブリッド車両5において、モータジェネレータMG2は、蓄電装置10からの電力を受けて車両駆動力を発生するように構成される。また、モータジェネレータMG1は、エンジン18の出力によって蓄電装置10の充電電力を発生するように構成される。
 蓄電装置10と電力制御ユニット20との間には、正線PLおよび負線NLに介挿接続されたシステムメインリレー7が設けられる。システムメインリレー7は、制御装置100からのリレー制御信号SEに応答してオンオフされる。
 制御装置100は、代表的には、CPU(Central Processing Unit)と、RAM(Random Access Memory)やROM(Read Only Memory)などの記憶部と、入出力インターフェイスとを主体として構成された電子制御装置(ECU:Electronic Control Unit)により構成される。そして、制御装置100は、CPUが予めROMなどに格納されたプログラムをRAMから読出して実行することによって、車両走行および外部充電に係る制御を実行する。なお、ECUの少なくとも一部は、電子回路等のハードウェアにより所定の数値・論理演算処理を実行するように構成されてもよい。
 制御装置100に入力される情報の一例として、図1には、監視ユニット11からの、蓄電装置10の温度Tb、電圧Vbおよび電流Ibや、正母線MPLと負母線MNLとの線間に配置された電圧センサ16からのシステム電圧Vhを例示する。なお、上述のように、蓄電装置10として代表的には二次電池が適用されるので、以下では、蓄電装置10の温度Tb、電圧Vbおよび電流Ibについて、バッテリ温度Tb、バッテリ電圧Vbおよびバッテリ電流Ibとも称することとする。
 また、制御装置100は、蓄電装置10のSOCを連続的に推定する。SOCは、蓄電装置10が満充電状態を基準にしたときの充電量(残存電荷量)を示すものであり、一例として、満充電容量に対する現在の充電量の比率(0~100%)で表わされる。
 ここで、外部充電のための構成について説明する。
 ハイブリッド車両5は、蓄電装置10を外部電源により充電するための、コネクタ受入部35および外部充電部30とをさらに備える。
 蓄電装置10に対して外部充電を行なう場合には、コネクタ部3がコネクタ受入部35に連結されることで、正充電線CPLおよび負充電線CNLを介して外部電源からの電力が外部充電部30へ供給される。また、コネクタ受入部35は、コネクタ受入部35とコネクタ部3との連結状態を検出するための連結検出センサ35aを含んでおり、この連結検出センサ35aからの連結信号CONによって制御装置100は、外部電源により充電可能な状態となったことを検出する。なお、本実施の形態においては、外部電源として単相交流の商用電源が用いられる場合について例示する。
 コネクタ部3は、代表的に商用電源などの外部電源をハイブリッド車両5に供給するための連結機構を構成する。コネクタ部3は、キャブタイヤケーブルなどからなる電力線PSLを介して外部電源を備えた充電ステーション(図示せず)と連結される。そして、コネクタ部3は、外部充電時にハイブリッド車両5と連結されることによって、外部電源とハイブリッド車両5に搭載された外部充電部30とを電気的に接続する。一方、ハイブリッド車両5には、コネクタ部3と連結された、外部電源を受入れるためのコネクタ受入部35が設けられる。
 外部充電部30は、外部電源からの電力を受けて蓄電装置10を充電するための装置であり、正線PLおよび負線NLと正充電線CPLおよび負充電線CNLとの間に配置される。
 また、外部充電部30は、電流制御部30aと、電圧変換部30bとを含み、外部電源からの電力を蓄電装置10の充電に適した電力に変換する。具体的には、電圧変換部30bは、外部電源の供給電圧を蓄電装置10の充電に適した電圧に変換するための装置であり、代表的に所定の変圧比を有する巻線型の変圧器や、AC-ACスイッチングレギュレータなどからなる。また、電流制御部30aは、電圧変換部30bによる電圧変換後の交流電圧を整流して直流電圧を生成するとともに、制御装置100からの充電電流指令に従って、蓄電装置10に供給する充電電流を制御する。電流制御部30aは、代表的に単相のブリッジ回路などからなる。なお、電流制御部30aおよび電圧変換部30bからなる構成に代えて、AC-DCスイッチングレギュレータなどによって外部充電部30を実現してもよい。
 なお、図1に示す構成に代えて、外部電源と車両とを非接触のまま電磁的に結合して電力を供給する構成によって、外部電源を受入れてもよい。具体的には外部電源側に一次コイルを設けるとともに、車両側に二次コイルを設け、一次コイルと二次コイルとの間の相互インダクタンスを利用して電力供給を行なう構成を適用することができる。このように、本発明の適用において、ハイブリッド車両の外部充電のための構成は特に限定されるものではない。
 上述のように、ハイブリッド車両5では、蓄電装置10を外部充電できるため、エンジン18を可能な限り停止状態に維持して走行することがエネルギ効率上好ましい。そのため、ハイブリッド車両5は、EV(Electric Vehicle)モードおよびHV(Hybrid Vehicle)モードの2つの走行モードの一方を選択して走行する。
 ハイブリッド車両5は、蓄電装置10のSOCが所定のモード判定値を下回るまでの間、EVモードを選択して、主としてモータジェネレータMG2からの駆動力のみで走行する。このEVモードでは、SOCを維持する必要はないので、基本的に、エンジン18の駆動力を受けたモータジェネレータMG1での発電動作は行なわれない。なお、EVモードは、エンジン18を停止状態に維持して燃料消費率を向上させることを目的としているが、運転者からの加速などの駆動力要求が与えられた場合、触媒暖機時や空調要求などの駆動力要求とは無関係な要求が与えられた場合、およびその他の条件が成立した場合などにおいては、エンジン18の始動が許可される。
 EVモード中に蓄電装置10のSOCがモード判定値まで低下すると、走行モードはHVモードに切換わる。HVモードにおいては、蓄電装置10のSOCが予め定められた所定の制御範囲内に維持されるように、モータジェネレータMG1による発電が制御される。すなわち、モータジェネレータMG1による発電の開始に応じて、エンジン18も作動を開始する。なお、エンジン18の作動によって生じる駆動力の一部はハイブリッド車両5の走行に用いられてもよい。
 HVモードでは、制御装置100は、総合的な燃費が最適化されるように、各センサからの信号、走行状況、アクセル開度などに基づいて、エンジン18の回転速度、モータジェネレータMG1の発電量、およびモータジェネレータMG2のトルクについての目標値を決定する。
 さらに、ハイブリッド車両5では、運転席の近傍に設けられた選択スイッチ26をユーザが操作することによって走行モードを選択することも可能である。すなわち、ユーザは、選択スイッチ26への操作入力によって、HVモードまたはEVモードを強制的に選択できる。
 ハイブリッド車両5は、さらに、ドライバに車両情報を視認させるための表示部102を備える。表示部102は、代表的には、ドライバの前方に配設されたディスプレイパネルにより構成される。たとえば、表示部102には、車速を表示するためのスピードメータや、燃料残量を示す燃料ゲージなどの各種情報を示すインジケータが表示される。好ましくは、表示部102には、後述するように、ハイブリッド車両5がモータ走行可能な車速範囲を表示するための表示エリア105が設けられる。
 図1に示すこの発明の実施の形態と本願発明との対応関係については、蓄電装置10が「蓄電装置」に相当し、モータジェネレータMG2が「回転電機」に相当し、エンジン18が「内燃機関」に相当し、モータジェネレータMG1が「発電機構」に相当する。また、「EVモード」が「第1の走行モード」に相当し、「HVモード」が「第2の走行モード」に相当する。
 図4は、本発明の実施の形態1によるハイブリッド車両における走行制御を説明する機能ブロック図である。なお、図4に記載された各機能ブロックについては、予め設定されたプログラムに従って制御装置100がソフトウェア処理を実行することにより実現することができる。あるいは、制御装置100の内部に、当該機能ブロックに相当する機能を有する回路(ハードウェア)を構成することも可能である。
 図4を参照して、状態推定部110は、監視ユニット11からの電池データ(Tb、Ib、Vb)に基づいて、蓄電装置10のSOCを推定する。たとえば、状態推定部110は、蓄電装置10の充放電量の積算値に基づいて蓄電装置10のSOC推定値(♯SOC)を順次演算する。充放電量の積算値は、バッテリ電流Ibおよびバッテリ電圧Vbの積(電力)を時間的に積分することで得られる。あるいは、開放電圧(OCV:Open Circuit Voltage)とSOCとの関係に基づいてSOC推定値(♯SOC)を算出してもよい。
 電流負荷推定部120は、バッテリ電流Ibに基づいて、バッテリ電流Ibの通過による機器の熱負荷を示す電流負荷パラメータMPを算出する。本実施の形態では、蓄電装置10の充放電制御に電流負荷パラメータMPを反映することによって、電気システムの構成機器(電力制御ユニット20を構成する、リアクトル、コンデンサ、スイッチング素子等の部品)の発熱が過大にならないように制御する。
 図5に示されるように、一般的に各機器の熱負荷は、通電電流の移動平均値に対する許容時間を示す限界線を定めることによって設計される。すなわち、通電電流のレベルに応じて、当該電流を継続的に通電できる許容時間が予め設計されており、通電電流および通電時間の積で示される負荷が、限界線を超えることがないように、蓄電装置10の充放電を必要に応じて制限する。
 図1に示した電気システムでは、各機器の通過電流の大きさは、バッテリ電流Ibの大きさに従ったものとなる。したがって、電流負荷パラメータMPは、バッテリ電流Ibの通過による各機器での熱負荷を定量的に評価するためのパラメータとして定義される。電流負荷パラメータMPは、バッテリ電流Ibの二乗値の時間的な推移をローパスフィルタによって平滑化することによって算出される。たとえば、ローパスフィルタを一次遅れ系とすることによって、電流負荷パラメータMPは、一定の制御周期毎に下記(1)式に従って算出される。
 MP(n)=(K-1)/K・MP(n-1)+Ib2(n)/K …(1)
 式(1)において、MP(n)は今回の制御周期での算出値であり、MP(n-1)は前回の制御周期での算出値である。そして、Ib2(n)は、今回の制御周期でのバッテリ電流Ibの二乗値である。そして、係数Kは、一次遅れの時定数および制御周期によって定められる値である。係数Kが大きいほど時定数が大きくなる。時定数が大きいほど、バッテリ電流Ibの二乗値の変化に対する電流負荷パラメータMPの変化を大きくなまらせることになる。なお、熱負荷の評価のために、時定数については、大電流時には通常よりも小さい値に設定することが好ましい。また、放熱時(MP(n-1)>Ib2(n))には、発熱時(MP(n-1)<Ib2(n))よりも時定数を小さい値に設定する。
 再び図4を参照して、走行モード選択部205は、蓄電装置10のSOCに応じて、HVモードおよびEVモードの一方を選択するように構成される。
 図6には、ハイブリッド車両5におけるSOC推移に対する走行モードの選択の一例が示される。
 図6を参照して、ハイブリッド車両5は、車両走行開始時(時刻t1)には、蓄電装置10はSOC上限値Smaxの近傍まで外部充電されている。イグニッションスイッチがオンされてハイブリッド車両5の走行が開示されると、SOC推定値(♯SOC)がモード判定値Sthよりも高いため、EVモードが選択される。なお、各タイミングでの、SOC制御範囲は、制御下限値SOCl~制御上限値SOCuの範囲である。制御下限値SOClおよび制御上限値SOCuの中間値が、制御中心値SOCrである。上述のように、SOCが制御範囲よりも低下すると、車両走行中の蓄電装置10の充電が要求される。
 EVモードでの走行によって、蓄電装置10のSOCは徐々に低下する。EVモードの間は、SOC制御範囲の制御中心値SOCrは、現時点のSOC推定値(♯SOC)に対応して設定される。すなわち、EVモードでは、SOCの低下に伴ってSOC制御範囲も低下することになる。この結果、EVモードの間は、蓄電装置10の充電を目的としてエンジン18が始動されることはない。
 そして、SOC推定値(♯SOC)が、モード判定値Sthまで低下すると(時刻t2)、走行モードはEVモードからHVモードに移行する。HVモードに移行すると、制御中心値SOCrは、HVモード用の一定値に設定される。これにより、制御下限値SOClも一定に維持される。この結果、HVモードでは、SOCが低下すると、エンジン18(図1)が作動を開始して、モータジェネレータMG1による発電電力によって蓄電装置10が充電される。この結果、SOCは増加し始めて、SOC制御範囲内(SOCl~SOCu)に維持される。
 なお、EVモード中(♯SOC>Sth)に選択スイッチ26の操作によって、強制的にHVモードが選択された場合には、その時点でのSOCを維持するように、蓄電装置10の充放電が制御される。すなわち、制御中心値SOCrを、選択スイッチ26の操作時におけるSOC推定値(♯SOC)に固定するように、SOC制御範囲が設定される。
 そして、ハイブリッド車両5の走行が終了すると、運転者がコネクタ部3(図1)をハイブリッド車両5に連結することで、外部充電が開始される(時刻t3)。これにより、蓄電装置10のSOCは上昇する。
 再び図4を参照して、走行モード選択部205は、状態推定部110によるSOC推定値(♯SOC)がモード判定値Sthより高い期間にはEVモードを選択する。一方、EVモードの実行中にSOC推定値がモード判定値Sthまで低下すると、走行モード選択部205は、走行モードをEVモードからHVモードに切換える。ただし、走行モード選択部205は、選択スイッチ26がユーザによって操作されているときは、ユーザ操作に従ってHVモードまたはEVモードを強制的に選択する。走行モード選択部205は、EVモードおよびHVモードのいずれが選択されているかを示す走行モード信号MDを出力する。
 充放電制御部150は、蓄電装置10の状態に基づいて、入力電力上限値Winおよび出力電力上限値Woutを設定する。一般的な充放電制御として、SOC推定値(♯SOC)が低下すると出力電力上限値Woutがデフォルト値よりも制限される一方で、SOC推定値(♯SOC)が上昇すると入力電力上限値Winがデフォルト値よりも制限される。また、バッテリ温度Tbが低温あるいは高温となると、常温時と比較して、入力電力上限値Winおよび出力電力上限値Woutが抑制される。
 さらに、充放電制御部150は、電流負荷推定部120による電流負荷パラメータMPをさらに反映して、入力電力上限値Winおよび出力電力上限値Woutを設定する。たとえば、充放電制御部150は、電流負荷パラメータMPが判定値(閾値)Mpより小さいときは、電流負荷(電流による熱負荷)の面からは出力電力上限値Woutを制限しないが、電流負荷パラメータMPが判定値Mpを超えると、出力電力上限値Woutを制限する。
 電流負荷パラメータMPを算出するための式(1)から理解されるように、バッテリ電流Ibの低下が電流負荷パラメータMPに反映されるまでには、一定の時間遅れを要する。したがって。電流負荷パラメータMPが判定値Mpを一旦超えてしまうと、蓄電装置10からの出力電力制限によりバッテリ電流Ibが減少しても、電流負荷パラメータMPが低下するまでには、一定の時間を要する。そして、この間、出力電力上限値Woutの制限が継続される。
 なお、入力電力上限値Winおよび出力電力上限値Woutの設定に、蓄電装置10のSOC、バッテリ温度Tbおよびバッテリ電流Ib(電流負荷パラメータMP)の全部を用いることは必須ではない。充放電制御部150は、蓄電装置10のSOCと、電流負荷パラメータMPに反映されるバッテリ電流Ibとの少なくとも一方に基づいて、入力電力上限値Winおよび出力電力上限値Woutを可変に設定するように構成される。
 また、充放電制御部150は、車両走行中における蓄電装置10の充電要否を判定する。上述のように、EVモードでは、蓄電装置10の充電要求は発生されない。HVモードでは、SOC推定値(♯SOC)とSOC制御範囲内(SOCl~SOCu)との関係に応じて、蓄電装置10の充電要求が発生される。
 モータ走行上限車速設定部210は、走行モード信号MDに基づいて、モータジェネレータMG2の出力のみによるモータ走行における上限車速VMmaxを、EVモードおよびHVモードで別個に設定する。
 走行制御部200は、ハイブリッド車両5の車両状態およびドライバ操作に応じて、ハイブリッド車両5全体で必要な車両駆動力や車両制動力を算出する。ドライバ操作には、アクセルペダル(図示せず)の踏込み量、シフトレバー(図示せず)のポジション、ブレーキペダル(図示せず)の踏込み量等が含まれる。
 そして、走行制御部200は、要求された車両駆動力あるいは車両制動力を実現するように、モータジェネレータMG1、MG2およびエンジン18の間での出力配分を制御する。この出力配分制御に従って、モータジェネレータMG1、MG2への出力要求およびエンジン18への出力要求が決定される。出力配分制御の一環として、モータ走行およびエンジン走行のいずれかが選択されることになる。さらに、モータジェネレータMG1、MG2への出力要求は、蓄電装置10の充放電可能な電力範囲内(Win~Wout)で蓄電装置10の充放電が実行されることがないように制限した上で設定される。すなわち、蓄電装置10の出力電力が確保できないときには、モータジェネレータMG2による出力が制限されることになる。また、充放電制御部150から蓄電装置10の充電要求が発生されると、モータジェネレータMG1での発電に用いるためのエンジン18の出力が確保される。
 配分部250は、走行制御部200によって設定されたモータジェネレータMG1、MG2への出力要求に応じて、モータジェネレータMG1、MG2のトルクや回転速度を演算する。そしてトルクや回転速度についての制御指令をインバータ制御部260へ出力すると同時に、直流電圧Vhの制御指令値をコンバータ制御部270へ出力する。
 一方、配分部250は、走行制御部200によって決定されたエンジンパワーおよびエンジン目標回転速度を示すエンジン制御指示を生成する。このエンジン制御指示に従って、図示しないエンジン18の燃料噴射、点火時期、バルブタイミング等が制御される。
 インバータ制御部260は、配分部250からの制御指令に応じて、モータジェネレータMG1およびMG2を駆動するためのスイッチング指令PWM1およびPWM2を生成する。このスイッチング指令PWM1およびPWM2は、それぞれインバータ8-1および8-2へ出力される。
 コンバータ制御部270は、配分部250からの制御指令に従って直流電圧Vhが制御されるように、スイッチング指令PWCを生成する。このスイッチング指令PWCに従ったコンバータ6の電圧変換によって、蓄電装置10の充放電電力が制御されることになる。
 このようにして、車両状態およびドライバ操作に応じて、エネルギ効率を高めたハイブリッド車両5の走行制御が実現される。
 図7を用いて、走行制御部200によるモータ走行およびハイブリッド走行の選択について詳細に説明する。
 図7を参照して、横軸はハイブリッド車両5の車速Vを示し、縦軸は駆動トルクTを示す。車速Vおよび駆動トルクTによって、ハイブリッド車両5の最大出力線300が定義される。
 最大出力線300は、T=Tmax(上限トルク)の直線、V=Vmax(上限車速)の直線、および、T<TmaxかつV<Vmaxの領域での曲線から構成される。最大出力線300の曲線部分は、上限出力パワーに対応する。
 HVモードおよびEVモードのそれぞれについて、モータ走行の最大出力線340および350が規定される。最大出力線340および350の各々は、最大出力線300と同様に、モータ走行での上限トルクTMmaxおよび上限車速VMmaxを規定する直線部分と、上限出力パワーを規定する曲線部分から構成される。
 HVモードでは、ハイブリッド車両5の動作点(車速、トルク)が、最大出力線340の内側であるときには、モータ走行が選択されて、モータジェネレータMGの出力のみによって車両駆動力が確保される。一方、ハイブリッド車両5の動作点が最大出力線340の外側である場合には、エンジン18を始動したハイブリッド走行により車両駆動力が確保される。
 SOCを維持するHVモードでは、エンジン高効率領域ではエンジン18を駆動させるために、モータ走行の領域は相対的に狭く設定される。これに対して、EVモードでは、モータ走行を積極的に選択するために、最大出力線350は、相対的に広く設定される。
 たとえば、HVモードでは、動作点302~306の各々において、ハイブリッド走行が選択される。一方、EVモードでは、動作点302では、モータ走行が選択される。ただし、EVモードにおいても、動作点302から出力トルクの要求が高まった動作点304では、最大出力線350の外側になるので、ハイブリッド走行が選択される。すなわち、エンジン18が始動される。また、上述のように、蓄電装置10の充電要求が発生されたときには、動作点が最大出力線340,350の内側であっても、モータジェネレータMG1での発電に用いるために、エンジン18が作動する。
 最大出力線340,350の曲線部分は、蓄電装置10の出力電力上限値Woutに応じて変化する。詳細には、出力電力上限値Woutが制限されると、最大出力線340,350の内側の領域、すなわち、モータ走行が選択される領域が狭くなる。
 特に、電流負荷パラメータMPの増大によって出力電力上限値Woutが制限されると、SOCには余裕があるためEVモードが選択される一方で、エンジン18が頻繁に始動される可能性がある。これにより、ハイブリッド車両5のエネルギ効率低下が懸念される。
 また、動作点302から、車速が上昇して動作点306に移行すると、V>VMmaxとなるので最大出力線350の外側となることから、ハイブリッド走行が選択される。すなわち、車速Vがモータ走行上限車速VMmaxを超えると、エンジン18の始動が指示されて、ハイブリッド走行が選択される。この結果、モータジェネレータMG2の出力がこれ以上増加することが禁止される。
 モータジェネレータMG1,MG2(回転電機)は、高回転速度領域では、鉄損が大きくなるため効率が低下する。また、高車速時には走行抵抗が高まるため、高負荷状態となり易い。このため、高車速でのモータ走行では、ハイブリッド車5のエネルギ効率(燃費)が悪化するとともに、同一出力を得るための電流、すなわちバッテリ電流Ibが増加する。このため、モータ走行上限車速VMmaxを設定することによって、高速領域での継続的なモータ走行を回避するように車両走行が制御される。
 本実施の形態において、EVモードにおけるモータ走行上限車速VMmax(EV)は、HVモードにおけるモータ走行上限車速VMmax(HV)よりも低く設定される。
 図8は、本発明の実施の形態におけるハイブリッド車両5における走行制御の処理手順が示される。図8に示した各ステップの処理は、制御装置100が、予め記憶された所定プログラムを実行、あるいは、専用の電子回路を動作させることによって実現できる。図8に示した一連の制御処理は、一定の制御周期毎に繰返し実行される。
 図8を参照して、制御装置100は、ステップS100により、蓄電装置10のSOCを推定する。すなわち、ステップS100では、図4の状態推定部110と同様の機能により、SOC推定値(♯SOC)が算出される。さらに、制御装置100は、ステップS110では、上記(1)に従って、バッテリ電流Ibに基づいて電流負荷パラメータMPを算出する。すなわち、ステップS110による処理は、図4の電流負荷推定部120の機能に対応する。
 制御装置100は、ステップS120により、蓄電装置10の入力電力上限値Winおよび出力電力上限値Woutを設定する。すなわち、ステップS120では、図4の充放電制御部150と同様の機能により、入力電力上限値Winおよび出力電力上限値Woutが可変に設定される。上述のように、電流負荷パラメータMPが閾値Mtを超えると、入力電力上限値Winおよび出力電力上限値Woutが制限される。さらに、制御装置100は、ステップS140により、図4の走行モード選択部205と同様の機能により、蓄電装置10のSOCに主に基づいて、ハイブリッド車両5の走行モードをHVモードおよびEVモードのいずれかに選択する。
 制御装置100は、ステップS150により、ハイブリッド車両5のモータ走行上限車速VMmaxを、蓄電装置10の状態に応じて設定する。ステップS150による処理は、図4のモータ走行上限車速設定部210の機能に対応する。
 図13は、図12のステップS150の処理を詳細に説明するフローチャートである。
 図13を参照して、制御装置100は、ステップS152では、走行モードがEVモードであるかどうかを判定する。EVモードのとき(S152のYES判定時)には、制御装置100は、ステップS153に処理を進める。ステップS153では、EVモード用のモータ走行上限車速VMmaxが設定される。
 一方で、HVモードのとき(S152のNO判定時)には、制御装置100は、ステップS158により、HVモード用のモータ走行上限車速VMmaxを設定する。上述のように、HVモード用のモータ走行上限車速VMmaxは、EVモード用のモータ走行上限車速VMmaxよりも高い。
 再び図8を参照して、制御装置100は、ステップS160により、図4の走行制御部200と同様の機能により、モータジェネレータMG1、MG2およびエンジン18の間での出力配分を制御する。ステップS160での出力配分制御では、ステップ340,350が設定される。そして、最大出力線340,350に従って、モータ走行およびエンジン走行の選択、すなわち、エンジン18の作動要否が判定される。さらに、モータジェネレータMG1、MG2への出力要求およびエンジン18への出力要求が決定される。
 制御装置100は、ステップS170では、ステップS160での出力配分制御に従う、エンジンの制御指令、MG1の制御指令およびMG2の制御指令に従って、エンジン18およびモータジェネレータMG1、MG2をそれぞれ制御する。
 そして、制御装置100は、ステップS180により、モータ走行が適用可能な車速範囲を表示エリア105に表示する。たとえば、表示エリア105には、ハイブリッド車両5の全車速範囲が表示されるとともに、全車速範囲のうちの、モータ走行が適用可能な車速範囲が、特定の色(たとえば、緑色)で表示される。表示エリア105は、スピードメータ(図示せず)の一部(たとえば、数字板部分)を用いて構成してもよい。
 このようにすると、モータ走行を自発的に継続するためのガイダンス情報、すなわち、いわゆるエコドライブをアシストするための情報をドライバに与えることができる。なお、モータ走行が適用可能な車速範囲は、たとえば、モータ走行上限車速VMmaxより低い車速範囲とすることができる。上述のように、モータ走行上限車速VMmaxには、SOCおよび/または電流負荷パラメータMPが反映される。あるいは、現在の動作点と対応させて、モータ走行上限車速VMmaxが反映された、最大出力線340および350によって規定される車速範囲を、表示エリア105に表示してもよい。このように、表示エリア105に表示されるモータ走行が適用可能な車速範囲は、モータ走行上限車速VMmaxに少なくとも基づいて、定めることができる。
 以上説明したように、実施の形態1によるハイブリッド車両では、蓄電装置10の電力を積極的に使用するEVモードにおいて、モータ走行上限車速VMmaxは、HVモードよりも低く設定される。これにより、高速領域でのモータ走行によって、SOCおよび/または電流負荷パラメータMPによる出力電力上限値Woutの制限が発生することを予防できる。すなわち、出力電力上限値Woutの制限を受けることなく走行できる期間を長く確保できる。この結果、ドライバの加速要求に対してモータ走行で対応できる領域が相対的に広くなるので、エンジン18の始動を抑制してモータ走行を長期間適用できる。すなわち、EVモードにおけるエンジン18の動作頻度を減らすことができるので、エミッションの悪化を回避してエネルギ効率の高い走行を行なうことができる。この結果、モータ走行の機会を適切に確保できるように、モータ走行上限車速VMmaxを適切に設定できる。
 一方で、元々エンジン18の作動頻度が高いHVモードでは、エンジン効率が高い領域では、蓄電装置10を充電する機会が設けられるので、高車速領域までモータ走行を許容することで、ハイブリッド車両5全体のエネルギ効率を高めることができる。
 また、モータ走行が適用可能な車速範囲を表示エリア105に表示することによって、モータ走行の適用によるエコドライブをアシストするための情報をドライバに与えることができる。
 [実施の形態2]
 実施の形態2では、実施の形態1のハイブリッド車両において、EVモードにおけるモータ走行上限車速VMmaxを、蓄電装置10の状態に応じて変化させる。これにより、出力電力上限値Woutが制限されことのさらなる予防を図る。すなわち、ハイブリッド車両のシステム構成および走行制御の基本部分については実施の形態1と共通であるから、実施の形態2では、実施の形態1との相違点について記載する。
 図10は、実施の形態2によるハイブリッド車両におけるモータ走行上限車速の設定を説明する概念図である。
 図10を参照して、実施の形態2によるハイブリッド車両では、モータ走行上限車速設定部210(図4)によって、EVモードでのモータ走行上限車速VMmaxを、蓄電装置10の状態に応じて変化させる。これにより、出力電力上限値Woutが制限される頻度の低減を図る。
 図11は、実施の形態2によるハイブリッド車両におけるモータ走行上限車速VMmaxの設定処理手順を説明するフローチャートである。実施の形態2によるハイブリッド車両の走行制御では、図8に示したフローチャートを所定周期で実行する際に、ステップS150の処理として、図9のフローチャートに代えて、図11のフローチャートに従った処理を実行する。
 図11を参照して、制御装置100は、ステップS152では、走行モードがEVモードであるかどうかを判定する。EVモードのとき(S152のYES判定時)には、制御装置100は、ステップS154に処理を進める。ステップS154では、図12の特性に従って、電流負荷パラメータMPに応じてモータ走行上限車速VMmax(1)が設定される。
 図12を参照して、横軸ΔMPは、電流負荷パラメータMPについての出力電力上限値Woutの制限が開始される閾値Mtに対する差分である。すなわち、ΔMP=Mt-MPで示される。
 ΔMP>M1のとき、すなわち電流負荷パラメータMPが十分に小さいときには、上限車速VMmaxは、デフォルト値に設定される。一方、電流負荷パラメータMPが上昇して閾値Mtに近づいていくに従って、モータ走行上限車速VMmaxは段階的に下げられる。図12に対応するマップを予め作成することにより、電流負荷パラメータMPに対応して、モータ走行上限車速VMmaxを設定できる。あるいは、ΔMPの低下に対応して連続的にモータ走行上限車速VMmaxを低下させてもよい。
 再び図11を参照して、制御装置100は、ステップS155では、図13の特性に従って、SOC推定値(♯SOC)に応じてモータ走行上限車速VMmax(2)を設定する。
 図13を参照して、横軸は、状態推定部110によって算出されたSOC推定値(♯SOC)である。SOCが高い領域(♯SOC>S1)では、上限車速VMmaxはデフォルト値に設定される。一方で、♯SOCが判定値S1よりも低下すると、SOCの低下に対応して、モータ走行上限車速VMmaxは段階的に下げられる。図13に対応するマップを予め作成することにより、SOC推定値(♯SOC)に対応してモータ走行上限車速VMmaxを設定できる。なお、SOCの低下に対して、連続的にモータ走行上限車速VMmaxを低下させてもよい。
 再び図11を参照して、制御装置100は、ステップS156により、モータ走行上限車速VMmax(1)およびVMmax(2)のうちの最小値を、モータ走行上限車速VMmaxとして設定する。
 一方で、HVモードのとき(S152のNO判定時)には、制御装置100は、ステップS158により、HVモード用のモータ走行上限車速VMmaxを設定する。上述のように、HVモードでは、蓄電装置10のSOCを一定に維持するように、すなわち積極的にバッテリ電力を用いることなく車両走行を行なう。したがって、一般的には、HVモードでのモータ走行上限車速VMmaxは、蓄電装置10の状態に対しては一定値に固定される。なお、EVモードにおいてモータ走行上限車速VMmaxが変化する範囲は、HVモードでのモータ走行上限車速VMmaxよりも低速側である。
 図14には、EVモードでの継続的なモータ走行の際のハイブリッド車両5の車速制限の一例が示される。
 図14を参照して、モータ走行が継続されることによって、SOC推定値(♯SOC)は、時間経過と共に徐々に低下する。モータ走行に伴う蓄電装置10の継続的な放電により、バッテリ電流Ibに応じて電流負荷パラメータMPも徐々に上昇する。
 図13に示されたマップに従って、電流負荷パラメータMPに応じたモータ走行上限車速VMmax(1)が逐次設定される。同様に、図14に示されたマップに従って、SOC推定値(♯SOC)に応じたモータ走行上限車速VMmax(2)が逐次設定される。そして、各制御周期において、VMmax(1)およびVMmax(2)のうちの最小値が、モータ走行上限車速VMmaxに設定される。
 電流負荷パラメータMPの上昇に応じて、時刻t1,t3,t4,t5のそれぞれでVMmax(1)が低下する。一方、SOC推定値(♯SOC)の低下に応じて、時刻t2,t6のそれぞれでVMmax(2)が低下する。VMmax(1)またはVMmax(2)の低下によってモータ走行上限車速VMmaxが低下するので、ハイブリッド車両5の車速も徐々に制限されて低下する。
 そして、時刻t7で電流負荷パラメータMPが閾値Mtに達すると出力電力上限値Woutが引き下げられる。この結果、エンジン18が始動されて、モータ走行からハイブリッド走行へ移行する。ハイブリッド走行では、モータジェネレータMG2による出力が減少する。この結果、蓄電装置10からの出力電力およびバッテリ電流Ibも低下する。この結果、電流負荷パラメータMPが低下し始めることになる。
 なお、エンジン18の始動および停止が頻繁に繰返されることを防止するために、再びモータ走行へ移行するための判定には、ヒステリシスが設けられる。そして、電流負荷パラメータMPが十分低下して、出力電力上限値Woutの制限が解除されるか、ハイブリッド車両5の車速および/または駆動トルクが低下するまで、ハイブリッド走行が選択される。
 モータ走行上限車速VMmaxが固定される走行制御では、図14に示した例と比較して、早期に電流負荷パラメータMPが閾値Mtに達することが予測される。一旦、出力電力上限値Woutが制限されると、以降ではエンジン18の始動頻度が上昇する虞がある。すなわち、実施の形態2によるハイブリッド車両5では、モータ走行上限車速VMmaxを蓄電装置10の状態に応じて変化(低下)させていくことにより、蓄電装置10からの出力電力を確保できる期間を長くできていることが理解される。
 このように、実施の形態2によるハイブリッド車両5では、蓄電装置10の電力を積極的に使用するEVモードにおいて、モータ走行の上限車速VMmaxを蓄電装置10の状態(SOCおよび電流負荷パラメータMP)に応じて可変に設定することができる。これにより、実施の形態1と比較して、SOCおよび/または電流負荷パラメータMPによる出力電力上限値Woutの制限を受けることなく走行できる期間を長く確保できる。この結果、EVモードにおけるエンジン18の動作頻度をさらに減らすことができるので、エミッションの悪化を回避してエネルギ効率の高い走行を行なうことができる。
 なお、実施の形態2では、モータ走行上限車速VMmaxは、蓄電装置10のSOCおよび電流負荷パラメータMPの両方を用いて設定する例を説明した。機器保護の観点から、出力電力上限値Woutの制限は、電流負荷パラメータMPによる制限の方が厳しくなる傾向にある。また、電流負荷パラメータMPによる出力制限が開始されると、バッテリ電流Ibが減少しても、出力制限が解除されるまでには一定の時間遅れが生じる。したがって、電流負荷パラメータMPのみに応じてモータ走行上限車速VMmaxを設定することも可能である。この場合には、図11のフローチャートにおいてステップS155の処理を省略するとともに、ステップS156においてVHmax=VHmax(1)と設定すればよい。あるいは反対に、SOCのみに基づいて、VHmax=VHmax(2)としてもよい。
 但し、上述のようにSOCおよび電流負荷パラメータMPの両方を考慮して、モータ走行上限車速VMmaxを設定することとすれば、出力電力上限値Woutが制限される場面をより少なくすることが期待される。すなわち、より確実に本実施の形態による効果を享受することができる。
 なお、実施の形態1,2において、電力制御ユニット20の構成は、図1で例示した構成に限定されるものではなく、蓄電装置10の電力によってモータジェネレータMG、MG2を駆動するための構成であれば、任意の構成を適用可能である点について確認的に記載する。また、ハイブリッド車両5の駆動系の構成は、図1の例示に限定されない点について確認的に記載する。同様に、エンジン出力によって蓄電装置の充電電力を発生するように構成されていれば、図1のモータジェンレータMG1とは異なる「発電機構」を適用することも可能である。
 また、実施の形態2では、電流負荷パラメータMPに代えて、バッテリ電流Ibが反映された他の任意のパラメータを適用することも可能である。要は、出力電力上限値Woutの制限に反映される、蓄電装置10に係る状態量またはパラメータであれば、電流負荷パラメータMPに代えて用いることが可能である。このようなパラメータに応じて、回転電機(モータジェネレータMG2)のみを用いた車両走行での上限車速を変化させることによって、上述したハイブリッド車両の走行制御と同様に、出力電力上限値Woutが制限される期間を減少させることが可能だからである。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 本発明は、車載蓄電装置の電力を使用した回転電機の出力のみで走行することが可能なハイブリッド車両に適用することができる。
 3 コネクタ部、5 ハイブリッド車両、6 コンバータ、7 システムメインリレー、8 インバータ、10 蓄電装置、11 監視ユニット、12 温度センサ、13、16 電圧センサ、14 電流センサ、18 エンジン、20 電力制御ユニット、22 動力分割機構、24F 駆動輪、26 選択スイッチ、30 外部充電部、30a 電流制御部、30b 電圧変換部、35 コネクタ受入部、35a 連結検出センサ、95 減速機、100 制御装置(ECU)、110 状態推定部、120 電流負荷推定部、150 充放電制御部、200 走行制御部、202 サンギヤ、204 ピニオンギヤ、205 走行モード選択部、206 キャリア、208 リングギヤ、210 モータ走行上限車速設定部、250 配分部、260 インバータ制御部、270 コンバータ制御部、300 最大出力線(車両)、302、304、306 動作点、340 最大出力線(モータ走行/HVモード)、350 最大出力線(モータ走行/EVモード)、C 平滑コンデンサ、CNL 負充電線、CON 連結信号、CPL 正充電線、Ib バッテリ電流、K なまし係数、MD 走行モード信号、MG1 モータジェネレータ(発電機構)、MG2 モータジェネレータ(回転電機)、MP 電流負荷パラメータ、Mt 閾値、PWC,PWM1,PWM2 スイッチング指令、SE リレー制御信号、SOCl~SOCu SOC制御範囲、SOCr 制御中心値、Smax SOC上限値、Smin SOC下限値、Sth モード判定値、T 車両駆動トルク、TMmax 上限トルク(モータ走行)、Tb バッテリ温度、V 車速、VMmax モータ走行上限車速、Vb バッテリ電圧、Vh システム電圧、Vmax 上限車速(車両)、Win 入力電力上限値、Wout 出力電力上限値。

Claims (14)

  1.  車両駆動力を発生するための回転電機(MG2)と、
     車両に搭載された蓄電装置(10)と、
     前記蓄電装置および前記回転電機の間で電力変換を行なうための電力制御ユニット(20)と、
     車両駆動力を発生するための内燃機関(18)と、
     車両外部の電源によって前記蓄電装置を充電するための外部充電部(30)と、
     車両走行を制御するための制御装置(100)とを備え、
     前記制御装置は、
     前記蓄電装置の充電状態に応じて、前記蓄電装置の残容量にかかわらず主に前記回転電機(MG2)の出力によって走行するように前記内燃機関および前記回転電機を使用する第1の走行モードと、前記蓄電装置の残容量を所定の制御範囲内に維持して走行するように前記内燃機関および前記回転電機を使用する第2の走行モードとの一方を選択するための走行モード選択部(205)と、
     前記走行モード選択部によって選択された走行モードに応じて、前記回転電機の出力のみによる車両走行の上限車速(VMmax)を設定するための上限車速設定部(210)と、
     車速(V)が前記上限車速を超えているときは、前記内燃機関および回転電機の両方の出力を用いるように車両走行を制御するための走行制御部(200)とを含み、
     前記上限車速設定部は、前記第1の走行モードでの前記上限車速を、前記第2の走行モードでの前記上限車速よりも低く設定する、ハイブリッド車両。
  2.  前記走行制御部(200)は、前記第1の走行モードでは、前記ハイブリッド車両のトルクおよび車速が第1の領域(350)の内部であるときは前記回転電機(MG2)のみの出力によって走行する一方で、前記第1の領域の外部であるときは前記回転電機および前記内燃機関の両方の出力によって走行するように、前記回転電機および前記内燃機関を制御し、前記第2の走行モードでは、前記ハイブリッド車両のトルクおよび車速が第2の領域(340)の内部であるときは前記回転電機(MG2)のみの出力によって走行する一方で、前記第2の領域の外部であるときは前記回転電機および前記内燃機関(18)の両方の出力によって走行するように、前記回転電機および前記内燃機関を制御し、
     前記第1および前記第2の領域は、前記上限車速設定部(210)による前記上限車速(VMmax)を反映して設定される、請求の範囲第1項に記載のハイブリッド車両。
  3.  前記上限車速設定部(210)は、前記第1の走行モードでは、前記第2の走行モードでの前記上限車速よりも低い範囲内で、前記蓄電装置の充電状態(SOC)および入出力電流(Ib)の少なくとも一方に基づいて、前記上限車速(VMmax)を可変に設定する、請求の範囲第1項に記載のハイブリッド車両。
  4.  前記制御装置(100)は、
     前記蓄電装置(10)に配置されたセンサ(12-14)の出力に基づいて、前記蓄電装置の残容量推定値(♯SOC)を算出するための充電状態推定部(110)と、
     前記蓄電装置の前記入出力電流(Ib)に基づいて、前記入出力電流の通過による機器の熱負荷を示す電流負荷パラメータ(MP)を算出するための電流負荷推定部(120)と、
     算出された前記残容量推定値および前記電流負荷パラメータに基づいて、前記蓄電装置の出力電力上限値(Wout)を可変に設定するための充放電制御部(150)とをさらに含み、
     前記上限車速設定部(210)は、前記第1の走行モードでは、算出された前記電流負荷パラメータに少なくとも基づいて、前記上限車速(VMmax)を可変に設定する、請求の範囲第3項に記載のハイブリッド車両。
  5.  前記上限車速設定部(210)は、前記電流負荷パラメータ(MP)に応じて可変に設定される第1の上限速度(VMmax(1))および、前記残容量推定値(♯SOC)に応じて可変に設定される第2の上限速度(VMmax(2))の最小値に従って、前記第1の走行モードにおける前記上限車速(VMmax)を設定する、請求の範囲第4項に記載のハイブリッド車両。
  6.  前記ハイブリッド車両は、
     車両情報を運転者に視認させるための表示部(102)をさらに備え、
     前記表示部は、
     前記上限車速設定部(210)によって設定された前記上限車速(VMmax)に少なくとも基づいて、前記回転電機(MG2)の出力のみによる車両走行が適用可能な車速範囲を表示するための表示エリア(105)を含む、請求の範囲第1項~第5項のいずれか1項に記載のハイブリッド車両。
  7.  前記ハイブリッド車両は、前記内燃機関の出力によって前記蓄電装置(10)の充電電力を発生するように構成された発電機構(MG1)をさらに備え、
     前記走行制御部(200)は、前記第2の走行モードでは、前記蓄電装置の残容量が前記制御範囲よりも低下したときには前記発電機構によって前記蓄電装置の充電電力を発生するように、前記回転電機および前記内燃機関を制御する、請求の範囲第1項~第5項のいずれか1項に記載のハイブリッド車両。
  8.  車両駆動力を発生するための回転電機(MG2)および内燃機関(18)と、車両に搭載された蓄電装置(10)と、前記蓄電装置および前記回転電機の間で電力変換を行なうための電力制御ユニット(20)と、外部の電源によって前記蓄電装置を充電するための外部充電部(30)とを備えたハイブリッド車両(5)の制御方法であって、
     前記蓄電装置の充電状態に応じて、前記蓄電装置の残容量にかかわらず主に前記回転電機(MG2)の出力によって走行するように前記内燃機関および前記回転電機を使用する第1の走行モードと、前記蓄電装置の残容量を所定の制御範囲内に維持して走行するように前記内燃機関および前記回転電機を使用する第2の走行モードとの一方を選択するステップ(S140)と、
     選択された走行モードに応じて、前記回転電機の出力のみによる車両走行の上限車速(VMmax)を設定するステップ(S150)と、
     車速(V)が前記上限車速を超えているときは、前記内燃機関および前記回転電機の両方の出力を用いるように車両走行を制御するステップ(S160)とを備え、
     前記設定するステップ(S150)は、前記第1の走行モードでの前記上限車速を、前記第2の走行モードでの前記上限車速よりも低く設定する、ハイブリッド車両の制御方法。
  9.  前記選択するステップ(S140)は、前記第1の走行モードでは、前記ハイブリッド車両のトルクおよび車速が第1の領域(350)の内部であるときは前記回転電機(MG2)のみの出力によって走行する一方で、前記第1の領域の外部であるときは前記回転電機および前記内燃機関の両方の出力によって走行するように、前記回転電機および前記内燃機関を制御し、前記第2の走行モードでは、前記ハイブリッド車両のトルクおよび車速が第2の領域(340)の内部であるときは前記回転電機(MG2)のみの出力によって走行する一方で、前記第2の領域の外部であるときは前記回転電機および前記内燃機関(18)の両方の出力によって走行するように、前記回転電機および前記内燃機関を制御し、
     前記第1および前記第2の領域は、前記設定するステップ(S150)による前記上限車速(VMmax)を反映して設定される、請求の範囲第8項に記載のハイブリッド車両の制御方法。
  10.  前記設定するステップ(S150)は、前記第1の走行モードでは、前記第2の走行モードでの前記上限車速よりも低い範囲内で、前記蓄電装置の充電状態(SOC)および入出力電流(Ib)の少なくとも一方に基づいて、前記上限車速(VMmax)を可変に設定する、請求の範囲第8項に記載のハイブリッド車両の制御方法。
  11.  前記蓄電装置(10)に配置されたセンサ(12-14)の出力に基づいて、前記蓄電装置の残容量推定値(♯SOC)を算出するステップ(S100)と、
     前記蓄電装置の前記入出力電流(Ib)に基づいて、前記入出力電流の通過による機器の熱負荷を示す電流負荷パラメータ(MP)を算出するステップ(S110)と、
     算出された前記残容量推定値および前記電流負荷パラメータに基づいて、前記蓄電装置の出力電力上限値(Wout)を可変に設定するステップ(S120)とをさらに備え、
     前記上限車速を設定するステップ(S150)は、前記第1の走行モードでは、算出された前記電流負荷パラメータに少なくとも基づいて、前記上限車速(VMmax)を可変に設定する、請求の範囲第10項に記載のハイブリッド車両の制御方法。
  12.  前記上限車速を設定するステップ(S150)は、
     前記電流負荷パラメータ(MP)に応じて第1の上限速度(VMmax(1))を可変に設定するステップ(S154)と、
     前記残容量推定値(♯SOC)に応じて第2の上限速度(VMmax(2))を可変に設定するステップ(S155)と、
     前記第1の上限速度および前記第2の上限速度の最小値に従って、前記第1の走行モードにおける前記上限車速(VMmax)を設定するステップ(S156)とを含む、請求の範囲第11項に記載のハイブリッド車両の制御方法。
  13.  前記ハイブリッド車両は、車両情報を運転者に視認させるための表示部(102)をさらに備え、
     前記制御方法は、設定された前記上限車速(VMmax)に少なくとも基づいて、前記回転電機(MG2)の出力のみによる車両走行が適用可能な車速範囲を前記表示部に表示するステップ(S180)をさらに備える、請求の範囲第8項~第12項のいずれか1項に記載のハイブリッド車両の制御方法。
  14.  前記ハイブリッド車両は、前記内燃機関の出力によって前記蓄電装置(10)の充電電力を発生するように構成された発電機構(MG1)をさらに備え、
     前記制御するステップ(S160)は、前記第2の走行モードでは、前記蓄電装置の残容量が前記制御範囲よりも低下したときには前記発電機構によって前記蓄電装置の充電電力を発生するように、前記回転電機(MG2)および前記内燃機関(18)を制御する、請求の範囲第8項~第12項のいずれか1項に記載のハイブリッド車両の制御方法。
PCT/JP2010/060854 2010-06-25 2010-06-25 ハイブリッド車両およびその制御方法 WO2011161816A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2010/060854 WO2011161816A1 (ja) 2010-06-25 2010-06-25 ハイブリッド車両およびその制御方法
US13/520,061 US8718849B2 (en) 2010-06-25 2010-06-25 Hybrid vehicle and control method therefor
EP10853676.4A EP2586672B1 (en) 2010-06-25 2010-06-25 Hybrid vehicle and method of controlling the same
CN201080060193.XA CN102712313B (zh) 2010-06-25 2010-06-25 混合动力车辆及其控制方法
JP2012521242A JP5278614B2 (ja) 2010-06-25 2010-06-25 ハイブリッド車両およびその制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/060854 WO2011161816A1 (ja) 2010-06-25 2010-06-25 ハイブリッド車両およびその制御方法

Publications (2)

Publication Number Publication Date
WO2011161816A1 true WO2011161816A1 (ja) 2011-12-29
WO2011161816A9 WO2011161816A9 (ja) 2012-08-02

Family

ID=45371028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060854 WO2011161816A1 (ja) 2010-06-25 2010-06-25 ハイブリッド車両およびその制御方法

Country Status (5)

Country Link
US (1) US8718849B2 (ja)
EP (1) EP2586672B1 (ja)
JP (1) JP5278614B2 (ja)
CN (1) CN102712313B (ja)
WO (1) WO2011161816A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130190958A1 (en) * 2012-01-20 2013-07-25 Junta Izumi Control apparatus for hybrid vehicle
KR101500377B1 (ko) 2013-08-26 2015-03-18 현대자동차 주식회사 플러그인 하이브리드 차량의 충전지향모드 강제 진입장치 및 방법
JP2017120747A (ja) * 2015-12-29 2017-07-06 トヨタ自動車株式会社 ニッケル水素二次電池の冷却装置
US20220304240A1 (en) * 2021-03-24 2022-09-29 Deere & Company Intelligent power allocation systems onboard hybrid combines and associated methods
US12017633B2 (en) * 2021-03-24 2024-06-25 Deere & Company Intelligent power allocation systems onboard hybrid combines and associated methods

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2436571B1 (en) * 2009-05-25 2014-07-16 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and control method thereof
JP5985178B2 (ja) * 2011-11-24 2016-09-06 Ntn株式会社 モータの制御装置
WO2014083705A1 (ja) * 2012-11-30 2014-06-05 トヨタ自動車株式会社 ハイブリッド車両用駆動装置
DE102013107330B4 (de) * 2013-07-11 2024-06-20 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren und Vorrichtung zum Antreiben eines Kraftfahrzeugs mit Hybridantrieb
DE102014213865A1 (de) * 2013-07-18 2015-01-22 Ford Global Technologies, Llc Stromschutz für eine elektrische Verteilungskomponente in einem Elektrofahrzeug
US9733658B2 (en) * 2013-07-18 2017-08-15 Ford Global Technologies, Llc Current protection for an electrical distribution component in an electrified vehicle
CN104417557B (zh) 2013-09-09 2017-07-04 比亚迪股份有限公司 一种车辆的滑行回馈控制系统及其控制方法
CN104417543B (zh) 2013-09-09 2017-08-22 比亚迪股份有限公司 混合动力汽车的控制系统和控制方法
CN104417544B (zh) 2013-09-09 2017-08-22 比亚迪股份有限公司 混合动力汽车的控制系统和控制方法
CN104417344B (zh) 2013-09-09 2017-03-15 比亚迪股份有限公司 混合动力汽车及其的驱动控制方法
CN104417346B (zh) 2013-09-09 2017-04-12 比亚迪股份有限公司 混合动力汽车的控制系统和控制方法
CN104417554B (zh) 2013-09-09 2018-03-13 比亚迪股份有限公司 混合动力汽车及其的巡航控制方法
CN104417523B (zh) * 2013-09-09 2017-07-21 比亚迪股份有限公司 混合动力汽车的控制系统和控制方法
CN104417347B (zh) 2013-09-09 2017-08-04 比亚迪股份有限公司 混合动力汽车的控制系统和控制方法
JP6003943B2 (ja) * 2014-04-28 2016-10-05 トヨタ自動車株式会社 ハイブリッド車両およびハイブリッド車両の制御方法
JP6241427B2 (ja) * 2015-01-27 2017-12-06 トヨタ自動車株式会社 ハイブリッド車両
US10500966B2 (en) 2016-12-01 2019-12-10 Ford Global Technologies, Llc Adaptive boost voltage for hybrid vehicle operation
EP3693239A4 (en) * 2017-10-06 2021-06-02 Kabushiki Kaisha Toshiba HYBRID VEHICLE
US11619190B2 (en) * 2020-08-03 2023-04-04 Ford Global Technologies, Llc Methods and system for estimating engine torque at low temperatures
CN112319247B (zh) * 2020-11-17 2022-03-04 吉林大学 一种增程式电动汽车能量管理控制方法
CN113978448B (zh) * 2021-11-03 2023-07-04 东风汽车集团股份有限公司 一种混合动力汽车车速的控制方法及装置
IT202200005537A1 (it) * 2022-03-21 2023-09-21 Iveco Spa Sistema e metodo di configurazione di un’unità di elaborazione di controllo di una trasmissione ibrida

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006077641A (ja) * 2004-09-08 2006-03-23 Mitsubishi Fuso Truck & Bus Corp ハイブリッド電気自動車の制御装置
JP2008201260A (ja) * 2007-02-20 2008-09-04 Toyota Motor Corp ハイブリッド自動車およびその制御方法
JP2009113706A (ja) * 2007-11-08 2009-05-28 Toyota Motor Corp ハイブリッド車両

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4153006B2 (ja) * 2004-07-23 2008-09-17 本田技研工業株式会社 ハイブリッド車両の制御装置
JP2006109650A (ja) 2004-10-07 2006-04-20 Nissan Motor Co Ltd 車両用制御装置及び車両制御方法
US7332881B2 (en) 2004-10-28 2008-02-19 Textron Inc. AC drive system for electrically operated vehicle
JP4241837B2 (ja) * 2007-01-15 2009-03-18 トヨタ自動車株式会社 車両およびその制御方法
JP4240128B2 (ja) * 2007-02-28 2009-03-18 トヨタ自動車株式会社 ハイブリッド駆動装置の制御装置
JP2008285011A (ja) 2007-05-17 2008-11-27 Toyota Motor Corp ハイブリッド車両の制御装置
US8182391B2 (en) * 2008-05-21 2012-05-22 GM Global Technology Operations LLC Electric torque converter for a powertrain and method of operating a vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006077641A (ja) * 2004-09-08 2006-03-23 Mitsubishi Fuso Truck & Bus Corp ハイブリッド電気自動車の制御装置
JP2008201260A (ja) * 2007-02-20 2008-09-04 Toyota Motor Corp ハイブリッド自動車およびその制御方法
JP2009113706A (ja) * 2007-11-08 2009-05-28 Toyota Motor Corp ハイブリッド車両

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130190958A1 (en) * 2012-01-20 2013-07-25 Junta Izumi Control apparatus for hybrid vehicle
US9174638B2 (en) * 2012-01-20 2015-11-03 Toyota Jidosha Kabushiki Kaisha Control apparatus for hybrid vehicle
KR101500377B1 (ko) 2013-08-26 2015-03-18 현대자동차 주식회사 플러그인 하이브리드 차량의 충전지향모드 강제 진입장치 및 방법
JP2017120747A (ja) * 2015-12-29 2017-07-06 トヨタ自動車株式会社 ニッケル水素二次電池の冷却装置
US20220304240A1 (en) * 2021-03-24 2022-09-29 Deere & Company Intelligent power allocation systems onboard hybrid combines and associated methods
US12017633B2 (en) * 2021-03-24 2024-06-25 Deere & Company Intelligent power allocation systems onboard hybrid combines and associated methods

Also Published As

Publication number Publication date
US20120277946A1 (en) 2012-11-01
JP5278614B2 (ja) 2013-09-04
JPWO2011161816A1 (ja) 2013-08-19
CN102712313B (zh) 2015-04-01
EP2586672A4 (en) 2018-04-25
EP2586672A1 (en) 2013-05-01
EP2586672B1 (en) 2020-03-11
CN102712313A (zh) 2012-10-03
WO2011161816A9 (ja) 2012-08-02
US8718849B2 (en) 2014-05-06

Similar Documents

Publication Publication Date Title
JP5278614B2 (ja) ハイブリッド車両およびその制御方法
JP5418676B2 (ja) 電動車両およびその制御方法
JP5730501B2 (ja) 電動車両およびその制御方法
JP5716693B2 (ja) ハイブリッド車両
JP5163407B2 (ja) ハイブリッド車両
US9233613B2 (en) Electrically powered vehicle and method for controlling electrically powered vehicle
JP5747986B2 (ja) ハイブリッド車両およびその制御方法
WO2011030444A1 (ja) ハイブリッド車およびハイブリッド車のパラメータ表示方法
JP6028328B2 (ja) ハイブリッド車両
JP2011093335A (ja) ハイブリッド車両の制御装置
JP6149806B2 (ja) ハイブリッド車両
JPWO2012131864A1 (ja) 電動車両およびその制御方法
JP2013154720A (ja) ハイブリッド車両
JP5733198B2 (ja) ハイブリッド車両
JP2013154718A (ja) ハイブリッド車両

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080060193.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10853676

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012521242

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13520061

Country of ref document: US

Ref document number: 2010853676

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE