JP2013154720A - ハイブリッド車両 - Google Patents

ハイブリッド車両 Download PDF

Info

Publication number
JP2013154720A
JP2013154720A JP2012015865A JP2012015865A JP2013154720A JP 2013154720 A JP2013154720 A JP 2013154720A JP 2012015865 A JP2012015865 A JP 2012015865A JP 2012015865 A JP2012015865 A JP 2012015865A JP 2013154720 A JP2013154720 A JP 2013154720A
Authority
JP
Japan
Prior art keywords
value
mode
remaining capacity
hybrid vehicle
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012015865A
Other languages
English (en)
Inventor
Masaru Nakao
優 仲尾
Masaya Yamamoto
雅哉 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012015865A priority Critical patent/JP2013154720A/ja
Publication of JP2013154720A publication Critical patent/JP2013154720A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Hybrid Electric Vehicles (AREA)

Abstract

【課題】EVモードでの走行中にモード切替スイッチが操作されても、燃費及びエミッションの大幅な悪化を回避できる残容量中心値を設定する。
【解決手段】第2発電電動機MG2の出力のみを用いて走行するEVモードと、更に内燃機関20の出力を加えて走行すると共に内燃機関20の出力を用いてバッテリ64の残容量を残容量中心値に近づけるHVモード又はHVSモードと、の何れかで走行することが出来る。バッテリが外部充電された後、車両はEVモードにて走行を行う。このとき、EVスイッチ96がオフ状態に変更されると、車両はHVSモードで走行する。HVSモードでの走行を開始するとき、冷却水温が水温閾値よりも低ければ、残容量中心値の上限値が第1値(高側値)に設定され、その後、冷却水温が水温閾値よりも高くなれば、HVSモードでの残容量中心値の上限値はレディオフ状態となるまで第1値よりも低い第2値に設定される。
【選択図】図1

Description

本発明は、排気通路に触媒を有する内燃機関と、電動機と、を駆動源として搭載したハイブリッド車両に関する。
ハイブリッド車両は、車両を走行させる駆動力を発生する駆動源として、内燃機関と電動機とを搭載している。ハイブリッド車両は、電動機に電力を供給する蓄電装置(バッテリ)を搭載している。ハイブリッド車両は、内燃機関の出力により電力を発生させ、蓄電装置を充電することができる。以下、内燃機関の出力により発生した電力による蓄電装置の充電を、便宜上、「内部充電」とも称呼する。
更に、近年において、蓄電装置を車両の外部から供給される電力により充電することができるハイブリッド車両(所謂「プラグインハイブリッド車両」)が開発されて来ている。以下、車両の外部から供給される電力による蓄電装置の充電を、便宜上、「外部充電」とも称呼する。
係るハイブリッド車両は、第1走行モードと第2走行モードとの何れかで走行することができる。
第1走行モードは、外部充電の後に蓄電装置の残容量が所定値(例えば、モード切替閾値)よりも大きい場合等において実行されるモードである。第1走行モードにおいては、内燃機関の運転が極力回避され、ハイブリッド車両は電動機の出力のみによって走行する。換言すると、第1走行モードは蓄電装置のエネルギーを積極的に使用するモードであるので、「CD(Charge Depleting)モード」とも称呼される。更に、第1走行モードは、電動機のみを用いて走行することから、「EVモード(電気自動車モード)」とも称呼される。なお、第1走行モードにてハイブリッド車両が走行している場合であっても、車両走行に必要な出力及び/又はトルクが不足する場合等において、内燃機関が運転されることがある。
第2走行モードは、第1走行モードでの走行中に蓄電装置の残容量がモード切替閾値よりも小さくなった場合等において実行されるモードである。第2走行モードにおいては、電動機が駆動されるとともに内燃機関が作動され、ハイブリッド車両はこれら両方の出力を用いて走行する。更に、第2走行モードにおいては、蓄電装置の残容量が残容量中心値(目標値)に近づくように内燃機関が作動され、内燃機関の発生するエネルギーにより蓄電装置が充電される。換言すると、第2走行モードは内部充電を行って蓄電装置のエネルギー(即ち、残容量)を維持するモードである。従って、第2走行モードは、「CS(Charge Sustaining)モード」とも称呼される。更に、第2走行モードは、電動機及び内燃機関の両方を用いて走行することから、「HVモード(ハイブリッド車モード)」とも称呼される。但し、第2モードにてハイブリッド車両が走行している場合であっても、ユーザが要求するトルクが小さいために内燃機関を効率的に運転できなくなる場合等において、ハイブリッド車両は内燃機関の運転を一時的に停止し、電動機の発生する出力のみにより走行することもある。なお、蓄電装置の残容量は「SOC(State of Charge)」とも称呼される。
ところで、係るハイブリッド車両は、残容量がモード切替残容量以下となると、第1走行モード(EVモード)にて走行することができない。そこで、ハイブリッド車両が第1走行モードにて走行している期間において、ユーザが後に第1走行モードにて走行することを望む場合に対応することができるように、モード切替スイッチが設けられる。第1走行モードでの走行中にモード切替スイッチが操作されると走行モードは第1走行モードから第2走行モードへと切り替えられる。
このとき、前記残容量中心値(目標値)は、モード切替スイッチが操作された時点の値に設定される。これにより、残容量が「モード切替スイッチが操作された時点の値」の近傍に維持される。従って、ユーザが第1走行モードにて走行したい区間(例えば、自宅近辺等)に到達した時点にてモード切替スイッチを再び操作することにより、ハイブリッド車両は第1走行モードにて走行することができる(例えば、特許文献1を参照。)。
特開2010−23715号公報(段落0058、図2)
しかしながら、上記従来技術によれば、残容量が非常に大きいときにモード切替スイッチが操作され、それにより、走行モードが第1走行モードから第2走行モードへと変更された場合、残容量中心値は非常に大きい値となる。このため、蓄電装置は満充電状態に近いので、蓄電装置に供給可能な瞬時電力は小さくなる。更に、車両の減速時に回収できるエネルギーの量が低下するので、車両の加速時に使用できる電気エネルギーが減少してしまう。従って、このような場合、内燃機関は無駄にエネルギーを消費することになる。その結果、ハイブリッド車両の燃費が悪化する怖れがある。
そこで、ハイブリッド車両が第1走行モードで走行しており且つ残容量が非常に大きいときにモード切替スイッチが操作された場合、残容量中心値を相対的に小さい値に設定することが考えられる。しかしながら、係る状態においては、蓄電装置に対する充電要求量Pb*(Pchg)が放電側の大きな値に設定されるので、機関要求出力が低下する。その結果、機関が運転される頻度が低下し、或いは、仮に機関が運転された場合であっても機関の出力は低下するため、内燃機関の排気通路に配設された触媒(排気浄化用触媒)の暖機が遅れ(冷却水温により代表される触媒温度の上昇が遅れ)、エミッションが悪化する怖れがある。
以上の説明から理解されるように、これまでのハイブリッド車両は、第1走行モードでの走行中にモード切替スイッチが操作された時点における残容量中心値を燃費及びエミッションを両立できる値に設定できていないという問題がある。
本発明は、上述した課題に鑑みてなされたものである。即ち、本発明の目的の一つは、第1走行モードでの走行中にモード切替スイッチが操作された時点における残容量中心値を適切な値に設定することによって、燃費及びエミッションの大幅な悪化を回避することができるハイブリッド車両を提供することにある。
本発明のハイブリッド車両は、排気通路に触媒を有する内燃機関と、電動機と、を駆動源として搭載したハイブリッド車両である。
本発明のハイブリッド車両は、更に、
前記電動機を駆動する電力を前記電動機に供給可能であり且つ充電可能な蓄電装置と、
前記ハイブリッド車両の外部から供給される電力を前記蓄電装置に供給することにより前記蓄電装置を充電する外部充電部と、
前記内燃機関の出力により電力を発生するとともに同発生した電力を前記蓄電装置に供給することにより前記蓄電装置を充電する内部充電部と、
運転モード切替スイッチと、
制御部と、
残容量中心値設定部と、
を備える。
前記制御部は、
(1)前記蓄電装置が前記外部から供給される電力により充電された後に前記蓄電装置の残容量が所定値よりも大きい場合、前記内燃機関を運転することなく前記電動機を駆動することにより前記ハイブリッド車両の駆動力の全部を前記電動機から発生させる第1運転状態を、前記内燃機関を運転するとともに前記電動機を駆動することにより前記ハイブリッド車両の駆動力を前記内燃機関及び前記電動機の両方から発生させる第2運転状態、よりも優先させる第1走行モードにて前記ハイブリッド車両を走行させ、
(2)前記ハイブリッド車両が前記第1走行モードで走行している場合に前記運転モード切替スイッチが操作されたとき前記第1走行モードに比較して前記第2運転状態を前記第1運転状態よりも優先させるとともに前記内部充電部によって前記蓄電装置の残容量が残容量制御中心値に近づくように前記内燃機関を制御する第2走行モードにて前記ハイブリッド車両を走行させる。
前記残容量中心値設定部は、
前記運転モード切替スイッチの操作によって前記ハイブリッド車両の走行モードが前記第1走行モードから前記第2走行モードへと切り替えられたとき前記残容量中心値を「前記運転モード切替スイッチの操作時点における前記蓄電装置の残容量に応じた値」と「残容量中心上限値」との小さい方の値に設定する。
「前記運転モード切替スイッチの操作時点における前記蓄電装置の残容量に応じた値」は、前記運転モード切替スイッチの操作時点における前記蓄電装置の残容量そのものでもよく、その残容量に所定値を加えた値であってもよい。
加えて、前記残容量中心値設定部は、以下に述べる上限値上昇制御を、前記外部充電が実行された後に前記ハイブリッド車両が走行可能状態とされてから走行終了状態とされるまでの一回の運転期間中(即ち、1トリップ内)に一度だけ実行する。
前記上限値上昇制御は、
前記運転モード切替スイッチの操作によって前記ハイブリッド車両の走行モードが前記第1走行モードから前記第2走行モードへと切り替えられた場合に前記触媒の温度を表す触媒温度パラメータが第1パラメータ閾値よりも低いとき(例えば、前記内燃機関の冷却水温が第1水温閾値よりも低いとき)前記残容量制御中心値の上限値を第1値に設定するとともに前記残容量制御中心値の上限値が前記第1値に設定されている場合に前記触媒温度パラメータが前記第1パラメータ閾値以上の第2パラメータ閾値よりも高くなったとき(例えば、前記冷却水温が前記第1水温閾値以上の第2水温閾値よりも高くなったとき)前記残容量制御中心値の上限値を前記第1値よりも小さい第2値に設定する制御である。
更に、前記残容量中心値設定部は、
前記一回の運転期間中に、前記運転モード切替スイッチの操作によって前記ハイブリッド車両の走行モードが前記第1走行モードから前記第2走行モードへと切り替えられた場合に前記触媒温度パラメータが前記第1パラメータ閾値よりも高いか(例えば、前記内燃機関の冷却水温が前記第1水温閾値よりも高いか)又は前記上限値上昇制御の実行が終了していたとき、前記残容量制御中心値の上限値を前記第2値に設定するように構成される。
これによれば、1トリップ内において1度だけ上記上限値上昇制御が実行される。上限値上昇制御により、1トリップの開始後に運転モード切替スイッチの操作によりハイブリッド車両の走行モードが前記第1走行モードから前記第2走行モードへと切り替えられた場合、触媒温度パラメータが第1パラメータ閾値よりも低ければ(例えば、冷却水温が低ければ)残容量中心値の上限値は相対的に高い第1値に設定される。このため、残容量が高い場合には残容量中心値は第1値に設定される。
従って、内燃機関は蓄電装置を充電するために頻繁に作動させられるので、触媒の温度(触媒温度パラメータとしての冷却水温)を速やかに上昇させることができる。よって、触媒の暖機を速やかに行うことができるので、エミッッションを改善することができる。
一方、前述したように、このような内燃機関の用い方はハイブリッド車両の燃費を悪化させるので、上限値上昇制御は1トリップ内において1度だけに限定して行われる。これにより、ハイブリッド車両の燃費が悪化することを回避することができる。また、上限値上昇制御によって触媒温度パラメータが第2パラメータ閾値よりも一旦高くなれば(例えば、冷却水温が第2水温閾値よりも一旦高くなれば)、その後は残容量中心値が低くても(即ち、第2値に設定されたとしても)、内燃機関は第2走行モードにおいて車両駆動力を出力するために作動されるため、触媒温度(冷却水温)は急激に低下することはない。従って、触媒が暖機した状態を維持することができるので、エミッッションを改善することができる。
本発明の他の目的、他の特徴及び付随する利点は、以下の図面を参照しつつ記述される本発明の実施形態についての説明から容易に理解されるであろう。
図1は、本発明の実施形態に係るハイブリッド車両の概略図である。 図2は、アクセル操作量及び車速と、ユーザ要求トルクと、の関係を規定するテーブルの内容を示したグラフである。 図3は、図1に示したハイブリッド車両の機関始動閾値を示したグラフである。 図4は、図1に示したハイブリッド車両の機関始動閾値を示したグラフである。 図5は、蓄電装置の残容量と、EVモード及びHVモードと、の関係を説明するための図である。 図6は、図1に示したハイブリッド車両が外部充電後に走行を開始した場合の各パラメータの値を示したタイムチャートである。 図7は、図1に示したハイブリッド車両のパワーマネジメントECUのCPU(PMCPU)が実行するルーチンを示したフローチャートである。 図8は、図1に示したハイブリッド車両のPMCPUが実行するルーチンを示したフローチャートである。 図9は、図1に示したハイブリッド車両のPMCPUが参照するルックアップテーブルである。
以下、本発明の実施形態に係る車両について図面を参照しながら説明する。図1に示したように、本発明の実施形態に係る車両10はハイブリッド車両(プラグイン・ハイブリッド車両)である。車両10は、後述する「EVモード(第1走行モード)及びHVSモータを含むHVモード(第2走行モード)」の何れかのモードにて走行することができる。
(構成)
車両10は、発電電動機MG1、発電電動機MG2、内燃機関20、動力分配機構30、動力伝達機構50、第1インバータ61、第2インバータ62、昇圧コンバータ63、蓄電装置としてのバッテリ64、コンビネーションメータ70、パワーマネジメントECU80、バッテリECU81、メータECU82、モータECU83及びエンジンECU84等を備えている。
なお、ECUは、エレクトリックコントロールユニットの略称であり、CPU、ROM、RAM、バックアップRAM(又は不揮発性メモリ)及びインターフェース等を含むマイクロコンピュータを主要構成部品として有する電子制御回路である。バックアップRAMは車両10の図示しないイグニッション・キー・スイッチがオン状態にあるかオフ状態にあるかに関わらずデータを保持することができる。
発電電動機(モータジェネレータ)MG1は、発電機及び電動機の何れとしても機能することができる同期発電電動機である。発電電動機MG1は、便宜上、第1発電電動機MG1とも称呼される。第1発電電動機MG1は、出力軸(以下、「第1シャフト」とも称呼する。)41を備えている。
発電電動機(モータジェネレータ)MG2は、第1発電電動機MG1と同様、発電機及び電動機の何れとしても機能することができる同期発電電動機である。発電電動機MG2は、便宜上、第2発電電動機MG2とも称呼される。第2発電電動機MG2は、出力軸(以下、「第2シャフト」とも称呼する。)42を備えている。
内燃機関(機関)20は、4サイクル・火花点火式・多気筒・内燃機関である。機関20は、周知のエンジンアクチュエータ21を備えている。例えば、エンジンアクチュエータ21には、燃料噴射弁を含む燃料供給装置、点火プラグを含む点火装置、スロットル弁開度変更用アクチュエータ及び可変吸気弁制御装置(VVT)等が含まれる。機関20は、スロットル弁アクチュエータにより図示しない吸気通路に配設されたスロットル弁の開度を変更することによって吸入空気量を変更すること、及び、その吸入空気量に応じて燃料噴射量を変更したりすること等により、機関20の発生するトルク及び機関回転速度(従って、機関出力)を変更することができるように構成されている。内燃機関20は、内燃機関20の出力軸であるクランクシャフト25にトルクを発生する。
更に、内燃機関20は、エキゾーストマニホールド26、排気管27及び触媒28を含んでいる。触媒28は、排気浄化用触媒であり、エキゾーストマニホールド26の排気集合部に配設されている。即ち、触媒28は内燃機関20の排気通路に設けられている。触媒28は、その床温が活性温度以上であるとき、機関20から排出される未燃物(HC,CO等)及びNOxを浄化するようになっている。
動力分配機構30は周知の遊星歯車装置31を備えている。遊星歯車装置31はサンギア32と、複数のプラネタリギア33と、リングギア34と、を含んでいる。
サンギア32は第1発電電動機MG1の第1シャフト41に接続されている。従って、第1発電電動機MG1とサンギア32とはトルク伝達可能に連結されている。
複数のプラネタリギア33のそれぞれは、サンギア32と噛合するとともにリングギア34と噛合している。プラネタリギア33の回転軸(自転軸)はプラネタリキャリア35に設けられている。プラネタリキャリア35はサンギア32と同軸に回転可能となるように保持されている。従って、プラネタリギア33は、サンギア32の外周を自転しながら公転することができる。プラネタリキャリア35は機関20のクランクシャフト25に接続されている。よって、プラネタリギア33は、クランクシャフト25からプラネタリキャリア35に入力されるトルクによって回転駆動され得る。
リングギア34は、サンギア32と同軸に回転可能となるように保持されている。
上述したように、プラネタリギア33はサンギア32及びリングギア34と噛合している。即ち、プラネタリギア33とサンギア32とはトルク伝達可能に連結されている。更に、プラネタリギア33とリングギア34とはトルク伝達可能に連結されている。
リングギア34はリングギアキャリア36を介して第2発電電動機MG2の第2シャフト42に接続されている。従って、第2発電電動機MG2とリングギア34とはトルク伝達可能に連結されている。
更に、リングギア34はリングギアキャリア36を介して出力ギア37に接続されている。従って、出力ギア37とリングギア34とはトルク伝達可能に連結されている。
動力伝達機構50は、ギア列51、ディファレンシャルギア52及び駆動軸(ドライブシャフト)53を含んでいる。
ギア列51は、出力ギア37とディファレンシャルギア52とをトルク伝達可能に接続している。ディファレンシャルギア52は駆動軸53に取り付けられている。駆動軸53の両端には駆動輪54が取り付けられている。従って、出力ギア37からのトルクはギア列51、ディファレンシャルギア52、及び、駆動軸53を介して駆動輪54に伝達される。この駆動輪54に伝達されたトルクにより車両10は走行することができる。
このように、動力分配機構30及び動力伝達機構50により、内燃機関20と駆動軸53とはトルク伝達可能に接続され、且つ、第2発電電動機MG2と駆動軸53とはトルク伝達可能に接続されている。
第1インバータ61は、第1発電電動機MG1及び昇圧コンバータ63に電気的に接続されている。従って、第1発電電動機MG1が発電しているとき、第1発電電動機MG1が発生した電力は、第1インバータ61及び昇圧コンバータ63を介してバッテリ64に供給される。逆に、第1発電電動機MG1は昇圧コンバータ63及び第1インバータ61を介してバッテリ64から供給される電力によって回転駆動させられる。
第2インバータ62は、第2発電電動機MG2及び昇圧コンバータ63に電気的に接続されている。従って、第2発電電動機MG2が発電しているとき、第2発電電動機MG2が発生した電力は、第2インバータ62及び昇圧コンバータ63を介してバッテリ64に供給される。逆に、第2発電電動機MG2は昇圧コンバータ63及び第2インバータ62を介してバッテリ64から供給される電力によって回転駆動させられる。
更に、第1発電電動機MG1の発生する電力は第2発電電動機MG2に直接供給可能であり、且つ、第2発電電動機MG2の発生する電力は第1発電電動機MG1に直接供給可能である。
バッテリ64は、蓄電装置であり、本例においてリチウムイオン電池である。但し、バッテリ64は放電及び充電が可能な蓄電装置であればよく、ニッケル水素電池及び他の二次電池であってもよい。
コンビネーションメータ70は、速度表示器71、電動走行可能距離表示器(走行可能距離表示器)72、残容量表示器73及びEVモード表示ランプ74等を含んでいる。
速度表示器71はハイブリッド車両10の速度(車速)を表示するディスプレイ装置である。
電動走行可能距離表示器72は電動走行可能距離を表示するためのディスプレイ装置である。
残容量表示器73は、バッテリ64の残容量SOCを示すための情報を表示するディスプレイ装置である。
EVモード表示ランプ74は、車両10がEVモードにて運転されている場合に点灯され、HVモードにて運転されている場合に消灯されるランプである。
パワーマネジメントECU80(以下、「PMECU80」と表記する。)は、バッテリECU81、メータECU82、モータECU83及びエンジンECU84等と通信により情報交換可能に接続されている。
PMECU80は、パワースイッチ91、シフトポジションセンサ92、アクセル操作量センサ93、ブレーキスイッチ94、車速センサ95及びEVスイッチ96等と接続され、これらのセンサ類が発生する出力信号を入力するようになっている。
パワースイッチ91は車両10のシステム起動用スイッチである。PMECU80は、何れも図示しない車両キーがキースロットに挿入され且つブレーキペダルが踏み込まれているときにパワースイッチ91が操作されると、システムを起動する状態、即ち、レディオン状態(Ready−On状態、走行可能状態)となるように構成されている。更に、車両キーがキースロットに挿入され且つブレーキペダルが踏み込まれているときにパワースイッチ91がオフ状態になるように操作されると、システムを終了する状態、即ち、レディオフ状態(Ready−Off、走行終了状態、走行不能状態)となるように構成されている。
シフトポジションセンサ92は、車両10の運転席近傍に運転者により操作可能に設けられた図示しないシフトレバーによって選択されているシフトポジションを表す信号を発生するようになっている。
アクセル操作量センサ93は、運転者により操作可能に設けられた図示しないアクセルペダルの操作量(アクセル操作量AP)を表す出力信号を発生するようになっている。
ブレーキスイッチ94は、運転者により操作可能に設けられた図示しないブレーキペダルが操作されたときに、ブレーキペダルが操作された状態(即ち、車両10の制動装置が作動された状態)にあることを示す出力信号を発生するようになっている。
車速センサ95は、車両10の車速SPDを表す出力信号を発生するようになっている。
EVスイッチ96は、EVモードの選択及び解除を希望する運転者により操作可能に設けられた手動スイッチである。従って、EVスイッチ96は「運転モード切替スイッチ」又は「EVモードキャンセルスイッチ」とも称呼される。EVスイッチ96は、ユーザがEVモードを希望する場合にはユーザによってオン状態へと変更され、ユーザがHVモードを希望する場合にはユーザによってオフ状態へ変更される。
PMECU80は、バッテリECU81により推定・算出される「バッテリ64の残容量SOC(State Of Charge)」を入力するようになっている。この残容量SOCは、バッテリ64に流出入する電流の積算値及びバッテリ64の電圧等に基づいて周知の手法に従って算出される。残容量SOCは、バッテリ64が新品であって且つ満充電の場合の放電可能電力を100%と定義し、バッテリ64が完全に放電した場合の放電可能電力を0%と定義した場合において、バッテリ64が新品且つ満充電の場合の放電可能電力に対する現時点のバッテリ64の放電可能電力の比を「百分率(%)」にて表した量である。なお、残容量SOCは残容量の絶対値(単位は「Wh(ワット時)」)により表されてもよい。
PMECU80は、モータECU83を介して、第1発電電動機MG1の回転速度(以下、「第1MG回転速度Nm1」と称呼する。)を表す信号及び第2発電電動機MG2の回転速度(以下、「第2MG回転速度Nm2」と称呼する。)を表す信号を入力するようになっている。
第1MG回転速度Nm1は、「第1発電電動機MG1に設けられ且つ第1発電電動機MG1のロータの回転角度に対応する出力値を出力するレゾルバ97の出力値」に基づいてモータECU83により算出されている。同様に、第2MG回転速度Nm2は、「第2発電電動機MG2に設けられ且つ第2発電電動機MG2のロータの回転角度に対応する出力値を出力するレゾルバ98の出力値」に基づいてモータECU83により算出されている。
PMECU80は、エンジンECU84を介して、エンジン状態量センサ99により検出されるエンジン状態を表す出力信号を入力するようになっている。このエンジン状態を表す出力信号には、機関回転速度Ne、スロットル弁開度TA及び機関の冷却水温THW等が含まれている。なお、冷却水温THWは図示しない「内燃機関20の本体部に取り付けられた冷却水温センサ」により検出される。冷却水温THWは、触媒28の温度と強い相関を示すパラメータであり、触媒温度パラメータとも称呼される。即ち、触媒温度パラメータは、触媒28の温度が高いほど大きくなるパラメータである。
PMECU80は、AC/DCコンバータを含む充電器102とも接続され、充電器102に指示信号を送出するようになっている。充電器102はインレット101と電力線を介して接続されている。更に、充電器102の出力電力線は、昇圧コンバータ63とバッテリ64との間に接続されている。インレット101は、車体の側面に露呈可能となっていて、図示しない「外部電源に接続された電力ケーブル」のコネクタが接続されるようになっている。インレット101に電力ケーブルのコネクタが接続された状態において、PMECU80が充電器102を制御することにより、バッテリ64は外部電源から電力ケーブルを通して供給される電力により充電(外部充電)されるようになっている。即ち、充電器102は、インレット101に供給される外部電源からの交流電力を所定の電圧の直流電圧へと変換してバッテリ64へ供給するようになっている。
バッテリECU81は、バッテリ64の状態を監視し、前述したように残容量SOCを算出するようになっている。更に、バッテリECU81は、周知の手法に従って、バッテリ64の瞬時出力可能電力Woutを推定(算出)するようになっている。瞬時出力可能電力Woutは残容量SOCが大きくなるほど大きくなる値である。
メータECU82は、メータECU82は、速度表示器71、電動走行可能距離表示器72、残容量表示器73及びEVモード表示ランプ74等に指示信号を送出し、これらの表示内容を制御するようになっている。
モータECU83は、第1インバータ61、第2インバータ62及び昇圧コンバータ63に接続され、PMECU80からの指令に基づいて、これらに指示信号を送出するようになっている。これにより、モータECU83は、第1インバータ61及び昇圧コンバータ63を用いて第1発電電動機MG1を制御し、且つ、第2インバータ62及び昇圧コンバータ63を用いて第2発電電動機MG2を制御するようになっている。
エンジンECU84は、PMECU80からの指令及びエンジン状態量センサ99からの信号に基づいてエンジンアクチュエータ21に指示信号を送出することにより、機関20を制御するようになっている。
(ハイブリッド車両の走行モード)
次に、ハイブリッド車両10の2つの走行モードについて説明する。一つの走行モードはEVモード(第1走行モード)であり、他の一つの走行モードはHVモード(第2走行モード)である。これらのモードは周知であり、例えば、特開2011−57115号公報及び特開2011−57116号公報に記載されている。各モードに応じた「内燃機関20、第1発電電動機MG1及び第2発電電動機MG2」の制御は、駆動制御部を構成するPMECU80により実現される。更に、ハイブリッド車両10がEVモードにて走行している場合にEVスイッチ96が操作され(オフ状態に変更され)、それによりHVモードでの走行が開始される場合、そのHVモードは「HVSモード」と称呼される。
EVモードは、上述したように、外部電源から供給されてバッテリ64に蓄積された電力をハイブリッド車両10の走行に積極的に使用するモードである。EVモードは、外部充電後において残容量SOCがモード切替閾値SOCEVtoHV(又は、モード切替閾値SOCEVtoHVよりも大きい所定値)よりも大きい場合に実施される。EVモードにおいては、「EVモード機関始動条件」が成立しない限り、機関20は停止され、ハイブリッド車両10は第2発電電動機MG2の発生する出力トルクのみにより走行する。即ち、ハイブリッド車両10は電動走行する。
前述したEVモード機関始動条件は、ユーザ(運転者)により車両の走行のために要求されるトルク(ユーザ要求トルクTu)と車速との積である車両要求パワーに係る条件と、車速に係る条件とからなる。車両要求パワーは、「ユーザ要求出力」又は「車両要求出力」とも称呼される。
ユーザ要求トルクTuは、一般にアクセル操作量APと車速SPDとに基づいて図2に示したように決定される。図2から明らかなように、アクセル操作量APが一定値に維持されている場合、車速SPDが大きいほどユーザ要求トルクTuは小さくなるように決定される。
EVモード機関始動条件の車両要求パワーに係る条件は、ユーザ要求トルクTuと車速SPDとによって決まる車両動作点が、図3に線PWにより示したパワー閾値よりも大きくなったとき(車両動作点がパワー閾値に関して原点と反対側の領域に入ったとき、即ち、パワー要件が満足されたとき)に成立する。パワー閾値は、バッテリ64の瞬時出力可能電力Woutに対応して定められる。換言すると、パワー閾値は、バッテリ64が供給可能な電力の総てを第2発電電動機MG2に供給した場合に得られるトルクと車速との関係を表す値である。従って、パワー閾値は、バッテリ64が第2発電電動機MG2に供給できる瞬時電力により変動する。このパワー要件が満足されると、内燃機関20が始動され、第2発電電動機MG2の出力のみでは車両10の走行に不足する出力が内燃機関20の出力によって補われる。
パワー閾値は、図4の線PWにより示したように、車速SPDとパワーとの関係で表すこともでき、便宜上、「パワー要件出力閾値」と称呼される。
EVモード機関始動条件の車両要求パワーに係る条件は、ユーザ要求トルクTuと車速SPDとによって決まる車両動作点が、図3に線TQにより示したトルク閾値よりも大きくなったとき(車両動作点がトルク閾値に関して原点と反対側の領域に入ったとき、即ち、トルク要件が満足されたとき)にも成立する。トルク閾値は、第2発電電動機MG2が出力するトルクの上限値に対応して定められる。トルク閾値は、車速SPDが「トルク閾値とパワー閾値とが交差する点の車速である車速SPDth」以下(実際には、車速SPDthよりも大きい所定車速SPD1以下)であるとき、一定トルクTQ1となる。トルク要件が満足されると、内燃機関20が運転され、第2発電電動機MG2の出力トルクのみでは車両10の走行に不足するトルクが内燃機関20の出力トルクによって補われる。
トルク閾値は、図4の線TQにより示したように、車速SPDとパワーとの関係で表すこともでき、便宜上、「トルク要件出力閾値」と称呼される。
以上から理解されるように、EVモード機関始動条件は、図3及び図4に太い実線Pegthにより示した機関始動パワー閾値Pegthにより定まる。従って、電動走行中に車両要求パワーが「図4に太い実線により示した機関始動パワー閾値Pegth」以上になると、内燃機関20が始動され、ハイブリッド車両10はハイブリッド走行を行う。
EVモード機関始動条件の車速SPDに係る条件は、車速SPDが機関始動車速閾値SPDuplmt以上となったとき成立する。
従って、車両10がEVモードにおいて電動走行を行っている場合、車両要求パワーPvが「トルク要件出力閾値とパワー要件出力閾値との小さい方である機関始動パワー閾値Pegth」以上となるか、又は、車速SPDが機関始動車速閾値SPDuplmt以上となったとき、車両10は内燃機関20を始動し、内燃機関20及び第2発電電動機MG2の両方の出力を用いたハイブリッド走行を開始する。
HVモードは、バッテリ64の電力を使用することにより発生する第2発電電動機MG2の出力トルクと機関20を運転することにより発生する機関20の出力トルクとを車両10の走行に使用するモードである。
更に、HVモードにおいては、残容量SOCが残容量中心値(残容量の制御目標値)に近づくように内燃機関20及び第1発電電動機MG1が制御され、内燃機関20の発生するエネルギーによりバッテリ64が充電される。但し、HVモードにおいても、ユーザ要求トルクが小さいために機関20を効率的に運転できなくなるとき(ユーザ要求トルクと車速とにより決まる車両要求パワー等に基づく機関要求出力が機関20を所定効率以上にて運転できなくなるHV閾値パワー以下となるとき)等において、車両10は機関20の運転を一時的に停止し、第2発電電動機MG2の発生する出力トルクのみにより走行することもある。
なお、第1発電電動機MG1、第2発電電動機MG2及び内燃機関20の制御内容は、例えば、特開2009−126450号公報(米国公開特許番号 US2010/0241297)、及び、特開平9−308012号公報(米国出願日1997年3月10日の米国特許第6,131,680号)等に詳細に記載されている。これらは、参照することにより本願明細書に組み込まれる。
バッテリ64が外部充電され、その外部充電後のレディオン状態時に残容量SOCが図5に示したモード切替閾値SOCEVtoHV(又は、モード切替閾値SOCEVtoHVよりも大きい所定値)以上である場合、ハイブリッド車両10は「残容量SOCがモード切替閾値SOCEVtoHV以下となる時点」までEVモードにて運転される。
残容量SOCがモード切替閾値SOCEVtoHVを一旦下回ると、ハイブリッド車両10はHVモードにて運転される。ハイブリッド車両10がHVモードにて運転されている状態において、例えば降坂路を走行する等の場合において回生制御がなされ、それによって残容量SOCが「モード切替閾値SOCEVtoHVよりも大きい第1所定値SOC1」にまで回復すると、ハイブリッド車両10は自動的にEVモードにて運転されるようになる。更に、残容量SOCが「モード切替閾値SOCEVtoHVよりも大きく且つ第1所定値SOC1よりも小さい第2所定値SOC2」以上にまで回復した場合に、運転者がEVスイッチ96をオン状態に変更すると、ハイブリッド車両10はEVモードにて運転されるようになる。これらの「EVモードを許可する条件」は「EVモード許可条件」とも総称される。
加えて、ハイブリッド車両10がEVモードにて走行している場合に、運転者がEVスイッチ96に所定の操作を行うと(オフ状態に変更すると)、ハイブリッド車両10はHVSモードにて運転されるようになる。
このように、EVモードは、外部充電後において残容量がモード切替閾値よりも大きい場合(残容量SOCがモード切替閾値SOCEVtoHVよりも大きい場合)等において実行されるモードであり、「内燃機関20を運転することなく第2発電電動機MG2を駆動することにより車両10の駆動力の全部を第2発電電動機MG2から発生させる第1運転状態(即ち、電動走行)」を、「内燃機関20を運転するとともに第2発電電動機MG2を駆動することにより車両10の駆動力を内燃機関20及び第2発電電動機MG2の両方から発生させる第2運転状態(即ち、ハイブリッド走行)」よりも優先させて車両10を走行させるモードである。
また、HVモードは、EVモード走行中に残容量がモード切替閾値よりも小さくなった場合(残容量SOCがモード切替閾値SOCEVtoHVよりも小さくなった場合)等において実行されるモードであり、EVモードと比較して、前記第2運転状態を前記第1運転状態よりも優先させて車両10を走行させるとともに、内燃機関20と第1発電電動機MG1とによって余剰の電力を発生させ、その電力にてバッテリ64の残容量SOCが残容量中心値に近づくように内燃機関20及び第1発電電動機MG1を制御するモードである。
(実際の作動の概要)
次に、本実施形態における「残容量中心値SOCcent」の設定方法の概要について説明する。残容量中心値SOCcentは、PMECU80のCPU(以下、単に「CPU」と称呼する。)によって設定される。
外部充電後にハイブリッド車両10がレディオン状態となり、その後、走行を開始するとき、残容量SOCがモード切替閾値SOCEVtoHVよりも大きいので、CPUは、ハイブリッド車両10をEVモードで走行させる。この状態において、EVスイッチ96が操作されてオン状態からオフ状態へと変更されると(即ち、EVモードがキャンセルされると)、CPUは走行モードをHVSモードへと変更する。
CPUは、EVモードでの走行中にEVスイッチ96がオン状態からオフ状態へと変更されると、残容量中心値SOCcentを「その時点の残容量SOCと、残容量中心値SOCcentの上限値と、の小さい方の値」に設定する。
更に、CPUは、外部充電後にハイブリッド車両10がレディオン状態となった時点以降において、EVモードでの走行中にEVスイッチ96がオン状態からオフ状態へと初めて変更される場合、内燃機関20の「触媒28の温度を表す触媒温度パラメータとしての冷却水温THWが第1パラメータ閾値としての第1水温閾値THWth1(本例では、第1水温閾値THWth1は後述する第2水温閾値THWth2と等しい。)よりも低いと、残容量中心値SOCcentの上限値を「高側値である第1値SHi」に設定する。このとき、残容量SOCが第1値SHiよりも大きければ残容量中心値SOCcentは第1値SHiに設定される。
従って、残容量中心値SOCcentの上限値が常に「第1値SHiよりも低い第2値SHLo」に設定されている場合に比較して、内燃機関20を始動してバッテリ64を充電する機会が増大する。この結果、冷却水温THWは比較的早期に上昇し、触媒28の温度も比較的早期に活性温度近傍に到達する。
その一方、残容量中心値SOCcentの上限値を常に第1値SHiに設定していると、バッテリ64を充電するためにバッテリ64に供給可能な瞬時電力量は小さいので、内燃機関20は無駄に発電を行うことになり、結果として、ハイブリッド車両の燃費が悪化する。
そこで、CPUは、残容量中心値SOCcentの上限値を第1値SHiに設定している場合に触媒温度パラメータとしての冷却水温THWが「第1水温閾値THWth1(第1パラメータ閾値)以上の第2水温閾値THWth2(第2パラメータ閾値)」に到達したとき、残容量中心値SOCcentの上限値を第2値SLoに変更する。この時点で残容量中心値SOCcentが第2値SLoに設定されたとしても、ハイブリッド車両10がHVSモードにて走行している限り内燃機関20はある程度の頻度にて運転されるので、冷却水温THWが大きく低下することはなく、よって、触媒28の温度が大きく低下することもない。その結果、エミッションが悪化することはなく、且つ、内燃機関20からのエネルギーがバッテリ64の充填のために効率よく使用されるので、ハイブリッド車両10の燃費が悪化しない。
このように、CPUは、EVモードからHVSモードへの移行時に冷却水温THWが第1水温閾値THWth1よりも低ければ(EVモードからHVSモードへの移行時に触媒温度パラメータが第1パラメータ閾値よりも低ければ)残容量中心値SOCcentの上限値を第1値SHiに設定するとともに、その状態にて冷却水温THWが第2水温閾値THWth2以上となったときに(触媒温度パラメータが第2パラメータ閾値以上となったときに)残容量中心値SOCcentの上限値を第2値SLoへと変更する制御(「上限値上昇制御」、又は、「残容量中心引き上げ制御」とも称呼される。)を、ハイブリッド車両10がレディオン状態(走行可能状態)となった時点からレディオフ状態(走行不能状態、走行停止状態)に至るまでの期間(即ち、「1トリップ」)において1回だけ実行する。そして、CPUは、上限値上昇制御が実行された後は、残容量中心値SOCcentの上限値を第2値SLoに設定する。
(実際の作動例)
次に、本実施形態の作動例について図6を参照しながら説明する。図6は、時刻t0の直前において外部充電が実行され、その後、ハイブリッド車両10がレディオン状態となって走行を開始した場合の各値を示している。なお、実線はハイブリッド車両10における各値を示し、破線は本発明が適用されることなく、残容量中心値SOCcentの上限値を常に第2値SLoに設定しているハイブリッド車両(比較例)の各値を示す。
・時刻t0から時刻t1の期間
この期間において、EVスイッチ96はオン状態に維持されている。更に、残容量SOCは十分に大きい。従って、ハイブリッド車両10はEVモードにて走行する。内燃機関20は始動されないので、内燃機関20の触媒温度パラメータとしての冷却水温THWは低い一定値を維持する。
・時刻t1から時刻t2の期間
時刻t1にてEVスイッチ96がオフ状態へと変更されると、ハイブリッド車両10はHVSモードでの走行を開始する。この場合、冷却水温THWは水温閾値THWth(=第1水温閾値THW1th)よりも低いので、残容量中心値SOCcentの上限値は第1値(高側上限値)SHiに設定される。時刻t1から時刻t2の期間において、残容量SOCは第1値SHiよりも高い。そのため、この期間における残容量中心値SOCcentは第1値SHiに維持される。前述したように、HVSモードにおいては、残容量SOCが残容量中心値SOCcentに近づくように内燃機関20が制御され、バッテリ64が充放電される。その結果、残容量SOCは第1値SHiの近傍に維持される。更に、内燃機関20が頻繁に作動させられるので、冷却水温THWは比較的早く上昇する。
・時刻t2から時刻t3の期間
時刻t2にて冷却水温THWは水温閾値THWth(=第2水温閾値THW2th)に到達する。これにより、残容量中心値SOCcentの上限値は第2値(低側上限値)SLoに設定される。このとき、残容量中心値引き上げ実施完了フラグXUP(以下、「上限値上昇制御完了フラグXUP」、又は、単に「完了フラグXUP」と称呼する。)の値は「0」から「1」へと変更される。
時刻t2においては残容量SOCは第2値SLoよりも大きいので、残容量中心値SOCcentは第2値SLoに設定される。この場合、バッテリ64は放電を続けるべきであり、従って、内燃機関20はバッテリ64を充電するように運転されないので、残容量SOCは次第に低下する。その一方、車両要求パワーに基づく内燃機関20に要求されるパワーが「内燃機関20を効率的に運転できない値」以下にならない限り、内燃機関20は運転される。よって、冷却水温THWは時刻t2から時刻t3の期間において大きく低下することはなく、略一定の値となる(図示の例においては微増している)。
・時刻t3から時刻t4の期間
時刻t3にてEVスイッチ96がオン状態へと変更されると、残容量SOCは依然として大きいので、ハイブリッド車両10はEVモードでの走行を開始する。従って、この期間において、残容量SOCは次第に低下し、且つ、冷却水温THWも次第に低下する。
・時刻t4以降
時刻t4にてEVスイッチ96がオフ状態へと再び変更されると、ハイブリッド車両10はHVSモードでの走行を開始する。この場合、「完了フラグXUP」の値は「1」であるから、もはや残容量中心値SOCcentの上限値を高い値(第1値SHi)に設定する必要がない。従って、残容量中心値SOCcentの上限値は時刻t4にて第2値SLoに設定される。時刻t4以降において、残容量SOCは第2値SLoよりも高い。そのため、この期間における残容量中心値SOCcentは第2値SLoに設定される。
前述したように、HVSモードにおいては、残容量SOCが残容量中心値SOCcentに近づくように内燃機関20が制御され、バッテリ64が充放電される。時刻t4直後においては残容量SOCは「第2値SLoに設定された残容量中心値SOCcent」よりも大きいので、内燃機関20はバッテリ64を充電するように運転されない。従って、残容量SOCは次第に低下する。その一方、車両要求パワーに基づく内燃機関20に要求されるパワーが大きくなった場合等において内燃機関20は運転される。よって、冷却水温THWは時刻t4以降においても急激に低下することはない。この結果、時刻t2以降において、触媒28の温度は活性温度以上に維持される。
比較例においては、残容量中心値SOCcentの上限値は常に第2値SLoに設定されている。このため、時刻t1にてEVスイッチ96がオフ状態へと変更されたとき、残容量中心値SOCcentは第2値SLoに設定される。従って、時刻t2以降において、バッテリ64の放電が継続され、比較例の残容量SOCは減少を続ける。内燃機関20は、車両要求パワーが大きくなった場合等において運転されるが、バッテリ64を充電するためには始動されない。この結果、時刻t1以降から時刻t2までの期間における比較例の冷却水温THWは、ハイブリッド車両10の冷却水温THWほど早く上昇しない。また、時刻t2以降において、比較例における内燃機関の始動頻度(運転時間)はハイブリッド車両10における内燃機関20の始動頻度(運転時間)と同程度である。よって、比較例の冷却水温THWは低い値のまま推移する。即ち、比較例の触媒の温度は十分に上昇しないので、エミッションが悪化する。
(実際の作動)
・残容量中心値SOCcentの設定
CPUは、所定時間が経過する毎に図7にフローチャートにより示した「残容量中心値設定ルーチン」を実行するようになっている。従って、CPUは適当なタイミングにて図7のステップ700から処理を開始し、ステップ705に進んで現時点の走行モードがHVモードであるか否か(ハイブリッド車両10がHVモードにて走行しているか否か)を判定する。
いま、外部充電がなされた直後であって且つEVスイッチ96はオン状態に設定されていると仮定する。この場合、現時点の走行モードはEVモードである。従って、CPUはステップ705にて「No」と判定してステップ710に進み、現時点の走行モードがHVSモードであるか否かを判定する。このステップにても、CPUは「No」と判定してステップ715に進み、残容量中心値SOCcentに現時点の残容量SOCを設定する。
次に、CPUはステップ720に進み、冷却水温THWが水温閾値THWth(=第1水温閾値THW1th)よりも小さく且つ完了フラグXUPの値が「0」であるか否かを判定する。この完了フラグXUPの値は、PMECU80が起動されたとき(即ち、ハイブリッド車両10がレディオン状態となったとき)「0」に設定されるようになっている。
一般に、外部充電後の走行開始時においては冷却水温THWは水温閾値THWthよりも低い。更に、前述したように、完了フラグXUPの値は「0」に設定されている。従って、CPUはステップ720にて「Yes」と判定してステップ725に進み、残容量中心値SOCcentの上限値を第1値SHiに設定する。
その後、CPUはステップ730に進み、残容量中心値SOCcentを残容量中心値SOCcentの上限値にてガードする。換言すると、CPUは、「残容量中心値SOCcent」と「残容量中心値SOCcentの上限値(現時点では第1値SHi)」とのうちの小さい方の値を残容量中心値SOCcentとして設定する。その後、CPUはステップ795に進み、本ルーチンを一旦終了する。
次に、この状態(EVモードでの走行中)においてEVスイッチ96がオフ状態に変更されたと仮定する。この場合、CPUはHVSモードにてハイブリッド車両10を走行させる。従って、CPUはステップ705にて「No」と判定した後、ステップ710にて「Yes」と判定してステップ735に進み、残容量中心値SOCcentに前回本ルーチンを実行した時点の残容量中心値SOCcentを設定する。その後、CPUはステップ720に進む。
このとき、冷却水温THWが水温閾値THWthよりも低ければ、完了フラグXUPの値は依然として「0」であるから、CPUはステップ720にて「Yes」と判定してステップ725に進む。従って、残容量中心値SOCcentの上限値は第1値SHiに設定される。そして、ステップ735にて設定された残容量中心値SOCcentが第1値SHiよりも高ければ、ステップ730の処理により残容量中心値SOCcentは第1値SHiに設定される(図6の時刻t1を参照。)。この結果、HVSモードにてバッテリ64を充電するために内燃機関20が頻繁に始動されるので、冷却水温THWは比較的早い速度で上昇する。
この状態において、冷却水温THWが水温閾値THWth以上になると、CPUはステップ720に進んだとき、そのステップ720にて「No」と判定してステップ740に進む。そして、CPUはステップ740にて残容量中心値SOCcentの上限値を第2値SLoに設定し、ステップ745にて完了フラグXUPの値を「1」に設定する。次いで、CPUはステップ730に進む。この結果、残容量中心値SOCcentは第2値SLoに設定される(図6の時刻t2を参照。)。
以降においては、完了フラグXUPの値が「1」に維持され続けるので、CPUはステップ720にて冷却水温THWに関わらず「No」と判定する。従って、残容量中心値SOCcentの上限値は第2値SLoに設定され続ける。
なお、現時点における走行モードがHVモードであるとき、CPUはステップ705にて「Yes」と判定してステップ750に進み、残容量中心値SOCcentを「HVモード用の残容量中心値SOCLocent」に設定する。「HVモード用の残容量中心値SOCLocent」は第2値SLoよりも小さい値である。従って、HVモードで走行しているときに、残容量中心値SOCLocentに設定される残容量中心値SOCcentが残容量中心値SOCcentの上限値により変更されることはない。
・HVモード及びHVSモードにおける駆動制御
CPUは、所定時間が経過する毎に図8にフローチャートにより示した「駆動力制御ルーチン」を実行するようになっている。従って、所定のタイミングになると、CPUは図8のステップ800から処理を開始し、以下に述べるステップ805乃至ステップ815の処理を順に行い、ステップ820に進む。
ステップ805:CPUは、アクセル操作量APと車速SPDとに基づいてリングギア要求トルクTr*を取得するとともに、ユーザ要求出力Pr*(即ち、車両要求パワーPv)を決定する。
より具体的に述べると、駆動軸53に作用するトルクとリングギア34の回転軸に作用するトルクとは比例関係にある。従って、ユーザがハイブリッド車両10の走行のために要求しているユーザ要求トルクTuとリングギア要求トルクTr*とは比例関係にある。ユーザ要求トルクTuは、ユーザのアクセル操作量APに応じて定まる「駆動軸53に要求されるトルク」である。
そこで、CPUは図2に示した「アクセル操作量AP及び車速SPDと、ユーザ要求トルクTuと、の間の関係」を「アクセル操作量AP及び車速SPDと、リングギア要求トルクTr*と、の間の関係」に変換したデータを有するテーブルをトルクマップMapTr*(AP,SPD)としてROM内に記憶している。そして、CPUは、そのトルクマップMapTr*(AP,SPD)に現時点の「アクセル操作量AP及び車速SPD」を適用することにより、リングギア要求トルクTr*を取得する。
一方、駆動軸53に要求されている出力(パワー)は、ユーザ要求トルクTuと実際の車速SPDとの積(Tu*・SPD)に等しい。この積(Tu*・SPD)はリングギア要求トルクTr*とリングギア34の回転速度Nrとの積(Tr*・Nr)に等しい。従って、以下、積(Tr*・Nr)を「ユーザ要求出力Pr*」と称呼する。即ち、ユーザ要求出力Pr*は、ユーザ要求トルクTuにより定まる。更に、具体的には、ユーザ要求出力Pr*は「ユーザ要求トルクTuと車速SPDとの積(Tu*・SPD)」に比例する値に基づいて決定される。
ステップ810:CPUは、残容量SOCと、残容量中心値SOCcentと、図9に示したルックアップテーブルMapPb*(SOC−SOCcent)とに基づいてバッテリ充電要求出力Pb*を取得する。バッテリ充電要求出力Pb*は、バッテリ64を充電するためにバッテリ64に供給すべき電力に応じた値である。
ステップ815:CPUは、ユーザ要求出力Pr*とバッテリ充電要求出力Pb*との和に損失Plossを加えた値(Pr*+Pb*+Ploss)を機関要求出力Pe*として取得する。機関要求出力Pe*は内燃機関20に要求される出力である。
次に、CPUはステップ820に進み、機関要求出力Pe*が閾値要求出力Peth以上であるか否かを判定する。この閾値要求出力Pethは、内燃機関20の出力が閾値要求出力Peth未満で運転されると、内燃機関20の運転効率(即ち、燃費)が許容限度以下となるような値に設定されている。換言すると、閾値要求出力Pethは、その閾値要求出力Pethと等しい出力を内燃機関20が最高の効率にて出力した場合における「その効率」が許容限度以下となるような値に設定されている。
(ケース1)
機関要求出力Pe*が閾値要求出力Peth以上である場合。
この場合、CPUはステップ820にて「Yes」と判定してステップ825に進み、現時点において内燃機関20が停止中(運転停止中)であるか否かを判定する。内燃機関20が停止中であると、CPUはステップ825にて「Yes」と判定してステップ830に進み、内燃機関20の運転を開始する指示(始動指示)をエンジンECU84に送信する。エンジンECU84はこの指示に基づいて内燃機関20を始動させる。従って、機関要求出力Pe*が閾値要求出力Peth以上であるとの条件は機関始動条件である。その後、CPUはステップ835に進む。これに対し、内燃機関20が運転中であると、CPUはステップ825にて「No」と判定してステップ835に直接進む。
CPUは、以下に述べるステップ835乃至ステップ860の処理を順に行う。その後、CPUはステップ895に進んで本ルーチンを一旦終了する。
ステップ835:CPUは、機関要求出力Pe*と等しい出力が内燃機関20から出力され、且つ、内燃機関20の運転効率が最良となるように内燃機関20を運転する。即ち、CPUは、機関要求出力Pe*に応じた最適機関動作点に基づいて目標機関出力トルクTe*及び目標機関回転速度Ne*を決定する。
ステップ840:CPUは、下記(1)式に、リングギア34の回転速度Nrとして「回転速度Nrと等しい第2MG回転速度Nm2」を代入するとともに、機関回転速度Neとして目標機関回転速度Ne*を代入することにより、「サンギア32の目標回転速度Ns*と等しいMG1目標回転速度Nm1*」を算出する。

Ns=Nm1=Nr−(Nr−Ne)・(1+ρ)/ρ …(1)
上記(1)式において、「ρ」は下記の(2)式により定義される値である。即ち、「ρ」は、リングギア34の歯数に対するサンギア32の歯数である。

ρ=(サンギア32の歯数/リングギア34の歯数) …(2)
更に、CPUはステップ840にて、下記(3)式に従って第1発電電動機MG1に出力させるべきトルクであるMG1指令トルクTm1*を算出する。(3)式において、値PID(Nm1*−Nm1)は「MG1目標回転速度Nm1*と第1発電電動機MG1の実際の回転速度Nm1」との差に応じたフィードバック量である。即ち、値PID(Nm1*−Nm1)は、第1発電電動機MG1の実際の回転速度Nm1をMG1目標回転速度Nm1*に一致させるためのフィードバック量である。

Tm1*=Te*・(ρ/(1+ρ))+PID(Nm1*−Nm1) …(3)
機関出力トルクTe*は遊星歯車装置31によりトルク変換される。その結果、サンギア32の回転軸に下記(4)式により表されるトルクTesとなって作用し、リングギア34の回転軸に下記(5)式により表されるトルクTerとなって作用する。

Tes=Te*・(ρ/(1+ρ)) …(4)

Ter=Te*・(1/(1+ρ)) …(5)
ステップ845:CPUは、上記(5)式及び下記(6)式に従って、第2発電電動機MG2に出力させるべきトルクであるMG2指令トルクTm2*を算出する。なお、CPUは、下記の(7)式に基づいて、MG2指令トルクTm2*を決定してもよい。

Tm2*=Tr*−Ter …(6)

Tm2*=Tr*−Tm1*/ρ …(7)
ステップ850:CPUは、内燃機関20が最適機関動作点にて運転されるように(換言すると、機関出力トルクが目標機関出力トルクTe*となるように)、エンジンECU84に指令信号を送出する。これにより、エンジンECU84は、機関出力トルクTeが目標機関出力トルクTe*となるように内燃機関20を制御する。
ステップ855:CPUは、MG1指令トルクTm1*をモータECU83に送信する。モータECU83は、第1発電電動機MG1の出力トルクがMG1指令トルクTm1*に一致するように第1インバータ61を制御する。
ステップ860:CPUは、MG2指令トルクTm2*をモータECU83に送信する。モータECU83は、第2発電電動機MG2の出力トルクがMG2指令トルクTm2*に一致するように第2インバータ62を制御する。
以上の処理により、リングギア34にはリングギア要求トルクTr*と等しいトルクが内燃機関20及び第2発電電動機MG2によって作用させられる。更に、残容量SOCが残容量中心値SOCcentよりも所定値以上小さい場合、内燃機関20の発生する出力はバッテリ充電要求出力Pb*だけ増大させられる。従って、トルクTerは大きくなるので、上記(6)式から理解されるように、MG2指令トルクTm2*は小さくなる。その結果、第1発電電動機MG1が発電する電力のうち第2発電電動機MG2にて消費される電力が少なくなるので、第1発電電動機MG1が発電する余剰の電力(第2発電電動機MG2によって消費されない電力)によってバッテリ64が充電される。
(ケース2)
機関要求出力Pe*が閾値要求出力Peth未満である場合。
ケース2において、CPUがステップ820に進んだとき、CPUはそのステップ820にて「No」と判定してステップ870に進み、現時点において内燃機関20が運転中であるか否かを判定する。
内燃機関20が運転中であると、CPUはステップ870にて「Yes」と判定してステップ875に進み、内燃機関20の運転を停止する指示をエンジンECU84に送信する。エンジンECU84はこの指示に基づいて燃料噴射量を「0」にすることにより、内燃機関20を停止させる。その後、CPUはステップ880に進む。これに対し、内燃機関20が停止中であると、CPUはステップ870にて「No」と判定してステップ880に直接進む。
次に、CPUはステップ880に進んでMG1指令トルクTm1*を「0」に設定し、ステップ885に進んでMG2指令トルクTM2*にリングギア要求トルクTr*を設定する。その後、CPUは前述したステップ855及びステップ860の処理を実行する。この結果、リングギア要求トルクTr*(従って、ユーザ要求トルクTu)は第2発電電動機MG2の発生するトルクのみによって満足される。
以上、説明したように、本発明の実施形態に係るハイブリッド車両10は、
排気通路に触媒28を有する内燃機関20と、電動機(第2発電電動機MG2)と、を駆動源として搭載したハイブリッド車両10であって、
前記電動機を駆動する電力を前記電動機に供給可能であり且つ充電可能な蓄電装置(バッテリ64)と、
前記ハイブリッド車両の外部から供給される電力を前記蓄電装置に供給することにより前記蓄電装置を充電する外部充電部(インレット101、充電器102及びPMECU80等)と、
前記内燃機関の出力により電力を発生するとともに同発生した電力を前記蓄電装置に供給することにより前記蓄電装置を充電する内部充電部(内燃機関20、第1発電電動機MG1、動力分配機構30、第1インバータ61、昇圧コンバータ63等)と、
運転モード切替スイッチ(EVスイッチ96)と、
前記蓄電装置が前記外部から供給される電力により充電された後に前記蓄電装置の残容量SOCが所定値(例えば、モード切替閾値SOCEVtoHV)よりも大きい場合、前記内燃機関を運転することなく前記電動機を駆動することにより前記ハイブリッド車両の駆動力の全部を前記電動機から発生させる第1運転状態を、前記内燃機関を運転するとともに前記電動機を駆動することにより前記ハイブリッド車両の駆動力を前記内燃機関及び前記電動機の両方から発生させる第2運転状態、よりも優先させる第1走行モードにて前記ハイブリッド車両を走行させ、前記ハイブリッド車両が前記第1走行モードで走行している場合に前記運転モード切替スイッチが操作されたとき前記第1走行モードに比較して前記第2運転状態を前記第1運転状態よりも優先させるとともに前記内部充電部によって前記蓄電装置の残容量SOCが残容量中心値SOCcentに近づくように前記内燃機関を制御する第2走行モードにて前記ハイブリッド車両を走行させる制御部(PMECU80、図8のルーチン及び図9等を参照。)と、
前記運転モード切替スイッチの操作によって前記ハイブリッド車両の走行モードが前記第1走行モード(前記第1走行モードでの前記第1運転状態)から前記第2走行モードへと切り替えられたとき前記残容量中心値を同運転モード切替スイッチの操作時点における前記蓄電装置の残容量に応じた値と残容量中心上限値との小さい方の値に設定する残容量中心値設定部(図7のステップ715、ステップ735、後述するステップ790、及びステップ730等を参照。)と、
を備えるハイブリッド車両において、
前記残容量中心値設定部は、
前記運転モード切替スイッチの操作によって前記ハイブリッド車両の走行モードが前記第1走行モードから前記第2走行モードへと切り替えられた場合に「触媒28の温度を表す触媒温度パラメータとしての冷却水温THW」が「第1パラメータ閾値としての第1水温閾値(THWth)」よりも低いとき前記残容量制御中心値の上限値を第1値(SHi)に設定するとともに(図7のステップ720及びステップ725)前記残容量制御中心値の上限値が前記第1値に設定されている場合に「触媒28の温度を表す触媒温度パラメータとしての冷却水温THW」が「前記第1水温閾値以上の第2パラメータ閾値としての第2水温閾値(THWth)」よりも高くなったとき前記残容量制御中心値の上限値を前記第1値よりも小さい第2値(SLo)に設定する(図7のステップ720及びステップ740)制御、即ち、上限値上昇制御を、前記外部充電が実行された後に前記ハイブリッド車両が走行可能状態とされてから走行終了状態とされるまでの一回の運転期間中に一度だけ実行し(図7のステップ720及びステップ745の完了フラグXUPを参照。)、
前記一回の運転期間中に、前記運転モード切替スイッチの操作によって前記ハイブリッド車両の走行モードが前記第1走行モードから前記第2走行モードへと切り替えられた場合に「触媒温度パラメータとしての前記内燃機関の冷却水温」が「前記第1パラメータ閾値としての第1水温閾値」よりも高いか又は前記上限値上昇制御の実行が終了していたとき(図7のステップ720を参照。)、前記残容量制御中心値の上限値を前記第2値に設定する(図7のステップ740)。
従って、HVSモードでの走行中に冷却水温THWが上昇するまでは(換言すると、触媒温度が所定温度以上になるまでは)、内燃機関20を比較的頻繁に始動することができるので、触媒28の暖機を速やかに行うことができる。よって、エミッッションを改善することができる。また、冷却水温THWが上昇した後(即ち、触媒温度が上昇した後)は無駄な内燃機関20の運転を回避できるので、ハイブリッド車両10の燃費が悪化することを防止することができる。
本発明は上記実施形態に限定されることはなく、本発明の範囲内において種々の変形例を採用することができる。例えば、図7のステップ790をステップ735の後に追加してもよい。このステップ790にて、CPUはステップ735にて取得した残容量中心値SOCcentに正の所定値αを加えた値を残容量中心値SOCcentに設定する。
更に、CPUは、上限値上昇制御を、前記運転モード切替スイッチの操作によって前記ハイブリッド車両の走行モードが前記第1走行モードから前記第2走行モードへと切り替えられた場合に前記内燃機関の冷却水温が第1水温閾値(=THWth)よりも低いときに開始し、前記残容量制御中心値の上限値が前記第1値に設定されている場合に前記冷却水温が「前記第1水温閾値以上の第2水温閾値(≧THWth)」よりも高くなったとき完了してもよい。
また、上記実施形態においては、触媒28の温度を表す触媒温度パラメータとして冷却水温THWが用いられていたが、触媒28の温度を直接計測できる触媒温度センサの検出温度を触媒温度パラメータとして用いてもよい。更に、内燃機関20の運転状態(吸入空気量の積算値及び内燃機関20の運転停止時間、更に、冷却水温THW)に基づいて触媒28の温度を推定し、その推定した温度を触媒温度パラメータとして採用してもよい。
10…ハイブリッド車両、20…内燃機関、25…クランクシャフト、26…エキゾーストマニホールド、27…排気管、28…触媒、30…動力分配機構、50…動力伝達機構、51…ギア列、52…ディファレンシャルギア、53…駆動軸、93…アクセル操作量センサ、95…車速センサ、96…EVスイッチ(運転モード切替スイッチ)、102…充電器。

Claims (1)

  1. 排気通路に触媒を有する内燃機関と、電動機と、を駆動源として搭載したハイブリッド車両であって、
    前記電動機を駆動する電力を前記電動機に供給可能であり且つ充電可能な蓄電装置と、
    前記ハイブリッド車両の外部から供給される電力を前記蓄電装置に供給することにより前記蓄電装置を充電する外部充電部と、
    前記内燃機関の出力により電力を発生するとともに同発生した電力を前記蓄電装置に供給することにより前記蓄電装置を充電する内部充電部と、
    運転モード切替スイッチと、
    前記蓄電装置が前記外部から供給される電力により充電された後に前記蓄電装置の残容量が所定値よりも大きい場合、前記内燃機関を運転することなく前記電動機を駆動することにより前記ハイブリッド車両の駆動力の全部を前記電動機から発生させる第1運転状態を、前記内燃機関を運転するとともに前記電動機を駆動することにより前記ハイブリッド車両の駆動力を前記内燃機関及び前記電動機の両方から発生させる第2運転状態、よりも優先させる第1走行モードにて前記ハイブリッド車両を走行させ、前記ハイブリッド車両が前記第1走行モードで走行している場合に前記運転モード切替スイッチが操作されたとき前記第1走行モードに比較して前記第2運転状態を前記第1運転状態よりも優先させるとともに前記内部充電部によって前記蓄電装置の残容量が残容量制御中心値に近づくように前記内燃機関を制御する第2走行モードにて前記ハイブリッド車両を走行させる制御部と、
    前記運転モード切替スイッチの操作によって前記ハイブリッド車両の走行モードが前記第1走行モードから前記第2走行モードへと切り替えられたとき前記残容量中心値を同運転モード切替スイッチの操作時点における前記蓄電装置の残容量に応じた値と残容量中心上限値との小さい方の値に設定する残容量中心値設定部と、
    を備えるハイブリッド車両において、
    前記残容量中心値設定部は、
    前記運転モード切替スイッチの操作によって前記ハイブリッド車両の走行モードが前記第1走行モードから前記第2走行モードへと切り替えられた場合に前記触媒の温度を表す触媒温度パラメータが第1パラメータ閾値よりも低いとき前記残容量制御中心値の上限値を第1値に設定するとともに前記残容量制御中心値の上限値が前記第1値に設定されている場合に前記触媒温度パラメータが前記第1パラメータ閾値以上の第2パラメータ閾値よりも高くなったとき前記残容量制御中心値の上限値を前記第1値よりも小さい第2値に設定する制御である上限値上昇制御を、前記外部充電が実行された後に前記ハイブリッド車両が走行可能状態とされてから走行終了状態とされるまでの一回の運転期間中に一度だけ実行し、
    前記一回の運転期間中に、前記運転モード切替スイッチの操作によって前記ハイブリッド車両の走行モードが前記第1走行モードから前記第2走行モードへと切り替えられた場合に前記触媒温度パラメータが前記第1パラメータ閾値よりも高いか又は前記上限値上昇制御の実行が終了していたとき、前記残容量制御中心値の上限値を前記第2値に設定するように構成されたハイブリッド車両。
JP2012015865A 2012-01-27 2012-01-27 ハイブリッド車両 Pending JP2013154720A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012015865A JP2013154720A (ja) 2012-01-27 2012-01-27 ハイブリッド車両

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012015865A JP2013154720A (ja) 2012-01-27 2012-01-27 ハイブリッド車両

Publications (1)

Publication Number Publication Date
JP2013154720A true JP2013154720A (ja) 2013-08-15

Family

ID=49050361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012015865A Pending JP2013154720A (ja) 2012-01-27 2012-01-27 ハイブリッド車両

Country Status (1)

Country Link
JP (1) JP2013154720A (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105667337A (zh) * 2016-03-10 2016-06-15 北京新能源汽车股份有限公司 电动汽车及其动力系统、控制方法
EP3124303A2 (en) 2015-07-30 2017-02-01 Toyota Jidosha Kabushiki Kaisha Control apparatus for hybrid vehicle, hybrid vehicle and control method for hybrid vehicle
EP3124302A2 (en) 2015-07-31 2017-02-01 Toyota Jidosha Kabushiki Kaisha Control apparatus
EP3254879A1 (en) 2016-06-09 2017-12-13 Toyota Jidosha Kabushiki Kaisha Control device for hybrid vehicle
JP2018100050A (ja) * 2016-12-21 2018-06-28 トヨタ自動車株式会社 ハイブリッド車両およびその制御方法
US10106143B2 (en) 2015-07-22 2018-10-23 Toyota Jidosha Kabushiki Kaisha Control apparatus for hybrid vehicle
US10124678B2 (en) 2015-07-22 2018-11-13 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle control apparatus
CN114475571A (zh) * 2020-11-13 2022-05-13 本田技研工业株式会社 车辆的控制装置
CN115027441A (zh) * 2021-03-08 2022-09-09 本田技研工业株式会社 车辆的控制装置
CN115977817A (zh) * 2023-02-02 2023-04-18 重庆赛力斯新能源汽车设计院有限公司 一种车辆怠速控制方法、装置、服务端及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001112116A (ja) * 1999-10-08 2001-04-20 Toyota Motor Corp ハイブリッド車両の制御装置
JP2008155682A (ja) * 2006-12-21 2008-07-10 Toyota Motor Corp 内燃機関の制御装置
JP2009214588A (ja) * 2008-03-07 2009-09-24 Toyota Motor Corp 動力出力装置およびその制御方法並びに車両
JP2009262771A (ja) * 2008-04-25 2009-11-12 Toyota Motor Corp ハイブリッド車両の制御装置
JP2009274628A (ja) * 2008-05-15 2009-11-26 Toyota Motor Corp ハイブリッド車およびその制御方法
JP2009292261A (ja) * 2008-06-04 2009-12-17 Toyota Motor Corp ハイブリッド自動車およびその制御方法
JP2010104095A (ja) * 2008-10-21 2010-05-06 Toyota Motor Corp 電源システムおよびそれを備えた車両、ならびに電源システムの制御方法
JP2011251671A (ja) * 2010-06-04 2011-12-15 Toyota Motor Corp ハイブリッド自動車およびその制御方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001112116A (ja) * 1999-10-08 2001-04-20 Toyota Motor Corp ハイブリッド車両の制御装置
JP2008155682A (ja) * 2006-12-21 2008-07-10 Toyota Motor Corp 内燃機関の制御装置
JP2009214588A (ja) * 2008-03-07 2009-09-24 Toyota Motor Corp 動力出力装置およびその制御方法並びに車両
JP2009262771A (ja) * 2008-04-25 2009-11-12 Toyota Motor Corp ハイブリッド車両の制御装置
JP2009274628A (ja) * 2008-05-15 2009-11-26 Toyota Motor Corp ハイブリッド車およびその制御方法
JP2009292261A (ja) * 2008-06-04 2009-12-17 Toyota Motor Corp ハイブリッド自動車およびその制御方法
JP2010104095A (ja) * 2008-10-21 2010-05-06 Toyota Motor Corp 電源システムおよびそれを備えた車両、ならびに電源システムの制御方法
JP2011251671A (ja) * 2010-06-04 2011-12-15 Toyota Motor Corp ハイブリッド自動車およびその制御方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10106143B2 (en) 2015-07-22 2018-10-23 Toyota Jidosha Kabushiki Kaisha Control apparatus for hybrid vehicle
US10124678B2 (en) 2015-07-22 2018-11-13 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle control apparatus
JP2017030468A (ja) * 2015-07-30 2017-02-09 トヨタ自動車株式会社 ハイブリッド車両の制御装置
US10137880B2 (en) 2015-07-30 2018-11-27 Toyota Jidosha Kabushiki Kaisha Control apparatus for hybrid vehicle
EP3124303A2 (en) 2015-07-30 2017-02-01 Toyota Jidosha Kabushiki Kaisha Control apparatus for hybrid vehicle, hybrid vehicle and control method for hybrid vehicle
US10246076B2 (en) 2015-07-31 2019-04-02 Toyota Jidosha Kabushiki Kaisha Control apparatus
JP2017030575A (ja) * 2015-07-31 2017-02-09 トヨタ自動車株式会社 ハイブリッド車両の制御装置
EP3124302A2 (en) 2015-07-31 2017-02-01 Toyota Jidosha Kabushiki Kaisha Control apparatus
CN105667337A (zh) * 2016-03-10 2016-06-15 北京新能源汽车股份有限公司 电动汽车及其动力系统、控制方法
EP3254879A1 (en) 2016-06-09 2017-12-13 Toyota Jidosha Kabushiki Kaisha Control device for hybrid vehicle
CN108327710A (zh) * 2016-12-21 2018-07-27 丰田自动车株式会社 混合动力车辆及控制混合动力车辆的方法
JP2018100050A (ja) * 2016-12-21 2018-06-28 トヨタ自動車株式会社 ハイブリッド車両およびその制御方法
US10507821B2 (en) 2016-12-21 2019-12-17 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and method of controlling the same
CN108327710B (zh) * 2016-12-21 2021-07-09 丰田自动车株式会社 混合动力车辆及控制混合动力车辆的方法
CN114475571A (zh) * 2020-11-13 2022-05-13 本田技研工业株式会社 车辆的控制装置
CN114475571B (zh) * 2020-11-13 2023-08-29 本田技研工业株式会社 车辆的控制装置
CN115027441A (zh) * 2021-03-08 2022-09-09 本田技研工业株式会社 车辆的控制装置
CN115027441B (zh) * 2021-03-08 2024-05-07 本田技研工业株式会社 车辆的控制装置
CN115977817A (zh) * 2023-02-02 2023-04-18 重庆赛力斯新能源汽车设计院有限公司 一种车辆怠速控制方法、装置、服务端及存储介质

Similar Documents

Publication Publication Date Title
JP5730501B2 (ja) 電動車両およびその制御方法
JP5229386B2 (ja) ハイブリッド自動車およびその制御方法
JP4547011B2 (ja) 動力出力装置、それを備えた車両、駆動装置および動力出力装置の制御方法
EP2083156B1 (en) Hybrid vehicle and its control method
JP2013154720A (ja) ハイブリッド車両
JP4254899B1 (ja) ハイブリッド自動車およびその制御方法
JP5187005B2 (ja) ハイブリッド自動車およびその制御方法
JP5700061B2 (ja) ハイブリッド車
JP2011093335A (ja) ハイブリッド車両の制御装置
JP2008265682A (ja) 車両およびその制御方法
JP5845930B2 (ja) 少なくとも電動機を用いて走行可能な車両の電動走行可能距離表示装置
CN102883933A (zh) 混合动力车辆的控制装置及具有该控制装置的混合动力车辆
JP6028328B2 (ja) ハイブリッド車両
JP2010202119A (ja) ハイブリッド車両およびその制御方法
JP2013154718A (ja) ハイブリッド車両
JP2010042700A (ja) ハイブリッド車両およびその制御方法
JP5831257B2 (ja) 少なくとも電動機を駆動源として備える車両
JP4876054B2 (ja) 動力出力装置、それを備えた車両および動力出力装置の制御方法
JP2010163061A (ja) 動力出力装置、それを備えた車両および動力出力装置の制御方法
JP2011073564A (ja) ハイブリッド車およびその制御方法
JP5834965B2 (ja) ハイブリッド車両の運転状況表示装置
JP5796439B2 (ja) ハイブリッド自動車
JP2009107554A (ja) 動力出力装置、それを備えた車両および動力出力装置の制御方法
JP5397168B2 (ja) ハイブリッド車両およびその制御方法
JP2010137783A (ja) 動力出力装置および車両並びに異常判定方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151014

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160308