WO2011159092A9 - 신규 토양 미생물과 상기 토양 미생물로부터 분리된 신규한 산화환원효소, 상기 산화환원 효소를 암호화하는 유전자 및 이들을 이용한 비당체의 생산방법 - Google Patents

신규 토양 미생물과 상기 토양 미생물로부터 분리된 신규한 산화환원효소, 상기 산화환원 효소를 암호화하는 유전자 및 이들을 이용한 비당체의 생산방법 Download PDF

Info

Publication number
WO2011159092A9
WO2011159092A9 PCT/KR2011/004361 KR2011004361W WO2011159092A9 WO 2011159092 A9 WO2011159092 A9 WO 2011159092A9 KR 2011004361 W KR2011004361 W KR 2011004361W WO 2011159092 A9 WO2011159092 A9 WO 2011159092A9
Authority
WO
WIPO (PCT)
Prior art keywords
ginsenoside
seq
oxidoreductase
sequence
cell extract
Prior art date
Application number
PCT/KR2011/004361
Other languages
English (en)
French (fr)
Other versions
WO2011159092A3 (ko
WO2011159092A2 (ko
Inventor
박준성
김덕희
김한곤
김은미
김병기
Original Assignee
(주)아모레퍼시픽
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020100055988A external-priority patent/KR101749680B1/ko
Priority claimed from KR1020100066307A external-priority patent/KR101749681B1/ko
Application filed by (주)아모레퍼시픽, 서울대학교산학협력단 filed Critical (주)아모레퍼시픽
Priority to CN201180038765.9A priority Critical patent/CN103237884B/zh
Priority to US13/704,210 priority patent/US20130084601A1/en
Priority to JP2013515263A priority patent/JP5878524B2/ja
Publication of WO2011159092A2 publication Critical patent/WO2011159092A2/ko
Publication of WO2011159092A9 publication Critical patent/WO2011159092A9/ko
Publication of WO2011159092A3 publication Critical patent/WO2011159092A3/ko
Priority to HK13112245.3A priority patent/HK1184823A1/xx
Priority to US14/588,790 priority patent/US9394562B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P33/00Preparation of steroids
    • C12P33/20Preparation of steroids containing heterocyclic rings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/02Oxygen as only ring hetero atoms
    • C12P17/06Oxygen as only ring hetero atoms containing a six-membered hetero ring, e.g. fluorescein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P33/00Preparation of steroids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/41Rhizobium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a novel microorganism isolated from soil, an oxidoreductase isolated from the microorganism, and a method for producing glycolysis of various plant glycosides and producing various non-saccharides using these microorganisms.
  • Ginseng (Panax ginseng C.A. Meyer) is one of the traditional medicines used in the treatment and prevention of various diseases in Asian countries such as Korea, China and Japan. Ginseng saponins, called ginsenosides, are known to have various physiological activities such as anti-aging, anti-inflammatory, antioxidant activity, anti-diabetic activity and anti-tumor activity in the central nervous system, cardiovascular system and immune system.
  • ginsenosides About 40 kinds of ginsenosides have been identified and identified so far, and the glycosides, glycosides containing non-saccharides of the dammarane structure, include protopanaxadiol and protopanaxtriol. It can be divided into (protopanaxatriol) system. Ginsenosides belonging to the protoparnaxadiol-based saponins are mainly Rb1, Rb2, Rc, and Rd, and ginsenosides belonging to the protopanaxanatriol-based saponins are mainly Re and Rg1 (Fig. 1, Fig. 1). 2).
  • Ginsenosides are metabolized by human intestinal microorganisms after ingestion, and their metabolites are known to have various physiological activities.
  • representative protoparnaxadiol-based saponins Rb1, Rb2, and Rc are metabolized to CK by human enterobacteriaceae, while Re and Rg1, protophanaxatriol-based saponins, are metabolized to Rh1 or F1 by enterobacteriaceae. And exhibit various biological activities.
  • CK it is known to induce anti-metastatic or anti-cancer effects that prevent tumor invasion and prevent tumor formation.
  • PPD (S) a non-saccharide, has a higher physiological activity effect than Rh2 having a sugar attached thereto.
  • the present invention provides novel microorganisms and novel oxidoreductases showing glycolytic activity isolated from the microorganisms, and non-saccharide and isoflavone ratios of various ginsenosides using genes and recombinant proteins encoding them.
  • the present invention is a novel risobiium sp. GIN611 ( Rhizobium sp. GIN611) KCTC11708BP or a cell extract thereof is provided.
  • the present invention provides a method for sugar decomposition of natural products using rizobium sp.GIN611 or a cell extract thereof as a biocatalyst.
  • the present invention also provides a method for producing aglycone from various glycosides using rizobium sp.GIN611 or a cell extract thereof as a biocatalyst.
  • the present invention also provides an oxidoreductase consisting of the amino acid sequence of SEQ ID NO: 3 or a cell extract comprising the same.
  • the present invention is a recombinant DNA vector comprising a DNA encoding the oxidoreductase consisting of the amino acid sequence of SEQ ID NO: 3, DNA consisting of the sequence of SEQ ID NO: 2, DNA consisting of the sequence of SEQ ID NO: 2, the sequence of SEQ ID NO: 2 It provides a cell extract comprising a host cell transformed with a recombinant DNA vector comprising a DNA consisting of or a host cell transformed with a recombinant DNA vector comprising a DNA consisting of the sequence of SEQ ID NO: 2.
  • the present invention provides an oxidoreductase or a cell extract comprising the oxidoreductase having a glycolytic activity having a homologous activity of 60% or more with the sequence of SEQ ID NO: 3.
  • the present invention also provides a DNA extract encoding an oxidoreductase consisting of an amino acid sequence of SEQ ID NO: 3, a cell extract comprising an oxidoreductase consisting of an amino acid sequence of SEQ ID NO: 3, and an oxidoreductase consisting of an amino acid sequence of SEQ ID NO: 3
  • a host extract transformed with a recombinant DNA vector comprising, a cell extract comprising a host cell transformed with a recombinant DNA vector comprising a DNA encoding an oxidoreductase consisting of an amino acid sequence of SEQ ID NO: 3, and a sequence of SEQ ID NO: 2
  • the present invention also provides a DNA extract encoding an oxidoreductase consisting of an amino acid sequence of SEQ ID NO: 3, a cell extract comprising an oxidoreductase consisting of an amino acid sequence of SEQ ID NO: 3, and an oxidoreductase consisting of an amino acid sequence of SEQ ID NO: 3
  • a host extract transformed with a recombinant DNA vector comprising, a cell extract comprising a host cell transformed with a recombinant DNA vector comprising a DNA encoding an oxidoreductase consisting of an amino acid sequence of SEQ ID NO: 3, and a sequence of SEQ ID NO: 2
  • the present invention is a cell extract of rizobium sp.GIN611, a cell extract comprising an oxidoreductase consisting of the amino acid sequence of SEQ ID NO: 3, recombinant comprising a DNA encoding an oxidoreductase consisting of the amino acid sequence of SEQ ID NO: At least 60% of a cell extract comprising a host cell transformed with a DNA vector, a cell extract comprising a host cell transformed with a recombinant DNA vector comprising a DNA consisting of the sequence of SEQ ID NO: 2 or a sequence of SEQ ID NO: 3
  • a method for producing a cell extract comprising an oxidoreductase having synergistic and glycolytic activity and a method for producing a cell extract, characterized by inducing enzyme expression by adding ginsenosides.
  • ginsenoside glycolytic enzymes are known as enzymes belonging to the group of glucosidase.
  • the enzyme belonging to the oxidoreductase group which does not belong to the known glucosidase group has the glycolytic activity of ginsenoside.
  • This novel oxidoreductase is completely different from the existing group of enzymes related to glycolysis and sequence similarity to the group of oxidoreductases. It functions to induce spontaneous glycolysis and to break down sugars by oxidizing sugars in natural glycosides. .
  • Figure 1 shows a protopanaxadiol (PPD) -based ginsenosides.
  • Figure 2 shows a protopanaxatriol (PPT) -based ginsenosides.
  • Figure 3 shows the target reaction to produce non-saccharide PPD (S) through glycolysis from ginsenoside Compound K (CK).
  • Figure 4 shows the results of reactivity through the novel oxidoreductase.
  • Asterisks represent oxidized CK and triangles represent PPD (S).
  • Line 3 is the reaction result of 3 hours, and 4 is the reaction result of 12 hours.
  • the substrate CK decreases with time, the oxidized CK corresponding to the intermediate tends to increase and then decrease, and the final product PPD (S) increases continuously with time.
  • FIG. 5 shows the mass spectrometry results of the oxidized CK analyzed in FIG. 4.
  • FIG. 6 shows the results of SDS polyacrylamide gel comparing proteins expressed in complete medium and M9 / ginsenoside medium.
  • Figure 7 shows the results of comparing the reactivity with the protein prepared from cells cultured in complete medium and M9 / ginsenoside medium.
  • Figure 8 is a new soil microbial risobium sp. Grown with ginsenosides as a carbon source. 16S DNA sequence of GIN611 is shown.
  • FIG. 11 shows that the enzyme is specifically reactive with glucose as a result of the reactivity of the novel oxidoreductase against various ginsenosides and isoflavones.
  • Figure 12 shows the results of measuring the glycolytic activity of the Camelliaside A and Camelliaside B mixture.
  • Figure 13 shows the results of measuring the glycolytic activity of Icarin.
  • ginsenoside ginseng saponin, the active ingredient of ginseng
  • Ginsenoside Rh2 3- O -beta-D-glycopyranosyl-20 (S) -protopanaxadiol (3- O- beta-D-glycopyranosyl-20 (S) -protopanaxadiol)
  • Ginsenoside F2 3- O- (beta-D-glucopyranosyl) -20- O- (beta-D-glucopyranosyl) -20 ( S ) protopanaxadiol (3- O- ( beta-D-glucopyranosy) -20- O- (beta-D-glucopyranosyl) -20 ( S ) protopanaxadiol)
  • Ginsenoside Rb1 3- O -[(beta-D-glucopyranosyl) (1,2) -beta-D-glucopyranosyl] -20- O -[(beta-D-glucopyranosyl ) (1,6) -beta-D-glucopyranosyl] -20 ( S ) propofanaxadiol (3- O -[(beta-D-glucopyranosy) (1,2) -beta-D-glucopyranosyl]- 20- O -[(beta-D-glucopyranosyl) (1,6) -beta-D-glucopyranosyl] -20 ( S ) protopanaxadiol)
  • Ginsenoside Rb2 3- O -[(beta-D-glucopyranosyl) (1,2) -beta-D-glucopyranosyl] -20- O -[(alpha-L-arabinofira Nosyl) (1,6) -beta-D-glucopyranosyl] -20 ( S ) protopanaxadiol (3- O -[(beta-D-glucopyranosy) (1,2) -beta-D-glucopyranosyl] -20- O -[(alpha-L-arabinopyranosyl) (1,6) -beta-D-glucopyranosyl] -20 ( S ) protopanaxadiol)
  • Ginsenoside Rc 3- O -[(beta-D-glucopyranosi) (1,2) -beta-D-glucopyranosyl] -20- O -[(alpha-L-arabinofura Nosyl) (1, 6) -beta-D-glucopyranosyl] -20 ( S ) protopanaxadiol (3- O -[(beta-D-glucopyranosy) (1,2) -beta-D-glucopyranosyl] -20- O -[(alpha-L-arabinofuranosyl) (1,6) -beta-D-glucopyranosyl] -20 ( S ) protopanaxadiol)
  • Ginsenoside Rb3 3- O -[(beta-D-glucopyranosy) (1,2) -beta-D-glucopyranosyl] -20- O -[(beta-D-xylopyranosyl) (1, 6) -Beta-D-glucopyranosyl] -20 ( S ) protopanaxadiol (3- O -[(beta-D-glucopyranosy) (1,2) -beta-D-glucopyranosyl] -20- O -[( beta-D-xylopyranosyl) (1,6) -beta-D-glucopyranosyl] -20 ( S ) protopanaxadiol)
  • Ginsenoside Re 6- O- [alpha-L-ramnopyranosyl (1, 2) -beta-D-glucopyranosyl] -20- O- (beta-D-glucopyranosyl) -20 ( S ) -protopanaxadiol (6- O- [alpha-L-rhamnopyranosyl (1,2) -beta-D-glucopyranosyl] -20- O- (beta-D-glucopyranosyl) -20 ( S ) -protopanaxatriol )
  • Ginsenoside Rg2 6- O- [alpha-L-ramnopyranosyl (1, 2) -beta-D-glucopyranosyl] -20 ( S ) -protopanaxatriol (6- O- [alpha-L-rhamnopyranosyl (1,2) -beta-D-glucopyranosyl] -20 ( S ) -protopanaxatriol)
  • Icariin 3,4 ', 5,7-Tetrahydroxy-8-prenylflavone-4'-Me ether-3-O-alpha-L-rhamnopyranoside, 7-O-beta-D-glucopyranoside
  • Camelliaside A Camperol 3-O- (2-O-galactopyranosyl-6-O-ramnopyranosyl) glycoside (Kampferol 3-O- (2-O-galactopyranoyl) -6-O-rhamnopyranosyl) glucopyranoside)
  • Camelliaside B Camperol 3-O- (2-O-gyropyranosyl-6-O-ramnopyranosyl) glycoside (Kampferol 3-O- (2-O-xylopyranosyl-) 6-O-rhamnopyranosyl) glucopyranoside)
  • Redox enzymes enzymes that catalyze redox reactions to provide energy for the living body. Oxidation of organic compounds is mostly caused by dehydrogenation.
  • oxidoreductase extract rizobium sp.
  • Cell extract obtained by crushing cells of recombinant protein expressing GIN611 or redox enzyme
  • Cloning A method of incorporating DNA fragments into recombinant DNA cloning vectors and transforming host cells using such recombinant DNA.
  • the present invention is a novel risobiium sp. GIN611 ( Rhizobium sp. GIN611) provides microorganisms or cell extracts thereof.
  • various ginsenoside mixtures were used as carbon sources to grow microorganisms, and the presence or absence of reactivity using the ginsenoside CK of the selected microorganisms as a substrate was confirmed to have high reactivity.
  • an embodiment of the present invention provides a method for sugar degradation of natural products using rizobium sp.GIN611 or a cell extract thereof as a biocatalyst.
  • the natural product may be, but is not limited to, ginsenoside glycosides, isoflavone glycosides or flavonoid glycosides.
  • an embodiment of the present invention provides a method for producing aglycone in various glycosides (glycoside) using rizobium sp.GIN611 or a cell extract thereof as a biocatalyst.
  • the glycoside may be ginsenoside glycoside, isoflavone glycoside or flavonoid glycoside, but is not limited thereto.
  • the non-saccharide may be a ginsenoside non-saccharide, isoflavone non-saccharide or flavonoid non-saccharide, but is not limited thereto.
  • the ginsenoside glycoside is not particularly limited, but for example, ginsenoside compound K (CK), ginsenoside Rh2, ginsenoside F2, ginsenoside Rb1, ginsenoside Rb2, ginsenoside Rc, ginseng Cenoside Rb3, Ginsenoside F1 and Ginsenoside Re is selected from the group consisting of, specifically, it may be a ginsenoside compound K (CK).
  • the ginsenoside non-saccharides are not particularly limited, but for example, ginsenoside PPD (S), ginsenoside compound Y, ginsenoside Mc, ginsenoside compound Mx, ginsenoside PPT (S) and ginseng It may be selected from the group consisting of the senoside Rg2, specifically, may be ginsenoside PPD (S).
  • the ginsenoside glycosides and ginsenoside non-saccharides may be shown in Table 1 below.
  • Ginsenoside Glycoside Ginsenoside non-saccharide Ginsenoside compound K Ginsenoside PPD (S) Ginsenoside Rh2 Ginsenoside PPD (S) Ginsenoside F2 Ginsenoside PPD (S) Ginsenoside Rb1 Ginsenoside PPD (S) Ginsenoside Rb2 Ginsenoside Compound Y Ginsenoside Rc Ginsenoside Mc Ginsenoside Rb3 Ginsenoside Compound Mx Ginsenoside F1 Ginsenoside PPT (S) Ginsenoside Re Ginsenoside Rg2
  • the isoflavone glycoside is not particularly limited, but may be, for example, diadzin.
  • the isoflavone non-saccharide is not particularly limited, and examples thereof include Daidzein.
  • the flavonoid glycoside is not particularly limited, and examples thereof include Icarlin, Camelliaside A or Camelliaside B.
  • the sugar decomposition method is a method of oxidizing and decomposing sugars in glycosides of natural products.
  • sugars for example, in the case of glucose oxidizes the 3-position hydroxyl group (OH) of the glucose residue to cause spontaneous glycolysis.
  • the sugar is not particularly limited, but may be selected from the group consisting of glucose, galactose, rhamnose, arabinose and xylose.
  • One embodiment of the present invention provides an oxidoreductase consisting of the amino acid sequence of SEQ ID NO: 3 or a cell extract comprising the oxidoreductase.
  • the oxidoreductase may be preferably obtained by separation and purification in lysodium sp GIN611.
  • One embodiment of the present invention provides a DNA sequence encoding the amino acid sequence of SEQ ID NO: 3 or a DNA sequence encoding the oxidoreductase.
  • the sequence is specifically SEQ ID NO: 2.
  • the DNA is preferably DNA encoding an oxidoreductase obtained by separation and purification in lysodium sp GIN611.
  • an embodiment of the present invention has a homologous activity with a sequence of SEQ ID NO: 3 of at least 60%, preferably at least 90%, more preferably at least 97%, even more preferably at least 99% Provide DNA encoding the protein.
  • the sugar may be selected from the group consisting of glucose, galactose, rhamnose, arabinose and xylose.
  • One embodiment of the present invention is a DNA sequence encoding the amino acid sequence of SEQ ID NO: 3, DNA sequence encoding the oxidoreductase consisting of the amino acid sequence of SEQ ID NO: 3 or recombinant comprising a DNA sequence consisting of SEQ ID NO: 2 Provide a DNA vector.
  • One embodiment of the present invention provides a host cell transformed with the recombinant DNA vector and a cell extract comprising the host cell.
  • One embodiment of the present invention has a homology with at least 60%, preferably at least 90%, more preferably at least 97%, even more preferably at least 99% with the sequence of SEQ ID NO. It provides an oxidoreductase and a cell extract comprising the oxidoreductase.
  • the oxidoreductase is not limited, but Agrobacterium sp. And Sphingobacterium sp. Or stenotrophomonase sp. Can be derived from.
  • One embodiment of the present invention is an oxidoreductase consisting of an amino acid sequence of SEQ ID NO: 3, a cell extract comprising an oxidoreductase consisting of an amino acid sequence of SEQ ID NO: 3, encoding an oxidoreductase consisting of an amino acid sequence of SEQ ID NO: 3
  • a host cell transformed with a recombinant DNA vector comprising DNA a cell extract comprising a host cell transformed with a recombinant DNA vector comprising a DNA encoding an oxidoreductase consisting of the amino acid sequence of SEQ ID NO: 3, SEQ ID NO: 2
  • a cell extract comprising a host cell transformed with a recombinant DNA vector comprising a DNA consisting of the sequence of SEQ ID NO: 2
  • Transformed host cell a cell extract comprising a host cell transformed with a recombinant DNA vector comprising a DNA encoding a protein having glycolytic activity with at least 60% homology with the sequence of SEQ ID NO: 3, SEQ ID NO: 3 Oxidoreductase having at least 60% homology to the sequence of and having a glycolytic activity and a cell extract of a oxidoreductase having at least 60% homology with the sequence of SEQ ID NO.
  • a method for sugar decomposition of natural products using a catalyst is provided.
  • One embodiment of the present invention is an oxidoreductase consisting of an amino acid sequence of SEQ ID NO: 3, a cell extract comprising an oxidoreductase consisting of an amino acid sequence of SEQ ID NO: 3, encoding an oxidoreductase consisting of an amino acid sequence of SEQ ID NO: 3
  • a host cell transformed with a recombinant DNA vector comprising DNA a cell extract comprising a host cell transformed with a recombinant DNA vector comprising a DNA encoding an oxidoreductase consisting of the amino acid sequence of SEQ ID NO: 3, SEQ ID NO: 2
  • a cell extract comprising a host cell transformed with a recombinant DNA vector comprising a DNA consisting of the sequence of SEQ ID NO: 2
  • a sequence of SEQ ID NO: 3 Recombinant DNA vector containing
  • the method is specifically a method for producing aglycone from various glycosides (glycoside) using the biocatalyst, more specifically in the ginsenoside glycoside, isoflavone glycoside or flavonoid glycosides using the biocatalyst Ginsenoside non-saccharide, isoflavone non-saccharide or flavonoid non-saccharide.
  • One embodiment of the present invention comprises a DNA extract encoding the oxidoreductase consisting of the cell extract of rizobium sp.GIN611, an oxidoreductase consisting of the amino acid sequence of SEQ ID NO: 3, the amino acid sequence of SEQ ID NO: 3
  • a cell extract comprising a host cell transformed with a recombinant DNA vector, a cell extract comprising a host cell transformed with a recombinant DNA vector comprising a DNA consisting of the sequence of SEQ ID NO: 2, and a sequence of SEQ ID NO: 3
  • a cell extract comprising a host cell transformed with a recombinant DNA vector containing a DNA encoding a protein having a glycolytic activity with aberrant homology or the sequence of SEQ ID NO.
  • ginsenosides are added to inhibit the expression of the enzyme. It provides a cell extract preparation, characterized in that a.
  • the present invention for the selection of soil microorganisms, the present inventors constitute a minimal medium containing a mixture of ginsenosides consisting of the composition components of Table 2 as a carbon source, by using the enzyme having activity on the ginsenoside CK from the soil Microorganisms were selected, including.
  • Table 2 below is the minimum medium component using the ginsenoside mixture as a carbon source.
  • the selection method using the minimum medium of the present invention is a simple method of selecting microorganisms according to the growth rate, so that microorganisms with low glycolytic activity are spontaneously removed in the culturing step, so that highly active microorganisms including high enzymes can be selected.
  • the microorganisms selected in the present invention are novel, and the inventors identify them as Rizobium species through the characteristics of DNA sequences encoding their 16s rRNA subsequences, and this is called Rizobium sp. It was named GIN611. In addition, it was deposited with the Korean Collection for Type Cultures (KCTC) on June 4, 2010. The accession number is KCTC11708BP.
  • Selected rizobium sp. Of the present invention.
  • the microorganism showed high activity on ginsenoside CK, and it was found that there is a glycolytic activity on various ginsenosides besides ginsenoside CK.
  • Non-saccharide PPD is produced from the reaction solution consisting of the obtained microorganism or the produced glycolytic enzyme extract, ginsenoside CK.
  • the reaction is initiated by adding the microorganism or produced enzyme extract of the present invention as a biocatalyst to the reaction solution.
  • Substrates usable in the present invention are ginsenosides Rb1, ginsenosides Rb2, ginsenosides Rb3, ginsenosides Rc, ginsenosides Rd, ginsenosides F2, and ginsenosides belonging to the PPD system in addition to ginsenosides CK.
  • Ginsenoside Re and ginsenoside F1 which are a side Rh2 and belong to PPT system.
  • isoflavones such as daidzin and flavonoids of Icarin, Camelliaside A or Camelliaside B.
  • Cells cultured in a medium consisting of yeast extract (5 g / L), peptone (10 g / L) and sodium chloride (10 g / L) are recovered by washing three times with PBS buffer (pH 7.0). The media component outside the cells was removed. The recovered cells were clouded in a buffer consisting of 5 mM 20 mM phosphate buffer, 1 mM EDTA (ethylenediaminetetraacetic acid), 1 mM phenylmethanesulfonylfluoride (PMSF), and 1 mM Dithiothretiol (DTT) at 5 times the cell volume. Thereafter, the cells were disrupted using an ultrasonic crusher, centrifuged at 13,000 rpm for 30 minutes, and the supernatant was recovered to produce a final glycolytic enzyme extract.
  • a medium consisting of yeast extract (5 g / L), peptone (10 g / L) and sodium chloride (10 g / L) are recovered by washing three times with PBS
  • M9 / ginsenoside medium Cells cultured using the liquid minimal medium shown in Table 2 (hereinafter referred to as M9 / ginsenoside medium) were washed three times with PBS buffer to remove the recovered media components. The recovered cells were clouded in a 5-fold volume of crushing solution, crushed by using an ultrasonic crusher, centrifuged at 13,000 rpm for 30 minutes, and then the supernatant was recovered to contain glycolytic enzymes expressed in minimal medium. Cell extracts were produced.
  • Example 3 After quantifying the protein amount of the cell extract produced in Example 2 and Example 3, the same amount of protein was used to compare the reactivity to ginsenoside CK. As a result, it was confirmed that the cell extract produced in Example 3 showed higher reactivity than the cell extract produced in Example 2. This is shown in FIG. After the reaction using the same amount of protein, the reactivity was compared according to the amount of each protein. As shown in the results, for the protein prepared from the cells cultured in the complete medium of Example 2, ginsenoside CK was completely converted to PPD (S) when using more than 500 proteins, whereas the M9 / ginsenoside medium of Example 3 was used.
  • Proteins prepared from cells cultured in were found to convert ginsenoside CK to PPD (S) at 100 or higher.
  • the protein expression difference between the two extracts is shown in FIG. 6 by comparing with sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE).
  • SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis
  • the arrows indicated in FIG. 6 indicate proteins with different amounts of expression when the degree of protein expression of the enzyme extracts in Example 2 and Example 3 is compared.
  • New rizobiium sp. Microorganisms were cultured using the liquid restriction medium of Table 2 to which 10L ginsenoside was added to purify the enzyme carrying out the reaction shown in FIG. 3 from GIN611. Enzyme extract was prepared in the same manner as in Example 2 cultured microorganisms. The prepared enzyme extract was prepared via 60-70% saturated ammonium sulfate precipitation fractionation. The prepared protein was separated and purified using FPLC and various columns. The separated and purified protein was finally confirmed final reactivity using native-gel.
  • the sequence of the N-terminal amino acid of the oxidoreductase obtained by the separation and purification in Example 5 was transferred to the PVDF membrane after 12% SDS-PAGE electrophoresis (Bio-Rad), followed by a procedure 491 sequencer (Applied) using Edman analysis. Bio system, caliph).
  • sequence the internal peptide the sequence of the peptide fragment obtained after the treatment with sequencing trypsin (promega) was analyzed using LTQ-orbitrap mass spectrometer, and then the sequence was determined using PEAKS program.
  • Phenol-chloroform mixture (50:50) in the same amount as the amount of the solution was added and mixed for 30 minutes, followed by centrifugation at 4 °C, 4,000 rpm for 10 minutes to obtain a supernatant.
  • 0.5 times of the obtained solution was added to the chloroform and slowly mixed, centrifuged at 4 °C, 4,000 rpm for 10 minutes, and the supernatant was obtained and then reacted at 37 °C for 1 hour after RNase treatment to reach the amount of 50 / mL.
  • Primers were prepared from the N-terminal amino acid sequence and the internal sequence obtained in Example 7, and the genomic DNA isolated through the procedure of Example 8 was used as a template to obtain a partial DNA fragment of the oxidoreductase.
  • a primer specifically attached to the obtained DAN fragment was prepared, and the remaining sequences were obtained by using an inverse PCR method.
  • the template used for the inverse PCR was a DNA library that was self-ligated by digesting genomic DNA fragments with Hind III restriction enzymes followed by ligation.
  • the gene sequence of the obtained oxidoreductase was digested with BamHI / SalI restriction enzymes, and the fractions were ligated to pETDuet-1 (Novazen) to generate recombinant plasmids, which were transformed into Rosetta-gami2 (DE3), an expression E. coli. I was.
  • the obtained transformed E. coli was cultured in a medium containing ampicillin, and when the cell suspension became 0.3 to 0.7, IPTG was added and the expression of the enzyme was induced by further incubating for 15 hours at 20 ° C.
  • Agrobacterium sp. Sphingobacterium sp. Or stenotrophomonase sp.
  • An enzyme with at least 60% amino acid similarity with the derived SEQ ID NO: 3 was cloned to investigate the glucose degradation reactivity to ginsenosides. Enzymes derived from each microorganism were found to degrade glucose through oxidation to glucose residues of ginsenosides.
  • Example 11 The enzyme induced expression in Example 11 was prepared by the enzyme preparation method of Example 2, and then the non-saccharide production activity was measured using ginsenoside CK as a substrate.
  • the same amount of ethyl acetate was added, followed by extraction.
  • the ethyl acetate layer was dried and dissolved in ethanol, and the activity was measured using a Maldi mass spectrometer.
  • Rizobiium sp An enzyme derived from GIN611-derived redox enzyme was reacted according to the above reaction method using flavonoid-based Icarlin, Camelliaside A and Camelliaside B as substrates. As a result of measuring the activity using a mass spectrometer, the oxidation reaction and the glycolysis activity of galactose attached to camelliaside A were confirmed. In addition, the oxidation and glycolytic activity of xylose attached to camelliaside B was confirmed.
  • gaacacatca ccgattacca gaatgcagac aaggaagcgt gggactaccc tcaccgcaat 180

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Molecular Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명은 신규 리조비움 sp. GIN611(Rhizobiumsp.GIN611)KCTC11708BP또는 그의 세포 추출물, 당 분해 활성을 보이는 신규 산화환원 효소, 이를 암호화하는 유전자 및 재조합 벡터 단백질, 또는 재조합 단백질을 암호화하는 발현벡터를 포함하는 재조합 균주 등을 제공하고, 이들을 생촉매로 사용하여 천연물을 당 분해하는 방법을 제공한다. 또한, 이들을 이용하여 다양한 천연물의 비당체를 생산하는 방법을 제공한다. 본 발명의 신규 미생물에서 분리한 신규한 효소는 글루코시데이즈(glucosidase)군에 속하지 않고 산화환원효소 군에 속하는 효소로서 천연물의 당 분해 활성을 갖는다. 이 신규한 산화환원효소는 천연물 배당체에서 당을 산화시킴으로서 다양한 비당체를 생산할 수 있게 한다.

Description

신규 토양 미생물과 상기 토양 미생물로부터 분리된 신규한 산화환원효소, 상기 산화환원 효소를 암호화하는 유전자 및 이들을 이용한 비당체의 생산방법
발명은 토양에서 분리한 신규 미생물과 그 미생물에서 분리한 산화환원효소 및 이들을 이용하여 다양한 식물 배당체의 당 분해 반응 및 다양한 비당체를 생산하는 방법에 관한 발명이다.
인삼(Panax ginseng C.A. Meyer)은 한국, 중국, 일본 등 아시아 국가에서 전통적으로 각종 질병의 치료 및 예방에 사용되어온 약재 중의 하나이다. 진세노사이드라 불리는 인삼 사포닌은 이러한 인삼의 주요 활성 성분으로 항노화, 항염증, 중추 신경계와 심혈관계 및 면역계에서 항산화 활성, 항 당뇨 활성 및 항종양 활성 등 다양한 생리 활성을 가지는 것으로 알려져 있다.
현재까지 약 40여종의 진세노사이드가 분리 동정 되었으며, 담마란(dammarane)구조인 비당체를 포함하는 글리코사이드(glycoside)인 진세노사이드에는 프로토파낙사디올(protopanaxadiol)계, 프로토파낙사트리올(protopanaxatriol)계로 크게 나눌 수 있다. 프로토파낙사디올계 사포닌에 속하는 진세노사이드는 주로 Rb1, Rb2, Rc, Rd이 대부분을 차지하며, 프로토파낙사트리올계 사포닌에 속하는 진세노사이드는 주로 Re와 Rg1이 대부분이다(도1, 도2 참조).
진세노사이드는 섭취 후 사람의 장내 미생물에 의해 대사되어 그 대사산물이 다양한 생리활성을 가지는 것으로 알려져 있다. 예를 들어, 대표적인 프로토파낙사다이올계 사포닌인 Rb1, Rb2, Rc는 사람의 장내세균에 의해 CK로 대사되고, 프로토파낙사트라이올계 사포닌인 Re와 Rg1은 장내세균에 의해 Rh1이나 혹은 F1으로 대사되어 다양한 생리 활성을 나타낸다. CK의 경우는 종양의 침입을 막고 종양 형성을 예방하는 항전이 또는 항암 효과를 유도한다고 알려져 있으며, 비당체인 PPD(S)는 그것에 당이 붙어있는 Rh2 에 비해 생리활성효과가 높다는 연구가 있다.
따라서 진세노사이드를 당이 감소된 대사산물 형태로 전환시키려는 연구가 진행되어 왔다. 효소적 방법 이외에 약산 가수분해 반응, 알칼리 분해 등의 방법이 보고되어 있으나 이러한 방법은 에피머화(epimerization), 수화(hydration), 히드록실화(hydroxylation) 등과 같은 여러 가지 부반응을 야기시키므로, 최근에는 효소와 장내 미생물 등을 이용한 활성 진세노사이드로 전환하는 방법들이 연구되고 있다. 그러나 보고된 일부 미생물들의 경우 대부분 장내 미생물로서 혐기성 미생물인 경우가 많기 때문에 산업적 이용에 한계가 있다. 또한 대부분의 효소가 비당체로 전환하는 활성이 거의 없고, 각각의 특이성을 갖기 때문에 특정 진세노사이드 생산에만 응용될 수 있다는 한계를 가지고 있다.
현재까지 보고된 바에 의하면 진세노사이드 Rb1에서부터 장내세균에 의해 대산된 산물인 CK까지의 생변환에 대한 연구는 많이 수행되었으나, 비당체에 대한 생산 연구는 부족하다. 또한 사포닌 골격에 하나의 당을 가지고 있는 진세노사이드는 미생물 효소에 의해 더 이상 분해되지 않는 것으로 많이 보고되어 있다. 그러나 비당체 형태의 진세노사이드는 혈류를 통해 더 쉽게 흡수되어 활성형의 화합물로 작용한다고 알려져 있다. 또한 다양한 진세노사이드의 골격인 비당체의 생산을 통해 원하는 형태의 진세노사이드만을 특정하게 생산할 수 있는 기반 기술이 될 수 있다. 따라서 진세노사이드의 비당체 생산에 관여하는 효소를 탐색할 필요가 있었다.
따라서, 본 발명은 상기 문제점을 해결하기 위해, 신규 미생물과 그 미생물에서 분리한 당 분해 활성을 보이는 신규 산화환원효소 및 이를 암호화하는 유전자 및 재조합 단백질을 이용한 다양한 진세노사이드의 비당체, 이소플라본 비당체 또는 플라보노이드 비당체의 생산 방법을 제공한다.
본 발명은 신규 리조비움 sp. GIN611(Rhizobiumsp.GIN611)KCTC11708BP또는 그의 세포 추출물을 제공한다.
또한, 본 발명은 리조비움 sp.GIN611 또는 그의 세포 추출물을 생촉매로 사용하는 천연물의 당 분해 방법을 제공한다.
또한, 본 발명은 리조비움 sp.GIN611 또는 그의 세포 추출물을 생촉매로 사용하여 다양한 배당체(glycoside)에서 비당체(aglycone)를 생산하는 방법을 제공한다.
또한, 본 발명은 서열번호 3의 아미노산 서열로 이루어진 산화환원효소 또는 그를 포함하는 세포 추출물을 제공한다.
또한, 본 발명은 서열번호 3의 아미노산 서열로 이루어진 산화환원효소를 암호화하는 DNA, 서열번호 2의 서열로 이루어지는 DNA, 서열번호 2의 서열로 이루어지는 DNA를 포함하는 재조합 DNA벡터, 서열번호 2의 서열로 이루어지는 DNA를 포함하는 재조합 DNA 벡터로 형질전환된 숙주세포 또는 서열번호 2의 서열로 이루어지는 DNA를 포함하는 재조합 DNA 벡터로 형질전환된 숙주세포를 포함하는 세포 추출물을 제공한다.
또한, 본 발명은 서열번호 3의 서열과 60% 이상 상동성을 가지고 당 분해 활성을 가지는 산화환원효소 또는 상기 산화환원효소를 포함하는 세포 추출물을 제공한다.
또한, 본 발명은 서열번호 3의 아미노산 서열로 이루어진 산화환원효소, 서열번호 3의 아미노산 서열로 이루어진 산화환원효소를 포함하는 세포 추출물, 서열번호 3의 아미노산 서열로 이루어진 산화환원효소를 암호화하는 DNA를 포함하는 재조합 DNA벡터로 형질전환된 숙주세포, 서열번호 3의 아미노산 서열로 이루어진 산화환원효소를 암호화하는 DNA를 포함하는 재조합 DNA벡터로 형질전환된 숙주세포를 포함하는 세포 추출물, 서열번호 2의 서열로 이루어진 DNA를 포함하는 재조합 DNA벡터로 형질전환된 숙주세포, 서열번호 2의 서열로 이루어진 DNA를 포함하는 재조합 DNA벡터로 형질전환된 숙주세포를 포함하는 세포 추출물, 서열번호 3의 서열과 60% 이상 상동성을 가지고 당분해 활성을 가지는 단백질을 암호화하는 DNA를 포함하는 재조합 DNA벡터로 형질전환된 숙주세포, 서열번호 3의 서열과 60% 이상 상동성을 가지고 당분해 활성을 가지는 단백질을 암호화하는 DNA를 포함하는 재조합 DNA벡터로 형질전환된 숙주세포를 포함하는 세포 추출물, 서열번호 3의 서열과 60% 이상 상동성을 가지고 당 분해 활성을 가지는 산화환원효소 및 서열번호 3의 서열과 60% 이상 상동성을 가지고 당 분해 활성을 가지는 산화환원효소 세포 추출물로 이루어진 군에서 선택되는 생촉매를 사용하는 천연물의 당 분해 방법을 제공한다.
또한, 본 발명은 서열번호 3의 아미노산 서열로 이루어진 산화환원효소, 서열번호 3의 아미노산 서열로 이루어진 산화환원효소를 포함하는 세포 추출물, 서열번호 3의 아미노산 서열로 이루어진 산화환원효소를 암호화하는 DNA를 포함하는 재조합 DNA벡터로 형질전환된 숙주세포, 서열번호 3의 아미노산 서열로 이루어진 산화환원효소를 암호화하는 DNA를 포함하는 재조합 DNA벡터로 형질전환된 숙주세포를 포함하는 세포 추출물, 서열번호 2의 서열로 이루어진 DNA를 포함하는 재조합 DNA벡터로 형질전환된 숙주세포, 서열번호 2의 서열로 이루어진 DNA를 포함하는 재조합 DNA벡터로 형질전환된 숙주세포를 포함하는 세포 추출물, 서열번호 3의 서열과 60% 이상 상동성을 가지고 당 분해 활성을 가지는 단백질을 암호화하는 DNA를 포함하는 재조합 DNA벡터로 형질전환된 숙주세포, 서열번호 3의 서열과 60% 이상 상동성을 가지고 당 분해 활성을 가지는 단백질을 암호화하는 DNA를 포함하는 재조합 DNA벡터로 형질전환된 숙주세포를 포함하는 세포 추출물, 서열번호 3의 서열과 60% 이상 상동성을 가지고 당 분해 활성을 가지는 산화환원효소 및 서열번호 3의 서열과 60% 이상 상동성을 가지고 당 분해 활성을 가지는 산화환원효소 세포 추출물로 이루어진 군에서 선택되는 생촉매를 사용하여 다양한 배당체(glycoside)에서 비당체(aglycone)를 생산하는 방법을 제공한다.
또한, 본 발명은 리조비움 sp.GIN611의 세포 추출물, 서열번호 3의 아미노산 서열로 이루어진 산화환원효소를 포함하는 세포 추출물, 서열번호 3의 아미노산 서열로 이루어진 산화환원효소를 암호화하는 DNA를 포함하는 재조합 DNA 벡터로 형질전환된 숙주세포를 포함하는 세포 추출물, 서열번호 2의 서열로 이루어진 DNA를 포함하는 재조합 DNA 벡터로 형질전환된 숙주세포를 포함하는 세포 추출물 또는 서열번호 3의 서열과 60% 이상 상동성을 가지고 당 분해 활성을 가지는 산화환원효소를 포함하는 세포 추출물을 제조하는 방법이고, 진세노사이드를 첨가하여 효소 발현을 유도하는 것을 특징으로 하는 세포 추출물 제조 방법을 제공한다.
일반적으로, 진세노사이드 당 분해 효소는 글루코시데이즈(glucosidase) 군에 속하는 효소로 알려져 있다. 본 발명에서는 기존에 알려진 글루코시데이즈 군에 속하지 않는 산화환원효소 군에 속하는 효소가 진세노사이드의 당 분해 활성을 갖는 것을 확인하였다. 이 신규한 산화환원효소는 기존의 당 분해 관련 효소군의 서열과 완전히 상이하고 산화환원효소 군과 서열 유사도가 있으며, 천연물 배당체에서 당을 산화시킴으로서 자발적인 당 분해를 유도하여 당을 분해하는 기능을 한다.
도 1은 프로토파낙사디올(protopanaxadiol: PPD)계 진세노사이드를 나타낸 것이다.
도 2는 프로토파낙사트리올(protopanaxatriol: PPT)계 진세노사이드를 나타낸 것이다.
도 3 은 진세노사이드 Compound K(CK)로부터 당 분해를 통해 비당체 PPD(S)를 생산하는 목적 반응을 나타낸 것이다.
도 4 는 신규한 산화환원효소를 통한 반응성 분석 결과이다. 별표는 산화된 CK를 삼각형은 PPD(S)를 나타낸다. 선 3은 3시간 반응 결과이며, 4는 12시간 반응 결과이다. 시간에 따라 기질인 CK는 감소하고, 중간체에 해당하는 산화된 CK는 증가하다가 감소하는 경향을 보이며, 최종 산물인 PPD(S)는 시간에 따라 지속적으로 증가하는 것을 나타낸 것이다.
도 5는 도 4에서 분석된 산화된 CK의 질량 분석 결과를 나타낸 것이다.
도 6은 완전 배지와 M9/진세노사이드 배지에서 발현되는 단백질을 비교한 SDS 폴리아크릴 아마이드 젤 결과를 나타낸 것이다.
도 7은 완전 배지와 M9/진세노사이드 배지에서 배양된 셀로부터 제조된 단백질을 이용하여 반응성을 비교한 결과를 나타낸 것이다.
도 8은 진세노사이드를 탄소원으로 하여 자라는 신규 토양 미생물 리조비움 sp. GIN611 의 16S DNA 서열을 나타낸 것이다.
도 9는 리조비움 sp. GIN611 로부터 생산된 산화환원효소의 아미노산 서열 및 이를 암호화 하는 유전자 서열을 나타낸 것이다.
도 10은 신규 산화환원효소의 반응 메카니즘을 나타낸 것이다.
도 11은 신규 산화환원효소의 다양한 진세노사이드 및 이소플라본에 대한 반응성 결과로서 본 효소가 글루코오스에 특이적으로 반응성이 있음을 나타낸 것이다.
도 12은 카멜리아사이드 A 와 카멜리아사이드 B 혼합물의 당분해 활성을 측정한 결과를 나타낸 것이다.
도 13는 이카린의 당분해 활성을 측정한 결과를 나타낸 것이다.
본 발명에서 사용되는 용어는 당업계에서 통상적으로 사용되는 것으로 당업자라면 누구나 이해할 수 있을 것이나. 본 명세서에서 간략히 설명하면 다음과 같다.
(1) 진세노사이드: 인삼사포닌으로 인삼의 활성 성분
(2) 컴파운드 K(Compound K: CK): 20-O- -D-글루코피라노실(glucopyranosyl)-20(S)-프로토파낙사디올(protopanaxadiol)
(3) 진세노사이드 Rh2: 3-O-베타-D-글리코피라노실-20(S)-프로토파낙사디올(3-O-beta-D-glycopyranosyl-20(S)-protopanaxadiol)
(4) 진세노사이드 F2: 3-O-(베타-D-글루코피라노시)-20-O-(베타-D-글루코피라노실)-20(S)프로토파낙사디올(3-O-(beta-D-glucopyranosy)-20-O-(beta-D-glucopyranosyl)-20(S)protopanaxadiol)
(5) 진세노사이드 Rb1: 3-O-[(베타-D-글루코피라노시)(1,2)-베타-D-글루코피라노실]-20-O-[(베타-D-글루코피라노실)(1,6)-베타-D-글루코피라노실]-20(S)프로코파낙사디올(3-O-[(beta-D-glucopyranosy)(1,2)-beta-D-glucopyranosyl]-20-O-[(beta-D-glucopyranosyl)(1,6)-beta-D-glucopyranosyl]-20(S)protopanaxadiol)
(6) 진세노사이드 Rb2: 3-O-[(베타-D-글루코피라노시)(1,2)-베타-D-글루코피라노실]-20-O-[(알파-L-아라비노피라노실)(1,6)-베타-D-글루코피라노실]-20(S)프로토파낙사디올(3-O-[(beta-D-glucopyranosy)(1,2)-beta-D-glucopyranosyl]-20-O-[(alpha-L-arabinopyranosyl)(1,6)-beta-D-glucopyranosyl]-20(S)protopanaxadiol)
(7) 진세노사이드 Rc: 3-O-[(베타-D-글루코피라노시)(1,2)-베타-D-글루코피라노실] -20-O-[(알파-L-아라비노푸라노실)(1, 6)-베타-D-글루코피라노실]-20(S)프로토파낙사디올(3-O-[(beta-D-glucopyranosy)(1,2)-beta-D-glucopyranosyl]-20-O-[(alpha-L-arabinofuranosyl)(1,6)-beta-D-glucopyranosyl]-20(S)protopanaxadiol)
(8) 진세노사이드 Rb3: 3-O-[(베타-D-glucopyranosy)(1,2)-베타-D-glucopyranosyl]-20-O-[(베타-D-xylopyranosyl) (1, 6)-베타-D-글루코피라노실]-20(S)프로토파낙사디올(3-O-[(beta-D-glucopyranosy)(1,2)-beta-D-glucopyranosyl]-20-O-[(beta-D-xylopyranosyl)(1,6)-beta-D-glucopyranosyl]-20(S)protopanaxadiol)
(9) 진세노사이드 F1: 20-O-베타-D-글루코피라노실-20(S)-프로토파낙사디올(20-O-beta-D-glucopyranosyl-20(S)-protopanaxadiol)
(10) 진세노사이드 Re: 6-O-[알파-L-람노피라노실 (1, 2)-베타-D-글루코피라노실]-20-O-(베타-D-글루코피라노실)-20(S)-프로토파낙사디올(6-O-[alpha-L-rhamnopyranosyl(1,2)-beta-D-glucopyranosyl]-20-O-(beta-D-glucopyranosyl)-20(S)-protopanaxatriol)
(11) 다이드진(daidzin): 다이드제인 7-O-베타-D-글루코시드(daidzein 7-O-beta-D-glucoside)
(12) PPD(S): 20(S)-프로토파낙사디올(protopanaxadiol)
(13) 컴파운드 Y: 20-O-[(알파-L-아라비노피라노실) (1, 6)-베타-D-글루코피라노실]-20(S) 프로토파낙사디올(20-O-[(alpha-L-arabinopyranosyl)(1,6)-beta-D-glucopyranosyl]-20(S)protopanaxadiol)
(14) 컴파운드 Mc: 20-O-[(알파-L-아라비노푸라노실) (1, 6)-베타-D-글루코피라노실]-20(S)프로토파낙사디올(20-O-[(alpha-L-arabinofuranosyl)(1,6)-beta-D-glucopyranosyl]-20(S)protopanaxadiol)
(15) 컴파운드 Mx: 20-O-[(베타-D-자일로피라노실)(1, 6)-베타-D-글루코피라노실]-20(S)프로토파낙사디올(20-O-[(beta-D-xylopyranosyl)(1,6)-beta-D-glucopyranosyl]-20(S)protopanaxadiol)
(16) PPT(S) : 20(S)-프로토파낙사트리올(protopanaxatriol)
(17) 진세노사이드 Rg2: 6-O-[알파-L-람노피라노실(1, 2)-베타-D-글루코피라노실]-20(S)-프로토파낙사트리올(6-O-[alpha-L-rhamnopyranosyl(1,2)-beta-D-glucopyranosyl]-20(S)-protopanaxatriol)
(18) 다이드제인(Daidzein): 7-히드록시-3-(4-히드록시페닐) 크로멘-4-온 (7-hydroxy-3-(4-hydroxyphenyl) chromen-4-one)
(19) 이카린(Icariin):3,4',5,7-Tetrahydroxy-8-prenylflavone-4'-Me ether-3-O-alpha-L-rhamnopyranoside, 7-O-beta-D-glucopyranoside
(20) 카멜리아사이드 A(Camelliaside A): 캄페롤 3-O-(2-O-갈락토피라노실-6-O-람노피라노실)글라이코사이드(Kampferol 3-O-(2-O-galactopyranoyl-6-O-rhamnopyranosyl)glucopyranoside)
(21) 카멜리아사이드 B(Camelliaside B): 캄페롤 3-O-(2-O-자이로피라노실-6-O-람노피라노실)글라이코사이드(Kampferol 3-O-(2-O-xylopyranosyl-6-O-rhamnopyranosyl)glucopyranoside)
(22) 글라이콘(Glycone): 비당체에 결합된 다양한 당 분자.
(23) 전세포 반응: 세포를 파쇄하거나 효소를 분리정제 하지 않고 온전한 세포 전체를 이용한 반응
(24) 산화환원효소: 생체에 필요한 에너지를 공급하기 위해 산화 환원반응을 촉매하는 효소. 유기화합물의 산화는 대부분 탈수소에 의해 일어난다.
(25) 산화환원효소 추출물: 산화환원 효소가 포함된 리조비움 sp. GIN611 또는 산화환원 효소를 발현하는 재조합 단백질의 세포를 파쇄하여 얻은 세포 추출액
(22) MALDI-TOF 질량분석기: Matrix Assisted Laser Desorption/ Ionization(레이저 보조 탈착/이온화)-Time of flight
(26) HPLC: 고성능 액체크로마토그래피(High Performance Liquid Chromatography)
(27) PCR: 중합 효소 연쇄 반응 - DNA의 어떤 영역을 특이적으로 증폭시키는 방법
(28) ORF: 오픈리딩 프레임(Open Reading Frame), initiation codon부터 stop codon까지의 배열을 말한다
(29) 클로닝: DNA 절편을 재조합 DNA 클로닝 벡터에 혼입시키고 이러한 재조합 DNA를 사용하는 숙주세포를 형질 전환시키는 방법
(30) bp: 염기쌍
본 발명은 신규 리조비움 sp. GIN611(Rhizobiumsp.GIN611)미생물 또는 그의 세포 추출물을 제공한다. 본 발명에서는 다양한 진세노사이드 혼합물을 탄소원으로 사용하여 자라는 미생물을 선별하였고, 선별된 미생물의 진세노사이드 CK를 기질로 사용한 반응성 유무를 관찰한 결과 높은 반응성을 갖는 것을 확인하였다.
또한, 본 발명의 일 실시예는 리조비움 sp.GIN611 또는 그의 세포 추출물을 생촉매로 사용하는 천연물의 당 분해 방법을 제공한다.
상기 천연물은 진세노사이드 배당체, 이소플라본 배당체 또는 플라보노이드 배당체일 수 있고, 이에 제한되지는 않는다.
또한, 본 발명의 일 실시예는 리조비움 sp.GIN611 또는 그의 세포 추출물을 생촉매로 사용하여 다양한 배당체(glycoside)에서 비당체(aglycone)를 생산하는 방법을 제공한다.
상기 배당체는 진세노사이드 배당체, 이소플라본 배당체 또는 플라보노이드 배당체일 수 있고, 이에 제한되지는 않는다.
상기 비당체는 진세노사이드 비당체, 이소플라본 비당체 또는 플라보노이드 비당체일 수 있고, 이에 제한되지는 않는다.
상기 진세노사이드 배당체는 특별히 제한되지는 않으나, 예를 들어 진세노사이드 컴파운드 K(CK), 진세노사이드 Rh2, 진세노사이드 F2, 진세노사이드 Rb1, 진세노사이드 Rb2, 진세노사이드 Rc, 진세노사이드 Rb3, 진세노사이드 F1 및 진세노사이드 Re으로 이루어진 군에서 선택된 것을 들 수 있고, 구체적으로 진세노사이드 컴파운드 K(CK)일 수 있다.
상기 진세노사이드 비당체는 특별히 제한되지는 않으나, 예를 들어 진세노사이드 PPD(S), 진세노사이드 컴파운드 Y, 진세노사이드 Mc, 진세노사이드 컴파운드 Mx, 진세노사이드 PPT(S) 및 진세노사이드 Rg2 로 이루어진 군에서 선택된 것을 들 수 있고, 구체적으로 진세노사이드 PPD(S)일 수 있다.
상기 진세노사이드 배당체와 진세노사이드 비당체는 하기 표 1에 나타낼 수 있다.
표 1
진세노사이드 배당체 진세노사이드 비당체
진세노사이드 컴파운드 K(CK) 진세노사이드 PPD(S)
진세노사이드 Rh2 진세노사이드 PPD(S)
진세노사이드 F2 진세노사이드 PPD(S)
진세노사이드 Rb1 진세노사이드 PPD(S)
진세노사이드 Rb2 진세노사이드 컴파운드 Y
진세노사이드 Rc 진세노사이드 Mc
진세노사이드 Rb3 진세노사이드 컴파운드 Mx
진세노사이드 F1 진세노사이드 PPT(S)
진세노사이드 Re 진세노사이드 Rg2
상기 이소플라본 배당체는 특별히 제한되지는 않으나, 예를 들어 다이드진(daidzin)을 들 수 있다.
상기 이소플라본 비당체는 특별히 제한되지는 않으나, 예를 들어 다이드제인(Daidzein)을 들 수 있다.
상기 플라보노이드 배당체는 특별히 제한되지는 않으나, 예를 들어 이카린(Icarlin), 카멜리아사이드 A (Camelliaside A) 또는 카멜리아사이드 B(Camelliaside B)를 들 수 있다.
또한, 상기 당 분해 방법은 천연물의 배당체에서 당을 산화시켜서 분해하는 방법이다. 예를 들어, 글루코오스인 경우 글루코오스 잔기의 3번 위치 하이드록실기(OH)를 산화시켜서 자발적으로 당 분해가 일어나게 한다.
상기 당은 특별히 제한되지는 않으나, 글루코오스, 갈락토오스, 람노스, 아라비노스 및 자일로스로 이루어진 군에서 선택되는 것일 수 있다.
본 발명의 일 실시예는 서열번호 3의 아미노산 서열로 이루어진 산화환원효소 또는 상기 산화환원효소를 포함하는 세포 추출물을 제공한다. 상기 산화환원효소는 바람직하게는 리조비움 sp GIN611 에서 분리 정제하여 얻은 것일 수 있다.
본 발명의 일 실시예는 서열번호 3의 아미노산 서열을 암호화하는 DNA서열 또는 상기 산화환원효소를 암호화하는 DNA 서열을 제공한다. 상기 서열은 구체적으로 서열번호 2이다. 상기 DNA는 바람직하게는 리조비움 sp GIN611 에서 분리 정제하여 얻은 산화환원효소를 암호화하는 DNA이다.
또한, 본 발명의 일 실시예는 서열번호 3의 서열과 60% 이상, 바람직하게는 90%이상, 더욱 바람직하게는 97% 이상, 더욱더 바람직하게는 99% 이상 상동성을 가지고 당 분해 활성을 가지는 단백질을 암호화하는 DNA를 제공한다. 이때, 당은글루코오스, 갈락토오스, 람노스, 아라비노스 및 자일로스로 이루어진 군에서 선택되는 것일 수 있다.
본 발명의 일 실시예는 상기 서열번호 3의 아미노산 서열을 암호화하는 DNA서열, 상기 서열번호 3의 아미노산 서열로 이루어진 산화환원효소를 암호화하는 DNA 서열 또는 상기 서열번호 2로 이루어진 DNA서열을 포함하는 재조합 DNA벡터를 제공한다.
본 발명의 일 실시예는 상기 재조합 DNA 벡터로 형질전환된 숙주세포 및 상기 숙주세포를 포함하는 세포 추출물을 제공한다.
본 발명의 일 실시예는 서열번호 3의 서열과 60% 이상, 바람직하게는 90%이상, 더욱 바람직하게는 97% 이상, 더욱더 바람직하게는 99% 이상 상동성을 가지고 천연물의 당 분해 활성을 가지는 산화환원효소 및 상기 산화환원효소를 포함하는 세포 추출물을 제공한다.
본 발명에서 상기 산화환원효소는 제한되지는 않으나, 아그로박테리움(Agrobacterium) sp. 와 스핑고박테리움(Sphingobacterium) sp. 또는 스테노트로모나제(Stenotrophomonase) sp. 에서 유래할 수 있다.
본 발명의 일 실시예는 서열번호 3의 아미노산 서열로 이루어진 산화환원효소, 서열번호 3의 아미노산 서열로 이루어진 산화환원효소를 포함하는 세포 추출물, 서열번호 3의 아미노산 서열로 이루어진 산화환원효소를 암호화하는 DNA를 포함하는 재조합 DNA벡터로 형질전환된 숙주세포, 서열번호 3의 아미노산 서열로 이루어진 산화환원효소를 암호화하는 DNA를 포함하는 재조합 DNA벡터로 형질전환된 숙주세포를 포함하는 세포 추출물, 서열번호 2의 서열로 이루어진 DNA를 포함하는 재조합 DNA벡터로 형질전환된 숙주세포, 서열번호 2의 서열로 이루어진 DNA를 포함하는 재조합 DNA벡터로 형질전환된 숙주세포를 포함하는 세포 추출물, 서열번호 3의 서열과 60% 이상 상동성을 가지고 당분해 활성을 가지는 단백질을 암호화하는 DNA를 포함하는 재조합 DNA벡터로 형질전환된 숙주세포, 서열번호 3의 서열과 60% 이상 상동성을 가지고 당분해 활성을 가지는 단백질을 암호화하는 DNA를 포함하는 재조합 DNA벡터로 형질전환된 숙주세포를 포함하는 세포 추출물, 서열번호 3의 서열과 60% 이상 상동성을 가지고 당 분해 활성을 가지는 산화환원효소 및 서열번호 3의 서열과 60% 이상 상동성을 가지고 당 분해 활성을 가지는 산화환원효소의 세포 추출물로 이루어진 군에서 선택되는 생촉매를 사용하는 천연물의 당 분해 방법을 제공한다.
본 발명의 일 실시예는 서열번호 3의 아미노산 서열로 이루어진 산화환원효소, 서열번호 3의 아미노산 서열로 이루어진 산화환원효소를 포함하는 세포 추출물, 서열번호 3의 아미노산 서열로 이루어진 산화환원효소를 암호화하는 DNA를 포함하는 재조합 DNA벡터로 형질전환된 숙주세포, 서열번호 3의 아미노산 서열로 이루어진 산화환원효소를 암호화하는 DNA를 포함하는 재조합 DNA벡터로 형질전환된 숙주세포를 포함하는 세포 추출물, 서열번호 2의 서열로 이루어진 DNA를 포함하는 재조합 DNA벡터로 형질전환된 숙주세포, 서열번호 2의 서열로 이루어진 DNA를 포함하는 재조합 DNA벡터로 형질전환된 숙주세포를 포함하는 세포 추출물, 서열번호 3의 서열과 60% 이상 상동성을 가지고 당 분해 활성을 가지는 단백질을 암호화하는 DNA를 포함하는 재조합 DNA벡터로 형질전환된 숙주세포, 서열번호 3의 서열과 60% 이상 상동성을 가지고 당 분해 활성을 가지는 단백질을 암호화하는 DNA를 포함하는 재조합 DNA벡터로 형질전환된 숙주세포를 포함하는 세포 추출물, 서열번호 3의 서열과 60% 이상 상동성을 가지고 당 분해 활성을 가지는 산화환원효소 및 서열번호 3의 서열과 60% 이상 상동성을 가지고 당 분해 활성을 가지는 산화환원효소의 세포 추출물로 이루어진 군에서 선택되는 생촉매를 사용하여 다양한 천연물의 비당체를 생산하는 방법을 제공한다. 상기 방법은 구체적으로, 상기 생촉매를 사용하여 다양한 배당체(glycoside)에서 비당체(aglycone)를 생산하는 방법이고, 더욱 구체적으로 상기 생촉매를 사용하여 진세노사이드 배당체, 이소플라본 배당체 또는 플라보노이드 배당체에서 진세노사이드 비당체, 이소플라본 비당체 또는 플라보노이드 비당체를 생산하는 방법이다.
본 발명의 일 실시예는 리조비움 sp.GIN611의 세포 추출물, 서열번호 3의 아미노산 서열로 이루어진 산화환원효소를 포함하는 세포 추출물, 서열번호 3의 아미노산 서열로 이루어진 산화환원효소를 암호화하는 DNA를 포함하는 재조합 DNA 벡터로 형질전환된 숙주세포를 포함하는 세포 추출물, 서열번호 2의 서열로 이루어진 DNA를 포함하는 재조합 DNA벡터로 형질전환된 숙주세포를 포함하는 세포 추출물, 서열번호 3의 서열과 60% 이상 상동성을 가지고 당 분해 활성을 가지는 단백질을 암호화하는 DNA를 포함하는 재조합 DNA벡터로 형질전환된 숙주세포를 포함하는 세포 추출물 또는 서열번호 3의 서열과 60% 이상 상동성을 가지고 당 분해 활성을 가지는 산화환원효소를 포함하는 세포 추출물을 제조하는 방법에 있어서, 진세노사이드를 첨가하여 효소 발현을 유도하는 것을 특징으로 하는 세포 추출물 제조 방법을 제공한다.
진세노사이드 당 분해 활성을 갖는 효소를 포함하는 미생물의 선별
본 발명은 토양미생물의 선별을 위해 본 발명자들은 하기 표 2의 조성 성분으로 이루어진 진세노사이드의 혼합물을 탄소원으로 포함하는 최소배지를 구성하고, 이를 이용하여 토양으로부터 진세노사이드 CK에 활성을 갖는 효소를 포함한 미생물을 선별하였다. 하기 표 2는 진세노사이드 혼합물을 탄소원으로 한 최소배지성분이다.
표 2
Figure PCTKR2011004361-appb-T000001
본 발명의 최소배지를 이용하는 선별방법은 성장 속도에 따라 미생물을 선별하는 간단한 방법으로서 당 분해 활성이 낮은 미생물은 배양단계에서 자발적으로 제거되므로 활성이 높은 효소를 포함한 고활성 미생물을 선별할 수 있다.
본 발명에서 선별된 미생물은 신규한 것으로서, 발명자들은 이의 16s rRNA 부분 서열을 암호화하는 DNA 서열의 특징을 통해 리조비움 종으로 파악하고, 이를 리조비움 sp. GIN611로 명명하였다. 또한, 이를 KCTC(Korean Collection for Type Cultures) 에 2010년 6월4일자로 기탁하였으며, 기탁번호는 KCTC11708BP이다.
본 발명의 선별된 리조비움 sp. GIN611에서 분리한 당 분해 효소를 이용하여 기질특이성을 확인할 결과, 이 미생물은 진세노사이드 CK 에 높은 활성을 보이며, 진세노사이드 CK 이외에 다양한 진세노사이드에 당 분해 활성이 있음을 알 수 있었다. 본 발명자들은 또한 상기 미생물을 파쇄하여 이를 원심분리하고 원심분리액의 상등액으로부터 활성 효소를 포함하는 세포 추출물을 생산하였다.
당 분해 효소 추출물을 생촉매로 이용한 진세노사이드 비당체 생산방법
상기 수득한 미생물 또는 생산된 당 분해 효소 추출물, 진세노사이드 CK로 구성된 반응액으로부터 비당체 PPD(S)를 생산한다. 본 발명의 미생물 또는 생산된 효소 추출물을 생촉매로서 반응액에 첨가하여 반응을 개시한다.
본 발명에서 사용할 수 있는 기질은 진세노사이드 CK 이외에, PPD계에 속하는 진세노사이드 Rb1, 진세노사이드 Rb2, 진세노사이드 Rb3, 진세노사이드 Rc, 진세노사이드 Rd, 진세노사이드 F2, 진세노사이드 Rh2 이며, PPT계에 속하는 진세노사이드 Re, 진세노사이드 F1이 있다. 또한 이소플라본 계열의 다이드진(daidzin)과 플라보노이드 계열의 이카린, 카멜리아사이드 A 또는 카멜리아사이드 B가 있다.
이하, 본 발명의 실시예를 참조하여 본 발명을 상세히 설명한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위해 예시적으로 제시한 것일 뿐, 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가지는 자에 있어서 자명할 것이다.
실시예 1) 리조비움 sp. GIN611의 선별
토양 시료 10 g을 Phosphate Buffered Saline (PBS) 50 mL에 첨가하여, 상온에서 2 시간 교반하였다. 혼탁액을 거름 종이를 이용하여 부유물을 걸러낸 후, 걸러진 미생물 용액을 상기 표 2의 최소배지 10 mL에 0.2 mL 첨가하고 30℃에서 3일간 배양하는 과정을 3회 반복한 후, 배양액 0.2 mL을 상기 액체 최소 배지와 1.5 % 한천으로 구성되는 고체 최소 배지에 도말하여 30℃에서 24 시간 배양하여, 각각의 미생물을 액체 최소 배지에 3 mL씩 배양하여 반응시키고, 진세노사이드 CK에 활성이 높은 콜로니를 동정한 결과, 리조비움 종으로 명명하였다.
실시예 2) 당 분해 효소 추출물의 제조
효모추출물(5 g/L), 펩톤(10 g/L), 염화나트륨(10 g/L)으로 구성된 배지(이하 완전배지)에 배양된 세포를 PBS 완충용액(pH 7.0)으로 3회 세척하여 회수된 세포 외부의 배지 성분을 제거하였다. 회수된 세포를 세포 부피의 5배의 20 mM 인산 완충용액, 1 mM EDTA (ethylenediaminetetraacetic acid), 1 mM phenylmethanesulfonylfluoride (PMSF), 1 mM Dithiothretiol (DTT)로 구성 (이하 파쇄 용액) 된 완충용액에 혼탁한 후, 초음파파쇄기를 이용하여 세포를 파쇄한 후, 13,000 rpm에서 30 분간 원심분리한 후, 상등액을 회수하여 최종 당 분해 효소 추출물을 생산하였다.
실시예 3) 진세노사이드 첨가에 의한 당 분해 효소의 발현 유도
표 2에 제시한 액체 최소배지(이하 M9/진세노사이드 배지)를 이용하여 배양된 세포를 PBS 완충용액으로 3회 세척하여 회수된 세포 외부의 배지 성분을 제거하였다. 회수된 세포를 5 배 부피의 파쇄용액에 혼탁한 후, 초음파 파쇄기를 이용하여 세포를 파쇄한 후, 13,000 rpm에서 30 분간 원심분리 후, 상등액을 회수하여 최소 배지에서 발현 유도된 당 분해 효소를 포함한 세포 추출물을 생산하였다.
실시예 4) 완전배지와 M9/진세노사이드 배지에서 제조된 단백질의 반응성 및 발현양 비교
상기한 실시예 2와 실시예 3에서 생산된 세포 추출물의 단백질 양을 정량한 후, 동일한 양의 단백질을 사용하여 진세노사이드 CK에 대한 반응성을 비교하였다. 비교한 결과 실시예 3에서 생산된 세포 추출물이 실시예 2에서 생산된 세포 추출물에 비해 높은 반응성이 나타남을 확인할 수 있었다. 이를 도 7에 나타내었다. 동일한 양의 단백질을 사용하여 반응을 보낸 후 각 단백질 양에 따라 반응성을 비교하였다. 결과에서 보이는 바와 같이 실시예 2의 완전 배지에 배양된 셀로부터 제조된 단백질의 경우 500이상의 단백질 사용시 진세노사이드 CK 가 완전히 PPD(S)로 전환되는 반면, 실시예 3의 M9/진세노사이드 배지에 배양된 셀로부터 제조된 단백질은 100이상에서 진세노사이드 CK 가 PPD(S)로 전환되는 것을 볼 수 있었다. 또한 두 추출물의 단백질 발현 차이를 SDS-PAGE(sodium dodecyl sulfate-polyacrylamide gel electrophoresis)로 비교하여 도 6에 나타내었다. 도 6의 화살표로 표시된 것은 실시예 2와 실시예 3에서의 효소 추출물의 단백질 발현 정도를 비교하였을 때 발현량이 다른 단백질을 나타낸 것이다.
실시예 5) 당 분해 효소의 분리 정제
신규 리조비움 sp. GIN611로부터 도 3에 나타낸 반응을 수행하는 효소를 정제하기 위하여 10L 진세노사이드를 첨가한 표 2의 액체 제한배지를 이용하여 미생물을 배양하였다. 배양한 미생물을 실시예 2와 같은 방법으로 효소 추출물을 제조하였다. 제조된 효소 추출물을 60-70% 포화된 암모늄 설페이트 침전 분획법을 통해 준비하였다. 준비된 단백질을 FPLC 및 여러 가지 컬럼을 이용하여 분리 정제하였다. 분리 정제되 단백질은 최종적으로 Native-gel을 이용하여 최종 반응성을 확인하였다.
실시예 6) 정제된 효소를 이용한 진세노 사이드 CK에 대한 활성 조사
실시예 5에서 정제된 효소를 이용하여 진세노사이드 CK에 대한 활성을 조사하였다. 약 100㎍ 의 효소액과 0.1 mM CK, 50 mM 인산완충용액(pH6.5)를 이용하여 반응 부피와 동일한 양의 에틸아세테이트를 첨가 후 반응을 종료시킨 후 이를 HPLC를 이용하여 분석하였다. 분석에 사용한 조건은 80% 아세토나이트릴(ACN) 등용리로 이용하였다. 결과는 도 4에 나타내었고, 삼각형으로 표시한 피크는 PPD(S)에 해당하며, 별표로 표시한 피크는 산화된 CK를 나타내는 것으로 시간에 따라 산화된 CK 는 증가하였다가 감소하고, PPD(S)는 계속적으로 증가하는 것을 알 수 있었다. 따라서 신규 발견된 효소에 의해 진세노사이드 CK의 산화과정을 거쳐 당이 분해된다는 것을 알 수 있었다. 이를 도 10에 나타내었다.
실시예 7) 신규효소의 N 말단 및 내부 펩타이드 서열 결정
실시예 5에서 분리정제하여 얻어진 산화환원효소의 N-말단 아미노산의 서열은 12% SDS-PAGE 전기영동 후 절을 PVDF 막으로 옮긴 후 (바이오 래드), 에드만 분석기법을 이용하는 procise 491 sequencer(어플라이드 바이오 시스템, 칼리프)를 이용하여 결정하였다. 내부 펩타이드의 서열 결정은 서열 결정용 트립신(프로메가)으로 처리 후 얻어진 펩타이드 단편의 서열을 LTQ-orbitrap 질량 분석기를 이용하여 분석 후, PEAKS 프로그램을 이용하여 서열을 결정하였다.
실시예 8) 리조비움 sp. GIN611 로부터 전체 세포 DNA 단리
완전 배지에 배양된 세포를 4℃에서 4,000 rpm으로 10분 원심분리하여 세포를 침전시켰다. 상층액을 제거하고 세포를 10 mL 의 lysis 완충용액(15% 수크로즈, 25 mM EDTA, 25 mM Tris 완충용액)으로 녹인 후 1.2 mL EDTA(0.5M) 과 0.13 mL pronase를 첨가 후 37℃에서 10분간 방치하였다. 이후 10% SDS 1 mL를 넣고 70℃에서 10 분간 방치 후 얼음물에 10분간 방치하였다. 이후 5M 포타슘아세테이트 2.5 mL을 놓고 얼음물에 15분간 반응시켰다. 상기 용액의 양과 동일한 양의 페놀-클로로포름 혼합물(50:50)을 넣고 30 분 혼합하여 준 다음 4℃, 4,000 rpm에서 10분간 원심분리 후 상등액을 획득하였다. 얻어진 용액의 0.5배에 달하는 클로로포름을 더하고 서서히 혼합한 후 4℃, 4,000 rpm에서 10분간 원심분리하고 상등액을 획득한 후 50 /mL의 양에 달하도록 RNase 처리 후 37℃에서 1시간 반응하게 하였다. 이후 0.8배에 달하는 아이소프로판올을 첨가 후 2.5 배에 달하는 80% 에탄올을 첨가하고 서서히 흔들어준 다음 파스퇴르 피펫을 이용하여 전체 세포 DNA를 수집하여 1.5 mL 마이크로 튜브에 옮긴 후, 건조시킨 후 멸균 수에 녹여 사용하였다.
실시예 9) PCR을 이용한 당 분해 효소의 유전자서열 분석
실시예 7을 거쳐 얻어진 N-말단 아미노산 서열과 내부 서열로부터 프라이머를 제작한 후 실시예 8의 과정을 거쳐 분리된 게놈 DNA을 주형으로 이용하여 산화환원효소의 부분 DNA 단편을 얻었다. 얻어진 DAN 단편에 특이적으로 붙는 프라이머를 제작하여 역전사(Inverse) PCR 방법을 이용하여 나머지 서열을 획득하였다. Inverse PCR 에 사용된 주형은 게놈 DNA 단편을 Hind III 제한 효소로 절단한 후 라이게이즈를 처리하여 셀프라이게이션이 된 DNA 라이브러리를 사용하였다.
실시예 10) 발현용 벡터에의 재조합 및 형질 전환된 대장균에서의 발현
얻어진 산화환원효소의 유전자 서열은 각각 BamHI/SalI 제한 효소로 소화하여 그 분획을 각각 pETDuet-1 (노바젠)에 라이게이션하여 재조합 플라스미드를 생성, 발현용 대장균인 Rosetta-gami2(DE3)에 형질 전환 시켰다. 얻어진 형질 전환 대장균은 암피실린을 함유한 배지에서 배양하였으며, 세포현탁도가 0.3 내지 0.7이 되었을 때 IPTG를 부가하고 20℃에서 15시간을 더 배양함으로써 효소의 발현을 유도하였다.
실시예 11) 서열번호 3의 신규 효소와 유사도 65% 이상인 3개의 효소의 진세노사이드 및 천연물 유래 글라이코사이드의 글루코오스 분해 반응성 조사
아그로박테리움(Agrobacterium) sp., 스핑고박테리움(Sphingobacterium) sp. 또는 스테노트로포모나제(Stenotrophomonase) sp. 유래의 서열번호 3와 60% 이상의 아미노산 유사도가 있는 효소를 클로닝하여 진세노사이드에 대한 글루코오스 분해 반응성을 조사하였다. 각 미생물 유래의 효소는 진세노사이드의 글루코오스 잔기에 산화반응을 통해 당 분해하는 것을 확인하였다.
실시예 12) 유도발현된 효소를 이용한 비당체 생산 활성 측정
실시예 11에서 발현이 유도된 효소를 실시예 2의 효소 제조 방법으로 제조 한 후 진세노사이드 CK를 기질로 하여 비당체 생산 활성을 측정하였다.
실시예 13) 다양한 진세노사이드 및 이소플라본을 기질로 한 활성 측정
진세노사이드 Rh2, 진세노사이드 F2, 진세노사이드 Rb1, 진세노사이드 Rb2, 진세노사이드 Rc, 진세노사이드 Rb3, 진세노사이드 F1, 진세노사이드 Re 및 이소플라본계 다이드진(daidzin)을 기질로 하여 상기 반응 방법에 따라 반응시킨 후 동일한 양의 에틸아세테이트를 첨가하여 추출 후, 에틸아세테이트 층을 말린 후 에탄올에 다시 녹인 후 말디 질량분석기를 이용하여 활성을 측정하였다.
실시예 14) 다양한 비당체 구조에 따른 당분해 활성 측정 및 글라이콘에 대한 기질특이성 조사
리조비움 sp. GIN611 유래의 산화환원 효소로부터 발현이 유도된 효소를 플라보노이드계 이카린(Icarlin), 카멜리아사이드 A (Camelliaside A), 카멜리아사이드 B(Camelliaside B)를 기질로 하여 상기 반응 방법에 따라 반응시킨 후, 말디 질량분석기를 이용하여 활성을 측정한 결과, 카멜리아사이드 A에 붙어 있는 갈락토오즈(galactose)의 산화반응 및 당분해 활성을 확인하였다. 또한 카멜리아사이드 B에 붙어 있는 자일로스(Xylose)의 산화반응 및 당분해 활성을 확인하였다. 즉, 플라보노이드계열의 비당체 구조에 결합된 당에 대한 당분해 활성을 보이며, 글루코즈 이외에 갈락토오스, 자일로스를 산화시킨 후 당을 분해하는 기능이 있음을 확인하였다 (도 12 및 13).
실시예 15) 글라이콘 결합에 대한 기질특이성 조사
4-나이트로페놀-알파-D-글루코피라노사이드(4-Nitrophenyl a-D-glucopyranoside), 4-나이트로페놀 베타-D-글루코피라노사이드(4-Nitrophenyl -D-glucopyranoside), 4-나이트로페놀-알파-D-갈락토피라노사이드(4-Nitrophenyl a-D-galactopyranoside), 4-나이트로페놀-베타-D-갈락토피라노사이드(p-Nitrophenyl -D-galactopyranoside)를 이용하여 알파 결합 및 베타 결합에 대한 효소의 특이성을 조사한 결과 알파와 베타에 모두 활성이 있음을 확인하였다(표 3).
표 3
Figure PCTKR2011004361-appb-T000002
[수탁번호]
KCTC11708BP
[규칙 제91조에 의한 정정 06.12.2011] 
Figure WO-DOC-1
<110> AMOREPACIFIC CORPORATION
<120> A NOVEL SOIL MICROORGANISM, A NOVEL OXIDOREDUCTASE SEPERATED FROM
THE SAID SOIL MICROORGANISM, A GENE ENCODING THE SAID
OXIDOREDUCTASE AND A METHODS FOR PRODUCING AGLYCONE USING THEREOF
<130> OF11P234/PCT
<150> KR 10/055988
<151> 2010-06-14
<150> KR 10/066307
<151> 2010-07-09
<160> 3
<170> KopatentIn 1.71
<210> 1
<211> 971
<212> DNA
<213> Rhizobium sp. GIN611
<400> 1
gaatgcgagc ttaccatgca gtcgagcgcc ccgcaagggg agcggcagac gggtgagtaa 60
cgcgtgggaa tctaccgagc cctgcggaat agctccggga aactggaatt aataccgcat 120
acgccctacg ggggaaagat ttatcggggt ttgatgagcc cgcgttggat tagctagttg 180
gtggggtaaa ggcctaccaa ggcgacgatc catagctggt ctgagaggat gatcagccac 240
attgggactg agacacggcc caaactccta cgggaggcag cagtggggaa tattggacaa 300
tgggcgcaag cctgatccag ccatgccgcg tgagtgatga aggccctagg gttgtaaagc 360
tctttcaacg gtgaagataa tgacggtaac cgtagaagaa gccccggcta acttcgtgcc 420
agcagccgcg gtaatacgaa gggggctagc gttgttcgga attactgggc gtaaagcgca 480
cgtaggcgga tatttaagtc aggggtgaaa tcccggggct caacctcgga actgcctttg 540
atactgggta tcttgagtat ggaagaggta agtggaattg cgagtgtaga ggtgaaattc 600
gtagatattc gcaggaacac cagtggcgaa ggcggcttac tggtccatta ctgacgctga 660
ggtgcgaaag cgtggggagc aaacaggatt agataccctg gtagtccacg ccgtaaacga 720
tgaatgttag ccgtcgggca gtatactgtt cggtggcgca gctaacgcat taaacattcc 780
gcctggggag tacggtcgca agattaaaac tcaaaggaat tgacgggggc ccgcacaagc 840
ggtggagcat gtggtttaat tcgaagcaac gcgcagaacc ttaccagctc ttgacattcg 900
gggtatgggc agtggagaca ttgtccttca gttaggctgg ccccagaaca ggtgctgcat 960
ggctgtcgtc a 971
<210> 2
<211> 1686
<212> DNA
<213> Rhizobium sp. GIN611
<400> 2
atggcgaata atcattacga cgcgattgtt gtcggttcgg ggatcagcgg aggctgggcc 60
gcaaaagaac tcacacaaaa gggtctaaaa gttcttcttc ttgaacgtgg cagaaacatt 120
gaacacatca ccgattacca gaatgcagac aaggaagcgt gggactaccc tcaccgcaat 180
cgtgccacgc aggaaatgaa ggcaaagtat ccggttctga gccgcgatta tctgttggaa 240
gaagccacac tcggcatgtg ggctgacgaa caagaaacgc cttacgtcga agaaaaacgt 300
ttcgattggt tccgtgggta ccacgtgggt ggtcgttctc tcctttgggg ccgtcaaacc 360
tatcgatggt cacagaccga ttttgaggcc aatgcaaaag aaggcatcgc tgttgattgg 420
cctattcgtt accaggatgt tgcgccgtgg tacgactacg ttgaacggtt tgcgggcatt 480
tccggcagca aagaagggct cgatatcctt cctgatggtg aattccttcc accaatccct 540
ttgaactgcg tagaagaaga tgtggcgcgt cgtctgaagg acaggttcaa gggcacgcgt 600
cacctgatca attcccgctg cgccaacatc acacaggaac ttcctgacca ggatcgcaca 660
cgctgtcagt tcagaaacaa gtgtcggttg ggctgtccgt tcggcggtta cttcagcaca 720
caatcatcaa ccctgcctgc ggccgtcgcg accggcaatc tcaccctgcg gccgttctca 780
atcgtcaagg agatccttta cgacaaggac aagaagaagg cccgcggtgt cgagatcatc 840
gatgccgaaa ccaacatgac ctatgaatat accgcagaca ttatcttcct gaatgcctca 900
acgctgaatt cgacctgggt cctgatgaac tcagccaccg acgtgtggga agggggattg 960
ggaagcagtt ccggcgaact cggccacaat gtcatggacc atcatttccg catgggtgcg 1020
acgggtgagg tcgaaggatt tgacgagttc tatttcaagg gacgccgccc ggcaggtttc 1080
tacattcctc gcttccgcaa catcggcgat gaaaagcgta aatatctgcg tggttttggt 1140
tatcagggtt cggcaagccg ctcccgctgg gagcgcgaaa tcgccgagat gaatattgga 1200
gcagattata aagacgcgtt gaccgaacca ggcggctgga caatcggcat gacagccttt 1260
ggcgagatgc tgccctacca cgaaaatcgc gtgaagcttg accaaaacaa aaaggacaaa 1320
tgggggttgc cggtcctttc aatgaatgtc gagttgaaac aaaacgaact cgatatgcgt 1380
gaagacatgg tgaatgacgc tgtcgaaatg tttgaggccg tcggcatcaa gaacgtcaaa 1440
ccgacccgag gcagctacgc acccggtatg ggtattcacg aaatgggaac ggcgcgcatg 1500
ggccgcgatc caaagtcttc ggttctaaat ggcaacaacc aggtgtggga tgcccctaac 1560
gtgttcgtga cggatggtgc ctgcatgacg tctgctgcct gtgtaaatcc gtctctcacc 1620
tacatggcac tgacggcacg tgccgccgat tttgccgtgt cagagctcaa gaagggaaat 1680
ctgtaa 1686
<210> 3
<211> 561
<212> PRT
<213> Rhizobium sp. GIN611
<400> 3
Met Ala Asn Asn His Tyr Asp Ala Ile Val Val Gly Ser Gly Ile Ser
1 5 10 15
Gly Gly Trp Ala Ala Lys Glu Leu Thr Gln Lys Gly Leu Lys Val Leu
20 25 30
Leu Leu Glu Arg Gly Arg Asn Ile Glu His Ile Thr Asp Tyr Gln Asn
35 40 45
Ala Asp Lys Glu Ala Trp Asp Tyr Pro His Arg Asn Arg Ala Thr Gln
50 55 60
Glu Met Lys Ala Lys Tyr Pro Val Leu Ser Arg Asp Tyr Leu Leu Glu
65 70 75 80
Glu Ala Thr Leu Gly Met Trp Ala Asp Glu Gln Glu Thr Pro Tyr Val
85 90 95
Glu Glu Lys Arg Phe Asp Trp Phe Arg Gly Tyr His Val Gly Gly Arg
100 105 110
Ser Leu Leu Trp Gly Arg Gln Thr Tyr Arg Trp Ser Gln Thr Asp Phe
115 120 125
Glu Ala Asn Ala Lys Glu Gly Ile Ala Val Asp Trp Pro Ile Arg Tyr
130 135 140
Gln Asp Val Ala Pro Trp Tyr Asp Tyr Val Glu Arg Phe Ala Gly Ile
145 150 155 160
Ser Gly Ser Lys Glu Gly Leu Asp Ile Leu Pro Asp Gly Glu Phe Leu
165 170 175
Pro Pro Ile Pro Leu Asn Cys Val Glu Glu Asp Val Ala Arg Arg Leu
180 185 190
Lys Asp Arg Phe Lys Gly Thr Arg His Leu Ile Asn Ser Arg Cys Ala
195 200 205
Asn Ile Thr Gln Glu Leu Pro Asp Gln Asp Arg Thr Arg Cys Gln Phe
210 215 220
Arg Asn Lys Cys Arg Leu Gly Cys Pro Phe Gly Gly Tyr Phe Ser Thr
225 230 235 240
Gln Ser Ser Thr Leu Pro Ala Ala Val Ala Thr Gly Asn Leu Thr Leu
245 250 255
Arg Pro Phe Ser Ile Val Lys Glu Ile Leu Tyr Asp Lys Asp Lys Lys
260 265 270
Lys Ala Arg Gly Val Glu Ile Ile Asp Ala Glu Thr Asn Met Thr Tyr
275 280 285
Glu Tyr Thr Ala Asp Ile Ile Phe Leu Asn Ala Ser Thr Leu Asn Ser
290 295 300
Thr Trp Val Leu Met Asn Ser Ala Thr Asp Val Trp Glu Gly Gly Leu
305 310 315 320
Gly Ser Ser Ser Gly Glu Leu Gly His Asn Val Met Asp His His Phe
325 330 335
Arg Met Gly Ala Thr Gly Glu Val Glu Gly Phe Asp Glu Phe Tyr Phe
340 345 350
Lys Gly Arg Arg Pro Ala Gly Phe Tyr Ile Pro Arg Phe Arg Asn Ile
355 360 365
Gly Asp Glu Lys Arg Lys Tyr Leu Arg Gly Phe Gly Tyr Gln Gly Ser
370 375 380
Ala Ser Arg Ser Arg Trp Glu Arg Glu Ile Ala Glu Met Asn Ile Gly
385 390 395 400
Ala Asp Tyr Lys Asp Ala Leu Thr Glu Pro Gly Gly Trp Thr Ile Gly
405 410 415
Met Thr Ala Phe Gly Glu Met Leu Pro Tyr His Glu Asn Arg Val Lys
420 425 430
Leu Asp Gln Asn Lys Lys Asp Lys Trp Gly Leu Pro Val Leu Ser Met
435 440 445
Asn Val Glu Leu Lys Gln Asn Glu Leu Asp Met Arg Glu Asp Met Val
450 455 460
Asn Asp Ala Val Glu Met Phe Glu Ala Val Gly Ile Lys Asn Val Lys
465 470 475 480
Pro Thr Arg Gly Ser Tyr Ala Pro Gly Met Gly Ile His Glu Met Gly
485 490 495
Thr Ala Arg Met Gly Arg Asp Pro Lys Ser Ser Val Leu Asn Gly Asn
500 505 510
Asn Gln Val Trp Asp Ala Pro Asn Val Phe Val Thr Asp Gly Ala Cys
515 520 525
Met Thr Ser Ala Ala Cys Val Asn Pro Ser Leu Thr Tyr Met Ala Leu
530 535 540
Thr Ala Arg Ala Ala Asp Phe Ala Val Ser Glu Leu Lys Lys Gly Asn
545 550 555 560
Leu

Claims (28)

  1. 신규 리조비움 sp. GIN611(Rhizobiumsp.GIN611)KCTC11708BP.
  2. 제1항의 리조비움 sp. GIN611의 세포 추출물.
  3. 제1항의 리조비움 sp. GIN611 또는 제2항의 세포 추출물을 생촉매로 사용하는 천연물의 당 분해 방법.
  4. 제3항에 있어서, 상기 천연물은 진세노사이드 배당체, 이소플라본 배당체 또는 플라보노이드 배당체인 것을 특징으로 하는 천연물의 당 분해 방법.
  5. 제3항에 있어서, 상기 천연물은 진세노사이드 컴파운드 K(CK), 진세노사이드 Rh2, 진세노사이드 F2, 진세노사이드 Rb1, 진세노사이드 Rb2, 진세노사이드 Rc, 진세노사이드 Rb3, 진세노사이드 F1, 진세노사이드 Re, 다이드진, 이카린, 카멜리아사이드 A 및 카멜리아사이드 B로 이루어진 군에서 선택된 것을 특징으로 하는 천연물의 당 분해 방법.
  6. 제3항에 있어서, 상기 당은 글루코오스, 갈락토오스, 람노스, 아라비노스 및 자일로스로 이루어진 군에서 선택되는 것이고, 상기 당을 산화시켜서 분해하는 것을 특징으로 하는 천연물의 당 분해 방법.
  7. 제6항에 있어서, 상기 글루코오스는 글루코오스 잔기의 3번 위치 하이드록실기(OH)를 산화시켜서 분해하는 것을 특징으로 하는 천연물의 당 분해 방법.
  8. 제1항의 리조비움 sp.GIN611 또는 제2항의 세포 추출물을 생촉매로 사용하여 진세노사이드 배당체, 이소플라본 배당체 또는 플라보노이드 배당체에서 진세노사이드 비당체, 이소플라본 비당체 또는 플라보노이드 비당체를 생산하는 방법.
  9. 서열번호 3의 아미노산 서열로 이루어진 산화환원효소.
  10. 제9항의 산화환원효소를 포함하는 세포 추출물.
  11. 제9항의 산화환원효소를 암호화하는 DNA.
  12. 제11항에 있어서, 서열번호 2의 서열로 이루어진 DNA.
  13. 제11항 또는 제12항의 DNA를 포함하는 재조합 DNA벡터.
  14. 제13항의 재조합 DNA 벡터로 형질전환된 숙주세포.
  15. 제14항의 숙주세포를 포함하는 세포 추출물.
  16. 서열번호 3의 서열과 60% 이상 상동성을 가지고 천연물의 당 분해 활성을 가지는 산화환원효소.
  17. 제16항에 있어서, 상기 천연물은 진세노사이드 배당체, 이소플라본 배당체 또는 플라보노이드 배당체인 것을 특징으로 하는 산화환원효소.
  18. 제16항에 있어서, 상기 천연물은 진세노사이드 컴파운드 K(CK), 진세노사이드 Rh2, 진세노사이드 F2, 진세노사이드 Rb1, 진세노사이드 Rb2, 진세노사이드 Rc, 진세노사이드 Rb3, 진세노사이드 F1, 진세노사이드 Re, 다이드진, 이카린, 카멜리아사이드 A 및 카멜리아사이드 B로 이루어진 군에서 선택된 것을 특징으로 하는 산화환원 효소.
  19. 제16항에 있어서, 상기 당은 글루코오스, 갈락토오스, 람노스, 아라비노스 및 자일로스로 이루어진 군에서 선택되는 것이고, 상기 당을 산화시켜서 분해하는 것을 특징으로 하는 산화환원효소.
  20. 제16항에 있어서, 상기 산화환원효소는 진세노사이드 배당체, 이소플라본 배당체 또는 플라보노이드 배당체에서 진세노사이드 비당체, 이소플라본 비당체 또는 플라보노이드 비당체를 생산하는 것을 특징으로 하는 산화환원효소.
  21. 제16항에 있어서, 상기 산화환원효소는 아그로박테리움(Agrobacterium) sp., 스핑고박테리움(Sphingobacterium) sp. 또는 스테노트로포모나제(Stenotrophomonase) sp. 에서 유래하는 것을 특징으로 하는 산화환원효소.
  22. 제16항의 산화환원효소를 포함하는 세포 추출물.
  23. 천연물의 당 분해방법으로서,
    서열번호 3의 아미노산 서열로 이루어진 산화환원효소, 서열번호 3의 아미노산 서열로 이루어진 산화환원효소를 포함하는 세포 추출물, 서열번호 3의 아미노산 서열로 이루어진 산화환원효소를 암호화하는 DNA를 포함하는 재조합 DNA벡터로 형질전환된 숙주세포, 서열번호 3의 아미노산 서열로 이루어진 산화환원효소를 암호화하는 DNA를 포함하는 재조합 DNA벡터로 형질전환된 숙주세포를 포함하는 세포 추출물, 서열번호 2의 서열로 이루어진 DNA를 포함하는 재조합 DNA벡터로 형질전환된 숙주세포, 서열번호 2의 서열로 이루어진 DNA를 포함하는 재조합 DNA벡터로 형질전환된 숙주세포를 포함하는 세포 추출물, 서열번호 3의 서열과 60% 이상 상동성을 가지고 당 분해 활성을 가지는 단백질을 암호화하는 DNA를 포함하는 재조합 DNA벡터로 형질전환된 숙주세포, 서열번호 3의 서열과 60% 이상 상동성을 가지고 당 분해 활성을 가지는 단백질을 암호화하는 DNA를 포함하는 재조합 DNA벡터로 형질전환된 숙주세포를 포함하는 세포 추출물, 서열번호 3의 서열과 60% 이상 상동성을 가지고 당 분해 활성을 가지는 산화환원효소 및 서열번호 3의 서열과 60% 이상 상동성을 가지고 당 분해 활성을 가지는 산화환원효소의 세포 추출물로 이루어진 군에서 선택되는 생촉매를 사용하는 천연물의 당 분해 방법.
  24. 제23항에 있어서, 상기 천연물은 진세노사이드 배당체, 이소플라본 배당체 또는 플라보노이드 배당체인 것을 특징으로 하는 천연물의 당 분해 방법.
  25. 제23항에 있어서, 상기 천연물은 진세노사이드 컴파운드 K(CK), 진세노사이드 Rh2, 진세노사이드 F2, 진세노사이드 Rb1, 진세노사이드 Rb2, 진세노사이드 Rc, 진세노사이드 Rb3, 진세노사이드 F1, 진세노사이드 Re, 다이드진, 이카린, 카멜리아사이드 A 및 카멜리아사이드 B로 이루어진 군에서 선택된 것을 특징으로 하는 천연물의 당 분해 방법.
  26. 제23항에 있어서, 상기 당은 글루코오스, 갈락토오스, 람노스, 아라비노스 또는 자일로스이고, 상기 당을 산화시켜서 분해하는 것을 특징으로 하는 천연물의 당 분해 방법.
  27. 비당체를 생산하는 방법으로서,
    서열번호 3의 아미노산 서열로 이루어진 산화환원효소, 서열번호 3의 아미노산 서열로 이루어진 산화환원효소를 포함하는 세포 추출물, 서열번호 3의 아미노산 서열로 이루어진 산화환원효소를 암호화하는 DNA를 포함하는 재조합 DNA벡터로 형질전환된 숙주세포, 서열번호 3의 아미노산 서열로 이루어진 산화환원효소를 암호화하는 DNA를 포함하는 재조합 DNA벡터로 형질전환된 숙주세포를 포함하는 세포 추출물, 서열번호 2의 서열로 이루어진 DNA를 포함하는 재조합 DNA벡터로 형질전환된 숙주세포, 서열번호 2의 서열로 이루어진 DNA를 포함하는 재조합 DNA벡터로 형질전환된 숙주세포를 포함하는 세포 추출물, 서열번호 3의 서열과 60% 이상 상동성을 가지고 당 분해 활성을 가지는 단백질을 암호화하는 DNA를 포함하는 재조합 DNA벡터로 형질전환된 숙주세포, 서열번호 3의 서열과 60% 이상 상동성을 가지고 당 분해 활성을 가지는 단백질을 암호화하는 DNA를 포함하는 재조합 DNA벡터로 형질전환된 숙주세포를 포함하는 세포 추출물, 서열번호 3의 서열과 60% 이상 상동성을 가지고 당 분해 활성을 가지는 산화환원효소 및 서열번호 3의 서열과 60% 이상 상동성을 가지고 당 분해 활성을 가지는 산화환원효소의 세포 추출물로 이루어진 군에서 선택되는 생촉매를 사용하여 진세노사이드 배당체, 이소플라본 배당체 또는 플라보노이드 배당체에서 진세노사이드 비당체, 이소플라본 비당체 또는 플라보노이드 비당체를 생산하는 방법.
  28. 세포 추출물 제조방법으로서,
    리조비움 sp.GIN611의 세포 추출물, 서열번호 3의 아미노산 서열로 이루어진 산화환원효소를 포함하는 세포 추출물, 서열번호 3의 아미노산 서열로 이루어진 산화환원효소를 암호화하는 DNA를 포함하는 재조합 DNA 벡터로 형질전환된 숙주세포를 포함하는 세포 추출물, 서열번호 2의 서열로 이루어진 DNA를 포함하는 재조합 DNA벡터로 형질전환된 숙주세포를 포함하는 세포 추출물, 서열번호 3의 서열과 60% 이상 상동성을 가지고 당 분해 활성을 가지는 단백질을 암호화하는 DNA를 포함하는 재조합 DNA벡터로 형질전환된 숙주세포를 포함하는 세포 추출물 또는 서열번호 3의 서열과 60% 이상 상동성을 가지고 당 분해 활성을 가지는 산화환원효소를 포함하는 세포 추출물 을 제조하는 방법이고, 진세노사이드를 첨가하여 효소 발현을 유도하는 것을 특징으로 하는 세포 추출물 제조 방법.
PCT/KR2011/004361 2010-06-14 2011-06-14 신규 토양 미생물과 상기 토양 미생물로부터 분리된 신규한 산화환원효소, 상기 산화환원 효소를 암호화하는 유전자 및 이들을 이용한 비당체의 생산방법 WO2011159092A2 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180038765.9A CN103237884B (zh) 2010-06-14 2011-06-14 新的土壤微生物、从所述土壤微生物分离的新氧化还原酶、编码所述氧化还原酶的基因和使用所述微生物、氧化还原酶和基因产生糖苷配基的方法
US13/704,210 US20130084601A1 (en) 2010-06-14 2011-06-14 Novel soil microorganism, novel oxidoreductase separated from the soil microorganism, gene encoding the oxidoreductase, and method for producing aglycones using the microorganism, the oxidoreductase and the gene
JP2013515263A JP5878524B2 (ja) 2010-06-14 2011-06-14 新規土壌微生物、前記土壌微生物から分離された新規な酸化還元酵素、前記酸化還元酵素をコード化する遺伝子、及びこれらを利用した無糖体の生産方法
HK13112245.3A HK1184823A1 (en) 2010-06-14 2013-10-30 Novel soil microorganism, novel oxidoreductase separated from the soil microorganism, gene encoding the oxidoreductase, and method for producing aglycones using the microorganism, the oxidoreductase and the gene
US14/588,790 US9394562B2 (en) 2010-06-14 2015-01-02 Soil microorganism, novel oxidoreductase separated from the soil microorganism, gene encoding the oxidoreductase, and method for producing aglycones using the microorganism, the oxidoreductase and the gene

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2010-0055988 2010-06-14
KR1020100055988A KR101749680B1 (ko) 2010-06-14 2010-06-14 신규 토양 미생물과 상기 토양 미생물로부터 분리된 신규한 산화환원효소, 상기 산화환원 효소를 암호화하는 유전자 및 이들을 이용한 다양한 진세노사이드의 생산방법
KR1020100066307A KR101749681B1 (ko) 2010-07-09 2010-07-09 신규 토양 미생물과 상기 토양 미생물로부터 분리된 신규한 산화환원효소, 상기 산화환원 효소를 암호화하는 유전자 및 이들을 이용한 플라보노이드 비당체의 생산방법.
KR10-2010-0066307 2010-07-09

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/704,210 A-371-Of-International US20130084601A1 (en) 2010-06-14 2011-06-14 Novel soil microorganism, novel oxidoreductase separated from the soil microorganism, gene encoding the oxidoreductase, and method for producing aglycones using the microorganism, the oxidoreductase and the gene
US14/588,790 Continuation US9394562B2 (en) 2010-06-14 2015-01-02 Soil microorganism, novel oxidoreductase separated from the soil microorganism, gene encoding the oxidoreductase, and method for producing aglycones using the microorganism, the oxidoreductase and the gene

Publications (3)

Publication Number Publication Date
WO2011159092A2 WO2011159092A2 (ko) 2011-12-22
WO2011159092A9 true WO2011159092A9 (ko) 2012-03-01
WO2011159092A3 WO2011159092A3 (ko) 2012-05-18

Family

ID=45348740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/004361 WO2011159092A2 (ko) 2010-06-14 2011-06-14 신규 토양 미생물과 상기 토양 미생물로부터 분리된 신규한 산화환원효소, 상기 산화환원 효소를 암호화하는 유전자 및 이들을 이용한 비당체의 생산방법

Country Status (5)

Country Link
US (2) US20130084601A1 (ko)
JP (1) JP5878524B2 (ko)
CN (1) CN103237884B (ko)
HK (1) HK1184823A1 (ko)
WO (1) WO2011159092A2 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103342726B (zh) * 2013-07-16 2016-06-29 青龙高科技股份有限公司 一种降血糖油茶黄酮的制备方法及其应用
CN108299530B (zh) * 2015-05-20 2020-07-28 广东金骏康生物技术有限公司 一种淫羊藿次苷类化合物及其制备方法和用途
US10244245B2 (en) 2015-06-08 2019-03-26 Qualcomm Incorporated Content-adaptive application of fixed transfer function to high dynamic range (HDR) and/or wide color gamut (WCG) video data
KR101785809B1 (ko) * 2015-12-18 2017-10-18 재단법인 지능형 바이오 시스템 설계 및 합성 연구단 진세노사이드 글리코시다제를 이용한 마이너 진세노사이드의 제조방법
WO2018201050A1 (en) * 2017-04-28 2018-11-01 Board Of Trustees Of Michigan State University Tryptathionine biosynthesis by flavin mono-oxygenase 1 (fmo1)
WO2023057235A1 (en) 2021-10-06 2023-04-13 Glycoscience, S.L. Process for preparing 3'-ketoglycoside compounds

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ID22473A (id) * 1998-04-15 1999-10-21 Hoffmann La Roche Produksi enzimatik vitamin b6
EP0950715A3 (en) 1998-04-15 2001-07-25 F. Hoffmann-La Roche Ag Enzymatic production of vitamin B6
CN1105781C (zh) * 1999-03-17 2003-04-16 金凤燮 酶法改变人参皂甙糖基制备人参皂甙的方法
JP2002017372A (ja) * 2000-06-30 2002-01-22 Koji Hayade グルコース−3−脱水素酵素およびその製造方法
JP4953547B2 (ja) * 2000-12-29 2012-06-13 ▲鳳▼燮 金 ジンセノサイド糖基を加水分解するジンセノサイドグリコシダーゼ及びその使用
JP2003033174A (ja) * 2001-07-10 2003-02-04 Japan Science & Technology Corp 窒素固定能を増強した根粒菌
CN1323161C (zh) * 2005-09-13 2007-06-27 中国农业科学院农业资源与农业区划研究所 一株苜蓿根瘤菌及其发酵培养方法与应用
HUE037878T2 (hu) * 2008-03-11 2018-09-28 Genomatica Inc Adipátészter vagy tioészter szintézis
KR100945587B1 (ko) * 2009-07-14 2010-03-08 (주)새롬바이오 동충하초 균사체로 발효시켜 다양한 생리활성을 갖는 진세노사이드 대사체를 다량 함유하는 발효인삼 또는 발효홍삼의 제조방법
KR100945586B1 (ko) * 2009-07-14 2010-03-08 (주)새롬바이오 상황버섯 균사체로 발효시켜 다양한 생리활성을 갖는 진세노사이드 대사체를 다량 함유하는 발효인삼 또는 발효홍삼의 제조방법
ES2744466T3 (es) * 2009-09-02 2020-02-25 Purac Biochem Bv Polipéptidos con actividad oxidorreductasa y sus usos

Also Published As

Publication number Publication date
CN103237884A (zh) 2013-08-07
WO2011159092A3 (ko) 2012-05-18
HK1184823A1 (en) 2014-01-30
JP5878524B2 (ja) 2016-03-08
WO2011159092A2 (ko) 2011-12-22
US20150184216A1 (en) 2015-07-02
CN103237884B (zh) 2015-08-19
US9394562B2 (en) 2016-07-19
JP2013534416A (ja) 2013-09-05
US20130084601A1 (en) 2013-04-04

Similar Documents

Publication Publication Date Title
WO2011159092A9 (ko) 신규 토양 미생물과 상기 토양 미생물로부터 분리된 신규한 산화환원효소, 상기 산화환원 효소를 암호화하는 유전자 및 이들을 이용한 비당체의 생산방법
WO2011158998A1 (ko) 비타민 k2 생성능이 높은 바실러스 아미로리퀴파시엔스 균주
WO2015167282A1 (en) A novel method for glycosylation of ginsenoside using a glycosyltransferase derived from panax ginseng
WO2010064764A1 (en) Method of preparing piceatannol using bacterial cytochrome p450 and composition therefor
WO2011043584A2 (ko) 형질전환 식물 유래의 고병원성 조류독감 바이러스 단백질 백신 및 그 제조방법
WO2010030091A2 (ko) 생물학적 헴철 생산 방법 및 그에 의해 생산된 헴철 추출물을 포함하는 철분보충 조성물
WO2021201615A1 (ko) 신규한 면역 활성 인터루킨 2 아날로그
WO2015199387A2 (ko) 가용성 단백질 발현량 및 활성이 증대된 헬리코박터 파일로리 유래 α-1,3 푸코실 전달효소의 유전자와 단백질 및 α-1,3 푸코실올리고당 생산에의 응용
WO2018066872A1 (ko) 3-페닐-2,3,4,8,9,10-헥사히드로피라노[2,3-f]크로멘 유도체 및 이의 광학 이성질체 합성 방법
WO2015199386A1 (ko) 가용성 단백질 발현량이 증대된 헬리코박터 파일로리 유래 α-1,2 푸코실 전달효소의 유전자와 단백질 및 α-1,2 푸코실올리고당 생산에의 응용
WO2022163951A1 (ko) 신규한 단백질 변이체 및 이를 이용한 l-라이신 생산 방법
WO2022139493A1 (ko) TGF-β 신호전달을 억제할 수 있는 신규한 펩타이드 및 이의 용도
WO2014027832A1 (ko) 대장염 예방 또는 치료용 조성물
WO2020105873A1 (ko) 인간 알파코로나바이러스 전장유전체 증폭을 통한 진단키트 및 전장 유전체 서열 확인 방법
EP2723871A1 (en) Enhanced heterologous protein production in kluyveromyces marxianus
WO2020036382A1 (ko) Sglt 저해제의 합성에 유용한 중간체의 제조
WO2021235713A1 (ko) 유산균을 함유하는 미세먼지 자극에 의한 호흡기 질환 또는 염증 질환 치료용 조성물
WO2018182361A1 (ko) CRISPR/Cas 시스템과 재조합 효소 및 단일가닥 올리고디옥시리보핵산을 이용한 코리네박테리움 변이균주 제조방법
WO2022225075A1 (ko) 신규한 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
WO2016122058A1 (ko) 세포성점균을 이용한 인간 페닐알라닌 수산화효소의 활성분석 방법
WO2013183961A1 (ko) 프로토파낙사트리올 생합성 유전자 및 촉진용 조성물
WO2023121426A1 (ko) 레바우디오사이드의 생산
WO2023038250A1 (ko) 폴리올 또는 점액성 고분자의 생성능이 조절된 재조합 미생물
WO2015156645A1 (ko) 호모세린계 화합물의 처리 공정
WO2017010790A1 (ko) 나노입자-유리체 기반 단백질 복합체를 유효성분으로 포함하는 혈관신생억제용 조성물 및 이의 용도

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795958

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2013515263

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13704210

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11795958

Country of ref document: EP

Kind code of ref document: A2