WO2011155491A1 - 医療用チューブ、およびその製造方法 - Google Patents

医療用チューブ、およびその製造方法 Download PDF

Info

Publication number
WO2011155491A1
WO2011155491A1 PCT/JP2011/063051 JP2011063051W WO2011155491A1 WO 2011155491 A1 WO2011155491 A1 WO 2011155491A1 JP 2011063051 W JP2011063051 W JP 2011063051W WO 2011155491 A1 WO2011155491 A1 WO 2011155491A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
layer
coil
outer layer
medical
Prior art date
Application number
PCT/JP2011/063051
Other languages
English (en)
French (fr)
Inventor
仁 田原
哲年 坂田
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to CN201180028368.3A priority Critical patent/CN102933253B/zh
Priority to EP11792448.0A priority patent/EP2581104A4/en
Priority to JP2012519397A priority patent/JP5900331B2/ja
Priority to KR1020127032079A priority patent/KR101861866B1/ko
Priority to US13/702,896 priority patent/US9011745B2/en
Publication of WO2011155491A1 publication Critical patent/WO2011155491A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0009Making of catheters or other medical or surgical tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0009Making of catheters or other medical or surgical tubes
    • A61M25/0012Making of catheters or other medical or surgical tubes with embedded structures, e.g. coils, braids, meshes, strands or radiopaque coils
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0043Catheters; Hollow probes characterised by structural features
    • A61M25/005Catheters; Hollow probes characterised by structural features with embedded materials for reinforcement, e.g. wires, coils, braids

Definitions

  • the present invention relates to a medical tube that is thin, flexible, excellent in kink resistance and tensile strength, and a method for producing the same.
  • a catheter inserted percutaneously into a blood vessel is guided to organs such as the brain, heart, and abdomen, and administration of therapeutic agents, embolic substances, contrast agents, etc., injection, delivery of endoscopes, other catheters, guide wires, etc.
  • the medical practice of sucking blood clots and the like has been conventionally performed.
  • medical advances have led to the treatment of smaller peripheral blood vessels and less invasive treatments using catheters with smaller outer diameters.
  • Catheters are needed.
  • the performance of the catheter includes pushability, which reliably transmits the push force of the operator to the tip of the catheter, and reachability to the thinly bent peripheral blood vessels.
  • the inner diameter of the catheter is very important for aspiration, delivery of endoscopes and other catheters.
  • resin tubes with a coil structure as a reinforcing layer have been studied as a tube excellent in kink resistance and lumen maintenance at high bends. It has excellent cavity maintenance, but is inferior in tensile strength. Therefore, in order to ensure the tensile strength of the tube using the coil structure, it is necessary to make the resin tube very thick or to provide a highly rigid resin. However, if the wall thickness is increased, the outer diameter becomes larger or the inner diameter becomes smaller, so that it cannot be inserted into thinner peripheral blood vessels, cannot perform minimally invasive treatment, and the performance of injectability, aspiration property, delivery property is deteriorated, etc. When a rigid resin is used, the toughness is generally low, the resin layer is cracked at the time of high bending, the kink resistance and tensile strength are lowered, and there is a problem that it cannot be used safely.
  • Patent Document 1 describes a vascular catheter that further includes an axial member extending along a reinforcing layer made of a blade. By inserting an axial member, the shaft can be prevented from extending. The axial member is also not fixed to any polymer layer adjacent to the blade. However, this method certainly prevents the axial extension, but for higher tensile forces, it is necessary to increase the strand strength of the axial member, and the bending rigidity becomes unidirectional. There is a possibility. Further, in the embodiment of Patent Document 1, it is described that in the manufacturing process, the composite subassembly including the axial member, the blade, the polymer layer, and the like is heated to fuse and compress each component.
  • Patent Document 2 a method of providing a braided structure outside the coil structure is disclosed (Patent Document 2).
  • Patent Document 2 a metal flat square braid is formed on the outside of a metal flat plate coil and a resin coating layer is formed on the outside thereof. The purpose is to achieve both the compression resistance during bending due to the coil structure and the tensile resistance due to the braided structure.
  • the thickness or width of the strands constituting the braid is increased against a high tensile force, the coil structure Since the compression resistance at the time of bending is reduced, it is difficult to apply to the catheter tip side where flexibility and high tensile force are required.
  • An object of the present invention is to stably provide a medical tube which is thin, flexible, excellent in kink resistance and tensile strength by an easy manufacturing method.
  • the medical tube is manufactured by placing and heating at a molding temperature lower than the melting point of the outer tube, and fixing the outer tube on the coil layer through the intermediate layer in a slidable state. Provided a method. According to these, it is possible to stably provide a thin, flexible, medical tube excellent in kink resistance and tensile strength by an easy manufacturing method.
  • the manufacturing method is characterized in that the outer layer tube is contracted to have an inner diameter of 10% or less when heated at the molding temperature. According to this, it becomes possible to produce a medical tube at a low cost, and it is not limited to the material of the outer layer tube as long as it has such characteristics, and it is easy to manufacture a thin, flexible medical tube. Can be provided by the method.
  • the method for producing the medical tube is characterized in that the coil layer is a closely wound coil. According to this, it becomes possible to provide a medical tube with improved bending rigidity and longitudinal pushing force.
  • the method for producing the medical tube is characterized in that the coil layer is a pitch winding coil. According to this, it becomes possible to provide a medical tube that is more flexible and has improved kink resistance.
  • the method of manufacturing the medical tube wherein the material of the intermediate layer is more flexible than the material of the outer layer tube; (14) The method for producing the medical tube, wherein the intermediate layer is made of a material having a melting point lower than that of the outer layer tube; (15) The method for producing the medical tube, wherein the molding temperature is higher than the melting point of the material constituting the intermediate layer; (16) The method for producing the medical tube, wherein the outer layer tube and the intermediate layer are two-layer tubes before being coated on the coil layer; (17) The method for manufacturing the medical tube is characterized in that the material of the intermediate layer is made of the same material as the outer layer tube. According to these, disorder of a coil can be prevented and it becomes possible to provide a medical tube stably.
  • the method for producing the medical tube is characterized in that a second outer layer made of a material having a lower melting point than the outer layer tube is provided outside the outer layer tube. According to this, it can join easily with other tubes etc., and it becomes possible to apply a medical tube to medical assemblies and catheters of various shapes.
  • the method for producing the medical tube is characterized in that the outer layer tube is made of a thermoplastic elastomer. According to this, it is possible to provide a medical tube having high toughness and better kink resistance and flexibility.
  • a medical tube manufactured by any one of the above manufacturing methods (21) Provided is a medical device having at least a part of the medical tube. According to these, it is possible to provide a thin, flexible, medical tube having kink resistance and tensile strength, and a medical device using the medical tube by an easy manufacturing method.
  • the present invention it is possible to stably provide a thin, flexible, medical tube excellent in kink resistance and tensile strength by an easy manufacturing method. As a result, it can be effectively used as a component part of medical devices such as various catheters.
  • the present invention is a method for manufacturing a medical tube, wherein a coil layer is inserted inside an outer layer tube made of a resin, heated at a molding temperature lower than the melting point of the outer layer tube, and the outer layer tube is placed on the coil layer. It is related with the manufacturing method of the medical tube characterized by carrying out contact fixation in the state which can be slid. This manufacturing method is defined as a first manufacturing method.
  • contact and fix in a slidable state means that the medical tubes are in contact with each other and do not slide against each other due to frictional force or the like when no stress such as elongation or bending is applied to the medical tube. However, when stress is applied, they can slide independently of each other before cracking or breaking the outer tube, more preferably before plastic deformation of the outer tube occurs. means.
  • a coil layer is inserted inside an outer layer tube made of resin, and the melting point of the outer layer tube (in the present invention, the melting point of the resin constituting the outer layer tube is determined for convenience.
  • the melting point of the outer tube may be referred to as the heat deformation temperature described later. Therefore, the outer layer tube can be molded while maintaining the uniform thickness of the original tube regardless of the winding shape of the coil layer on the inside or the shape of the coil wire, and the outer layer tube is a single layer resin tube. The tensile strength and tensile elongation as can be ensured.
  • FIG. 1 shows an example of an embodiment of a medical tube obtained by the method for manufacturing a medical tube of the present invention.
  • the example of this embodiment is an example in the case of using a pitch winding coil to be described later as the coil layer.
  • the medical tube 101 is configured to contact and fix the coil layer 103 made of a pitch-wound coil inside the single-layer outer layer tube 102 in a slidable state.
  • the outer tube 102 has a substantially uniform thickness and a constant inner diameter with almost no change.
  • FIG. 2 is a partial enlarged view of the cross section in the axial direction of the medical tube for another example of the embodiment of the medical tube obtained by the manufacturing method of the present invention.
  • the recess 105 is formed, but the thickness of the outer tube 102 is almost uniform regardless of the presence or absence of the coil layer disposed inside. .
  • the thickness of the outer layer tube 102 is substantially maintained also in the portion 104A that contacts the coil wire end portion inside the outer layer tube 102.
  • the resin basically does not flow in the axial direction, and thus the thickness of the outer tube in each cross section perpendicular to the axial direction is substantially constant regardless of the presence or absence of the coil wire.
  • FIG. 3 shows an axial direction of a medical tube obtained by a manufacturing method different from the manufacturing method of the medical tube of the present invention, that is, when the outer layer tube is heated at a molding temperature higher than its melting point.
  • FIG. 2 is a partially enlarged view of the cross section of FIG.
  • the thickness of the outer tube varies at the end of the coil wire. There is a problem that the elongation decreases locally. As shown in FIG. 3, the thickness of the outer tube 102 is locally reduced.
  • the thickness of the outer layer tube 102 is reduced in the portion 104B that contacts the coil wire end portion inside the outer layer tube 102.
  • the resin melts so that the resin at the coil wire end portion easily flows to the portion without the coil wire, and locally at the portion 104B that contacts the coil wire end portion inside the outer layer tube 102. This is because the thickness of the outer tube 102 is reduced. This phenomenon is particularly likely to occur when the winding shape of the coil layer and the shape of the coil wire are respectively a pitch winding coil and a flat wire, which will be described later, or when a force is applied from the outside of the outer layer tube, which will be described later.
  • the outer layer tube when the outer layer tube is heated at a molding temperature higher than its melting point, the outer layer tube needs to be made considerably thicker in order to ensure tensile strength and tensile elongation.
  • increasing the outer diameter to increase the wall thickness increases invasiveness, making peripheral treatment of thinner body lumens impossible, and reducing the inner diameter reduces drug injectability, thrombus aspiration, and other catheters. There arises a problem that remarkably impairs the deliverability of the.
  • the force when the outer layer tube is kinked becomes strong, and the coil layer is kinked, causing a problem that the operation cannot be performed continuously.
  • Patent Document 1 when heated at a molding temperature that fuses a member including a polymer layer during molding, it is thin, flexible, and kink resistant as intended by the present invention. It was difficult to produce a medical tube excellent in properties and tensile strength.
  • the molding temperature may be lower than the melting point of the resin constituting the outer tube, but is preferably lower than the melting point and higher than the thermal deformation temperature (load deflection temperature).
  • the thermal deformation temperature the deflection temperature under load
  • the outer layer tube is heated at a predetermined molding temperature and the inner diameter shrinks to 10% or less, the outer layer tube is strongly contacted (adhered) by the coil layer and further contracted more uniformly. It becomes possible.
  • the outer tube when an external force is applied to reduce the inner diameter of the outer tube, the outer tube is contracted more uniformly in the radial direction because the molding temperature is higher than the thermal deformation temperature (the deflection temperature under load) of the outer tube. This is preferable.
  • the adhesion between the outer surface of the coil constituting the coil layer and the inner surface of the outer layer tube becomes stronger, and the kink resistance can be further improved.
  • the outer layer tube is slidably contacted and fixed on the coil layer by the predetermined operation.
  • the state fixed in a slidable state between the outer layer tube and the coil layer is formed, when the medical tube obtained by the manufacturing method of the present invention is pulled and stretched, the coil The outer layer tube is not fixed and can behave differently, and the outer layer tube can ensure the tensile strength and tensile elongation as a single layer resin tube.
  • the coil layer and the outer layer tube behave differently, and good kink resistance can be ensured.
  • adheresion means that when a stress such as a tensile stress is generated on the formed medical tube, the outer layer tube is not cracked or broken, or before the outer tube is plastically deformed. It is said that they are fixed to each other in a state where they cannot slide and take different behaviors.
  • the tensile strength is low, there is a risk of breaking immediately. Even if the tensile strength is high, if the tensile elongation is low, it may not be able to withstand rapid removal. Further, in the method of introducing an adhesive between the coil and the outer layer tube, for the purpose of preventing the adhesive from spilling into the lumen of the medical tube, the inner layer is present, or the coil winding shape is described later. The structure is limited.
  • the medical tube obtained by the manufacturing method of the present invention when the medical tube is pulled and stretched, the outer surface of the coil and the inner surface of the outer layer tube are contacted and fixed in a slidable state. Therefore, it takes different behavior, and it is possible to receive tensile stress in the entire outer layer tube, and it is prevented from being stretched locally at a specific part of the outer layer tube, it is thin, flexible, kink resistance and tensile strength It will be excellent. Further, since it is not necessary to use an adhesive, there is no need to provide an inner layer for the purpose of preventing the adhesive from spilling into the lumen of the medical tube, or to limit the coil constituting the coil layer to a closely wound coil. .
  • the present invention it is not necessary to use an adhesive as described above, but the outer tube and the coil layer are bonded with an adhesive or the like within a range where the medical tube is not broken or the outer tube is not plastically deformed. It may be fixed. Further, when a medical device having a medical tube obtained by the manufacturing method of the present invention described later is manufactured, the end of the medical tube is fixed with an adhesive or the like, and the outer tube and the coil layer are connected to each other. You may fix in a part. Moreover, in this invention, you may provide an inner layer inside a coil layer in the range which can ensure the internal diameter according to the use of a medical tube.
  • a structure in which the coil outer surface and the inner surface of the outer layer tube are hardly in contact with each other simply by arranging the coil in the outer layer tube can be considered.
  • the coil bends in a free state, and thus the coil is displaced, folded, or overlapped. In such a state, a change occurs in the inner and outer diameters of the tube, or the tube is kinked, so that it is almost impossible to continue the operation.
  • the configuration of the coil layer used in the method for manufacturing a medical tube according to the present invention is not particularly limited.
  • the strand shape may be, for example, a general round line or a flat line described later.
  • the winding shape may be, for example, a tight winding described later or a pitch winding.
  • each of these structures may differ depending on the portion of the medical tube.
  • the configuration of the coil layer can be appropriately selected according to the use of the medical tube.
  • the wire shape is preferably a flat wire
  • the winding shape is preferably close winding, but it is sufficient that the winding shape has at least one of a flat wire and dense winding.
  • the wire shape is preferably a flat wire.
  • the medical tube obtained by the manufacturing method of the present invention is medical, although it is thin. The bending rigidity of the medical tube increases, and the pushing force in the longitudinal direction of the medical tube increases.
  • the above-mentioned flat wire is a shape having a thickness and a width, not a circular cross section, and is generally obtained by rolling a strand having a circular cross section called a round wire.
  • the flat wire referred to in the present invention includes a wire called a flat wire generally called a flat wire, whose upper and lower surfaces are generally parallel and whose both ends are rounded, and a flat wire whose cross section is generally rectangular.
  • the above-mentioned tight winding is a winding shape wound so that adjacent strands are at least close to or in contact with each other.
  • a wire shape Is preferably a coil layer having a configuration in which the wire is a flat wire and / or the winding shape is a close winding.
  • the tight winding one having an initial tension is more preferable.
  • a coil layer having a configuration in which the wire shape is a flat wire and the winding shape is a close-contact winding having an initial tension is more preferable.
  • the medical tube obtained by using the coil layer having such a configuration is particularly suitable as a proximal shaft of a catheter that may be bent with a very high degree of bending during a surgical operation in a clinical field.
  • the winding shape is preferably pitch winding.
  • the pitch winding is a winding shape wound so that there is a gap between adjacent strands.
  • the gap between the coil wires is the same as or longer than the width of the coil wires.
  • the pitch is 2 t or more when the width of the wire is t.
  • the thickness of the outer layer tube does not vary as described above, and the element constituting the coil layer does not occur.
  • the outer surface of the wire and the inner surface of the outer tube in a slidable state.
  • it is not stretched locally at a specific part of the outer layer tube, and the tensile strength and the tensile elongation can be secured, so that it has kink resistance while maintaining the flexibility of the medical tube. It becomes possible to have a structure, and even when inserted into the periphery of a very bent body lumen, the medical tube can be smoothly inserted without kinking.
  • the medical tube obtained by the production method of the present invention has the characteristics as described above, and thus is particularly suitable as a distal shaft of a catheter.
  • the material of the wire constituting the coil layer used in the present invention various materials such as metal and resin can be used. Particularly, stainless steel, or a material having high radiopacity, such as tungsten, platinum, iridium, and gold. It is preferable that it is a metal. Of these, stainless steel spring steel, tungsten, etc., which have high tensile elastic modulus of the strands, are particularly preferable. By using such an element wire, it is possible to produce a medical tube that is thinner and has improved kink resistance.
  • the resin constituting the outer tube used in the present invention is not particularly limited.
  • a medical tube manufactured using an outer layer tube is incorporated in a medical device such as a catheter and joined to another member, considering the joining method such as welding or adhesion, the member constituting the medical device is used. What is necessary is just to select suitably collectively.
  • resins that can be used for the outer layer tube include nylons 6, nylon 66, nylon 12, polyamides such as polyamide elastomer, olefins such as polyethylene, polypropylene, polymethyl methacrylate, and modified polyolefin, polyethylene terephthalate, polybutylene terephthalate, Examples thereof include, but are not limited to, polyesters such as polyester elastomer, polyurethane, polyurethane elastomer, polyether ether ketone, polymer blends, polymer alloys, and the like.
  • those that can be used for extrusion molding are preferable from the viewpoint of easy manufacture of the outer-layer tube, and thermoplastic elastomers from the viewpoint of ease of joining with other various tubes. From the viewpoint of increasing the toughness at the time of high bending, a polyamide elastomer and a polyurethane elastomer are more preferable.
  • the above resin may contain various additives such as a contrast agent, a plasticizer, a reinforcing agent and a pigment in addition to the polymerization aid used at the time of polymerization.
  • the outer layer tube can be formed by a known method such as injection molding or extrusion molding. When a long outer layer tube is formed, it may be formed by extrusion. Further, when the inner diameter of the outer tube is reduced when heated at a predetermined molding temperature, the outer tube is formed by extrusion molding by normal pulling in air from the viewpoint of successfully shrinking the outer tube due to residual stress. It is preferable.
  • the extrusion molding is a general method that does not use a special process (such as an electron beam irradiation process or a core material coating), and thus is advantageous in terms of manufacturing ease and manufacturing cost. Furthermore, according to extrusion molding, it is possible to produce a thin-walled tube that maintains the original flexibility of the material, and thus it is possible to produce a very thin and flexible medical tube.
  • a 2nd outer layer can be formed in the outer side of an outer layer tube.
  • a material whose melting point of the material constituting the second outer layer hereinafter simply referred to as the melting point of the second outer layer
  • the melting point of the second outer layer By heating at a temperature higher than the melting point of the second outer layer and lower than the melting point of the outer layer tube, it is possible to melt only the second outer layer and join another tube to the outer surface of the medical tube by welding or the like.
  • the material constituting the second outer layer include the resin constituting the outer layer tube.
  • the manufacturing method is not limited, but from the viewpoint of ease of manufacturing, before the outer tube and the coil layer are slidably contacted and fixed. Furthermore, it is preferable to form a second outer layer by forming a second outer layer on the outer side of the outer layer tube.
  • Such a double-layer tube can be manufactured by multilayer extrusion molding (coextrusion molding), dip molding, or the like.
  • the inner diameter of the double-layer tube (which is also the inner diameter of the outer-layer tube) is reduced when heating at a predetermined molding temperature, it is preferably produced by multilayer extrusion molding by normal pulling in air into the lumen.
  • the second outer layer is formed outside the outer tube, from the viewpoint of minimizing the outer diameter of the medical tube as much as possible, the total thickness of the outer tube and the second outer layer is It is preferable that the second outer layer be approximately the same as the case where the second outer layer is not provided. Furthermore, the second outer layer may be provided over the entire length of the medical tube or may be provided partially.
  • the method for heating and fixing the outer layer tube on the coil layer in a slidable state by heating at a predetermined molding temperature is not particularly limited, and examples thereof include a method of coating the outer layer tube on the coil layer. Further, as an example of coating the outer layer tube on the coil layer in this way, for example, when heated at a predetermined molding temperature, the inner diameter of the outer layer tube in which the coil layer is inserted is reduced by 10% or less.
  • the method of making it is mentioned.
  • a method for causing such reduction is not particularly limited, and examples thereof include a method using residual stress when the outer tube itself is molded, and a method of applying an external force that reduces the inner diameter of the outer tube.
  • the reduction ratio in the above-mentioned “reducing the inner diameter of the outer layer tube to 10% or less” is the inner diameter of the outer layer tube before inserting the coil layer and heating at a predetermined temperature, and the outer layer tube is placed on the coil layer. Means a reduction ratio in comparison with the inner diameter of the outer layer tube at the portion in contact with the coil layer after being fixed in a slidable state.
  • the residual stress when the outer layer tube or the like is molded is reduced.
  • the inner diameter of the outer layer tube can be reduced.
  • the residual stress when a normal tube is molded has been the cause of changes in the dimensions and shape of the tube due to subsequent assembly, sterilization, and heat treatment of medical devices. Work to remove as much as possible was carried out.
  • an outer layer tube having an inner diameter larger than that of the coil layer can be used.
  • the outer layer tube and the coil can be contacted and fixed in a slidable state by being arranged inside the outer layer tube. Even when residual stress remains when it is molded into a desired shape, it is possible to relax the stress because it is heated to a predetermined molding temperature.
  • the outer layer tube can be manufactured by extrusion molding by ordinary pull-down without using a special process, so that the outer layer tube can be manufactured at low cost. Further, by performing multilayer extrusion molding by pulling down, it becomes very easy to use the double-layer tube having the second outer layer in place of the single-layer outer layer tube.
  • the outer tube is a tube that causes shrinkage of 1% or more and 10% or less of the inner diameter when heated at the molding temperature. If the outer layer tube has such a shrinkage rate, it can be produced by ordinary extrusion molding, and since the change in the thickness after shrinkage is small, a thin medical tube can be produced. Further, when the shrinkage rate is less than 1%, there is a tendency that the coil is likely to be disturbed when the coil is inserted into the outer layer tube, and thus a stably intended medical tube can be produced. It tends to be difficult.
  • an external force for reducing the inner diameter of the outer layer tube may be applied.
  • the outer layer tube is in close contact with the coil, so that the outer layer tube can be more closely attached to the coil layer, and the kink resistance of the resulting medical tube can be further improved.
  • the roundness of the outer layer tube is low, it is possible to forcibly contact the coil over the entire circumference in the radial direction by an external force, so that a medical tube having stable kink resistance can be produced.
  • any outer layer tube can be used regardless of the method of forming the outer layer tube to be used.
  • Examples of methods for applying such an external force include a method in which a heat-shrinkable tube is covered from the outside of the outer tube, a method in which an external force is applied from the outside of the outer tube by a mold, a method in which the outer tube is stretched, and an outer tube in the die. And the like, and the like.
  • a method of covering the heat shrinkable tube, a method of applying an external force with a mold, and a method of pulling out from the die are further preferable. These methods are preferably performed while heating the heat-shrinkable tube, the mold, and the die so that the temperature of the outer tube becomes a molding temperature lower than its melting point.
  • a heat-shrinkable tube can be made to shrink along the shape of the inner tube, and a mold or die can be used to form a medical tube of any shape by setting the inner shape.
  • these molding methods can also be used in combination. For example, after the inner diameter is shrunk by the residual stress of the outer layer tube itself, an additional external force may be applied using a heat shrinkable tube or a mold. After the outer layer tube is stretched to shrink the inner diameter, an external force may be additionally applied with a heat shrinkable tube or a mold.
  • the present invention employs a method in which a heat-shrinkable tube is placed on the outer side of the outer layer tube and heated at a molding temperature lower than the melting point of the outer layer tube.
  • the tube produced by the conventional method performed at a high temperature as described above cannot exhibit the excellent performance as the medical tube obtained by the method for producing the medical tube according to the present invention.
  • the heat shrink temperature may be equal to or lower than the molding temperature, and is preferably lower than the molding temperature.
  • the outer tube or the intermediate layer can be more firmly and securely adhered, and the kink resistance can be further improved.
  • the shrinkage rate of the heat-shrinkable tube is not particularly limited, and a heat-shrinkable tube that can be molded so as to have a desired outer diameter and shape of a medical tube at a predetermined molding temperature may be appropriately selected.
  • the resin when external force is applied from the outer side of the outer layer tube by a mold, the resin is generally applied at a temperature higher than the melting point of the resin in the present technical field, as in the case of the method using the heat shrinkable tube. It was melted and molded.
  • the outer layer tube and the coil can be slidably contacted and fixed by disposing the mold further outside the outer layer tube and heating at a molding temperature lower than the melting point of the outer layer tube. did. In this case, it is preferable that the mold can be heated at a molding temperature lower than the melting point of the outer layer tube.
  • the cross-sectional shape of the mold can be matched to the shape of the medical tube to be molded, and any shape such as a perfect circle, an ellipse, or a dharma shape may be used.
  • the mold preferably includes a mechanism that gradually decreases the inner diameter. By providing such a mechanism, the coil and the outer layer tube can be more closely attached.
  • a mold mechanism for example, a two-plate mold is used, and a coil layer is provided between a movable mold and a fixed mold designed to form a space corresponding to a desired tube shape.
  • the outer layer tube is arranged, the movable mold is operated, the distance between the movable mold and the fixed mold is reduced, and finally the mold configured to have the desired tube shape in the space
  • the die can be heated at a molding temperature lower than the melting point of the outer tube. According to this configuration, it is possible to apply an external force by pulling out the die from the die while heating the outer layer tube at the molding temperature, and the outer layer tube can be brought into contact with the coil more strongly.
  • a die include a die having a continuous hollow portion that is open at both ends and continuously or stepwise reduces from one opening to the other opening.
  • the shape of one opening of the die or the vicinity thereof is designed to have an inner diameter portion corresponding to the outer diameter of the desired medical tube.
  • the shape of the other opening is not particularly limited as long as the outer layer tube before molding can pass therethrough.
  • the overall structure of the die may be a separable structure or a non-separable structure as long as the shape of the hollow portion corresponding to the desired shape of the medical tube can be formed.
  • an outer layer tube having a coil layer disposed therein is inserted from one opening of the die into a hollow portion of the die set at a predetermined molding temperature. Then, the outer tube or the like is passed through the hollow portion and pulled out from the other opening having a desired shape. Thereby, the medical tube shape
  • the above die and the molding method using the die are examples, and are not limited to these, and can be appropriately changed.
  • the main structure of the first manufacturing method and the medical tube obtained by the manufacturing method in the present invention is generally as described above, but other matters are the same as those of the second manufacturing method of the present invention described later. After describing the main configuration, the first and second manufacturing methods and items common to the medical tubes obtained by these manufacturing methods will be described together.
  • the present invention is a method of manufacturing a medical tube having an intermediate layer inside an outer tube made of a resin, and further having a coil layer inside the intermediate layer, wherein the intermediate layer and the coil layer are formed in the outer layer tube.
  • a heating tube at a molding temperature lower than the melting point of the outer layer tube, and the outer layer tube is slidably fixed on the coil layer via the intermediate layer. It relates to a manufacturing method.
  • This manufacturing method is defined as a second manufacturing method. According to such a manufacturing method, it is possible to easily provide a thin, flexible, medical tube excellent in kink resistance and tensile strength without using a special structure or manufacturing method.
  • the medical tube obtained by the manufacturing method (2nd manufacturing method) of this invention is being fixed on the coil layer in the state which an outer layer tube can slide through an intermediate
  • “fixing the outer layer tube on the coil layer in a slidable state via the intermediate layer” means that in the state where stress such as expansion and bending is not applied to the medical tube, They are fixed so that they do not slide against each other due to frictional forces, etc., but when stress is applied, before the outer layer tube cracks or breaks, more preferably before the outer layer tube undergoes plastic deformation This means that the coil layer and the outer tube can slide independently of each other through the intermediate layer. “Through the intermediate layer” means that when the intermediate layer slides with the coil layer, it may slide with the outer layer tube.
  • the intermediate layer and the coil layer or the outer layer tube are joined to each other so that they can be separated. It is a concept that includes the state of being.
  • the coil layer and the outer layer tube used in the second manufacturing method and the molding temperature can adopt the same configuration and molding temperature as in the first manufacturing method, and thus detailed description is omitted in this manufacturing method.
  • the main features of the method are described below.
  • the intermediate layer is preferably disposed uniformly in the longitudinal direction of the medical tube.
  • middle layer you may comprise as a tube of an intermediate
  • the intermediate layer can be easily disposed between the coil layer and the outer tube.
  • a tube of a single intermediate layer very thin for example, a wall thickness of about 10 ⁇ m or less
  • the intermediate layer is used as an inner layer, and an outer layer is formed. Since the tube has the shape of a two-layer tube with the outer layer as the outer layer, it is possible to make a thin intermediate layer that cannot be realized with a single intermediate layer tube.
  • such a double-layer tube can be manufactured by multilayer extrusion molding (coextrusion molding), dip molding, or the like.
  • multilayer extrusion molding coextrusion molding
  • dip molding dip molding
  • the residual stress is used to place an intermediate layer on the coil layer.
  • the outer layer tube is fixed in a slidable state, it is preferable to form the two-layer tube by multilayer extrusion molding by pulling down.
  • the outer layer tube can ensure the tensile strength and tensile elongation as a single-layer resin tube.
  • the molding temperature may be a temperature lower than the melting point of the outer tube, but as described in the first manufacturing method, it is further higher than the thermal deformation temperature (load deflection temperature) of the outer tube. It is preferable.
  • the molding temperature as described above is also adopted in the second manufacturing method.
  • middle layer For example, resin which comprises the above-mentioned outer-layer tube can be used.
  • fusing point of resin which comprises an outer layer tube from the relationship with the molding temperature in this invention, and it is lower than melting
  • a resin having a melting point is more preferable.
  • the intermediate layer will behave similarly to the outer tube.
  • a medical tube having a cross-sectional structure as shown in FIG. Can be manufactured.
  • the portion of the outer layer tube 102 in FIGS. 1 and 2 has a two-layer structure. More preferably, the molding temperature is higher than the heat distortion temperature of the outer layer tube and the intermediate layer.
  • the molding temperature is lower than the melting point of the outer tube and higher than the melting point of the intermediate layer
  • only the intermediate layer is melted.
  • the coil shape of the wire constituting the coil layer, etc. for example, when using a pitch winding coil as the coil layer and reducing the inner diameter of the outer tube, The intermediate layer enters between the strands of the pitch winding coil, and the pitch winding coil can be stably held.
  • An example of this case is schematically shown in FIG. As shown in FIG.
  • the thickness of the outer layer tube 202 of the medical tube 201 is substantially constant, and an intermediate layer 204 and a coil layer 203 that is a pitch winding coil are arranged inside the outer layer tube 202.
  • the intermediate layer 204 is disposed between the strands 205 of the pitch winding coil.
  • the intermediate layer 204 may or may not remain between the outer peripheral surface of the strands of the pitch winding coil constituting the coil layer 203 and the inner peripheral surface of the outer layer tube 202.
  • FIG. 4 shows a remaining example.
  • the intermediate layer when the melting point of the intermediate layer is lower than the molding temperature, the intermediate layer generally tends to be joined (welded) to the coil layer and the outer layer tube. It is in a joining state that is not performed. Therefore, the intermediate layer is melted and joined to the coil layer.
  • the winding shape of the wire constituting the coil layer is pitch winding, the coil pitch can be prevented from being disturbed and stably used for medical purposes.
  • a tube can be manufactured. From such a viewpoint, the molding temperature is preferably higher than the melting point of the intermediate layer.
  • the intermediate layer can easily control the degree of bonding between the outer layer tube and the coil layer, unlike the commonly used adhesive.
  • the flexibility is higher than that of the resin constituting the outer layer tube.
  • middle layer is demonstrated.
  • the melting point of the intermediate layer is lower than the molding temperature, and the material of the intermediate layer is more flexible than the material of the outer layer tube.
  • the joining degree is weak, and the joining between the intermediate layer and the coil layer is peeled off, and the coil and the outer layer tube can behave differently. This phenomenon is more conspicuous as the wall thickness of the intermediate layer is thinner than the wall thickness of the outer tube. Therefore, the thinner the intermediate layer, the better.
  • the bonding degree between the intermediate layer and the outer tube is weak, and when the medical tube is pulled and stretched, the bonding between the outer tube and the intermediate layer is peeled off.
  • the coil layer and the outer layer tube can behave differently. Even in the case of different types of materials, the degree of bonding between the intermediate layer and the coil layer may be weak as in the case of the same type of materials. Also from such a viewpoint, it is preferable that the intermediate layer is thinner than the outer tube and the resin has high flexibility.
  • the outer layer tube when the stress is applied, the outer layer tube preferably starts to be plastically deformed before the outer layer tube cracks or breaks. It is preferable to peel off before. With such peeling strength, the coil and the outer layer tube can behave differently, and the outer layer tube can ensure the tensile strength and tensile elongation as a single-layer resin tube.
  • the same kind of material as used herein refers to polyamide elastomers, polyurethane elastomers, and the like.
  • the inner diameter of the outer layer tube shrinks to 10% or less.
  • the reduction ratio is determined by the inner diameter of the outer layer tube before the coil layer is inserted and the coil layer after the outer layer tube is slidably fixed on the coil layer by heating at a predetermined temperature. This means a reduction ratio in comparison with the inner diameter of the portion adjacent to the outside.
  • the method of heating at a predetermined temperature and fixing the outer layer tube on the coil layer in a slidable state via the intermediate layer is not particularly limited, but the method described in the first manufacturing method is adopted. be able to.
  • the intermediate layer is the inner layer
  • the outer layer tube is A two-layer tube as an outer layer and a three-layer tube having a second outer layer outside the two-layer tube may be used.
  • the residual stress of each tube is used in the same manner as in the first manufacturing method, or a heat-shrinkable tube, mold, die
  • an external force such as by stretching a two-layer tube or a three-layer tube
  • the inner diameter of the outer layer tube ie, the two-layer tube or the three-layer tube
  • the outer layer tube is slidably contacted on the coil layer, and in the second manufacturing method, the outer layer tube is slid on the coil layer via the intermediate layer. Fix in a movable state. Therefore, in any of the manufacturing methods, the outer layer tube and the coil layer, or the intermediate layer and the coil layer are fixed so as to contact each other. As these contact states, it is preferable that the outer layer tube and the coil layer, or the intermediate layer and the coil layer are in contact with each other in approximately half of the circumferential length in the radial cross section of the medical tube.
  • the tensile elongation and tensile strength referred to in the present invention refer to the tensile elongation at break and tensile breaking strength.
  • the maximum displacement and load when a portion other than the coil of the medical tube is broken. Point. This is because the tensile length at which the coil breaks is very large, the breaking elongation and breaking strength of the coil are less important in the medical tube, and the breaking elongation and breaking strength of parts other than the coil are important in the medical tube. Is high.
  • the melting point in the present invention refers to a melting point measured by the method of ASTM D3418.
  • the heat deformation temperature (deflection temperature under load) in the present invention refers to the heat deformation temperature (deflection temperature under load) measured by the method of ISO 75.
  • the medical tube according to the present invention is thin, flexible, excellent in kink resistance and tensile strength, and can be easily joined to other tubes and other members, so it can be widely applied to medical devices such as catheters. is there.
  • the present invention can be applied not only to the proximal shaft and the distal shaft of the catheter as described above but also to a medical device using a guide wire lumen or other tube.
  • a thin shaft can be used, so that the lumen can be widened and the deflation time of the balloon can be shortened.
  • a thin shaft can be used, so that the lumen can be widened and the amount of drug injected can be increased.
  • a thin shaft When used as a catheter shaft for a thrombus suction catheter, a thin shaft can be used, so that the lumen can be widened and the amount of thrombus sucked can be increased.
  • a delivery catheter shaft such as other catheters
  • a thin-walled shaft allows a wider lumen and delivery of a larger catheter or the like.
  • the outer diameter of the catheter when the lumen is the same as the conventional one, the outer diameter of the catheter can be reduced, enabling a less invasive treatment and a treatment in a thinner peripheral body lumen. .
  • the medical tube according to the present invention When applying the medical tube according to the present invention to these catheters, it is also possible to have an inner layer in the inner cavity of the coil layer for the purpose of smoothing the inner lumen of the medical tube. Particularly when the winding shape of the coil is pitch winding, by having such an inner layer, it becomes possible to pass the guide wire, other catheter, and the like more smoothly through the medical tube lumen.
  • the inner layer, the outer layer tube, the coil layer, and an intermediate layer provided as necessary The thickness of the second outer layer may be adjusted as appropriate.
  • Example 1 The coil layer used was a tightly wound coil made of a stainless steel flat wire (thickness 0.10 mm, width 0.20 mm) having an inner diameter of 1.00 mm and a length of 300 mm.
  • the outer layer tube is made of polyurethane elastomer (Shore D hardness 68D, melting point 182 ° C.) with an inner diameter of 1.25 mm and an outer diameter of 1.39 mm by extrusion molding by ordinary pulling air into the lumen using an extruder.
  • Polyurethane elastomer Shore D hardness 68D, melting point 182 ° C.
  • a stainless core material having a diameter of 0.98 mm and a length of 400 mm was inserted into the lumen of the manufactured coil, and this was inserted inside the outer layer tube. In this state, it was heated in an oven set at 130 ° C. for 2 minutes. After taking out from the oven, the stainless steel core material was taken out to obtain a medical tube having an inner diameter of 1.00 mm, an outer diameter of 1.35 mm, and a length of 300 mm.
  • the coil layer consists of a stainless steel flat wire (thickness 0.02 mm, width 0.10 mm), an inner diameter of 1.00 mm, a gap between the strands of 0.05 mm (pitch 0.15 mm), and a length of 300 mm. A coil was used.
  • the outer layer tube and the intermediate layer are made of a polyurethane elastomer (Shore D) whose outer layer (outer tube) has a thickness of 0.05 mm by extrusion molding of a two-layer tube by ordinary pulling in air into the lumen using an extruder.
  • a stainless core material having a diameter of 0.98 mm and a length of 400 mm was inserted into the lumen of the manufactured coil, and this was inserted inside the double-layer tube. In this state, it was heated in an oven set at 130 ° C. for 2 minutes. After taking out from the oven, the stainless steel core material was taken out to obtain a medical tube having an inner diameter of 1.00 mm, an outer diameter of 1.16 mm, and a length of 300 mm.
  • Example 3 The coil layer was the same as in Example 1.
  • the outer layer tube is made of a polyamide elastomer having an inner diameter of 1.25 mm and an outer diameter of 1.39 mm (Shore D hardness 72D, melting point 176 ° C., heat deformation, by extrusion molding by ordinary pulling air into the lumen using an extruder.
  • a tube made at a temperature of 106 ° C. was prepared and used.
  • a stainless core material having a diameter of 0.98 mm and a length of 400 mm was inserted into the lumen of the manufactured coil, and this was inserted inside the outer layer tube. In this state, it was heated in an oven set at 130 ° C. for 2 minutes. After taking out from the oven, the stainless steel core material was taken out to obtain a medical tube having an inner diameter of 1.00 mm, an outer diameter of 1.35 mm, and a length of 300 mm.
  • Example 4 The coil layer and the outer layer tube were the same as in Example 1.
  • a stainless core material having a diameter of 0.98 mm and a length of 400 mm was inserted into the lumen of the manufactured coil, and this was inserted inside the outer layer tube. Furthermore, a heat shrinkable tube (made of polyolefin, shrinkage temperature of 115 ° C. or higher, shrinkage of 40% or higher, inner diameter of about 1.5 mm) was covered over the entire length of the outer layer tube, and heated for 2 minutes in an oven set at 174 ° C. . After taking out from the oven, the heat-shrinkable tube was peeled off, and the stainless steel core was removed to obtain a medical tube having an inner diameter of 1.00 mm, an outer diameter of 1.35 mm, and a length of 300 mm.
  • Example 5 The coil layer and the outer layer tube were the same as in Example 3.
  • a stainless core material having a diameter of 0.98 mm and a length of 400 mm was inserted into the lumen of the manufactured coil, and this was inserted inside the outer layer tube. Further, a heat shrinkable tube (made of polyolefin, shrinkage temperature of 115 ° C. or higher, shrinkage rate of 40% or higher, inner diameter of about 1.5 mm) was covered over the entire length of the outer layer tube and heated in an oven set at 170 ° C. for 2 minutes. . After taking out from the oven, the heat-shrinkable tube was peeled off, and the stainless steel core was removed to obtain a medical tube having an inner diameter of 1.00 mm, an outer diameter of 1.35 mm, and a length of 300 mm.
  • Example 6 The coil layer was the same as in Example 2.
  • the outer layer tube and the intermediate layer are made of a polyamide elastomer (Shore D) whose outer layer (outer layer tube) has a thickness of 0.05 mm by extrusion molding of a two-layer tube by ordinary pulling in air into the lumen using an extruder.
  • It consists of a polyamide elastomer (Shore D hardness 35D, melting point 152 ° C., heat deformation temperature 46 ° C.) whose inner layer (intermediate layer) is 0.01 mm in thickness, 70D, melting point 174 ° C., heat deformation temperature 99 ° C., A double-layer tube having an inner diameter of 1.08 mm, an outer diameter of 1.20 mm, and a length of 300 mm was prepared and used.
  • a stainless core material having a diameter of 0.98 mm and a length of 400 mm was inserted into the lumen of the manufactured coil, and this was inserted inside the double-layer tube. Furthermore, a heat shrinkable tube (made of polyolefin, shrinkage temperature of 115 ° C or higher, shrinkage rate of 40% or higher, inner diameter of about 1.5 mm) is covered over the entire length of the two-layer tube and heated in an oven set at 170 ° C for 2 minutes. did. After taking out from the oven, the heat-shrinkable tube was peeled off, and the stainless steel core material was taken out to obtain a medical tube having an inner diameter of 1.00 mm, an outer diameter of 1.16 mm, and a length of 300 mm.
  • Example 7 The coil layer and the outer layer tube were the same as in Example 3.
  • a stainless core material having a diameter of 0.98 mm and a length of 400 mm was inserted into the lumen of the manufactured coil, and this was inserted inside the outer layer tube. Pass one end of the outer layer tube through a stainless steel die (inner diameter 1.35 mm), heat the die to 170 ° C, pull one end of the outer layer tube passed through the die at a constant speed, and extend the coil layer and outer layer tube over the entire length. Pulled out the die. Thereafter, the stainless steel core material was removed to obtain a medical tube having an inner diameter of 1.00 mm, an outer diameter of 1.35 mm, and a length of 300 mm.
  • Example 8 The coil layer was the same as in Example 2.
  • Polyamide whose outer layer (second outer layer) has a thickness of 0.02 mm is obtained by extruding the outer layer tube and the second outer layer by using an extruder to extrude the two-layer tube by ordinary pulling air into the lumen.
  • Polyamide elastomer (Shore D hardness 70D, melting point 174 ° C., heat distortion temperature 99 ° C.) composed of an elastomer (Shore D hardness 35D, melting point 152 ° C., heat deformation temperature 46 ° C.), and the inner layer (outer layer tube) is 0.05 mm thick.
  • a double-layer tube having an inner diameter of 1.08 mm, an outer diameter of 1.22 mm, and a length of 300 mm was used.
  • a stainless core material having a diameter of 0.98 mm and a length of 400 mm was inserted into the lumen of the manufactured coil, and this was inserted inside the double-layer tube. Furthermore, a heat shrinkable tube (made of polyolefin, shrinkage temperature of 115 ° C or higher, shrinkage rate of 40% or higher, inner diameter of about 1.5 mm) is covered over the entire length of the two-layer tube and heated in an oven set at 170 ° C for 2 minutes. did. After taking out from the oven, the heat-shrinkable tube was peeled off to obtain a medical tube containing a stainless steel core material having an inner diameter of 1.00 mm, an outer diameter of 1.18 mm, and a length of 300 mm.
  • a second made of a polyamide elastomer (Shore D hardness 55D, melting point 168 ° C., heat deformation temperature 66 ° C.) in which a stainless core material having a diameter of 0.40 mm is inserted within a range of 150 mm from one end of the medical tube containing the stainless steel core material.
  • Tube inner diameter 0.41mm, outer diameter 0.56mm, length 150mm
  • heat shrinkable tube made of polyolefin, shrinkable
  • the heat shrinkable tube After taking out from the oven, the heat shrinkable tube is peeled off, the stainless steel core material with a diameter of 1.00 mm and the stainless steel core material with a diameter of 0.40 mm are taken out, and the portion where the second tube is welded in parallel is 150 mm.
  • a 300 mm-long medical assembly was obtained, the only part of which consisted of 150 mm.
  • Example 4 was the same as in Example 4 except that the oven temperature was set to 200 ° C.
  • Example 5 was the same as Example 5 except that the oven temperature was set to 200 ° C.
  • Example 6 was the same as in Example 6 except that the oven temperature was set to 200 ° C.
  • the coil layer was the same as in Example 1.
  • the outer layer tube is made of polyurethane elastomer (Shore D hardness 68D) having an inner diameter of 1.21 mm, an outer diameter of 1.35 mm, and a length of 300 mm by extrusion molding by ordinary pulling air into the lumen using an extruder. was used.
  • the produced coil was stretched in the axial direction, twisted so that the outer diameter was further reduced, and inserted inside the outer layer tube.
  • the coil was returned to its original shape to obtain a medical tube having an inner diameter of 1.00 mm, an outer diameter of 1.35 mm, and a length of 300 mm.
  • the outer layer tube is a tube made of polyamide elastomer (Shore D hardness 72D) having an inner diameter of 1.21 mm, an outer diameter of 1.35 mm, and a length of 300 mm by extrusion molding by ordinary pulling air into the lumen using an extruder. was used. Except for the outer layer tube, it was the same as Comparative Example 4.
  • the kink as used herein refers to a state in which the outer tube is cracked or broken, or a large plastic deformation (elongation, etc.) occurs.
  • the initial holding distance two types were set: 70 mm that would be bent to a very high bend when the test was conducted to the end, and 50 mm that was a more severe state.
  • the kink resistance of the medical tube was evaluated as ⁇ when not kinking at either setting, ⁇ when not kinking at 70 mm, ⁇ when kinking at 50 mm, and ⁇ when kinking at 70 mm.
  • Table 1 shows the results of the kink resistance test.
  • Example 1 to 3 the test with a holding distance of 70 mm did not kink to the end, and did not cause crushing of the lumen, cracking of the outer layer, or disturbance of the coil, and showed good kink resistance. In the test with a holding distance of 50 mm, it was judged that the load decreased when it was brought closer to a distance of 20 mm, and it was judged that it was kinked. I was back.
  • Example 4 both the test with a holding distance of 70 mm and the test with 50 mm were not kinked to the end, and the inner cavity was not crushed, the outer layer was not cracked, and the coil was not disturbed. Moreover, about Example 8, the medical assembly which joined the 2nd tube showed the favorable kink resistance similarly.
  • the outer layer tube was stretched and kinked by the gap between the coil strands when it was brought close to a distance of 20 mm in a test with a holding distance of 70 mm.
  • the stretched portion of the outer tube remains in a slack state even when the tube is returned to the straight shape, and the rigidity of the medical tube is extremely lowered and the outer diameter is increased.
  • the medical tube was subjected to a tensile test using a tensile and compression tester (Shimadzu Corp.) under the conditions of a distance between chucks of 50 mm and a tensile speed of 1000 mm / min to evaluate the tensile strength and tensile elongation.
  • the tensile strength and the tensile elongation were the maximum load and displacement when a portion other than the coil of the medical tube composed of the coil layer was broken.
  • the tensile elongation is represented by (displacement at break / distance between chucks) ⁇ 100 [%].
  • the displacement at the time of breakage is the distance at the time of breakage when the chucked state is 0 mm, and is the distance that the medical tube is actually stretched.
  • Table 2 shows the results of the tensile test.
  • the tensile strengths of Examples 1 to 8 showed a sufficient tensile strength of 12 to 18 N, although there were differences depending on the hardness of the resin and the thickness of the outer tube. Further, the tensile elongation was 108 to 240%, which is more than double the initial state, although there was a difference as well as the tensile strength. As for Example 8, the medical assembly to which the second tube was joined also showed a 15N tensile strength, 141% tensile elongation, and almost the same results as the medical tube.
  • the tensile strengths of Comparative Examples 4 to 5 were 15 to 17 N and sufficient tensile strength, although there were differences depending on the hardness of the resin and the thickness of the outer tube.
  • the tensile elongation was 240 to 251%, which is more than twice the initial state, although there was a difference as well as the tensile strength.
  • Comparative Examples 1 to 3 were all broken at a low load of 5 to 9 N, although there were differences depending on the hardness of the resin and the thickness of the outer tube. As for the tensile elongation, Comparative Examples 1 and 2 showed 191 to 217%, which was more than double the initial state, but Comparative Example 3 was 31%, and it broke immediately after starting to stretch.
  • Examples 1 to 3 were not kinked even when bent to a very high bend, and although they felt kinked in a more severe state, they were used again as medical tubes by returning to a straight line. It was confirmed that it was possible. In addition, the tensile strength and tensile elongation showed sufficient load and elongation, and it was confirmed that it can be used safely as a medical tube.
  • Example 4 it was confirmed that kink does not occur even in extremely severe conditions, and that it can be used as a medical tube.
  • the tensile strength and tensile elongation showed sufficient load and elongation, and it was confirmed that it can be used safely as a medical tube.
  • Example 8 it was confirmed that it can be used safely as a medical assembly.
  • Comparative Examples 1 to 3 it was confirmed that the outer layer tube was cracked or kinked in a state of being bent to a high degree of bending, and could not be used as a medical tube. The tensile strength was also broken at a low load. In particular, it was confirmed that Comparative Example 3 was broken at a low tensile elongation, and Comparative Examples 1 to 3 had safety problems when used as a medical tube.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

 薄肉、柔軟で耐キンク性と引張強度に優れた医療用チューブを、容易な製造方法で安定的に提供することを課題とする。 樹脂からなる外層チューブの内側にコイル層を有する医療用チューブの製造方法であって、前記外層チューブ内に前記コイル層を挿入し、前記外層チューブの融点より低い成形温度で加熱して、前記コイル層上に前記外層チューブを摺動可能な状態で接触固定することを特徴とする医療用チューブの製造方法により上記課題が解決される。

Description

医療用チューブ、およびその製造方法
 本発明は、薄肉、柔軟で耐キンク性と引張強度に優れた医療用チューブ、及びその製造方法に関するものである。
 経皮的に血管内に挿入したカテーテルを脳や心臓、腹部等の臓器に導き、治療薬、塞栓物質、造影剤等の投与、注入や、内視鏡、他のカテーテル、ガイドワイヤー等のデリバリー、血栓等を吸引する医療行為は従来から行われている。近年、医学の進歩により、更に細い末梢血管における治療や、外径の小さいカテーテルを用いたより低侵襲性の治療などが実施されつつあり、これまで以上に小径でありながら、これまで以上に高性能なカテーテルが求められている。カテーテルの性能としては、術者の押込み力をカテーテルの先端まで確実に伝達する押込み性(プッシャビリティー)、細く屈曲した末梢血管への到達性が挙げられるが、前述した薬剤の注入や血栓の吸引、内視鏡や他のカテーテルのデリバリー性などについては、カテーテルの内径が非常に重要となる。さらに低侵襲性の治療を実施するためには、外径についても小さくする必要があるため、非常に薄肉なチューブが必要となる。これまでは、このように薄肉なチューブで、血管の屈曲部や湾曲部でもカテーテルが折れ曲がりを生じない耐キンク性や、高屈曲時の内腔維持性、カテーテルが体内で引っかかったときなどに容易に破断しないための引張強度の確保については、非常に困難であった。
 従来、耐キンク性や高屈曲時の内腔維持性に優れているチューブとして、コイル構造を補強層とした樹脂チューブが検討されてきたが、コイル構造は、耐キンク性や高屈曲時の内腔維持性に非常に優れる反面、引張強度に劣る。そのため、コイル構造を使用したチューブの引張強度を確保するためには、樹脂チューブを非常に肉厚にするか、剛性の高い樹脂を備える必要があった。しかし、肉厚にすると外径が大きくなるか、または内径が小さくなり、より細い末梢血管へ挿入できない、低侵襲性の治療を実施できない、注入性や吸引性、デリバリー性の性能の低下、などの問題が発生し、剛性の高い樹脂にすると一般的に靭性が低く、高屈曲時に樹脂層が割れて、耐キンク性や引張強度が低下してしまい、安全に使用できない問題点があった。
 コイル構造を補強層としたチューブの引張強度を向上させる方法として、カテーテルの長手方向に軸方向部材を使用する方法が開示されている(特許文献1)。特許文献1では、ブレードからなる補強層に沿って延伸する軸方向部材を更に有する脈管カテーテルを記載している。軸方向部材を入れることにより、シャフトの伸長を防止できるとしている。また軸方向部材はブレードに隣接するあらゆるポリマー層にも固定されない構造である。しかしながら、この方法では確かに軸方向への伸長が防止されるが、より高い引張力に対しては軸方向部材の素線強度を高めていく必要があり、曲げ剛性の異方向性がでてしまう可能性がある。また、特許文献1の実施形態では、その製造プロセスにおいて、上記の軸方向部材、ブレード、ポリマー層などからなる複合サブアッセンブリを加熱し、各部品を融着、圧縮させることが記載されている。
 また、他の方法として、コイル構造の外側に編組構造を付与する方法が開示されている(特許文献2)。特許文献2では、金属製平板密巻コイルの外側に金属製平角編組と更にその外側に樹脂被覆層が構成されている。コイル構造による屈曲時の耐圧縮力と編組構造による耐引張力を両立させることを目的としているが、高引張力に対して編組を構成する素線の厚さもしくは幅を大きくすると、コイル構造により得られる屈曲時の耐圧縮力が低減されてしまうため、柔軟性かつ高引張力が求められるカテーテル先端側への適用は難しい。
 これらの技術については、コイル層と樹脂層以外にさらに補強層を必要とする構造であり、肉薄なチューブに適用することは全く不可能であった。
特表2002-535049号公報 特開平4-183478号公報
 本発明の目的は、薄肉、柔軟で耐キンク性と引張強度に優れた医療用チューブを、容易な製造方法で安定的に提供することにある。
 本発明者は、上記課題を解決するため鋭意研究の結果、
 (1)樹脂からなる外層チューブの内側にコイル層を有する医療用チューブの製造方法であって、前記外層チューブ内に前記コイル層を挿入し、前記外層チューブの融点より低い成形温度で加熱して、前記コイル層上に前記外層チューブを摺動可能な状態で接触固定することを特徴とする医療用チューブの製造方法;
 (2)樹脂からなる外層チューブの内側に中間層を有し、更に中間層の内側にコイル層を有する医療用チューブの製造方法であって、前記外層チューブ内に前記中間層と前記コイル層を配置し、前記外層チューブの融点より低い成形温度で加熱して、前記コイル層上に前記中間層を介して前記外層チューブを摺動可能な状態で固定することを特徴とする医療用チューブの製造方法を提供した。これらによれば、薄肉、柔軟で耐キンク性と引張強度に優れた医療用チューブを、容易な製造方法で安定的に提供することが可能となる。
 また、(3)前記外層チューブが、前記成形温度で加熱した際に、内径が10%以下の収縮を生じるものであることを特徴とする前記製造方法を提供した。これによれば、低コストで医療用チューブが作製可能となるとともに、このような特性を有するものであれば外層チューブの素材に限定されず、さらに薄肉、柔軟な医療用チューブを、容易な製造方法で提供することが可能となる。
 また、(4)前記成形温度で加熱する際に、前記外層チューブの内径を縮小させる外力を加えることを特徴とする前記医療用チューブの製造方法;
 (5)前記外層チューブのさらに外側に内径が収縮する熱収縮チューブを配置することにより前記外力を加えることを特徴とする前記医療用チューブの製造方法;
 (6)前記外層チューブのさらに外側から、金型により前記外力を加えることを特徴とする前記医療用チューブの製造方法;
 (7)前記外層チューブをダイの中から引き抜くことにより前記外力を加えることを特徴とする前記医療用チューブの製造方法;
 (8)前記外層チューブを延伸することにより前記外力を加えることを特徴とする前記医療用チューブの製造方法を提供した。これらによれば、さらに耐キンク性を向上した医療用チューブを、安定的に提供することが可能となる。
 また、(9)前記コイル層が、金属線からなることを特徴とする前記医療用チューブの製造方法;
 (10)前記コイル層を形成する素線の形状が平線であることを特徴とする前記医療用チューブの製造方法を提供した。これによれば、さらに薄肉、かつ耐キンク性を向上した医療用チューブを提供することが可能となる。
 また、(11)前記コイル層が密着巻コイルであることを特徴とする前記医療用チューブの製造方法を提供した。これによれば、曲げ剛性と長手方向の押し込み力を向上した医療用チューブを提供することが可能となる。
 また、(12)前記コイル層がピッチ巻コイルであることを特徴とする前記医療用チューブの製造方法を提供した。これによれば、より柔軟で、耐キンク性を向上した医療用チューブを提供することが可能となる。
 また、(13)前記中間層の材料が前記外層チューブの材料よりも柔軟性が高いことを特徴とする前記医療用チューブの製造方法;
 (14)前記中間層は前記外層チューブよりも融点が低い材料で構成されていることを特徴とする前記医療用チューブの製造方法;
 (15)前記成形温度が、前記中間層を構成する材料の融点よりも高いことを特徴とする前記医療用チューブの製造方法;
 (16)前記外層チューブと前記中間層が、前記コイル層に被覆する前に二層チューブであることを特徴とする前記医療用チューブの製造方法;
 (17)前記中間層の材質が、前記外層チューブと同種の材質からなることを特徴とする前記医療用チューブの製造方法を提供した。これらによれば、コイルの乱れを防止でき、安定的に医療用チューブを提供することが可能となる。
 また、(18)外層チューブの外側に、該外層チューブよりも融点が低い材質からなる第2の外層を有することを特徴とする前記医療用チューブの製造方法を提供した。これによれば、他のチューブ等と容易に接合でき、様々な形状の医療用組立体やカテーテルに医療用チューブを適用することが可能となる。
 また、(19)前記外層チューブが熱可塑性エラストマーからなることを特徴とする前記医療用チューブの製造方法を提供した。これによれば、靭性が高く、耐キンク性及び柔軟性がより優れた医療用チューブを提供することが可能となる。
 また、(20)前記製造方法のいずれかにより製造された医療用チューブ;
 (21)前記医療用チューブを少なくとも一部に有する医療用具を提供した。これらによれば、薄肉、柔軟でかつ耐キンク性、引張強度を有する医療用チューブ、その医療用チューブを使用した医療用具が、容易な製造方法で提供することが可能となる。
 以上の如く、本発明によれば薄肉、柔軟で耐キンク性と引張強度に優れた医療用チューブを、容易な製造方法で安定的に提供することが可能となる。その結果、各種カテーテル等の医療用具の構成部品として有効に使用することができる。
本発明に係る医療用チューブの一実施形態の一例の概略を示す医療用チューブの軸方向の断面図である。 本発明に係る医療用チューブの一実施形態の他の例の軸方向の断面の部分拡大図である。 本発明の医療用チューブの製造方法とは異なる製造方法により得られた医療用チューブの軸方向の断面の部分拡大図である。 本発明に係る医療用チューブの他の実施形態の一例の概略を示す医療用チューブの軸方向の断面図である。
 以下に本発明に係る医療用チューブの製造方法及びその製造方法により作製された医療用チューブについて説明する。
 本発明は、医療用チューブの製造方法であって、樹脂からなる外層チューブの内側にコイル層を挿入し、前記外層チューブの融点より低い成形温度で加熱して、前記コイル層上に前記外層チューブを摺動可能な状態で接触固定することを特徴とする医療用チューブの製造方法に関するものである。本製造方法を第1製造方法とする。
 このような製造方法によれば、薄肉、柔軟で耐キンク性と引張強度に優れた医療用チューブを、引張強度補強用の特別な構造や製造方法を使用することなく、容易に提供することが可能となる。
 尚、本発明において「摺動可能な状態で接触固定する」とは、医療用チューブに対して伸長、曲げ等の応力が負荷されない状態では、互いに接触し、摩擦力等により相互に摺動しないように固定されているが、応力が負荷されたときには、外層チューブに亀裂や破断を生じる前に、更に好ましくは外層チューブの塑性変形が生じる前に、互いに独立して摺動することができることを意味する。
 本発明の医療用チューブの第1製造方法では、樹脂からなる外層チューブの内側にコイル層を挿入し、前記外層チューブの融点(本発明では、外層チューブを構成する樹脂の融点を、便宜的に、外層チューブの融点と称する場合がある。後述する熱変形温度についても同様である。)より低い成形温度で加熱する。そのため、内側にあるコイル層の巻き形状やコイル素線の形状に関係なく、外層チューブはほぼ元のチューブの均一な厚みを保持したまま成形することが可能となり、外層チューブが単層の樹脂チューブとしての引張強度及び引張伸度を確保することができる。
 本発明の医療用チューブの製造方法により得られる医療用チューブの構造を、本発明とは異なる製造方法により得られた医療用チューブの構造と対比しつつ、図面をもと簡単に説明する。図1は、本発明の医療用チューブの製造方法により得られた医療用チューブの一実施形態の一例を示したものである。本実施形態の例は、コイル層として後述するピッチ巻コイルを用いた場合の例である。本実施形態の例では、医療用チューブ101は、単層の外層チューブ102の内側にピッチ巻コイルからなるコイル層103が摺動可能な状態で接触固定するように構成されている。そして、外層チューブ102は、厚みがほぼ均一で、内径がほぼ変化なく一定である。
 また、図2は、本発明の製造方法により得られた医療用チューブの一実施形態の他の例についての医療用チューブの軸方向の断面の部分拡大図を示したものである。本実施形態の例では、図1に示した例と異なり凹部105が形成されているが、外層チューブ102の厚みは内部に配置されたコイル層の有無に関わらずほぼ均一な厚みを示している。特に、外層チューブ102の内側でコイル素線端部に接触する部分104Aにおいても、ほぼ外層チューブ102の厚みが維持されている。融点より低い温度で成形すると、基本的に樹脂は軸方向に流れないため、軸方向に垂直な各断面における外層チューブ厚みはコイル素線の有無によらず概ね一定となるためである。
 図3は、本発明の医療用チューブの製造方法とは異なる製造方法により得られた医療用チューブ、即ち、外層チューブをその融点より高い成形温度で加熱した場合に得られる医療用チューブの軸方向の断面の部分拡大図を示したものである。このように、外層チューブの融点より高い成形温度で加熱すると、コイル層の巻き形状やコイル素線の形状によっては、コイル素線端部において外層チューブの肉厚に変動が生じ、引張強度及び引張伸度が局所的に低下する問題がある。図3に示すように、外層チューブ102の厚みは局所的に低下している。特に、外層チューブ102の内側でコイル素線端部に接触する部分104Bにおいて、外層チューブ102の厚みが低減している。融点より高い温度で成形すると、樹脂が溶けることによりコイル素線端部における樹脂はコイル素線のない部分に流れやすく、外層チューブ102の内側でコイル素線端部に接触する部分104Bにおいて局所的に外層チューブ102の厚みが薄くなるためである。この現象は、コイル層の巻き形状やコイル素線の形状が、それぞれ後述するピッチ巻コイルや平線である場合や、後述する外層チューブ外側から力をかける場合に特に生じやすい。そのため、外層チューブをその融点より高い成形温度で加熱した場合は、引張強度や引張伸度を確保するために、外層チューブの肉厚をかなり厚くする必要があった。しかし、肉厚を厚くするために外径を大きくすると侵襲性が高くなり、より細い体内管腔の末梢治療が不可能となり、内径を小さくすると薬剤の注入性や血栓の吸引性、他のカテーテルのデリバリー性を著しく損なう問題が発生する。また、外層チューブを厚肉化することで、外層チューブがキンクする際の力が強くなり、コイル層ごとキンクしてしまい、手術が継続して実施できない問題も発生する。
 このように、例えば特許文献1に記載のように成形に際してポリマー層を含む部材を融着させるような成形温度で加熱した場合には、本発明で意図しているような薄肉、柔軟で耐キンク性と引張強度に優れた医療用チューブを作製することは困難であったのである。
 本発明では、上記の成形温度は、外層チューブを構成する樹脂の融点より低ければ良いが、当該融点より低く、更に熱変形温度(荷重たわみ温度)より高いことが好ましい。成形温度が熱変形温度(荷重たわみ温度)より高いことにより、外層チューブを、コイル層により接触(密着)を強くすることが可能となる。例えば、外層チューブが、所定の成形温度で加熱の際に、その内径が10%以下の収縮を生じるものである場合は、外層チューブをコイル層により接触(密着)を強く、更に均一に収縮させることが可能となる。また、後述するように外力を加えて外層チューブの内径を縮小させる場合に、成形温度が外層チューブの熱変形温度(荷重たわみ温度)より高いことにより、外層チューブが径方向でより均一に収縮させることができるため好ましい。外層チューブを均一に収縮させることにより、コイル層を構成するコイルの外表面と外層チューブの内表面との密着が強くなり、さらに耐キンク性を向上させることが可能となる。
 本発明の医療用チューブの製造方法では、上記所定の操作により、コイル層上に外層チューブを摺動可能な状態で接触固定する。
 この様に外層チューブとコイル層との間に摺動可能な状態で接触固定した状態が形成される為、本発明の製造方法により得られた医療用チューブが引っ張られて延伸される際、コイルと外層チューブは固着されておらず各々別挙動をとることが可能となり、外層チューブが単層の樹脂チューブとしての引張強度及び引張伸度を確保することができる。また、医療用チューブが高屈曲に曲げられる際にも、コイル層と外層チューブが各々別挙動をとり、良好な耐キンク性を確保することができる。
 尚、ここで固着とは、形成された医療用チューブに対し引張応力などの応力が生じた場合に、外層チューブに亀裂や破断を生じる前に、または外層チューブの塑性変形が生じる前に外層チューブとコイル層の間で摺動して各々別挙動をとることができない状態で互いに固定されていることを言う。
 例えば特許文献1記載のように外層チューブの融点より高い成形温度で加熱したり、一般的に考えられるようにコイル層と外層チューブの間に接着剤を導入したりする方法により、コイル外表面と外層チューブ内表面が固着していると、医療用チューブが引っ張られて延伸される際、コイル外表面に固着された外層チューブ部分はコイルと共に引っ張られ、コイルの素線間にある外層チューブのみが局所的に延伸されるため、引張強度及び引張伸度は著しく低下する。臨床現場でカテーテルを操作する際に、カテーテルが体内で引っかかったときなどに安全にカテーテルを抜去するためにも、カテーテルに使用される医療用チューブにはある程度の引張強度及び引張伸度が要求される。引張強度が低いとすぐに破断してしまう危険性があり、引張強度が高くても引張伸度が低いと急激な抜去に耐えられない可能性がある。また、コイルと外層チューブの間に接着剤を導入する方法では、接着剤が医療用チューブの内腔にこぼれることを防止する目的で、内層が存在するか、コイルの巻き形状が後述する密着巻にする必要があるなど、構造が限定される。
 これに対し、本発明の製造方法により得られた医療用チューブでは、医療用チューブが引っ張られて延伸される際、コイル外表面と外層チューブ内表面が摺動可能な状態で接触固定されている為、各々別挙動をとり、外層チューブ全体で引っ張り応力を受けることが可能となり、外層チューブの特定の部分で局所的に延伸されることが防止され、薄肉、柔軟で、耐キンク性と引張強度に優れることとなる。また、接着剤を使用する必要がない為、接着剤が医療用チューブの内腔にこぼれることを防止する目的で内層を設けたり、コイル層を構成するコイルを密着巻きコイルに限定する必要もない。そのため、医療用チューブ内径を大きく確保することが可能であり、医療用チューブの用途などに応じて、コイル層の構成を任意に選択することが可能である。
 もっとも、本発明では、上記のように接着剤を使用する必要はないが、医療用チューブの破断が生じない範囲あるいは外層チューブが塑性変形しない範囲で、外層チューブとコイル層とを接着剤などにより固定してもよい。また、後述する本発明の製造方法により得られた医療用チューブを有する医療用具を作製する際などに、医療用チューブの端部を接着剤などにより固定するとともに、外層チューブとコイル層とを端部において固定してもよい。
 また、本発明では、医療用チューブの用途に応じて、その内径を確保することが可能な範囲で、コイル層の内側に内層を設けてもよい。
 尚、医療用チューブの構造として、単に外層チューブ内にコイルを配置しただけで、コイル外表面と外層チューブ内表面がほとんど接触していない構造は考えられ得る。しかし、このような構造を有するチューブを高屈曲させた場合は、コイルが自由な状態で屈曲するため、コイルのずれや折れ、重なりなどが発生してしまう。このような状態になると、チューブの内外径に変化が生じたり、チューブがキンクしたりして、手術を継続して実施することがほぼ不可能となる。
 本発明に係る医療用チューブの製造方法において使用するコイル層の素線形状、素線寸法、巻き形状などの構成は特に限定されない。素線形状は、例えば、一般的な丸線であってもよいし、後述する平線であってもよい。また、巻き形状は、例えば、後述する密着巻あってもよいし、ピッチ巻であってもよい。更に、これらの各構成が、医療用チューブの部分によって異なっていても構わない。
 コイル層の構成は、医療用チューブの用途に合わせて適宜選択することができる。例えばカテーテルの手元側シャフトのように、シャフトの耐キンク性や引張強度とともに、ある程度の曲げ剛性と長手方向の押し込み力を必要とする場合には、素線形状は平線であることが好ましく、また、巻き形状は密着巻であることが好ましいが、平線、密巻きのうち少なくとも一方の構成を有していればよい。また、医療用チューブの肉厚を薄くする、あるいは、その内径をより大きく確保する観点からは、素線形状は平線が好ましい。
 このように、コイル層が平線の素線からなる密着巻で構成されるコイル層を用いる場合は、本発明の製造方法により得られた医療用チューブは、薄肉であるにもかかわらず、医療用チューブの曲げ剛性が高くなるとともに、医療用チューブの長手方向の押し込み力が強くなる。
 前記の平線とは断面が円形状ではなく、厚さと幅を有する形状であり、一般的には丸線と呼ばれる断面が円形状の素線を圧延して得られる。本発明でいう平線には、一般的に平線といわれている上下面が概ね平行で両端が丸み形状の素線や、断面が概ね長方形である平角線と呼ばれる素線も含まれる。
 前記の密着巻とは隣り合う素線が少なくとも近接または接触するように巻かれた巻き形状である。
 また、密着巻きとしては、隣り合う素線間でコイルの長手方向に圧縮の力(一般的に初張力と呼ばれる力)を有するものを用いることができる。このように、隣り合う素線がずれない状態でできる限り強い初張力を有することで、さらにシャフトの曲げ剛性及び押し込み力を向上させることが可能になる。
 このように、本発明に係る医療用チューブの製造方法において用いるコイル層の構成としては、当該製造方法により得られた医療用チューブを、例えば、カテーテルの手元側シャフトとして用いる場合は、素線形状が平線であるもの、及び/又は、巻き形状が密着巻であるものを構成として有しているコイル層が好ましい。また、密着巻きとしては、初張力を有しているものがより好ましい。さらに、素線形状が平線で、巻き形状が初張力を有する密着巻きである構成を有するコイル層が更に好ましい。このような構成を有するコイル層を用いて得られた医療用チューブは、臨床現場の手術の際に非常に高屈曲に曲げられることのあるカテーテルの手元側シャフトとして特に好適である。
 また、例えば、カテーテルの先端側シャフトのように、シャフトの耐キンク性や引張強度とともに、シャフトの柔軟性を必要とする場合には、巻き形状はピッチ巻であることが好ましい。ピッチ巻とは隣り合う素線の間に隙間があるように巻かれた巻き形状である。特にその中でも医療用チューブの長手方向の長さに関し、コイルの素線と素線の間の隙間が、コイル素線の幅と同じかこれよりも長いことが好ましい。このような構造により、より柔軟でかつ耐キンク性に優れたシャフトを実現できる。なお、ここでいうピッチとは、コイルの素線のある1点と素線に沿って円周方向に1周(360度)離れた別の1点の長手方向の長さをいう(図1でAとして例示)。更に詳しくいえば、長手方向における素線の幅と素線間の隙間の和がピッチとなる。従って、本発明でいう「コイルの素線と素線の間の隙間が、コイル素線の幅と同じかこれよりも長い」とは、素線の幅をtとした場合、ピッチは2t以上であることを示す。
 このようにピッチ巻のコイル層を用いた場合、例えば特許文献1記載のように、外層チューブの融点より高い成形温度で加熱する方法では、前述したような外層チューブの肉厚に変動が生じ、引張強度及び引張伸度が著しく低下する問題が特に発生しやすかった。この問題に対応すべく、引張強度を確保するために外層チューブの肉厚を厚くすると、チューブの外径が大きくなるとともに、チューブの柔軟性も失われることとなり、挿入性が著しく低下する。そのため、例えば、最も体内管腔の末梢へ挿入されるカテーテルの先端側シャフトとして使用することは困難であった。
 本発明に係る医療用チューブの製造方法では、外層チューブの融点より低い成形温度で加熱するため、上述のように外層チューブの肉厚に変動が生じることがなく、しかも、コイル層を構成する素線の外表面と外層チューブ内表面を摺動可能な状態で接触固定する。その結果、外層チューブの特定の部分で局所的に延伸されることがなく、引張強度及び引張伸度を確保することができるため、医療用チューブの柔軟性を維持しつつ、耐キンク性を有する構造とすることが可能となり、非常に屈曲した体内管腔の末梢へ挿入された際にも、医療用チューブがキンクすることなくスムーズに挿入することができる。また、医療用チューブが非常に屈曲した状態でも、医療用チューブの内腔を維持することが可能であるため、薬剤の注入性や血栓の吸引性、他のカテーテルのデリバリー性を維持することができる。ピッチ巻のコイル層を用いた場合は、本発明の製造方法により得られた医療用チューブは、上記のような特徴を有するため、カテーテルの先端側シャフトとして特に好適である。
 本発明で用いるコイル層を構成する素線の材質としては、金属、樹脂などの各種材料が使用できるが、特にステンレス鋼、又は放射線不透過性が高い材料、例えばタングステン、白金、イリジウム、金などの金属であることが好ましい。その中でも特に素線の引張弾性率の高いステンレス鋼のバネ鋼やタングステンなどが好ましい。このような素線を使用することにより、さらに薄肉であり、かつ耐キンク性を向上した医療用チューブを作製することが可能となる。
 本発明で用いる外層チューブを構成する樹脂としては、特に限定はない。
 例えば、外層チューブを用いて製造された医療用チューブをカテーテル等の医療用具に組み込んで他の部材と接合する場合、溶着や接着などの接合方法を考慮して、当該医療用具を構成する部材に合わせて適宜選択すればよい。
 外層チューブに使用可能な樹脂としては、例えば、ナイロン6、ナイロン66、ナイロン12、ポリアミドエラストマー等のポリアミド類、ポリエチレン、ポリプロピレン、ポリメチルメタクリレート、変性ポリオレフィン等のオレフィン類、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエステルエラストマー等のポリエステル類、ポリウレタン、ポリウレタンエラストマー、ポリエーテルエーテルケトン、あるいはこれらのポリマーブレンド、ポリマーアロイ等があげられるが、これらに限定されるわけではない。
 これらの樹脂のうちでも、外層チューブの製造の容易性の観点からは、押出成形に使用可能であるものが好ましく、他の各種のチューブとの接合のしやすさの観点からは、熱可塑性エラストマーが好ましく、高屈曲時での靭性をより高くする観点からは、ポリアミドエラストマー、ポリウレタンエラストマーがさらに好ましい。
 また、上記の樹脂中には、重合時に使用される重合助剤のほかに造影剤、可塑剤、補強剤、顔料等の各種添加剤が含まれていてもよい。
 外層チューブは、射出成形や押出成形など公知の方法により成形することができる。長尺の外層チューブを成形する場合は、押出成形により成形するとよい。さらに、所定の成形温度で加熱する際に、外層チューブの内径を縮小させる場合は、外層チューブを残留応力によりうまく収縮させる観点から、内腔にエアーを入れる通常の引き落としによる押出成形により成形されることが好ましい。また、当該押出成形は、特別な工程(電子線照射工程や芯材被覆など)を使用しない一般的な方法であるため、製造の容易性や製造コストの面でも有利である。
 さらに、押出成形によれば、素材本来の柔軟性を維持した薄肉チューブを作製することが可能となるため、非常に薄肉で柔軟な医療用チューブを作製することが可能となる。
 本発明の医療用チューブの製造方法では、外層チューブの外側に第2の外層を形成することができる。またこの場合、第2の外層を構成する材質の融点(以下、単に、第2の外層の融点と称する。)が外層チューブの融点よりも低い材質を用いることが好ましい。第2の外層の融点より高く、外層チューブの融点より低い温度で加熱することにより、第2の外層のみを溶融させ、医療用チューブの外表面に他のチューブを溶着等により接合することが可能となり、様々な形状の医療用組立体やカテーテルに本発明の医療用チューブを適用させることが容易となる。このような第2の外層を構成する材質としては、例えば、上記の外層チューブを構成する樹脂が挙げられる。もっとも、目的に応じて外層チューブを構成する樹脂とは特性の異なる樹脂を選択する点に意義がある。
 また、外層チューブの外側に第2の外層を形成する場合、その製造方法に限定はないが、製造の容易さの観点からは、外層チューブとコイル層を摺動可能な状態で接触固定させる前に、外層チューブの外側に第2の外層を形成し、二層チューブの形状とすることが好ましい。このような二層チューブは、多層押出成形(共押出成形)、ディップ成形などにより製造することができる。また、所定の成形温度で加熱する際に、二層チューブの内径(外層チューブの内径でもある)を縮小させる場合は、内腔にエアーを入れる通常の引き落としによる多層押出成形により製造するのが好ましい。
 また、外層チューブの外側に第2の外層を形成する場合は、医療用チューブの外径を極力大きくしないようにする観点からは、外層チューブの肉厚と第2の外層の肉厚の合計が、第2の外層を設けない場合と同程度となるようにするのが好ましい。
 さらに、第2の外層は、医療用チューブの全長に亘り設けてもよいし、部分的に設けてもよい。
 所定の成形温度で加熱して、コイル層上に外層チューブを摺動可能な状態で接触固定する方法としては、特に限定はないが、例えば、外層チューブをコイル層に被覆する方法が挙げられる。また、このように外層チューブをコイル層に被覆する場合の例としては、例えば、所定の成形温度で加熱した際に、コイル層が内側に挿入された外層チューブの内径が10%以下の縮小を生じさせる方法が挙げられる。このような縮小を生じさせる方法としては、特に限定はないが、外層チューブ自体を成形したときの残留応力を利用する方法、外層チューブの内径を縮小させる外力を加える方法などが挙げられる。
 尚、上記の「外層チューブの内径が10%以下の縮小を生じる」における縮小率は、コイル層を挿入する前の外層チューブの内径と、所定温度で加熱して、コイル層上に前記外層チューブを摺動可能な状態で接触固定した後のコイル層と接する部分の外層チューブの内径とを対比した縮小率を意味する。
 上記の残留応力を利用する方法としては、例えば、外層チューブの内側にコイル層を挿入し、外層チューブの融点より低い成形温度で加熱することで、外層チューブ等自体を成形したときの残留応力を利用し、外層チューブの内径を縮小することができる。
 本技術分野においては、一般に、通常のチューブを成形した際の残留応力については、その後の医療用具の組立や滅菌、熱処理等によりチューブの寸法変化や形状変化を引き起こす原因となっていたため、成形後に極力除去するような作業が実施されていた。一方、本発明ではこのような残留応力を、積極的に医療用チューブの作製方法に使用することで、コイル層より大きい内径を有する外層チューブを使用することが可能になるため、コイル層を容易に外層チューブの内側に配置して、外層チューブとコイルを摺動可能な状態で接触固定することが可能となる。また、所望の形状に成形した時に残留応力が残っていた場合でも、所定の成形温度に加熱するため、応力を緩和することも可能である。
 このように残留応力を利用する場合でも、外層チューブは、特別な工程を使用しない通常の引き落としによる押出成形により作製可能なため、低コストで外層チューブを作製することが可能である。また、引き落としによる多層押出成形することで、第2の外層を有する二層チューブを単層の外層チューブに代えて使用することが非常に容易となる。
 残留応力による外層チューブの収縮率については、成形温度で加熱することにより内径が1%以上、10%以下の収縮を生じる外層チューブであることが好ましい。このような収縮率の外層チューブであれば、通常の押出成形で作製することが可能であり、収縮後の肉厚の変化も小さいため、薄肉の医療用チューブが作製可能となる。また、収縮率が1%未満であると、外層チューブ内にコイルを挿入する際にコイルの乱れが発生する可能性が大きくなる傾向にあり、安定的に意図した医療用チューブを作製することが困難となる傾向にある。
 また本発明では、上記のように、外層チューブの融点より低い成形温度で加熱する際に、外層チューブの内径を縮小させる外力を加えてもよい。このような外力を加えることにより外層チューブがコイルに密着するため、コイル層に対して外層チューブをより強く密着させることが可能となり、得られる医療用チューブの耐キンク性をより向上させることができる。また、外層チューブの真円度が低い場合にも、外力により強制的にコイルと径方向全周にわたって接することが可能となるため、安定した耐キンク性を有する医療用チューブを作製することができる。さらに、使用する外層チューブの成形方法は特に問わずどのような外層チューブも使用可能となる。
 このような外力を加える方法としては、例えば、外層チューブの外側から熱収縮チューブを被せる方法、外層チューブの外側から金型により外力を加える方法、外層チューブを延伸する方法、外層チューブをダイの中から引き抜く方法、などが挙げられる。
 これらの方法のうち、熱収縮チューブを被せる方法、金型により外力を加える方法、ダイの中から引き抜く方法がさらに好ましい。これらの方法では、外層チューブの温度がその融点より低い成形温度になるように、熱収縮チューブ、金型、ダイを加熱しながら行うのが好ましい。
 これらの方法では外層チューブの径方向全周から外力を安定的に強く加えることが可能となるため、コイルに対して外層チューブをさらに強く密着させることが可能となり、耐キンク性をさらに向上させることができる。
 また、熱収縮チューブは内側のチューブの形状に沿って収縮することにより、また、金型やダイは内側の形状を設定することにより、どのような形状の医療用チューブも作製可能となる。もちろん、これらの成形方法は組み合わせて使用することも可能であり、例えば、外層チューブ自体の残留応力により内径を収縮させた後、さらに熱収縮チューブや金型で追加的に外力を加えてもよく、外層チューブを延伸して内径を収縮させた後、さらに熱収縮チューブや金型で追加的に外力を加えてもよい。
 これらのうち、熱収縮チューブを用いる方法に関しては、本技術分野では、従来から一般的に、コイル上に樹脂層を形成する際には、樹脂層となるチューブにさらに熱収縮チューブを被せて、熱収縮チューブ内でチューブの融点より高い温度をかけて融解させる方法が採られていた。
 一方、本発明では、熱収縮チューブを外層チューブのさらに外側に被せ、外層チューブの融点より低い成形温度で加熱する方法を採用している。そして、このような方法を採用することにより、外層チューブとコイルを摺動可能な状態で接触固定させることを可能とした。上記のような高い温度で行う従来の方法で作製したチューブでは、本発明に係る医療用チューブの製造方法により得られた医療用チューブのような優れた性能を発揮することができないことは前述のとおりであるが、このような従来の方法では、チューブの樹脂層と熱収縮チューブを異種素材から選択する必要があった。これは、成形後熱収縮チューブを除去する必要があるが、樹脂層と熱収縮チューブを同種の素材とすると、樹脂層を融解させることにより熱収縮チューブが樹脂層と固着して除去できない場合があったからである。そのため、このような従来の方法では、樹脂層の素材によっては、最適な熱収縮チューブが存在しない場合や、非常に熱収縮温度が高いポリテトラフルオロエチレン系の熱収縮チューブなどを使用せざるを得ず、作業性の非常に悪い場合があった。これに対して、本発明では、外層チューブの融点以下の成形温度で加熱するため、所定の成形温度で収縮するものであれば外層チューブを構成する樹脂の種類に応じて最適な素材を選択して熱収縮チューブを使用することができるため、確実に医療用チューブの成形が可能である。また、熱収縮チューブの熱収縮温度は、所定の成形温度で収縮すれば特に限定はない。熱収縮温度は、成形温度以下であればよく、成形温度より低いことが好ましい。これによって、より強く、確実に外層チューブまたは中間層をより強く密着することが可能となり、耐キンク性をより向上させることができる。また、熱収縮チューブの収縮率についても特に限定はなく、所定の成形温度において、所望の医療用チューブの外径、形状を有するように成形可能となるものを適宜選択すればよい。
 また、外層チューブのさらに外側から、金型により外力を加える場合についても、熱収縮チューブによる方法の場合と同様に、本技術分野では、従来から一般的に、樹脂の融点より高い温度により樹脂を融解して成形していた。
 しかし、本発明では、金型を外層チューブのさらに外側に配置し、外層チューブの融点より低い成形温度で加熱することにより、外層チューブとコイルを摺動可能な状態で接触固定させることを可能とした。この場合、金型が外層チューブの融点より低い成形温度で加熱できる構成であることが好ましい。この構成によれば、外層チューブを成形温度で加熱しつつ、金型で外力を加えることが可能となり、より強くコイルに外層チューブを接触させることができる。金型の断面形状は成形する医療用チューブの形に合わせることが可能であり、真円、楕円、ダルマ形状などどのような形でも構わない。作製する医療用チューブの断面形状が概ね真円である場合には、金型は徐々に内径が小さくなる機構を備えることが好ましい。このような機構を備えることにより、より強くコイルと外層チューブを密着させることが可能となる。このような金型の機構としては、例えば、2プレート金型とし、所望のチューブ形状に対応する空間が形成されるように設計された可動型と固定型との間に、内部にコイル層を配した外層チューブを配置して、可動型を稼働させて、可動型と固定型との間の距離を小さくしていき、最終的に空間内で所望のチューブ形状を有するように構成した金型が挙げられるが、これに限定されるものではない。
 ダイの中から引き抜いて外力を加える場合についても、ダイが外層チューブの融点より低い成形温度で加熱できる構成であることが好ましい。この構成によれば、外層チューブを成形温度で加熱しつつ、ダイの中から引き抜くことで外力を加えることが可能となり、より強くコイルに外層チューブを接触させることができる。
 このようなダイとしては、例えば、両端が開口し、その一方の開口部から他方の開口部に向かって連続的または段階的に縮小する連続した中空部分を備えたものなどが挙げられる。また、ダイの一方の開口部またはその近傍部の形状は、所望の医療用チューブの外径に対応した内径部分を有するように設計される。他方の開口部の形状は、特に限定はなく、成形前の外層チューブが通過可能な形状であればよい。また、ダイの全体構造としては、所望の医療用チューブの形状に対応した中空部分の形状を形成可能であれば、分割可能な構造でも、分割不可能な構造でも良い。
 このようなダイを用いた成形方法を簡単に説明すると、所定の成形温度に設定されたダイの中空部分に、ダイの一方の開口部から、内部にコイル層を配した外層チューブを挿入する。そして、この外層チューブなどを中空部分を通過させ、所望の形状を有する他方の開口部から引き抜く。これにより、所望の形状に成形された医療用チューブが得られる。
 以上のダイおよびそれを用いた成形方法は、一例であって、これらに限定されるものではなく、適宜変更可能である。
 本発明における上記の第1の製造方法および該製造方法により得られた医療用チューブの主要な構成は、概ね以上のとおりであるが、その他の事項は、後述する本発明の第2製造方法の主要な構成を説明した後、第1および第2製造方法並びにこれらの製造方法により得られた医療用チューブに共通する事項についてまとめて説明することとする。
 本発明は、樹脂からなる外層チューブの内側に中間層を有し、更に中間層の内側にコイル層を有する医療用チューブの製造方法であって、前記外層チューブ内に前記中間層と前記コイル層を配置し、前記外層チューブの融点より低い成形温度で加熱して、前記コイル層上に前記中間層を介して前記外層チューブを摺動可能な状態で固定することを特徴とする医療用チューブの製造方法に関するものである。本製造方法を第2製造方法とする。
 このような製造方法によれば、薄肉、柔軟で耐キンク性と引張強度に優れた医療用チューブを、特別な構造や製造方法を使用することなく、容易に提供することが可能となる。そして、本発明の製造方法(第2製造方法)により得られた医療用チューブは、コイル層上に中間層を介して外層チューブが摺動可能な状態で固定されている為、医療用チューブが引っ張られて延伸された場合でも、コイル層と外層チューブが別挙動をとり、外層チューブ全体で引っ張り応力を受けることが可能となり、外層チューブの特定の部分で局所的に延伸されることが防止され、薄肉、柔軟で、耐キンク性と引張強度に優れることとなる。
 尚、本発明において、「コイル層上に中間層を介して外層チューブを摺動可能な状態で固定する」とは、医療用チューブに対して伸長、曲げ等の応力が負荷されない状態では、互いに接触し、摩擦力等により相互に摺動しないように固定されているが、応力が負荷されたときには、外層チューブに亀裂や破断を生じる前に、更に好ましくは外層チューブの塑性変形が生じる前に、中間層を介してコイル層と外層チューブとが互いに独立して摺動することができることを意味する。「中間層を介して」とは、中間層が、コイル層とともに摺動する場合、外層チューブとともに摺動する場合があることを意味する。また、「固定」には、外層チューブに亀裂や破断を生じる前に、更に好ましくは外層チューブの塑性変形が生じる前に、中間層と、コイル層または外層チューブとが、分離可能な程度に接合している状態を含む概念である。
 第2製造方法において使用するコイル層および外層チューブの構成ならびに成形温度は、第1製造方法と同じ構成および成形温度を採用することができるため、本製造方法では詳細な説明は省略し、本製造方法の主要な特徴に関して、以下に説明する。
 前記の中間層は、医療用チューブの長手方向に一様に配置することが好ましい。また、中間層としては、コイル層上に配置する前に中間層単体のチューブとして構成してもよいし、中間層を内層とし、外層チューブを外層とした二層チューブとして構成してもよい。これらの構造により、容易に中間層をコイル層と外層チューブの間に配置することが可能となる。これらのうち、製造の容易性の観点からは、二層チューブを用いることが好ましい。特に、中間層単体のチューブを非常に薄く(例えば、肉厚が10μm程度以下)作ることは現在の当業者の技術では困難であり、コイル層に被覆する前に、中間層を内層とし、外層チューブを外層とした二層チューブの形状となっていることで、中間層単体のチューブでは実現できない薄さの中間層を作ることが可能となる。
 また、このような二層チューブは、多層押出成形(共押出成形)、ディップ成形などにより製造することができる。このうち、例えば、第1製造方法において説明したのと同様にして、単層の外層チューブに代えて、二層チューブを使用し、その残留応力を利用して、コイル層上に中間層を介して外層チューブを摺動可能な状態で固定する場合には、引き落としによる多層押出成形により二層チューブを成形するのが好ましい。
 また、本発明の医療用チューブの第2製造方法でも、外層チューブの融点より低い成形温度で加熱するため、外層チューブの内側にあるコイル層の形状に関係なく、少なくとも外層チューブはほぼ元のチューブの均一な厚みを保持したまま成形することが可能となり、外層チューブが単層の樹脂チューブとしての引張強度及び引張伸度を確保することができる。
 このように第2製造方法においても、成形温度は外層チューブの融点より低い温度であれば良いが、第1製造方法において説明したように、更に外層チューブの熱変形温度(荷重たわみ温度)より高いことが好ましい。
 このように、第2製造方法でも上記のような成形温度を採用するが、本製造方法では外層チューブの内側に中間層を配するため、中間層を構成する材質の融点、熱変形温度を考慮することで、第2製造方法により得られた医療用チューブの機能をより向上させることができる。
 前記中間層を構成する材質としては、特に限定はなく、例えば上述の外層チューブを構成する樹脂を用いることができる。そして、このような樹脂を用いる場合、本発明における成形温度との関係から、外層チューブを構成する樹脂の融点以下の融点を有する樹脂を用いるのが好ましく、外層チューブを構成する樹脂の融点より低い融点を有する樹脂がより好ましい。
 成形温度が、外層チューブおよび中間層の融点より低い場合は、中間層は外側チューブと同様の挙動を示すことになり、例えば、図1または図2に示すような断面構造を有する医療用チューブを製造することができる。もっとも、図1および図2における外層チューブ102の部分は二層構造を有することになる。また、成形温度が外層チューブおよび中間層の熱変形温度より高いことがより好ましい。
 一方、成形温度が、外層チューブの融点より低く中間層の融点より高い場合は、中間層だけは溶融することになる。そして、中間層だけが溶融した場合においては、加工条件、コイル層を構成する素線のコイル形状などによるが、例えば、コイル層としてピッチ巻きコイルを用い、外側チューブの内径を縮小させる場合は、ピッチ巻きコイルの素線の間に中間層が入り込み、ピッチ巻きコイルを安定して保持することが可能となる。この場合の一例を図4に模式的に示す。図4に示すように、医療用チューブ201の外層チューブ202の肉厚はほぼ一定であり、外層チューブ202の内側には、中間層204とピッチ巻きコイルであるコイル層203が配されている。また、中間層204は、ピッチ巻きコイルの素線間205に配されている。尚、加工条件などによるが、コイル層203を構成するピッチ巻きコイルの素線の外周面と外層チューブ202の内周面との間に、中間層204が残存する場合と残存しないがある。図4は残存している例である。
 上記のように、中間層の融点が成形温度より低い場合、一般に中間層はコイル層及び外層チューブに接合(溶着)されることになる傾向にあるが、それらは、本発明でいう「固着」されない程度の接合状態にある。そのため、中間層が溶融して、コイル層に接合することで、例えば、コイル層を構成する素線の巻き形状がピッチ巻である場合、コイルのピッチの乱れを防止でき、安定的に医療用チューブを製造することが可能となる。このような観点からは、成形温度は中間層の融点より高いことが好ましい。
 また、このように中間層は、一般的に使用される接着剤とは異なり、外層チューブとコイル層との接合の程度を容易に制御可能である。
 また、前記中間層を構成する材料の熱的特性以外の特性としては、外層チューブを構成する樹脂よりも柔軟性が高いことが好ましい。これにより、外層チューブにおいては引張強度を確保しつつ、中間層においては摺動可能な状態で固定することをより容易に実現することができる。
 以下に、外層チューブと中間層の樹脂の組み合わせの例について説明する。
 例えば、外層チューブと中間層が同種の材質である場合には、中間層の融点が成形温度よりも低く、中間層の材料が外層チューブの材料よりも柔軟性が高いことで、コイル層との接合度合が弱く、医療用チューブが引っ張られて延伸される際には、中間層とコイル層の接合が剥れ、コイルと外層チューブが別挙動をとることが可能となる。この現象は中間層の肉厚が外層チューブの肉厚と比較して薄いほど顕著であるため、中間層は薄いほど好ましい。
 外層チューブと中間層が異種の材質である場合には、一般に中間層と外層チューブの接合度合が弱く、医療用チューブが引っ張られて延伸される際には、外層チューブと中間層の接合が剥れ、コイル層と外層チューブが別挙動をとることが可能となる。また、異種の素材の場合であっても、同種の素材の場合と同様に、中間層とコイル層の接合度合が弱い場合もある。このような観点からも、中間層は外層チューブと比較して肉厚が薄く、樹脂の柔軟性が高いことが好ましい。
 中間層とコイル層の剥離、または外層チューブと中間層の剥離の強度に関しては、応力が負荷されたときに、外層チューブに亀裂や破断を生じる前に、更に好ましくは外層チューブが塑性変形し始める前に剥れることが好ましい。このような剥離の強度であることにより、コイルと外層チューブが別挙動をとることが可能となり、外層チューブが単層の樹脂チューブとしての引張強度及び引張伸度を確保することができる。なお、ここで言う同種の材質とは、ポリアミドエラストマー同士、ポリウレタンエラストマー同士などのことを言う。
 第2製造方法においても、第1製造方法と同様に、外層チューブが所定の成形温度で加熱の際に、外層チューブの内径が10%以下の収縮を生じるものであることが好ましい。また、上記の縮小率は、コイル層を挿入する前の外層チューブの内径と、所定温度で加熱して、コイル層上に前記外層チューブを摺動可能な状態で接触固定した後のコイル層の外側に近接する部分の内径とを対比した縮小率を意味する。
 また、所定温度で加熱して、コイル層上に中間層を介して外層チューブを摺動可能な状態で固定する方法としては、特に限定はないが、第1製造方法において説明した方法を採用することができる。但し、第2製造方法では、第1製造方法における単層の外層チューブおよび単層の外層チューブの外側に第2の外層を備えた二層チューブに代えて、中間層を内層とし、外層チューブを外層とした二層チューブおよび該二層チューブの外側に第2の外層を備えた三層チューブを用いるとよい。また、このような二層チューブまたは三層チューブを用いた場合は、第1製造方法の場合と同様にして、各チューブの残留応力を利用することにより、あるいは、熱収縮チューブ、金型、ダイ、二層チューブまたは三層チューブの延伸などにより外力を加えることにより、外層チューブ(即ち、二層チューブまたは三層チューブ)の内径を縮小させることができる。
 以下に、上記の第1および第2製造方法に共通する事項について説明する。
 本発明の第1製造方法では、前記コイル層上に前記外層チューブを摺動可能な状態で接触固定し、第2製造方法では、前記コイル層上に前記中間層を介して前記外層チューブを摺動可能な状態で固定する。従って、いずれの製造方法においても、外層チューブとコイル層、または中間層とコイル層が接触するように固定されている。これらの接触状態としては、外層チューブとコイル層、または中間層とコイル層が、医療用チューブの径方向断面において、その周長さの概ね半分以上接触していることが好ましい。接触している範囲が半分以下であるようなチューブでは、高屈曲させた際にコイルの径方向断面半分以上が自由な状態で屈曲するため、コイルのずれや折れ、重なりなどが発生する可能性が高い。このような状態になると、シャフトの内外径に変化が生じたり、シャフトがキンクしたりして、手術を継続して実施することができない。半分以上接触していることで、コイルがこのような状態になることを防止することができ、手術を継続して実施することが可能となる。さらに、その径方向断面において、ほぼ全周にわたって外層チューブとコイル層が摺動可能な状態で接触している、または中間層とコイル層が接触していることが好ましい。このことにより、コイル層のずれや折れ、重なりをさらに高度に防止することができ、耐キンク性を安定させ、より向上させることが可能となる。
 なお、本発明でいう引張伸度及び引張強度とは、引張破断伸度及び引張破断強度のことをいうが、本発明では医療用チューブのコイル以外の部分が破断したときの最大の変位及び荷重をさす。これはコイルが破断する引張長さは非常に大きく、コイルの破断伸度及び破断強度は医療用チューブにおいて重要性は低く、コイル以外の部分の破断伸度及び破断強度が医療用チューブにおいて重要性が高いためである。
 また、本発明でいう融点とは、ASTM D3418の方法で測定した融点のことをいう。更に、本発明でいう熱変形温度(荷重たわみ温度)とは、ISO 75の方法で測定した熱変形温度(荷重たわみ温度)のことをいう。
 本発明に係る医療用チューブは、薄肉、柔軟で耐キンク性と引張強度に優れており、他のチューブ等の部材と用意に接合可能であるため、カテーテル等の医療用具などに幅広く適用可能である。前述したようなカテーテルの手元部シャフトや先端部シャフトだけでなく、ガイドワイヤールーメンやその他チューブを使用する医療用具に適用可能である。例えば、バルーンカテーテルのシャフトとして使用した場合には、薄肉のシャフトにできることにより、内腔を広く取ることができ、バルーンのデフレーションタイムを早くすることが可能となる。薬剤注入用カテーテルのシャフトとして使用した場合には、薄肉のシャフトにできることにより、内腔を広く取ることができ、薬剤の注入量を多くすることが可能となる。血栓吸引用カテーテルのシャフトとして使用した場合には、薄肉のシャフトにできることにより、内腔を広く取ることができ、血栓の吸引量を多くすることが可能となる。他のカテーテル等のデリバリー用カテーテルのシャフトとして使用した場合には、薄肉のシャフトにできることにより、内腔を広く取ることができ、より大きいカテーテル等をデリバリーすることが可能となる。また、これらのカテーテルにおいて、従来と同様の内腔とした場合には、カテーテルの外径を小さくすることができ、より低侵襲の治療やより末梢の細い体内管腔での治療を可能にする。
 本発明に係る医療用チューブをこれらのカテーテルに適用する際に、医療用チューブの内腔を平滑にするなどの効果を目的として、コイル層のさらに内腔に内層を有することも可能である。特にコイルの巻き形状がピッチ巻の場合、このような内層を有することにより、ガイドワイヤーや他のカテーテルなどをよりスムーズに医療用チューブ内腔を通過させることが可能となる。但し、医療用チューブを薄肉にする観点から、本発明の製造方法により得られる医療用チューブの耐キンク性、引張強度を考慮して、内層、外層チューブ、コイル層、必要に応じて設ける中間層、第2の外層の肉厚を適宜調整すると良い。
 以下、実施例に従って本発明を更に詳細に説明するが、本発明を以下の実施例に限定するものでない。以下の実施例については、耐キンク性、引張強度、引張伸度の比較を示すものであり、薄肉化の可能性や製造の容易さについては記載していない。
 (実施例1)
 コイル層は、ステンレス鋼の平線(厚さ0.10mm、幅0.20mm)からなる内径1.00mm、長さ300mmの密着巻のコイルを使用した。外層チューブは、押出機を使用して、内腔にエアーを入れる通常の引き落としによる押出成形により、内径1.25mm、外径1.39mmのポリウレタンエラストマー(ショアD硬度68D、融点182℃)製チューブを作製して使用した。
 作製したコイルの内腔に、直径0.98mm、長さ400mmのステンレス芯材を挿入し、これを外層チューブの内側に挿入した。この状態で130℃に設定されたオーブンで2分間加熱した。オーブンから取り出した後、ステンレス芯材を抜き取ることで内径1.00mm、外径1.35mm、長さ300mmの医療用チューブを得た。
 (実施例2)
 コイル層は、ステンレス鋼の平線(厚さ0.02mm、幅0.10mm)からなる内径1.00mm、素線間の隙間0.05mm(ピッチ0.15mm)、長さ300mmのピッチ巻のコイルを使用した。外層チューブ及び中間層は、押出機を使用して、内腔にエアーを入れる通常の引き落としによる二層チューブの押出成形により、外層(外側チューブ)が厚さ0.05mmであるポリウレタンエラストマー(ショアD硬度68D、融点182℃)からなり、内層(中間層)が厚さ0.01mmであるポリウレタンエラストマー(ショアA硬度85A、融点163℃)からなる、内径1.08mm、外径1.20mm、長さ300mmの二層チューブを作製して使用した。
 作製したコイルの内腔に、直径0.98mm、長さ400mmのステンレス芯材を挿入し、これを二層チューブの内側に挿入した。この状態で130℃に設定されたオーブンで2分間加熱した。オーブンから取り出した後、ステンレス芯材を抜き取ることで内径1.00mm、外径1.16mm、長さ300mmの医療用チューブを得た。
 (実施例3)
 コイル層は、実施例1と同様とした。外層チューブは、押出機を使用して、内腔にエアーを入れる通常の引き落としによる押出成形により、内径1.25mm、外径1.39mmのポリアミドエラストマー(ショアD硬度72D、融点176℃、熱変形温度106℃)製チューブを作製して使用した。
 作製したコイルの内腔に、直径0.98mm、長さ400mmのステンレス芯材を挿入し、これを外層チューブの内側に挿入した。この状態で130℃に設定されたオーブンで2分間加熱した。オーブンから取り出した後、ステンレス芯材を抜き取ることで内径1.00mm、外径1.35mm、長さ300mmの医療用チューブを得た。
 (実施例4)
 コイル層及び外層チューブは実施例1と同様とした。
 作製したコイルの内腔に、直径0.98mm、長さ400mmのステンレス芯材を挿入し、これを外層チューブの内側に挿入した。さらに、外層チューブの外側に熱収縮チューブ(ポリオレフィン製、収縮温度115℃以上、収縮率40%以上、内径約1.5mm)を全長にわたって被せて、174℃に設定されたオーブンで2分間加熱した。オーブンから取り出した後、熱収縮チューブを剥ぎ、ステンレス芯材を抜き取ることで内径1.00mm、外径1.35mm、長さ300mmの医療用チューブを得た。
 (実施例5)
 コイル層及び外層チューブは実施例3と同様とした。
 作製したコイルの内腔に、直径0.98mm、長さ400mmのステンレス芯材を挿入し、これを外層チューブの内側に挿入した。さらに、外層チューブの外側に熱収縮チューブ(ポリオレフィン製、収縮温度115℃以上、収縮率40%以上、内径約1.5mm)を全長にわたって被せて、170℃に設定されたオーブンで2分間加熱した。オーブンから取り出した後、熱収縮チューブを剥ぎ、ステンレス芯材を抜き取ることで内径1.00mm、外径1.35mm、長さ300mmの医療用チューブを得た。
 (実施例6)
 コイル層は、実施例2と同様とした。外層チューブ及び中間層は、押出機を使用して、内腔にエアーを入れる通常の引き落としによる二層チューブの押出成形により、外層(外層チューブ)が厚さ0.05mmであるポリアミドエラストマー(ショアD硬度70D、融点174℃、熱変形温度99℃)からなり、内層(中間層)が厚さ0.01mmであるポリアミドエラストマー(ショアD硬度35D、融点152℃、熱変形温度46℃)からなる、内径1.08mm、外径1.20mm、長さ300mmの二層チューブを作製して使用した。
 作製したコイルの内腔に、直径0.98mm、長さ400mmのステンレス芯材を挿入し、これを二層チューブの内側に挿入した。さらに、二層チューブの外側に熱収縮チューブ(ポリオレフィン製、収縮温度115℃以上、収縮率40%以上、内径約1.5mm)を全長にわたって被せて、170℃に設定されたオーブンで2分間加熱した。オーブンから取り出した後、熱収縮チューブを剥ぎ、ステンレス芯材を抜き取ることで内径1.00mm、外径1.16mm、長さ300mmの医療用チューブを得た。
 (実施例7)
 コイル層及び外層チューブは実施例3と同様とした。
 作製したコイルの内腔に、直径0.98mm、長さ400mmのステンレス芯材を挿入し、これを外層チューブの内側に挿入した。外層チューブの片端をステンレス製のダイ(内径1.35mm)に通し、ダイを170℃に加熱した後、ダイに通した外層チューブの片端を一定速度で引っ張り、コイル層及び外層チューブを全長に渡ってダイの中を引き抜いた。その後、ステンレス芯材を抜き取ることで内径1.00mm、外径1.35mm、長さ300mmの医療用チューブを得た。
 (実施例8)
 コイル層は、実施例2と同様とした。外層チューブ及び第2の外層は、押出機を使用して、内腔にエアーを入れる通常の引き落としによる二層チューブの押出成形により、外層(第2の外層)が厚さ0.02mmであるポリアミドエラストマー(ショアD硬度35D、融点152℃、熱変形温度46℃)からなり、内層(外層チューブ)が厚さ0.05mmであるポリアミドエラストマー(ショアD硬度70D、融点174℃、熱変形温度99℃)からなる、内径1.08mm、外径1.22mm、長さ300mmの二層チューブを作製して使用した。
 作製したコイルの内腔に、直径0.98mm、長さ400mmのステンレス芯材を挿入し、これを二層チューブの内側に挿入した。さらに、二層チューブの外側に熱収縮チューブ(ポリオレフィン製、収縮温度115℃以上、収縮率40%以上、内径約1.5mm)を全長にわたって被せて、170℃に設定されたオーブンで2分間加熱した。オーブンから取り出した後、熱収縮チューブを剥ぎ、内径1.00mm、外径1.18mm、長さ300mmのステンレス芯材入り医療用チューブを得た。
 このステンレス芯材入り医療用チューブの片端から150mmの範囲に、直径0.40mmのステンレス芯材が挿入されたポリアミドエラストマー(ショアD硬度55D、融点168℃、熱変形温度66℃)からなる第2のチューブ(内径0.41mm、外径0.56mm、長さ150mm)を平行に沿わせ、ステンレス芯材入り医療用チューブと第2のチューブの両方が入るように熱収縮チューブ(ポリオレフィン製、収縮温度115℃以上、収縮率40%以上、内径約2.0mm)を被せ、170℃に設定されたオーブンで2分間加熱した。オーブンから取り出した後、熱収縮チューブを剥ぎ、直径1.00mmのステンレス芯材及び直径0.40mmのステンレス芯材を抜き取ることで第2のチューブが並列に溶着された部分が150mm、医療用チューブのみの部分が150mmから構成される、長さ300mmの医療用組立体を得た。
 (比較例1)
 オーブンの温度を200℃に設定する以外、実施例4と同様とした。
 (比較例2)
 オーブンの温度を200℃に設定する以外、実施例5と同様とした。
 (比較例3)
 オーブンの温度を200℃に設定する以外、実施例6と同様とした。
 (比較例4)
 コイル層は、実施例1と同様とした。外層チューブは、押出機を使用して、内腔にエアーを入れる通常の引き落としによる押出成形により、内径1.21mm、外径1.35mm、長さ300mmのポリウレタンエラストマー(ショアD硬度68D)製チューブを作製して使用した。
 作製したコイルを、軸方向に引き伸ばし、さらに外径が縮小するように捩りを加えて外層チューブの内側に挿入した。コイルを元の形状に戻し、内径1.00mm、外径1.35mm、長さ300mmの医療用チューブを得た。
 (比較例5)
 外層チューブは、押出機を使用して、内腔にエアーを入れる通常の引き落としによる押出成形により、内径1.21mm、外径1.35mm、長さ300mmのポリアミドエラストマー(ショアD硬度72D)製チューブを作製して使用した。外層チューブ以外は、比較例4と同様とした。
 (評価)
 臨床現場でカテーテル等が操作される動きと同様に、医療用チューブを2箇所で保持し、保持した部分を近づけてチューブを屈曲させて評価する「耐キンク性試験」、及び臨床現場でカテーテル等が引っ張られる動きと同様に、医療用チューブを2箇所で保持し、保持した部分を引っ張って評価する「引張試験」の2種類の評価を実施した。実施例1~8、比較例1~5で作製した医療用チューブについて、2種類の評価を実施したが、実施例8のみ、第2のチューブを接合した部分についても同様に評価を実施した。
 (耐キンク性試験)
 医療用チューブを直線状の状態とし、長手方向に一定距離離れた2点を左右の手で保持し、両方の手をゆっくりと一直線上に近づけていき、保持した距離が10mmとなる位置まで近づけてチューブを屈曲させた時の、キンクの有無を観察した。ここでいうキンクとは、外層チューブに割れや折れ、または大きい塑性変形(伸びなど)が生じた状態をいい、直線状に戻しても元の医療用チューブの状態へは戻らないことが多い。最初の保持距離については、試験を最後まで実施した際に非常に高屈曲に曲げた状態になる70mm、及びさらに過酷な状態である50mmの2種類を設定した。評価結果として、どちらの設定でもキンクしない場合を◎、70mmでキンクせず50mmでキンクした場合を○、70mmでキンクした場合を×として、医療用チューブの耐キンク性を評価した。
 耐キンク性試験の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1~3については、保持距離70mmの試験では最後までキンクせず、内腔の潰れや外層の割れ、コイルの乱れも発生せず、良好な耐キンク性を示した。保持距離50mmの試験では、20mmの距離まで近づけた時点で荷重の低下を感じ、キンクしたと判断したが、直線状に戻すとコイルのずれや重なりも観察されず、元の医療用チューブの状態へと戻っていた。
 実施例4~8については、保持距離70mmの試験、50mmの試験ともに最後までキンクせず、内腔の潰れや外層の割れ、コイルの乱れも発生せず、良好な耐キンク性を示した。また、実施例8については、第2のチューブを接合した医療用組立体についても同様に、良好な耐キンク性を示した。
 比較例1~2については、保持距離70mmの試験で、20mmの距離まで近づけた時点で、外層チューブに割れが発生してキンクした。
 比較例3については、保持距離70mmの試験で、20mmの距離まで近づけた時点で、コイルの素線の隙間で外層チューブが引き伸ばされてキンクした。直線状に戻しても外層チューブの引き伸ばされた部分が弛んだ状態のままであり、医療用チューブの剛性が極端に低下するとともに、外径が大きくなっていた。
 比較例4~5については、保持距離70mmの試験で、40mmの距離まで近づけた時点で外層チューブがキンクするとともに、コイルのずれと重なりが発生し、キンクした。直線状に戻してもコイルのずれと重なりは解消されなかった。
 (引張試験)
 医療用チューブを引張圧縮試験機(島津製作所)を用いて、チャック間距離50mm、引張速度1000mm/minの条件で引張試験を実施し、引張強度及び引張伸度を評価した。引張強度及び引張伸度は、コイル層からなる医療用チューブのコイル以外の部分が破断したときの最大の荷重及び変位とした。引張伸度については、(破断時の変位/チャック間距離)×100[%]で示す。ここで、破断時の変位とは、チャックした状態を0mmとした場合の破断時の距離のことで、医療用チューブが実際に伸ばされた距離のことである。
 引張試験の結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 実施例1~8の引張強度については、樹脂の硬度や外層チューブの肉厚などによって差はあるものの、12~18Nと十分な引張強度を示した。また、引張伸度についても、引張強度同様に差はあるものの、108~240%と初期状態の2倍以上の伸びを示した。実施例8については、第2のチューブを接合した医療用組立体についても、15Nの引張強度、141%の引張伸度と医療用チューブとほぼ同様の結果を示した。
 比較例4~5の引張強度については、樹脂の硬度や外層チューブの肉厚などによって差はあるものの、15~17Nと十分な引張強度を示した。また、引張伸度についても、引張強度同様に差はあるものの、240~251%と初期状態の2倍以上の伸びを示した。
 比較例1~3の引張強度については、樹脂の硬度や外層チューブの肉厚などによって差はあるものの、全て5~9Nと低い荷重で破断した。また、引張伸度については、比較例1~2は191~217%と初期状態の2倍以上の伸びを示したが、比較例3は31%であり、伸び始めてすぐに破断した。
 上記の結果より、実施例1~3については、非常に高屈曲に曲げた状態でもキンクせず、さらに過酷な状態ではキンクする感覚は生じるものの、直線状に戻すことによって再度医療用チューブとして使用可能であることが確認された。また、引張強度及び引張伸度についても十分な荷重と伸びを示し、医療用チューブとして安全に使用できることが確認された。
 実施例4~8については、非常に過酷な状態でもキンクが生じることがなく、医療用チューブとして使用できることが確認された。また、引張強度及び引張伸度についても十分な荷重と伸びを示し、医療用チューブとして安全に使用できることが確認された。また、実施例8において、医療用組立体としても安全に使用できることが確認された。
 比較例1~3については、高屈曲に曲げた状態で外層チューブの割れやキンクが発生し、医療用チューブとして使用することが不可能であることが確認された。また、引張強度についても低い荷重で破断した。特に比較例3については引張伸度も小さい伸びで破断し、比較例1~3については、医療用チューブとして使用するには安全上の問題があることが確認された。
 比較例4~5については、引張強度及び引張伸度については、単なる樹脂チューブであるため、十分な荷重と伸びを示したものの、高屈曲に曲げた状態で外層チューブにキンクが発生し、コイルにもずれと重なりが発生して、医療用チューブとして使用することが不可能であることが確認された。
 101、201 医療用チューブ
 102、202 外層チューブ
 103、203 コイル層
 104A 外層チューブ102の内側でコイル素線端部に接触する部分
 104B 外層チューブ102の内側でコイル素線端部に接触する部分
 105 凹部
 204 中間層
 205 素線間

Claims (21)

  1.  樹脂からなる外層チューブの内側にコイル層を有する医療用チューブの製造方法であって、
     前記外層チューブ内に前記コイル層を挿入し、前記外層チューブの融点より低い成形温度で加熱して、前記コイル層上に前記外層チューブを摺動可能な状態で接触固定することを特徴とする医療用チューブの製造方法。
  2.  樹脂からなる外層チューブの内側に中間層を有し、更に中間層の内側にコイル層を有する医療用チューブの製造方法であって、
     前記外層チューブ内に前記中間層と前記コイル層を配置し、前記外層チューブの融点より低い成形温度で加熱して、前記コイル層上に前記中間層を介して前記外層チューブを摺動可能な状態で固定することを特徴とする医療用チューブの製造方法。
  3.  前記外層チューブが、前記成形温度で加熱した際に、内径が10%以下の収縮を生じるものであることを特徴とする請求項1又は2のいずれか1項に記載の医療用チューブの製造方法。
  4.  前記成形温度で加熱する際に、前記外層チューブの内径を縮小させる外力を加えることを特徴とする請求項1~3のいずれか1項に記載の医療用チューブの製造方法。
  5.  前記外層チューブのさらに外側に内径が収縮する熱収縮チューブを配置することにより前記外力を加えることを特徴とする請求項4に記載の医療用チューブの製造方法。
  6.  前記外層チューブのさらに外側から、金型により前記外力を加えることを特徴とする請求項4又は5のいずれか1項に記載の医療用チューブの製造方法。
  7.  前記外層チューブをダイの中から引き抜くことにより前記外力を加えることを特徴とする請求項4~6のいずれか1項に記載の医療用チューブの製造方法。
  8.  前記外層チューブを延伸することにより前記外力を加えることを特徴とする請求項4~7のいずれか1項に記載の医療用チューブの製造方法。
  9.  前記コイル層が、金属線からなることを特徴とする請求項1~8のいずれか1項に記載の医療用チューブの製造方法。
  10.  前記コイル層を形成する素線の形状が平線であることを特徴とする請求項1~9のいずれか1項に記載の医療用チューブの製造方法。
  11.  前記コイル層が密着巻コイルであることを特徴とする請求項1~10のいずれか1項に記載の医療用チューブの製造方法。
  12.  前記コイル層がピッチ巻コイルであることを特徴とする請求項1~10のいずれか1項に記載の医療用チューブの製造方法。
  13.  前記中間層の材料が前記外層チューブの材料よりも柔軟性が高いことを特徴とする請求項2~12のいずれか1項に記載の医療用チューブの製造方法。
  14.  前記中間層は前記外層チューブよりも融点が低い材料で構成されていることを特徴とする請求項2~13のいずれか1項に記載の医療用チューブの製造方法。
  15.  前記成形温度が、前記中間層を構成する材料の融点よりも高いことを特徴とする請求項2~14のいずれか1項に記載の医療用チューブの製造方法。
  16.  前記外層チューブと前記中間層が、前記コイル層に被覆する前に二層チューブであることを特徴とする請求項2~15のいずれか1項に記載の医療用チューブの製造方法。
  17.  前記中間層の材質が、前記外層チューブと同種の材質からなることを特徴とする請求項2~16のいずれか1項に記載の医療用チューブの製造方法。
  18.  外層チューブの外側に、該外層チューブよりも融点が低い材質からなる第2の外層を有することを特徴とする請求項1~17のいずれか1項に記載の医療用チューブの製造方法。
  19.  前記外層チューブが熱可塑性エラストマーからなることを特徴とする請求項1~18のいずれか1項に記載の医療用チューブの製造方法。
  20.  請求項1~19のいずれか1項に記載の製造方法により製造されたことを特徴とする医療用チューブ。
  21.  請求項20の医療用チューブを少なくとも一部に有することを特徴とする医療用具。


                                                                                    
PCT/JP2011/063051 2010-06-10 2011-06-07 医療用チューブ、およびその製造方法 WO2011155491A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180028368.3A CN102933253B (zh) 2010-06-10 2011-06-07 医疗用管及其制造方法
EP11792448.0A EP2581104A4 (en) 2010-06-10 2011-06-07 Medical tube, and manufacturing method for same
JP2012519397A JP5900331B2 (ja) 2010-06-10 2011-06-07 医療用チューブの製造方法
KR1020127032079A KR101861866B1 (ko) 2010-06-10 2011-06-07 의료용 튜브 및 그의 제조 방법
US13/702,896 US9011745B2 (en) 2010-06-10 2011-06-07 Method for manufacturing a medical tube

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010133440 2010-06-10
JP2010-133440 2010-06-10

Publications (1)

Publication Number Publication Date
WO2011155491A1 true WO2011155491A1 (ja) 2011-12-15

Family

ID=45098096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063051 WO2011155491A1 (ja) 2010-06-10 2011-06-07 医療用チューブ、およびその製造方法

Country Status (6)

Country Link
US (1) US9011745B2 (ja)
EP (1) EP2581104A4 (ja)
JP (1) JP5900331B2 (ja)
KR (1) KR101861866B1 (ja)
CN (1) CN102933253B (ja)
WO (1) WO2011155491A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2767303A1 (en) * 2013-02-15 2014-08-20 Asahi Intecc Co., Ltd. Catheter
JP2015062511A (ja) * 2013-09-25 2015-04-09 朝日インテック株式会社 ガイドワイヤ
JPWO2021064955A1 (ja) * 2019-10-03 2021-04-08

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9352071B2 (en) * 2013-03-14 2016-05-31 Ethicon, Inc. Method of forming an implantable device
EP2988684B1 (en) * 2013-04-23 2021-07-14 NorMedix, Inc. Thrombus extraction catheter
US9468457B2 (en) 2013-09-30 2016-10-18 Cardiovascular Systems, Inc. Atherectomy device with eccentric crown
US20150089785A1 (en) * 2013-09-30 2015-04-02 Cardiovascular Systems, Inc. Method of attaching an element to a drive shaft
EP2868289A1 (de) 2013-11-01 2015-05-06 ECP Entwicklungsgesellschaft mbH Flexibler Katheter mit einer Antriebswelle
CN104667409B (zh) * 2015-01-29 2017-11-10 浙江大学 抗挤压引流管及其制造方法
AU2016271022B2 (en) * 2015-05-29 2019-01-24 Covidien Lp Catheter with tapering outer diameter
US11219740B2 (en) 2015-05-29 2022-01-11 Covidien Lp Catheter including tapering coil member
US10357631B2 (en) 2015-05-29 2019-07-23 Covidien Lp Catheter with tapering outer diameter
EP3484568B1 (en) 2016-07-13 2022-04-27 Perfuze Limited High flexibility, kink resistant catheter shaft
WO2018185917A1 (ja) * 2017-04-06 2018-10-11 朝日インテック株式会社 管状体及びその管状体を備えたカテーテル
CN110612414A (zh) * 2017-05-09 2019-12-24 朝日英达科株式会社 热收缩管
JP7274485B2 (ja) 2017-12-15 2023-05-16 パーヒューズ・リミテッド 改善されたカテーテル並びにそうしたカテーテルを組み込んだ装置およびシステム
US11684748B2 (en) * 2017-12-27 2023-06-27 Kaneka Corporation Catheter and method for producing same
CN109985304A (zh) * 2017-12-29 2019-07-09 东莞科威医疗器械有限公司 医用插管及其成型工艺
CN111317906B (zh) * 2019-05-16 2022-06-14 东莞科威医疗器械有限公司 医用插管、带插芯股动静脉插管与医用插管的成型方法
WO2021050904A1 (en) * 2019-09-13 2021-03-18 Boston Scientific Scimed, Inc. Elastomeric strain relief layering for catheters
CN115887864A (zh) * 2022-11-24 2023-04-04 适介医疗科技(广州)有限公司 一种弹簧导管及其制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04183478A (ja) 1990-11-20 1992-06-30 Mitsubishi Cable Ind Ltd 医療用管状体
JP2002535049A (ja) 1999-01-20 2002-10-22 ボストン サイエンティフィック リミテッド 複合補強材を備えた脈管カテーテル
JP2007151913A (ja) * 2005-12-07 2007-06-21 Fujinon Corp 鉗子装置及び鉗子装置の密着コイルへの外装チューブ装着方法
JP2009207737A (ja) * 2008-03-05 2009-09-17 Fujifilm Corp 内視鏡用可撓管及びその製造方法
WO2009126747A1 (en) * 2008-04-08 2009-10-15 Reverse Medical Corporation Occlusion device and method of use

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5951539A (en) * 1997-06-10 1999-09-14 Target Therpeutics, Inc. Optimized high performance multiple coil spiral-wound vascular catheter
US7149585B2 (en) * 2001-03-30 2006-12-12 Micronet Medical, Inc. Lead body and method of lead body construction
JP2004033354A (ja) * 2002-07-01 2004-02-05 Terumo Corp カテーテルおよびその製造方法
US7001420B2 (en) * 2002-07-01 2006-02-21 Advanced Cardiovascular Systems, Inc. Coil reinforced multilayered inner tubular member for a balloon catheter
US7597830B2 (en) * 2003-07-09 2009-10-06 Boston Scientific Scimed, Inc. Method of forming catheter distal tip
US8273285B2 (en) * 2005-01-10 2012-09-25 St. Jude Medical, Atrial Fibrillation Division, Inc. Steerable catheter and methods of making the same
US8431057B2 (en) * 2007-12-30 2013-04-30 St. Jude Medical, Atrial Fibrillation Division, Inc. Catheter shaft and method of its manufacture
JP5304005B2 (ja) * 2008-04-17 2013-10-02 株式会社カネカ カテーテル用複合バルーン及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04183478A (ja) 1990-11-20 1992-06-30 Mitsubishi Cable Ind Ltd 医療用管状体
JP2002535049A (ja) 1999-01-20 2002-10-22 ボストン サイエンティフィック リミテッド 複合補強材を備えた脈管カテーテル
JP2007151913A (ja) * 2005-12-07 2007-06-21 Fujinon Corp 鉗子装置及び鉗子装置の密着コイルへの外装チューブ装着方法
JP2009207737A (ja) * 2008-03-05 2009-09-17 Fujifilm Corp 内視鏡用可撓管及びその製造方法
WO2009126747A1 (en) * 2008-04-08 2009-10-15 Reverse Medical Corporation Occlusion device and method of use

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2581104A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2767303A1 (en) * 2013-02-15 2014-08-20 Asahi Intecc Co., Ltd. Catheter
JP2015062511A (ja) * 2013-09-25 2015-04-09 朝日インテック株式会社 ガイドワイヤ
JPWO2021064955A1 (ja) * 2019-10-03 2021-04-08
JP7339355B2 (ja) 2019-10-03 2023-09-05 朝日インテック株式会社 医療用管状体

Also Published As

Publication number Publication date
EP2581104A1 (en) 2013-04-17
EP2581104A4 (en) 2018-02-07
US20130090632A1 (en) 2013-04-11
CN102933253B (zh) 2015-06-03
KR20130086948A (ko) 2013-08-05
JP5900331B2 (ja) 2016-04-06
US9011745B2 (en) 2015-04-21
CN102933253A (zh) 2013-02-13
KR101861866B1 (ko) 2018-05-28
JPWO2011155491A1 (ja) 2013-08-01

Similar Documents

Publication Publication Date Title
JP5900331B2 (ja) 医療用チューブの製造方法
US20110245807A1 (en) Medical Tube
US7628769B2 (en) Catheter having overlapping stiffening members
US5507766A (en) Vascular dilatation instrument and catheter
EP0952863B1 (en) Reinforced catheter with a formable distal tip
US6706010B1 (en) Balloon catheter and method of production thereof
US8366699B2 (en) Double helix reinforced catheter
US7553387B2 (en) Catheters with lubricious linings and methods for making and using them
EP0608853B1 (en) Vascular dilatation instrument and catheter
US6582536B2 (en) Process for producing steerable sheath catheters
US7556710B2 (en) Catheters with lubricious linings and methods for making and using them
US20050267408A1 (en) Catheter having first and second guidewire tubes and overlapping stiffening members
US8585858B2 (en) Medical catheter with bump tubing proximal segment
JP6250051B2 (ja) カテーテルおよびその製造方法
US20070088296A1 (en) Catheters with lubricious linings and methods for making and using them
WO2006104591A9 (en) Catheter having overlapping stiffening members
JP5124703B2 (ja) 医療用ステントおよび医療用ステントの製造方法
JP3699984B2 (ja) 血管拡張器具およびカテーテル
JP5626855B2 (ja) 医療用チューブの製造方法
JP5709077B2 (ja) カテーテル、バルーンカテーテル、およびステントデリバリーカテーテル
JP2011255025A (ja) 医療用チューブおよび医療用カテーテル
JP2006181258A (ja) マイクロカテーテルの製造方法及びマイクロカテーテル
JP5919818B2 (ja) アンカーカテーテル
JP2008043547A (ja) 医療用バルーンカテーテル

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180028368.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11792448

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012519397

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127032079

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13702896

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011792448

Country of ref document: EP