WO2011155318A1 - 振れ補正装置、撮影用光学装置およびレンズ駆動装置 - Google Patents

振れ補正装置、撮影用光学装置およびレンズ駆動装置 Download PDF

Info

Publication number
WO2011155318A1
WO2011155318A1 PCT/JP2011/061820 JP2011061820W WO2011155318A1 WO 2011155318 A1 WO2011155318 A1 WO 2011155318A1 JP 2011061820 W JP2011061820 W JP 2011061820W WO 2011155318 A1 WO2011155318 A1 WO 2011155318A1
Authority
WO
WIPO (PCT)
Prior art keywords
shake correction
magnet
fixed
lens driving
lens
Prior art date
Application number
PCT/JP2011/061820
Other languages
English (en)
French (fr)
Inventor
和出達貴
浅川新六
南澤伸司
Original Assignee
日本電産サンキョー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010130600A external-priority patent/JP5638845B2/ja
Priority claimed from JP2010130599A external-priority patent/JP2011257506A/ja
Application filed by 日本電産サンキョー株式会社 filed Critical 日本電産サンキョー株式会社
Priority to US13/702,460 priority Critical patent/US20130076924A1/en
Priority to CN201180027971.XA priority patent/CN102934020B/zh
Publication of WO2011155318A1 publication Critical patent/WO2011155318A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B5/02Lateral adjustment of lens
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0007Movement of one or more optical elements for control of motion blur
    • G03B2205/0023Movement of one or more optical elements for control of motion blur by tilting or inclining one or more optical elements with respect to the optical axis
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0007Movement of one or more optical elements for control of motion blur
    • G03B2205/0038Movement of one or more optical elements for control of motion blur by displacing the image plane with respect to the optical axis
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0053Driving means for the movement of one or more optical element
    • G03B2205/0069Driving means for the movement of one or more optical element using electromagnetic actuators, e.g. voice coils

Definitions

  • the present invention relates to a shake correction apparatus for correcting shake of an optical image.
  • the present invention also relates to a photographing optical device and a lens driving device provided with the shake correction device.
  • a photographic optical device described in Patent Document 1 includes a movable module on which a lens and an image sensor are mounted, a fixed body that supports the movable module, and a camera shake correction that swings the movable module on the fixed body to correct camera shake.
  • the movable module includes a movable body that holds the lens and can move in the optical axis direction, a support that supports the movable body so as to move in the optical axis direction, a lens driving coil that moves the movable body in the optical axis direction, and And a lens driving magnet.
  • the lens driving coil is wound around the outer peripheral surface of the moving body.
  • the support includes a rectangular cylindrical case that constitutes the outer peripheral surface of the movable module, and the lens driving magnet is fixed to the inner peripheral surface of the case so as to face the lens driving coil. Further, the outer peripheral surface of the movable module (that is, the outer peripheral surface of the case) is covered with a rectangular cylindrical yoke separate from the case.
  • the camera shake correction mechanism includes a camera shake correction coil and a camera shake correction magnet.
  • the camera shake correction magnet is fixed to the outer peripheral surface of the yoke.
  • a rectangular cylindrical fixed body constituting the outer peripheral surface of the optical device for photographing is arranged so as to surround the outer peripheral surface of the yoke, and the camera shake correction coil faces the camera shake correction magnet through a predetermined gap. It is fixed to the inner peripheral surface of the fixed body.
  • the movable module and the fixed body are connected by a gimbal spring.
  • the gimbal spring includes a rectangular frame-shaped inner peripheral side connecting portion, a rectangular frame-shaped outer peripheral side connecting portion, and an arm portion connecting the inner peripheral side connecting portion and the outer peripheral side connecting portion.
  • the inner peripheral side connecting portion is fixed to the yoke, and the outer peripheral side connecting portion is fixed to the fixed body.
  • an object of the present invention is to provide a relative position accuracy between a shake correction coil and a shake correction magnet in a conventional lens drive device for driving a photographic lens and a shake correction device mounted in a photographic optical device. It is an object of the present invention to provide a shake correction apparatus that can be further reduced in size while being enhanced as described above. Another object of the present invention is to provide a photographing optical device and a lens driving device provided with such a shake correction device.
  • a shake correction apparatus is a shake correction apparatus for correcting shake of an optical image so that a camera module having a lens and an image sensor can be swung. And a shake correction mechanism for correcting the shake by swinging the camera module so that the optical axis of the lens is tilted with respect to the support.
  • the support is formed in a substantially cylindrical shape.
  • the shake correction mechanism includes a shake correction coil that is fixed to the inner peripheral surface of the case body, and is located closer to the inner periphery side of the case body than the shake correction coil and to face the shake correction coil.
  • Spring part having The provided, wherein the inner peripheral side arrangement space can be arranged a camera module of the case body than shake correction magnet are formed.
  • a shake correction apparatus is a shake correction apparatus for correcting shake of an optical image, and a movable body to which a lens can be attached and movable in the optical axis direction of the lens.
  • a support body for swingably supporting a lens driving module having a holding body for holding the movable body so as to be movable in the optical axis direction, and a lens driving mechanism for driving the movable body in the optical axis direction;
  • the shake correction mechanism includes a shake correction coil that is fixed to the inner peripheral surface of the case body, and a shake correction coil that is disposed closer to the inner periphery of the case body than the shake correction coil and opposite the shake correction coil.
  • a spring member having a support fixing part fixed to the holder, a magnet holding part for holding the shake correction magnet, and a spring part connecting the support fixing part and the magnet holding part, from the shake correction magnet Also, an arrangement space in which the lens driving module can be arranged is formed on the inner peripheral side of the case body.
  • the shake correction coil is fixed to the inner peripheral surface of the case body constituting the support, and the support fixing portion of the spring member is fixed to the support.
  • the shake correction magnet is held by the magnet holding portion of the spring member.
  • an arrangement space in which the camera module or the lens driving module can be arranged is formed on the inner peripheral side of the case body with respect to the shake correction magnet. Therefore, in the present invention, it is possible to integrate the shake correction coil and the shake correction magnet via the support and the spring member before the camera module and the lens driving module are incorporated.
  • the present invention it is possible to reduce the influence of the dimensional accuracy and assembly accuracy of the camera module and the lens driving module on the relative position accuracy between the shake correction coil and the shake correction magnet. It is possible to increase the relative positional accuracy between the correction coil and the shake correction magnet more than ever. For example, the accuracy of the gap between the shake correction coil and the shake correction magnet can be improved more than before.
  • the present invention it is possible to integrate the shake correction coil and the shake correction magnet via the support and the spring member before incorporating the camera module and the lens driving module. It is possible to distribute both the shake correction apparatus in a state where the lens driving module is not incorporated and the shake correction apparatus in which the camera module and the lens drive module are incorporated in the market. Therefore, according to the present invention, it is possible to diversify the distribution form of the shake correction apparatus.
  • the shake correction mechanism preferably includes a plurality of shake correction magnets and a magnet holder that holds the plurality of shake correction magnets, and the magnet holder is preferably fixed to the magnet holding portion. If comprised in this way, since several magnets for shake correction can be integrated by a magnet holder, it will become possible to raise the relative position accuracy between a plurality of magnets for shake correction. As a result, a coil for shake correction It is possible to effectively increase the relative positional accuracy between the magnet and the shake correction magnet. In addition, since a plurality of shake correction magnets can be integrated by the magnet holder, it is possible to stabilize the shake correction magnet even in a shake correction apparatus in which no camera module or lens driving module is incorporated. Become. In addition, since a plurality of shake correction magnets can be integrated by the magnet holder, handling of the shake correction magnets is more difficult when assembling the shake correction device than when handling a plurality of shake correction magnets individually. Becomes easier.
  • the magnet holder preferably holds at least both ends of a plurality of shake correction magnets in the optical axis direction of the lens. If comprised in this way, it will become possible to raise the rigidity of the magnet body comprised by the several magnet for a shake correction, and a magnet holder.
  • the magnet holder is preferably formed with a positioning portion for positioning the magnet holding portion in a direction substantially orthogonal to the optical axis direction of the lens. If comprised in this way, it will become possible to raise the relative position accuracy between a magnet holding
  • the shake correction mechanism includes a fulcrum portion serving as a swing center of the camera module.
  • the shake correction mechanism includes a fulcrum portion serving as a swing center of the lens driving module. If comprised in this way, it will become possible to test
  • the shake correction device of the present invention is a photographic optical device including a camera module, and can be used for a photographic optical device in which a shake correction magnet is fixed to the camera module.
  • the shake correction device of the present invention is a lens drive device including a lens drive module, and can be used for a lens drive device in which a shake correction magnet is fixed to the lens drive module.
  • the relative position accuracy between the shake correction coil and the shake correction magnet can be increased more than before, so that the shake correction function can be increased more than before. Become.
  • the shake correction mechanism includes a fulcrum portion serving as the swing center of the camera module, and in the optical axis direction of the lens, the side on which the subject is disposed is the subject side, and the side on which the image sensor is disposed is the anti-subject
  • the fulcrum portion is disposed on the side opposite to the subject with respect to the camera module
  • the support fixing portion is disposed on the side opposite to the subject with respect to the magnet holding portion.
  • the shake correction mechanism includes a fulcrum portion serving as a swing center of the lens driving module. In the optical axis direction of the lens, the side on which the subject is arranged is the subject side and the opposite side of the subject side is the opposite side.
  • the fulcrum portion is disposed on the opposite subject side from the lens driving module, and the support fixing portion is disposed on the opposite subject side from the magnet holding portion. If comprised in this way, it will become possible to urge a camera module or a lens drive module toward a fulcrum part using a spring member, and it will be possible to stabilize a rocking motion of a camera module or a lens drive module. become.
  • the support is formed with an abutting portion with which a fulcrum projection that constitutes the fulcrum abuts, or an anti-subject side case body in which the fulcrum projection is formed or fixed, and the support fixing
  • the support member fixing portion is fixed in a state of being sandwiched between the fixing member in the optical axis direction and the non-subject side case body.
  • the support fixing portion can be fixed in the optical axis direction with reference to the case body on the side opposite to the subject. Therefore, the relative positional accuracy in the optical axis direction between the support fixing portion and the fulcrum portion It becomes easy to secure. Therefore, it is possible to appropriately bias the camera module and the lens driving module toward the fulcrum using the spring member, and the swinging motion of the camera module and the lens driving module can be further stabilized. Become.
  • a photographing optical device corrects a camera module having a lens and an image sensor, and a shake of an optical image formed on the image sensor by the lens. And a shake correction device for swinging the camera module so that the optical axis of the lens is tilted with respect to the support.
  • the shake correction mechanism includes a shake correction magnet that is directly fixed to the outer peripheral surface of the camera module, and a shake correction coil that is fixed to the support and disposed opposite to the shake correction magnet. It is characterized by providing.
  • a lens driving device includes a movable body to which a lens can be attached and movable in the optical axis direction of the lens, and a holder that holds the movable body so as to be movable in the optical axis direction.
  • a shake correction device for correcting a shake of an optical image formed by the lens
  • a lens drive module having a body, a lens drive mechanism for driving the movable body in the optical axis direction, and a shake correction device
  • a support that supports the lens drive module in a swingable manner, and a shake correction mechanism for correcting the shake by swinging the lens drive module so that the optical axis of the lens is tilted with respect to the support
  • the shake correction mechanism includes a shake correction magnet that is directly fixed to the outer peripheral surface of the lens driving module, and a shake correction coil that is fixed to the support and is disposed opposite to the shake correction magnet.
  • the shake correction magnet constituting the shake correction mechanism is directly fixed to the outer peripheral surface of the camera module.
  • the shake correction magnet constituting the shake correction mechanism is directly fixed to the outer peripheral surface of the lens drive module. Therefore, in the present invention, as compared with the conventional case, as compared to the case where the shake correction magnet is fixed to the yoke arranged so as to cover the outer peripheral surface of the camera module and the outer peripheral surface of the lens driving module, the photographing optical device It becomes possible to reduce the size of the lens driving device.
  • the present invention it is possible to reduce the weight of the swinging portion as compared with the case where the yoke is disposed so as to cover the outer peripheral surface of the camera module and the outer peripheral surface of the lens driving module.
  • the shake correction magnet and the shake correction coil can be enlarged by the amount of the yoke. It becomes possible to increase the driving force of the correction mechanism.
  • the camera module includes a movable body that holds the lens and is movable in the optical axis direction of the lens, a holding body that holds the movable body so as to be movable in the optical axis direction, A lens driving mechanism for driving in the axial direction, and the lens driving mechanism is fixed to the outer peripheral surface of the movable body, and the lens driving is fixed to the holding body and arranged opposite to the lens driving coil.
  • the holder is formed of a magnetic material, and includes a substantially cylindrical cover member that constitutes the outer peripheral surface of the camera module, and the lens driving magnet is fixed to the inner peripheral surface of the cover member, It is preferable that a shake correction magnet is fixed to the outer peripheral surface of the cover member.
  • the lens driving mechanism includes a lens driving coil fixed to the outer peripheral surface of the movable body, and a lens driving magnet fixed to the holding body and disposed opposite to the lens driving coil.
  • the holding body is formed of a magnetic material and includes a substantially cylindrical cover member that constitutes the outer peripheral surface of the lens driving module, and a lens driving magnet is fixed to the inner peripheral surface of the cover member. It is preferable that a shake correction magnet is fixed to the outer peripheral surface.
  • the cover member functions as a back yoke
  • the density of the magnetic flux that passes through the lens driving coil that is disposed to face the lens driving magnet, and the shake correction that is disposed to face the shake correcting magnet It becomes possible to increase the density of the magnetic flux passing through the coil. It is also possible to suppress interference between the magnetic flux generated by the lens driving magnet and the magnetic flux generated by the shake correction magnet. Therefore, the lens can be appropriately moved in the optical axis direction, and the camera module and the lens driving module can be appropriately swung.
  • a first facing surface that is a facing surface of the lens driving magnet that faces the shake correcting magnet via the cover member, and a facing surface of the shake correcting magnet that faces the first facing surface via the cover member.
  • the second opposing surface is magnetized so that two different magnetic poles overlap in the optical axis direction, and the side on which the subject is arranged in the optical axis direction is the subject side.
  • the magnet is preferably fixed to the cover member so that the magnetic pole disposed on the subject side of the first facing surface is different from the magnetic pole disposed on the subject side of the second facing surface.
  • the shake correction mechanism includes a spring member that connects the camera module and the support, and the spring member includes a movable side fixed portion that is directly fixed to the camera module, and a fixed side fixed portion that is fixed to the support. It is preferable to provide a spring part that connects the movable side fixing part and the fixed side fixing part and enables the camera module to swing.
  • the shake correction mechanism includes a spring member that connects the lens driving module and the support, and the spring member is fixed to the support and a movable side fixing portion that is directly fixed to the lens driving module. It is preferable to include a side fixing part, and a spring part that connects the movable side fixing part and the fixed side fixing part and enables the lens driving module to swing.
  • the photographing optical is compared with a case where a member to which the movable side fixing portion is fixed is provided separately. It is possible to reduce the size of the device and the lens driving device.
  • the shake correction mechanism includes a fulcrum portion serving as the swing center of the camera module, and in the optical axis direction of the lens, the side on which the subject is disposed is the subject side, and the side on which the image sensor is disposed is the anti-subject
  • the fulcrum portion is disposed on the side opposite to the subject with respect to the camera module
  • the fixed side fixing portion is disposed on the side opposite to the subject with respect to the movable side fixing portion.
  • the shake correction mechanism includes a fulcrum portion serving as a swing center of the lens driving module, and in the optical axis direction, the side on which the subject is arranged is the subject side, and the opposite side of the subject side is the anti-subject side. Then, it is preferable that the fulcrum portion is disposed on the side opposite to the subject with respect to the lens driving module, and the fixed side fixing portion is disposed on the side opposite to the subject with respect to the movable side fixing portion. If comprised in this way, it will become possible to urge a camera module or a lens drive module toward a fulcrum part using a spring member, and it will be possible to stabilize a rocking motion of a camera module or a lens drive module. become.
  • the camera module is formed such that a spring fixing convex portion to which the movable side fixing portion is fixed protrudes in a direction substantially orthogonal to the optical axis direction, and the movable side fixing portion is a subject of the spring fixing convex portion. It is preferable to be fixed to the side surface.
  • the lens driving module is formed such that a spring fixing convex portion to which the movable side fixing portion is fixed protrudes in a direction substantially perpendicular to the optical axis direction. It is preferable to be fixed to the surface of the part on the subject side.
  • the movable side fixed part When the movable side fixed part is fixed to the surface of the spring fixed convex part on the side opposite to the subject, the movable side fixed part peels off the surface of the spring fixed convex part on the side opposite to the subject due to the biasing force of the spring member. Although it becomes easy, if comprised in this way, it will become possible to prevent peeling of the movable side fixed part from a spring fixed convex part.
  • the spring fixing convex portion is formed over the entire circumference of the camera module, and the movable side fixing portion is formed in an annular shape.
  • the spring fixing convex portion is formed over the entire circumference of the lens driving module, and the movable side fixing portion is formed in an annular shape.
  • the support is formed with an abutting portion with which a fulcrum projection that constitutes the fulcrum abuts, or an anti-subject side case body on which the fulcrum projection is formed or fixed, and a fixed side fixing.
  • the fixing side fixing portion is fixed in a state of being sandwiched between the fixing member in the optical axis direction and the non-subject side case body.
  • the fixed-side fixing portion can be fixed in the optical axis direction with the anti-subject side case body as a reference, so that the relative position accuracy in the optical axis direction between the fixed-side fixing portion and the fulcrum portion It becomes easy to secure. Therefore, it is possible to appropriately bias the camera module and the lens driving module toward the fulcrum using the spring member, and the swinging motion of the camera module and the lens driving module can be further stabilized. Become.
  • the shake correction mechanism includes a plurality of shake correction magnets for swinging the camera module with the first direction and the second direction being substantially orthogonal to each other as being substantially orthogonal to the optical axis direction. It is preferable that a shake correction coil is provided, and the spring part includes a first spring part substantially parallel to the first direction and a second spring part substantially parallel to the second direction. In the present invention, the shake correction mechanism includes a plurality of shake corrections for swinging the lens drive module with the first direction and the second direction being substantially orthogonal to each other and substantially orthogonal to the optical axis direction.
  • the spring portion includes a first spring portion substantially parallel to the first direction and a second spring portion substantially parallel to the second direction.
  • the spring constant of the spring member in the second direction is relatively small due to the action of the first spring portion substantially parallel to the first direction, and the second spring member is substantially parallel to the second direction. It becomes possible to make the spring constant of the spring member in one direction relatively small. Therefore, it is possible to smoothly move the movable side fixing portion in the second direction by the first spring portion, and it is possible to smoothly move the movable side fixing portion in the first direction by the second spring portion. As a result, even if the swing angle of the camera module or the lens driving module is increased, it is possible to smoothly swing the camera module or the lens driving module.
  • the shake correction apparatus of the present invention it is possible to increase the relative positional accuracy between the shake correction coil and the shake correction magnet more than ever. Further, in the photographing optical device and the lens driving device of the present invention, the relative positional accuracy between the shake correction coil and the shake correction magnet can be improved more than before, and the shake correction function can be improved more than before. Is possible. Furthermore, according to the present invention, it is possible to make the photographing optical device and the lens driving device smaller than before.
  • FIG. 1 is a perspective view of a photographic optical device according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along a line EE in FIG. 1. It is a disassembled perspective view of the optical device for imaging shown in FIG.
  • FIG. 4 is an exploded perspective view of the camera module shown in FIG. 3.
  • FIG. 2 is a perspective view of the shake correction device shown in FIG. 1.
  • FIG. 6 is a cross-sectional view taken along the line FF in FIG. 5.
  • FIG. 4 is a perspective view showing an assembled state of a leaf spring, a shake correction magnet, and a magnet holder shown in FIG. 3 from the side opposite to the subject.
  • FIG. 3 is a process diagram showing an assembling procedure of the photographing optical device shown in FIG. 1.
  • FIG. 10 is a cross-sectional view taken along the line EE of FIG. 9.
  • FIG. 10 is an exploded perspective view of the photographing optical device shown in FIG. 9. It is a disassembled perspective view of the camera module shown in FIG. It is a perspective view for demonstrating the magnetization state of the lens drive magnet and the shake correction magnet shown in FIG. It is a perspective view for demonstrating the arrangement
  • FIG. 1 is a perspective view of a photographing optical apparatus 1 according to an embodiment of the present invention.
  • 2 is a cross-sectional view taken along the line EE of FIG.
  • the three directions orthogonal to each other are the X direction, the Y direction, and the Z direction, the X direction is the left-right direction, the Y direction is the front-rear direction, and the Z direction is the up-down direction.
  • the Z1 direction side is the “upper” side, and the Z2 direction side is the “lower” side.
  • the photographing optical device 1 is a small and thin camera mounted on a portable device such as a mobile phone, a drive recorder or a surveillance camera system, and has an autofocus function and a shake correction function.
  • the photographing optical device 1 is formed in a substantially quadrangular prism shape as a whole.
  • the photographing optical device 1 is formed so that the shape of the photographing lens when viewed from the direction of the optical axis L (optical axis direction) is a substantially square shape. These four side surfaces are substantially parallel to the left-right direction or the front-rear direction.
  • the photographing optical device 1 has a lens and an image pickup device and can swing the camera module 3, and corrects a shake of an optical image formed on the image pickup device by the lens.
  • a shake correction device 4 for the purpose.
  • the vertical direction substantially coincides with the optical axis direction of the camera module 3 when the camera module 3 is not swinging.
  • an image sensor is mounted on the lower end of the camera module 3, and a subject placed on the upper side is photographed. That is, in this embodiment, the upper side (Z1 direction side) is the subject side (object side), and the lower side (Z2 direction side) is the anti-subject side (imaging element side, image side).
  • FIG. 3 is an exploded perspective view of the photographing optical device 1 shown in FIG.
  • FIG. 4 is an exploded perspective view of the camera module 3 shown in FIG.
  • the camera module 3 is formed in a substantially quadrangular prism shape as a whole.
  • the camera module 3 is formed so as to have a substantially square shape when viewed from the optical axis direction, and the four side surfaces of the camera module 3 are substantially parallel to the left-right direction or the front-rear direction. ing.
  • the camera module 3 includes a movable body 5 that holds a lens and is movable in the optical axis direction, a holding body 6 that holds the movable body 5 so as to be movable in the optical axis direction, A lens drive mechanism 7 for driving the movable body 5 in the optical axis direction with respect to the holder 6 and a filter holder 8 for holding an IR cut filter 11 (see FIG. 2) for cutting near infrared light are provided.
  • the movable body 5 includes a holding body 6 via a leaf spring 9 (see FIG. 2) disposed on the upper end side of the movable body 5 and a leaf spring 10 (see FIG. 2) disposed on the lower end side of the movable body 5. Is held movable. That is, the movable body 5 and the holding body 6 are connected by the leaf springs 9 and 10.
  • the movable body 5 includes a lens holder 12 to which a plurality of lenses are fixed, and a sleeve 13 that holds the lens holder 12.
  • the holding body 6 includes a cover member 14 that forms four side surfaces (outer peripheral surfaces) of the camera module 3 and a base member 15 that forms an end surface of the camera module 3 on the side opposite to the subject.
  • the lens holder 12 is formed in a substantially cylindrical shape. A plurality of lenses are fixed on the inner peripheral side of the lens holder 12.
  • the sleeve 13 is formed of, for example, a resin material and is substantially cylindrical. The sleeve 13 holds the lens holder 12 on its inner peripheral side. That is, the outer peripheral surface of the lens holder 12 is fixed to the inner peripheral surface of the sleeve 13.
  • the cover member 14 is made of a magnetic material.
  • the cover member 14 is formed in a substantially rectangular tube shape with a bottom (substantially bottomed square tube shape) having a bottom portion 14a and a tube portion 14b.
  • the bottom portion 14 a is disposed on the upper side and constitutes an end surface on the subject side of the camera module 3.
  • a circular through hole 14c is formed at the center of the bottom portion 14a.
  • the cover member 14 is disposed so as to surround the outer peripheral side of the movable body 5 and the lens driving mechanism 7.
  • a spacer member 16 is fixed to the lower surface of the bottom portion 14 a of the cover member 14.
  • the spacer member 16 is formed in a substantially square frame shape. A part of the leaf spring 9 is fixed to the spacer member 16.
  • the base member 15 is formed of a resin material and is formed in a substantially square flat plate shape.
  • the base member 15 is fixed to the lower end of the cylindrical portion 14 b of the cover member 14. As shown in FIG. 2, a through hole 15 a is formed at the center of the base member 15. A part of the leaf spring 10 is fixed to the base member 15.
  • the lens driving mechanism 7 is disposed opposite to the lens driving coil 18 and the two lens driving coils 18 wound along the outer peripheral surface of the movable body 5 (specifically, the outer peripheral surface of the sleeve 13). And four lens driving magnets 19.
  • the two lens driving coils 18 are wound so that their winding directions are different from each other.
  • one lens driving coil 18 is wound in the clockwise direction of FIG. 4, and the other lens driving coil 18 is wound in the counterclockwise direction of FIG.
  • the two lens driving coils 18 are fixed to the outer peripheral surface of the sleeve 13 with a predetermined interval in the vertical direction.
  • the lens driving magnet 19 is formed in a substantially quadrangular prism shape having a substantially isosceles trapezoidal shape when viewed from the optical axis direction.
  • the lens driving magnet 19 is composed of two magnet pieces, a magnet piece 20 and a magnet piece 21 that are formed in a quadrangular prism shape having a substantially isosceles trapezoidal shape when viewed from the optical axis direction. Yes.
  • the lens driving magnet 19 is formed by adhering and fixing the magnet piece 20 and the magnet piece 21 to each other in a state where the lower surface of the magnet piece 20 and the upper surface of the magnet piece 21 are in contact with each other. .
  • the four lens driving magnets 19 are fixed to the insides of the four corners of the cylindrical portion 14b of the cover member 14 so as to face the outer peripheral surface of the lens driving coil 18 with a predetermined gap.
  • the four magnet pieces 20 are magnetized so that the magnetic poles formed on the surface facing the lens driving coil 18 are all the same.
  • the four magnet pieces 21 are magnetized so that the magnetic poles formed on the surface facing the lens driving coil 18 are the same.
  • the magnet pieces 20 and 21 are different from each other in the magnetic pole formed on the surface of the magnet piece 20 facing the lens driving coil 18 and the magnetic pole formed on the surface of the magnet piece 21 facing the lens driving coil 18. It is magnetized to be a magnetic pole. That is, the lens driving magnet 19 is magnetized so that two different magnetic poles overlap in the vertical direction.
  • the filter holder 8 is formed of a resin material and is formed in a substantially square flat plate shape.
  • the filter holder 8 is fixed to the lower surface of the base member 15.
  • a through hole 8 a is formed at the center of the filter holder 8.
  • An IR cut filter 11 is fixed on the upper surface side of the filter holder 8.
  • the image sensor is mounted on the substrate 22.
  • the substrate 22 is fixed to the lower surface of the filter holder 8.
  • a gyroscope for detecting a change in the tilt of the camera module 3 is mounted on the substrate 22.
  • an FPC (flexible printed circuit board) 23 is connected to the substrate 22, and the FPC 23 is drawn around the lower end side of the photographing optical device 1 and pulled out from the side surface of the photographing optical device 1.
  • an abutting plate 24 with which a later-described spherical member 35 abuts is fixed to the lower surface of the substrate 22.
  • FIG. 5 is a perspective view of the shake correction apparatus 4 shown in FIG. 6 is a cross-sectional view taken along the line FF in FIG.
  • FIG. 7 is a perspective view showing an assembled state of the leaf spring 28, the shake correction magnet 39 and the magnet holder 45 shown in FIG.
  • the shake correction device 4 corrects shakes such as camera shake, a support body 27 for supporting the camera module 3 so as to be swingable, a leaf spring 28 as a spring member for connecting the camera module 3 and the support body 27.
  • a swing drive mechanism 29 that swings the camera module 3 with respect to the support 27 is provided.
  • the support 27 includes a case body 31 that forms four front and rear, left, and right side surfaces (outer peripheral surfaces) of the photographic optical device 1 and a lower case body as an anti-subject side case body that forms the lower surface side of the photographic optical device 1. 32 and a spacer member 33 as a fixing member for fixing a part of the leaf spring 28.
  • the case body 31 is formed in a substantially rectangular tube shape, and is disposed so as to surround the camera module 3 from the outer peripheral side.
  • the lower case body 32 is formed in a substantially square cylindrical shape with a bottom (substantially bottomed rectangular cylindrical shape) having a bottom portion 32a and a cylindrical portion 32b.
  • the spacer member 33 is formed in a substantially square frame shape.
  • the bottom 32a of the lower case body 32 is arranged on the lower side and constitutes the lower surface of the photographing optical device 1.
  • a circular arrangement hole 32c in which the lower end side of the spherical member 35 serving as a fulcrum for swinging the camera module 3 is arranged is formed at the center of the bottom 32a.
  • the spherical member 35 and the arrangement hole 32c constitute a fulcrum portion 36 that becomes the swing center of the camera module 3.
  • the fulcrum portion 36 is disposed below the camera module 3, and the upper end of the spherical member 35 is in contact with the lower surface of the contact plate 24.
  • the spherical member 35 of this embodiment is a fulcrum projection that constitutes the fulcrum portion 36, and the edge of the arrangement hole 32c is an abutment portion with which the spherical member 35 that is the fulcrum projection abuts.
  • the swing drive mechanism 29 includes four shake correction coils 38 and four shake correction magnets 39 arranged to face each of the four shake correction coils 38.
  • the four shake correction coils 38 are mounted and formed on the FPC 40 as shown in FIG.
  • the shake correction coil 38 is formed by being wound in a substantially rectangular shape, and includes two long side portions 38a that are substantially parallel to each other.
  • the FPC 40 is disposed along the inner peripheral surface of the case body 31 such that each of the four shake correction coils 38 is disposed on each of the four inner surfaces constituting the inner peripheral surface of the case body 31. ing.
  • the short side direction and the vertical direction of the shake correction coil 38 wound in a substantially rectangular shape substantially coincide with each other so that the long side portion 38a is substantially parallel to the front-rear direction or the left-right direction. And so on) is fixed to the inner peripheral surface of the case body 31.
  • the FPC 40 is connected to the FPC 23 via a relay FPC 41.
  • the shake correction coil 38 may be an air core coil wound in an air core shape.
  • the shake correction magnet 39 is formed in a substantially rectangular flat plate shape.
  • the shake correction magnet 39 is composed of two magnet pieces, a magnet piece 42 and a magnet piece 43, which are formed in a substantially rectangular flat plate shape. Specifically, in a state where the lower surface of the magnet piece 42 and the upper surface of the magnet piece 43 are in contact with each other, the magnet piece 42 and the magnet piece 43 are bonded and fixed to each other to form the shake correction magnet 39. .
  • the four shake correcting magnets 39 are held by the magnet holder 45.
  • the magnet holder 45 is made of, for example, a resin material. Moreover, the magnet holder 45 is formed in the substantially square cylinder shape. In each of the four side surfaces of the magnet holder 45, a substantially rectangular fixing hole 45a for fixing the shake correction magnet 39 is formed so as to penetrate the side surface. Further, as shown in FIG. 7, at the lower end surfaces of the four side surfaces of the magnet holder 45, a magnet holding portion 28a, which will be described later, constituting the leaf spring 28 is positioned as a positioning portion for positioning in the front-rear and left-right directions. A positioning protrusion 45b is formed.
  • the shake correction magnet 39 has a thickness direction that matches the thickness direction of the side surface of the magnet holder 45 and a longitudinal direction that substantially matches the left-right direction or the front-rear direction (that is, the short direction is It is fixed to the fixing hole 45a so as to substantially coincide with the vertical direction. That is, the magnet holder 45 holds both end sides of the shake correction magnet 39 in the left-right direction or the front-rear direction and both end sides of the shake correction magnet 39 in the up-down direction. Further, the inner surface of the shake correction magnet 39 in the front / rear / right / left direction can be fixed to the outer peripheral surface of the cylindrical portion 14 b of the cover member 14, and the shake correction magnet 39 is more case than the shake correction coil 38. It is arranged on the inner peripheral side of the body 31.
  • the magnet piece 42 is magnetized so that the magnetic pole formed on one side and the magnetic pole formed on the other side are different. That is, the magnet pieces are formed such that the magnetic poles formed on the front and rear inner surfaces fixed to the cylindrical portion 14b are different from the magnetic poles formed on the front and rear outer surfaces facing the shake correction coil 38. 42 is magnetized.
  • the magnet piece 43 is different from the magnetic pole formed on the front and rear inner surfaces fixed to the cylindrical portion 14b and the magnetic pole formed on the front and rear outer surfaces facing the shake correction coil 38. It is magnetized to become.
  • the magnet pieces 42 and 43 are magnetized so that the magnetic poles on the inner side surface of the magnet piece 42 and the magnetic poles on the inner side surface of the magnet piece 43 are different from each other. That is, the magnet pieces 42 and 43 are magnetized so that the magnetic poles on the outer surface of the magnet piece 42 and the magnetic poles on the outer surface of the magnet piece 43 are different from each other.
  • the leaf spring 28 includes a magnet holding portion 28a for holding a shake correction magnet 39, a support fixing portion 28b fixed to the support 27, a magnet holding portion 28a and a support fixing portion 28b.
  • a magnet holding portion 28a for holding a shake correction magnet 39
  • a support fixing portion 28b fixed to the support 27
  • a magnet holding portion 28a and a support fixing portion 28b.
  • spring portions 28c are provided with four spring portions 28c.
  • the camera module 3 fixed to the magnet holding portion 28a via the shake correction magnet 39 or the like can be swung. Yes.
  • the magnet holding part 28a and the support fixing part 28b are formed in an annular shape. Specifically, the magnet holding portion 28a and the support fixing portion 28b are formed in a substantially square frame shape.
  • the support fixing portion 28b is formed larger than the magnet holding portion 28a and is disposed on the outer peripheral side of the magnet holding portion 28a.
  • the spring portion 28c is disposed between the magnet holding portion 28a and the support fixing portion 28b.
  • the spring portion 28c is formed in a substantially L shape. Specifically, as shown in FIG. 7, the spring portion 28 c is substantially L configured by a linear inner spring portion 28 d connected to the magnet holding portion 28 a and an outer spring portion 28 e connected to the support fixing portion 28 b. It is formed into a shape.
  • the magnet holder 45 is fixed to the magnet holding part 28a. Specifically, the lower end surface of the magnet holder 45 is fixed to the upper surface of the magnet holding portion 28a. A through hole through which the positioning protrusion 45b of the magnet holder 45 is inserted is formed in the magnet holding portion 28a, and the magnet holder 45 is fixed to the magnet holding portion 28a in a state of being positioned in the front-rear and left-right directions.
  • the support fixing portion 28 b is sandwiched between the upper end of the cylindrical portion 32 b of the lower case body 32 and the lower surface of the spacer member 33, and the cylindrical portion 32 b and the spacer member 33. It is fixed to. That is, the lower surface of the support fixing portion 28b is in contact with the upper end of the cylindrical portion 32b. Further, the spacer member 33 is fixed to the lower end side of the case body 31, and the lower case body 32 is arranged on the lower end side of the case body 31 in a state of being arranged below the spacer member 33 via the support fixing portion 28b. It is fixed. In addition, the positioning part for positioning the support fixing
  • the leaf spring 28 ensures contact between the upper end of the spherical member 35 and the contact plate 24, and also ensures contact between the lower end side of the spherical member 35 and the edge of the arrangement hole 32 c of the lower case body 32. It is fixed in a bent state so as to generate pressure (that is, to generate a biasing force that biases the camera module 3 downward). That is, as shown in FIGS. 2 and 6, the support fixing part 28b is fixed to the support 27 in a state of being lowered below the magnet holding part 28a, and the support fixing part 28b is magnet holding. It arrange
  • the leaf spring 28 is fixed so that the inner spring portion 28d and the outer spring portion 28e are substantially parallel to the front-rear direction or the left-right direction.
  • the spring portion 28c of this embodiment is composed of an inner spring portion 28d or an outer spring portion 28e substantially parallel to the left-right direction, and an inner spring portion 28d or an outer spring portion 28e substantially parallel to the front-rear direction. It can be deformed in the front-rear direction. Further, the spring portion 28c of the present embodiment can be deformed in the vertical direction.
  • the magnet holder 45 that holds the shake correction magnet 39 is fixed to the magnet holding portion 28 a of the leaf spring 28, and the shake correction magnet 39 is not fixed to the cylindrical portion 14 b of the cover member 14. Even in this state, the shake correction magnet 39 is connected to the support 27 via the magnet holder 45 and the leaf spring 28.
  • an arrangement space S in which the camera module 3 can be placed is formed on the inner peripheral side of the shake correction magnet 39 as shown in FIG. .
  • the shake correction mechanism that corrects the shake by swinging the camera module 3 so that the optical axis L is inclined with respect to the support 27 by the leaf spring 28, the swing drive mechanism 29, the fulcrum portion 36, and the like. Is configured.
  • FIG. 8 is a process diagram showing an assembling procedure of the photographing optical device 1 shown in FIG.
  • the photographing optical device 1 is assembled, for example, by the following procedure. That is, as shown in FIG. 8, first, the shake correction magnet 39 is fixed to the fixing hole 45a of the magnet holder 45 (step ST1). Thereafter, the magnet holder 45 is fixed to the magnet holding portion 28a of the leaf spring 28 (step ST2). Further, the shake correction coil 38 is fixed to the inner peripheral surface of the case body 31 (step ST3). That is, the FPC 40 is fixed to the inner peripheral surface of the case body 31. Thereafter, the spacer member 33 is fixed to the lower end side of the case body 31 (step ST4).
  • the magnet holder 45 to which the shake correcting magnet 39 is fixed is inserted into the inner peripheral side of the case body 31 from the lower side, and the support fixing portion 28b of the leaf spring 28 is placed on the lower surface of the spacer member 33. Fix (step ST5). Further, the camera module 3 is assembled (step ST6), and after the step ST5, the camera module 3 is inserted inside the shake correction magnet 39 and fixed to the shake correction magnet 39 (step ST7). After that, with the spherical member 35 placed in the placement hole 32c, the lower case body 32 is fixed to the lower end side of the case body 31 (step ST8), and the photographing optical device 1 is completed.
  • FIG. 9 is a perspective view of the photographing optical device 1 according to the second embodiment of the present invention.
  • 10 is a cross-sectional view taken along the line EE of FIG. Except as described below, the second embodiment is the same as the first embodiment shown in FIGS.
  • the left-right direction is a first direction substantially orthogonal to the optical axis direction
  • the front-rear direction is a second direction substantially orthogonal to the optical axis direction and the first direction.
  • FIG. 11 is an exploded perspective view of the photographing optical device 1 shown in FIG. 12 is an exploded perspective view of the camera module 3 shown in FIG.
  • FIG. 13 is a perspective view for explaining a magnetized state of the lens driving magnet 19 and the shake correcting magnet 39 shown in FIG.
  • the lens driving magnet 19 is formed in a substantially quadrangular prism shape having a substantially isosceles trapezoidal shape when viewed from the optical axis direction.
  • the magnet piece 20 extends from the first plane 20a, the second plane 20b that is substantially parallel to the first plane 20a and has a smaller area than the first plane 20a, and extends from the second plane 20b toward the first plane 20a. And two inclined surfaces 20c inclined with respect to the first plane 20a and the second plane 20b.
  • the magnet piece 21 includes a first plane 21a, a second plane 21b that is substantially parallel to the first plane 21a and has a smaller area than the first plane 21a, and from the second plane 21b toward the first plane 21a. In order to expand, two inclined surfaces 21c inclined with respect to the first plane 21a and the second plane 21b are provided.
  • the four lens driving magnets 19 are fixed to the inner peripheral surface of the cylindrical portion 14b of the cover member 14. Specifically, the four lens driving magnets 19 are fixed to the insides of the four corners of the cylindrical portion 14b so that the two inclined surfaces 20c and 21c are substantially parallel to the left-right direction or the front-rear direction. . That is, the four lens driving magnets 19 are respectively disposed inside the four corners of the cylindrical portion 14b so that the first planes 20a and 21a of the lens driving magnet 19 arranged on the diagonal line of the cylindrical portion 14b face each other. The first flat surfaces 20a and 21a are opposed to the outer peripheral surface of the lens driving coil 18 with a predetermined gap therebetween.
  • the four magnet pieces 20 are magnetized so that the magnetic poles formed on the first plane 20a are the same.
  • the four magnet pieces 20 have the same magnetic poles formed on the inclined surface 20c, and different magnetic poles formed on the inclined surface 20c and different in magnetic poles formed on the first plane 20a. It is magnetized to become.
  • the four magnet pieces 21 are magnetized so that the magnetic poles formed on the first plane 21a are the same.
  • the four magnet pieces 21 have the same magnetic pole formed on the inclined surface 21c, and different magnetic poles formed on the inclined surface 21c and different in magnetic poles formed on the first plane 21a. It is magnetized to become.
  • the magnet pieces 20, 21 are configured such that the magnetic poles of the first plane 20a and the first plane 21a are different from each other, and the magnetic poles of the inclined surface 20c and the magnetic poles of the inclined surface 21c are different from each other. Is magnetized. That is, the lens driving magnet 19 is magnetized so that two different magnetic poles overlap in the vertical direction.
  • the magnet pieces 20, 21 are such that the magnetic pole of the first plane 20 a becomes the S pole, the magnetic pole of the first plane 21 a becomes the N pole, the magnetic pole of the slope 20 c becomes the N pole, and the magnetic pole of the slope 21 c becomes the S pole. Is magnetized.
  • a spring fixing convex portion 8b to which a part of a later-described leaf spring 281 constituting the shake correcting device 4 is fixed is formed so as to spread in the front-rear and left-right directions.
  • the spring fixing convex portion 8 b is formed over the entire circumference of the filter holder 8.
  • FIG. 14 is a perspective view for explaining the positional relationship among the camera module 3, the plate spring 281 and the lower case body 32 shown in FIG.
  • FIG. 15 is a perspective view of the leaf spring 281 shown in FIG.
  • the leaf spring 281 includes a movable side fixing portion 281a fixed to the camera module 3, a fixed side fixing portion 281b fixed to the support body 27, a movable side fixing portion 281a, and a fixed side fixing portion. And four spring portions 281c that connect 281b.
  • the spring part 281c is bent with respect to the fixed side fixing part 281b, so that the camera module 3 fixed to the movable side fixing part 281a can swing.
  • the movable side fixed portion 281a and the fixed side fixed portion 281b are formed in an annular shape. Specifically, the movable side fixed portion 281a and the fixed side fixed portion 281b are formed in a substantially square frame shape.
  • the fixed side fixed portion 281b is formed larger than the movable side fixed portion 281a, and is disposed on the outer peripheral side of the movable side fixed portion 281a.
  • the spring portion 281c is disposed between the movable side fixed portion 281a and the fixed side fixed portion 281b.
  • the spring part 281c is formed in a substantially L shape. Specifically, as shown in FIG.
  • the spring portion 281 c is an abbreviated configuration including a linear inner spring portion 281 d connected to the movable side fixing portion 281 a and an outer spring portion 281 e connected to the fixed side fixing portion 281 b. It is formed in an L shape.
  • the movable side fixed portion 281a is directly fixed to the camera module 3. Specifically, as shown in FIG. 10, the lower surface of the movable side fixing portion 281 a is fixed to the upper surface 8 c of the spring fixing convex portion 8 b of the filter holder 8. As shown in FIG. 10, the fixed side fixing portion 281 b is fixed to the cylindrical portion 32 b and the spacer member 33 while being sandwiched between the upper end of the cylindrical portion 32 b of the lower case body 32 and the lower surface of the spacer member 33. Has been. That is, as shown in FIGS. 10 and 14, the lower surface of the fixed side fixing portion 281b is in contact with the upper end of the cylindrical portion 32b. The lower case body 32 is fixed to the lower end side of the case body 31, and the spacer member 33 is fixed to the case body 31 in a state of being disposed on the upper side of the lower case body 32 via the fixed side fixing portion 281b. Have
  • the leaf spring 281 ensures that the upper end of the spherical member 35 and the contact plate 24 are in contact with each other, and the lower end side of the spherical member 35 and the edge of the arrangement hole 32c of the lower case body 32 are in contact with each other. It is fixed in a bent state so as to generate pressure (that is, to generate a biasing force that biases the camera module 3 downward). That is, as shown in FIGS. 10 and 14, the fixed-side fixing portion 281b is fixed to the support body 27 in a state of being lowered below the movable-side fixing portion 281a, and the fixed-side fixing portion 281b is movable. It is arrange
  • the leaf spring 281 is fixed so that the inner spring portion 281d and the outer spring portion 281e are substantially parallel to the front-rear direction or the left-right direction.
  • the inner spring portion 281d and the outer spring portion 281e that are substantially parallel to the left-right direction are the first spring portions
  • the inner spring portion 281d and the outer spring portion 281e that are substantially parallel to the front-rear direction are the second springs.
  • the spring portion 281c of the present embodiment includes a first spring portion that is substantially parallel to the left-right direction and a second spring portion that is substantially parallel to the front-rear direction, and is deformable in the left-right direction and the front-rear direction.
  • the spring portion 281c of this embodiment can be deformed in the vertical direction.
  • the shake correction magnet 39 is formed in a substantially rectangular flat plate shape.
  • Each of the four shake correction magnets 39 is fixed to each of the four outer surfaces constituting the outer peripheral surface of the cylindrical portion 14 b of the cover member 14. That is, the shake correction magnet 39 is directly fixed to the outer peripheral surface of the camera module 3.
  • the shake correction magnet 39 has a thickness direction that coincides with the thickness direction of the cylindrical portion 14b, and a longitudinal direction that substantially coincides with the left-right direction or the front-rear direction (that is, its short direction). It is fixed to the outer surface of the cylindrical portion 14b so that the hand direction substantially coincides with the vertical direction.
  • the magnet piece 42 is magnetized so that the magnetic pole formed on one side and the magnetic pole formed on the other side are different. That is, the magnetic poles are formed on the front and rear inner surfaces 42a (see FIG. 13) fixed to the cylindrical portion 14b, and the front and rear outer surfaces 42b (see FIG. 13) facing the shake correction coil 38.
  • the magnet pieces 42 are magnetized so that the magnetic poles are different from the magnetic poles.
  • the four magnet pieces 42 are magnetized so that the magnetic poles formed on the outer side surface 42b are the same (that is, the magnetic poles formed on the inner side surface 42a are the same). Yes.
  • the magnet piece 43 includes magnetic poles formed on the front and rear inner surfaces 43a (see FIG. 13) fixed to the cylindrical portion 14b and the front and rear outer surfaces 43b (FIG. 13) facing the shake correction coil 38.
  • the magnetic poles formed in the reference are different from each other.
  • the four magnet pieces 43 are magnetized so that the magnetic poles formed on the outer side surface 43b are the same (that is, the magnetic poles formed on the inner side surface 43a are the same). Yes.
  • the magnet pieces 42 and 43 are magnetized so that the magnetic poles of the inner side surface 42a and the inner side surface 43a are different from each other. That is, the magnet pieces 42 and 43 are magnetized so that the magnetic poles of the outer surface 42b and the outer surface 43b are different from each other.
  • the magnet piece 42 is magnetized so that the magnetic pole of the inclined surface 20c of the magnet piece 20 constituting the lens driving magnet 19 is different from the magnetic pole of the inner side surface 42a, and the magnet piece 43 is used for driving the lens.
  • the magnet piece 21 constituting the magnet 19 is magnetized so that the magnetic pole of the slope 21c of the magnet piece 21 is different from the magnetic pole of the inner side surface 43a.
  • the magnet pieces 42 and 43 are magnetized so that the inner side surface 42a becomes an S pole, the inner side surface 43a becomes an N pole, the outer side surface 42b becomes an N pole, and the outer side surface 43b becomes an S pole.
  • the lens driving lens 39 is arranged such that the left and right ends or the front and rear ends of the shake correcting magnet 39 are opposed to the inclined surfaces 20c and 21c of the lens driving magnet 19 through the cylindrical portion 14b of the cover member 14.
  • a magnet 19 and a shake correction magnet 39 are formed. That is, in this embodiment, the magnetic pole of the inclined surface 20c of the inclined surfaces 20c and 21c, which is the opposing surface of the lens driving magnet 19 that opposes the shake correcting magnet 39 via the cylindrical portion 14b, and the lens via the cylindrical portion 14b.
  • the magnetic poles of the inner side surfaces 42a of the inner side surfaces 42a and 43a, which are the opposed surfaces of the shake correction magnets 39 facing the drive magnet 19, are different from each other (that is, the slopes 21c of the slopes 20c and 21c).
  • the lens driving magnet 19 and the shake correcting magnet 39 are fixed to the cylindrical portion 14b so that the magnetic poles of the inner surface 43a and the inner surface 43a of the inner side surfaces 42a and 43a are different from each other.
  • the inclined surfaces 20c and 21c are first opposing surfaces
  • the inner side surfaces 42a and 43a are second opposing surfaces.
  • the shake correction coil 38 is fixed to the inner peripheral surface of the case body 31 constituting the support body 27, and the support body fixing portion 28 b of the leaf spring 28 fixes the support body 27.
  • the spacer member 33 is fixed.
  • the shake correction magnet 39 is held by the magnet holding portion 28 a of the leaf spring 28 via the magnet holder 45.
  • an arrangement space S in which the camera module 3 can be arranged is formed on the inner peripheral side of the shake correction magnet 39.
  • the shake correction coil 38 and the shake correction magnet 39 are connected via the case body 31, the spacer member 33, the leaf spring 28, and the magnet holder 45. Can be integrated. Therefore, in this embodiment, the influence of the dimensional accuracy and assembly accuracy of the camera module 3 on the relative position accuracy between the shake correction coil 38 and the shake correction magnet 39 can be reduced. As a result, the shake correction coil It is possible to increase the relative positional accuracy between the vibration correction magnets 38 and the vibration correction magnets 39 more than before. For example, in this embodiment, the accuracy of the gap between the shake correction coil 38 and the shake correction magnet 39 can be increased more than before, and as a result, the shake correction function of the shake correction device 4 can be improved more than before. It becomes possible to increase to.
  • the shake correction coil 38 and the shake correction magnet 39 may be integrated via the case body 31, the spacer member 33, the leaf spring 28, and the magnet holder 45 before the camera module 3 is assembled. Therefore, both the shake correction device 4 in a state where the camera module 3 is not incorporated and the shake correction device 4 in a state in which the camera module 3 is incorporated (that is, the imaging optical device 1) are distributed in the market. Is possible. Therefore, in this embodiment, it is possible to diversify the distribution form of the shake correction apparatus 4.
  • the shake correction magnets 39 are fixed to the magnet holder 45, and the magnet holder 45 is fixed to the magnet holding portion 28a. Therefore, the four shake correction magnets 39 can be integrated by the magnet holder 45. Therefore, the relative position accuracy between the four shake correction magnets 39 can be increased, and as a result, the relative position accuracy between the shake correction coil 38 and the shake correction magnet 39 can be effectively increased. become. Further, since the four shake correction magnets 39 can be integrated by the magnet holder 45, the shake correction magnet 39 can be stabilized even when the camera module 3 is not incorporated. . In addition, when assembling the photographic optical device 1, the shake correction magnets 39 can be handled more easily than when the four shake correction magnets 39 are individually handled.
  • the magnet holder 45 is formed with a positioning projection 45b for positioning the magnet holding portion 28a. Therefore, it is possible to improve the relative positional accuracy between the magnet holding portion 28a and the magnet holder 45 in the front / rear / left / right direction. The positional accuracy can be effectively increased.
  • the magnet holder 45 holds both end sides of the shake correction magnet 39 in the left-right direction or the front-rear direction and both end sides of the shake correction magnet 39 in the up-down direction. Therefore, it is possible to increase the rigidity of the magnet body constituted by the four shake correction magnets 39 and the magnet holder 45.
  • the shake correction device 4 includes a fulcrum portion 36 that serves as a swing center of the camera module 3. Therefore, it is possible to inspect the shake correction function by incorporating a dummy module for inspection instead of incorporating the camera module 3.
  • the shake correction function can be operated even when the axial direction of the dummy module is inclined with respect to the vertical direction. An inspection can be performed. That is, the shake correction function can be inspected in all postures.
  • the support fixing part 28b of the leaf spring 28 is fixed to the support 27 in a state of being lowered below the magnet holding part 28a. Therefore, using the leaf spring 28, the camera module 3 can be urged toward the fulcrum portion 36 disposed on the lower side of the camera module 3, and the swinging motion of the camera module 3 can be stabilized. It becomes possible.
  • the support fixing portion 28 b of the leaf spring 28 is between the upper end of the cylindrical portion 32 b of the lower case body 32 in which the arrangement hole 32 c in which the lower end side of the spherical member 35 is disposed and the lower surface of the spacer member 33.
  • the lower surface of the support fixing portion 28b is in contact with the upper end of the cylindrical portion 32b. Therefore, in the vertical direction, the support fixing portion 28b can be fixed with reference to the upper end of the cylindrical portion 32b, and it is easy to ensure the relative positional accuracy in the vertical direction between the support fixing portion 28b and the fulcrum portion 36. Become. Therefore, the leaf spring 28 can be used to appropriately bias the camera module 3 toward the fulcrum portion 36, and the swinging motion of the camera module 3 can be further stabilized.
  • the thickness of the four side surfaces constituting the cylindrical portion 32b is relatively thin in the front-rear direction and the left-right direction, but the front-rear direction of the four side portions of the spacer member 33 formed in a frame shape. Since the thickness in the left-right direction is relatively large, the support fixing portion 28b can be fixed in a stable state between the cylindrical portion 32b and the spacer member 33 using the thickness of the spacer member 33. It becomes possible.
  • the shake correction magnet 39 is directly fixed to the outer peripheral surface of the camera module 3. Therefore, in this embodiment, as compared with the conventional case, the photographing optical device 1 is reduced in size compared to the case where the shake correction magnet 39 is fixed to the yoke disposed so as to cover the outer peripheral surface of the camera module 3. It becomes possible.
  • the photographing optical device. 1 can be further downsized.
  • the weight of the swinging portion as compared with the case where the yoke is disposed so as to cover the outer peripheral surface of the camera module 3.
  • the size of the photographic optical device 1 is the same as that of the conventional photographic optical device, it is possible to enlarge the shake correction magnet 39 and the shake correction coil 38 by the amount of the yoke. Therefore, the driving force of the swing drive mechanism 29 can be increased.
  • the lens driving magnet 19 is fixed to the inner peripheral surface of the cylindrical portion 14b of the cover member 14 made of a magnetic material
  • the shake correcting magnet 39 is fixed to the outer peripheral surface of the cylindrical portion 14b. Therefore, the cover member 14 functions as a back yoke. Therefore, the density of the magnetic flux passing through the lens driving coil 18 arranged opposite to the lens driving magnet 19 and the density of the magnetic flux passing through the shake correcting coil 38 arranged opposite to the shake correcting magnet 39 are increased. Is possible. Further, interference between the magnetic flux generated by the lens driving magnet 19 and the magnetic flux generated by the shake correction magnet 39 can be suppressed. Therefore, the lens drive mechanism 7 can appropriately move the lens in the optical axis direction, and the swing drive mechanism 29 can swing the camera module 3 appropriately.
  • the lens driving magnet 19 and the shake correcting magnet 39 are fixed to the cylindrical portion 14b so that the magnetic poles of the inner side surface 42a of the inner side surfaces 42a and 43a of the shake correcting magnet 39 are different from each other. Therefore, an efficient magnetic circuit can be formed, and the driving force of the lens driving mechanism 7 and the swing driving mechanism 29 can be increased.
  • the lens drive magnet 19 and the shake correction magnet 39 are fixed to the tube portion 14b. Fixing work becomes easy.
  • the movable side fixing portion 281a of the leaf spring 281 is fixed to the upper surface 8c of the spring fixing convex portion 8b of the filter holder 8.
  • the movable side fixing portion 281a is fixed to the lower surface of the spring fixing convex portion 8b, if the spring portion 281c is bent, the movable side fixing portion 281a is easily peeled off from the lower surface of the spring fixing convex portion 8b. In the embodiment, even if the spring portion 281c is bent, the movable side fixing portion 281a can be prevented from peeling off from the spring fixing convex portion 8b.
  • the fixed side fixing portion 281b of the leaf spring 281 is fixed to the support body 27 in a state of being lowered below the movable side fixing portion 281a. Therefore, using the leaf spring 281, the camera module 3 can be biased toward the fulcrum portion 36 disposed on the lower side of the camera module 3, and the swinging motion of the camera module 3 can be stabilized. It becomes possible.
  • the spring fixing convex portion 8 b is formed over the entire circumference of the filter holder 8.
  • fixed part 281a is formed in the substantially square frame shape. Therefore, the urging force of the spring portion 281c can be applied over the entire circumference of the camera module 3, and the swinging motion of the camera module 3 can be further stabilized.
  • the fixed side fixing portion 281 b of the leaf spring 281 is between the upper end of the cylindrical portion 32 b of the lower case body 32 in which the arrangement hole 32 c in which the lower end side of the spherical member 35 is arranged and the lower surface of the spacer member 33.
  • the lower surface of the fixed side fixing portion 281b is in contact with the upper end of the cylindrical portion 32b. Therefore, in the vertical direction, it is possible to fix the fixed side fixing portion 281b with reference to the upper end of the cylindrical portion 32b, and it is easy to ensure the relative positional accuracy in the vertical direction between the fixed side fixing portion 281b and the fulcrum portion 36. Become. Therefore, the leaf spring 281 can be used to appropriately bias the camera module 3 toward the fulcrum portion 36, and the swinging motion of the camera module 3 can be further stabilized.
  • the leaf spring 281 is fixed so that the inner spring portion 281d and the outer spring portion 281e are substantially parallel to the front-rear direction or the left-right direction.
  • the spring constant of the leaf spring 281 in the front-rear direction is made relatively small by the action of the inner spring part 281d and the outer spring part 281e substantially parallel to the left-right direction, and the inner spring part 281d and outer spring part 281e substantially parallel to the front-rear direction.
  • the spring constant of the leaf spring 281 in the left-right direction can be made relatively small. Therefore, the movable side fixing portion 281a can be smoothly moved in the front-rear and left-right directions. As a result, the camera module 3 can be smoothly swung even when the swing angle of the camera module 3 is increased.
  • the fixing hole 45a is formed in the side surface of the magnet holder 45, and both ends of the shake correction magnet 39 in the left-right direction or the front-rear direction, and the shake correction magnet 39 in the up-down direction. Both end sides are held by the magnet holder 45.
  • two magnets a square frame-shaped magnet holder that holds the upper end side of the shake correction magnet 39 and a square frame-shaped magnet holder that holds the lower end side of the shake correction magnet 39. Both ends of the shake correction magnet 39 in the vertical direction may be held by the holder.
  • a magnet holder that holds the lower end side of the shake correction magnet 39 is fixed to the magnet holding portion 28a.
  • the magnet holder 45 is fixed to the magnet holding portion 28a of the leaf spring 28. That is, the shake correction magnet 39 is fixed to the magnet holding portion 28a via the magnet holder 45.
  • the shake correction magnet 39 may be directly fixed to the magnet holding portion 28a.
  • the upper end side of the shake correction magnet 39 may be held by a square frame-shaped magnet holder or may not be held by the magnet holder.
  • the distance between the swing drive mechanism 29 and the fulcrum portion 36 is increased in the vertical direction.
  • the distance between the leaf spring 28 and the fulcrum portion 36 can be shortened.
  • the distance between the swing drive mechanism 29 and the fulcrum portion 36 can be increased, so that the swing amount of the camera module 3 can be ensured even if the swing angle of the camera module 3 is reduced. Is possible.
  • the distance between the leaf spring 28 and the fulcrum portion 36 can be shortened. Therefore, even if the elastic deformation amount of the spring portion 28c in the front-rear and left-right directions is reduced, the camera module 3 is appropriately It can be swung.
  • the shake correction magnet 39 is fixed to each of the four side surfaces of the magnet holder 45.
  • the shake correction magnet 39 may be fixed to two side surfaces, one of the front and rear side surfaces of the magnet holder 45 and one of the left and right side surfaces.
  • the shake correction magnet 39 may be fixed to each of three of the four side surfaces of the magnet holder 45.
  • the shake correction magnet 39 is directly fixed to the cylindrical portion 14b of the cover member 14 constituting the camera module 3.
  • a cylindrical member may be fixed to the outer peripheral side of the cylindrical portion 14b, and the shake correction magnet 39 may be fixed to the outer peripheral surface of the cylindrical member.
  • the shake correction device 4 includes the spherical member 35 as a fulcrum protrusion that constitutes the fulcrum part 36.
  • a fulcrum protrusion that constitutes the fulcrum part 36 may be formed or fixed on the lower surface of the camera module 3, or a fulcrum protrusion that constitutes the fulcrum part 36 on the bottom 32 a of the lower case body 32. May be formed or fixed.
  • a fulcrum projection that constitutes the fulcrum portion 36 is formed or fixed on the lower surface of the camera module 3, a contact portion with which the fulcrum projection abuts is formed on the bottom 32a of the lower case 32. .
  • the lens driving mechanism 7 is a so-called voice coil motor including a lens driving coil 18 and a lens driving magnet 19.
  • the lens driving mechanism 7 may include a piezoelectric element for moving the lens in the optical axis direction instead of the lens driving coil 18 and the lens driving magnet 19, or a shape memory alloy. May be provided.
  • the photographing optical device 1 has an autofocus function, but the photographing optical device 1 may not have an autofocus function. That is, the camera module 3 may not include the lens driving mechanism 7. In this case, for example, the sleeve 13 is fixed to the holding body 6.
  • the photographing optical device 1 is formed so as to have a substantially square shape when viewed from the optical axis direction.
  • the photographing optical device 1 is formed when viewed from the optical axis direction. You may form so that a shape may become a substantially rectangular shape.
  • the photographing optical device 1 may be formed so that the shape when viewed from the optical axis direction is another polygonal shape, and the shape when viewed from the optical axis direction is a circular shape or an elliptical shape. It may be formed as follows.
  • the camera module 3 may be formed so that the shape when viewed from the optical axis direction is substantially rectangular. Further, the camera module 3 may be formed such that the shape when viewed from the optical axis direction is other polygonal shape, or the shape when viewed from the optical axis direction is a circular shape or an elliptical shape. May be formed.
  • the camera module 3 having a lens and an image sensor is incorporated in the shake correction device 4, but a lens driving module having no lens and / or image sensor may be incorporated in the shake correction device 4. That is, a lens driving module configured by removing the lens holder 12 and / or the substrate 22 and the like from the camera module 3 (that is, has no imaging function, but has a function for moving the lens in the optical axis direction).
  • the lens driving module may be incorporated in the shake correction device 4. Even in this case, the same effect as that of the above-described embodiment can be obtained.
  • the embodiment of the present invention has been described by taking the photographing optical device 1 having the camera module 3 and the shake correction device 4 as an example.
  • the configuration of the present invention includes a lens driving module and a shake correction device. 4 is also applicable to a lens driving device having four. Note that the camera module 3 and the lens driving module may not be incorporated in the shake correction device 4.
  • the movable side fixing portion 281a of the leaf spring 281 is fixed to the upper surface 8c of the spring fixing convex portion 8b.
  • the movable side fixing portion 281a may be fixed to the lower surface of the spring fixing convex portion 8b.
  • the movable side fixing portion 281a may be fixed to the lower surface of the shake correction magnet 39 directly or via a predetermined attachment member.
  • the movable side fixing portion 281a is formed in an annular shape, but the movable side fixing portion 281a may not be formed in an annular shape.
  • the movable side fixing portion 281a may be divided into four so as to be connected to each of the four spring portions 281c.
  • the spring fixing convex portion 8 b is formed over the entire circumference of the filter holder 8, but the spring fixing convex portion 8 b may be formed on a part of the outer peripheral surface of the filter holder 8. good.
  • the cover member 14 is formed of a magnetic material.
  • the cover member 14 may be formed of a nonmagnetic material.
  • a part of the cover member 14 may be formed of a magnetic material, and the other part of the cover member 14 may be formed of a nonmagnetic material.
  • the lens driving magnet 19 formed in a substantially quadrangular prism shape is fixed inside the four corners of the cylindrical portion 14b of the cover member 14.
  • the lens driving magnet 19 formed in a substantially rectangular flat plate shape may be fixed to the inside of the four side surfaces constituting the cylindrical portion 14b.
  • the lens driving coil 18 is wound around the outer peripheral surface of the sleeve 13, but the lens driving coil 18 may be an air-core coil wound in a substantially rectangular shape. . In this case, for example, four air-core lens driving coils 18 are fixed to the outer peripheral surface of the sleeve 13.
  • the four magnet pieces 42 are magnetized so that the magnetic poles formed on the outer surface 42b are the same, and the four magnet pieces 43 have the magnetic poles formed on the outer surface 43b. Both are magnetized to be the same.
  • the magnetic poles formed on the outer surface 42b of the magnet pieces 42 adjacent in the circumferential direction are different magnetic poles, and the magnetic poles formed on the outer surface 43b of the magnet pieces 43 adjacent in the circumferential direction are different magnetic poles.
  • the magnet pieces 42 and 43 may be magnetized.
  • the magnetic pole of the outer surface 42b of the magnet piece 42 fixed to the left and right outer surfaces of the cylindrical portion 14b is different from the magnetic pole of the outer surface 42b of the magnet piece 42 fixed to the outer front and rear surfaces of the cylindrical portion 14b.
  • the magnetic pole of the outer surface 43b of the magnet piece 43 fixed to the left and right outer surfaces of the cylindrical portion 14b is different from the magnetic pole of the outer surface 43b of the magnet piece 43 fixed to the outer front and rear surfaces of the cylindrical portion 14b.
  • the magnet pieces 42 and 43 may be magnetized. In this case, an efficient magnetic circuit can be formed, and the driving force of the swing drive mechanism 29 can be increased.
  • the shake correction magnet 39 is fixed to each of the four outer surfaces constituting the outer peripheral surface of the cylindrical portion 14b of the cover member 14.
  • the shake correction magnet 39 may be fixed to two side surfaces, one of the front and rear side surfaces of the cylindrical portion 14b and one of the left and right side surfaces.
  • the shake correction magnet 39 may be fixed to each of the three outer surfaces of the four outer surfaces constituting the outer peripheral surface of the cylindrical portion 14b.
  • the lens driving magnet 19 is constituted by two magnet pieces 20 and 21, but the lens driving magnet 19 may be constituted by one magnet piece.
  • the shake correction magnet 39 may be composed of one magnet piece.

Abstract

撮影用光学装置に搭載される振れ補正装置において、振れ補正用コイルと振れ補正用磁石との相対位置精度を従来以上に高めることが可能で、従来より小型化することが可能な振れ補正装置を提供する。振れ補正装置4は、カメラモジュールを揺動可能に支持するための支持体27と、カメラモジュールを揺動させて振れを補正するための揺動駆動機構29および板バネ28とを備えている。揺動駆動機構29は、支持体27を構成するケース体31の内周面に固定される振れ補正用コイル38と、振れ補正用コイル38に対向配置される振れ補正用磁石39とを備え、板バネ28は、支持体27に固定される支持体固定部28bと、振れ補正用磁石39を保持する磁石保持部28aと、支持体固定部28bと磁石保持部28aとを繋ぐバネ部28cとを備えている。振れ補正装置4では、振れ補正用磁石39よりも内周側にカメラモジュールを配置可能な配置空間Sが形成されている。

Description

振れ補正装置、撮影用光学装置およびレンズ駆動装置
 本発明は、光学像の振れを補正するための振れ補正装置に関する。また、本発明は、この振れ補正装置を備える撮影用光学装置およびレンズ駆動装置に関する。
 近年、携帯電話等の携帯機器には、撮影用光学装置が搭載されている。携帯機器の場合、撮影時に手振れが発生しやすい。そこで、撮影時の手振れを補正することが可能な撮影用光学装置が本出願人によって提案されている(たとえば、特許文献1参照)。
 特許文献1に記載の撮影用光学装置は、レンズおよび撮像素子が搭載される可動モジュールと、可動モジュールを支持する固定体と、可動モジュールを固定体上で揺動させて手振れを補正する手振れ補正機構とを備えている。可動モジュールは、レンズを保持して光軸方向へ移動可能な移動体と、移動体を光軸方向へ移動可能に支持する支持体と、移動体を光軸方向へ移動させるレンズ駆動用コイルおよびレンズ駆動用磁石とを備えている。レンズ駆動用コイルは、移動体の外周面に巻回されている。支持体は、可動モジュールの外周面を構成する四角筒状のケースを備えており、レンズ駆動用磁石は、レンズ駆動用コイルに対向するようにケースの内周面に固定されている。また、可動モジュールの外周面(すなわち、ケースの外周面)は、ケースとは別体の四角筒状のヨークに覆われている。
 また、特許文献1に記載の撮影用光学装置では、手振れ補正機構は、手振れ補正用コイルと手振れ補正用磁石とを備えている。手振れ補正用磁石は、ヨークの外周面に固定されている。また、撮影用光学装置の外周面を構成する四角筒状の固定体がヨークの外周面を囲むように配置されており、手振れ補正用コイルは、所定の隙間を介して手振れ補正用磁石と対向するように固定体の内周面に固定されている。この撮影用光学装置では、可動モジュールと固定体とがジンバルバネによって接続されている。ジンバルバネは、矩形枠状の内周側連結部と、矩形枠状の外周側連結部と、内周側連結部と外周側連結部とを繋ぐアーム部とを備えている。内周側連結部は、ヨークに固定され、外周側連結部は、固定体に固定されている。
特開2009-294393号公報
 可動モジュールを適切に揺動させて、手振れを適切に補正するためには、手振れ補正用コイルと手振れ補正用磁石との相対位置精度を高めて、手振れ補正用コイルと手振れ補正用磁石との間の隙間等の精度を高める必要がある。また近年、携帯電話等の携帯機器の市場では、携帯機器の小型化の要求が一段と高まっており、その結果、携帯機器に搭載される撮影用光学装置の小型化の要求も一段と高まっている。
 そこで、本発明の課題は、撮影用のレンズを駆動するためのレンズ駆動装置や撮影用光学装置に搭載される振れ補正装置において、振れ補正用コイルと振れ補正用磁石との相対位置精度を従来以上に高めながら従来よりも小型化することが可能な振れ補正装置を提供することにある。また、本発明の課題は、かかる振れ補正装置を備える撮影用光学装置およびレンズ駆動装置を提供することにある。
 上記の課題を解決するための第一の実施形態として、本発明の振れ補正装置は、光学像の振れを補正するための振れ補正装置において、レンズおよび撮像素子を有するカメラモジュールを揺動可能に支持するための支持体と、支持体に対してレンズの光軸が傾くようにカメラモジュールを揺動させて振れを補正するための振れ補正機構とを備え、支持体は、略筒状に形成されるケース体を備え、振れ補正機構は、ケース体の内周面に固定される振れ補正用コイルと、振れ補正用コイルよりもケース体の内周側にかつ振れ補正用コイルと対向するように配置される振れ補正用磁石とを備えるとともに、支持体に固定される支持体固定部と、振れ補正用磁石を保持する磁石保持部と、支持体固定部と磁石保持部とを繋ぐバネ部とを有するバネ部材を備え、振れ補正用磁石よりもケース体の内周側にカメラモジュールを配置可能な配置空間が形成されていることを特徴とする。
 また、上記の課題を解決するため、本発明の振れ補正装置は、光学像の振れを補正するための振れ補正装置において、レンズが取付可能でかつレンズの光軸方向へ移動可能な可動体と、可動体を光軸方向へ移動可能に保持する保持体と、可動体を光軸方向へ駆動するためのレンズ駆動機構とを有するレンズ駆動モジュールを揺動可能に支持するための支持体と、支持体に対してレンズの光軸が傾くようにレンズ駆動モジュールを揺動させて振れを補正するための振れ補正機構とを備え、支持体は、略筒状に形成されるケース体を備え、振れ補正機構は、ケース体の内周面に固定される振れ補正用コイルと、振れ補正用コイルよりもケース体の内周側にかつ振れ補正用コイルと対向するように配置される振れ補正用磁石とを備えるとともに、支持体に固定される支持体固定部と、振れ補正用磁石を保持する磁石保持部と、支持体固定部と磁石保持部とを繋ぐバネ部とを有するバネ部材を備え、振れ補正用磁石よりもケース体の内周側にレンズ駆動モジュールを配置可能な配置空間が形成されていることを特徴とする。
 本発明の振れ補正装置では、支持体を構成するケース体の内周面に振れ補正用コイルが固定され、バネ部材の支持体固定部が支持体に固定されている。また、本発明では、振れ補正用磁石は、バネ部材の磁石保持部に保持されている。さらに、本発明では、振れ補正用磁石よりもケース体の内周側にカメラモジュールまたはレンズ駆動モジュールを配置可能な配置空間が形成されている。そのため、本発明では、カメラモジュールやレンズ駆動モジュールを組み込む前に、支持体およびバネ部材等を介して振れ補正用コイルと振れ補正用磁石とを一体化することが可能になる。したがって、本発明では、カメラモジュールやレンズ駆動モジュールの寸法精度や組立精度が、振れ補正用コイルと振れ補正用磁石との相対位置精度に与える影響を低減することが可能になり、その結果、振れ補正用コイルと振れ補正用磁石との相対位置精度を従来以上に高めることが可能になる。たとえば、振れ補正用コイルと振れ補正用磁石との間の隙間の精度を従来以上に高めることが可能になる。
 また、本発明では、カメラモジュールやレンズ駆動モジュールを組み込む前に、支持体およびバネ部材等を介して振れ補正用コイルと振れ補正用磁石とを一体化することが可能になるため、カメラモジュールやレンズ駆動モジュールが組み込まれていない状態の振れ補正装置、および、カメラモジュールやレンズ駆動モジュールが組み込まれた状態の振れ補正装置の両者を市場で流通させることが可能になる。したがって、本発明では、振れ補正装置の流通形態を多様化させることが可能になる。
 本発明において、振れ補正機構は、複数の振れ補正用磁石と、複数の振れ補正用磁石を保持する磁石ホルダとを備え、磁石保持部には、磁石ホルダが固定されていることが好ましい。このように構成すると、磁石ホルダによって複数の振れ補正用磁石を一体化することができるため、複数の振れ補正用磁石間の相対位置精度を高めることが可能になり、その結果、振れ補正用コイルと振れ補正用磁石との相対位置精度を効果的に高めることが可能になる。また、磁石ホルダによって複数の振れ補正用磁石を一体化することができるため、カメラモジュールやレンズ駆動モジュールが組み込まれていない状態の振れ補正装置においても、振れ補正用磁石を安定させることが可能になる。また、磁石ホルダによって複数の振れ補正用磁石を一体化することができるため、振れ補正装置の組立時において、複数の振れ補正用磁石を個別に取り扱う場合と比較して、振れ補正用磁石の取り扱いが容易になる。
 本発明において、磁石ホルダは、レンズの光軸方向における複数の振れ補正用磁石の両端側を少なくとも保持していることが好ましい。このように構成すると、複数の振れ補正用磁石と磁石ホルダとによって構成される磁石体の剛性を高めることが可能になる。
 本発明において、磁石ホルダには、レンズの光軸方向に略直交する方向で磁石保持部を位置決めするための位置決め部が形成されていることが好ましい。このように構成すると、磁石保持部と磁石ホルダとの間の相対位置精度を高めることが可能になり、その結果、振れ補正用コイルと振れ補正用磁石との相対位置精度を効果的に高めることが可能になる。
 本発明において、振れ補正機構は、カメラモジュールの揺動中心となる支点部を備えることが好ましい。また、本発明において、振れ補正機構は、レンズ駆動モジュールの揺動中心となる支点部を備えることが好ましい。このように構成すると、カメラモジュールやレンズ駆動モジュールを組み込む代わりに検査用のダミーのモジュール(ダミーモジュール)を組み込んで、振れ補正機能の検査を行うことが可能になる。この際には、振れ補正用磁石の吸引力を利用して、ダミーモジュールを仮固定することができるため、ダミーモジュールの軸方向が鉛直方向に対して傾いている状態でも、振れ補正機能の検査を行うことが可能になる。すなわち、全姿勢で振れ補正機能の検査を行うことが可能になる。
 本発明の振れ補正装置は、カメラモジュールを備える撮影用光学装置であって、振れ補正用磁石がカメラモジュールに固定されている撮影用光学装置に用いることができる。また、本発明の振れ補正装置は、レンズ駆動モジュールを備えるレンズ駆動装置であって、振れ補正用磁石が、レンズ駆動モジュールに固定されているレンズ駆動装置に用いることができる。この撮影用光学装置またはレンズ駆動装置では、振れ補正用コイルと振れ補正用磁石との相対位置精度を従来以上に高めることが可能になるため、振れの補正機能を従来以上に高めることが可能になる。
 本発明において、振れ補正機構は、カメラモジュールの揺動中心となる支点部を備え、レンズの光軸方向において、被写体が配置される側を被写体側とし、撮像素子が配置される側を反被写体側とすると、支点部は、カメラモジュールよりも反被写体側に配置され、支持体固定部は、磁石保持部よりも反被写体側に配置されていることが好ましい。また、本発明において、振れ補正機構は、レンズ駆動モジュールの揺動中心となる支点部を備え、レンズの光軸方向において、被写体が配置される側を被写体側とし、被写体側の反対側を反被写体側とすると、支点部は、レンズ駆動モジュールよりも反被写体側に配置され、支持体固定部は、磁石保持部よりも反被写体側に配置されていることが好ましい。このように構成すると、バネ部材を利用して、カメラモジュールやレンズ駆動モジュールを支点部に向かって付勢することが可能になり、カメラモジュールやレンズ駆動モジュールの揺動動作を安定させることが可能になる。
 本発明において、支持体は、支点部を構成する支点用突部が当接する当接部が形成される、あるいは、支点用突部が形成または固定される反被写体側ケース体と、支持体固定部を固定するための固定部材とを備え、支持体固定部は、光軸方向における固定部材と反被写体側ケース体との間に挟まれた状態で固定されていることが好ましい。このように構成すると、光軸方向において、反被写体側ケース体を基準にして支持体固定部を固定することが可能になるため、支持体固定部と支点部との光軸方向における相対位置精度を確保しやすくなる。したがって、バネ部材を利用して、カメラモジュールやレンズ駆動モジュールを支点部に向かって適切に付勢することが可能になり、カメラモジュールやレンズ駆動モジュールの揺動動作をより安定させることが可能になる。
 上記の課題を解決するための第二の実施形態として、本発明の撮影用光学装置は、レンズおよび撮像素子を有するカメラモジュールと、レンズによって撮像素子上に結像される光学像の振れを補正するための振れ補正装置とを備え、振れ補正装置は、カメラモジュールを揺動可能に支持する支持体と、支持体に対してレンズの光軸が傾くようにカメラモジュールを揺動させて振れを補正するための振れ補正機構とを備え、振れ補正機構は、カメラモジュールの外周面に直接固定される振れ補正用磁石と、支持体に固定され振れ補正用磁石に対向配置される振れ補正用コイルとを備えることを特徴とする。
 また、上記の課題を解決するため、本発明のレンズ駆動装置は、レンズが取付可能でかつレンズの光軸方向へ移動可能な可動体と、可動体を光軸方向へ移動可能に保持する保持体と、可動体を光軸方向へ駆動するためのレンズ駆動機構とを有するレンズ駆動モジュールと、レンズによって結像される光学像の振れを補正するための振れ補正装置とを備え、振れ補正装置は、レンズ駆動モジュールを揺動可能に支持する支持体と、支持体に対してレンズの光軸が傾くようにレンズ駆動モジュールを揺動させて振れを補正するための振れ補正機構とを備え、振れ補正機構は、レンズ駆動モジュールの外周面に直接固定される振れ補正用磁石と、支持体に固定され振れ補正用磁石に対向配置される振れ補正用コイルとを備えることを特徴とする。
 本発明の撮影用光学装置では、振れ補正機構を構成する振れ補正用磁石がカメラモジュールの外周面に直接固定されている。また、本発明のレンズ駆動装置では、振れ補正機構を構成する振れ補正用磁石がレンズ駆動モジュールの外周面に直接固定されている。そのため、本発明では、従来のように、カメラモジュールの外周面やレンズ駆動モジュールの外周面を覆うように配置されるヨークに振れ補正用磁石が固定される場合と比較して、撮影用光学装置やレンズ駆動装置を小型化することが可能になる。また、本発明では、カメラモジュールの外周面やレンズ駆動モジュールの外周面を覆うようにヨークが配置される場合と比較して、揺動する部分の重量を低減することが可能になる。なお、本発明において、撮影用光学装置やレンズ駆動装置の大きさが従来と同じであれば、ヨークの分だけ、振れ補正用磁石や振れ補正用コイルを大きくすることが可能になるため、振れ補正機構の駆動力を高めることが可能になる。
 本発明の撮影用光学装置において、カメラモジュールは、レンズを保持しレンズの光軸方向へ移動可能な可動体と、可動体を光軸方向へ移動可能に保持する保持体と、可動体を光軸方向へ駆動するためのレンズ駆動機構とを備え、レンズ駆動機構は、可動体の外周面に固定されるレンズ駆動用コイルと、保持体に固定されレンズ駆動用コイルに対向配置されるレンズ駆動用磁石とを備え、保持体は、磁性材料で形成されるとともに、カメラモジュールの外周面を構成する略筒状のカバー部材を備え、カバー部材の内周面にレンズ駆動用磁石が固定され、カバー部材の外周面に振れ補正用磁石が固定されていることが好ましい。また、本発明のレンズ駆動装置において、レンズ駆動機構は、可動体の外周面に固定されるレンズ駆動用コイルと、保持体に固定されレンズ駆動用コイルに対向配置されるレンズ駆動用磁石とを備え、保持体は、磁性材料で形成されるとともに、レンズ駆動モジュールの外周面を構成する略筒状のカバー部材を備え、カバー部材の内周面にレンズ駆動用磁石が固定され、カバー部材の外周面に振れ補正用磁石が固定されていることが好ましい。
 このように構成すると、カバー部材がバックヨークとして機能するため、レンズ駆動用磁石に対向配置されるレンズ駆動用コイルを通過する磁束の密度、および、振れ補正用磁石に対向配置される振れ補正用コイルを通過する磁束の密度を高めることが可能になる。また、レンズ駆動用磁石が発生させる磁束と、振れ補正用磁石が発生させる磁束との干渉を抑制することが可能になる。したがって、レンズを光軸方向へ適切に移動させること、および、カメラモジュールやレンズ駆動モジュールを適切に揺動させることが可能になる。
 本発明において、カバー部材を介して振れ補正用磁石に対向するレンズ駆動用磁石の対向面である第1対向面と、カバー部材を介して第1対向面に対向する振れ補正用磁石の対向面である第2対向面とは、異なる2つの磁極が光軸方向で重なるように着磁され、光軸方向において、被写体が配置される側を被写体側とすると、レンズ駆動用磁石および振れ補正用磁石は、第1対向面の被写体側に配置される磁極と、第2対向面の被写体側に配置される磁極とが異なるように、カバー部材に固定されていることが好ましい。このように構成すると、効率的な磁気回路を形成することが可能になり、レンズ駆動機構および振れ補正機構の駆動力を高めることが可能になる。
 本発明において、振れ補正機構は、カメラモジュールと支持体とを繋ぐバネ部材を備え、バネ部材は、カメラモジュールに直接固定される可動側固定部と、支持体に固定される固定側固定部と、可動側固定部と固定側固定部とを繋ぐとともにカメラモジュールの揺動動作を可能とするバネ部とを備えることが好ましい。また、本発明において、振れ補正機構は、レンズ駆動モジュールと支持体とを繋ぐバネ部材を備え、バネ部材は、レンズ駆動モジュールに直接固定される可動側固定部と、支持体に固定される固定側固定部と、可動側固定部と固定側固定部とを繋ぐとともにレンズ駆動モジュールの揺動動作を可能とするバネ部とを備えることが好ましい。このように構成すると、バネ部材の可動側固定部がカメラモジュールまたはレンズ駆動モジュールに直接固定されているため、可動側固定部が固定される部材が別途設けられる場合と比較して、撮影用光学装置やレンズ駆動装置を小型化することが可能になる。
 本発明において、振れ補正機構は、カメラモジュールの揺動中心となる支点部を備え、レンズの光軸方向において、被写体が配置される側を被写体側とし、撮像素子が配置される側を反被写体側とすると、支点部は、カメラモジュールよりも反被写体側に配置され、固定側固定部は、可動側固定部よりも反被写体側に配置されていることが好ましい。また、本発明において、振れ補正機構は、レンズ駆動モジュールの揺動中心となる支点部を備え、光軸方向において、被写体が配置される側を被写体側とし、被写体側の反対側を反被写体側とすると、支点部は、レンズ駆動モジュールよりも反被写体側に配置され、固定側固定部は、可動側固定部よりも反被写体側に配置されていることが好ましい。このように構成すると、バネ部材を利用して、カメラモジュールやレンズ駆動モジュールを支点部に向かって付勢することが可能になり、カメラモジュールやレンズ駆動モジュールの揺動動作を安定させることが可能になる。
 本発明において、カメラモジュールには、可動側固定部が固定されるバネ固定凸部が光軸方向に略直交する方向に突出するように形成され、可動側固定部は、バネ固定凸部の被写体側の面に固定されていることが好ましい。また、本発明において、レンズ駆動モジュールには、可動側固定部が固定されるバネ固定凸部が光軸方向に略直交する方向に突出するように形成され、可動側固定部は、バネ固定凸部の被写体側の面に固定されていることが好ましい。可動側固定部が、バネ固定凸部の反被写体側の面に固定されている場合には、バネ部材の付勢力の影響でバネ固定凸部の反被写体側の面から可動側固定部が剥がれやすくなるが、このように構成すると、バネ固定凸部からの可動側固定部の剥がれを防止することが可能になる。
 本発明において、バネ固定凸部は、カメラモジュールの全周に亘って形成され、可動側固定部は、環状に形成されていることが好ましい。また、本発明において、バネ固定凸部は、レンズ駆動モジュールの全周に亘って形成され、可動側固定部は、環状に形成されていることが好ましい。このように構成すると、バネ部材の付勢力をカメラモジュールやレンズ駆動モジュールの全周に亘って作用させることが可能になるため、カメラモジュールやレンズ駆動モジュールの揺動動作をより安定させることが可能になる。
 本発明において、支持体は、支点部を構成する支点用突部が当接する当接部が形成される、あるいは、支点用突部が形成または固定される反被写体側ケース体と、固定側固定部を固定するための固定部材とを備え、固定側固定部は、光軸方向における固定部材と反被写体側ケース体との間に挟まれた状態で固定されていることが好ましい。このように構成すると、光軸方向において、反被写体側ケース体を基準にして固定側固定部を固定することが可能になるため、固定側固定部と支点部との光軸方向における相対位置精度を確保しやすくなる。したがって、バネ部材を利用して、カメラモジュールやレンズ駆動モジュールを支点部に向かって適切に付勢することが可能になり、カメラモジュールやレンズ駆動モジュールの揺動動作をより安定させることが可能になる。
 本発明において、振れ補正機構は、光軸方向に略直交するとともに互いに略直交する第1方向および第2方向を揺動の軸方向としてカメラモジュールを揺動させるための複数の振れ補正用磁石と振れ補正用コイルとを備え、バネ部は、第1方向に略平行な第1バネ部と、第2方向に略平行な第2バネ部とを備えることが好ましい。また、本発明において、振れ補正機構は、光軸方向に略直交するとともに互いに略直交する第1方向および第2方向を揺動の軸方向としてレンズ駆動モジュールを揺動させるための複数の振れ補正用磁石と振れ補正用コイルとを備え、バネ部は、第1方向に略平行な第1バネ部と、第2方向に略平行な第2バネ部とを備えることが好ましい。このように構成すると、第1方向に略平行な第1バネ部の作用で第2方向におけるバネ部材のバネ定数を比較的小さくし、第2方向に略平行な第2バネ部材の作用で第1方向におけるバネ部材のバネ定数を比較的小さくすることが可能になる。したがって、第1バネ部によって第2方向へ可動側固定部を円滑に動かすことが可能になり、かつ、第2バネ部によって第1方向へ可動側固定部を円滑に動かすことが可能になる。その結果、カメラモジュールやレンズ駆動モジュールの揺動角度が大きくなっても、カメラモジュールやレンズ駆動モジュールを円滑に揺動させることが可能になる。
 以上のように、本発明の振れ補正装置では、振れ補正用コイルと振れ補正用磁石との相対位置精度を従来以上に高めることが可能になる。また、本発明の撮影用光学装置およびレンズ駆動装置では、振れ補正用コイルと振れ補正用磁石との相対位置精度を従来以上に高めることが可能になり、振れの補正機能を従来以上に高めることが可能になる。
 更に、本発明では、撮影用光学装置およびレンズ駆動装置を従来よりも小型化することが可能になる。
本発明の実施の形態にかかる撮影用光学装置の斜視図である。 図1のE-E断面の断面図である。 図1に示す撮影用光学装置の分解斜視図である。 図3に示すカメラモジュールの分解斜視図である。 図1に示す振れ補正装置の斜視図である。 図5のF-F断面の断面図である。 図3に示す板バネ、振れ補正用磁石および磁石ホルダの組立状態を反被写体側から示す斜視図である。 図1に示す撮影用光学装置の組立手順を示す工程図である。 本発明の実施の形態にかかる撮影用光学装置の斜視図である。 図9のE-E断面の断面図である。 図9に示す撮影用光学装置の分解斜視図である。 図11に示すカメラモジュールの分解斜視図である。 図10に示すレンズ駆動用磁石および振れ補正用磁石の着磁状態を説明するための斜視図である。 図10に示すカメラモジュール、板バネおよび下ケース体の配置関係を説明するための斜視図である。 図11に示す板バネの斜視図である。
 1 撮影用光学装置
 3 カメラモジュール
 4 振れ補正装置
 5 可動体
 6 保持体
 7 レンズ駆動機構
 8b バネ固定凸部
 14 カバー部材
 18 レンズ駆動用コイル
 19 レンズ駆動用磁石
 20c、21c 斜面(第1対向面)
27 支持体
 28、281 板バネ(バネ部材、振れ補正機構の一部)
 28a 磁石保持部
 28b 支持体固定部
 28c バネ部
 281a 可動側固定部
 281b 固定側固定部
 281c バネ部
 281d 内側バネ部(第1バネ部または第2バネ部)
 281e 外側バネ部(第1バネ部または第2バネ部)
29 揺動駆動機構(振れ補正機構の一部)
 31 ケース体
 32 下ケース体(反被写体側ケース体)
 33 スペーサ部材(固定部材)
 35 球状部材(支点用突部)
 36 支点部(振れ補正機構の一部)
 38 振れ補正用コイル
 39 振れ補正用磁石
 42a、43a 内側面(第2対向面)
45 磁石ホルダ
 45b 位置決め突起(位置決め部)
 L 光軸
 S 配置空間
 Z 光軸方向
 Z1 被写体側
 Z2 反被写体側
 以下、図面を参照しながら、本発明の第一の実施形態を説明する。
 (撮影用光学装置の概略構成)
 図1は、本発明の実施の形態にかかる撮影用光学装置1の斜視図である。図2は、図1のE-E断面の断面図である。なお、以下の説明では、図1に示すように、互いに直交する3方向のそれぞれをX方向、Y方向およびZ方向とし、X方向を左右方向、Y方向を前後方向、Z方向を上下方向とする。また、Z1方向側を「上」側、Z2方向側を「下」側とする。
 本形態の撮影用光学装置1は、携帯電話等の携帯機器、ドライブレコーダあるいは監視カメラシステム等に搭載される小型かつ薄型のカメラであり、オートフォーカス機能と振れ補正機能とを備えている。この撮影用光学装置1は、全体として略四角柱状に形成されている。本形態では、撮影用光学装置1は、撮影用のレンズの光軸Lの方向(光軸方向)から見たときの形状が略正方形状となるように形成されており、撮影用光学装置1の4つの側面は、左右方向または前後方向と略平行になっている。
 撮影用光学装置1は、図1、図2に示すように、レンズおよび撮像素子を有するとともに揺動可能なカメラモジュール3と、レンズによって撮像素子上に結像される光学像の振れを補正するための振れ補正装置4とを備えている。本形態では、上下方向は、カメラモジュール3が揺動していないときのカメラモジュール3の光軸方向とほぼ一致する。また、本形態では、カメラモジュール3の下端に撮像素子が搭載されており、上側に配置される被写体が撮影される。すなわち、本形態では、上側(Z1方向側)は被写体側(物体側)であり、下側(Z2方向側)は反被写体側(撮像素子側、像側)である。
 (カメラモジュールの構成)
 図3は、図1に示す撮影用光学装置1の分解斜視図である。図4は、図3に示すカメラモジュール3の分解斜視図である。
 カメラモジュール3は、全体として略四角柱状に形成されている。本形態では、カメラモジュール3は、光軸方向から見たときの形状が略正方形状となるように形成されており、カメラモジュール3の4つの側面は、左右方向または前後方向と略平行になっている。
 このカメラモジュール3は、図2、図4に示すように、レンズを保持し光軸方向へ移動可能な可動体5と、可動体5を光軸方向へ移動可能に保持する保持体6と、保持体6に対して可動体5を光軸方向へ駆動するためのレンズ駆動機構7と、近赤外光をカットするIRカットフィルタ11(図2参照)を保持するフィルタホルダ8とを備えている。可動体5は、可動体5の上端側に配置される板バネ9(図2参照)と、可動体5の下端側に配置される板バネ10(図2参照)とを介して保持体6に移動可能に保持されている。すなわち、可動体5と保持体6とは、板バネ9、10によって繋がれている。
 可動体5は、複数のレンズが固定されたレンズホルダ12と、レンズホルダ12を保持するスリーブ13とを備えている。保持体6は、カメラモジュール3の4つの側面(外周面)を構成するカバー部材14と、カメラモジュール3の反被写体側の端面を構成するベース部材15とを備えている。
 レンズホルダ12は、略円筒状に形成されている。このレンズホルダ12の内周側には、複数のレンズが固定されている。スリーブ13は、たとえば、樹脂材料で形成されるとともに、略円筒状に形成されている。スリーブ13は、その内周側でレンズホルダ12を保持している。すなわち、スリーブ13の内周面にレンズホルダ12の外周面が固定されている。
 カバー部材14は、磁性材料で形成されている。このカバー部材14は、底部14aと筒部14bとを有する底付きの略四角筒状(略有底四角筒状)に形成されている。底部14aは、上側に配置されており、カメラモジュール3の被写体側の端面を構成している。底部14aの中心には、円形の貫通孔14cが形成されている。カバー部材14は、可動体5およびレンズ駆動機構7の外周側を囲むように配置されている。カバー部材14の底部14aの下面には、図2に示すように、スペーサ部材16が固定されている。スペーサ部材16は、略正方形の枠状に形成されている。スペーサ部材16には、板バネ9の一部が固定されている。
 ベース部材15は、樹脂材料で形成されるとともに、略正方形の平板状に形成されている。このベース部材15は、カバー部材14の筒部14bの下端に固定されている。ベース部材15の中心には、図2に示すように、貫通孔15aが形成されている。また、ベース部材15には、板バネ10の一部が固定されている。
 レンズ駆動機構7は、可動体5の外周面(具体的には、スリーブ13の外周面)に沿って巻回される2個のレンズ駆動用コイル18と、レンズ駆動用コイル18に対向配置される4個のレンズ駆動用磁石19とを備えている。
 2個のレンズ駆動用コイル18は、その巻回方向が互いに異なるように巻回されている。たとえば、一方のレンズ駆動用コイル18は、図4の時計回りの方向に巻回され、他方のレンズ駆動用コイル18は、図4の反時計回りの方向に巻回されている。2個のレンズ駆動用コイル18は、上下方向に所定の間隔をあけた状態でスリーブ13の外周面に固定されている。
 レンズ駆動用磁石19は、光軸方向から見たときの形状が略等脚台形状となる略四角柱状に形成されている。また、レンズ駆動用磁石19は、光軸方向から見たときの形状が略等脚台形状となる四角柱状に形成された磁石片20と磁石片21との2個の磁石片によって構成されている。具体的には、磁石片20の下面と磁石片21の上面とが当接した状態で、磁石片20と磁石片21とが互いに接着固定されることでレンズ駆動用磁石19が形成されている。
 4個のレンズ駆動用磁石19は、レンズ駆動用コイル18の外周面と所定の隙間を介して対向するように、カバー部材14の筒部14bの四隅の内側のそれぞれに固定されている。4個の磁石片20は、レンズ駆動用コイル18との対向面に形成される磁極がいずれも同じになるように着磁されている。同様に、4個の磁石片21は、レンズ駆動用コイル18との対向面に形成される磁極がいずれも同じになるように着磁されている。また、磁石片20、21は、磁石片20のレンズ駆動用コイル18との対向面に形成される磁極と磁石片21のレンズ駆動用コイル18との対向面に形成される磁極とが互いに異なる磁極となるように着磁されている。すなわち、レンズ駆動用磁石19は、異なる2つの磁極が上下方向で重なるように着磁されている。
 フィルタホルダ8は、樹脂材料で形成されるとともに、略正方形の平板状に形成されている。このフィルタホルダ8は、ベース部材15の下面に固定されている。フィルタホルダ8の中心には、貫通孔8aが形成されている。また、フィルタホルダ8の上面側には、IRカットフィルタ11が固定されている。
 撮像素子は、基板22に実装されている。基板22は、フィルタホルダ8の下面に固定されている。基板22には、カメラモジュール3の傾きの変化を検出するためのジャイロスコープが実装されている。また、基板22には、FPC(フレキシブルプリント基板)23が接続されており、FPC23は、撮影用光学装置1の下端側で引き回されて、撮影用光学装置1の側面から引き出されている。また、基板22の下面には、図2に示すように、後述の球状部材35が当接する当接板24が固定されている。
 (振れ補正装置の構成)
 図5は、図1に示す振れ補正装置4の斜視図である。図6は、図5のF-F断面の断面図である。図7は、図3に示す板バネ28、振れ補正用磁石39および磁石ホルダ45の組立状態を反被写体側から示す斜視図である。
 振れ補正装置4は、カメラモジュール3を揺動可能に支持するための支持体27と、カメラモジュール3と支持体27とを繋ぐためのバネ部材としての板バネ28と、手振れ等の振れを補正するために支持体27に対してカメラモジュール3を揺動させる揺動駆動機構29とを備えている。
 支持体27は、撮影用光学装置1の前後左右の4つの側面(外周面)を構成するケース体31と、撮影用光学装置1の下面側を構成する反被写体側ケース体としての下ケース体32と、板バネ28の一部を固定するための固定部材としてのスペーサ部材33とを備えている。ケース体31は、略四角筒状に形成されており、カメラモジュール3を外周側から囲むように配置されている。下ケース体32は、底部32aと筒部32bとを有する底付きの略四角筒状(略有底四角筒状)に形成されている。スペーサ部材33は、略正方形の枠状に形成されている。
 下ケース体32の底部32aは、下側に配置されており、撮影用光学装置1の下面を構成している。また、底部32aの中心には、カメラモジュール3の揺動の支点となる球状部材35の下端側が配置される円形状の配置孔32cが形成されている。本形態では、球状部材35と配置孔32cとによって、カメラモジュール3の揺動中心となる支点部36が構成されている。支点部36は、カメラモジュール3の下側に配置されており、球状部材35の上端は、当接板24の下面に当接している。なお、本形態の球状部材35は、支点部36を構成する支点用突部であり、配置孔32cの縁は、支点用突部である球状部材35が当接する当接部である。
 揺動駆動機構29は、4個の振れ補正用コイル38と、4個の振れ補正用コイル38のそれぞれに対向配置される4個の振れ補正用磁石39とを備えている。
 4個の振れ補正用コイル38は、図3に示すように、FPC40に実装されて形成されている。また、振れ補正用コイル38は、略長方形状に巻回されて形成されており、互いに略平行な2個の長辺部38aを備えている。FPC40は、4個の振れ補正用コイル38のそれぞれが、ケース体31の内周面を構成する4つの内側面のそれぞれに配置されるように、ケース体31の内周面に沿って配置されている。また、FPC40は、長辺部38aが前後方向または左右方向と略平行になるように(すなわち、略長方形状に巻回された振れ補正用コイル38の短手方向と上下方向とが略一致するように)、ケース体31の内周面に固定されている。FPC40は、中継用のFPC41を介して、FPC23に接続されている。なお、振れ補正用コイル38は、空芯状に巻回された空芯コイルであっても良い。
 振れ補正用磁石39は、略長方形の平板状に形成されている。また、振れ補正用磁石39は、略長方形の平板状に形成された磁石片42と磁石片43との2個の磁石片によって構成されている。具体的には、磁石片42の下面と磁石片43の上面とが当接した状態で、磁石片42と磁石片43とが互いに接着固定されることで振れ補正用磁石39が形成されている。
 4個の振れ補正用磁石39は、磁石ホルダ45に保持されている。磁石ホルダ45は、たとえば、樹脂材料で形成されている。また、磁石ホルダ45は、略四角筒状に形成されている。磁石ホルダ45の4つの側面のそれぞれには、振れ補正用磁石39を固定するための略長方形状の固定孔45aが側面を貫通するように形成されている。また、磁石ホルダ45の4つの側面のそれぞれの下端面には、図7に示すように、板バネ28を構成する後述の磁石保持部28aを、前後左右方向で位置決めするための位置決め部としての位置決め突起45bが形成されている。
 振れ補正用磁石39は、その厚さ方向が磁石ホルダ45の側面の厚さ方向と一致し、かつ、その長手方向が左右方向または前後方向と略一致するように(すなわち、その短手方向が上下方向と略一致するように)、固定孔45aに固定されている。すなわち、磁石ホルダ45は、左右方向または前後方向における振れ補正用磁石39の両端側、および、上下方向における振れ補正用磁石39の両端側を保持している。また、前後左右方向における振れ補正用磁石39の内側面は、カバー部材14の筒部14bの外周面に固定できるようになっており、振れ補正用磁石39は、振れ補正用コイル38よりもケース体31の内周側に配置されている。
 磁石片42は、一方の側面に形成される磁極と他方の側面に形成される磁極とが異なるように着磁されている。すなわち、筒部14bに固定される前後左右の内側面に形成される磁極と、振れ補正用コイル38に対向する前後左右の外側面に形成される磁極とが異なる磁極となるように、磁石片42は着磁されている。同様に、磁石片43は、筒部14bに固定される前後左右の内側面に形成される磁極と、振れ補正用コイル38に対向する前後左右の外側面に形成される磁極とが異なる磁極となるように着磁されている。また、磁石片42、43は、磁石片42の内側面の磁極と磁石片43の内側面の磁極とが異なる磁極となるように着磁されている。すなわち、磁石片42、43は、磁石片42の外側面の磁極と磁石片43の外側面の磁極とが異なる磁極となるように着磁されている。
 板バネ28は、図7に示すように、振れ補正用磁石39を保持する磁石保持部28aと、支持体27に固定される支持体固定部28bと、磁石保持部28aと支持体固定部28bとを繋ぐ4本のバネ部28cとを備えている。本形態では、支持体固定部28bに対してバネ部28cが撓むことで、振れ補正用磁石39等を介して磁石保持部28aに固定されるカメラモジュール3の揺動動作が可能となっている。
 磁石保持部28aおよび支持体固定部28bは、環状に形成されている。具体的には、磁石保持部28aおよび支持体固定部28bは、略正方形状の枠状に形成されている。支持体固定部28bは、磁石保持部28aよりも大きく形成されており、磁石保持部28aの外周側に配置されている。バネ部28cは、磁石保持部28aと支持体固定部28bとの間に配置されている。また、バネ部28cは、略L形状に形成されている。具体的には、バネ部28cは、図7に示すように、磁石保持部28aに繋がる直線状の内側バネ部28dと、支持体固定部28bに繋がる外側バネ部28eとによって構成される略L形状に形成されている。
 磁石保持部28aには、磁石ホルダ45が固定されている。具体的には、磁石保持部28aの上面に磁石ホルダ45の下端面が固定されている。磁石保持部28aには、磁石ホルダ45の位置決め突起45bが挿通される貫通孔が形成されており、磁石ホルダ45は、前後左右方向で位置決めされた状態で磁石保持部28aに固定されている。
 支持体固定部28bは、図2、図6に示すように、下ケース体32の筒部32bの上端とスペーサ部材33の下面との間に挟まれた状態で、筒部32bとスペーサ部材33とに固定されている。すなわち、支持体固定部28bの下面は、筒部32bの上端に当接している。また、スペーサ部材33は、ケース体31の下端側に固定され、下ケース体32は、支持体固定部28bを介してスペーサ部材33の下側に配置された状態でケース体31の下端側に固定されている。なお、筒部32bの上端およびスペーサ部材33の下面には、前後左右方向で支持体固定部28bを位置決めするための位置決め部は形成されていない。
 板バネ28は、球状部材35の上端と当接板24とを確実に当接させるとともに、球状部材35の下端側と下ケース体32の配置孔32cの縁とを確実に当接させるための与圧が発生するように(すなわち、カメラモジュール3を下方向へ付勢する付勢力が発生するように)、撓んだ状態で固定されている。すなわち、図2、図6に示すように、支持体固定部28bは、磁石保持部28aよりも下側に下がった状態で支持体27に固定されており、支持体固定部28bは、磁石保持部28aよりも下側に配置されている。
 また、板バネ28は、内側バネ部28dおよび外側バネ部28eが前後方向または左右方向と略平行になるように固定されている。本形態のバネ部28cは、左右方向に略平行な内側バネ部28dまたは外側バネ部28eと、前後方向に略平行な内側バネ部28dまたは外側バネ部28eとから構成されており、左右方向および前後方向に変形可能となっている。また、本形態のバネ部28cは、上下方向にも変形可能となっている。
 上述のように、振れ補正用磁石39を保持する磁石ホルダ45は、板バネ28の磁石保持部28aに固定されており、振れ補正用磁石39がカバー部材14の筒部14bに固定されていない状態でも、振れ補正用磁石39は、磁石ホルダ45および板バネ28を介して支持体27に繋がっている。カメラモジュール3が取り付けられていない状態の振れ補正装置4では、図5に示すように、振れ補正用磁石39よりも内周側に、カメラモジュール3を配置可能な配置空間Sが形成されている。
 (撮影用光学装置の概略動作)
 以上のように構成された撮影用光学装置1では、レンズ駆動用コイル18に電流が供給されると、可動体5とともにレンズが光軸方向へ移動する。また、撮影用光学装置1では、基板22に実装されるジャイロスコープでカメラモジュール3の傾きの変化が検出されると、ジャイロスコープでの検出結果に基づいて、振れ補正用コイル38に電流が供給される。振れ補正用コイル38に電流が供給されると、支点部36を中心に、左右方向および/または前後方向を軸方向として、カメラモジュール3が光軸Lを傾けるように揺動して、振れが補正される。
 なお、本形態では、板バネ28、揺動駆動機構29および支点部36等によって、支持体27に対して光軸Lが傾くようにカメラモジュール3を揺動させて振れを補正する振れ補正機構が構成されている。
 (撮影用光学装置の組立手順)
 図8は、図1に示す撮影用光学装置1の組立手順を示す工程図である。
 撮影用光学装置1は、たとえば、以下の手順で組み立てられる。すなわち、図8に示すように、まず、磁石ホルダ45の固定孔45aに振れ補正用磁石39を固定する(工程ST1)。その後、板バネ28の磁石保持部28aに磁石ホルダ45を固定する(工程ST2)。また、振れ補正用コイル38をケース体31の内周面に固定する(工程ST3)。すなわち、FPC40をケース体31の内周面に固定する。その後、スペーサ部材33をケース体31の下端側に固定する(工程ST4)。
 工程ST2、ST4の後に、振れ補正用磁石39が固定された磁石ホルダ45を下側からケース体31の内周側に挿入し、板バネ28の支持体固定部28bをスペーサ部材33の下面に固定する(工程ST5)。また、カメラモジュール3を組み立てて(工程ST6)、工程ST5の後に、カメラモジュール3を振れ補正用磁石39の内側に挿入して振れ補正用磁石39に固定する(工程ST7)。その後、球状部材35を配置孔32cに配置した状態で、下ケース体32をケース体31の下端側に固定して(工程ST8)、撮影用光学装置1が完成する。
 次に課題を解決するための、第二の実施形態を説明する。
(撮影用光学装置の概略構成)
図9は、本発明の第二の実施形態にかかる撮影用光学装置1の斜視図である。図10は、図9のE-E断面の断面図である。なお、以下に示す以外は図1~図4に示す第一の実施形態と同様であり、重複する説明は省略する。また、本第二の実施形態では、左右方向は、光軸方向に略直交する第1方向であり、前後方向は、光軸方向と第1方向とに略直交する第2方向である。
 (カメラモジュールの構成)
 図11は、図9に示す撮影用光学装置1の分解斜視図である。図12は、図11に示すカメラモジュール3の分解斜視図である。図13は、図10に示すレンズ駆動用磁石19および振れ補正用磁石39の着磁状態を説明するための斜視図である。
 レンズ駆動用磁石19は、図13に示すように、光軸方向から見たときの形状が略等脚台形状となる略四角柱状に形成されている。
 磁石片20は、第1平面20aと、第1平面20aと略平行でかつ第1平面20aよりも面積の小さな第2平面20bと、第2平面20bから第1平面20aに向かって広がるように、第1平面20aおよび第2平面20bに対して傾斜する2個の斜面20cとを備えている。同様に、磁石片21は、第1平面21aと、第1平面21aと略平行でかつ第1平面21aよりも面積の小さな第2平面21bと、第2平面21bから第1平面21aに向かって広がるように、第1平面21aおよび第2平面21bに対して傾斜する2個の斜面21cとを備えている。
 4個のレンズ駆動用磁石19は、カバー部材14の筒部14bの内周面に固定されている。具体的には、2個の斜面20c、21cが左右方向または前後方向と略平行になるように、4個のレンズ駆動用磁石19は、筒部14bの四隅の内側のそれぞれに固定されている。すなわち、筒部14bの対角線上に配置されるレンズ駆動用磁石19の第1平面20a、21aが互いに対向するように、4個のレンズ駆動用磁石19が筒部14bの四隅の内側のそれぞれに固定されており、第1平面20a、21aは、レンズ駆動用コイル18の外周面と所定の隙間を介して対向している。
 4個の磁石片20は、第1平面20aに形成される磁極がいずれも同じになるように着磁されている。また、4個の磁石片20は、斜面20cに形成される磁極がいずれも同じになるように、かつ、斜面20cに形成される磁極と第1平面20aに形成される磁極とが異なる磁極となるように着磁されている。同様に、4個の磁石片21は、第1平面21aに形成される磁極がいずれも同じになるように着磁されている。また、4個の磁石片21は、斜面21cに形成される磁極がいずれも同じになるように、かつ、斜面21cに形成される磁極と第1平面21aに形成される磁極とが異なる磁極となるように着磁されている。
 また、磁石片20、21は、第1平面20aの磁極と第1平面21aの磁極が互いに異なる磁極となるように、かつ、斜面20cの磁極と斜面21cの磁極とが互いに異なる磁極となるように着磁されている。すなわち、レンズ駆動用磁石19は、異なる2つの磁極が上下方向で重なるように着磁されている。たとえば、第1平面20aの磁極がS極となり、第1平面21aの磁極がN極となり、斜面20cの磁極がN極となり、斜面21cの磁極がS極となるように、磁石片20、21は着磁されている。
 フィルタホルダ8の外周側には、振れ補正装置4を構成する後述の板バネ281の一部が固定されるバネ固定凸部8bが前後左右方向へ広がるように形成されている。バネ固定凸部8bは、フィルタホルダ8の全周に亘って形成されている。
 (振れ補正装置の構成)
 図14は、図10に示すカメラモジュール3、板バネ281および下ケース体32の配置関係を説明するための斜視図である。図15は、図11に示す板バネ281の斜視図である。
 板バネ281は、図15に示すように、カメラモジュール3に固定される可動側固定部281aと、支持体27に固定される固定側固定部281bと、可動側固定部281aと固定側固定部281bとを繋ぐ4本のバネ部281cとを備えている。本形態では、固定側固定部281bに対してバネ部281cが撓むことで、可動側固定部281aに固定されたカメラモジュール3の揺動動作が可能となっている。
 可動側固定部281aおよび固定側固定部281bは、環状に形成されている。具体的には、可動側固定部281aおよび固定側固定部281bは、略正方形状の枠状に形成されている。固定側固定部281bは、可動側固定部281aよりも大きく形成されており、可動側固定部281aの外周側に配置されている。バネ部281cは、可動側固定部281aと固定側固定部281bとの間に配置されている。また、バネ部281cは、略L形状に形成されている。具体的には、バネ部281cは、図15に示すように、可動側固定部281aに繋がる直線状の内側バネ部281dと、固定側固定部281bに繋がる外側バネ部281eとによって構成される略L形状に形成されている。
 可動側固定部281aは、カメラモジュール3に直接固定されている。具体的には、図10に示すように、可動側固定部281aの下面がフィルタホルダ8のバネ固定凸部8bの上面8cに固定されている。固定側固定部281bは、図10に示すように、下ケース体32の筒部32bの上端とスペーサ部材33の下面との間に挟まれた状態で、筒部32bとスペーサ部材33とに固定されている。すなわち、図10、図14に示すように、固定側固定部281bの下面は、筒部32bの上端に当接している。また、下ケース体32は、ケース体31の下端側に固定され、スペーサ部材33は、固定側固定部281bを介して下ケース体32の上側に配置された状態でケース体31に固定されている
 板バネ281は、球状部材35の上端と当接板24とを確実に当接させるとともに、球状部材35の下端側と下ケース体32の配置孔32cの縁とを確実に当接させるための与圧が発生するように(すなわち、カメラモジュール3を下方向へ付勢する付勢力が発生するように)、撓んだ状態で固定されている。すなわち、図10、図14に示すように、固定側固定部281bは、可動側固定部281aよりも下側に下がった状態で支持体27に固定されており、固定側固定部281bは、可動側固定部281aよりも下側に配置されている。
 また、板バネ281は、内側バネ部281dおよび外側バネ部281eが前後方向または左右方向と略平行になるように固定されている。本形態では、左右方向に略平行な内側バネ部281dおよび外側バネ部281eは、第1バネ部となっており、前後方向に略平行な内側バネ部281dおよび外側バネ部281eは、第2バネ部となっている。すなわち、本形態のバネ部281cは、左右方向に略平行な第1バネ部と前後方向に略平行な第2バネ部とから構成されており、左右方向および前後方向に変形可能となっている。また、本形態のバネ部281cは、上下方向にも変形可能となっている。
 振れ補正用磁石39は、略長方形の平板状に形成されている。4個の振れ補正用磁石39のそれぞれは、カバー部材14の筒部14bの外周面を構成する4つの外側面のそれぞれに固定されている。すなわち、振れ補正用磁石39は、カメラモジュール3の外周面に直接固定されている。具体的には、振れ補正用磁石39は、その厚さ方向が筒部14bの厚さ方向と一致し、かつ、その長手方向が左右方向または前後方向と略一致するように(すなわち、その短手方向が上下方向と略一致するように)、筒部14bの外側面に固定されている。
 磁石片42は、一方の側面に形成される磁極と他方の側面に形成される磁極とが異なるように着磁されている。すなわち、筒部14bに固定される前後左右の内側面42a(図13参照)に形成される磁極と、振れ補正用コイル38に対向する前後左右の外側面42b(図13参照)に形成される磁極とが異なる磁極となるように、磁石片42は着磁されている。また、4個の磁石片42は、外側面42bに形成される磁極がいずれも同じになるように(すなわち、内側面42aに形成される磁極がいずれも同じになるように)着磁されている。
 同様に、磁石片43は、筒部14bに固定される前後左右の内側面43a(図13参照)に形成される磁極と、振れ補正用コイル38に対向する前後左右の外側面43b(図13参照)に形成される磁極とが異なる磁極となるように着磁されている。また、4個の磁石片43は、外側面43bに形成される磁極がいずれも同じになるように(すなわち、内側面43aに形成される磁極がいずれも同じになるように)着磁されている。
 また、磁石片42、43は、内側面42aの磁極と内側面43aの磁極とが異なる磁極となるように着磁されている。すなわち、磁石片42、43は、外側面42bの磁極と外側面43bの磁極とが異なる磁極となるように着磁されている。
 さらに、磁石片42は、レンズ駆動用磁石19を構成する磁石片20の斜面20cの磁極と、内側面42aの磁極とが異なる磁極となるように着磁され、磁石片43は、レンズ駆動用磁石19を構成する磁石片21の斜面21cの磁極と、内側面43aの磁極とが異なる磁極となるように着磁されている。たとえば、内側面42aがS極となり、内側面43aがN極となり、外側面42bがN極となり、外側面43bがS極となるように、磁石片42、43は着磁されている。
 また、本形態では、振れ補正用磁石39の左右方向または前後方向の両端側がカバー部材14の筒部14bを介して、レンズ駆動用磁石19の斜面20c、21cと対向するように、レンズ駆動用磁石19および振れ補正用磁石39が形成されている。すなわち、本形態では、筒部14bを介して振れ補正用磁石39に対向するレンズ駆動用磁石19の対向面である斜面20c、21cのうちの斜面20cの磁極と、筒部14bを介してレンズ駆動用磁石19に対向する振れ補正用磁石39の対向面である内側面42a、43aのうちの内側面42aの磁極とが異なる磁極となるように(すなわち、斜面20c、21cのうちの斜面21cの磁極と、内側面42a、43aのうちの内側面43aの磁極とが異なる磁極となるように)、レンズ駆動用磁石19および振れ補正用磁石39が筒部14bに固定されている。本形態では、斜面20c、21cは、第1対向面であり、内側面42a、43aは、第2対向面である。
 (本形態の主な効果)
 以上説明したように、第一の実施形態では、支持体27を構成するケース体31の内周面に振れ補正用コイル38が固定され、板バネ28の支持体固定部28bが支持体27を構成するスペーサ部材33に固定されている。また、本形態では、振れ補正用磁石39は、磁石ホルダ45を介して板バネ28の磁石保持部28aに保持されている。さらに、本形態では、振れ補正用磁石39よりも内周側に、カメラモジュール3を配置可能な配置空間Sが形成されている。
 そのため、本形態では、上述のように、カメラモジュール3を組み込む前に、ケース体31、スペーサ部材33、板バネ28および磁石ホルダ45を介して振れ補正用コイル38と振れ補正用磁石39とを一体化することができる。したがって、本形態では、カメラモジュール3の寸法精度や組立精度が、振れ補正用コイル38と振れ補正用磁石39との相対位置精度に与える影響を低減することができ、その結果、振れ補正用コイル38と振れ補正用磁石39との相対位置精度を従来以上に高めることが可能になる。たとえば、本形態では、振れ補正用コイル38と振れ補正用磁石39との間の隙間の精度を従来以上に高めることが可能になり、その結果、振れ補正装置4の振れの補正機能を従来以上に高めることが可能になる。
 また、本形態では、カメラモジュール3を組み込む前に、ケース体31、スペーサ部材33、板バネ28および磁石ホルダ45を介して振れ補正用コイル38と振れ補正用磁石39とを一体化することができるため、カメラモジュール3が組み込まれていない状態の振れ補正装置4、および、カメラモジュール3が組み込まれた状態の振れ補正装置4(すなわち、撮影用光学装置1)の両者を市場で流通させることが可能になる。したがって、本形態では、振れ補正装置4の流通形態を多様化させることが可能になる。
 本形態では、4個の振れ補正用磁石39が磁石ホルダ45に固定され、磁石ホルダ45が磁石保持部28aに固定されている。そのため、磁石ホルダ45によって4個の振れ補正用磁石39を一体化することができる。したがって、4個の振れ補正用磁石39間の相対位置精度を高めることが可能になり、その結果、振れ補正用コイル38と振れ補正用磁石39との相対位置精度を効果的に高めることが可能になる。また、磁石ホルダ45によって4個の振れ補正用磁石39を一体化することができるため、カメラモジュール3が組み込まれていない状態であっても、振れ補正用磁石39を安定させることが可能になる。また、撮影用光学装置1の組立時において、4個の振れ補正用磁石39を個別に取り扱う場合と比較して、振れ補正用磁石39の取り扱いが容易になる。
 本形態では、磁石ホルダ45に、磁石保持部28aを位置決めするための位置決め突起45bが形成されている。そのため、前後左右方向における磁石保持部28aと磁石ホルダ45との間の相対位置精度を高めることが可能になり、その結果、前後左右方向における振れ補正用コイル38と振れ補正用磁石39との相対位置精度を効果的に高めることが可能になる。
 本形態では、磁石ホルダ45は、左右方向または前後方向における振れ補正用磁石39の両端側、および、上下方向における振れ補正用磁石39の両端側を保持している。そのため、4個の振れ補正用磁石39と磁石ホルダ45とによって構成される磁石体の剛性を高めることが可能になる。
 本形態では、振れ補正装置4は、カメラモジュール3の揺動中心となる支点部36を備えている。そのため、カメラモジュール3を組み込む代わりに検査用のダミーモジュールを組み込んで、振れ補正機能の検査を行うことが可能になる。この際には、振れ補正用磁石39の吸引力を利用して、ダミーモジュールを仮固定することができるため、ダミーモジュールの軸方向が鉛直方向に対して傾いている状態でも、振れ補正機能の検査を行うことが可能になる。すなわち、全姿勢で振れ補正機能の検査を行うことが可能になる。
 本形態では、板バネ28の支持体固定部28bは、磁石保持部28aよりも下側に下がった状態で支持体27に固定されている。そのため、板バネ28を利用して、カメラモジュール3の下側に配置される支点部36に向かって、カメラモジュール3を付勢することができ、カメラモジュール3の揺動動作を安定させることが可能になる。
 本形態では、板バネ28の支持体固定部28bは、球状部材35の下端側が配置される配置孔32cが形成される下ケース体32の筒部32bの上端とスペーサ部材33の下面との間に挟まれた状態で、筒部32bとスペーサ部材33とに固定されており、支持体固定部28bの下面は、筒部32bの上端に当接している。そのため、上下方向において、筒部32bの上端を基準にして支持体固定部28bを固定することが可能になり、支持体固定部28bと支点部36との上下方向における相対位置精度を確保しやすくなる。したがって、板バネ28を利用して、カメラモジュール3を支点部36に向かって適切に付勢することが可能になり、カメラモジュール3の揺動動作をより安定させることが可能になる。
 なお、本形態では、筒部32bを構成する4つの側面の前後方向、左右方向の厚みは比較的薄くなっているが、枠状に形成されるスペーサ部材33の4つの側辺部の前後方向、左右方向の厚みは比較的厚くなっているため、スペーサ部材33の厚みを利用して、筒部32bとスペーサ部材33との間に支持体固定部28bを安定させた状態で固定することが可能になる。
 第二の実施形態では、振れ補正用磁石39は、カメラモジュール3の外周面に直接固定されている。そのため、本形態では、従来のように、カメラモジュール3の外周面を覆うように配置されるヨークに振れ補正用磁石39が固定される場合と比較して、撮影用光学装置1を小型化することが可能になる。特に本形態では、板バネ281の可動側固定部281aがカメラモジュール3に直接固定されているため、可動側固定部281aが固定される部材が別途設けられる場合と比較して、撮影用光学装置1をより小型化することが可能になる。
 また、本形態では、カメラモジュール3の外周面を覆うようにヨークが配置される場合と比較して、揺動する部分の重量を低減することが可能になる。また、本形態では、撮影用光学装置1の大きさが従来の撮影用光学装置と同じであれば、ヨークの分だけ、振れ補正用磁石39や振れ補正用コイル38を大きくすることが可能になるため、揺動駆動機構29の駆動力を高めることが可能になる。
 本形態では、磁性材料で形成されたカバー部材14の筒部14bの内周面にレンズ駆動用磁石19が固定され、筒部14bの外周面に振れ補正用磁石39が固定されている。そのため、カバー部材14がバックヨークとして機能する。したがって、レンズ駆動用磁石19に対向配置されるレンズ駆動用コイル18を通過する磁束の密度、および、振れ補正用磁石39に対向配置される振れ補正用コイル38を通過する磁束の密度を高めることが可能になる。また、レンズ駆動用磁石19が発生させる磁束と、振れ補正用磁石39が発生させる磁束との干渉を抑制することが可能になる。したがって、レンズ駆動機構7によって、レンズを光軸方向へ適切に移動させること、および、揺動駆動機構29によって、カメラモジュール3を適切に揺動させることが可能になる。
 本形態では、筒部14bを介して振れ補正用磁石39に対向するレンズ駆動用磁石19の斜面20c、21cのうちの斜面20cの磁極と、筒部14bを介してレンズ駆動用磁石19に対向する振れ補正用磁石39の内側面42a、43aのうちの内側面42aの磁極とが異なる磁極となるように、レンズ駆動用磁石19および振れ補正用磁石39が筒部14bに固定されている。そのため、効率的な磁気回路を形成することが可能になり、レンズ駆動機構7および揺動駆動機構29の駆動力を高めることが可能になる。また、筒部14bを介して、レンズ駆動用磁石19と振れ補正用磁石39との間に吸引力が作用するため、レンズ駆動用磁石19および振れ補正用磁石39を筒部14bへ固定する際の固定作業が容易になる。
 本形態では、板バネ281の可動側固定部281aは、フィルタホルダ8のバネ固定凸部8bの上面8cに固定されている。可動側固定部281aが、バネ固定凸部8bの下面に固定されている場合には、バネ部281cが撓むと、バネ固定凸部8bの下面から可動側固定部281aが剥がれやすくなるが、本形態では、バネ部281cが撓んでも、バネ固定凸部8bからの可動側固定部281aの剥がれを防止することができる。
 本形態では、板バネ281の固定側固定部281bは、可動側固定部281aよりも下側に下がった状態で支持体27に固定されている。そのため、板バネ281を利用して、カメラモジュール3の下側に配置される支点部36に向かって、カメラモジュール3を付勢することができ、カメラモジュール3の揺動動作を安定させることが可能になる。
 本形態では、バネ固定凸部8bは、フィルタホルダ8の全周に亘って形成されている。また、可動側固定部281aは、略正方形状の枠状に形成されている。そのため、バネ部281cの付勢力をカメラモジュール3の全周に亘って作用させることが可能になり、カメラモジュール3の揺動動作をより安定させることが可能になる。
 本形態では、板バネ281の固定側固定部281bは、球状部材35の下端側が配置される配置孔32cが形成される下ケース体32の筒部32bの上端とスペーサ部材33の下面との間に挟まれた状態で、筒部32bとスペーサ部材33とに固定されており、固定側固定部281bの下面は、筒部32bの上端に当接している。そのため、上下方向において、筒部32bの上端を基準にして固定側固定部281bを固定することが可能になり、固定側固定部281bと支点部36との上下方向における相対位置精度を確保しやすくなる。したがって、板バネ281を利用して、カメラモジュール3を支点部36に向かって適切に付勢することが可能になり、カメラモジュール3の揺動動作をより安定させることが可能になる。
 本形態では、内側バネ部281dおよび外側バネ部281eが前後方向または左右方向と略平行になるように板バネ281が固定されている。そのため、左右方向に略平行な内側バネ部281dおよび外側バネ部281eの作用で前後方向における板バネ281のバネ定数を比較的小さくし、前後方向に略平行な内側バネ部281dおよび外側バネ部281eの作用で左右方向における板バネ281のバネ定数を比較的小さくすることが可能になる。したがって、前後左右方向へ可動側固定部281aを円滑に動かすことが可能になる。その結果、カメラモジュール3の揺動角度が大きくなっても、カメラモジュール3を円滑に揺動させることが可能になる。
 (他の実施の形態)
 上述した形態は、本発明の好適な形態の一例ではあるが、これに限定されるものではなく本発明の要旨を変更しない範囲において種々変形実施が可能である。
 上述した第一の実施形態では、磁石ホルダ45の側面に固定孔45aが形成されており、左右方向または前後方向における振れ補正用磁石39の両端側、および、上下方向における振れ補正用磁石39の両端側が磁石ホルダ45に保持されている。この他にもたとえば、振れ補正用磁石39の上端側を保持する正方形の枠状の磁石ホルダと、振れ補正用磁石39の下端側を保持する正方形の枠状の磁石ホルダとの2個の磁石ホルダによって、上下方向における振れ補正用磁石39の両端側が保持されても良い。この場合には、振れ補正用磁石39の下端側を保持する磁石ホルダが磁石保持部28aに固定される。
 上述した形態では、板バネ28の磁石保持部28aに磁石ホルダ45が固定されている。すなわち、磁石ホルダ45を介して、振れ補正用磁石39が磁石保持部28aに固定されている。この他にもたとえば、振れ補正用磁石39が磁石保持部28aに直接固定されても良い。この場合には、振れ補正用磁石39の上端側は、正方形の枠状の磁石ホルダによって保持されても良いし、磁石ホルダによって保持されなくても良い。
 なお、上述した形態では、磁石ホルダ45を介して振れ補正用磁石39が磁石保持部28aに固定されているため、上下方向において、揺動駆動機構29と支点部36との距離を長くすることが可能になり、かつ、板バネ28と支点部36との距離を短くすることが可能になる。上述した形態では、揺動駆動機構29と支点部36との距離を長くすることが可能になるため、カメラモジュール3の揺動角度を小さくしても、カメラモジュール3の揺動量を確保することが可能になる。また、上述した形態では、板バネ28と支点部36との距離を短くすることが可能になるため、前後左右方向におけるバネ部28cの弾性変形量を小さくしても、カメラモジュール3を適切に揺動させることが可能になる。
 上述した形態では、磁石ホルダ45の4つの側面のそれぞれに振れ補正用磁石39が固定されている。この他にもたとえば、磁石ホルダ45の前後の側面の一方と左右の側面の一方との2つの側面に振れ補正用磁石39が固定されても良い。なお、磁石ホルダ45の4つの側面のうちの3つの側面のそれぞれに振れ補正用磁石39が固定されても良い。
 上述した形態では、振れ補正用磁石39は、カメラモジュール3を構成するカバー部材14の筒部14bに直接固定されている。この他にもたとえば、筒部14bの外周側に筒状部材が固定され、その筒状部材の外周面に振れ補正用磁石39が固定されても良い。
 上述した形態では、振れ補正装置4は、支点部36を構成する支点用突部として、球状部材35を備えている。この他にもたとえば、カメラモジュール3の下面に支点部36を構成する支点用突部が形成または固定されても良いし、下ケース体32の底部32aに支点部36を構成する支点用突部が形成または固定されても良い。なお、カメラモジュール3の下面に支点部36を構成する支点用突部が形成または固定される場合には、この支点用突部が当接する当接部が下ケース32の底部32aに形成される。
 上述した形態では、レンズ駆動機構7は、レンズ駆動用コイル18とレンズ駆動用磁石19とを備えるいわゆるボイスコイルモータである。この他にもたとえば、レンズ駆動機構7は、レンズ駆動用コイル18およびレンズ駆動用磁石19に代えて、レンズを光軸方向へ移動させるための圧電素子を備えていても良いし、形状記憶合金を備えていても良い。
 上述した形態では、撮影用光学装置1は、オートフォーカス機能を備えているが、撮影用光学装置1は、オートフォーカス機能を備えていなくても良い。すなわち、カメラモジュール3は、レンズ駆動機構7を備えていなくても良い。この場合には、たとえば、スリーブ13が保持体6に固定される。
 上述した形態では、撮影用光学装置1は、光軸方向から見たときの形状が略正方形状となるように形成されているが、撮影用光学装置1は、光軸方向から見たときの形状が略長方形状となるように形成されても良い。また、撮影用光学装置1は、光軸方向から見たときの形状がその他の多角形状となるように形成されても良いし、光軸方向から見たときの形状が円形状や楕円形状となるように形成されても良い。同様に、カメラモジュール3は、光軸方向から見たときの形状が略長方形状となるように形成されても良い。また、カメラモジュール3は、光軸方向から見たときの形状がその他の多角形状となるように形成されても良いし、光軸方向から見たときの形状が円形状や楕円形状となるように形成されても良い。
 上述した形態では、レンズおよび撮像素子を有するカメラモジュール3が振れ補正装置4に組み込まれているが、レンズおよび/または撮像素子を有しないレンズ駆動モジュールが振れ補正装置4に組み込まれても良い。すなわち、カメラモジュール3からレンズホルダ12および/または基板22等を取り除くことで構成されるレンズ駆動モジュール(すなわち、撮影機能は備えていないが、レンズを光軸方向へ移動させるための機能を備えているレンズ駆動モジュール)が振れ補正装置4に組み込まれても良い。この場合であっても、上述した形態と同様の効果を得ることができる。また、上述した形態では、カメラモジュール3と振れ補正装置4とを有する撮影用光学装置1を例に本発明の実施の形態を説明したが、本発明の構成は、レンズ駆動モジュールと振れ補正装置4とを有するレンズ駆動装置にも適用可能である。なお、カメラモジュール3やレンズ駆動モジュールが振れ補正装置4に組み込まれていなくても良い。
 上述した第二の実施形態では、板バネ281の可動側固定部281aは、バネ固定凸部8bの上面8cに固定されている。この他にもたとえば、可動側固定部281aは、バネ固定凸部8bの下面に固定されても良い。また、可動側固定部281aは、振れ補正用磁石39の下面に、直接、あるいは、所定の取付部材を介して固定されても良い。また、上述した形態では、可動側固定部281aは、環状に形成されているが、可動側固定部281aは、環状に形成されていなくても良い。たとえば、可動側固定部281aは、4本のバネ部281cのそれぞれに繋がるように4分割されていても良い。また、上述した形態では、バネ固定凸部8bは、フィルタホルダ8の全周に亘って形成されているが、バネ固定凸部8bは、フィルタホルダ8の外周面の一部に形成されても良い。
 上述した形態では、カバー部材14は、磁性材料で形成されている。この他にもたとえば、カバー部材14は、非磁性材料で形成されても良い。また、カバー部材14の一部が磁性材料で形成され、カバー部材14の他の部分が非磁性材料で形成されても良い。
 上述した形態では、略四角柱状に形成されたレンズ駆動用磁石19がカバー部材14の筒部14bの四隅の内側に固定されている。この他にもたとえば、略矩形の平板状に形成されたレンズ駆動用磁石19が筒部14bを構成する4つの側面の内側に固定されても良い。また、上述した形態では、レンズ駆動用コイル18は、スリーブ13の外周面に巻回されているが、レンズ駆動用コイル18は、略長方形状に巻回された空芯コイルであっても良い。この場合には、たとえば、空芯状の4個のレンズ駆動用コイル18がスリーブ13の外周面に固定される。
 上述した形態では、4個の磁石片42は、外側面42bに形成される磁極がいずれも同じになるように着磁され、4個の磁石片43は、外側面43bに形成される磁極がいずれも同じになるように着磁されている。この他にもたとえば、周方向で隣り合う磁石片42の外側面42bに形成される磁極が異なる磁極となり、周方向で隣り合う磁石片43の外側面43bに形成される磁極が異なる磁極となるように、磁石片42、43が着磁されても良い。すなわち、筒部14bの左右の外側面に固定される磁石片42の外側面42bの磁極と、筒部14bの前後の外側面に固定される磁石片42の外側面42bの磁極とが異なり、筒部14bの左右の外側面に固定される磁石片43の外側面43bの磁極と、筒部14bの前後の外側面に固定される磁石片43の外側面43bの磁極とが異なるように、磁石片42、43が着磁されても良い。この場合には、効率の良い磁気回路を形成することが可能になり、揺動駆動機構29の駆動力を高めることが可能になる。
 上述した形態では、カバー部材14の筒部14bの外周面を構成する4つの外側面のそれぞれに振れ補正用磁石39が固定されている。この他にもたとえば、筒部14bの前後の側面の一方と左右の側面の一方との2つの側面に振れ補正用磁石39が固定されても良い。なお、筒部14bの外周面を構成する4つの外側面のうちの3つの外側面のそれぞれに振れ補正用磁石39が固定されても良い。
 上述した形態では、レンズ駆動用磁石19は、磁石片20、21の2個の磁石片によって構成されているが、レンズ駆動用磁石19は、1個の磁石片によって構成されても良い。同様に、振れ補正用磁石39は、1個の磁石片によって構成されても良い。

Claims (34)

  1.  光学像の振れを補正するための振れ補正装置において、
     レンズおよび撮像素子を有するカメラモジュールを揺動可能に支持するための支持体と、前記支持体に対して前記レンズの光軸が傾くように前記カメラモジュールを揺動させて振れを補正するための振れ補正機構とを備え、
     前記支持体は、略筒状に形成されるケース体を備え、
     前記振れ補正機構は、前記ケース体の内周面に固定される振れ補正用コイルと、前記振れ補正用コイルよりも前記ケース体の内周側にかつ前記振れ補正用コイルと対向するように配置される振れ補正用磁石とを備えるとともに、前記支持体に固定される支持体固定部と、前記振れ補正用磁石を保持する磁石保持部と、前記支持体固定部と前記磁石保持部とを繋ぐバネ部とを有するバネ部材を備え、
     前記振れ補正用磁石よりも前記ケース体の内周側に前記カメラモジュールを配置可能な配置空間が形成されていることを特徴とする振れ補正装置。
  2.  前記振れ補正機構は、複数の前記振れ補正用磁石と、複数の前記振れ補正用磁石を保持する磁石ホルダとを備え、
     前記磁石保持部には、前記磁石ホルダが固定されていることを特徴とする請求項1記載の振れ補正装置。
  3.  前記磁石ホルダは、前記レンズの光軸方向における複数の前記振れ補正用磁石の両端側を少なくとも保持していることを特徴とする請求項2記載の振れ補正装置。
  4.  前記磁石ホルダには、前記レンズの光軸方向に略直交する方向で前記磁石保持部を位置決めするための位置決め部が形成されていることを特徴とする請求項2または3記載の振れ補正装置。
  5.  前記振れ補正機構は、前記カメラモジュールの揺動中心となる支点部を備えることを特徴とする請求項1から4のいずれかに記載の振れ補正装置。
  6.  光学像の振れを補正するための振れ補正装置において、
     レンズが取付可能でかつ前記レンズの光軸方向へ移動可能な可動体と、前記可動体を前記光軸方向へ移動可能に保持する保持体と、前記可動体を前記光軸方向へ駆動するためのレンズ駆動機構とを有するレンズ駆動モジュールを揺動可能に支持するための支持体と、前記支持体に対して前記レンズの光軸が傾くように前記レンズ駆動モジュールを揺動させて振れを補正するための振れ補正機構とを備え、
     前記支持体は、略筒状に形成されるケース体を備え、
     前記振れ補正機構は、前記ケース体の内周面に固定される振れ補正用コイルと、前記振れ補正用コイルよりも前記ケース体の内周側にかつ前記振れ補正用コイルと対向するように配置される振れ補正用磁石とを備えるとともに、前記支持体に固定される支持体固定部と、前記振れ補正用磁石を保持する磁石保持部と、前記支持体固定部と前記磁石保持部とを繋ぐバネ部とを有するバネ部材を備え、
     前記振れ補正用磁石よりも前記ケース体の内周側に前記レンズ駆動モジュールを配置可能な配置空間が形成されていることを特徴とする振れ補正装置。
  7.  前記振れ補正機構は、複数の前記振れ補正用磁石と、複数の前記振れ補正用磁石を保持する磁石ホルダとを備え、
     前記磁石保持部には、前記磁石ホルダが固定されていることを特徴とする請求項6記載の振れ補正装置。
  8.  前記磁石ホルダは、前記光軸方向における複数の前記振れ補正用磁石の両端側を少なくとも保持していることを特徴とする請求項7記載の振れ補正装置。
  9.  前記磁石ホルダには、前記光軸方向に略直交する方向で前記磁石保持部を位置決めするための位置決め部が形成されていることを特徴とする請求項7または8記載の振れ補正装置。
  10.  前記振れ補正機構は、前記レンズ駆動モジュールの揺動中心となる支点部を備えることを特徴とする請求項6から9のいずれかに記載の振れ補正装置。
  11.  請求項1から5のいずれかに記載の振れ補正装置と、前記カメラモジュールとを備え、 前記振れ補正用磁石は、前記カメラモジュールに固定されていることを特徴とする撮影用光学装置。
  12.  前記振れ補正機構は、前記カメラモジュールの揺動中心となる支点部を備え、
     前記レンズの光軸方向において、被写体が配置される側を被写体側とし、前記撮像素子が配置される側を反被写体側とすると、
     前記支点部は、前記カメラモジュールよりも前記反被写体側に配置され、
     前記支持体固定部は、前記磁石保持部よりも前記反被写体側に配置されていることを特徴とする請求項11記載の撮影用光学装置。
  13.  前記支持体は、前記支点部を構成する支点用突部が当接する当接部が形成される、あるいは、前記支点用突部が形成または固定される反被写体側ケース体と、前記支持体固定部を固定するための固定部材とを備え、
     前記支持体固定部は、前記光軸方向における前記固定部材と前記反被写体側ケース体との間に挟まれた状態で固定されていることを特徴とする請求項12記載の撮影用光学装置。
  14.  請求項6から10のいずれかに記載の振れ補正装置と、前記レンズ駆動モジュールとを備え、
     前記振れ補正用磁石は、前記レンズ駆動モジュールに固定されていることを特徴とするレンズ駆動装置。
  15.  前記振れ補正機構は、前記レンズ駆動モジュールの揺動中心となる支点部を備え、
     前記光軸方向において、被写体が配置される側を被写体側とし、前記被写体側の反対側を反被写体側とすると、
     前記支点部は、前記レンズ駆動モジュールよりも前記反被写体側に配置され、
     前記支持体固定部は、前記磁石保持部よりも前記反被写体側に配置されていることを特徴とする請求項14記載のレンズ駆動装置。
  16.  前記支持体は、前記支点部を構成する支点用突部が当接する当接部が形成される、あるいは、前記支点用突部が形成または固定される反被写体側ケース体と、前記支持体固定部を固定するための固定部材とを備え、
     前記支持体固定部は、前記光軸方向における前記固定部材と前記反被写体側ケース体との間に挟まれた状態で固定されていることを特徴とする請求項15記載のレンズ駆動装置。
  17.  レンズおよび撮像素子を有するカメラモジュールと、前記レンズによって前記撮像素子上に結像される光学像の振れを補正するための振れ補正装置とを備え、
     前記振れ補正装置は、前記カメラモジュールを揺動可能に支持する支持体と、前記支持体に対して前記レンズの光軸が傾くように前記カメラモジュールを揺動させて振れを補正するための振れ補正機構とを備え、
     前記振れ補正機構は、前記カメラモジュールの外周面に直接固定される振れ補正用磁石と、前記支持体に固定され前記振れ補正用磁石に対向配置される振れ補正用コイルとを備えることを特徴とする撮影用光学装置。
  18.  前記カメラモジュールは、前記レンズを保持し前記レンズの光軸方向へ移動可能な可動体と、前記可動体を前記光軸方向へ移動可能に保持する保持体と、前記可動体を前記光軸方向へ駆動するためのレンズ駆動機構とを備え、
     前記レンズ駆動機構は、前記可動体の外周面に固定されるレンズ駆動用コイルと、前記保持体に固定され前記レンズ駆動用コイルに対向配置されるレンズ駆動用磁石とを備え、 前記保持体は、磁性材料で形成されるとともに、前記カメラモジュールの外周面を構成する略筒状のカバー部材を備え、
     前記カバー部材の内周面に前記レンズ駆動用磁石が固定され、前記カバー部材の外周面に前記振れ補正用磁石が固定されていることを特徴とする請求項17記載の撮影用光学装置。
  19.  前記カバー部材を介して前記振れ補正用磁石に対向する前記レンズ駆動用磁石の対向面である第1対向面と、前記カバー部材を介して前記第1対向面に対向する前記振れ補正用磁石の対向面である第2対向面とは、異なる2つの磁極が前記光軸方向で重なるように着磁され、
     前記光軸方向において、被写体が配置される側を被写体側とすると、
     前記レンズ駆動用磁石および前記振れ補正用磁石は、前記第1対向面の前記被写体側に配置される磁極と、前記第2対向面の前記被写体側に配置される磁極とが異なるように、前記カバー部材に固定されていることを特徴とする請求項18記載の撮影用光学装置。
  20.  前記振れ補正機構は、前記カメラモジュールと前記支持体とを繋ぐバネ部材を備え、
     前記バネ部材は、前記カメラモジュールに直接固定される可動側固定部と、前記支持体に固定される固定側固定部と、前記可動側固定部と前記固定側固定部とを繋ぐとともに前記カメラモジュールの揺動動作を可能とするバネ部とを備えることを特徴とする請求項17から19のいずれかに記載の撮影用光学装置。
  21.  前記振れ補正機構は、前記カメラモジュールの揺動中心となる支点部を備え、
     前記レンズの光軸方向において、被写体が配置される側を被写体側とし、前記撮像素子が配置される側を反被写体側とすると、
     前記支点部は、前記カメラモジュールよりも前記反被写体側に配置され、
     前記固定側固定部は、前記可動側固定部よりも前記反被写体側に配置されていることを特徴とする請求項20記載の撮影用光学装置。
  22.  前記カメラモジュールには、前記可動側固定部が固定されるバネ固定凸部が前記光軸方向に略直交する方向に突出するように形成され、
     前記可動側固定部は、前記バネ固定凸部の前記被写体側の面に固定されていることを特徴とする請求項21記載の撮影用光学装置。
  23.  前記バネ固定凸部は、前記カメラモジュールの全周に亘って形成され、
     前記可動側固定部は、環状に形成されていることを特徴とする請求項22記載の撮影用光学装置。
  24.  前記支持体は、前記支点部を構成する支点用突部が当接する当接部が形成される、あるいは、前記支点用突部が形成または固定される反被写体側ケース体と、前記固定側固定部を固定するための固定部材とを備え、
     前記固定側固定部は、前記光軸方向における前記固定部材と前記反被写体側ケース体との間に挟まれた状態で固定されていることを特徴とする請求項21から23のいずれかに記載の撮影用光学装置。
  25.  前記振れ補正機構は、前記光軸方向に略直交するとともに互いに略直交する第1方向および第2方向を揺動の軸方向として前記カメラモジュールを揺動させるための複数の前記振れ補正用磁石と前記振れ補正用コイルとを備え、
     前記バネ部は、前記第1方向に略平行な第1バネ部と、前記第2方向に略平行な第2バネ部とを備えることを特徴とする請求項20から24のいずれかに記載の撮影用光学装置。
  26.  レンズが取付可能でかつ前記レンズの光軸方向へ移動可能な可動体と、前記可動体を前記光軸方向へ移動可能に保持する保持体と、前記可動体を前記光軸方向へ駆動するためのレンズ駆動機構とを有するレンズ駆動モジュールと、前記レンズによって結像される光学像の振れを補正するための振れ補正装置とを備え、
     前記振れ補正装置は、前記レンズ駆動モジュールを揺動可能に支持する支持体と、前記支持体に対して前記レンズの光軸が傾くように前記レンズ駆動モジュールを揺動させて振れを補正するための振れ補正機構とを備え、
     前記振れ補正機構は、前記レンズ駆動モジュールの外周面に直接固定される振れ補正用磁石と、前記支持体に固定され前記振れ補正用磁石に対向配置される振れ補正用コイルとを備えることを特徴とするレンズ駆動装置。
  27.  前記レンズ駆動機構は、前記可動体の外周面に固定されるレンズ駆動用コイルと、前記保持体に固定され前記レンズ駆動用コイルに対向配置されるレンズ駆動用磁石とを備え、
     前記保持体は、磁性材料で形成されるとともに、前記レンズ駆動モジュールの外周面を構成する略筒状のカバー部材を備え、
     前記カバー部材の内周面に前記レンズ駆動用磁石が固定され、前記カバー部材の外周面に前記振れ補正用磁石が固定されていることを特徴とする請求項26記載のレンズ駆動装置。
  28.  前記カバー部材を介して前記振れ補正用磁石に対向する前記レンズ駆動用磁石の対向面である第1対向面と、前記カバー部材を介して前記第1対向面に対向する前記振れ補正用磁石の対向面である第2対向面とは、異なる2つの磁極が前記光軸方向で重なるように着磁され、
     前記光軸方向において、被写体が配置される側を被写体側とすると、
     前記レンズ駆動用磁石および前記振れ補正用磁石は、前記第1対向面の前記被写体側に配置される磁極と、前記第2対向面の前記被写体側に配置される磁極とが異なるように、前記カバー部材に固定されていることを特徴とする請求項27記載のレンズ駆動装置。
  29.  前記振れ補正機構は、前記レンズ駆動モジュールと前記支持体とを繋ぐバネ部材を備え、
     前記バネ部材は、前記レンズ駆動モジュールに直接固定される可動側固定部と、前記支持体に固定される固定側固定部と、前記可動側固定部と前記固定側固定部とを繋ぐとともに前記レンズ駆動モジュールの揺動動作を可能とするバネ部とを備えることを特徴とする請求項26から28のいずれかに記載のレンズ駆動装置。
  30.  前記振れ補正機構は、前記レンズ駆動モジュールの揺動中心となる支点部を備え、
     前記光軸方向において、被写体が配置される側を被写体側とし、前記被写体側の反対側を反被写体側とすると、
     前記支点部は、前記レンズ駆動モジュールよりも前記反被写体側に配置され、
     前記固定側固定部は、前記可動側固定部よりも前記反被写体側に配置されていることを特徴とする請求項29記載のレンズ駆動装置。
  31.  前記レンズ駆動モジュールには、前記可動側固定部が固定されるバネ固定凸部が前記光軸方向に略直交する方向に突出するように形成され、
     前記可動側固定部は、前記バネ固定凸部の前記被写体側の面に固定されていることを特徴とする請求項30記載のレンズ駆動装置。
  32.  前記バネ固定凸部は、前記レンズ駆動モジュールの全周に亘って形成され、
     前記可動側固定部は、環状に形成されていることを特徴とする請求項31記載のレンズ駆動装置。
  33.  前記支持体は、前記支点部を構成する支点用突部が当接する当接部が形成される、あるいは、前記支点用突部が形成または固定される反被写体側ケース体と、前記固定側固定部を固定するための固定部材とを備え、
     前記固定側固定部は、前記光軸方向における前記固定部材と前記反被写体側ケース体との間に挟まれた状態で固定されていることを特徴とする請求項30から32のいずれかに記載のレンズ駆動装置。
  34.  前記振れ補正機構は、前記光軸方向に略直交するとともに互いに略直交する第1方向および第2方向を揺動の軸方向として前記レンズ駆動モジュールを揺動させるための複数の前記振れ補正用磁石と前記振れ補正用コイルとを備え、
     前記バネ部は、前記第1方向に略平行な第1バネ部と、前記第2方向に略平行な第2バネ部とを備えることを特徴とする請求項29から33のいずれかに記載のレンズ駆動装置。
PCT/JP2011/061820 2010-06-08 2011-05-24 振れ補正装置、撮影用光学装置およびレンズ駆動装置 WO2011155318A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/702,460 US20130076924A1 (en) 2010-06-08 2011-05-24 Shake Correction Device, Photographic Optical Device and Lens Drive Device
CN201180027971.XA CN102934020B (zh) 2010-06-08 2011-05-24 抖动修正装置、拍摄用光学装置及透镜驱动装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010130600A JP5638845B2 (ja) 2010-06-08 2010-06-08 撮影用光学装置の製造方法およびレンズ駆動装置の製造方法
JP2010-130599 2010-06-08
JP2010130599A JP2011257506A (ja) 2010-06-08 2010-06-08 撮影用光学装置およびレンズ駆動装置
JP2010-130600 2010-06-08

Publications (1)

Publication Number Publication Date
WO2011155318A1 true WO2011155318A1 (ja) 2011-12-15

Family

ID=45097926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061820 WO2011155318A1 (ja) 2010-06-08 2011-05-24 振れ補正装置、撮影用光学装置およびレンズ駆動装置

Country Status (3)

Country Link
US (1) US20130076924A1 (ja)
CN (1) CN102934020B (ja)
WO (1) WO2011155318A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130119785A1 (en) * 2011-11-16 2013-05-16 Lg Innotek Co., Ltd. Voice coil motor
KR20130073380A (ko) * 2011-12-23 2013-07-03 엘지이노텍 주식회사 보이스 코일 모터
KR20130073378A (ko) * 2011-12-23 2013-07-03 엘지이노텍 주식회사 보이스 코일 모터
CN103296855A (zh) * 2012-02-23 2013-09-11 Lg伊诺特有限公司 音圈电机
WO2014003280A1 (en) * 2012-06-28 2014-01-03 Lg Innotek Co., Ltd. Camera module
KR101931183B1 (ko) 2011-12-23 2018-12-21 엘지이노텍 주식회사 보이스 코일 모터
CN112311988A (zh) * 2020-10-29 2021-02-02 维沃移动通信有限公司 摄像头模组、拍摄控制方法和电子设备

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5848052B2 (ja) * 2011-07-21 2016-01-27 日本電産サンキョー株式会社 振れ補正機能付き光学ユニット
US9001268B2 (en) 2012-08-10 2015-04-07 Nan Chang O-Film Optoelectronics Technology Ltd Auto-focus camera module with flexible printed circuit extension
US8717487B2 (en) * 2012-08-10 2014-05-06 Digitaloptics Corporation Camera module with compact sponge absorbing design
US9007520B2 (en) 2012-08-10 2015-04-14 Nanchang O-Film Optoelectronics Technology Ltd Camera module with EMI shield
US9398264B2 (en) 2012-10-19 2016-07-19 Qualcomm Incorporated Multi-camera system using folded optics
JP6122352B2 (ja) * 2013-06-18 2017-04-26 日本電産サンキョー株式会社 撮影用光学装置
US10178373B2 (en) 2013-08-16 2019-01-08 Qualcomm Incorporated Stereo yaw correction using autofocus feedback
JP6145377B2 (ja) * 2013-09-30 2017-06-14 日本電産サンキョー株式会社 撮影用光学装置
KR102179952B1 (ko) 2013-11-25 2020-11-17 삼성전자주식회사 광학조절장치
CN103792640B (zh) * 2014-01-10 2016-08-31 瑞声声学科技(常州)有限公司 镜头驱动装置
CN105980921B (zh) * 2014-02-12 2018-12-18 富士胶片株式会社 摄像模块及电子设备
KR102232029B1 (ko) 2014-03-17 2021-03-26 엘지이노텍 주식회사 렌즈 구동장치 및 이를 구비한 카메라 모듈
CN104954635B (zh) * 2014-03-26 2019-06-07 鸿富锦精密工业(深圳)有限公司 相机模组
US9383550B2 (en) 2014-04-04 2016-07-05 Qualcomm Incorporated Auto-focus in low-profile folded optics multi-camera system
US9374516B2 (en) 2014-04-04 2016-06-21 Qualcomm Incorporated Auto-focus in low-profile folded optics multi-camera system
US10013764B2 (en) 2014-06-19 2018-07-03 Qualcomm Incorporated Local adaptive histogram equalization
US9294672B2 (en) 2014-06-20 2016-03-22 Qualcomm Incorporated Multi-camera system using folded optics free from parallax and tilt artifacts
US9386222B2 (en) 2014-06-20 2016-07-05 Qualcomm Incorporated Multi-camera system using folded optics free from parallax artifacts
US9819863B2 (en) 2014-06-20 2017-11-14 Qualcomm Incorporated Wide field of view array camera for hemispheric and spherical imaging
US9541740B2 (en) 2014-06-20 2017-01-10 Qualcomm Incorporated Folded optic array camera using refractive prisms
US9832381B2 (en) * 2014-10-31 2017-11-28 Qualcomm Incorporated Optical image stabilization for thin cameras
JP6593990B2 (ja) * 2014-12-24 2019-10-23 キヤノン株式会社 像振れ補正装置、撮像装置、および光学装置
KR102494346B1 (ko) * 2015-04-10 2023-02-01 삼성전기주식회사 렌즈 구동 장치 및 이를 포함하는 카메라 모듈
EP3101890B1 (en) * 2015-06-03 2017-11-22 Axis AB A mechanism and a method for optical image stabilization
WO2017024584A1 (zh) * 2015-08-13 2017-02-16 爱佩仪光电技术(深圳)有限公司 抗磁干扰平移式光学防抖音圈马达及其装配方法
US10082638B2 (en) * 2015-09-21 2018-09-25 Lg Innotek Co., Ltd. Lens driving unit, and a camera module and an optical appliance including the same
JP6708920B2 (ja) * 2015-11-16 2020-06-10 ミツミ電機株式会社 レンズ駆動装置、カメラモジュール及びカメラ搭載装置
KR102348365B1 (ko) * 2016-05-03 2022-01-10 삼성전자주식회사 카메라 모듈을 포함하는 전자 장치
JP6811588B2 (ja) * 2016-11-10 2021-01-13 日本電産サンキョー株式会社 振れ補正機能付き光学ユニット
JP6800707B2 (ja) * 2016-11-10 2020-12-16 日本電産サンキョー株式会社 振れ補正機能付き光学ユニット
US10641984B2 (en) * 2016-12-23 2020-05-05 Tdk Taiwan Corp. Driving mechanism
CN108241197B (zh) * 2016-12-23 2021-08-31 台湾东电化股份有限公司 驱动机构
US10638032B2 (en) * 2017-04-27 2020-04-28 Ap Photonics Limited Lens control apparatus configured in an imaging device
JP6947969B2 (ja) * 2017-06-19 2021-10-13 ミツミ電機株式会社 レンズ駆動装置、カメラモジュール、及びカメラ搭載装置
JP6955381B2 (ja) * 2017-07-06 2021-10-27 日本電産サンキョー株式会社 振れ補正機能付き光学ユニット
JP7222719B2 (ja) * 2018-03-26 2023-02-15 日本電産サンキョー株式会社 振れ補正機能付き光学ユニット
CN211698368U (zh) * 2019-05-17 2020-10-16 台湾东电化股份有限公司 光学组件驱动机构
CN211741661U (zh) * 2019-06-14 2020-10-23 台湾东电化股份有限公司 光学元件驱动机构
CN115225783B (zh) * 2021-09-23 2023-12-26 新思考电机有限公司 图像传感器驱动装置、照相机装置及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010010712A1 (ja) * 2008-07-24 2010-01-28 パナソニック株式会社 カメラ駆動装置
WO2010044223A1 (ja) * 2008-10-14 2010-04-22 日本電産サンキョー株式会社 撮影用光学装置
WO2010044197A1 (ja) * 2008-10-14 2010-04-22 日本電産サンキョー株式会社 撮影用光学装置
JP2010096807A (ja) * 2008-10-14 2010-04-30 Nidec Sankyo Corp 撮影用光学装置
JP2010122662A (ja) * 2008-10-20 2010-06-03 Nidec Sankyo Corp 振れ補正機能付き光学ユニット、および振れ補正機能付き光学ユニットにおける振れ補正制御方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6415105B1 (en) * 1999-05-21 2002-07-02 Asahi Kogaku Kogyo Kabushiki Kaisha Image stabilizer
JP4328573B2 (ja) * 2003-08-07 2009-09-09 キヤノン株式会社 振れ補正装置及びその制御方法
JP5140572B2 (ja) * 2008-04-30 2013-02-06 日本電産サンキョー株式会社 振れ補正機能付き光学ユニット
JP5106254B2 (ja) * 2008-06-04 2012-12-26 日本電産サンキョー株式会社 撮影用光学装置
US8279289B2 (en) * 2008-10-14 2012-10-02 Nidec Sankyo Corporation Optical unit with shake correcting function
CN101944817B (zh) * 2009-07-06 2013-04-24 鸿富锦精密工业(深圳)有限公司 致动器及具有该致动器的相机模组
CN102033287A (zh) * 2009-09-29 2011-04-27 鸿富锦精密工业(深圳)有限公司 自动对焦镜头模组

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010010712A1 (ja) * 2008-07-24 2010-01-28 パナソニック株式会社 カメラ駆動装置
WO2010044223A1 (ja) * 2008-10-14 2010-04-22 日本電産サンキョー株式会社 撮影用光学装置
WO2010044197A1 (ja) * 2008-10-14 2010-04-22 日本電産サンキョー株式会社 撮影用光学装置
JP2010096807A (ja) * 2008-10-14 2010-04-30 Nidec Sankyo Corp 撮影用光学装置
JP2010122662A (ja) * 2008-10-20 2010-06-03 Nidec Sankyo Corp 振れ補正機能付き光学ユニット、および振れ補正機能付き光学ユニットにおける振れ補正制御方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130119785A1 (en) * 2011-11-16 2013-05-16 Lg Innotek Co., Ltd. Voice coil motor
US20230275500A1 (en) * 2011-11-16 2023-08-31 Lg Innotek Co., Ltd. Voice coil motor
US9300196B2 (en) * 2011-11-16 2016-03-29 Lg Innotek Co., Ltd. Voice coil motor
US11682958B2 (en) 2011-11-16 2023-06-20 Lg Innotek Co., Ltd. Voice coil motor
US10516326B2 (en) 2011-11-16 2019-12-24 Lg Innotek Co., Ltd. Voice coil motor
KR101950020B1 (ko) 2011-12-23 2019-02-19 엘지이노텍 주식회사 보이스 코일 모터
KR20130073380A (ko) * 2011-12-23 2013-07-03 엘지이노텍 주식회사 보이스 코일 모터
KR20130073378A (ko) * 2011-12-23 2013-07-03 엘지이노텍 주식회사 보이스 코일 모터
KR101931183B1 (ko) 2011-12-23 2018-12-21 엘지이노텍 주식회사 보이스 코일 모터
CN103296855A (zh) * 2012-02-23 2013-09-11 Lg伊诺特有限公司 音圈电机
US9423628B2 (en) 2012-02-23 2016-08-23 Lg Innotek Co., Ltd. Voice coil motor
US9420184B2 (en) 2012-06-28 2016-08-16 Lg Innotek Co., Ltd. Camera module having a handshake correction function
WO2014003280A1 (en) * 2012-06-28 2014-01-03 Lg Innotek Co., Ltd. Camera module
CN112311988A (zh) * 2020-10-29 2021-02-02 维沃移动通信有限公司 摄像头模组、拍摄控制方法和电子设备
CN112311988B (zh) * 2020-10-29 2021-10-01 维沃移动通信有限公司 摄像头模组、拍摄控制方法和电子设备

Also Published As

Publication number Publication date
US20130076924A1 (en) 2013-03-28
CN102934020B (zh) 2016-01-27
CN102934020A (zh) 2013-02-13

Similar Documents

Publication Publication Date Title
WO2011155318A1 (ja) 振れ補正装置、撮影用光学装置およびレンズ駆動装置
JP5538020B2 (ja) 撮影用光学装置
JP6028041B2 (ja) 撮影用光学装置
JP5638845B2 (ja) 撮影用光学装置の製造方法およびレンズ駆動装置の製造方法
JP5653678B2 (ja) 撮影用光学装置
JP5112248B2 (ja) 撮影用光学装置
JP5604068B2 (ja) 光学ユニットおよびその製造方法
JP2011257506A (ja) 撮影用光学装置およびレンズ駆動装置
JP2010156814A (ja) 振れ補正機能付き光学ユニット、および振れ補正機能付き光学ユニットの製造方法
JP2010096805A (ja) 撮影用光学装置
JP2010096803A (ja) 撮影用光学装置
JP6122352B2 (ja) 撮影用光学装置
WO2010044198A1 (ja) 撮影用光学装置
JP6181990B2 (ja) 撮影用光学装置
JP6133092B2 (ja) 撮影用光学装置
JP2011053600A (ja) レンズ駆動装置
JP6163001B2 (ja) 撮影用光学装置
WO2010044195A1 (ja) 撮影用光学装置
JP5237747B2 (ja) 撮影用光学装置
JP6129016B2 (ja) 撮影用光学装置
JP2010096806A (ja) 撮影用光学装置
JP5752978B2 (ja) 振れ補正機能付き光学ユニット
JP6223050B2 (ja) 撮影用光学装置
JP2022110703A (ja) 振れ補正機能付き光学ユニット
JP2023021801A (ja) 光学ユニット

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180027971.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11792275

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13702460

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11792275

Country of ref document: EP

Kind code of ref document: A1