WO2011155289A1 - ポリブチレンテレフタレート樹脂組成物、金属複合部品、及び金属複合部品の製造方法 - Google Patents

ポリブチレンテレフタレート樹脂組成物、金属複合部品、及び金属複合部品の製造方法 Download PDF

Info

Publication number
WO2011155289A1
WO2011155289A1 PCT/JP2011/061084 JP2011061084W WO2011155289A1 WO 2011155289 A1 WO2011155289 A1 WO 2011155289A1 JP 2011061084 W JP2011061084 W JP 2011061084W WO 2011155289 A1 WO2011155289 A1 WO 2011155289A1
Authority
WO
WIPO (PCT)
Prior art keywords
terephthalate resin
polybutylene terephthalate
metal composite
mass
parts
Prior art date
Application number
PCT/JP2011/061084
Other languages
English (en)
French (fr)
Inventor
聖 若塚
Original Assignee
ウィンテックポリマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウィンテックポリマー株式会社 filed Critical ウィンテックポリマー株式会社
Priority to JP2012519317A priority Critical patent/JP5805081B2/ja
Priority to KR1020137000426A priority patent/KR101728430B1/ko
Priority to CN201180027832.7A priority patent/CN102933655B/zh
Publication of WO2011155289A1 publication Critical patent/WO2011155289A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14311Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles using means for bonding the coating to the articles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/006PBT, i.e. polybutylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2707/00Use of elements other than metals for preformed parts, e.g. for inserts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals

Definitions

  • the present invention relates to a polybutylene terephthalate that provides a metal composite part having excellent adhesion between the metal part and the polybutylene terephthalate resin composition when the metal part and the polybutylene terephthalate resin composition are combined to produce a metal composite part.
  • the present invention relates to a resin composition.
  • the present invention also relates to a method for producing a metal composite part comprising a metal part and a polybutylene terephthalate resin composition, and having excellent adhesion between the metal part and the polybutylene terephthalate resin composition.
  • the present invention relates to a metal composite part comprising a metal part and a polybutylene terephthalate resin composition, and having excellent adhesion between the metal part and the polybutylene terephthalate resin composition.
  • thermoplastic resin manufactured by combining thermoplastic resin and metal parts by molding methods such as insert molding, outsert molding, and hoop molding have been widely used in home appliances, information communication equipment, automobile parts, etc. ing.
  • a metal composite laminated part in which a thermoplastic resin is laminated on a part of or the entire surface of a metal plate has a functionality such as strength. From the viewpoints of lightness, design, etc., it has been attracting attention as a casing for small information / communication equipment such as mobile phones and notebook personal computers.
  • thermoplastic resin used in such metal composite parts is required to have durability against various external stimuli, so mechanical characteristics, heat resistance, electrical characteristics, weather resistance, water resistance, chemical resistance, solvent resistance, etc. It is desired that these various properties are excellent, and from the standpoint of production efficiency, it is desired that they can be melt-molded by a method such as injection molding. For this reason, use of the polybutylene terephthalate resin composition excellent in various physical properties and moldability for metal composite parts has been studied.
  • a metal composite part is produced by a method such as injection molding using a polybutylene terephthalate resin or a polybutylene terephthalate resin composition
  • the resin has a higher coefficient of linear expansion than a metal, or a low-temperature metal part. Since the shrinkage after molding differs greatly from the resin at high processing temperature, even if the metal part and the resin are in good contact within the mold, the metal part and the resin are in close contact after molding. There is a problem that the performance decreases.
  • polybutylene terephthalate resin has a high processing temperature, the thermoplastic resin on the surface of the metal part rapidly solidifies due to the contact between the molten thermoplastic resin and the low-temperature metal plate in the mold. In this manufacturing method, there is a problem that it is difficult to manufacture a metal composite part having excellent adhesion between the metal part and the polybutylene terephthalate resin composition.
  • a metal composite part is formed from a metal part and a polybutylene terephthalate resin or a polybutylene terephthalate resin composition by a method such as injection molding, a method for improving the adhesion between the metal part and the resin has been developed. It is desired.
  • a method for improving the adhesion between a metal part and a resin in a metal composite part using a polybutylene terephthalate resin or a polybutylene terephthalate resin composition for example, for a metal part made of an aluminum alloy, in the following order: Anodizing treatment, mechanical removal treatment of oxide layer film, etching treatment with acidic aqueous solution, contact treatment with hydrazine, etc.
  • Patent Document 1 A method of manufacturing a metal composite part by compounding a terephthalate resin composition by injection molding (Patent Document 1), or after immersing a finely etched metal part in an aqueous solution of a water-soluble alcohol, the metal part and the polyethylene terephthalate resin Containing polybutylene terephthalate tree
  • Patent Document 2 A composition process for producing a metal composite part with composite (Patent Document 2) are known by injection molding.
  • the present inventors produce a metal composite part by blending a polybutylene terephthalate resin with a specific amount of polyethylene terephthalate resin modified with other dicarbonyl units of terephthaloyl units, even at a low mold temperature of 100 ° C. or less, It has been found that a metal composite part having excellent adhesion between the metal part and the polybutylene terephthalate resin composition can be obtained, and the present invention has been completed. Specifically, the present invention provides the following.
  • the (B) modified polyethylene terephthalate resin contains 5 mol% or more and 50 mol% or less of another dicarbonyl unit of the terephthaloyl unit in all dicarbonyl units, Metal composite part whose content of said (B) modified polyethylene terephthalate resin is 10 to 50 mass% with respect to the total mass of said (A) polybutylene terephthalate resin and said (B) modified polyethylene terephthalate resin
  • the (C) flame retardant is one or more phosphorus-based flame retardants selected from the group consisting of phosphinates, diphosphinates, and salts of phosphinic acid condensates of trimers or more,
  • the content of the flame retardant (C) is 10 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the total amount of the (A) polybutylene terephthalate resin and the (B) modified polyethylene terephthalate resin (3 ) A polybutylene terephthalate resin composition for forming metal composite parts as described above.
  • R 3 is a linear or branched C 1-10 -alkylene group, arylene group, alkylarylene group or arylalkylene group, and M is an alkaline earth metal, alkali metal, Zn, Al, Fe, Boron, m is an integer from 1 to 3, n is an integer from 1 or 3, and x is 1 or 2.
  • a nitrogen-containing flame retardant assistant which is a salt of a triazine compound represented by the following general formula (3) and cyanuric acid or isocyanuric acid is contained as a flame retardant assistant (D),
  • the content of the flame retardant aid is 1 part by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the total amount of the (A) polybutylene terephthalate resin and the (B) modified polyethylene terephthalate resin.
  • R 4 and R 5 are a hydrogen atom, an amino group, an aryl group, or an oxyalkyl group having 1 to 3 carbon atoms, and R 4 and R 5 may be the same or different.
  • the (C) flame retardant is a brominated flame retardant, and the content of the (C) flame retardant is 100 parts by mass of the total amount of the (A) polybutylene terephthalate resin and the (B) modified polyethylene terephthalate resin.
  • an antimony compound is contained as a flame retardant aid (D),
  • the content of the flame retardant aid is 1 part by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the total amount of the (A) polybutylene terephthalate resin and the (B) modified polyethylene terephthalate resin.
  • (F) contains a fluorine-based resin
  • (F) The content of the fluorine-based resin is 0.1 parts by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the total amount of the (A) polybutylene terephthalate resin and the (B) modified polyethylene terephthalate resin.
  • (1) to (11) The polybutylene terephthalate resin composition for forming a metal composite part according to any one of the above.
  • (G) contains an elastomer
  • the content of the elastomer (G) is 1 part by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the total amount of the (A) polybutylene terephthalate resin and the (B) modified polyethylene terephthalate resin.
  • a metal composite part comprising the polybutylene terephthalate resin composition for molding a metal composite part according to any one of (1) to (13) and a metal part.
  • the (B) modified polyethylene terephthalate resin contains 5 mol% or more and 50 mol% or less of another dicarbonyl unit of the terephthaloyl unit in all dicarbonyl units, A molding material in which the content of the (B) modified polyethylene terephthalate resin is 10% by mass or more and 50% by mass or less based on the total mass of the (A) polybutylene terephthalate resin and the (B) modified polyethylene terephthalate resin, A method for manufacturing a metal composite part, which is supplied to a mold on which a metal part is placed by a molding machine.
  • a polybutylene terephthalate resin composition capable of molding a metal composite part having excellent adhesion between the metal part and the polybutylene terephthalate resin composition even at a mold temperature of 100 ° C. or less.
  • a method for producing a metal composite part capable of producing a metal composite part having excellent adhesion between the metal composite part and the polybutylene terephthalate resin composition even at a mold temperature of 100 ° C. or less.
  • a metal composite part having excellent adhesion between the metal part and the polybutylene terephthalate resin composition is provided.
  • metal composite part molding material the metal composite part manufacturing method, and the metal composite part will be described in order.
  • the molding material used for the production of the metal composite part is (C) a flame retardant, (D) a flame retardant, if desired, for (A) polybutylene terephthalate resin and (B) modified polyethylene terephthalate resin.
  • One or more components selected from the group consisting of an auxiliary agent, (E) filler, (F) tetrafluoroethylene polymer, (G) elastomer, and (H) other additives are blended. .
  • the molding material of the metal composite part used in the present invention is not particularly limited as long as it contains a predetermined amount of the components (A) to (H).
  • Specific examples of the form of the molding material of the metal composite part include (i) pellets, flakes, or powders of a polybutylene terephthalate resin composition obtained by melt-kneading all components contained in the molding material, and (ii) (A) polybutylene terephthalate resin, or (A) pellets, flakes or powder of a polybutylene terephthalate resin composition comprising a polybutylene terephthalate resin and a desired component, and (B) a modified polyethylene terephthalate resin, or (B) (B) The pellet of the modified polyethylene terephthalate resin composition which consists of a modified polyethylene terephthalate resin and a desired component, flakes, or the mixture of powder is mentioned.
  • polybutylene terephthalate resin composition a material in which all components in the molding material are integrated by a method such as melt-kneading or melt molding is referred to as “polybutylene terephthalate resin composition”, and molding is performed.
  • a material in which at least one component in the material is not integrated with other components is referred to as a “polybutylene terephthalate resin mixture”.
  • the molding material is a polybutylene terephthalate resin composition obtained by melting and kneading all the components, the shape is preferably a pellet because of excellent operability during molding.
  • a suitable method for producing a polybutylene terephthalate resin composition by melt kneading includes a method using a melt kneading apparatus such as a single-screw or twin-screw extruder.
  • A polybutylene terephthalate resin
  • B modified polyethylene terephthalate resin
  • C flame retardant
  • D flame retardant auxiliary
  • E filler
  • F filler
  • the (A) polybutylene terephthalate resin used in the present invention comprises a dicarboxylic acid component containing at least terephthalic acid or an ester-forming derivative thereof (C 1-6 alkyl ester, acid halide, etc.) and an alkylene having at least 4 carbon atoms.
  • the polybutylene terephthalate resin is not limited to a homopolybutylene terephthalate resin, but may be a copolymer containing 60 mol% or more (particularly 75 mol% or more and 95 mol% or less) of a butylene terephthalate unit.
  • the amount of terminal carboxyl group of (A) polybutylene terephthalate resin used in the present invention is not particularly limited as long as the object of the present invention is not impaired.
  • the terminal carboxyl group amount of the (A) polybutylene terephthalate resin used in the present invention is preferably 30 meq / kg or less, and more preferably 25 meq / kg or less.
  • the resulting metal composite part is less susceptible to strength reduction due to hydrolysis in a moist heat environment.
  • the intrinsic viscosity of the (A) polybutylene terephthalate resin used in the present invention is not particularly limited as long as the object of the present invention is not impaired.
  • the intrinsic viscosity (IV) of the polybutylene terephthalate resin is preferably 0.60 dL / g or more and 1.2 dL / g or less. More preferably, it is 0.65 dL / g or more and 0.9 dL / g or less.
  • the resulting polybutylene terephthalate resin composition has particularly excellent moldability.
  • the intrinsic viscosity can be adjusted by blending polybutylene terephthalate resins having different intrinsic viscosities.
  • a polybutylene terephthalate resin having an intrinsic viscosity of 0.9 dL / g is prepared by blending a polybutylene terephthalate resin having an intrinsic viscosity of 1.0 dL / g and a polybutylene terephthalate resin having an intrinsic viscosity of 0.7 dL / g. Can do.
  • the intrinsic viscosity (IV) of the polybutylene terephthalate resin can be measured, for example, in o-chlorophenol at a temperature of 35 ° C.
  • examples of dicarboxylic acid components (comonomer components) other than terephthalic acid and its ester-forming derivatives include, for example, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 4 C 8-14 aromatic dicarboxylic acids such as 4,4'-dicarboxydiphenyl ether; C 4-16 alkanedicarboxylic acids such as succinic acid, adipic acid, azelaic acid and sebacic acid; C 5-10 such as cyclohexanedicarboxylic acid And cycloalkane dicarboxylic acids of the above; ester-forming derivatives of these dicarboxylic acid components (C 1-6 alkyl ester derivatives, acid halides, etc.). These dicarboxylic acid components can be used alone or in combination of two or more.
  • C 8-12 aromatic dicarboxylic acids such as isophthalic acid
  • C 6-12 alkanedicarboxylic acids such as adipic acid, azelaic acid, and sebacic acid are more preferable.
  • glycol components (comonomer components) other than 1,4-butanediol examples include ethylene glycol, propylene glycol, trimethylene glycol, 1,3-butylene glycol, hexa C 2-10 alkylene glycol such as methylene glycol, neopentyl glycol, 1,3-octanediol; polyoxyalkylene glycol such as diethylene glycol, triethylene glycol and dipropylene glycol; fat such as cyclohexanedimethanol and hydrogenated bisphenol A Cyclic diols; aromatic diols such as bisphenol A and 4,4′-dihydroxybiphenyl; ethylene oxide 2-mole adducts of bisphenol A; Such as alkylene oxide 3 moles adduct, alkylene oxide adducts of C 2-4 of bisphenol A; or ester-forming derivatives of these glycols (acetylene glycol, ethylene glycol, propylene glycol, trimethylene glycol, 1,
  • C 2-6 alkylene glycol such as ethylene glycol and trimethylene glycol
  • polyoxyalkylene glycol such as diethylene glycol
  • alicyclic diol such as cyclohexanedimethanol
  • Examples of the comonomer component that can be used in addition to the dicarboxylic acid component and the glycol component include 4-hydroxybenzoic acid, 3-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, 4-carboxy-4′-hydroxybiphenyl, and the like.
  • any of the polybutylene terephthalate copolymers obtained by copolymerizing the comonomer components described above can be suitably used as the (A) polybutylene terephthalate resin. Moreover, you may use combining a homopolybutylene terephthalate polymer and a polybutylene terephthalate copolymer as (A) polybutylene terephthalate resin.
  • the (B) modified polyethylene terephthalate resin used in the present invention is 1) terephthalic acid or an ester-forming derivative thereof (C 1-6 alkyl ester, acid halide, etc.) 2) ethylene glycol or an ester-forming derivative thereof (acetylated product, etc.), and 3) A polyester resin obtained by polycondensing a modified component essentially containing a dicarboxylic acid other than terephthalic acid or an ester-forming derivative thereof (C 1-6 alkyl ester, acid halide, etc.) according to a known method. is there.
  • the effect of improving the adhesion between the metal part and the polybutylene terephthalate resin composition in the metal composite part is obtained by blending the (B) modified polyethylene terephthalate resin with the (A) polybutylene terephthalate resin. It is presumed that the fluidity of the polybutylene terephthalate resin composition is improved, and the shrinkage rate is reduced due to a decrease in the crystallization rate.
  • the resin composition easily penetrates into the fine recesses on the surface of the metal part, and solidifies in the recesses after cooling due to a decrease in shrinkage rate. It is presumed that the adhesiveness between the metal part and the polybutylene terephthalate resin composition is improved by making it difficult for the obtained resin to be easily detached from the recess.
  • the melting point of the (B) modified polyethylene terephthalate resin is preferably 245 ° C. or less, and particularly preferably 240 ° C. or less.
  • the melting point of the modified polyethylene terephthalate resin can be measured using a differential scanning calorimeter (DSC) according to JIS K7121.
  • the modified polyethylene terephthalate resin essentially contains a dicarbonyl unit derived from other dicarboxylic acid of terephthalic acid contained in the modifying component or its ester-forming derivative (C 1-6 alkyl ester, acid halide, etc.). .
  • the amount of other dicarbonyl units of the terephthaloyl unit contained in the modified polyethylene terephthalate resin is preferably 5 mol% or more and 50 mol% or less, more preferably 7 mol% or more and 30 mol% or less in all dicarbonyl units. 10 mol% or more and 25 mol% or less is particularly preferable.
  • Suitable compounds as dicarboxylic acids or ester-forming derivatives thereof contained in the modifying component include C 8-14 fragrances such as isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, and 4,4′-dicarboxydiphenyl ether.
  • These dicarboxylic acids can be used alone or in combination of two or more.
  • C 8-12 aromatic dicarboxylic acids such as isophthalic acid or ester-forming derivatives thereof, and C 6-12 such as adipic acid, azelaic acid, sebacic acid, etc. More preferred are alkanedicarboxylic acids or ester-forming derivatives thereof.
  • the resulting polybutylene terephthalate resin composition is excellent in metal adhesion and mechanical properties
  • isophthalic acid or an ester-forming derivative of isophthalic acid (isophthalic acid)
  • isophthalic acid or an ester-forming derivative of isophthalic acid (isophthalic acid)
  • dimethyl ester isophthalic acid diethyl ester, isophthalic acid dichloride and the like.
  • the modified component used for the production of the modified polyethylene terephthalate resin is ethylene glycol and its ester-forming property in addition to a predetermined amount of dicarboxylic acid or its ester-forming derivative, as long as the object of the present invention is not impaired.
  • the derivative may contain other glycol components, hydroxycarboxylic acid components, lactone components and the like.
  • the amount of repeating units derived from these modified components such as glycol component, hydroxycarboxylic acid component, and lactone component is 30 mol in all repeating units in (B) modified polyethylene terephthalate resin. % Or less is preferable, 25 mol% or less is more preferable, and 20 mol% or less is particularly preferable.
  • glycol component contained in the modifying component propylene glycol, trimethylene glycol, 1,4-butanediol, 1,3-butylene glycol, hexamethylene glycol, neopentyl glycol, and 1,3-octanediol C 2- 10 alkylene glycols; polyoxyalkylene glycols such as diethylene glycol, triethylene glycol and dipropylene glycol; cycloaliphatic diols such as cyclohexanedimethanol and hydrogenated bisphenol A; aromatics such as bisphenol A and 4,4′-dihydroxybiphenyl diols, ethylene oxide 2 mol adduct of bisphenol a, propylene oxide 3 mol adduct of bisphenol a, alkylene oxide adducts of C 2-4 of bisphenol a; or which Ester-forming derivatives of the glycol (acetylated, etc.).
  • These glycol components can be used alone or in combination of two or more.
  • hydroxycarboxylic acid component contained in the modified component examples include aromatic hydroxycarboxylic acids such as 4-hydroxybenzoic acid, 3-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, 4-carboxy-4′-hydroxybiphenyl; Aliphatic hydroxycarboxylic acids such as glycolic acid and hydroxycaproic acid; or ester-forming derivatives of these hydroxycarboxylic acids (C 1-6 alkyl ester derivatives, acid halides, acetylates, etc.). These hydroxycarboxylic acid components can be used alone or in combination of two or more.
  • lactone component contained in the modifying component examples include C 3-12 lactones such as propiolactone, butyrolactone, valerolactone, and caprolactone (eg, ⁇ -caprolactone). These lactone components can be used alone or in combination of two or more.
  • the amount of the (B) modified polyethylene terephthalate resin used in the molding material for the metal composite part is 10% by mass or more and 50% by mass or less based on the total mass of the (A) polybutylene terephthalate resin and the (B) modified polyethylene terephthalate resin. 15 mass% or more and 45 mass% or less are more preferable, and 20 mass parts or more and 40 mass% or less are especially preferable. (B) If the amount of the modified polyethylene terephthalate resin used is too large, the mechanical properties and chemical resistance of the resulting metal composite part may be impaired. If the amount used is too small, the desired adhesion will be obtained. The improvement effect may not be obtained.
  • the metal composite part molding material is often used for applications requiring flame retardancy.
  • the metal composite part molding material in addition to (A) polybutylene terephthalate resin and (B) modified polyethylene terephthalate resin, it is preferable to contain (C) a flame retardant.
  • the kind of flame retardant is not limited in the range which does not inhibit the objective of this invention, The various flame retardant conventionally used as a flame retardant for thermoplastic resins can be used.
  • Examples of suitable (C) flame retardants that can be used in the present invention include (c-1) phosphorus flame retardants and (c-2) bromine flame retardants. (C-1) Phosphorus flame retardant and (c-2) Bromine flame retardant will be described in this order.
  • (c-1) Phosphorus flame retardant examples include phosphinates, diphosphinates, phosphate ester compounds, and phosphazene compounds (phosphonitrile compounds).
  • phosphinate, diphosphinate, and salt of phosphinic acid condensate of trimer or higher are selected because they are easily available and the resulting polybutylene terephthalate resin composition is excellent in flame retardancy and mechanical properties.
  • One or more selected from the above are preferred, and phosphinate and / or diphosphinate are more preferred.
  • Examples of the metal that forms a salt of phosphinate, diphosphinate, or a trimer or more phosphinic acid condensate include alkali metals (potassium, sodium, etc.), alkaline earth metals (magnesium, calcium, etc.), transition metals ( Iron, cobalt, nickel, copper, etc.), periodic table group 12 metal (zinc, etc.), periodic table group 13 metal (aluminum, etc.) and the like.
  • the said metal salt may contain 1 type of these metals, and may contain it in combination of 2 or more types. Of the metals, alkaline earth metals (magnesium, calcium, etc.) and periodic table group 13 metals (aluminum, etc.) are preferred.
  • the valence of the metal forming the salt is not particularly limited, preferably 1 or more and 4 or less, more preferably 2 or more and 4 or less, and particularly preferably 2 or 3.
  • the compound represented by the following general formula (1) is preferred as the phosphinate used as the phosphorus flame retardant (c-1) in the present invention, and the compound represented by the formula (2) is preferred as the diphosphinate. preferable.
  • R 1 and R 2 are a linear or branched C 1-6 -alkyl group which may contain a phenyl group, hydrogen, and one hydroxyl group. .
  • R 1 and R 2 are preferably both ethyl groups.
  • R 3 is a linear or branched C 1-10 -alkylene group, arylene group, alkylarylene group or arylalkylene group.
  • M is an alkaline earth metal, alkali metal, Zn, Al, Fe, or boron. Among these, Al is preferable.
  • m is an integer of 1 to 3
  • n is an integer of 1 or 3
  • x is 1 or 2.
  • phosphinates that can be suitably used in the present invention include calcium dimethylphosphinate, magnesium dimethylphosphinate, aluminum dimethylphosphinate, zinc dimethylphosphinate, calcium ethylmethylphosphinate, ethylmethylphosphine.
  • examples thereof include zinc, benzene-1,4- (dimethylphosphinic acid) calcium, and benzene-1,4- (dimethylphosphinic acid) magnesium.
  • phosphinates and / or diphosphinates it is particularly preferable to use aluminum diethylphosphinate.
  • the shape of the phosphorus-based flame retardant is not particularly limited as long as the object of the present invention is not impaired.
  • the shape of the (c-1) phosphorus-based flame retardant is preferably in the form of a powder from the viewpoint that it can be uniformly dispersed in the polybutylene terephthalate resin composition to obtain a good flame retardant effect.
  • the amount of the (c-1) phosphorus-based flame retardant used in the present invention is 10 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the total amount of (A) polybutylene terephthalate resin and (B) modified polyethylene terephthalate resin.
  • 10 parts by mass or more and 80 parts by mass or less are more preferable, and 15 parts by mass or more and 60 parts by mass or less are particularly preferable.
  • C-1) When the amount of phosphorus-based flame retardant used is too large, mechanical properties and moldability may be impaired. When the amount used is too small, good flame retardancy cannot be obtained. There is.
  • the (c-2) brominated flame retardant used in the present invention is not particularly limited as long as it is an organic compound containing bromine and can make the polymeric material flame retardant, and is commercially available for the polymeric material. Various flame retardants can be used.
  • the amount of bromine contained in the brominated flame retardant is preferably 20% by mass or more. If the amount of bromine is too small, it is necessary to use a large amount of flame retardant to obtain the desired flame retardancy, and the mechanical properties of the metal composite part may be impaired.
  • the molecular weight of the brominated flame retardant is not particularly limited as long as it does not impair the object of the present invention.
  • the brominated flame retardant is a high molecular compound even if it is a low molecular compound. There may be.
  • Specific examples of the (c-2) brominated flame retardant suitably used in the present invention include units derived from hexabromobenzene, decabromodiphenyl ether, tetrabromobisphenol A, brominated bisimide compound, and brominated bisphenol A.
  • Examples thereof include polycarbonates, diepoxy compounds that are reaction products of brominated bisphenol A and epichlorohydrin, brominated polystyrenes, brominated acrylic polymers, and the like. These (c-2) brominated flame retardants can be used in combination of two or more.
  • the amount of the (c-2) brominated flame retardant used in the present invention is 10 parts by mass or more and 100 parts by mass with respect to 100 parts by mass of the total amount of (A) polybutylene terephthalate resin and (B) modified polyethylene terephthalate resin. Part or less, preferably 15 parts by weight or more and 50 parts by weight or less. (C-2) By setting the content of the brominated flame retardant within such a range, a polybutylene terephthalate resin composition having good flame retardancy can be prepared.
  • (D) Flame retardant aid in the present invention, when the molding material of the metal composite part is required to have flame retardancy, in addition to (A) polybutylene terephthalate resin, (B) modified polyethylene terephthalate resin, and (C) flame retardant, (D) difficult Preferably it contains a fuel aid.
  • the type of flame retardant aid is not limited as long as the object of the present invention is not hindered.
  • various flame retardants conventionally used as flame retardants for thermoplastic resins (C) flame retardants
  • a suitable flame retardant aid (D) can be selected and used according to the type of the above.
  • (D-1) a nitrogen-containing flame retardant aid is preferably used as the flame retardant aid (D-1) c-2)
  • (d-2) antimony compounds it is preferable to use (d-2) antimony compounds as (D) flame retardant aids.
  • (d-1) the nitrogen-containing flame retardant aid and (d-2) the antimony compound will be described in order.
  • the (d-1) nitrogen-containing flame retardant aid used in the present invention is not particularly limited as long as a good flame retardant effect is obtained and does not impair the object of the present invention.
  • Various nitrogen-containing compounds can be used.
  • Examples of the (d-1) nitrogen-containing flame retardant aid preferably used in the present invention include salts of triazine compounds with cyanuric acid or isocyanuric acid, amino group-containing nitrogen compounds and polyphosphoric acid. Examples include double salts.
  • These (d-1) nitrogen-containing flame retardant aids can be used in combination of two or more.
  • the flame retardant effect is excellent when combined with the (c-1) phosphorus flame retardant. Therefore, a triazine compound and cyanuric acid or isocyanuric acid are used. And / or a double salt of a nitrogen compound containing an amino group and polyphosphoric acid is more preferable.
  • a salt of the triazine compound and cyanuric acid or isocyanuric acid a salt of a triazine compound represented by the following general formula (3) and cyanuric acid or isocyanuric acid is exemplified as a preferable example.
  • R 4 and R 5 are a hydrogen atom, an amino group, an aryl group, or a C 1-3 oxyalkyl group, and R 4 and R 5 may be the same or different.
  • melamine cyanurate is particularly preferable among the salts of the triazine compound represented by the general formula (3) and cyanuric acid or isocyanuric acid. .
  • the nitrogen compound containing an amino group contained in a double salt of a nitrogen compound containing an amino group and polyphosphoric acid has at least one amino group and a heterocyclic ring having at least one nitrogen atom as a ring hetero atom.
  • the compound is included, and the heterocycle may have other heteroatoms such as sulfur and oxygen in addition to nitrogen.
  • Such nitrogen-containing heterocycles are 5- or 6-membered unsaturated having a plurality of nitrogen atoms such as imidazole, thiadiazole, thiadiazoline, furazane, triazole, thiadiazine, pyrazine, pyrimidine, pyridazine, triazine, and purine as ring constituent atoms.
  • Nitrogen-containing heterocycles and the like are included. Of these nitrogen-containing rings, 5- or 6-membered unsaturated nitrogen-containing rings having a plurality of nitrogen atoms as ring constituent atoms are preferred, and triazoles and triazines are particularly preferred. Of the double salts of nitrogen compounds containing amino groups and polyphosphoric acid, melam polyphosphate is preferred.
  • the amount of the (d-1) nitrogen-containing flame retardant aid used in the molding material of the metal composite part is 1 part per 100 parts by mass of the total amount of (A) polybutylene terephthalate resin and (B) modified polyethylene terephthalate resin. It is preferably no less than 50 parts by mass and more preferably no less than 1 part by mass and no greater than 40 parts by mass, and particularly preferably no less than 1 part by mass and no greater than 30 parts by mass.
  • the (d-2) antimony compound used in the present invention is not particularly limited as long as it contains antimony and provides a good flame retardant effect, so long as the object of the present invention is not impaired.
  • suitable (d-2) antimony compounds include antimony trioxide, antimony tetraoxide, antimony pentoxide, sodium antimonate, and antimony halide. These antimony compounds may be used in combination of two or more, and may be used in combination with other flame retardant aids such as aluminum hydroxide, magnesium hydroxide, zinc sulfide and the like.
  • the form of the antimony compound is not particularly limited as long as the resin portion of the metal composite part has good flame retardancy, but is preferably in the form of particles, and is preferably in the form of particles having an average particle size of 0.1 to 10 ⁇ m. It is more preferable that
  • the amount of the (d-2) antimony compound used in the present invention is 1 part by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the total amount of (A) polybutylene terephthalate resin and (B) modified polyethylene terephthalate resin. It is preferable that it is 5 parts by mass or more and 20 parts by mass or less.
  • the molding material for the metal composite part is, in addition to (A) polybutylene terephthalate resin and (B) modified polyethylene terephthalate resin, for the purpose of improving the mechanical properties of the metal composite part. Is preferably included.
  • the type of filler (E) used in the present invention is not particularly limited as long as the object of the present invention is not impaired, and various fillers conventionally used as fillers for polymer materials can be used. Either inorganic fillers or organic fillers can be used.
  • the shape of the filler (E) used in the present invention is not limited as long as the object of the present invention is not hindered, and any of a fibrous filler, a granular filler, and a plate-like filler can be suitably used. .
  • Suitable fibrous fillers used in the present invention include, for example, glass fiber, asbestos fiber, silica fiber, silica-alumina fiber, alumina fiber, zirconia fiber, boron nitride fiber, silicon nitride fiber, boron fiber, potassium titanate fiber, Furthermore, inorganic fibrous materials, such as metal fibrous materials, such as stainless steel, aluminum, titanium, copper, and brass, are mentioned.
  • suitable granular fillers used in the present invention include carbon black, graphite, silica, quartz powder, glass beads, milled glass fiber, glass balloon, glass powder, calcium silicate, aluminum silicate, kaolin, talc, clay, Silicates such as diatomaceous earth, wollastonite, iron oxide, titanium oxide, zinc oxide, antimony trioxide, oxides of metals such as alumina, carbonates of metals such as calcium carbonate and magnesium carbonate, calcium sulfate and barium sulfate Examples thereof include metal sulfates, other ferrites, silicon carbide, silicon nitride, boron nitride, various metal powders and the like.
  • Suitable plate-like fillers include mica, glass flakes, various metal foils and the like.
  • any known glass fiber is preferably used, and the glass fiber diameter, the cross-sectional shape such as a cylinder, a bowl-shaped cross section, an oval cross section, or the length or glass used for manufacturing chopped strands, rovings, etc. It does not depend on the cutting method.
  • the type of glass used as a raw material for the glass fiber is not particularly limited, but E glass or corrosion resistant glass containing a zirconium element in the composition is preferably used in terms of quality.
  • an organic treatment agent such as a silane compound or an epoxy compound is used for the purpose of improving the interfacial characteristics between the (E) filler and the resin matrix comprising (A) a polybutylene terephthalate resin and (B) a modified polyethylene terephthalate resin.
  • a surface-treated filler is preferably used.
  • the silane compound and epoxy compound used for such a filler any known compounds can be preferably used, and do not depend on the type of silane compound or epoxy compound used for the surface treatment of the filler in the present invention.
  • the amount of the filler (E) used in the present invention is preferably 5 parts by mass or more and 120 parts by mass or less with respect to 100 parts by mass of the total amount of (A) polybutylene terephthalate resin and (B) modified polyethylene terephthalate. Part to 100 parts by mass is more preferable, and 15 parts to 80 parts by mass is particularly preferable. (E) When there is too much usage-amount of a filler, the fluidity
  • the molding material for the metal composite part preferably contains (F) a fluorine-based resin in addition to (A) polybutylene terephthalate resin and (B) modified polyethylene terephthalate resin.
  • F By using a fluorine-type resin, dripping of the molten resin when a polybutylene terephthalate resin composition touches a flame is suppressed, and the metal composite component which is more excellent in a flame retardance can be obtained.
  • Suitable (F) fluorine-based resins include tetrafluoroethylene, chlorotrifluoroethylene, vinylidene fluoride, hexafluoropropylene, perfluoroalkyl vinyl ether and other fluorine-containing monomers alone or copolymers, and the fluorine-containing monomers Examples thereof include copolymers with copolymerizable monomers such as ethylene, propylene and (meth) acrylate. These (F) fluorine resins can be used alone or in combination of two or more.
  • Examples of such (F) fluorine-based resins include homopolymers such as polytetrafluoroethylene, polychlorotrifluoroethylene, and polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene copolymers, and tetrafluoroethylene.
  • -Copolymers such as perfluoroalkyl vinyl ether copolymer, ethylene-tetrafluoroethylene copolymer, ethylene-chlorotrifluoroethylene copolymer, etc. are exemplified.
  • the (F) fluorine-based resin may be a (meth) acrylate resin such as methyl methacrylate / butyl acrylate copolymer, a polyester resin such as polyethylene terephthalate, or a polyamide resin such as polyamide 6. You may use as a mixture with resin.
  • the amount of (F) fluorine-based resin used in the present invention is 0.1 parts by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the total amount of (A) polybutylene terephthalate resin and (B) modified polyethylene terephthalate resin.
  • the molding material for the metal composite part preferably contains (G) an elastomer in addition to (A) polybutylene terephthalate resin and (B) modified polyethylene terephthalate resin. (G) By using an elastomer, the adhesion between the metal part and the polybutylene terephthalate resin composition is particularly excellent.
  • Suitable (G) elastomers that can be used in the present invention include polyester elastomers, olefin elastomers, polyvinyl acetate, fluororesins, urethane elastomers, amide elastomers, acrylate elastomers, styrene elastomers, fluorine elastomers, and butadiene. Based elastomers and the like. Furthermore, a core-shell type polymer composed of a core portion made of a rubber-like crosslinked body such as butyl acrylate and a shell portion of a glassy polymer such as methyl acrylate is also used. These elastomers may be modified by a known method such as introduction of a reactive group such as an epoxy group, an isocyanate group or an amino group, crosslinking or grafting.
  • a reactive group such as an epoxy group, an isocyanate group or an amino group, crosslinking or grafting.
  • the amount of the (G) elastomer used in the present invention is not particularly limited as long as the object of the present invention is not impaired.
  • the amount of the elastomer (G) used is preferably 1 part by mass or more and 100 parts by mass or less, preferably 3 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the total amount of (A) polybutylene terephthalate resin and (B) modified polyethylene terephthalate resin. More preferred is 5 parts by mass or less and particularly preferred is 5 parts by mass or more and 30 parts by mass or less. (G) By making the usage-amount of an elastomer into this range, the adhesiveness of a metal component and a polybutylene terephthalate resin composition can be made especially excellent.
  • Elastomers preferably used in the present invention are olefin elastomers, styrene elastomers, core shell elastomers, and polyester elastomers.
  • the olefin elastomer, the styrene elastomer, the core shell elastomer, and the polyester elastomer will be described in order.
  • the olefin-based elastomer is a copolymer containing ethylene and / or propylene as components, and specifically includes an ethylene-propylene copolymer, an ethylene-butene copolymer, an ethylene-octene copolymer, an ethylene- Examples include, but are not limited to, propylene-butene copolymers, ethylene-propylene-diene copolymers, ethylene-ethyl acrylate copolymers, ethylene-vinyl acetate copolymers, ethylene-glycidyl methacrylate copolymers. It is not a thing.
  • olefin elastomers (I) an ethylene-unsaturated carboxylic acid alkyl ester copolymer or (II) an olefin copolymer comprising an ⁇ -olefin and an ⁇ , ⁇ -unsaturated glycidyl ester,
  • a graft copolymer in which one or two or more polymers or copolymers composed of repeating units represented by the following general formula (4) are chemically bonded in a branched or crosslinked structure can also be used.
  • R 6 is hydrogen or a lower alkyl group
  • X is —COOCH 3, —COOC 2 H 5 , —COOC 4 H 9 , —COOCH 2 CH (C 2 H 5 ) C 4 H 9 , —C 6 H 5 , -Represents one or more groups selected from CN
  • styrene-based elastomer used as the elastomer (G) in the present invention, a block copolymer composed of a polystyrene block and an elastomer block having a polyolefin structure is preferably used.
  • styrene-based elastomers include styrene-isoprene-styrene block copolymer (SIS), styrene-ethylene / propylene-styrene block copolymer (SEPS), and styrene-ethylene / butylene-styrene block copolymer (SEBS). And styrene-ethylene / ethylene / propylene-styrene block copolymer (SEEPS).
  • SIS styrene-isoprene-styrene block copolymer
  • SEPS styrene-ethylene / propylene-styrene block copo
  • the core-shell elastomer used as the elastomer (G) in the present invention has a multilayer structure composed of a core layer (core portion) and a shell layer covering at least a part of the surface of the core layer.
  • the core layer of the core-shell elastomer is preferably composed of a rubber component (soft component), and acrylic rubber is suitably used as the rubber component.
  • the rubber component used for the core layer preferably has a glass transition temperature (Tg) of less than 0 ° C. (eg ⁇ 10 ° C. or less), and ⁇ 20 ° C. or less (eg ⁇ 180 ° C. or more and ⁇ 25 ° C. or less). More preferably, it is ⁇ 30 ° C. or lower (for example, ⁇ 150 ° C. or higher and ⁇ 40 ° C. or lower).
  • the acrylic rubber used as the rubber component is preferably a polymer obtained by polymerizing an acrylic monomer such as alkyl acrylate as a main component.
  • the alkyl acrylate used as the monomer for the acrylic rubber is preferably a C 1 to C 12 alkyl ester of acrylic acid such as butyl acrylate, and more preferably a C 2 to C 6 alkyl ester of acrylic acid.
  • the acrylic rubber may be a homopolymer of an acrylic monomer or a copolymer.
  • the acrylic rubber may be a copolymer of acrylic monomers or a copolymer of an acrylic monomer and another unsaturated bond-containing monomer.
  • the acrylic rubber may be a copolymer of a crosslinkable monomer.
  • the polyester elastomer used as the elastomer (G) is not particularly limited as long as the flexural modulus is 1000 MPa or less, preferably 700 MPa or less, and various types can be used. Either can be used.
  • the polyether-type polyester elastomer is a polyester elastomer having an aromatic polyester unit as a hard segment and a polyester composed of a polymer of oxyalkylene glycol and a dicarboxylic acid as a soft segment.
  • the aromatic polyester unit in the hard segment is a polycondensate of a dicarboxylic acid compound and a dihydroxy compound, a polycondensate of an oxycarboxylic acid compound, or a polycondensate of a dicarboxylic acid compound, a dihydroxy compound, and an oxycarboxylic acid compound. It is a derived unit.
  • Specific examples of the hard segment include units derived from polybutylene terephthalate.
  • the soft segment is introduced into the polyester elastomer by a compound formed by polycondensation of a polyalkylene ether and a dicarboxylic acid compound.
  • Specific examples of the soft segment include a unit derived from an ester compound of polyoxytetramethylene glycol derived from tetrahydrofuran.
  • polyether type elastomer a synthesized one or a commercially available one may be used.
  • examples of commercially available polyether type elastomers include Perprene P-30B, P-70B, p-90B, P-208B manufactured by Toyobo Co., Ltd .; Hytrel 4057, 4767 manufactured by Toray DuPont Co., Ltd. 6347, 7247; Light Flex 655 manufactured by Chicona Corporation.
  • the polyester type elastomer is a polyester elastomer having an aromatic polyester unit as a hard segment and an amorphous polyester unit as a soft segment.
  • the aromatic polyester unit in the hard segment is the same as that of the polyether type elastomer.
  • Examples of the amorphous polyester unit in the soft segment include a unit derived from a ring-opening polymer of lactone or a polycondensate of an aliphatic dicarboxylic acid and an aliphatic diol.
  • the polyester type elastomer may be a synthesized one or a commercially available one.
  • Examples of commercially available polyester elastomers include Perprene S-1002 and S-2002 manufactured by Toyobo Co., Ltd.
  • the molding material of the metal composite part includes (A) a polybutylene terephthalate resin and (B) a modified polyethylene terephthalate resin, (C) a flame retardant, (D) a flame retardant aid, ( It may contain other additives such as E) filler, (F) fluororesin, and (G) elastomer.
  • additives are not particularly limited as long as the object of the present invention is not impaired, and various additives conventionally used for various resins can be used.
  • Specific examples of other additives include antioxidants, heat stabilizers, ultraviolet absorbers, antistatic agents, dyes, pigments, lubricants, mold release agents, crystallization accelerators, crystal nucleating agents, and the like. Can be mentioned.
  • a phosphorus-based stabilizer for the purpose of improving thermal stability and suppressing transesterification between the polybutylene terephthalate resin and the modified polyethylene terephthalate resin.
  • the phosphorus stabilizer is not particularly limited as long as it does not impair the object of the present invention, and various known phosphorus-containing compounds used as stabilizers for polymer materials can be used. Examples of the phosphorus stabilizer suitably used in the present invention include phosphate ester compounds, phosphite ester compounds, phosphonate ester compounds, and phosphate metal salt compounds. These phosphorus stabilizers can be used in combination of two or more.
  • the total content of the components (A) to (G) in the molding material of the metal part is preferably 70% by mass or more, more preferably 80% by mass or more, and 90% by mass in the molding material.
  • the above is particularly preferable, and 99% by mass or more is most preferable.
  • the material of the metal part used in the present invention is not particularly limited.
  • a metal such as aluminum, copper, iron, magnesium, nickel, or titanium; an alloy such as aluminum alloy, phosphor bronze, or stainless steel; Etc.
  • the material which comprises a metal component is not limited to a metal, What is necessary is just a component which has a metal layer on the surface. Examples of components having a metal layer on the surface include components plated with metals such as nickel, chromium, and gold.
  • the shape of the metal part is not particularly limited as long as the metal part and the molding material of the metal composite part can be combined, and various shape parts such as a plate shape, a cylindrical shape, and a rod shape can be used.
  • the metal parts used in the present invention include various bosses for screwing, ribs for reinforcement, insertion holes for attaching parts such as gears, and the like necessary for assembling final products such as electric and electronic products. You may have a component.
  • the shape of the portion where the metal part and the molding material of the metal composite part come into contact with each other is not particularly limited, and an arbitrary shape such as a quadrangle, a circle, or an ellipse may be selected.
  • the shape of the surface where the metal part and the molding material of the metal composite part come into contact is not particularly limited, and may be a flat surface or a curved surface.
  • the surface on which the metal part and the molding material of the metal composite part come into contact is not limited to a single plane or curved surface, and may have a convex portion or a concave portion inside the plane or curved surface of the metal plate.
  • the area of the part where the metal part and the molding material of the metal composite part come into contact is not particularly limited.
  • At least a part of the metal part that is in contact with the molding material of the metal composite part is roughened in advance.
  • the method of roughening treatment for forming fine irregularities on the surface of the metal part used in the present invention is not particularly limited, and a conventional metal roughening treatment method according to the metal material, shape, required characteristics, etc. Can be selected as appropriate.
  • Examples of the treatment for forming fine irregularities on the metal surface include chemical etching, alumite treatment on aluminum, physical treatment such as liquid honing and sandblasting, and processing by electroless plating.
  • Chemical etching is a method of treating a metal surface with a chemical or the like, and various methods are known depending on the type of metal and the purpose of treatment, and are used in various industrial fields.
  • the chemical etching method is not particularly limited, and any of conventional methods can be selected. Specific examples of the chemical etching method include methods described in, for example, JP-A-10-96088 and JP-A-10-56263.
  • the material of the metal part is aluminum or an aluminum alloy
  • a method of treating the surface of the metal part with ammonia, hydrazine, a water-soluble amine compound or the like is preferable.
  • those processed by the method described in JP-A-2006-001216 can be used.
  • alumite treatment which is a general surface treatment method applied to aluminum
  • an aluminum is electrolyzed with an anode using an acid to form a porous of the order of several tens of nanometers to several tens of micrometers.
  • TRI treatment or the like is known as a method for forming a convex portion.
  • the metal parts And the polybutylene terephthalate resin composition can be made more excellent in adhesion.
  • the metal composite component of the present invention is manufactured by supplying the molding material of the metal composite component with a molding machine.
  • the molding machine used to manufacture the metal composite part is not particularly limited as long as a composite molded body of the metal part and the polybutylene terephthalate resin composition can be formed.
  • Conventional metal composite parts such as injection molding machines, extrusion molding machines, compression molding machines, etc.
  • Various molding machines used for molding can be used. It is preferable to use an injection molding machine in terms of ease of installation of metal parts in a mold, simplicity of an apparatus, and excellent productivity of metal composite parts.
  • Mold temperature is not particularly limited when molding metal composite parts.
  • a high temperature for example, a temperature exceeding 100 ° C. is preferable.
  • the mold temperature is preferably 100 ° C. or lower, more preferably 50 ° C. or higher and 100 ° C. or lower, because the cooling time is short and the molding cycle can be shortened.
  • the temperature of the mold can be controlled by a temperature control apparatus using hot water as a heating medium, which is generally used as a mold temperature control apparatus. There is an advantage that preparation becomes unnecessary and manufacturing work of the metal composite part is safe.
  • the molding material of the metal composite part is not particularly limited as long as it contains a predetermined amount of the materials (A) to (H), and any of a polybutylene terephthalate resin mixture and a polybutylene terephthalate resin composition can be used.
  • the polybutylene terephthalate resin mixture include (1) (A) a polybutylene terephthalate resin composition obtained by melt-kneading (A) a polybutylene terephthalate resin and a predetermined amount of the components (C) to (H).
  • the molding material for the metal composite part used in the present invention it is more preferable to use a polybutylene terephthalate resin composition because it is easy to produce a homogeneous metal composite part.
  • metal composite parts The metal composite part of the present invention obtained by the materials and methods described above is excellent in adhesion between the metal part and the polybutylene terephthalate resin composition. For this reason, the metal composite part of this invention is used suitably, for example as a part of various electrical / electronic products.
  • suitable electrical / electronic products using metal composite parts obtained by the method of the present invention include mobile phones, digital cameras, personal digital assistants (PDAs), portable game terminals, portable terminals such as electronic book readers, notebooks, etc.
  • OA equipment such as computers such as copy-type personal computers and desktop personal computers, copiers, printers, and facsimiles.
  • the metal composite part of the present invention is particularly suitable as a casing of a mobile terminal, a computer, an OA device, etc., because a metal and a polybutylene terephthalate resin composition are combined to be excellent in strength, lightness, design and the like. Used for.
  • Examples 1 to 5 and Comparative Examples 1 to 6 In Examples 1 to 5 and Comparative Examples 1 to 6, the following materials were used as components of the polybutylene terephthalate resin composition.
  • the melting point was measured according to JIS K7121 at a heating rate of 10 ° C / min using a DSC Q1000 manufactured by TA Instruments.
  • A1 Polybutylene terephthalate resin (made by Wintech Polymer Co., Ltd.) with an intrinsic viscosity of 0.69 dL / g
  • B1 Modified polyethylene terephthalate resin (manufactured by Bell Polyester Products, modified with 12 mol% of isophthaloyl units in all dicarbonyl units, melting point 232 ° C., intrinsic viscosity 0.80 dL / g)
  • B′1 Polyethylene terephthalate resin (manufactured by SK Chemical Co., melting point 258 ° C., intrinsic viscosity 0.76 dL / g)
  • C1 Aluminum diethylphosphinate (phosphorous flame retardant, manufactured by Clariant, Exolit OP 1230)
  • C2 Aluminum diethylphosphinate (phosphorous flame retardant, manufactured by Clariant, Exolit OP 1230)
  • Table 1 The components shown in Table 1 were dry blended in the proportions (parts by mass) shown in Table 1, and using a twin screw extruder (TEX-30 ⁇ manufactured by Nippon Steel Co., Ltd.), the cylinder temperature was 260 ° C., the discharge rate Pellets of polybutylene terephthalate resin composition were prepared by melt-kneading under conditions of 15 kg / hr and screw rotation speed of 130 rpm. Test pieces were prepared using the pellets obtained in the examples and comparative examples and tested for adhesion according to the following method. Table 1 shows the test results regarding the adhesion of the polybutylene terephthalate resin compositions of Examples and Comparative Examples.
  • test pieces (0.8 mm thickness) were subjected to UL94 standard vertical combustion test by Underwriters Laboratories.
  • flame retardants such as phosphorus-based flame retardants and bromine-based flame retardants, nitrogen-containing flame retardant aids, antimony compounds, and the like with respect to polybutylene terephthalate resins.
  • the polybutylene terephthalate resin composition which is excellent in a flame retardance is obtained by using a fuel adjuvant.
  • a metal part and a polybutylene terephthalate resin can be used even if a flame retardant or a flame retardant aid is used. It can be seen that a metal composite part having excellent flame retardancy can be obtained without impairing the adhesion to the composition.
  • Comparative Examples 1, 4, and 5 if a modified polyethylene terephthalate resin is not added to the polybutylene terephthalate resin, a metal composite part having particularly excellent adhesion between the metal part and the polybutylene terephthalate resin composition is obtained. I can't understand. Further, according to Comparative Examples 2, 3, and 6, even when an unmodified polyethylene terephthalate resin is added to the polybutylene terephthalate resin, the metal composite having particularly excellent adhesion between the metal part and the polybutylene terephthalate resin composition It turns out that parts cannot be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

 100℃以下の金型温度であっても、金属部品とポリブチレンテレフタレート樹脂組成物との密着性に優れる金属複合部品を製造可能なポリブチレンテレフタレート樹脂組成物、及び金属複合部品の製造方法を提供すること。また、金属部品とポリブチレンテレフタレート樹脂組成物との密着性に優れる金属複合部品を提供すること。 ポリブチレンテレフタレート樹脂に特定量のテレフタロイル単位の他のジカルボニル単位により変性されたポリエチレンテレフタレート樹脂を配合して金属複合部品を製造する。

Description

ポリブチレンテレフタレート樹脂組成物、金属複合部品、及び金属複合部品の製造方法
 本発明は、金属部品とポリブチレンテレフタレート樹脂組成物とを複合化して金属複合部品を製造する際に、金属部品とポリブチレンテレフタレート樹脂組成物との密着性に優れる金属複合部品を与えるポリブチレンテレフタレート樹脂組成物に関する。また、本発明は、金属部品とポリブチレンテレフタレート樹脂組成物とからなり、金属部品とポリブチレンテレフタレート樹脂組成物との密着性に優れる金属複合部品の製造方法に関する。さらに、本発明は、金属部品とポリブチレンテレフタレート樹脂組成物とからなり、金属部品とポリブチレンテレフタレート樹脂組成物との密着性に優れる金属複合部品に関する。
 従来より、インサート成形、アウトサート成形、フープ成形等の成形方法により、熱可塑性樹脂と金属部品とを複合化して製造した金属複合部品が、家電製品、情報通信機器、自動車部品等に幅広く利用されている。
 また、熱可塑性樹脂と金属部品とを複合化した金属複合部品の中では、例えば、金属板の表面の一部又は全面に熱可塑性樹脂を積層した金属複合積層部品が、強度等の機能性や、軽量性、意匠性等の点から、携帯電話機やノート型パーソナルコンピュータ等の小型の情報・通信機器の筐体として注目されている。
 かかる金属複合部品に用いる熱可塑性樹脂には、外部からの種々の刺激に対する耐久性が求められるため、機械的特性、耐熱性、電気的特性、耐候性、耐水性、耐薬品性、耐溶剤等の種々の特性が優れていることが望まれ、製造効率の点から射出成形等の方法により溶融成形可能であることが望まれる。このため、これらの諸物性及び成形性に優れるポリブチレンテレフタレート樹脂組成物の金属複合部品への使用が検討されている。
 しかし、ポリブチレンテレフタレート樹脂又はポリブチレンテレフタレート樹脂組成物を用いて射出成形等の方法により金属複合部品を製造する場合には、樹脂の線膨張率が金属と比較すると大きいことや、低温の金属部品と、高い加工温度になっている樹脂とで成形後の収縮率が大きく異なることから、金型内では金属部品と樹脂とが良好に密着していても、成形後に金属部品と樹脂との密着性が低下してしまう問題がある。また、ポリブチレンテレフタレート樹脂は加工温度が高いため、溶融状態の熱可塑性樹脂と低温の金属板とが金型内で接触することにより金属部品表面の熱可塑性樹脂が急速に固化してしまい、通常の製造方法では、金属部品とポリブチレンテレフタレート樹脂組成物との密着性に優れた金属複合部品の製造が難しい問題がある。
 このため、ポリブチレンテレフタレート樹脂又はポリブチレンテレフタレート樹脂組成物を用いて金属複合積層部品を製造する場合、金属部品と樹脂との密着性の問題から射出成形等の成形方法を適用することができず、金属部品とポリブチレンテレフタレート樹脂の成形品とを粘着テープや接着剤を用いて積層する煩雑な作業が必要である。
 かかる事情から、金属部品とポリブチレンテレフタレート樹脂又はポリブチレンテレフタレート樹脂組成物とから金属複合部品を射出成形等の方法により成形する際に、金属部品と樹脂との密着性を改良する方法の開発が望まれている。
 ポリブチレンテレフタレート樹脂又はポリブチレンテレフタレート樹脂組成物を用いた金属複合部品における金属部品と樹脂との密着性の改良の方法としては、例えば、アルミニウム合金からなる金属部品に対して、以下の順で、陽極酸化処理、酸化物層皮膜の機械的な除去処理、酸性水溶液によるエッチング処理、及びヒドラジン等による接触処理を施して微細エッチングを行い、微細エッチングされた金属部品と、ポリエチレンテレフタレート樹脂を含むポリブチレンテレフタレート樹脂組成物とを射出成形により複合化して金属複合部品を製造する方法(特許文献1)や、微細エッチングされた金属部品を水溶性アルコールの水溶液に浸漬した後に、金属部品とポリエチレンテレフタレート樹脂を含むポリブチレンテレフタレート樹脂組成物とを射出成形により複合化して金属複合部品を製造する方法(特許文献2)等が知られている。
特開2006-001216号公報 特開2006-027018号公報
 特許文献1及び2に記載の方法によれば、金属部品表面に形成された凹部にポリブチレンテレフタレート樹脂組成物がいくらか浸入するため、アンカー効果によって金属部品とポリブチレンテレフタレート樹脂組成物との密着性はある程度改善されるが、得られる金属複合部品は、依然として金属部品とポリブチレンテレフタレート樹脂組成物とが接触面において剥離しやすいものである。
 また、特許文献1及び2に記載の方法では、金属部品表面に形成された凹部に十分にポリブチレンテレフタレート樹脂組成物を浸入させるためには、金型内で高温の溶融樹脂が低温の金属部品と接触することによる樹脂の急速な固化を防ぐために、金型温度が100℃を超える高温に設定する必要がある。
 このため、特許文献1及び2に記載の方法では一般的に使用されている温水を循環させる金型の温度調節装置が使用できず、高沸点のオイルを熱媒体として用いる温度調節装置を使用する必要があり、熱媒体の管理の手間や、設備費用の点等で問題がある。また、金型が高温である場合、金属複合部品の製造時の作業性の点でも問題である。
 本発明者は、ポリブチレンテレフタレート樹脂に特定量のテレフタロイル単位の他のジカルボニル単位により変性されたポリエチレンテレフタレート樹脂を配合して金属複合部品を製造した場合、100℃以下の低い金型温度でも、金属部品とポリブチレンテレフタレート樹脂組成物との密着性に優れる金属複合部品が得られることを見出し、本発明を完成するに至った。具体的には本発明は以下のものを提供する。
 (1) (A)ポリブチレンテレフタレート樹脂、及び(B)変性ポリエチレンテレフタレート樹脂を含み、
 前記(B)変性ポリエチレンテレフタレート樹脂が、全ジカルボニル単位中、テレフタロイル単位の他のジカルボニル単位を5モル%以上50モル%以下含み、
 前記(B)変性ポリエチレンテレフタレート樹脂の含有量が、前記(A)ポリブチレンテレフタレート樹脂及び前記(B)変性ポリエチレンテレフタレート樹脂の合計質量に対して10質量%以上50質量%以下である、金属複合部品成形用のポリブチレンテレフタレート樹脂組成物。
 (2) 前記(B)変性ポリエチレンテレフタレート樹脂の含有量の融点が245℃以下である、(1)記載の金属複合部品成形用のポリブチレンテレフタレート樹脂組成物。
 (3) さらに、(C)難燃剤を含む(1)又は(2)記載の金属複合部品成形用のポリブチレンテレフタレート樹脂組成物。
 (4) 前記(C)難燃剤が、フォスフィン酸塩、ジフォスフィン酸塩、及び、3量体以上のフォスフィン酸縮合物の塩からなる群より選択される1種以上のリン系難燃剤であり、
 前記(C)難燃剤の含有量が、前記(A)ポリブチレンテレフタレート樹脂及び前記(B)変性ポリエチレンテレフタレート樹脂の合計量100質量部に対して、10質量部以上100質量部以下である(3)記載の金属複合部品成形用のポリブチレンテレフタレート樹脂組成物。
 (5) 前記リン系難燃剤が、下記一般式(1)で表されるフォスフィン酸塩、及び/又は、下記一般式(2)で表されるジフォスフィン酸塩である、(4)記載の金属複合部品成形用のポリブチレンテレフタレート樹脂組成物。
Figure JPOXMLDOC01-appb-C000003
(一般式(1)、(2)中、R、Rは、フェニル基、水素、1個のヒドロキシル基を含有してよい直鎖又は分枝鎖のC1-6-アルキル基であり、Rは、直鎖又は分枝鎖のC1-10-アルキレン基、アリーレン基、アルキルアリーレン基又はアリールアルキレン基であり、Mは、アルカリ土類金属、アルカリ金属、Zn、Al、Fe、ホウ素であり、mは、1から3の整数であり、nは、1又は3の整数であり、xは、1又は2である。)
 (6) 前記リン系難燃剤が、ジエチルフォスフィン酸アルミニウムである、(5)記載の金属複合部品成形用のポリブチレンテレフタレート樹脂組成物。
 (7) さらに、下記一般式(3)で表されるトリアジン系化合物とシアヌール酸又はイソシアヌール酸との塩である含窒素難燃助剤を(D)難燃助剤として含有し、
 (D)難燃助剤の含有量が、前記(A)ポリブチレンテレフタレート樹脂及び前記(B)変性ポリエチレンテレフタレート樹脂の合計量100質量部に対して1質量部以上50質量部以下である、(4)から(6)いずれか記載の金属複合部品成形用のポリブチレンテレフタレート樹脂組成物。
Figure JPOXMLDOC01-appb-C000004
(式中、R、Rは水素原子、アミノ基、アリール基、又は炭素数1から3のオキシアルキル基であり、R、Rは同一でもまた異なっていてもよい。)
 (8) 前記含窒素難燃助剤がメラミンシアヌレートである、(7)記載の金属複合部品成形用のポリブチレンテレフタレート樹脂組成物。
 (9) 前記(C)難燃剤が臭素系難燃剤であり、(C)難燃剤の含有量が、前記(A)ポリブチレンテレフタレート樹脂及び前記(B)変性ポリエチレンテレフタレート樹脂の合計量100質量部に対して10質量部以上100質量部以下である、(1)から(3)いずれか記載の金属複合部品成形用のポリブチレンテレフタレート樹脂組成物。
 (10) さらに、アンチモン系化合物を(D)難燃助剤として含有し、
 (D)難燃助剤の含有量が、前記(A)ポリブチレンテレフタレート樹脂及び前記(B)変性ポリエチレンテレフタレート樹脂の合計量100質量部に対して1質量部以上50質量部以下である、(9)記載の金属複合部品成形用のポリブチレンテレフタレート樹脂組成物。
 (11) さらに、(E)充填材を含有し、
 (E)充填材の含有量が、前記(A)ポリブチレンテレフタレート樹脂及び前記(B)変性ポリエチレンテレフタレート樹脂の合計量100質量部に対して5質量部以上120質量部以下である、(1)から(10)いずれか記載の金属複合部品成形用のポリブチレンテレフタレート樹脂組成物。
 (12) さらに、(F)フッ素系樹脂を含有し、
 (F)フッ素系樹脂の含有量が、前記(A)ポリブチレンテレフタレート樹脂及び前記(B)変性ポリエチレンテレフタレート樹脂の合計量100質量部に対して0.1質量部以上5質量部以下である、(1)から(11)いずれか記載の金属複合部品成形用のポリブチレンテレフタレート樹脂組成物。
 (13) さらに、(G)エラストマーを含有し、
 (G)エラストマーの含有量が、前記(A)ポリブチレンテレフタレート樹脂及び前記(B)変性ポリエチレンテレフタレート樹脂の合計量100質量部に対して1質量部以上100質量部以下である、(1)から(12)いずれか記載の金属複合部品成形用のポリブチレンテレフタレート樹脂組成物。
 (14) (1)から(13)いずれか記載の金属複合部品成形用のポリブチレンテレフタレート樹脂組成物と、金属部品とからなる金属複合部品。
 (15) 前記金属部品が表面粗化処理されたものである、(14)記載の金属複合部品。
 (16) パーソナルコンピュータ部品、携帯端末部品、又はOA機器部品である、(14)又は(15)記載の金属複合部品。
 (17) (A)ポリブチレンテレフタレート樹脂、及び(B)変性ポリエチレンテレフタレート樹脂を含み、
 前記(B)変性ポリエチレンテレフタレート樹脂が、全ジカルボニル単位中、テレフタロイル単位の他のジカルボニル単位を5モル%以上50モル%以下含み、
 前記(B)変性ポリエチレンテレフタレート樹脂の含有量が、前記(A)ポリブチレンテレフタレート樹脂及び前記(B)変性ポリエチレンテレフタレート樹脂の合計質量に対して10質量%以上50質量%以下である成形材料を、成形機により金属部品が載置された金型に供給する、金属複合部品の製造方法。
 (18) 前記成形材料が、(1)から(13)いずれか記載の金属複合部品成形用のポリブチレンテレフタレート樹脂組成物である、(17)記載の金属複合部品の製造方法。
 (19) 前記金属部品が、表面粗化処理されたものである(17)又は(18)記載の金属複合部品の製造方法。
 (20) 前記金型の温度が100℃以下である、(17)から(19)いずれか記載の金属複合部品の製造方法。
 (21) (17)から(20)いずれか記載の成形方法により得られた、金属複合部品。
 本発明によれば、100℃以下の金型温度であっても、金属部品とポリブチレンテレフタレート樹脂組成物との密着性に優れる金属複合部品を成形可能なポリブチレンテレフタレート樹脂組成物が提供される。また、本発明によれば、100℃以下の金型温度であっても、金属複合部品とポリブチレンテレフタレート樹脂組成物との密着性に優れる金属複合部品を製造可能な金属複合部品の製造方法が提供される。さらに、本発明によれば、金属部品とポリブチレンテレフタレート樹脂組成物との密着性に優れる金属複合部品が提供される。
実施例において金属密着性の評価に用いた試験片の上面から見た模式図である。 実施例における金属密着性の評価方法を示す模式図である。
 以下、本発明の実施形態について詳細に説明するが、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。なお、説明が重複する箇所については、適宜説明を省略する場合があるが、発明の要旨を限定するものではない。
 以下、金属複合部品の成形材料、金属複合部品の製造方法、及び金属複合部品について順に説明する。
[金属複合部品の成形材料]
 まず、金属複合部品の成形材料について説明する。本発明において金属複合部品の製造に使用される成形材料は、(A)ポリブチレンテレフタレート樹脂、及び(B)変性ポリエチレンテレフタレート樹脂に対して、所望により、(C)難燃剤、(D)難燃助剤、(E)充填材、(F)テトラフルオロエチレン重合体、(G)エラストマー、及び(H)その他の添加剤からなる群より選択される1種以上の成分を配合されたものである。
 本発明において用いる金属複合部品の成形材料は、所定の量の(A)~(H)の成分を含有していれば、その混合形態は特に限定されない。金属複合部品の成形材料の形態の具体例としては、(i)成形材料に含まれる全成分を溶融混練して得られるポリブチレンテレフタレート樹脂組成物の、ペレット、フレーク、又は粉末や、(ii)(A)ポリブチレンテレフタレート樹脂、又は(A)ポリブチレンテレフタレート樹脂と所望の成分とからなるポリブチレンテレフタレート樹脂組成物のペレット、フレーク又は粉末、並びに、(B)変性ポリエチレンテレフタレート樹脂、又は(B)変性ポリエチレンテレフタレート樹脂と所望の成分とからなる(B)変性ポリエチレンテレフタレート樹脂組成物のペレット、フレーク、又は粉末の混合物が挙げられる。
 なお、本出願の明細書及び特許請求の範囲において、成形材料中の全成分が、溶融混練、又は溶融成形等の方法により一体化された材料を「ポリブチレンテレフタレート樹脂組成物」と称し、成形材料中の少なくとも1つの成分が、他の成分と一体化されていない材料を「ポリブチレンテレフタレート樹脂混合物」と称する。
 これらの形態の中では、成形材料中で各成分の均一な混合が容易であり、均質な金属複合部品を成形しやすいことから、(i)成形材料に含まれる全成分を溶融混練して得られるポリブチレンテレフタレート樹脂組成物の、ペレット、フレーク、又は粉末が好ましい。また、成形材料が、全成分を溶融混練して得られるポリブチレンテレフタレート樹脂組成物である場合、成形時の操作性に優れることから、その形状はペレット状であるのが好ましい。
 (A)ポリブチレンテレフタレート樹脂、及び(B)変性ポリエチレンテレフタレート樹脂に対して、所望により、(C)難燃剤、(D)難燃助剤、(E)充填材、(F)テトラフルオロエチレン重合体、(G)エラストマー、及び(H)その他の添加剤からなる群より選択される1種以上の成分を配合し、これらの成分を溶融混練してポリブチレンテレフタレート樹脂組成物を得る方法は、従来知られる、樹脂組成物の製造方法に従えばよい。溶融混練によりポリブチレンテレフタレート樹脂組成物を製造する好適な方法としては、1軸又は2軸押出機等の溶融混練装置を用いる方法が挙げられる。
 以下、金属複合部品の成形材料の成分である(A)ポリブチレンテレフタレート樹脂、(B)変性ポリエチレンテレフタレート樹脂、(C)難燃剤、(D)難燃助剤、(E)充填材、(F)テトラフルオロエチレン重合体、(G)エラストマー、及び(H)その他の添加剤について順に説明する。
〔(A)ポリブチレンテレフタレート樹脂〕
 本発明において用いる(A)ポリブチレンテレフタレート樹脂は、少なくともテレフタル酸又はそのエステル形成性誘導体(C1-6のアルキルエステルや酸ハロゲン化物等)を含むジカルボン酸成分と、少なくとも炭素原子数4のアルキレングリコール(1,4-ブタンジオール)又はそのエステル形成性誘導体(アセチル化物等)を含むグリコール成分とを重縮合して得られるポリブチレンテレフタレート系樹脂である。(A)ポリブチレンテレフタレート樹脂はホモポリブチレンテレフタレート樹脂に限らず、ブチレンテレフタレート単位を60モル%以上(特に75モル%以上95モル%以下)含有する共重合体であってもよい。
 本発明において用いる(A)ポリブチレンテレフタレート樹脂の末端カルボキシル基量は、本発明の目的を阻害しない限り特に限定されない。本発明において用いる(A)ポリブチレンテレフタレート樹脂の末端カルボキシル基量は、30meq/kg以下が好ましく、25meq/kg以下がより好ましい。かかる範囲の末端カルボキルシル基量のポリブチレンテレフタレート樹脂を用いる場合には、得られる金属複合部品が湿熱環境下での加水分解による強度低下を受けにくくなる。
 本発明において用いる(A)ポリブチレンテレフタレート樹脂の固有粘度は本発明の目的を阻害しない範囲で特に制限されない。(A)ポリブチレンテレフタレート樹脂の固有粘度(IV)は0.60dL/g以上1.2dL/g以下であるのが好ましい。さらに好ましくは0.65dL/g以上0.9dL/g以下である。かかる範囲の固有粘度のポリブチレンテレフタレート樹脂を用いる場合には、得られるポリブチレンテレフタレート樹脂組成物が特に成形性に優れたものとなる。また、異なる固有粘度を有するポリブチレンテレフタレート樹脂をブレンドして、固有粘度を調整することもできる。例えば、固有粘度1.0dL/gのポリブチレンテレフタレート樹脂と固有粘度0.7dL/gのポリブチレンテレフタレート樹脂とをブレンドすることにより、固有粘度0.9dL/gのポリブチレンテレフタレート樹脂を調製することができる。(A)ポリブチレンテレフタレート樹脂の固有粘度(IV)は、例えば、o-クロロフェノール中で温度35℃の条件で測定することができる。
 本発明において用いる(A)ポリブチレンテレフタレート樹脂において、テレフタル酸及びそのエステル形成性誘導体以外のジカルボン酸成分(コモノマー成分)としては、例えば、イソフタル酸、フタル酸、2,6-ナフタレンジカルボン酸、4,4’-ジカルボキシジフェニルエーテル等のC8-14の芳香族ジカルボン酸;コハク酸、アジピン酸、アゼライン酸、セバシン酸等のC4-16のアルカンジカルボン酸;シクロヘキサンジカルボン酸等のC5-10のシクロアルカンジカルボン酸;これらのジカルボン酸成分のエステル形成性誘導体(C1-6のアルキルエステル誘導体や酸ハロゲン化物等)が挙げられる。これらのジカルボン酸成分は、単独で又は2種以上を組み合わせて使用できる。
 これらのジカルボン酸成分の中では、イソフタル酸等のC8-12の芳香族ジカルボン酸、及び、アジピン酸、アゼライン酸、セバシン酸等のC6-12のアルカンジカルボン酸がより好ましい。
 本発明において用いる(A)ポリブチレンテレフタレート樹脂において、1,4-ブタンジオール以外のグリコール成分(コモノマー成分)としては、例えば、エチレングリコール、プロピレングリコール、トリメチレングリコール、1,3-ブチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、1,3-オクタンジオール等のC2-10のアルキレングリコール;ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール等のポリオキシアルキレングリコール;シクロヘキサンジメタノール、水素化ビスフェノールA等の脂環式ジオール;ビスフェノールA、4,4’-ジヒドロキシビフェニル等の芳香族ジオール;ビスフェノールAのエチレンオキサイド2モル付加体、ビスフェノールAのプロピレンオキサイド3モル付加体等の、ビスフェノールAのC2-4のアルキレンオキサイド付加体;又はこれらのグリコールのエステル形成性誘導体(アセチル化物等)が挙げられる。これらのグリコール成分は、単独で又は2種以上を組み合わせて使用できる。
 これらのグリコール成分の中では、エチレングリコール、トリメチレングリコール等のC2-6のアルキレングリコール、ジエチレングリコール等のポリオキシアルキレングリコール、又は、シクロヘキサンジメタノール等の脂環式ジオール等がより好ましい。
 ジカルボン酸成分及びグリコール成分の他に使用できるコモノマー成分としては、例えば、4-ヒドロキシ安息香酸、3-ヒドロキシ安息香酸、6-ヒドロキシ-2-ナフトエ酸、4-カルボキシ-4’-ヒドロキシビフェニル等の芳香族ヒドロキシカルボン酸;グリコール酸、ヒドロキシカプロン酸等の脂肪族ヒドロキシカルボン酸;プロピオラクトン、ブチロラクトン、バレロラクトン、カプロラクトン(ε-カプロラクトン等)等のC3-12ラクトン;これらのコモノマー成分のエステル形成性誘導体(C1-6のアルキルエステル誘導体、酸ハロゲン化物、アセチル化物等)が挙げられる。
 以上説明したコモノマー成分を共重合したポリブチレンテレフタレート共重合体は、いずれも(A)ポリブチレンテレフタレート樹脂として好適に使用できる。また、(A)ポリブチレンテレフタレート樹脂として、ホモポリブチレンテレフタレート重合体とポリブチレンテレフタレート共重合体とを組み合わせて使用してもよい。
〔(B)変性ポリエチレンテレフタレート樹脂〕
 本発明において用いる(B)変性ポリエチレンテレフタレート樹脂は、
1)テレフタル酸又はそのエステル形成性誘導体(C1-6アルキルエステルや酸ハロゲン化物等)、
2)エチレングリコール又はそのエステル形成性誘導体(アセチル化物等)、及び、
3)テレフタル酸以外の他のジカルボン酸又はそのエステル形成性誘導体(C1-6アルキルエステルや酸ハロゲン化物等)を必須に含む変性成分
を、公知の方法に従って重縮合して得られるポリエステル樹脂である。
 本発明における、金属複合部品における、金属部品とポリブチレンテレフタレート樹脂組成物との密着性の改良効果は、(B)変性ポリエチレンテレフタレート樹脂を(A)ポリブチレンテレフタレート樹脂に配合することにより、成形時のポリブチレンテレフタレート樹脂組成物の流動性が改良され、且つ、結晶化速度の低下により収縮率が低下することによるものと推測される。
 つまり、ポリブチレンテレフタレート樹脂組成物の流動性が改良されることにより、金属部品表面の微細な凹部に樹脂組成物が容易に浸入しやすくなり、且つ、収縮率の低下によって、冷却後に凹部で固化した樹脂が容易に凹部から脱離し難くなることにより、金属部品とポリブチレンテレフタレート樹脂組成物との密着性が改良されると推測される。
 このため、ポリブチレンテレフタレート樹脂組成物の流動性の観点から、(B)変性ポリエチレンテレフタレート樹脂の融点は245℃以下が好ましく、240℃以下が特に好ましい。
 (B)変性ポリエチレンテレフタレート樹脂の融点は、JIS K7121に従い、示差走査熱量計(DSC)を用いて測定できる。
 (B)変性ポリエチレンテレフタレート樹脂は、変性成分に含まれるテレフタル酸の他のジカルボン酸又はそのエステル形成性誘導体(C1-6アルキルエステルや酸ハロゲン化物等)に由来するジカルボニル単位を必須に含む。(B)変性ポリエチレンテレフタレート樹脂に含まれるテレフタロイル単位の他のジカルボニル単位の量は、全ジカルボニル単位中、5モル%以上50モル%以下が好ましく、7モル%以上30モル%以下がより好ましく、10モル%以上25モル%以下が特に好ましい。
 変性成分に含まれるジカルボン酸又はそのエステル形成性誘導体として好適な化合物としては、イソフタル酸、フタル酸、2,6-ナフタレンジカルボン酸、4,4’-ジカルボキシジフェニルエーテル等のC8-14の芳香族ジカルボン酸;コハク酸、アジピン酸、アゼライン酸、セバシン酸等のC4-16のアルカンジカルボン酸;シクロヘキサンジカルボン酸等のC5-10のシクロアルカンジカルボン酸;これらのジカルボン酸成分のエステル形成性誘導体(C1-6のアルキルエステル誘導体や酸ハロゲン化物等)が挙げられる。これらのジカルボン酸は、単独で又は2種以上を組み合わせて使用できる。
 これらのジカルボン酸又はそのエステル形成性誘導体の中では、イソフタル酸等のC8-12の芳香族ジカルボン酸又はそのエステル形成性誘導体、並びに、アジピン酸、アゼライン酸、セバシン酸等のC6-12のアルカンジカルボン酸又はそのエステル形成誘導体がより好ましい。また、得られるポリブチレンテレフタレート樹脂組成物が金属密着性及び機械的特性に優れることから、変性成分中のジカルボン酸又はそのエステル形成誘導体として、イソフタル酸、又はイソフタル酸のエステル形成性誘導体(イソフタル酸ジメチルエステル、イソフタル酸ジエチルエステル、イソフタル酸ジクロリド等)が特に好ましい。
 (B)変性ポリエチレンテレフタレート樹脂の製造に使用される変性成分は、本発明の目的を阻害しない範囲で、所定の量のジカルボン酸又はそのエステル形成性誘導体の他に、エチレングリコール及びそのエステル形成性誘導体の他のグリコール成分、ヒドロキシカルボン酸成分、ラクトン成分等を含んでいてもよい。(B)変性ポリエチレンテレフタレート樹脂組成物において、これらグリコール成分、ヒドロキシカルボン酸成分、ラクトン成分といった変性成分に由来する繰り返し単位の量は、(B)変性ポリエチレンテレフタレート樹脂中の全繰り返し単位中、30モル%以下が好ましく、25モル%以下がより好ましく、20モル%以下が特に好ましい。
 変性成分に含まれるグリコール成分としては、プロピレングリコール、トリメチレングリコール、1,4-ブタンジオール、1,3-ブチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、1,3-オクタンジオール等のC2-10のアルキレングリコール;ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール等のポリオキシアルキレングリコール;シクロヘキサンジメタノール、水素化ビスフェノールA等の脂環式ジオール;ビスフェノールA、4,4’-ジヒドロキシビフェニル等の芳香族ジオール;ビスフェノールAのエチレンオキサイド2モル付加体、ビスフェノールAのプロピレンオキサイド3モル付加体等の、ビスフェノールAのC2-4のアルキレンオキサイド付加体;又はこれらのグリコールのエステル形成性誘導体(アセチル化物等)が挙げられる。これらのグリコール成分は、単独で又は2種以上を組み合わせて使用できる。
 変性成分に含まれるヒドロキシカルボン酸成分としては、4-ヒドロキシ安息香酸、3-ヒドロキシ安息香酸、6-ヒドロキシ-2-ナフトエ酸、4-カルボキシ-4’-ヒドロキシビフェニル等の芳香族ヒドロキシカルボン酸;グリコール酸、ヒドロキシカプロン酸等の脂肪族ヒドロキシカルボン酸;又はこれらのヒドロキシカルボン酸のエステル形成性誘導体(C1-6のアルキルエステル誘導体、酸ハロゲン化物、アセチル化物等)が挙げられる。これらのヒドロキシカルボン酸成分は、単独で又は2種以上を組み合わせて使用できる。
 変性成分に含まれるラクトン成分としては、プロピオラクトン、ブチロラクトン、バレロラクトン、カプロラクトン(ε-カプロラクトン等)等のC3-12ラクトンが挙げられる。これらのラクトン成分は、単独で又は2種以上を組み合わせて使用できる。
 金属複合部品の成形材料における、(B)変性ポリエチレンテレフタレート樹脂の使用量は、(A)ポリブチレンテレフタレート樹脂及び(B)変性ポリエチレンテレフタレート樹脂の合計質量に対して、10質量%以上50質量%以下が好ましく、15質量%以上45質量%以下がより好ましく、20質量部以上40質量%以下が特に好ましい。(B)変性ポリエチレンテレフタレート樹脂の使用量が多すぎる場合には、得られる金属複合部品の機械的特性や耐薬品性等が損なわれる場合があり、使用量が少なすぎる場合には所望の密着性の改良効果が得られない場合がある。
〔(C)難燃剤〕
 本発明において金属複合部品の成形材料は、難燃性を要求される用途に用いられることも多い。その場合、(A)ポリブチレンテレフタレート樹脂、及び(B)変性ポリエチレンテレフタレート樹脂に加えて、(C)難燃剤を含むのが好ましい。(C)難燃剤の種類は、本発明の目的を阻害しない範囲で限定されず、従来から熱可塑性樹脂用の難燃剤として使用される種々の難燃剤を用いることができる。
 本発明において使用できる好適な(C)難燃剤の例としては、(c-1)リン系難燃剤、及び(c-2)臭素系難燃剤が挙げられる。(c-1)リン系難燃剤、及び(c-2)臭素系難燃剤について順に説明する。
<(c-1)リン系難燃剤>
 (c-1)リン系難燃剤としては、フォスフィン酸塩、ジフォスフィン酸塩、リン酸エステル化合物、及びフォスファゼン化合物(フォスホニトリル化合物)等が挙げられる。中でも、入手が容易であり、得られるポリブチレンテレフタレート樹脂組成物が難燃性及び機械的特性に優れることからフォスフィン酸塩、ジフォスフィン酸塩、及び3量体以上のフォスフィン酸縮合物の塩から選択される1種以上が好ましく、フォスフィン酸塩、及び/又は、ジフォスフィン酸塩がより好ましい。
 フォスフィン酸塩、ジフォスフィン酸塩、又は3量体以上のフォスフィン酸縮合物の塩を形成する金属としては、アルカリ金属(カリウム、ナトリウム等)、アルカリ土類金属(マグネシウム、カルシウム等)、遷移金属(鉄、コバルト、ニッケル、銅等)、周期表第12族金属(亜鉛等)、周期表第13族金属(アルミニウム等)等が挙げられる。前記金属塩は、これらの金属を一種含有してもよく、二種以上組み合わせて含有してもよい。前記金属のうち、アルカリ土類金属(マグネシウム、カルシウム等)及び周期表第13族金属(アルミニウム等)が好ましい。
 塩を形成する金属の価数は特に制限されず、1以上4以下が好ましく、2以上4以下がより好ましく、2又は3が特に好ましい。
 本発明において(c-1)リン系難燃剤として利用するフォスフィン酸塩としては下記の一般式(1)で表される化合物が好ましく、ジフォスフィン酸塩としては式(2)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000005
 上記一般式(1)、(2)中、R、Rは、フェニル基、水素、1個のヒドロキシル基を含有してよい直鎖又は分枝鎖のC1-6-アルキル基である。R、Rはともにエチル基であることが好ましい。
 また、Rは、直鎖又は分枝鎖のC1-10-アルキレン基、アリーレン基、アルキルアリーレン基又はアリールアルキレン基である。
 また、Mは、アルカリ土類金属、アルカリ金属、Zn、Al、Fe、ホウ素である。これらの中でもAlが好ましい。
 mは、1から3の整数であり、nは、1又は3の整数であり、且つ、xは、1又は2である。
 本発明において好適に使用できるフォスフィン酸塩の具体例としては、ジメチルフォスフィン酸カルシウム、ジメチルフォスフィン酸マグネシウム、ジメチルフォスフィン酸アルミニウム、ジメチルフォスフィン酸亜鉛、エチルメチルフォスフィン酸カルシウム、エチルメチルフォスフィン酸マグネシウム、エチルメチルフォスフィン酸アルミニウム、エチルメチルフォスフィン酸亜鉛、ジエチルフォスフィン酸カルシウム、ジエチルフォスフィン酸マグネシウム、ジエチルフォスフィン酸アルミニウム、ジエチルフォスフィン酸亜鉛、メチル-n-プロピルフォスフィン酸カルシウム、メチル-n-プロピルフォスフィン酸マグネシウム、メチル-n-プロピルフォスフィン酸アルミニウム、メチル-n-プロピルフォスフィン酸亜鉛等が挙げられる。
 本発明において好適に使用できるジフォスフィン酸塩の具体例としては、メタンジ(メチルフォスフィン酸)カルシウム、メタンジ(メチルフォスフィン酸)マグネシウム、メタンジ(メチルフォスフィン酸)アルミニウム、メタンジ(メチルフォスフィン酸)亜鉛、ベンゼン-1,4-(ジメチルフォスフィン酸)カルシウム、ベンゼン-1,4-(ジメチルフォスフィン酸)マグネシウム等が挙げられる。
 上記のフォスフィン酸塩、及び/又は、ジフォスフィン酸塩の中でも特にジエチルフォスフィン酸アルミニウムの使用が好ましい。
 (c-1)リン系難燃剤の形状は、本発明の目的を阻害しない範囲で特に限定されない。(c-1)リン系難燃剤の形状としては、ポリブチレンテレフタレート樹脂組成物中に均一に分散し良好な難燃効果が得られる点で粉体状であるのが好ましい。
 本発明における(c-1)リン系難燃剤の使用量は、(A)ポリブチレンテレフタレート樹脂及び(B)変性ポリエチレンテレフタレート樹脂の合計量100質量部に対し、10質量部以上100質量部以下が好ましく、10質量部以上80質量部以下がより好ましく、15質量部以上60質量部以下が特に好ましい。(c-1)リン系難燃剤の使用量が多すぎる場合には、機械的特性や成形性が損なわれる場合があり、使用量が少なすぎる場合には良好な難燃性が得られない場合がある。
<(c-2)臭素系難燃剤>
 本発明において用いる、(c-2)臭素系難燃剤は、臭素を含有する有機化合物であって、高分子材料を難燃化できるものであれば特に限定されず、高分子材料用に市販されている種々の難燃剤を使用することができる。
 (c-2)臭素系難燃剤に含まれる臭素の量は、20質量%以上であるのが好ましい。臭素の量が少なすぎる場合、所望の難燃性を得るために多量の難燃剤を使用する必要が生じ、金属複合部品の機械的特性が損なわれる場合がある。
 (c-2)臭素系難燃剤の分子量は、本発明の目的を阻害しない範囲で特に限定されず、(c-2)臭素系難燃剤は、低分子化合物であっても、高分子化合物であってもよい。本発明において好適に使用される(c-2)臭素系難燃剤の具体例としては、ヘキサブロモベンゼン、デカブロモジフェニルエーテル、テトラブロモビスフェノールA、臭素化ビスイミド化合物、臭素化ビスフェノールAに由来する単位を含むポリカーボネート、臭素化ビスフェノールAとエピクロルヒドリンの反応生成物であるジエポキシ化合物、臭素化ポリスチレン、臭素化アクリルポリマー等が挙げられる。これらの(c-2)臭素系難燃剤は2種以上を組み合わせて使用できる。
 本発明における、(c-2)臭素系難燃剤の使用量は、(A)ポリブチレンテレフタレート樹脂と(B)変性ポリエチレンテレフタレート樹脂との合計量100質量部に対して、10質量部以上100質量部以下が好ましく、15質量部以上50質量部以下がより好ましい。(c-2)臭素系難燃剤の含有量をかかる範囲とすることで、良好な難燃性を有するポリブチレンテレフタレート樹脂組成物を調製できる。
〔(D)難燃助剤〕
 本発明において、金属複合部品の成形材料は、難燃性を要求される場合、(A)ポリブチレンテレフタレート樹脂、(B)変性ポリエチレンテレフタレート樹脂、及び(C)難燃剤に加え、(D)難燃助剤を含むのが好ましい。(D)難燃助剤の種類は、本発明の目的を阻害しない範囲で限定されず、従来から熱可塑性樹脂用の難燃剤として使用される種々の難燃剤の中から、(C)難燃剤の種類に応じて好適な(D)難燃助剤を選択して使用できる。
 本発明において用いる、好適な難燃剤である(c-1)リン系難燃剤に対しては(D)難燃助剤として(d-1)含窒素難燃助剤を用いるのが好ましく、(c-2)臭素系難燃剤に対しては(D)難燃助剤として(d-2)アンチモン化合物を用いるのが好ましい。以下、(d-1)含窒素難燃助剤、及び(d-2)アンチモン化合物について順に説明する。
<(d-1)含窒素難燃助剤>
 本発明において用いる(d-1)含窒素難燃助剤は、良好な難燃効果が得られ、本発明の目的を阻害しない範囲で特に限定されず、難燃助剤として使用される公知の種々の含窒素化合物を使用することができる。本発明において好適に使用される(d-1)含窒素難燃助剤の例としては、トリアジン系化合物とシアヌール酸もしくはイソシアヌール酸との塩、アミノ基を含有する窒素化合物とポリリン酸との複塩等が挙げられる。これらの(d-1)含窒素難燃助剤は2種以上を組み合わせて用いることができる。
 本発明において用いる(d-1)含窒素難燃助剤としては、(c-1)リン系難燃剤と組み合わせた場合に難燃効果が優れることから、トリアジン系化合物とシアヌール酸もしくはイソシアヌール酸との塩、及び/又は、アミノ基を含有する窒素化合物とポリリン酸との複塩がより好ましい。
 上記トリアジン系化合物とシアヌール酸又はイソシアヌール酸との塩としては、下記一般式(3)で表されるトリアジン系化合物とシアヌール酸又はイソシアヌール酸との塩が好ましいものとして例示される。
Figure JPOXMLDOC01-appb-C000006
 式中、R、Rは水素原子、アミノ基、アリール基、又はC1-3のオキシアルキル基であり、R、Rは同一でもまた異なっていてもよい。
 本発明において用いる(d-1)含窒素難燃助剤としては、上記一般式(3)で表されるトリアジン系化合物とシアヌール酸又はイソシアヌール酸との塩の中でも特にメラミンシアヌレートが特に好ましい。
 また、アミノ基を含有する窒素化合物とポリリン酸との複塩に含まれるアミノ基を含有する窒素化合物には、少なくとも1つのアミノ基と、少なくとも1つの窒素原子を環のヘテロ原子として有するヘテロ環状化合物が含まれ、ヘテロ環は、窒素以外にイオウ、酸素等の他のヘテロ原子を有していてもよい。このような窒素含有ヘテロ環には、イミダゾール、チアジアゾール、チアジアゾリン、フラザン、トリアゾール、チアジアジン、ピラジン、ピリミジン、ピリダジン、トリアジン、プリン等の複数の窒素原子を環の構成原子として有する5又は6員不飽和窒素含有ヘテロ環等が含まれる。このような窒素含有環のうち、複数の窒素原子を環の構成原子として有する5又は6員不飽和窒素含有環が好ましく、特に、トリアゾール及びトリアジンが好ましい。そして、アミノ基を含有する窒素化合物とポリリン酸との複塩の中では、ポリリン酸メラムが好ましい。
 金属複合部品の成形材料における、(d-1)含窒素難燃助剤の使用量は、(A)ポリブチレンテレフタレート樹脂と(B)変性ポリエチレンテレフタレート樹脂との合計量100質量部に対し、1質量部以上50質量部以下が好ましく、1質量部以上40質量部以下がより好ましく、1質量部以上30質量部以下が特に好ましい。かかる範囲の量で(d-1)含窒素難燃助剤を(C)難燃剤とともに用いることにより、難燃性に優れた金属複合部品が得られる。
<(d-2)アンチモン化合物>
 本発明において用いる(d-2)アンチモン化合物は、アンチモンを含有し、良好な難燃効果が得られるものであれば、本発明の目的を阻害しない範囲で特に限定されない。好適な(d-2)アンチモン化合物の具体例として、三酸化アンチモン、四酸化アンチモン、五酸化アンチモン、アンチモン酸ナトリウム、ハロゲン化アンチモン等が挙げられる。これらのアンチモン化合物は2種以上を組み合わせて用いてもよく、水酸化アルミニウム、水酸化マグネシウム、硫化亜鉛等の他の難燃助剤と組み合わせて用いてもよい。
 (d-2)アンチモン化合物の形態は、金属複合部品の樹脂部分が良好な難燃性を有する限り特に限定されないが、粒子状であるのが好ましく、平均粒子径0.1~10μmの粒子状であるのがより好ましい。
 本発明における、(d-2)アンチモン化合物の使用量は、(A)ポリブチレンテレフタレート樹脂と(B)変性ポリエチレンテレフタレート樹脂との合計量100質量部に対して、1質量部以上50質量部以下であるのが好ましく、5質量部以上20質量部以下であるのがより好ましい。かかる範囲の量で(d-2)アンチモン化合物を(C)難燃剤とともに用いることにより、難燃性に優れる金属複合部品が得られる。
〔(E)充填材〕
 本発明において、金属複合部品の成形材料は、金属複合部品の機械的特性の改良の目的で、(A)ポリブチレンテレフタレート樹脂、及び(B)変性ポリエチレンテレフタレート樹脂に加えて、(E)充填材を含むのが好ましい。本発明において用いる(E)充填材の種類は、本発明の目的を阻害しない範囲で特に限定されず、従来から高分子材料の充填材として使用される種々の充填材を使用することができ、無機充填材及び有機充填材のいずれも使用できる。また、本発明で用いる(E)充填材の形状は、本発明の目的を阻害しない範囲で限定されず、繊維状充填材、粉粒状充填材、及び板状充填材のいずれも好適に使用できる。
 本発明において用いる好適な繊維状充填材として、例えば、ガラス繊維、アスベスト繊維、シリカ繊維、シリカ・アルミナ繊維、アルミナ繊維、ジルコニア繊維、窒化硼素繊維、窒化珪素繊維、硼素繊維、チタン酸カリウム繊維、さらにステンレス、アルミニウム、チタン、銅、真鍮等の金属の繊維状物等の無機質繊維状物質が挙げられる。
 本発明において用いる好適な粉粒状充填材としては、例えば、カーボンブラック、黒鉛、シリカ、石英粉末、ガラスビーズ、ミルドガラスファイバー、ガラスバルーン、ガラス粉、珪酸カルシウム、珪酸アルミニウム、カオリン、タルク、クレー、珪藻土、ウォラストナイトの如き珪酸塩、酸化鉄、酸化チタン、酸化亜鉛、三酸化アンチモン、アルミナの如き金属の酸化物、炭酸カルシウム、炭酸マグネシウムの如き金属の炭酸塩、硫酸カルシウム、硫酸バリウムの如き金属の硫酸塩、その他フェライト、炭化珪素、窒化珪素、窒化硼素、各種金属粉末等が挙げられる。また、好適な板状充填材としては、マイカ、ガラスフレーク、各種の金属箔等が挙げられる。
 これらの(E)充填材の中では、コストと得られる金属複合部品の物性とのバランスに優れることからガラス繊維を用いるのが特に好ましい。
 ガラス繊維としては、公知のガラス繊維がいずれも好ましく用いられ、ガラス繊維径や、円筒、繭形断面、長円断面等の断面形状、あるいはチョップドストランドやロービング等の製造に用いる際の長さやガラスカットの方法にはよらない。本発明において、ガラス繊維の原料となるガラスの種類は特に限定されないが、品質上、Eガラスや、組成中にジルコニウム元素を含む耐腐食ガラスが好ましく用いられる。
 また、(E)充填材と、(A)ポリブチレンテレフタレート樹脂、及び(B)変性ポリエチレンテレフタレート樹脂からなる樹脂マトリックスとの界面特性を向上させる目的で、シラン化合物やエポキシ化合物等の有機処理剤で表面処理された充填材が好ましく用いられる。かかる充填材に用いられるシラン化合物やエポキシ化合物としては公知のものをいずれも好ましく用いることができ、本発明で充填材の表面処理に用いられるシラン化合物、エポキシ化合物の種類には依存しない。
 本発明における(E)充填材の使用量は、(A)ポリブチレンテレフタレート樹脂と(B)変性ポリエチレンテレフタレートとの合計量100質量部に対して5質量部以上120質量部以下が好ましく、10質量部以上100質量部以下がより好ましく、15質量部以上80質量部以下が特に好ましい。(E)充填材の使用量が多すぎる場合、成形時の樹脂組成物の流動性が損なわれる場合がある。
〔(F)フッ素系樹脂〕
 本発明において、金属複合部品の成形材料は、(A)ポリブチレンテレフタレート樹脂、及び(B)変性ポリエチレンテレフタレート樹脂に加えて、(F)フッ素系樹脂を含むのが好ましい。(F)フッ素系樹脂を用いることにより、ポリブチレンテレフタレート樹脂組成物が火炎に触れる際の溶融樹脂の滴下が抑制され、より難燃性に優れる金属複合部品を得ることができる。
 好適な(F)フッ素系樹脂としては、テトラフルオロエチレン、クロロトリフルオロエチレン、ビニリデンフルオライド、ヘキサフルオロプロピレン、パーフルオロアルキルビニルエーテル等のフッ素含有モノマーの単独又は共重合体や、前記フッ素含有モノマーとエチレン、プロピレン、(メタ)アクリレート等の共重合性モノマーとの共重合体が挙げられる。これらの(F)フッ素系樹脂は1種又は2種以上を混合して使用できる。
 このような(F)フッ素系樹脂としては、例えば、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリビニリデンフルオライド等の単独重合体や、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、エチレン-テトラフルオロエチレン共重合体、エチレン-クロロトリフルオロエチレン共重合体等の共重合体が例示される。また、(F)フッ素系樹脂は、メタクリル酸メチル・アクリル酸ブチル共重合物等の(メタ)アクリレート系樹脂、ポリエチレンテレフタレート等のポリエステル系樹脂、あるいは、ポリアミド6等のポリアミド系樹脂等の他の樹脂との混合物として使用してもよい。
 本発明における(F)フッ素系樹脂の使用量は、(A)ポリブチレンテレフタレート樹脂、及び(B)変性ポリエチレンテレフタレート樹脂の合計量100質量部に対して0.1質量部以上5質量部以下が好ましく、0.2質量部以上2質量部以下がより好ましい。
〔(G)エラストマー〕
 本発明において、金属複合部品の成形材料は、(A)ポリブチレンテレフタレート樹脂、及び(B)変性ポリエチレンテレフタレート樹脂に加えて、(G)エラストマーを含むのが好ましい。(G)エラストマーを用いることにより、金属部品とポリブチレンテレフタレート樹脂組成物との密着性が特に優れたものとなる。
 本発明において使用できる好適な(G)エラストマーとしては、ポリエステル系エラストマー、オレフィン系エラストマー、ポリ酢酸ビニル、フッ素樹脂、ウレタン系エラストマー、アミド系エラストマー、アクリレート系エラストマー、スチレン系エラストマー、フッ素系エラストマー、ブタジエン系エラストマー等が挙げられる。さらには、ブチルアクリレート等のゴム状架橋体からなるコア部とメチルアクリレート等のガラス状重合体のシェル部からなるコアシェルタイプのポリマーも用いられる。これらのエラストマーは、エポキシ基、イソシアネート基、アミノ基等の反応性基の導入や、架橋、グラフト等の公知の方法で変性されたものであってもよい。
 本発明における、(G)エラストマーの使用量は本発明の目的を阻害しない範囲で特に制限されない。(G)エラストマーの使用量は、(A)ポリブチレンテレフタレート樹脂、及び(B)変性ポリエチレンテレフタレート樹脂の合計量100質量部に対して1質量部以上100質量部以下が好ましく、3質量部以上50質量部以下がより好ましく、5質量部以上30質量部以下が特に好ましい。(G)エラストマーの使用量をかかる範囲とすることで、金属部品とポリブチレンテレフタレート樹脂組成物との密着性を特に優れたものとすることができる。
 本発明において好ましく用いられる(G)エラストマーはオレフィン系エラストマー、スチレン系エラストマー、コアシェル系エラストマー、及びポリエステル系エラストマーである。以下、オレフィン系エラストマー、スチレン系エラストマー、コアシェル系エラストマー、及びポリエステル系エラストマーについて順に説明する。
<オレフィン系エラストマー>
 オレフィン系エラストマーとして好ましいものは、エチレン及び/又はプロピレンを成分として含む共重合体であり、具体的にはエチレン-プロピレン共重合体、エチレン-ブテン共重合体、エチレン-オクテン共重合体、エチレン-プロピレン-ブテン共重合体、エチレン-プロピレン-ジエン共重合体、エチレン-エチルアクリレート共重合体、エチレン-酢酸ビニル共重合体、エチレン-グリシジルメタクリレート共重合体等が挙げられるが、これらに限定されるものではない。さらには、オレフィン系エラストマーの中でも、(I)エチレン-不飽和カルボン酸アルキルエステル共重合体又は(II)α-オレフィンとα,β-不飽和酸のグリシジルエステルからなるオレフィン系共重合体に、下記一般式(4)で示される繰返し単位で構成された重合体又は共重合体の一種又は二種以上が分岐又は架橋構造的に化学結合したグラフト共重合体も利用することができる。(但し、Rは水素又は低級アルキル基、Xは-COOCH3、-COOC、-COOC、-COOCHCH(C)C、-C、-CNから選ばれた一種又は二種以上の基を示す)
Figure JPOXMLDOC01-appb-C000007
<スチレン系エラストマー>
 本発明において(G)エラストマーとして用いるスチレン系エラストマーとしては、ポリスチレンブロックとポリオレフィン構造のエラストマーブロックとで構成されたブロック共重合体が好適に用いられる。スチレン系エラストマーの具体例としては、スチレン-イソプレン-スチレンブロック共重合体(SIS)、スチレン-エチレン・プロピレン-スチレンブロック共重合体(SEPS)スチレン-エチレン・ブチレン-スチレンブロック共重合体(SEBS)、スチレン-エチレン・エチレン/プロピレン-スチレンブロック共重合体(SEEPS)等が挙げられる。
<コアシェル系エラストマー>
 本発明において(G)エラストマーとして用いるコアシェル系エラストマーは、コア層(コア部)と、このコア層の表面の少なくとも一部を被覆するシェル層とで構成される多層構造を有する。コアシェル系エラストマーのコア層は、ゴム成分(軟質成分)で構成されるのが好ましく、ゴム成分としてはアクリル系ゴムが好適に用いられる。コア層に用いるゴム成分は、ガラス転移温度(Tg)が0℃未満(例えば-10℃以下)であるのが好ましく、-20℃以下(例えば-180℃以上-25℃以下)であるのがより好ましく、-30℃以下(例えば-150℃以上-40℃以下)であるのが特に好ましい。
 ゴム成分として用いるアクリル系ゴムは、アルキルアクリレート等のアクリル系モノマーを主成分として重合して得られる重合体が好ましい。アクリル系ゴムのモノマーとして用いるアルキルアクリレートは、ブチルアクリレート等のアクリル酸のC~C12のアルキルエステルが好ましく、アクリル酸のC~Cのアルキルエステルがより好ましい。
 アクリル系ゴムは、アクリル系モノマーの単独重合体でもよく、共重合体でもよい。アクリル系ゴムがアクリル系モノマーの共重合体である場合、アクリル系モノマー同士の共重合体でも、アクリル系モノマーと他の不飽和結合含有モノマーとの共重合体であってもよい。アクリル系ゴムが共重合体である場合、アクリル系ゴムは架橋性モノマーを共重合したものであってもよい。
<ポリエステル系エラストマー>
 本発明において(G)エラストマーとして用いるポリエステル系エラストマーは、曲げ弾性率が1000MPa以下、好ましくは700MPa以下のものであれば特に制限されず、種々のものを使用でき、ポリエーテル型、又はポリエステル型のいずれも使用できる。
 ポリエーテル型のポリエステル系エラストマーとは、芳香族ポリエステル単位をハードセグメントとし、オキシアルキレングリコールの重合体とジカルボン酸からなるポリエステルをソフトセグメントとするポリエステルエラストマーである。
 ハードセグメント中の芳香族ポリエステル単位は、ジカルボン酸化合物とジヒドロキシ化合物との重縮合物、オキシカルボン酸化合物の重縮合物、又は、ジカルボン酸化合物とジヒドロキシ化合物とオキシカルボン酸化合物との重縮合物に由来する単位である。ハードセグメントの具体例としてはポリブチレンテレフタレートに由来する単位が挙げられる。
 ソフトセグメントは、ポリアルキレンエーテルとジカルボン酸化合物の重縮合により生成した化合物によりポリエステル系エラストマー中に導入される。ソフトセグメントの具体例としては、例えば、テトラヒドロフランから誘導されるポリオキシテトラメチレングリコールのエステル化合物に由来する単位が挙げられる。
 ポリエーテル型エラストマーは、合成したものを用いてもよく、市販のものを用いてもよい。ポリエーテル型のエラストマーの市販品としては、例えば、東洋紡績(株)製のペルプレンP-30B、P-70B、p-90B、P-208B;東レ・デュポン(株)製のハイトレル4057、4767、6347、7247;チコナ(株)製のライトフレックス655が挙げられる。
 ポリエステル型エラストマーとは、芳香族ポリエステル単位をハードセグメントし、非晶性ポリエステル単位をソフトセグメントとするポリエステルエラストマーである。ハードセグメント中の芳香族ポリエステル単位は、ポリエーテル型エラストマーと同様である。ソフトセグメント中の非晶性ポリエステル単位としては、ラクトンの開環重合体、又は、脂肪族ジカルボン酸と脂肪族ジオールとの重縮合物に由来する単位が挙げられる。
 ポリエステル型エラストマーは、合成したものを用いてもよく、市販のものを用いてもよい。ポリエステル型エラストマーの市販品としては、例えば、東洋紡績(株)製のペルプレンS-1002、S-2002等が挙げられる。
〔(H)その他の添加剤〕
 本発明において、金属複合部品の成形材料には、目的に応じて(A)ポリブチレンテレフタレート樹脂、及び(B)変性ポリエチレンテレフタレート樹脂とともに、(C)難燃剤、(D)難燃助剤、(E)充填材、(F)フッ素系樹脂、及び(G)エラストマーの他の添加剤を含んでいてもよい。
 (H)その他の添加剤は、本発明の目的を阻害しない範囲で特に限定されず、従来、種々の樹脂に対して使用されている、種々の添加剤を用いることができる。(H)その他の添加剤の具体例としては、酸化防止剤、耐熱安定剤、紫外線吸収剤、帯電防止剤、染料、顔料、潤滑剤、離型剤、結晶化促進剤、結晶核剤等が挙げられる。
 本発明における(H)その他の添加剤として、熱安定性向上、及びポリブチレンテレフタレート樹脂と変性ポリエチレンテレフタレート樹脂とのエステル交換抑制の目的で特にリン系安定剤を添加することが好ましい。リン系安定剤は、本発明の目的を阻害しない範囲で特に限定されず、高分子材料用の安定剤として使用される公知の種々のリン含有化合物を使用することができる。本発明において好適に使用されるリン系安定剤の例としては、リン酸エステル化合物、亜リン酸エステル化合物、及びホスホン酸エステル化合物、リン酸金属塩化合物等が挙げられる。これらのリン系安定剤は2種以上を組み合わせて用いることもできる。
 本発明において、金属部品の成形材料中での(A)から(G)の成分の含有量の合計量は、成形材料中70質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上が特に好ましく、99質量%以上が最も好ましい。(A)から(G)の成分の含有量の合計量をかかる範囲とすることにより、金属部品とポリブチレンテレフタレート樹脂組成物との密着性に特に優れる金属複合部品を得やすい。
[金属複合部品の製造方法]
 次いで、金属複合部品の製造方法について、金属部品、成形方法の順に説明する。
〔金属部品〕
 本発明で使用する金属部品の材料は特に制限されず、例えば、アルミニウム、銅、鉄、マグネシウム、ニッケル、チタン等の金属;アルミニウム合金、燐青銅、ステンレス等の合金;異種の金属の貼合わせ体等が挙げられる。また、金属部品を構成する材料は金属に限定されず、表面に金属層を有する部品であればよい。表面に金属層を有する部品の例としては、ニッケル、クロム、金等の金属によりメッキ処理された部品等が挙げられる。
 金属部品の形状は、金属部品と金属複合部品の成形材料とを複合化できれば特に制限されず、板状、筒状、棒状等の種々の形状の部品を使用できる。本発明において用いる金属部品は、ネジ止めするためのボスや、補強のためのリブ、歯車等の部品を取り付けるための挿入孔等、電気・電子製品等の最終製品を組み立てるために必要な種々の構成要素を有していてもよい。金属部品と金属複合部品の成形材料とが接触する部分の形状は特に制限されず、四角形、円形、楕円形等の任意の形状を選択すればよい。また、金属部品と金属複合部品の成形材料とが接触する面の形状は特に制限されず、平面でも曲面であってもよい。金属部品と金属複合部品の成形材料とが接触する面は、単一の平面又は曲面には制限されず、金属板の平面又は曲面の内部に凸部や凹部を有していてもよい。金属部品と金属複合部品の成形材料とが接触する部分の面積は特に制限されない。
 金属部品は、金属複合部品の成形材料と接触する部分の少なくとも一部を予め粗化処理するのが好ましい。
 本発明において用いる金属部品の表面に微細な凹凸を形成する粗化処理の方法は特に限定されず、金属の材質や形状、要求特性等に応じて、従来から行われている金属粗化処理方法から適宜選択できる。金属表面に微細凹凸を形成する処理としては、例えばケミカルエッチングやアルミニウムへのアルマイト処理、液体ホーニングやサンドブラスト等の物理処理の他、無電解メッキ等による加工が挙げられる。ケミカルエッチングは、金属表面を化学薬品等で処理する方法であり、金属の種類や処理する目的に応じて種々の方法が知られ、様々な産業分野で利用されている。金属部品の粗化処理方法としてケミカルエッチングを行う場合、ケミカルエッチング方法は特に限定されず、従来の方法からいずれも選択できる。ケミカルエッチング方法の具体例としては、例えば特開平10-96088号公報や特開平10-56263号公報に記載される方法等が挙げられる。
 例えば金属部品の材料がアルミニウム又はアルミニウム合金である場合、(1)酸性水溶液及び/又は塩基性水溶液による微細エッチング、又は(2)、金属部品表面に酸化皮膜を形成した後、酸化皮膜を除去し、次いでアンモニア、ヒドラジン、水溶性アミン化合物等により金属部品表面を処理する方法が好ましい。具体的には、特開2006-001216号公報記載の方法によって処理されたものを用いることができる。
 また、アルミニウムに対して施す一般的な表面処理法であるアルマイト処理によれば、酸を用いてアルミニウムを陽極で電気分解させることにより、数十nm~数十μmオーダーの多孔質を形成することが可能である。また、表面に凹部を形成するばかりではなく、逆に凸部を形成する方法としてTRI処理等が知られている。
 このように、化学的、あるいは物理的、電気的な手法等を用いて、あるいはこれらを組み合わせることにより、金属部品の表面に数十nm~数十μmサイズの凹凸を形成することで、金属部品とポリブチレンテレフタレート樹脂組成物との密着性をより優れたものとできる。
〔成形方法〕
 以上説明した金属部品を金型に載置した後、成形機により金属複合部品の成形材料を供給することにより、本発明の金属複合部品が製造される。金属複合部品の製造に用いる成形機は、金属部品とポリブチレンテレフタレート樹脂組成物との複合成形体が形成できれば特に限定されず、射出成形機、押出し成形機、圧縮成形機等の従来金属複合部品の成形に使用される種々の成形機を使用できる。金属部品の金型への設置の容易さや装置の簡便さ、金属複合部品の生産性に優れる点で射出成形機を用いるのが好ましい。
 金属複合部品を成形する際の金型の温度は特に制限されない。金属部品とポリブチレンテレフタレート樹脂組成物との密着性を向上させるためには高温、例えば100℃を超える温度が好ましい。金属複合部品を量産する場合には、冷却時間が短く成形サイクルを短縮できることから、金型温度は、100℃以下が好ましく、50℃以上100℃以下がより好ましい。金型温度を100℃以下とする場合、一般的に金型の温度調節装置として使用される、温水を加熱媒体とする温度調節装置により金型の温度調節が可能となり、特別な温度調節装置の準備が不要となるとともに、金属複合部品の製造作業が安全となるという利点もある。
 金属複合部品の成形材料は、所定の量の(A)~(H)の材料を含んでいれば特に制限されず、ポリブチレンテレフタレート樹脂混合物、及び、ポリブチレンテレフタレート樹脂組成物のいずれも使用できる。ポリブチレンテレフタレート樹脂混合物の好適な例としては、(1)(A)ポリブチレンテレフタレート樹脂と所定の量の(C)~(H)の成分を溶融混練して得たポリブチレンテレフタレート樹脂組成物のペレットと、(B)変性ポリエチレンテレフタレート樹脂のペレットとの混合物、(2)(A)ポリブチレンテレフタレート樹脂のペレットと、(B)変性ポリエチレンテレフタレート樹脂と所定の量の(C)~(H)の成分を溶融混練して得たポリエチレンテレフタレート樹脂組成物のペレットとの混合物が挙げられる。
 本発明において用いる、金属複合部品の成形材料としては、均質な金属複合部品を製造しやすいことからポリブチレンテレフタレート樹脂組成物を用いるのがより好ましい。
[金属複合部品]
 以上説明した材料及び方法により得られる本発明の金属複合部品は、金属部品とポリブチレンテレフタレート樹脂組成物との密着性に優れるものである。このため、本発明の金属複合部品は、例えば、種々の電気・電子製品の部品として好適に使用される。本発明の方法により得られた金属複合部品を用いる好適な電気・電子製品の例としては、携帯電話機、デジタルカメラ、携帯情報端末(PDA)、携帯ゲーム端末、電子書籍リーダー等の携帯端末、ノート型パーソナルコンピュータ、卓上型パーソナルコンピュータ等のコンピュータ、複写機、プリンタ、ファクシミリ等のOA機器が挙げられる。本発明の金属複合部品は、金属とポリブチレンテレフタレート樹脂組成物とが複合化され、強度、軽量性、及び意匠性等に優れるための、携帯端末、コンピュータ、OA機器等の筐体として特に好適に使用される。
 以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例により限定されるものではない。
<実施例1から5、及び比較例1から6>
 実施例1から5、及び比較例1から6において、ポリブチレンテレフタレート樹脂組成物の成分として、以下の材料を用いた。
 なお、下記の(B)、(B’)については、TA Instruments社のDSC Q1000を用い、昇温速度10℃/minでJIS K7121に従い、融点を測定した。
〔(A)ポリブチレンテレフタレート樹脂〕
A1:固有粘度0.69dL/gのポリブチレンテレフタレート樹脂(ウィンテックポリマー株式会社製)
〔(B)変性ポリエチレンテレフタレート樹脂〕
B1:変性ポリエチレンテレフタレート樹脂(ベルポリエステルプロダクツ社製、全ジカルボニル単位中12モル%のイソフタロイル単位で変性、融点232℃、固有粘度0.80dL/g)
〔(B’)非変性ポリエチレンテレフタレート樹脂〕
B’1:ポリエチレンテレフタレート樹脂(SKケミカル社製、融点258℃、固有粘度0.76dL/g)
〔(C)難燃剤〕
C1:ジエチルフォスフィン酸アルミニウム(リン系難燃剤、Clariant社製、Exolit OP 1230)
C2:臭素化ポリカーボネート(臭素系難燃剤、帝人化成株式会社製、FG-7500)
〔(D)難燃助剤〕
D1:メラミンシアヌレート(窒素系難燃助剤、DSM社製、Melapure50)
D2:三酸化アンチモン(アンチモン化合物、日本精鉱株式会社製、PATOX-M)
〔(E)充填材〕
E1:ガラス繊維(日東紡績株式会社製、CS3J648S)
〔(F)フッ素系樹脂〕
F1:テトラフルオロエチレン重合体(三井・デュポンフロロケミカル株式会社製、PTFE850A)
〔(G)エラストマー〕
G1:コアシェル系エラストマー(ローム・アンド・ハース・ジャパン株式会社製、パラロイド ELX2311)
 表1に示す成分を、表1に示す含量(質量部)の比率でドライブレンドし、2軸押出機((株)日本製鋼所製TEX-30α)を用いて、シリンダー温度260℃、吐出量15kg/hr、スクリュー回転数130rpmの条件で溶融混練してポリブチレンテレフタレート樹脂組成物のペレットを作成した。実施例及び比較例で得られたペレットを用いて試験片を作製し、以下の方法に従い密着性について試験した。実施例及び比較例のポリブチレンテレフタレート樹脂組成物の密着性に関する試験結果を表1に記す。
<密着性>
〔試験片作成〕
 以下、密着性の評価方法について図1及び図2を参照しながら説明する。射出成形機(ソディック社製、TR-40VR)を用いて、温水を加熱媒体に用いる温度調節装置により金型温度を80℃に設定して、金型内に金属部品を載置した後に、以下の条件にて、密着性評価用の試験片を射出成形した。なお、金属部品は、ケミカルエッチングの類として知られる“大成プラス社のNMT処理”を施し表面を粗化されたアルミニウム(A1050)の板を用いた。密着性評価用の試験片の形状は、図1に示す通りであり、20mm×50mm×厚さ1.6mmのアルミニウム板2とポリブチレンテレフタレート樹脂組成物1とが、10mm×5mmの長方形の接触面を介して複合化されたものを用いた。
Figure JPOXMLDOC01-appb-T000008
〔密着性評価〕
 まず、試験片の、アルミニウム板2とポリブチレンテレフタレート樹脂組成物1との接触面の周囲のバリを除去した後、図2に示すように、試験片固定用治具4の凹部に試験片のアルミニウム板2部分を固定した。次いで、押し治具3を1mm/分の速度で降下させて試験のポリブチレンテレフタレート樹脂組成物1を押し下げ、ポリブチレンテレフタレート樹脂組成物1とアルミニウム板2とを剥離させた時の最大荷重(N)を測定し、破壊の形態を観察した。また、密着性の評価には、(株)オリエンテック社製、テンシロンUTA-50KNを用いた。
〔難燃性〕
 実施例3から5、及び比較例4~6で得られたポリブチレンテレフタレート樹脂組成物に関して、試験片(0.8mm厚み)について、アンダーライターズ・ラボラトリーズのUL94規格垂直燃焼試験により実施した。
Figure JPOXMLDOC01-appb-T000009
*比較例4、5においては樹脂と金属が密着せず、密着性評価が不可能であった。
 実施例1から5により、成形材料における、変性ポリエチレンテレフタレート樹脂の含有量が、ポリブチレンテレフタレート樹脂及び変性ポリエチレンテレフタレート樹脂の合計質量に対して10質量%以上50質量%以下である場合には、金属部品とポリブチレンテレフタレート樹脂組成物との密着性に優れる金属複合部品が得られることが分かる。
 また、実施例3~5及び比較例4~6により、ポリブチレンテレフタレート樹脂に対して、リン系難燃剤、臭素系難燃剤等の難燃剤や、含窒素難燃助剤、アンチモン化合物等の難燃助剤を用いることにより、難燃性に優れるポリブチレンテレフタレート樹脂組成物が得られることが分かる。特に、実施例3から5により、ポリブチレンテレフタレート樹脂に対して好適な量の変性ポリエチレンテレフタレート樹脂を用いていれば、さらに難燃剤や難燃助剤を用いても、金属部品とポリブチレンテレフタレート樹脂組成物との密着性を損なうことなく、難燃性に優れる金属複合部品が得られることが分かる。
 さらに、実施例2及び4によれば、成形材料がエラストマーを含む場合、金属部品とポリブチレンテレフタレート樹脂との密着性が特に優れる金属複合部品を得やすいことが分かる。
 比較例1、4、及び5によれば、ポリブチレンテレフタレート樹脂に対して、変性ポリエチレンテレフタレート樹脂を加えなければ、金属部品とポリブチレンテレフタレート樹脂組成物との密着性が特に優れる金属複合部品が得られないことが分かる。また、比較例2、3、及び6によれば、ポリブチレンテレフタレート樹脂に変性されていないポリエチレンテレフタレート樹脂を加えたとしても、金属部品とポリブチレンテレフタレート樹脂組成物との密着性が特に優れる金属複合部品が得られないことが分かる。
 1 ポリブチレンテレフタレート樹脂組成物
 2 アルミニウム板
 3 押し治具
 4 試験片固定用治具

Claims (21)

  1.  (A)ポリブチレンテレフタレート樹脂、及び(B)変性ポリエチレンテレフタレート樹脂を含み、
     前記(B)変性ポリエチレンテレフタレート樹脂が、全ジカルボニル単位中、テレフタロイル単位の他のジカルボニル単位を5モル%以上50モル%以下含み、
     前記(B)変性ポリエチレンテレフタレート樹脂の含有量が、前記(A)ポリブチレンテレフタレート樹脂及び前記(B)変性ポリエチレンテレフタレート樹脂の合計質量に対して10質量%以上50質量%以下である、金属複合部品成形用のポリブチレンテレフタレート樹脂組成物。
  2.  前記(B)変性ポリエチレンテレフタレート樹脂の融点が245℃以下である、請求項1記載の金属複合部品成形用のポリブチレンテレフタレート樹脂組成物。
  3.  さらに、(C)難燃剤を含む請求項1又は2記載の金属複合部品成形用のポリブチレンテレフタレート樹脂組成物。
  4.  前記(C)難燃剤が、フォスフィン酸塩、ジフォスフィン酸塩、及び、3量体以上のフォスフィン酸縮合物の塩からなる群より選択される1種以上のリン系難燃剤であり、
     前記(C)難燃剤の含有量が、前記(A)ポリブチレンテレフタレート樹脂及び前記(B)変性ポリエチレンテレフタレート樹脂の合計量100質量部に対して、10質量部以上100質量部以下である請求項3記載の金属複合部品成形用のポリブチレンテレフタレート樹脂組成物。
  5.  前記リン系難燃剤が、下記一般式(1)で表されるフォスフィン酸塩、及び/又は、下記一般式(2)で表されるジフォスフィン酸塩である、請求項4記載の金属複合部品成形用のポリブチレンテレフタレート樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)、(2)中、R、Rは、フェニル基、水素、1個のヒドロキシル基を含有してよい直鎖又は分枝鎖のC1-6-アルキル基であり、Rは、直鎖又は分枝鎖のC1-10-アルキレン基、アリーレン基、アルキルアリーレン基又はアリールアルキレン基であり、Mは、アルカリ土類金属、アルカリ金属、Zn、Al、Fe、ホウ素であり、mは、1から3の整数であり、nは、1又は3の整数であり、xは、1又は2である。)
  6.  前記リン系難燃剤が、ジエチルフォスフィン酸アルミニウムである、請求項5記載の金属複合部品成形用のポリブチレンテレフタレート樹脂組成物。
  7.  さらに、下記一般式(3)で表されるトリアジン系化合物とシアヌール酸又はイソシアヌール酸との塩である含窒素難燃助剤を(D)難燃助剤として含有し、
     (D)難燃助剤の含有量が、前記(A)ポリブチレンテレフタレート樹脂及び前記(B)変性ポリエチレンテレフタレート樹脂の合計量100質量部に対して1質量部以上50質量部以下である、請求項4から6いずれか記載の金属複合部品成形用のポリブチレンテレフタレート樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式中、R、Rは水素原子、アミノ基、アリール基、又は炭素数1から3のオキシアルキル基であり、R、Rは同一でもまた異なっていてもよい。)
  8.  前記含窒素難燃助剤がメラミンシアヌレートである、請求項7記載の金属複合部品成形用のポリブチレンテレフタレート樹脂組成物。
  9.  前記(C)難燃剤が臭素系難燃剤であり、(C)難燃剤の含有量が、前記(A)ポリブチレンテレフタレート樹脂及び前記(B)変性ポリエチレンテレフタレート樹脂の合計量100質量部に対して10質量部以上100質量部以下である、請求項1から3いずれか記載の金属複合部品成形用のポリブチレンテレフタレート樹脂組成物。
  10.  さらに、アンチモン系化合物を(D)難燃助剤として含有し、
     (D)難燃助剤の含有量が、前記(A)ポリブチレンテレフタレート樹脂及び前記(B)変性ポリエチレンテレフタレート樹脂の合計量100質量部に対して1質量部以上50質量部以下である、請求項9記載の金属複合部品成形用のポリブチレンテレフタレート樹脂組成物。
  11.  さらに、(E)充填材を含有し、
     (E)充填材の含有量が、前記(A)ポリブチレンテレフタレート樹脂及び前記(B)変性ポリエチレンテレフタレート樹脂の合計量100質量部に対して5質量部以上120質量部以下である、請求項1から10いずれか記載の金属複合部品成形用のポリブチレンテレフタレート樹脂組成物。
  12.  さらに、(F)フッ素系樹脂を含有し、
     (F)フッ素系樹脂の含有量が、前記(A)ポリブチレンテレフタレート樹脂及び前記(B)変性ポリエチレンテレフタレート樹脂の合計量100質量部に対して0.1質量部以上5質量部以下である、請求項1から11いずれか記載の金属複合部品成形用のポリブチレンテレフタレート樹脂組成物。
  13.  さらに、(G)エラストマーを含有し、
     (G)エラストマーの含有量が、前記(A)ポリブチレンテレフタレート樹脂及び前記(B)変性ポリエチレンテレフタレート樹脂の合計量100質量部に対して1質量部以上100質量部以下である、請求項1から12いずれか記載の金属複合部品成形用のポリブチレンテレフタレート樹脂組成物。
  14.  請求項1から13いずれか記載の金属複合部品成形用のポリブチレンテレフタレート樹脂組成物と、金属部品とからなる金属複合部品。
  15.  前記金属部品が表面粗化処理されたものである、請求項14記載の金属複合部品。
  16.  パーソナルコンピュータ部品、携帯端末部品、又はOA機器部品である、請求項14又は15記載の金属複合部品。
  17.  (A)ポリブチレンテレフタレート樹脂、及び(B)変性ポリエチレンテレフタレート樹脂を含み、
     前記(B)変性ポリエチレンテレフタレート樹脂が、全ジカルボニル単位中、テレフタロイル単位の他のジカルボニル単位を5モル%以上50モル%以下含み、
     前記(B)変性ポリエチレンテレフタレート樹脂の含有量が、前記(A)ポリブチレンテレフタレート樹脂及び前記(B)変性ポリエチレンテレフタレート樹脂の合計質量に対して10質量%以上50質量%以下である成形材料を、成形機により金属部品が載置された金型に供給する、金属複合部品の製造方法。
  18.  前記成形材料が、請求項1から13いずれか記載の金属複合部品成形用のポリブチレンテレフタレート樹脂組成物である、請求項17記載の金属複合部品の製造方法。
  19.  前記金属部品が、表面粗化処理されたものである請求項17又は18記載の金属複合部品の製造方法。
  20.  前記金型の温度が100℃以下である、請求項17から19いずれか記載の金属複合部品の製造方法。
  21.  請求項17から20いずれか記載の成形方法により得られた、金属複合部品。
PCT/JP2011/061084 2010-06-09 2011-05-13 ポリブチレンテレフタレート樹脂組成物、金属複合部品、及び金属複合部品の製造方法 WO2011155289A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012519317A JP5805081B2 (ja) 2010-06-09 2011-05-13 ポリブチレンテレフタレート樹脂組成物、金属複合部品、及び金属複合部品の製造方法
KR1020137000426A KR101728430B1 (ko) 2010-06-09 2011-05-13 폴리부틸렌 테레프탈레이트 수지 조성물, 금속 복합 부품 및 금속 복합 부품의 제조방법
CN201180027832.7A CN102933655B (zh) 2010-06-09 2011-05-13 聚对苯二甲酸丁二醇酯树脂组合物、金属复合部件、和金属复合部件的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010132462 2010-06-09
JP2010-132462 2010-06-09

Publications (1)

Publication Number Publication Date
WO2011155289A1 true WO2011155289A1 (ja) 2011-12-15

Family

ID=45097901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061084 WO2011155289A1 (ja) 2010-06-09 2011-05-13 ポリブチレンテレフタレート樹脂組成物、金属複合部品、及び金属複合部品の製造方法

Country Status (5)

Country Link
JP (1) JP5805081B2 (ja)
KR (1) KR101728430B1 (ja)
CN (1) CN102933655B (ja)
TW (1) TW201207037A (ja)
WO (1) WO2011155289A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102659838A (zh) * 2012-05-14 2012-09-12 苏州科技学院 3-烷基次膦酰基丙基苯基-3-烷基次膦酰基丙基醚金属盐及其制备方法
WO2016199100A1 (en) * 2015-06-10 2016-12-15 Sabic Global Technologies B.V. Plastic-metal junctions and methods of making the same
JP2018058231A (ja) * 2016-10-03 2018-04-12 三菱エンジニアリングプラスチックス株式会社 金属樹脂複合体及びその製造方法
KR20180098266A (ko) 2015-12-28 2018-09-03 윈테크 폴리머 가부시키가이샤 폴리부틸렌테레프탈레이트 수지 조성물, 및 금속 복합 부품
JP2019089297A (ja) * 2017-11-17 2019-06-13 ポリプラスチックス株式会社 複合部材およびその製造方法
CN112300511A (zh) * 2019-07-26 2021-02-02 北京梦之墨科技有限公司 疏金属高分子材料、疏金属部件及基于液态金属的设备
WO2022097449A1 (ja) * 2020-11-06 2022-05-12 ポリプラスチックス株式会社 難燃性ポリブチレンテレフタレート樹脂組成物及び樹脂成形品

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103450642A (zh) * 2013-08-07 2013-12-18 上海日之升新技术发展有限公司 高强度碳纤维增强无卤阻燃pbt复合材料及其制备方法
DE102015219798A1 (de) * 2015-10-13 2017-04-13 Tesa Se Verfahren zum Verbinden zweier Bauteile unterschiedlicher Materialien
CN112654728A (zh) * 2018-09-11 2021-04-13 三菱工程塑料株式会社 带金属膜的树脂成型品及其制造方法
CN109749375A (zh) * 2019-01-22 2019-05-14 广东顺德同程新材料科技有限公司 一种阻燃聚对苯二甲酸丁二醇酯材料及其制备方法
CN113045874A (zh) * 2021-03-18 2021-06-29 无锡威孚中意齿轮有限责任公司 一种耐高温耐磨齿轮及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000035509A (ja) * 1998-05-14 2000-02-02 Polyplastics Co ポリブチレンテレフタレ―ト樹脂製光反射体及びその製造方法
JP2004240292A (ja) * 2003-02-07 2004-08-26 Wintech Polymer Ltd ポリブチレンテレフタレート樹脂製光反射体及びその製造方法
JP2006176691A (ja) * 2004-12-24 2006-07-06 Wintech Polymer Ltd 振動溶着用ポリブチレンテレフタレート樹脂組成物
JP2007146118A (ja) * 2005-10-28 2007-06-14 Wintech Polymer Ltd 鉛フリーハンダ用難燃性ポリブチレンテレフタレート樹脂組成物
JP2007161840A (ja) * 2005-12-13 2007-06-28 Mitsubishi Chemicals Corp ポリブチレンテレフタレート樹脂組成物およびその樹脂成形体並びに積層体
WO2008047811A1 (en) * 2006-10-16 2008-04-24 Taisei Plas Co., Ltd. Composite of metal with resin and process for producing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1955222B (zh) * 2005-10-28 2011-02-02 胜技高分子株式会社 无铅焊锡用阻燃性聚对苯二甲酸丁二醇酯树脂组合物
US7423080B2 (en) * 2006-03-03 2008-09-09 Sabic Innovative Plastics Ip B.V. Radiation crosslinking of halogen-free flame retardant polymer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000035509A (ja) * 1998-05-14 2000-02-02 Polyplastics Co ポリブチレンテレフタレ―ト樹脂製光反射体及びその製造方法
JP2004240292A (ja) * 2003-02-07 2004-08-26 Wintech Polymer Ltd ポリブチレンテレフタレート樹脂製光反射体及びその製造方法
JP2006176691A (ja) * 2004-12-24 2006-07-06 Wintech Polymer Ltd 振動溶着用ポリブチレンテレフタレート樹脂組成物
JP2007146118A (ja) * 2005-10-28 2007-06-14 Wintech Polymer Ltd 鉛フリーハンダ用難燃性ポリブチレンテレフタレート樹脂組成物
JP2007161840A (ja) * 2005-12-13 2007-06-28 Mitsubishi Chemicals Corp ポリブチレンテレフタレート樹脂組成物およびその樹脂成形体並びに積層体
WO2008047811A1 (en) * 2006-10-16 2008-04-24 Taisei Plas Co., Ltd. Composite of metal with resin and process for producing the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102659838A (zh) * 2012-05-14 2012-09-12 苏州科技学院 3-烷基次膦酰基丙基苯基-3-烷基次膦酰基丙基醚金属盐及其制备方法
WO2016199100A1 (en) * 2015-06-10 2016-12-15 Sabic Global Technologies B.V. Plastic-metal junctions and methods of making the same
US10940621B2 (en) 2015-06-10 2021-03-09 Shpp Global Technologies B.V. Plastic-metal junctions and methods of making the same
KR20180098266A (ko) 2015-12-28 2018-09-03 윈테크 폴리머 가부시키가이샤 폴리부틸렌테레프탈레이트 수지 조성물, 및 금속 복합 부품
JP2018058231A (ja) * 2016-10-03 2018-04-12 三菱エンジニアリングプラスチックス株式会社 金属樹脂複合体及びその製造方法
JP2019089297A (ja) * 2017-11-17 2019-06-13 ポリプラスチックス株式会社 複合部材およびその製造方法
JP7020874B2 (ja) 2017-11-17 2022-02-16 ポリプラスチックス株式会社 複合部材およびその製造方法
CN112300511A (zh) * 2019-07-26 2021-02-02 北京梦之墨科技有限公司 疏金属高分子材料、疏金属部件及基于液态金属的设备
WO2022097449A1 (ja) * 2020-11-06 2022-05-12 ポリプラスチックス株式会社 難燃性ポリブチレンテレフタレート樹脂組成物及び樹脂成形品
JP2022075263A (ja) * 2020-11-06 2022-05-18 ポリプラスチックス株式会社 難燃性ポリブチレンテレフタレート樹脂組成物及び樹脂成形品
JP7213218B2 (ja) 2020-11-06 2023-01-26 ポリプラスチックス株式会社 難燃性ポリブチレンテレフタレート樹脂組成物及び樹脂成形品

Also Published As

Publication number Publication date
KR101728430B1 (ko) 2017-04-19
JPWO2011155289A1 (ja) 2013-08-01
CN102933655A (zh) 2013-02-13
JP5805081B2 (ja) 2015-11-04
TW201207037A (en) 2012-02-16
KR20130100952A (ko) 2013-09-12
CN102933655B (zh) 2015-12-09

Similar Documents

Publication Publication Date Title
JP5805081B2 (ja) ポリブチレンテレフタレート樹脂組成物、金属複合部品、及び金属複合部品の製造方法
JP5752118B2 (ja) ポリブチレンテレフタレート樹脂組成物、金属複合部品、及び金属複合部品の製造方法
EP2588531B1 (en) Flame resistant polyester compositions, method of manufacture, and articles thereof
US8686072B2 (en) Flame resistant polyester compositions, method of manufacture, and articles therof
EP2287243B1 (en) High flow polyester composition
JP5758809B2 (ja) ポリブチレンテレフタレート樹脂組成物
JP2010280793A (ja) 電気自動車部品用成形品
WO2008075776A1 (ja) ポリブチレンテレフタレート樹脂組成物
JP2007112858A (ja) ポリブチレンテレフタレート樹脂組成物の製造方法
JP2010037375A (ja) 難燃性熱可塑性ポリエステル樹脂組成物および成形品
JP2005320515A (ja) 熱伝導性ポリカーボネート系樹脂組成物および成形体
JP2005298552A (ja) 熱伝導性ポリカーボネート系樹脂組成物および成形体
JP2013035980A (ja) 難燃性熱可塑性ポリエステル樹脂組成物および成形品
JP6844279B2 (ja) 金属/樹脂複合構造体およびその製造方法
JP5312437B2 (ja) 熱伝導性ポリカーボネート系樹脂組成物および成形体
JP2006028276A (ja) 熱伝導性ポリカーボネート系樹脂組成物および成形体
WO2011132655A1 (ja) ポリブチレンテレフタレート樹脂組成物及びポリブチレンテレフタレート樹脂組成物の製造方法
JP2021024876A (ja) 電気絶縁部品用難燃性ポリブチレンテレフタレート樹脂組成物
JP7327703B1 (ja) 熱可塑性ポリエステル樹脂組成物、熱可塑性ポリエステル樹脂組成物の製造方法および成形品
JP2001131395A (ja) 難燃性ポリエステル樹脂組成物
CN116390980A (zh) 阻燃性聚对苯二甲酸丁二醇酯树脂组合物及树脂成形品
JP2023068401A (ja) 難燃性ポリブチレンテレフタレート樹脂組成物及び樹脂成形品
JP2014088515A (ja) 難燃性熱可塑性ポリエステル樹脂成形品および難燃性熱可塑性ポリエステル樹脂組成物
JP2003071891A (ja) 成形品の製造方法ならびに成形品

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180027832.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11792247

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012519317

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137000426

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11792247

Country of ref document: EP

Kind code of ref document: A1