WO2011155208A1 - スクロール圧縮機 - Google Patents

スクロール圧縮機 Download PDF

Info

Publication number
WO2011155208A1
WO2011155208A1 PCT/JP2011/003264 JP2011003264W WO2011155208A1 WO 2011155208 A1 WO2011155208 A1 WO 2011155208A1 JP 2011003264 W JP2011003264 W JP 2011003264W WO 2011155208 A1 WO2011155208 A1 WO 2011155208A1
Authority
WO
WIPO (PCT)
Prior art keywords
compression chamber
pressure chamber
chamber
back pressure
scroll
Prior art date
Application number
PCT/JP2011/003264
Other languages
English (en)
French (fr)
Inventor
山田 定幸
淳 作田
二上 義幸
森本 敬
小川 信明
喜文 阿部
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP11792167.6A priority Critical patent/EP2581603B1/en
Priority to US13/388,344 priority patent/US9239052B2/en
Priority to CN201180003182.2A priority patent/CN102472274B/zh
Publication of WO2011155208A1 publication Critical patent/WO2011155208A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/028Means for improving or restricting lubricant flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/70Safety, emergency conditions or requirements
    • F04C2270/701Cold start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Definitions

  • the present invention relates to a scroll compressor used for a cooling device such as an air conditioning air conditioner or a refrigerator, or a heat pump type hot water supply device.
  • a throttle portion is always installed in the back pressure chamber oil supply path formed inside the orbiting scroll. There is a method of refueling based on predetermined restrictions.
  • This invention solves the conventional subject, and it aims at providing the scroll compressor which can aim at the stable restart and can aim at the improvement of the reliability after restart.
  • a scroll compressor comprising: a motor and a compression mechanism portion housed in a container; and the compression mechanism portion combined with the orbiting scroll in which a spiral wrap is formed upright on an end plate and the orbiting scroll.
  • a fixed scroll in which a spiral wrap is formed upright on the end plate, a main bearing member that disposes the orbiting scroll between the fixed scroll and holds a seal member, and the orbiting scroll and the fixed scroll.
  • a compression chamber oil supply passage for supplying lubricating oil from the back pressure chamber to the compression chamber, and the compression chamber oil supply passage is formed inside the orbiting scroll.
  • the back pressure chamber includes a passage and a recess formed in the end plate of the fixed scroll, and one opening of the passage periodically overlaps the recess in accordance with the turning motion of the orbiting scroll.
  • the compression chamber is intermittently communicated, and one opening of the back pressure chamber oil supply passage is moved back and forth through the seal member, whereby the high pressure region and the back pressure chamber are intermittently communicated.
  • the back pressure chamber oil supply path and the compression chamber oil supply path are arranged in a positional relationship in which communication from the high pressure region to the back pressure chamber and communication from the back pressure chamber to the compression chamber do not occur simultaneously. .
  • the compression chamber connected to the compression chamber side opening of the compression chamber oil supply path is configured to be a compression chamber after the working fluid is confined. is there.
  • the scroll compressor according to the present invention shifts the phase in which the oil is communicated from the high pressure region to the back pressure chamber and the phase in which the oil is communicated from the back pressure chamber to the compression chamber, thereby allowing the lubricant to move from the high pressure region to the back pressure chamber after the compressor is stopped.
  • FIG. 1 is a cross-sectional view of a scroll compressor according to an embodiment of the present invention.
  • 2 (a) and 2 (b) are enlarged cross-sectional views of the main part showing the operation of the compression mechanism of the scroll compressor of FIG. 3 (a) to 3 (d) are main part sectional views showing a state in which the orbiting scroll and the fixed scroll of the scroll compressor of FIG. 1 are combined.
  • 4A to 4D are main part plan views showing the back of the orbiting scroll of the scroll compressor of FIG.
  • FIG. 5 is a graph showing a communication state of the back pressure chamber oil supply path and the compression chamber oil supply path of the scroll compressor of FIG.
  • a scroll compressor includes a back pressure chamber oil supply passage for supplying lubricant from a high pressure region to a back pressure chamber, and a compression chamber oil supply passage for supplying lubricant from the back pressure chamber to the compression chamber.
  • One opening of the chamber refueling path communicates with the seal member so that the high pressure region and the back pressure chamber are intermittently communicated
  • the compression chamber refueling path is a passage formed inside the orbiting scroll, and a fixed scroll end plate
  • the back pressure chamber and the compression chamber are intermittently communicated with each other when one opening of the passage periodically overlaps the recess in accordance with the orbiting motion of the orbiting scroll.
  • the back pressure chamber oil supply path and the compression chamber oil supply path can be arranged in a positional relationship in which communication from the high pressure region to the back pressure chamber and communication from the back pressure chamber to the compression chamber do not occur simultaneously. It is possible to prevent the lubricating oil from being supplied to the compression chamber from the high pressure region through the back pressure chamber to the compression chamber after the compressor is stopped. Therefore, stable restart is possible and reliability after restart is improved.
  • the compression chamber communicated with the back pressure chamber via the compression chamber oil supply path is a compression chamber after the working fluid is closed.
  • this configuration it is possible to prevent a so-called tilting phenomenon in which the ability is reduced when the orbiting scroll is separated from the fixed scroll. Further, even if tilting occurs, the pressure in the compression chamber can be guided to the back pressure chamber, so that an early return to normal operation is possible.
  • FIGS. 1 is a cross-sectional view of a scroll compressor according to an embodiment of the present invention
  • FIGS. 2 (a) and 2 (b) are enlarged cross-sectional views of a main part of the compression mechanism portion of FIG. 1
  • FIGS. 3 (a) to 3 (d) are the same.
  • 4 is a cross-sectional view of the main part showing a state in which the orbiting scroll and the fixed scroll of the scroll compressor are combined
  • FIGS. 4A to 4D are main part plan views showing the back of the orbiting scroll of the scroll compressor
  • FIG. It is a figure which shows the communication state of a back pressure chamber oil supply path
  • FIG. 1 shows a horizontal scroll compressor installed sideways by a mounting leg 2 around the body of the scroll compressor 1.
  • the scroll compressor 1 includes a liquid storage unit 6 in which a compression mechanism unit 4 and a motor 5 for driving the compression mechanism unit 4 and a motor 5 for driving the compression mechanism unit 4 are stored in a main body casing 3.
  • the motor 5 is driven by a motor drive circuit unit (not shown).
  • the working fluid to be handled is a gas refrigerant, and the lubricating oil 7 is used to lubricate each sliding portion and is used as a seal for the sliding portion of the compression mechanism portion 4 and is compatible with the refrigerant.
  • the present invention is not limited to these.
  • a compression mechanism part 4 that sucks, compresses and discharges the working fluid
  • a motor 5 that drives the compression mechanism part 4
  • a liquid that is used for lubrication of each sliding part including the compression mechanism part 4 is stored.
  • the liquid storage unit 6 is built in the main body casing 3, and the scroll compressor 1 that drives the motor 5 by the motor drive circuit unit may be used, and is not limited to the following description.
  • the compression mechanism unit 4 includes an orbiting scroll 12 formed by standing upright a spiral wrap 12b on an end plate 12a, and a fixed scroll 11 formed by combining the orbiting scroll 12 with an upright spiral wrap 11b on an end plate 11a,
  • the orbiting scroll 12 is disposed between the fixed scroll 11 and the main bearing member 51 that holds the seal member 24.
  • the fixed scroll 11 has a suction port 16 formed in the outer peripheral portion of the end plate 11a and a discharge port 31 formed in the center portion of the end plate 11a.
  • the orbiting scroll 12 has a cylindrical boss 12c formed on the back surface.
  • An eccentric shaft 14 a is integrally formed at one end of the drive shaft 14, and the eccentric shaft 14 a is supported by the cylindrical boss portion 12 c via an eccentric rolling bearing 43.
  • the eccentric shaft 14a is fitted with a bush 30.
  • wheel 43a of the eccentric rolling bearing 43 is fitted by the bush 30, and the outer ring
  • One end side of the drive shaft 14 is supported by a main bearing member 51 via a main rolling bearing 42.
  • the seal member 24 is disposed on the back surface of the end plate 12a of the orbiting scroll 12.
  • the back surface of the end plate 12 a of the orbiting scroll 12 is partitioned by the seal member 24 so that the inside of the seal member 24 forms a high pressure region 21 and the outside of the seal member 24 forms a back pressure chamber 22.
  • the high-pressure region 21 includes the first high-pressure region 21a surrounded by the cylindrical boss portion 12c and the eccentric rolling bearing 43, the main bearing member 51, the cylindrical boss portion 12c, the eccentric rolling bearing 43, and the main rolling bearing 42.
  • the second high-pressure region 21b surrounded by The lower part of the second high-pressure region 21b constitutes an oil sump.
  • the back pressure chamber oil supply path 25 for supplying the lubricating oil 7 from the high pressure region 21 to the back pressure chamber 22 is formed in the end plate 12a of the orbiting scroll 12.
  • the back pressure chamber refueling path 25 includes a first back pressure chamber refueling path 25a that communicates with the first high pressure region 21a, and a second back pressure chamber refueling path 25b through which one opening 25c travels the seal member 24.
  • the first back pressure chamber oil supply path 25a and the second back pressure chamber oil supply path 25b are in communication with each other.
  • the compression chamber oil supply path 26 includes a passage 26 a formed inside the orbiting scroll 12 and a recess 26 b formed on the bottom surface of the end plate 11 a of the fixed scroll 11, and lubricates the compression chamber 10 from the back pressure chamber 22.
  • Supply oil 7 The compression chamber side opening 26c of the passage 26a is formed at the tip of the spiral wrap 12b of the orbiting scroll 12, and periodically overlaps the recess 26b in accordance with the orbiting motion of the orbiting scroll 12, so that the back pressure chamber 22 and The compression chamber 10 communicates intermittently.
  • the compression chamber 10 is formed by meshing the spiral wrap 11 b of the fixed scroll 11 and the spiral wrap 12 b of the orbiting scroll 12, and moves when the orbiting scroll 12 is orbited relative to the fixed scroll 11. The volume is changed accordingly.
  • the refrigerant gas returning from the external cycle is sucked into the compression chamber 10 from the suction port 16, and the refrigerant gas compressed in the compression chamber 10 is discharged from the discharge port 31 to the discharge chamber 62.
  • the main casing 3 is provided with a discharge port 9 for discharging compressed refrigerant gas
  • the sub casing 80 is provided with a suction port 8 for sucking compressed refrigerant gas.
  • the main body casing 3 and the sub casing 80 constitute a container.
  • the scroll compressor 1 arranges a main bearing member 51 having a pump 13, a sub rolling bearing 41, a motor 5, and a main rolling bearing 42 in this order from the one end wall 3 a side in the axial direction in the main body casing 3. It is.
  • the pump 13 is accommodated from the outer surface of the end wall 3 a and is fitted and fixed by a lid 52.
  • a pump chamber 53 is formed inside the lid 52, and the pump chamber 53 communicates with the liquid storage unit 6 through a suction passage 54.
  • the auxiliary rolling bearing 41 is supported by the end wall 3 a and pivotally supports the side of the drive shaft 14 connected to the pump 13.
  • the motor 5 includes a stator 5a and a rotor 5b, and drives the drive shaft 14 to rotate.
  • the stator 5 a is fixed to the inner periphery of the main casing 3 by shrink fitting or the like, and the rotor 5 b is fixed to the drive shaft 14.
  • the main bearing member 51 is fixed to the inner periphery of the sub casing 80 with bolts 17 and the like, and the compression mechanism portion 4 side of the drive shaft 14 is supported by the main rolling bearing 42.
  • the fixed scroll 11 is attached to the outer surface of the main bearing member 51 with a bolt or the like (not shown), and the orbiting scroll 12 is sandwiched between the main bearing member 51 and the fixed scroll 11.
  • An Oldham ring 57 is provided between the main bearing member 51 and the orbiting scroll 12 to prevent the orbiting scroll 12 from rotating and to orbit.
  • the exposed portion of the compression mechanism 4 from the sub casing 80 is covered with the main casing 3.
  • the sub casing 80 forms an end wall 80a on the opposite side of the end wall 3a in the axial direction.
  • the main casing 3 and the sub casing 80 are fixed by bolts 18 with their openings facing each other.
  • the compression mechanism unit 4 is located between the suction port 8 of the sub casing 80 and the discharge port 9 of the main casing 3, and the suction port 16 of the fixed scroll 11 is connected to the suction port 8 of the sub casing 80.
  • the discharge port 31 is connected to the discharge chamber 62 through a reed valve 31a.
  • the discharge chamber 62 communicates with the space on the motor 5 side through a communication passage 63 formed in the fixed scroll 11 and the main bearing member 51.
  • the communication passage 63 may be formed between the fixed scroll 11 and the main bearing member 51 and the main body casing 3.
  • the motor 5 is driven by the motor drive circuit unit, and rotates the compression mechanism unit 4 via the drive shaft 14 and drives the pump 13.
  • the compression mechanism section 4 is supplied with the lubricating oil 7 of the liquid storage section 6 by the pump 13 and receives lubrication and sealing action.
  • the refrigerant gas discharged into the discharge chamber 62 passes through the motor 5 from the communication passage 63 and is discharged from the discharge port 9 of the main body casing 3 while cooling the motor 5.
  • Lubricating oil 7 contained in the refrigerant gas in the container is separated from the refrigerant gas by collision or squeezing action, and lubricates the sub rolling bearing 41.
  • the lubricating oil 7 stored in the liquid storage section 6 of the main body casing 3 is supplied to an oil supply passage 15 formed in the drive shaft 14 by driving the pump 13 by the drive shaft 14.
  • the outlet of the oil supply passage 15 is formed at the end of the eccentric shaft 14a. Note that the supply of the lubricating oil 7 to the oil supply passage 15 may use the differential pressure in the main casing 3 instead of driving the pump 13.
  • the lubricating oil 7 from the oil supply passage 15 is supplied to the first high pressure region 21a.
  • one opening 25c of the back pressure chamber oil supply path 25 is positioned on the high pressure region 21 side with respect to the seal member 24, and the lubricating oil 7 is not supplied to the back pressure chamber 22.
  • a part of the lubricating oil 7 supplied to the first high-pressure region 21a is supplied to the second high-pressure region 21b via the eccentric rolling bearing 43. Further, another part of the lubricating oil 7 supplied to the first high-pressure region 21a has a first opening 25c of the second back pressure chamber oil supply passage 25b positioned inside the seal member 24, so that the first The high pressure region 21a is supplied to the second high pressure region 21b.
  • the lubricating oil 7 supplied to the second high pressure region 21b in this way flows out to the space on the motor 5 side through the main rolling bearing 42 and is recovered to the liquid storage unit 6.
  • one opening 25c of the back pressure chamber oil supply passage 25 is positioned outside the seal member 24, so that a part of the lubricating oil 7 supplied to the first high pressure region 21a is back. It is supplied to the pressure chamber 22 and backs up the back pressure of the orbiting scroll 12.
  • the lubricating oil 7 supplied to the back pressure chamber 22 flows from the back pressure chamber 22 to the compression chamber side opening 26 c of the compression chamber oil supply path 26 and the bottom surface of the end plate 11 a of the fixed scroll 11. Is supplied to the compression chamber 23 through communication with the recessed portion 26b formed in the, and seals and lubricates between the fixed scroll 11 and the orbiting scroll 12. As shown in FIG. 2B, the lubricating oil 7 is not supplied to the compression chamber 23 when the compression chamber side opening 26c and the recess 26b are not in communication with each other.
  • the recess 26b is provided in the compression chamber 10a after the refrigerant gas as the working fluid is closed, and is not provided in the compression chamber 10b in a state before the refrigerant gas is closed.
  • the compression chamber 10 communicated with the back pressure chamber 22 via the compression chamber oil supply passage 26 is the compression chamber 10a after the working fluid is closed, so that the orbiting scroll 12 can be separated from the fixed scroll 11. This can prevent a so-called tilting phenomenon that lowers the temperature. Even if tilting occurs, the pressure in the compression chamber 10 can be guided to the back pressure chamber 22, so that early return to normal operation is possible.
  • the back surface of the orbiting scroll 12 is partitioned by the seal member 24 into an inner high pressure region 21 and an outer back pressure chamber 22.
  • the opening 25c is open to the high pressure region 21 inside the seal member 24, so that the lubricating oil 7 is back pressured from the high pressure region 21. There is no supply to the chamber 22.
  • a back pressure chamber oil supply path 25 that supplies the lubricating oil 7 from the high pressure region 21 to the back pressure chamber 22, and a compression chamber oil supply that supplies the lubricating oil 7 from the back pressure chamber 22 to the compression chamber 10.
  • the passage 26 is provided, and the one opening 25c of the back pressure chamber oil supply passage 25 moves back and forth through the seal member 24, whereby the high pressure region 21 and the back pressure chamber 22 are intermittently communicated, and the compression chamber oil supply passage 26 is the orbiting scroll. 12, and a recess 26 b formed in the bottom surface of the end plate 11 a of the fixed scroll 11, and the compression chamber side opening 26 c of the passage 26 a is periodically synchronized with the orbiting scroll.
  • the back pressure chamber 22 and the compression chamber 10 communicate intermittently.
  • the compression chamber oil supply path 26 does not communicate at the same time.
  • the compression scroll 10 connected to the compression chamber side opening 26c of the compression chamber oil supply passage 26 of the present embodiment is the compression chamber 10a after the working fluid is closed, so that the orbiting scroll 12 is moved away from the fixed scroll 11. It is possible to prevent a so-called tilting phenomenon in which the ability is reduced by being separated. Even if tilting occurs, the pressure in the compression chamber 10 can be guided to the back pressure chamber 22, so that early return to normal operation is possible.
  • the scroll compressor according to the present invention includes a back pressure chamber oil supply path for supplying lubricant from the high pressure region to the back pressure chamber, and a compression chamber oil supply path for supplying lubricant from the back pressure chamber to the compression chamber.
  • the high pressure region and the back pressure chamber are intermittently communicated by one opening of the back pressure chamber refueling path coming and going through the seal member, and the compression chamber refueling path is formed in a passage formed inside the orbiting scroll; Containing a recess formed in the end plate of the fixed scroll, and one opening of the passage periodically overlaps the recess in accordance with the orbiting motion of the orbiting scroll so that the back pressure chamber and the compression chamber communicate intermittently It is.
  • the back pressure chamber oil supply path and the compression chamber oil supply path can be arranged in a positional relationship in which communication from the high pressure region to the back pressure chamber and communication from the back pressure chamber to the compression chamber do not occur simultaneously. It is possible to prevent the lubricating oil from being supplied to the compression chamber from the high pressure region through the back pressure chamber to the compression chamber after the compressor is stopped. Therefore, stable restart is possible and reliability after restart can be improved, so that the working fluid is not limited to refrigerant, such as air scroll compressor, vacuum pump, scroll type expander, etc. It can also be used for scroll fluid machinery.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

 高圧領域21から背圧室22に潤滑油7を供給する背圧室給油経路25と、背圧室22から圧縮室10に潤滑油7を供給する圧縮室給油経路26を備え、背圧室給油経路25が高圧領域21から背圧室22へ連通する位相と圧縮室給油経路26が背圧室22から圧縮室10へ連通する位相をずらすことにより、背圧室給油経路25と圧縮室給油経路26が同時に連通することがなく、圧縮機の停止後に潤滑油7が高圧領域21から背圧室22を経て圧縮室10まで連通給油されることを防止でき、貯液部6の潤滑油7が減少することがなく、また圧縮室10に潤滑油7が充満することもないため、安定した再起動が可能となる。

Description

スクロール圧縮機
 本発明は、冷暖房空調装置や冷蔵庫等の冷却装置、あるいはヒートポンプ式の給湯装置等に用いられるスクロール圧縮機に関する。
 従来、この種のスクロール圧縮機は、多くの製造業者等から同様の圧縮機に関するさまざまな出願がなされていると共に、家庭用ルームエアコン用や冷蔵庫用の圧縮機として種々の圧縮機が実際に利用されている。また、最近は自動車用空気調和装置の圧縮機としても利用され始めている。
 また、これら圧縮機の圧縮機構部などの潤滑を行うために、例えば特許文献1で開示されているように、旋回スクロール内部に形成された背圧室給油経路に絞り部を設置することにより常時所定の制限の基に給油を行う方法がある。
特開2008-14283号公報
 しかしながら、従来の構成では、背圧室給油経路の絞り部を介して高圧領域から背圧室へ常時給油を行うため、圧縮機の停止後も圧力差により高圧領域から背圧室へ給油され、さらに圧縮室給油経路を介して背圧室から圧縮室へと給油されることにより、貯液部の潤滑油が減少し、圧縮室に潤滑油が充満し、再起動時の起動不良および信頼性が低下するという課題を有していた。
 本発明は、従来の課題を解決するもので、安定した再起動を実現し再起動後の信頼性の向上を図ることができるスクロール圧縮機を提供することを目的とする。
 第1の発明によるスクロール圧縮機は、容器内にモータと圧縮機構部とを収納し、前記圧縮機構部を、鏡板に渦巻状のラップを直立して形成した旋回スクロールと、前記旋回スクロールと組み合わされ鏡板に渦巻状のラップを直立して形成した固定スクロールと、前記固定スクロールとの間に前記旋回スクロールを配置するとともにシール部材を保持する主軸受部材と、前記旋回スクロールと前記固定スクロールとの間に圧縮室が形成され、前記旋回スクロールの背面に前記シール部材によって区画形成される高圧領域及び背圧室と、前記高圧領域から前記背圧室に潤滑油を供給する背圧室給油経路と、前記背圧室から前記圧縮室に潤滑油を供給する圧縮室給油経路とを備え、前記圧縮室給油経路が、前記旋回スクロールの内部に形成された通路と、前記固定スクロールの前記鏡板に形成された凹部とから構成され、前記通路の一方の開口が前記旋回スクロールの旋回運動にあわせて周期的に前記凹部に重なることで、前記背圧室と前記圧縮室が間欠的に連通するとともに、前記背圧室給油経路の一方の開口が前記シール部材を往来することで、前記高圧領域と前記背圧室が間欠的に連通するスクロール圧縮機であって、前記高圧領域から前記背圧室への連通と前記背圧室から前記圧縮室への連通が同時に起こらない位置関係に前記背圧室給油経路および前記圧縮室給油経路を配置した構成としてある。
 第2の発明は、第1の発明によるスクロール圧縮機において、前記圧縮室給油経路の圧縮室側開口が連通する圧縮室は、作動流体を閉じこんだ後の圧縮室となるように構成してある。
 本発明のスクロール圧縮機は、高圧領域から背圧室へ連通給油する位相と背圧室から圧縮室へ連通給油する位相をずらすことにより、圧縮機の停止後に潤滑油が高圧領域から背圧室を経て圧縮室まで連通給油されることを防止することができ、安定した再起動が可能となり再起動後の信頼性が向上する。
図1は本発明の実施の形態におけるスクロール圧縮機の断面図 図2(a)(b)は図1のスクロール圧縮機の圧縮機構部における動作を示す要部拡大断面図 図3(a)~(d)は図1のスクロール圧縮機の旋回スクロールと固定スクロールとを組み合わせた状態を示す要部断面図 図4(a)~(d)は図1のスクロール圧縮機の旋回スクロールの背面を示す要部平面図 図5は図1のスクロール圧縮機の背圧室給油経路と圧縮室給油経路の連通状態を示すグラフ
 第1の発明によるスクロール圧縮機は、高圧領域から背圧室に潤滑油を供給する背圧室給油経路と、背圧室から圧縮室に潤滑油を供給する圧縮室給油経路を備え、背圧室給油経路の一方の開口がシール部材を往来することで、高圧領域と背圧室が間欠的に連通し、圧縮室給油経路が、旋回スクロールの内部に形成された通路と、固定スクロールの鏡板に形成された凹部とから構成され、通路の一方の開口が旋回スクロールの旋回運動にあわせて周期的に凹部に重なることで、背圧室と圧縮室が間欠的に連通するものである。この構成によれば、高圧領域から背圧室への連通と背圧室から圧縮室への連通が同時に起こらない位置関係に背圧室給油経路および圧縮室給油経路を配置することができるため、圧縮機の停止後に潤滑油が高圧領域から背圧室を経て圧縮室まで連通給油されることを防止することができ、貯液部の潤滑油が減少することがなく、また圧縮室に潤滑油が充満することもないため、安定した再起動が可能となり再起動後の信頼性が向上する。
 第2の発明では、特に、第1の発明によるスクロール圧縮機において、圧縮室給油経路を介して背圧室が連通する圧縮室を、作動流体を閉じ込んだ後の圧縮室としたものである。この構成によれば、旋回スクロールが固定スクロールから離れることで能力が低下してしまう、いわゆるチルティング現象を防止することができる。また仮にチルティングが発生しても、圧縮室の圧力を背圧室へと導くことが可能であるため、正常運転への早期復帰が可能となる。
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、本実施の形態によって本発明が限定されるものではない。
 (実施の形態)
 図1は本発明の実施の形態におけるスクロール圧縮機の断面図、図2(a)(b)は図1の圧縮機構部の要部拡大断面図、図3(a)~(d)は同スクロール圧縮機の旋回スクロールと固定スクロールとを組み合わせた状態を示す要部断面図、図4(a)~(d)は同スクロール圧縮機の旋回スクロールの背面を示す要部平面図、図5は背圧室給油経路と圧縮室給油経路の連通状態を示す図である。
 図1は、スクロール圧縮機1の胴部の周りにある取付け脚2によって横向きに設置される横型のスクロール圧縮機を示している。スクロール圧縮機1は、その本体ケーシング3内に圧縮機構部4およびこれを駆動するモータ5を内蔵し、潤滑油7を貯留する貯液部6を備えている。モータ5は図示しないモータ駆動回路部によって駆動される。取り扱う作動流体はガス冷媒であり、潤滑油7は各摺動部の潤滑を行うとともに圧縮機構部4の摺動部のシールとして用いられ、冷媒に対して相溶性のあるものを用いる。しかし、本発明はこれらに限られることはない。基本的には、作動流体の吸入、圧縮および吐出を行う圧縮機構部4と、この圧縮機構部4を駆動するモータ5と、圧縮機構部4を含む各摺動部の潤滑に供する液を貯留する貯液部6を本体ケーシング3に内蔵し、モータ5をモータ駆動回路部により駆動するスクロール圧縮機1であればよく、以下の説明に限定されるものではない。
 圧縮機構部4は、鏡板12aに渦巻状のラップ12bを直立して形成した旋回スクロール12と、旋回スクロール12と組み合わされ鏡板11aに渦巻状のラップ11bを直立して形成した固定スクロール11と、固定スクロール11との間に旋回スクロール12を配置するとともにシール部材24を保持する主軸受部材51とにより構成される。
 固定スクロール11は、鏡板11aの外周部に吸入口16を、鏡板11aの中央部に吐出口31を形成している。旋回スクロール12は、背面に筒型ボス部12cを形成している。
 駆動軸14の一端には偏心軸14aが一体に形成され、偏心軸14aは、偏心転がり軸受43を介して筒型ボス部12cで支持されている。なお、偏心軸14aはブッシュ30を装着している。そして、偏心転がり軸受43の内輪43aは、ブッシュ30に嵌合されており、偏心転がり軸受43の外輪43bは、筒型ボス部12cにわずかな隙間をもってルーズに嵌合されている。また駆動軸14の一端側は、主転がり軸受42を介して主軸受部材51で支持されている。
 シール部材24は、旋回スクロール12の鏡板12aの背面に配置される。旋回スクロール12の鏡板12aの背面は、シール部材24の内側が高圧領域21、シール部材24の外側が背圧室22を形成するようにシール部材24によって区画されている。
 高圧領域21は、筒型ボス部12c内部と偏心転がり軸受43とによって囲まれる第1の高圧領域21aと、主軸受部材51、筒型ボス部12c外部、偏心転がり軸受43、及び主転がり軸受42によって囲まれる第2の高圧領域21bからなる。第2の高圧領域21bの下部は油溜まりを構成する。
 旋回スクロール12の鏡板12aには、高圧領域21から背圧室22に潤滑油7を供給する背圧室給油経路25が形成されている。背圧室給油経路25は、第1の高圧領域21aに連通する第1の背圧室給油経路25aと、一方の開口25cがシール部材24を往来する第2の背圧室給油経路25bとから構成され、第1の背圧室給油経路25aと第2の背圧室給油経路25bとは連通している。
 圧縮室給油経路26は、旋回スクロール12の内部に形成された通路26aと、固定スクロール11の鏡板11aのラップ底面に形成された凹部26bとから構成され、背圧室22から圧縮室10に潤滑油7を供給する。通路26aの圧縮室側開口26cは旋回スクロール12の渦巻状のラップ12b歯先に形成されており、旋回スクロール12の旋回運動にあわせて周期的に凹部26bに重なることで、背圧室22と圧縮室10が間欠的に連通する。
 圧縮室10は、固定スクロール11の渦巻状のラップ11bと旋回スクロール12の渦巻状のラップ12bを噛み合わせて形成され、旋回スクロール12を固定スクロール11に対し旋回運動をさせたときに、移動を伴い容積を変化させる。外部サイクルから帰還する冷媒ガスは、吸入口16から圧縮室10に吸入され、圧縮室10で圧縮された冷媒ガスは、吐出口31から吐出室62に吐出される。
 本体ケーシング3には圧縮された冷媒ガスを吐出する吐出口9が設けられ、サブケーシング80には圧縮する冷媒ガスを吸入する吸入口8が設けられている。本体ケーシング3とサブケーシング80によって容器が構成される。
 さらに、スクロール圧縮機1は、本体ケーシング3内の軸線方向の一方の端部壁3a側から順に、ポンプ13、副転がり軸受41、モータ5、主転がり軸受42を持った主軸受部材51を配置してある。ポンプ13は端部壁3aの外面から収容され、蓋体52で嵌め付け固定される。また、蓋体52の内側にはポンプ室53を形成し、ポンプ室53は吸上げ通路54を介して貯液部6に通じている。副転がり軸受41は、端部壁3aにて支持され、駆動軸14のポンプ13に連結している側を軸支してある。モータ5は、固定子5aと回転子5bから構成され、駆動軸14を回転駆動する。固定子5aは本体ケーシング3の内周に焼き嵌めなどにより固定され、回転子5bは駆動軸14に固定されている。
 主軸受部材51はサブケーシング80の内周にボルト17などにて固定され、駆動軸14の圧縮機構部4側を主転がり軸受42により軸受している。主軸受部材51の外面には、固定スクロール11を図示しないボルトなどによって取付け、旋回スクロール12は主軸受部材51と固定スクロール11との間に挟み込まれている。主軸受部材51と旋回スクロール12との間には、旋回スクロール12の自転を防止して旋回運動させるためのオルダムリング57が設けられている。
 圧縮機構部4のサブケーシング80からの露出部分は、本体ケーシング3により覆われる。サブケーシング80は、端部壁3aと軸線方向の反対側に端部壁80aを形成している。本体ケーシング3とサブケーシング80とはそれぞれの開口同志を突き合わせてボルト18にて固定される。圧縮機構部4はサブケーシング80の吸入口8と本体ケーシング3の吐出口9との間に位置し、固定スクロール11の吸入口16がサブケーシング80の吸入口8と接続され、固定スクロール11の吐出口31がリード弁31aを介して吐出室62と接続されている。吐出室62は固定スクロール11および主軸受部材51に形成した連絡通路63によってモータ5側の空間に通じている。連絡通路63は、固定スクロール11および主軸受部材51と本体ケーシング3との間に形成してもよい。
 モータ5は、モータ駆動回路部によって駆動され、駆動軸14を介して圧縮機構部4を旋回運動させるとともに、ポンプ13を駆動する。このとき圧縮機構部4はポンプ13により貯液部6の潤滑油7が供給されて潤滑およびシール作用を受ける。吐出室62に吐出された冷媒ガスは、連絡通路63からモータ5を通過し、モータ5を冷却しながら本体ケーシング3の吐出口9から吐出される。容器内において冷媒ガスに含まれる潤滑油7は、衝突や絞り作用によって冷媒ガスから分離し、副転がり軸受41の潤滑を行う。
 本体ケーシング3の貯液部6に貯留されている潤滑油7は、駆動軸14にてポンプ13を駆動することで、駆動軸14内に形成した給油路15に供給される。給油路15の出口は偏心軸14aの端部に形成されている。なお、給油路15への潤滑油7の供給は、ポンプ13の駆動に代えて本体ケーシング3内の差圧を利用してもよい。
 ここで、図2を用いて圧縮機構部4における潤滑油7の流れを説明する。
 旋回スクロール12の旋回駆動に伴い、給油路15からの潤滑油7は第1の高圧領域21aに供給される。
 図2(a)の状態では、背圧室給油経路25の一方の開口25cがシール部材24に対して高圧領域21側に位置し、潤滑油7は背圧室22に供給されない。
 この状態では、第1の高圧領域21aに供給された潤滑油7の一部は、偏心転がり軸受43を経て第2の高圧領域21bに供給される。また、第1の高圧領域21aに供給された潤滑油7の別の一部は、第2の背圧室給油経路25bの一方の開口25cがシール部材24の内側に位置することにより、第1の高圧領域21aから第2の高圧領域21bに供給される。このようにして第2の高圧領域21bに供給された潤滑油7は、主転がり軸受42を経てモータ5側空間に流出し、貯液部6へと回収される。
 図2(b)の状態では、背圧室給油経路25の一方の開口25cがシール部材24の外側に位置することにより、第1の高圧領域21aに供給された潤滑油7の一部が背圧室22に供給され、旋回スクロール12の背圧をバックアップする。
 さらに、図2(a)の状態で、背圧室22に供給された潤滑油7は、背圧室22から圧縮室給油経路26の圧縮室側開口26cと固定スクロール11の鏡板11aのラップ底面に形成された凹部26bとの連通によって圧縮室23に供給され、固定スクロール11と旋回スクロール12との間のシールおよび潤滑を図る。なお、図2(b)に示すように、圧縮室側開口26cと凹部26bとが連通しない位置の時には圧縮室23に潤滑油7は供給されない。
 図3(a)、(b)、(c)、(d)は、固定スクロール11に対する旋回スクロール12の位相を90度ずつずらした状態を示している。
 なお、図に示すように、凹部26bは、作動流体である冷媒ガスを閉じ込んだ後の圧縮室10aに設け、冷媒ガスを閉じ込む前の状態の圧縮室10bには設けない。すなわち、圧縮室給油経路26を介して背圧室22が連通する圧縮室10を、作動流体を閉じ込んだ後の圧縮室10aとすることで、旋回スクロール12が固定スクロール11から離れることで能力が低下してしまう、いわゆるチルティング現象を防止することができる。また仮にチルティングが発生しても、圧縮室10の圧力を背圧室22へと導くことが可能であるため、正常運転への早期復帰が可能となる。
 図3に示すよう構成の場合、図3(d)の状態で、圧縮室側開口26cが凹部26bに重なることで、潤滑油7は、圧縮室給油経路26を通って、背圧室22から圧縮室10に供給される。
 これに対し図3(a)、(b)、(c)の状態では、圧縮室側開口26cが凹部26bに重ならないため、背圧室22から圧縮室10に潤滑油7が供給されることはない。
 図4(a)、(b)、(c)、(d)は、図3と同様に位相を90度ずつずらした状態を示している。
 図4に示すように、シール部材24で、旋回スクロール12の背面を、内側の高圧領域21と外側の背圧室22に仕切っている。
 図4(b)の状態で、開口25cがシール部材24の外側である背圧室22に開口しているため、潤滑油7が高圧領域21から背圧室22へ供給される。
 これに対し図4(a)、(c)、(d)の状態では、開口25cはシール部材24の内側である高圧領域21に開口しているため、潤滑油7が高圧領域21から背圧室22へ供給されることはない。
 ここで、本実施の形態では、高圧領域21から背圧室22に潤滑油7を供給する背圧室給油経路25と、背圧室22から圧縮室10に潤滑油7を供給する圧縮室給油経路26を備え、背圧室給油経路25の一方の開口25cがシール部材24を往来することで、高圧領域21と背圧室22が間欠的に連通し、圧縮室給油経路26が、旋回スクロール12の内部に形成された通路26aと、固定スクロール11の鏡板11aのラップ底面に形成された凹部26bから構成され、通路26aの圧縮室側開口26cが旋回スクロールの旋回運動にあわせて周期的に凹部26bに開口することで、背圧室22と圧縮室10が間欠的に連通するものである。この構成によれば、図4(b)に示すように背圧室給油経路25が高圧領域21から背圧室22へ連通する位相と図3(d)に示すように圧縮室給油経路26が背圧室22から圧縮室10へ連通する位相が重ならない位置に背圧室給油経路25および圧縮室給油経路26を配置することができるため、図5に示すように背圧室給油経路25と圧縮室給油経路26が同時に連通することがない。よって、圧縮機の停止後に潤滑油7が高圧領域21から背圧室22を経て圧縮室10まで連通給油されることを防止することができ、貯液部6の潤滑油7が減少することがなく、また圧縮室10に潤滑油7が充満することもないため、安定した再起動が可能となり再起動後の信頼性が向上する。
 また、本実施の形態の圧縮室給油経路26の圧縮室側開口26cが連通する圧縮室10を、作動流体を閉じこんだ後の圧縮室10aとしたことにより、旋回スクロール12が固定スクロール11から離れることで能力が低下してしまう、いわゆるチルティング現象を防止することができる。また仮にチルティングが発生しても、圧縮室10の圧力を背圧室22へと導くことが可能であるため、正常運転への早期復帰が可能となる。
 以上のように、本発明にかかるスクロール圧縮機は、高圧領域から背圧室に潤滑油を供給する背圧室給油経路と、背圧室から圧縮室に潤滑油を供給する圧縮室給油経路を備え、背圧室給油経路の一方の開口がシール部材を往来することで、高圧領域と背圧室が間欠的に連通し、圧縮室給油経路が、旋回スクロールの内部に形成された通路と、固定スクロールの鏡板に形成された凹部とから構成され、通路の一方の開口が旋回スクロールの旋回運動にあわせて周期的に凹部に重なることで、背圧室と圧縮室が間欠的に連通するものである。この構成によれば、高圧領域から背圧室への連通と背圧室から圧縮室への連通が同時に起こらない位置関係に背圧室給油経路および圧縮室給油経路を配置することができるため、圧縮機の停止後に潤滑油が高圧領域から背圧室を経て圧縮室まで連通給油されることを防止することができ、貯液部の潤滑油が減少することがなく、また圧縮室に潤滑油が充満することもないため、安定した再起動が可能となり再起動後の信頼性の向上が図れるので、作動流体を冷媒と限ることなく、空気スクロール圧縮機、真空ポンプ、スクロール型膨張機等のスクロール流体機械の用途にも適用できる。
 1 スクロール圧縮機
 3 本体ケーシング
 4 圧縮機構部
 5 モータ
 6 貯液部
 7 潤滑油
 10 圧縮室
 11 固定スクロール
 11a 鏡板
 11b 渦巻状のラップ
 12 旋回スクロール
 12a 鏡板
 12b 渦巻状のラップ
 12c 筒型ボス部
 13 ポンプ
 14 駆動軸
 15 給油路
 15a 駆動軸給油経路
 21 高圧領域
 21a 第1の高圧領域
 21b 第2の高圧領域
 22 背圧室
 23 圧縮室
 24 シール部材
 25 背圧室給油経路
 25a 第1の背圧室給油経路
 25b 第2の背圧室給油経路
 25c 開口
 26 圧縮室給油経路
 26a 通路
 26b 凹部
 26c 圧縮室側開口

Claims (2)

  1. 容器内にモータと圧縮機構部とを収納し、前記圧縮機構部を、鏡板に渦巻状のラップを直立して形成した旋回スクロールと、前記旋回スクロールと組み合わされ鏡板に渦巻状のラップを直立して形成した固定スクロールと、前記固定スクロールとの間に前記旋回スクロールを配置するとともにシール部材を保持する主軸受部材と、前記旋回スクロールと前記固定スクロールとの間に圧縮室が形成され、前記旋回スクロールの背面に前記シール部材によって区画形成される高圧領域及び背圧室と、前記高圧領域から前記背圧室に潤滑油を供給する背圧室給油経路と、前記背圧室から前記圧縮室に潤滑油を供給する圧縮室給油経路とを備え、前記圧縮室給油経路が、前記旋回スクロールの内部に形成された通路と、前記固定スクロールの前記鏡板に形成された凹部とから構成され、前記通路の一方の開口が前記旋回スクロールの旋回運動にあわせて周期的に前記凹部に重なることで、前記背圧室と前記圧縮室が間欠的に連通するとともに、前記背圧室給油経路の一方の開口が前記シール部材を往来することで、前記高圧領域と前記背圧室が間欠的に連通するスクロール圧縮機であって、前記高圧領域から前記背圧室への連通と前記背圧室から前記圧縮室への連通が同時に起こらない位置関係に前記背圧室給油経路および前記圧縮室給油経路を配置したことを特徴とするスクロール圧縮機。
  2. 前記圧縮室給油経路の圧縮室側開口が連通する圧縮室は、作動流体を閉じこんだ後の圧縮室であることを特徴とする請求項1に記載のスクロール圧縮機。
PCT/JP2011/003264 2010-06-11 2011-06-09 スクロール圧縮機 WO2011155208A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11792167.6A EP2581603B1 (en) 2010-06-11 2011-06-09 Scroll compressor
US13/388,344 US9239052B2 (en) 2010-06-11 2011-06-09 Scroll compressor having out-of-phase back pressure chamber and compression chamber oil-feeding paths
CN201180003182.2A CN102472274B (zh) 2010-06-11 2011-06-09 涡旋式压缩机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-133630 2010-06-11
JP2010133630A JP5359997B2 (ja) 2010-06-11 2010-06-11 スクロール圧縮機

Publications (1)

Publication Number Publication Date
WO2011155208A1 true WO2011155208A1 (ja) 2011-12-15

Family

ID=45097823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003264 WO2011155208A1 (ja) 2010-06-11 2011-06-09 スクロール圧縮機

Country Status (5)

Country Link
US (1) US9239052B2 (ja)
EP (1) EP2581603B1 (ja)
JP (1) JP5359997B2 (ja)
CN (1) CN102472274B (ja)
WO (1) WO2011155208A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5701230B2 (ja) * 2012-02-14 2015-04-15 日立アプライアンス株式会社 スクロール圧縮機
US9657737B2 (en) 2013-07-31 2017-05-23 Trane International Inc. Scroll compressor with pressurized oil balance piston
JP6330345B2 (ja) * 2014-01-29 2018-05-30 株式会社デンソー 圧縮機の取付構造
US9989059B2 (en) * 2014-04-04 2018-06-05 Ford Global Technologies, Llc Noise-reduction mechanism for oil pump
WO2020008902A1 (ja) * 2018-07-06 2020-01-09 パナソニックIpマネジメント株式会社 スクロール圧縮機

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006070807A (ja) * 2004-09-02 2006-03-16 Matsushita Electric Ind Co Ltd スクロール圧縮機
JP2007182870A (ja) * 2005-12-05 2007-07-19 Matsushita Electric Ind Co Ltd スクロール圧縮機
JP2008014283A (ja) 2006-07-10 2008-01-24 Matsushita Electric Ind Co Ltd スクロール圧縮機
JP2009052463A (ja) * 2007-08-27 2009-03-12 Panasonic Corp スクロール圧縮機
JP2010106751A (ja) * 2008-10-30 2010-05-13 Panasonic Corp 密閉型スクロール圧縮機

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59185892A (ja) * 1983-04-05 1984-10-22 Toyoda Autom Loom Works Ltd スクロ−ル型圧縮機
JP2956509B2 (ja) * 1995-01-17 1999-10-04 松下電器産業株式会社 スクロール気体圧縮機
US6074186A (en) 1997-10-27 2000-06-13 Carrier Corporation Lubrication systems for scroll compressors
CN102016319B (zh) * 2008-04-22 2013-11-06 松下电器产业株式会社 涡旋压缩机
WO2009130878A1 (ja) * 2008-04-22 2009-10-29 パナソニック株式会社 スクロール圧縮機
JP2010121577A (ja) * 2008-11-21 2010-06-03 Panasonic Corp スクロール圧縮機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006070807A (ja) * 2004-09-02 2006-03-16 Matsushita Electric Ind Co Ltd スクロール圧縮機
JP2007182870A (ja) * 2005-12-05 2007-07-19 Matsushita Electric Ind Co Ltd スクロール圧縮機
JP2008014283A (ja) 2006-07-10 2008-01-24 Matsushita Electric Ind Co Ltd スクロール圧縮機
JP2009052463A (ja) * 2007-08-27 2009-03-12 Panasonic Corp スクロール圧縮機
JP2010106751A (ja) * 2008-10-30 2010-05-13 Panasonic Corp 密閉型スクロール圧縮機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2581603A4 *

Also Published As

Publication number Publication date
US9239052B2 (en) 2016-01-19
CN102472274B (zh) 2016-01-20
EP2581603A4 (en) 2014-05-28
JP2011256819A (ja) 2011-12-22
EP2581603A1 (en) 2013-04-17
US20120128518A1 (en) 2012-05-24
EP2581603B1 (en) 2016-06-08
JP5359997B2 (ja) 2013-12-04
CN102472274A (zh) 2012-05-23

Similar Documents

Publication Publication Date Title
JP5491420B2 (ja) スクロール圧縮機
JPWO2005038254A1 (ja) スクロール圧縮機
JP5359997B2 (ja) スクロール圧縮機
JP2007085297A (ja) スクロール圧縮機
JP6748874B2 (ja) 密閉型圧縮機
JP5786130B2 (ja) スクロール圧縮機
JP5136018B2 (ja) 電動圧縮機
JP2010138749A (ja) スクロール型流体機械
JP2010031729A (ja) スクロール圧縮機
JP2008002419A (ja) スクロール圧縮機
WO2013084486A1 (ja) スクロール圧縮機
WO2013150714A1 (ja) スクロール圧縮機
JP5141432B2 (ja) スクロール圧縮機
JP4301122B2 (ja) スクロール圧縮機
JP2006037896A (ja) スクロール圧縮機
JP3858580B2 (ja) 密閉型電動圧縮機
JP4301120B2 (ja) スクロール圧縮機
JP2006291763A (ja) スクロール圧縮機
JP2010121578A (ja) スクロール圧縮機
JP2013185532A (ja) スクロール圧縮機
JP2006336541A (ja) スクロール圧縮機
JP2012021451A (ja) 圧縮機
JP2006009613A (ja) スクロール圧縮機
JP2012097654A (ja) スクロール圧縮機
JPH08312560A (ja) 電動圧縮機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180003182.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11792167

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13388344

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011792167

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE