WO2009130878A1 - スクロール圧縮機 - Google Patents
スクロール圧縮機 Download PDFInfo
- Publication number
- WO2009130878A1 WO2009130878A1 PCT/JP2009/001799 JP2009001799W WO2009130878A1 WO 2009130878 A1 WO2009130878 A1 WO 2009130878A1 JP 2009001799 W JP2009001799 W JP 2009001799W WO 2009130878 A1 WO2009130878 A1 WO 2009130878A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compression chamber
- path
- scroll
- back pressure
- chamber
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C23/00—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
- F04C23/008—Hermetic pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/02—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
- F04C18/0207—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
- F04C18/0246—Details concerning the involute wraps or their base, e.g. geometry
- F04C18/0253—Details concerning the base
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/02—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
- F04C18/0207—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
- F04C18/0246—Details concerning the involute wraps or their base, e.g. geometry
- F04C18/0269—Details concerning the involute wraps
- F04C18/0292—Ports or channels located in the wrap
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C27/00—Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
- F04C27/005—Axial sealings for working fluid
Definitions
- the present invention relates to a scroll compressor used for a cooling device such as an air conditioning air conditioner or a refrigerator, or a heat pump type hot water supply device.
- scroll compressors used for refrigeration air conditioners and refrigerators generally engage a fixed scroll and a turning scroll in which a spiral wrap rises from an end plate to form a compression chamber therebetween. Then, when the orbiting scroll is orbited along the circular orbit under the rotation restraint by the rotation restraining mechanism, the compression chamber moves while changing the volume, thereby performing suction, compression and discharge. The working fluid is gradually compressed with the turning motion of the orbiting scroll, and becomes a high pressure state toward the center. Therefore, a separation force acts on the orbiting scroll in a direction away from the fixed scroll. As a result, there is a gap between the orbiting scroll and the fixed scroll, so that leakage occurs during compression, causing performance deterioration.
- FIG. 32 is a cross-sectional view of a compression mechanism of a conventional scroll compressor described in Patent Document 1.
- the orbiting scroll 103 is provided with a communication passage 122 provided on an end plate of the orbiting scroll 103 and communicating from the compression chamber side opening 122c opening to the compression chamber 114 side to the back pressure chamber side opening 122b opening to the back pressure chamber 112. With the pivoting motion, the communication chamber 122 is connected and closed by opening and closing the compression chamber side opening 122c by the end plate of the fixed scroll 102.
- the conventional configuration does not disclose any oil supply to the back pressure chamber 112. That is, since the rotation restraint mechanism 108 represented by the Oldham ring is disposed in the back pressure chamber 112, oil for lubrication is required. Therefore, the oil in the oil reservoir is usually guided and supplied to the back pressure chamber 112. However, the oil in the oil reservoir is in a high pressure state. For this reason, if a large amount of oil is supplied, the pressure in the back pressure chamber 112 increases, and an excessive back pressure may be applied to the orbiting scroll 103. When an excessive back pressure is applied, the thrust load increases, which causes deterioration in performance and reliability. In addition, oil is supplied from the back pressure chamber 112 to the compression chamber 114 via the communication passage 122.
- asymmetric scroll compressor in which the suction volume of the outer compression chamber formed on the outer wall side of the wrap of the orbiting scroll is different from the suction volume of the inner compression chamber formed on the inner wall side.
- the leakage from the inner compression chamber to the one low pressure side inner compression chamber is greater than the leakage from the outer compression chamber to the one low pressure side outer compression chamber.
- the inner compression chamber having a smaller suction volume has a feature that the pressure increase rate with respect to the crank angle is larger due to the difference in the suction volume. Have.
- the scroll compressor according to the first aspect of the present invention is configured such that a fixed scroll and a turning scroll where a spiral wrap rises from an end plate are meshed to form a compression chamber therebetween, and a high pressure region and a back are formed on the back of the turning scroll.
- a pressure chamber is formed, and the orbiting scroll reciprocates with a predetermined orbiting radius along a circular orbit by regulation by a rotation restraining mechanism, so that the compression chamber moves toward the center while changing the volume, and the fixed A scroll compressor that sucks a working fluid from a suction port formed in the scroll and performs a series of operations of compression and discharge, a first path that intermittently communicates the high pressure region and the back pressure chamber; A second path for intermittently communicating the back pressure chamber and the compression chamber is provided.
- the communication ratio of the second path is equal to or greater than the communication ratio of the first path.
- the first path is communicated only when the second path is in communication.
- the back pressure chamber communicates with only one of the pair of compression chambers via the second path.
- the minimum path cross-sectional area in the second path is made larger than the minimum path cross-sectional area in the first path.
- a seal member is disposed on the back surface of the orbiting scroll, and the high pressure region and the back pressure chamber are partitioned by the seal member.
- one open end of the first path travels through the seal member.
- the invention according to claim 8 is the scroll compressor according to claim 1, wherein the second path leads from the back pressure chamber through the inside of the orbiting scroll to the wrap tip of the orbiting scroll. It is comprised from the control path
- the present invention according to claim 9 is the scroll compressor according to claim 1, wherein the second path leads from the back pressure chamber to the thrust surface of the orbiting scroll through the inside of the orbiting scroll.
- the second control path is intermittently opened in the wrap groove of the fixed scroll by the turning movement.
- a compatible refrigerating machine oil is used in the scroll compressor according to the first aspect.
- the present invention according to claim 11 is the scroll compressor according to claim 1, characterized in that a third path that communicates the high pressure region and the compression chamber is provided.
- the second path communicates with the inner compression chamber, and the third path communicates with the outer compression chamber, or The second path is communicated with the outer compression chamber, and the third path is communicated with the inner compression chamber.
- the third path is provided inside the orbiting scroll, and the opening end of the third path on the compression chamber side is the orbiting. It is provided at the tip of the scroll wrap.
- a concave portion that is always in communication with the compression chamber is provided at the opening end.
- the third path is intermittently communicated with the high pressure region and the compression chamber.
- the opening end of the third path on the compression chamber side is provided at a tip of the wrap of the scroll, and the orbiting scroll is turned.
- a concave portion is provided on the bottom surface of the wrap groove of the fixed scroll so as to open intermittently.
- the third path is provided inside the orbiting scroll, and the opening end of the third path on the compression chamber side is the orbiting. It is provided on the bottom surface of the scroll lap groove.
- the present invention according to claim 18 is the scroll compressor according to claim 11, wherein the opening end on the high pressure region side of the first path and the opening end on the high pressure region side of the third path are the same. It is characterized by its position.
- the second path is provided on a thrust surface of the fixed scroll.
- the scroll compressor of the present invention according to claim 20 forms a compression chamber between the fixed scroll and the orbiting scroll where the spiral wrap rises from the end plate, and the compression chamber is formed outside the wrap of the orbiting scroll.
- a back pressure chamber is formed, and the orbiting scroll revolves with a predetermined orbiting radius along a circular orbit, so that the compression chamber moves toward the center while changing the volume, and is formed on the fixed scroll.
- a scroll compressor that performs a series of operations of compression and discharge after sucking a working fluid from a suction port and confining it in the compression chamber.
- the compression chamber or the inner compression chamber is intermittently opened, and the total oil supply amount to the inner compression chamber is larger than the total oil supply amount to the outer compression chamber.
- the compression chamber side opening end of the fourth path is provided at a wrap end of the orbiting scroll, and the compression chamber side opening end is Along with the orbiting movement of the orbiting scroll, it is intermittently opened in a recess provided on the bottom surface of the wrap groove of the fixed scroll.
- the compression chamber side opening end of the fourth path is on the bottom surface of the wrap groove of the orbiting scroll or on the thrust surface of the orbiting scroll.
- a plurality of the compression chamber side opening ends periodically move on the lap ends of the compression chamber and the fixed scroll or on the thrust surfaces of the compression chamber and the fixed scroll in accordance with the orbiting motion of the orbiting scroll.
- the compression chamber is intermittently opened.
- an opening end on the back pressure chamber side of the first path is provided on the back surface of the orbiting scroll so that the high pressure region and the back compressor are provided.
- a seal member for partitioning the pressure chamber is moved back and forth.
- a fifth path that communicates the back pressure chamber and the compression chamber that communicates with the suction port is provided.
- a sixth path is provided to communicate the high pressure region and a compression chamber communicating with the suction port.
- the compression chamber side opening end of the fifth path is provided at a wrap front end of the orbiting scroll.
- the compression chamber side opening end of the sixth path is provided at a wrap front end of the orbiting scroll.
- the compression chamber side opening end of the fifth path is provided at a wrap end of the orbiting scroll, and the compression chamber side opening end is Along with the orbiting movement of the orbiting scroll, it is intermittently opened in a recess provided on the bottom surface of the wrap groove of the fixed scroll.
- the present invention according to claim 29 is the scroll compressor according to claim 25, wherein the compression chamber side opening end of the sixth path is provided at the wrap end of the orbiting scroll, and the compression chamber side opening end is Along with the orbiting movement of the orbiting scroll, it is intermittently opened in a recess provided on the bottom surface of the wrap groove of the fixed scroll.
- a plurality of opening ends on the compression chamber side of the fifth path are provided on a bottom surface of the wrap groove of the orbiting scroll or a thrust surface of the orbiting scroll.
- the compression chamber side opening end periodically moves between the compression chamber and the fixed scroll wrap tip, or the thrust chamber of the compression chamber and the fixed scroll.
- the compression chamber is intermittently opened.
- a plurality of compression chamber side opening ends of the sixth path are provided on a bottom surface of the wrap groove of the orbiting scroll or a thrust surface of the orbiting scroll.
- the compression chamber side opening end periodically moves between the compression chamber and the fixed scroll wrap tip, or the thrust chamber of the compression chamber and the fixed scroll.
- the compression chamber is intermittently opened.
- the working fluid is a high-pressure fluid such as carbon dioxide.
- the scroll compressor according to the present invention intermittently communicates the high pressure region and the back pressure chamber, and the back pressure chamber and the compression chamber, thereby preventing excessive back pressure and allowing stable back pressure to be applied.
- the scroll compressor of this invention can apply the stable pressure to the back pressure chamber formed in the back surface of a turning scroll. At the same time, an appropriate amount of oil can be supplied to the compression chamber formed between the two.
- the scroll compressor according to the present invention supplies the oil to the inner compression chamber and the outer compression chamber that do not communicate with the suction port, and increases the total oil supply amount to the inner compression chamber from the total oil supply amount to the outer compression chamber. To do. Thereby, since the leakage of the working fluid from the spiral wrap side surface gap between both the compression chambers can be effectively suppressed, the compression efficiency can be improved. At the same time, by intermittently supplying oil to these compression chambers, the range of oil supply amount control can be expanded in the direction of reducing the oil supply amount. Thereby, since the increase in the viscosity loss due to the excessive amount of oil supply can be suppressed, a highly efficient scroll compressor can be provided.
- Sectional drawing of the compression mechanism of the scroll compressor of FIG. 2 is a cross-sectional view of the compression mechanism of FIG. 2 in a state where the fixed scroll and the orbiting scroll are engaged with each other.
- FIG. 7 is a cross-sectional view of the compression mechanism of FIG.
- Sectional drawing of the compression mechanism of the scroll compressor of FIG. 10 is a cross-sectional view of the compression mechanism of FIG. 10 with the fixed scroll and the orbiting scroll engaged with each other.
- Sectional drawing of the compression mechanism of the scroll compressor in 4th Example of this invention is a cross-sectional view of the compression mechanism of FIG. 10 with the fixed scroll and the orbiting scroll engaged with each other.
- Sectional drawing of the compression mechanism of the scroll compressor in 4th Example of this invention Sectional drawing of the compression mechanism of the scroll compressor in 5th Example of this invention.
- Sectional drawing of the compression mechanism of the scroll compressor in 6th Example of this invention 14 is a cross-sectional view of the compression mechanism of FIG. 14 with the fixed scroll and the orbiting scroll engaged with each other.
- Sectional drawing of the compression mechanism of the scroll compressor in 7th Example of this invention Sectional drawing of the compression mechanism of the scroll compressor in 7th Example of this invention
- the top view in the state which meshed the fixed scroll and turning scroll of the compression mechanism of FIG. 16 and FIG. FIG. 16 and FIG. 17 are cross-sectional views in a state where the fixed scroll and the orbiting scroll are engaged with each other.
- Sectional drawing of the compression mechanism of the scroll compressor in the 8th Example of this invention. 20 and 21 are cross-sectional views of the scroll compressor in a state where the fixed scroll and the orbiting scroll are engaged with each other.
- Sectional drawing of the compression mechanism of the scroll compressor in 9th Example of this invention Sectional drawing of the compression mechanism of the scroll compressor in 9th Example of this invention Cross-sectional view of the scroll compressor of FIGS. 23 and 24 with the fixed scroll and the orbiting scroll engaged with each other Sectional drawing of the compression mechanism of the scroll compressor in the other Example of this invention.
- Sectional drawing of the compression mechanism of the scroll compressor in the other Example of this invention Sectional drawing of the compression mechanism of the scroll compressor in 10th Example of this invention.
- Sectional drawing of the compression mechanism of the scroll compressor in 10th Example of this invention Sectional drawing of the compression mechanism of the scroll compressor in 10th Example of this invention.
- Sectional drawing of the compression mechanism of the scroll compressor in the other Example of this invention Sectional drawing of the compression mechanism of the scroll compressor in the other Example of this invention.
- Sectional drawing of the compression mechanism of the scroll compressor in the other Example of this invention Sectional view of the compression mechanism of a conventional scroll compressor.
- the scroll compressor according to the first embodiment of the present invention includes a first path that intermittently communicates the high pressure region and the back pressure chamber, and a second path that intermittently communicates the back pressure chamber and the compression chamber. Is provided. According to the present embodiment, excessive back pressure can be prevented and stable back pressure can be applied. In addition, since the amount of oil supplied from the high pressure region to the back pressure chamber can be controlled by the communication ratio, it is not necessary to restrict the pores, and foreign matter biting and blockage can be eliminated. Therefore, it is possible to provide a scroll compressor that realizes high efficiency and high reliability.
- the second embodiment of the present invention is such that the communication ratio of the second path is equal to or greater than the communication ratio of the first path.
- the back pressure chamber since the section communicating with the compression chamber from the back pressure chamber is longer than the section supplying oil from the high pressure region to the back pressure chamber in one rotation, the back pressure chamber There is no risk of abnormally rising pressure. That is, since no excessive back pressure is applied to the orbiting scroll, it is possible to provide a scroll compressor that realizes high efficiency and high reliability.
- the third embodiment of the present invention is such that the first path communicates only when the second path communicates in the scroll compressor according to the first embodiment.
- the oil is always in communication with the compression chamber while oil is supplied from the high pressure region to the back pressure chamber. Therefore, oil does not collect in the back pressure chamber, and the back pressure does not rise abnormally.
- the back pressure chamber communicates with only one of the pair of compression chambers via the second path. is there.
- the back pressure chamber communicates with only one compression chamber, the fluctuation of the back pressure per rotation is small, and as a result, it becomes easy to set the back pressure chamber to a predetermined back pressure. Further, since there is no fear of backflow from the back pressure chamber to the compression chamber in the stable state, it is possible to provide a scroll compressor that realizes high efficiency and high reliability.
- the minimum path cross-sectional area in the second path is made larger than the minimum path cross-sectional area in the first path.
- the oil outflow resistance from the back pressure chamber can be reduced with respect to the oil inflow resistance into the back pressure chamber. Therefore, the pressure in the back pressure chamber can be made to depend on the pressure in the compression chamber regardless of the fluctuation of the high pressure. That is, since no excessive back pressure is applied to the orbiting scroll, it is possible to provide a scroll compressor that realizes high efficiency and high reliability.
- a seal member is disposed on the back surface of the orbiting scroll, and the high pressure region and the back pressure chamber are partitioned by the seal member. According to the present embodiment, it is possible to prevent leakage of pressure from the high pressure region to the back pressure chamber, so that oil inflow into the back pressure chamber can be controlled only by the first path. That is, it becomes easy to set a predetermined back pressure, and at the same time, a stable back pressure can be applied, so that it is possible to provide a scroll compressor that realizes high efficiency and high reliability.
- the seventh embodiment of the present invention is such that, in the scroll compressor according to the sixth embodiment, one open end of the first path travels through the seal member.
- the back pressure is applied only when a pressure difference is generated between the open ends of the first path due to one open end of the first path moving between the high pressure region and the back pressure chamber. Oil is supplied to the chamber. That is, the oil supply can be adjusted at a rate at which the opening end moves back and forth between the sealing members, so that it is not necessary to restrict the pores and the like, and foreign matter biting and blockage can be eliminated. Therefore, it is possible to provide a scroll compressor that realizes high efficiency and high reliability.
- the second path leads from the back pressure chamber through the inside of the orbiting scroll to the wrap tip of the orbiting scroll.
- the first control path opens intermittently in the recess by a turning motion.
- the back pressure chamber can be intermittently communicated with an arbitrary compression chamber by the control path and the recess.
- the scroll compressor requires different back pressure depending on its application. However, in the present embodiment, any back pressure between the suction pressure and the discharge pressure can be dealt with. Therefore, it is possible to provide a scroll compressor that realizes high efficiency and high reliability according to the application.
- the second path leads from the back pressure chamber to the thrust surface of the orbiting scroll through the inside of the orbiting scroll.
- the second control path is intermittently opened in the wrap groove of the fixed scroll by the turning motion.
- the back pressure chamber and the compression chamber can be intermittently communicated by the second path going back and forth on the thrust surface (wrap outer peripheral portion) of the fixed scroll and the wrap groove.
- the element constituting the second path is only the control path formed in the orbiting scroll, the influence of the dimensional tolerance is small. That is, variations in the opening to the wrap groove are suppressed, and as a result, fluctuations in back pressure are also suppressed. Therefore, it is possible to provide a scroll compressor that realizes high efficiency and high reliability.
- the tenth embodiment of the present invention uses compatible refrigerating machine oil in the scroll compressor according to the first embodiment.
- the scroll compressor according to the first embodiment is provided with a third path communicating the high pressure region and the compression chamber.
- stable application of the back pressure can be realized by intermittently communicating the high pressure region and the back pressure chamber, and the back pressure chamber and the compression chamber.
- an appropriate amount of oil can be supplied to one of the compression chambers.
- an appropriate amount of oil can be supplied to the other compression chamber.
- the twelfth embodiment of the present invention is the scroll compressor according to the eleventh embodiment, wherein the second path communicates with the inner compression chamber and the third path communicates with the outer compression chamber, or The second path communicates with the outer compression chamber, and the third path communicates with the inner compression chamber.
- the thirteenth embodiment of the present invention is the scroll compressor according to the eleventh embodiment, wherein the third path is provided inside the orbiting scroll, and the opening end of the third path on the compression chamber side is the orbiting scroll. It is provided at the wrap tip. According to the present embodiment, since the opening end on the compression chamber side of the third path is provided at the tip end of the orbiting scroll, it is easy to adjust the installation position and shape of the opening end. Therefore, the optimal amount of oil can be supplied to the optimal position to the compression chamber, and a highly efficient scroll compressor can be realized.
- a recessed portion that always communicates with the compression chamber is provided at the open end.
- the oil that has passed through the third path is supplied to either the inner compression chamber or the outer compression chamber. can do.
- the shape and depth of the recess the amount of oil supplied to the compression chamber can be easily adjusted, and a highly efficient scroll compressor can be realized.
- the fifteenth embodiment of the present invention intermittently communicates the third path with the high pressure region and the compression chamber.
- the sixteenth embodiment of the present invention is the scroll compressor according to the fifteenth embodiment, wherein the compression chamber side opening end of the third path is provided at the scroll wrap tip, A recess is provided on the bottom surface of the wrap groove of the fixed scroll so as to open intermittently. According to the present embodiment, by adjusting the shape of the recess provided on the bottom surface of the wrap groove of the fixed scroll, the time required for the open end of the third path on the compression chamber side to communicate with the compression chamber can be easily controlled. can do.
- the third path is provided inside the orbiting scroll, and the opening end of the third path on the compression chamber side is the orbiting scroll. It is provided on the bottom surface of the wrap groove. According to this embodiment, since the orbiting scroll lap is not processed, the processing can be simplified. At the same time, a decrease in the rigidity of the orbiting scroll wrap can be suppressed.
- the opening end on the high pressure region side of the first path and the opening end on the high pressure region side of the third path are located at the same position. It is what. According to the present embodiment, it is possible to simplify the processing, unify the parts necessary for each path, and reduce the number of parts. Moreover, since the number of machining points is reduced, it is possible to suppress a decrease in rigidity of the orbiting scroll due to machining.
- the nineteenth embodiment of the present invention is the scroll compressor according to the first embodiment, wherein the second path is provided on the thrust surface of the fixed scroll. According to the present embodiment, excessive back pressure can be prevented and stable back pressure can be applied.
- the scroll compressor according to the twentieth embodiment of the present invention includes a first path that communicates the high pressure region and the back pressure chamber, and a fourth path that communicates the back pressure chamber and the compression chamber that does not communicate with the suction port. Provided, at least the compression chamber side opening end of the fourth path opens intermittently into the outer compression chamber or the inner compression chamber, and the total oil supply amount to the inner compression chamber is larger than the total oil supply amount to the outer compression chamber. Is.
- the compression chamber side opening end of the fourth path is provided at the wrap tip of the orbiting scroll, and the compression chamber side opening end is the orbiting. Along with the turning motion of the scroll, it opens intermittently in a recess provided in the bottom surface of the wrap groove of the fixed scroll.
- the oil supply amount can be controlled by the communication time depending on the diameter and length of the fourth path and the shape of the recess, so that the adjustment range of the oil supply amount into the compression chamber and the back pressure chamber
- the pressure adjustment range is expanded, and the efficiency of the compressor and the stability of the back pressure can be further improved.
- the compression chamber side opening end of the fourth path is plural on the bottom surface of the wrap groove of the orbiting scroll or on the thrust surface of the orbiting scroll.
- the compression chamber side opening end is intermittently moved to the compression chamber by periodically moving the lap end of the compression chamber and the fixed scroll or the thrust surface of the compression chamber and the fixed scroll in accordance with the orbiting movement of the orbiting scroll. It opens to.
- the fourth path can be formed only by drilling the end plate, so the number of processing steps can be reduced.
- the back pressure chamber side opening end of the first path is provided on the back surface of the orbiting scroll so that the high pressure region and the back pressure chamber are The seal member for partitioning is passed.
- the adjustment range of the oil supply amount to the compression chamber and the pressure adjustment range of the back pressure chamber are further expanded, and the efficiency of the compressor is increased.
- the stability of back pressure can be further improved. Even if there is a state in which the fourth path does not communicate between the back pressure chamber and the compression chamber during one rotation of the crankshaft, excessive back pressure rise can be achieved by intermittently communicating the first path. Can be suppressed.
- the amount of oil flowing from the high pressure region into the back pressure chamber can be controlled by the communication time. Therefore, there is no need to provide a throttle for adjusting the amount of oil in the first path, and troubles that foreign matter is caught in the throttle can be avoided and reliability can be improved.
- a fifth path is provided for communicating the back pressure chamber and the compression chamber communicating with the suction port.
- the oil supplied from the back pressure chamber serves as a seal for the compression chamber communicating with the suction. Therefore, the leakage of the working fluid in the suction stroke is suppressed and the volumetric efficiency is improved, so that the efficiency of the compressor can be further improved.
- a sixth path is provided that communicates a high-pressure region and a compression chamber that communicates with the suction port. According to the present embodiment, high-pressure oil is supplied to the compression chamber communicating with the suction.
- the twenty-sixth embodiment of the present invention is the scroll compressor according to the twenty-fourth embodiment, wherein the compression chamber side opening end of the fifth path is provided at the wrap tip of the orbiting scroll. According to the present embodiment, the water hammer phenomenon due to the opening and closing of the oil supply path does not occur, and noise caused by the working fluid can be reduced.
- the twenty-seventh embodiment of the present invention is the scroll compressor according to the twenty-fifth embodiment, wherein the compression chamber side opening end of the sixth path is provided at the wrap tip of the orbiting scroll.
- the oil supply amount can be controlled by the diameter and length of the sixth path and the shape of the counterbore formed at the tip. Therefore, the adjustment range of the oil supply amount into the compression chamber is widened, and the deterioration of volume efficiency due to suction heating is suppressed, so that the efficiency of the compressor can be improved.
- the compression chamber side opening end of the fifth path is provided at the wrap tip of the orbiting scroll, and the compression chamber side opening end is the orbiting. Along with the turning motion of the scroll, it opens intermittently in a recess provided in the bottom surface of the wrap groove of the fixed scroll.
- the oil supply amount can be controlled by the communication time between the compression chamber side opening end of the wrap tip of the orbiting scroll and the recess of the bottom surface of the wrap groove of the fixed scroll. Since deterioration of volumetric efficiency due to heating is suppressed, the efficiency of the compressor can be improved.
- the compression chamber side opening end of the sixth path is provided at the wrap tip of the orbiting scroll, and the compression chamber side opening end is the orbiting. Along with the turning motion of the scroll, it opens intermittently in a recess provided in the bottom surface of the wrap groove of the fixed scroll.
- the oil supply amount can be controlled by the communication time between the compression chamber side opening end of the wrap tip of the orbiting scroll and the recess of the bottom surface of the wrap groove of the fixed scroll. Since deterioration of volumetric efficiency due to heating is suppressed, the efficiency of the compressor can be improved.
- the thirtieth embodiment of the present invention is the scroll compressor according to the twenty-fourth embodiment, wherein the compression chamber side opening end of the fifth path is plural on the bottom surface of the wrap groove of the orbiting scroll or on the thrust surface of the orbiting scroll. As the orbiting scroll rotates, the compression chamber side opening end is intermittently moved to the compression chamber by periodically moving the compression chamber and fixed scroll wrap tip or the compression chamber and fixed scroll thrust surface. It opens to.
- the thirty-first embodiment of the present invention is the scroll compressor according to the twenty-fifth embodiment, wherein the compression chamber side opening end of the fifth path is plural on the bottom surface of the wrap groove of the orbiting scroll or on the thrust surface of the orbiting scroll. As the orbiting scroll rotates, the compression chamber side opening end is intermittently moved to the compression chamber by periodically moving the compression chamber and fixed scroll wrap tip or the compression chamber and fixed scroll thrust surface. It opens to.
- the working fluid is a high-pressure refrigerant, for example, carbon dioxide.
- the present embodiment even when the operating pressure increases, there is little fluctuation and a stable back pressure can be obtained. That is, the effect of the present invention can be remarkably exhibited, and a scroll compressor that realizes high efficiency and high reliability can be provided.
- FIG. 1 is a longitudinal sectional view of a scroll compressor according to a first embodiment of the present invention
- FIG. 2 is a sectional view of a compression mechanism of the scroll compressor of FIG.
- the configuration, operation, and action of the scroll compressor according to the first embodiment will be described.
- the scroll compressor includes a hermetic container 1, a compression mechanism 2, a motor unit 3, and an oil sump 20 included therein. Then, between the main bearing member 11 of the crankshaft 4 fixed by welding or shrink fitting in the sealed container 1 and the fixed scroll 12 bolted on the main bearing member 11, the orbit that meshes with the fixed scroll 12 A scroll-type compression mechanism 2 is configured with the scroll 13 interposed therebetween. Between the orbiting scroll 13 and the main bearing member 11, there is provided a rotation restraint mechanism 14 such as an Oldham ring that guides the orbiting scroll 13 so as to prevent the rotation of the orbiting scroll 13 and move in a circular orbit.
- a rotation restraint mechanism 14 such as an Oldham ring that guides the orbiting scroll 13 so as to prevent the rotation of the orbiting scroll 13 and move in a circular orbit.
- the orbiting scroll 13 is moved in a circular orbit by driving the orbiting scroll 13 eccentrically at the eccentric shaft portion 4 a at the upper end of the crankshaft 4.
- the compression chamber 15 formed between the fixed scroll 12 and the orbiting scroll 13 moves while decreasing its volume from the outer peripheral side toward the central portion.
- the refrigerant gas which is a working fluid, is sucked from the suction pipe 16 communicating with the outside of the hermetic container 1 and the suction port 17 on the outer peripheral portion of the fixed scroll 12, confined in the compression chamber 15 and compressed.
- the refrigerant gas having a predetermined pressure or more pushes open the reed valve 19 and is repeatedly discharged from the discharge port 18 at the center of the fixed scroll 12 into the sealed container 1.
- the wrap tip 13d of the orbiting scroll 13 is gradually increased in height from the winding start portion which is the central portion to the winding end portion which is the outer peripheral portion based on the measurement result of the temperature distribution during operation.
- a slope shape is provided. Thereby, the dimensional change by thermal expansion can be absorbed and local sliding can be prevented.
- a high pressure region 30 and a back pressure chamber 29 set to a high pressure and a low pressure are formed on the back surface 13e of the orbiting scroll 13. By applying pressure to the back surface 13e, the orbiting scroll 13 is stably pressed against the fixed scroll 12, so that leakage can be reduced. At the same time, the circular orbit motion can be stably performed.
- the pump 25 is provided in the lower end of the crankshaft 4, and this pump 25 is driven simultaneously with a scroll compressor during compressor operation.
- the pump 25 sucks up the oil 6 in the oil reservoir 20 provided at the bottom of the sealed container 1.
- the oil 6 is supplied to the compression mechanism 2 through an oil supply hole 26 extending vertically through the crankshaft 4.
- the supply pressure at this time is substantially equal to the discharge pressure of the scroll compressor, and serves as a back pressure source for the orbiting scroll 13.
- the orbiting scroll 13 does not leave the fixed scroll 12 or hits one side, and exhibits a predetermined compression function stably.
- a part of the oil 6 supplied in this way obtains a clearance by the supply pressure and its own weight, so that the fitting portion between the eccentric shaft portion 4a and the orbiting scroll 13, the crankshaft 4 and the main bearing member 11
- the bearing portion 66 is entered.
- the oil 6 falls after lubricating the respective parts, and returns to the oil sump 20.
- Another part of the oil 6 supplied to the high-pressure region 30 passes through the first path 54 that opens to the high-pressure region 30, is around the outer peripheral portion of the orbiting scroll 13, and the rotation restraint mechanism 14 is located. Enter the back pressure chamber 29.
- the oil 6 lubricates the thrust sliding portion and the sliding portion of the rotation restraining mechanism 14 and contributes to the back pressure application of the orbiting scroll 13 in the back pressure chamber 29.
- the orbiting scroll 13 is formed with a first control path as a second path 55 that is always open to the back pressure chamber 29 and has one open end 55a.
- the second path 55 intermittently communicates the back pressure chamber 29 and the compression chamber 15 with the orbiting motion of the orbiting scroll 13.
- FIG. 3 is a cross-sectional view in a state in which the orbiting scroll 13 is engaged with the fixed scroll 12.
- FIGS. 3A, 3B, 3C, and 3D are obtained by shifting the phase by 90 degrees. ) In this order.
- the other opening end 55 b of the first control path as the second path 55 is periodically opened in the recess 12 e formed in the bottom surface 12 c of the wrap groove of the fixed scroll 12. Therefore, intermittent communication is realized.
- the opening end 55b opens into the recess 12e.
- the oil 6 is supplied from the back pressure chamber 29 to the compression chamber 15 through the first control path as the second path 55.
- the oil amount flows into the back pressure chamber 29 from the high pressure region 30 via the first path 54 and flows out from the back pressure chamber 29 to the compression chamber 15 via the second path 55.
- Oil 6 is related.
- the former amount of oil is large, the excess pressure of the oil 6 is supplied to the back pressure chamber 29, so that the pressure increases.
- excessive back pressure is applied to the orbiting scroll 13.
- the thrust load increases, and thus there is a problem of causing performance deterioration and reliability deterioration. Therefore, in the scroll compressor of this embodiment, the first path 54 and the second path 55 are intermittently communicated with each other.
- one open end 54a of the first path 54 is always opened to the high pressure region 30, and the other open end 54b formed on the back surface 13e of the orbiting scroll 13 is connected to the high pressure region 30 and the back pressure chamber 29. It is a thing that makes it go periodically. Thereby, since excessive oil 6 is not supplied to the back pressure chamber 29, an abnormal increase in pressure can be prevented. As a result, excessive back pressure to the orbiting scroll 13 can be prevented, and stable back pressure can be applied. Further, the amount of oil supplied from the high pressure region 30 to the back pressure chamber 29 can be controlled by the communication ratio. Therefore, the diameter of the first path 54 can be configured to be 10 times or more that of the oil filter. As a result, there is no possibility of foreign matter getting caught in the passage and closing.
- the first path 54 has one opening end 54 a and the other opening end 54 b at the end of the first path 54, and the high pressure region 30 and the back pressure chamber 29. And intermittent communication.
- FIG. 4 is a diagram showing a communication state of the first path 54 and the second path 55 with respect to the phase of the orbiting scroll 13.
- the second path 55 communicates from the back pressure chamber 29 to the compression chamber 15 from the section where the first path 54 communicates from the high pressure region 30 to the back pressure chamber 29 in one rotation.
- the section to be set is set to be equal to or greater than that.
- FIG. 5 is a diagram showing the communication state of the first path 54 and the second path 55 with respect to the phase of the orbiting scroll 13 as in FIG. 4.
- the first path 54 extends from the high pressure region 30 to the back pressure chamber 29. It is set so that it communicates with. According to this configuration, while the oil 6 is being supplied from the high pressure region 30 to the back pressure chamber 29 by the first path 54, the oil 6 is always transferred from the back pressure chamber 29 to the compression chamber 15 by the second path 55. Supply.
- the oil 6 does not collect in the back pressure chamber 29, and the pressure in the back pressure chamber 29 does not rise abnormally. That is, since no excessive back pressure is applied to the orbiting scroll 13, a scroll compressor that realizes high efficiency and high reliability can be provided.
- the back pressure chamber 29 is communicated with only one compression chamber 15 a of the pair of compression chambers 15 through the second path 55. Thereby, since the back pressure chamber 29 communicates only with the compression chamber 15a, the fluctuation of the back pressure per one rotation is small, and as a result, it becomes easy to set to a predetermined back pressure. Further, in a stable state, there is no fear of backflow from the back pressure chamber 29 to the compression chamber 15, so that a scroll compressor that realizes high efficiency and high reliability can be provided.
- the minimum path cross-sectional area 55 s in the second path 55 is made larger than the minimum path cross-sectional area 54 s in the first path 54.
- the oil outflow resistance from the back pressure chamber 29 can be made smaller than the oil inflow resistance into the back pressure chamber 29. Therefore, the pressure in the back pressure chamber 29 can be made to depend on the pressure in the compression chamber 15 regardless of the fluctuation of the high pressure. That is, since no excessive back pressure is applied to the orbiting scroll 13, a scroll compressor that realizes high efficiency and high reliability can be provided. Further, by arranging the seal member 78 on the back surface 13 e of the orbiting scroll 13, the high pressure region 30 and the back pressure chamber 29 can be partitioned.
- FIG. 6 is a plan view of a state in which the orbiting scroll 13 is engaged with the fixed scroll 12 and viewed from the back side of the orbiting scroll 13. (C) and (D) are shown in this order. As shown in FIG. 6, a seal member 78 divides the rear region of the orbiting scroll 13 into an inner high pressure region 30 and an outer back pressure chamber 29. In the state of FIG.
- the open end 54 b opens to the back pressure chamber 29 that is outside the seal member 78, so that the oil 6 is supplied from the high pressure region 30 to the back pressure chamber 29.
- the opening end 54 b is open to the high pressure region 30 inside the seal member 78, so that the oil 6 is back-pressured from the high pressure region 30.
- the oil 6 is supplied from the high pressure region 30 to the back pressure chamber 29.
- the oil supply can be adjusted by changing the rate at which the opening end 54 b travels the seal member 78. Therefore, the diameter of the first path 54 can be configured to be 10 times or more that of the oil filter. As a result, there is no possibility of foreign matter getting caught in the passage and closing. Therefore, it is possible to provide a scroll compressor that can maintain a good state of lubrication of the thrust sliding portion and the rotation restraint mechanism 14 at the same time as the application of a stable back pressure, and realize high efficiency and high reliability.
- FIG. 7 is a cross-sectional view of the compression mechanism of the scroll compressor according to the second embodiment of the present invention.
- the second path 56 passes from the back pressure chamber 29 to the thrust surface 13 f of the orbiting scroll 13 through the inside of the orbiting scroll 13. It consists of The second control path is intermittently opened in the wrap groove 12g of the fixed scroll 12 by the turning motion.
- FIG. 8 is a cross-sectional view in a state in which the orbiting scroll 13 is engaged with the fixed scroll 12.
- the orbiting scroll 13 and the fixed scroll 12 are assembled in a state in which the cores of the spiral wraps are aligned with each other, so that the gap during operation is made uniform.
- the number of elements constituting the second path 55 is two (for example, two holes)
- each element has a tolerance for each lap.
- Dimensional tolerances for two elements will be affected. That is, the range of the opening ratio of the second path 55 is expanded, and back pressure fluctuations and performance variations occur when the opening is minimum and maximum.
- the influence of the dimensional tolerance is only one element. That is, the range of the opening ratio is reduced, and as a result, back pressure fluctuations and performance variations are suppressed, so that it is possible to provide a scroll compressor that realizes high efficiency and high reliability.
- FIG. 9 is a longitudinal sectional view of a scroll compressor according to a third embodiment of the present invention
- FIG. 10 is a sectional view of a compression mechanism of the scroll compressor of FIG. 9
- FIG. 11 is a fixed scroll of the compression mechanism of FIG. It is a cross-sectional view in the state which meshed with the orbiting scroll.
- the scroll compressor according to the present embodiment is fixed to the main bearing member 11 of the crankshaft 4 fixed by welding, shrink fitting, or the like in the hermetic container 1 and bolted onto the main bearing member 11.
- a scroll type compression mechanism 2 is configured by sandwiching a turning scroll 13 meshing with the fixed scroll 12 between the fixed scroll 12.
- a rotation restricting mechanism 14 is provided between the orbiting scroll 13 and the main bearing member 11 by an Oldham ring or the like that guides the orbiting scroll 13 to rotate in a circular orbit. Then, the orbiting scroll 13 is moved in a circular orbit by driving the orbiting scroll 13 eccentrically at the eccentric shaft portion 4 a at the upper end of the crankshaft 4.
- the inner compression chamber 15a sandwiched between the outer wall of the wrap 12b of the fixed scroll 12 and the inner wall of the wrap 13b of the orbiting scroll 13, and the inner wall of the wrap 12b of the fixed scroll 12
- An outer compression chamber 15b sandwiched between outer walls of the wrap 13b of the orbiting scroll 13 is formed.
- the sealing member 78 causes the high pressure region 30 of the discharge pressure atmosphere that is the inner region of the sealing member 78 and the back pressure chamber 29 that is set to the intermediate pressure between the high and low pressures that is the outer region. It is partitioned.
- the orbiting scroll 13 is stably pressed against the fixed scroll 12, so that leakage can be reduced.
- the circular orbit motion can be stably performed.
- a pump 25 is provided at the other downward end of the crankshaft 4, and this pump 25 is driven simultaneously with the scroll compressor during operation of the compressor. As a result, the pump 25 sucks up the oil 6 in the oil sump 20 provided at the bottom of the sealed container 1. Then, the oil 6 is supplied to the compression mechanism 2 through an oil supply hole 26 extending vertically through the crankshaft 4.
- the supply pressure at this time is substantially equal to the discharge pressure of the scroll compressor, and serves as a back pressure source for the orbiting scroll 13. Thereby, the orbiting scroll 13 does not leave the fixed scroll 12 or hits one side, and exhibits a predetermined compression function stably.
- a part of the oil 6 supplied in this way obtains a clearance by the supply pressure and its own weight, so that the fitting portion between the eccentric shaft portion 4a and the orbiting scroll 13, the crankshaft 4 and the main bearing member 11
- the bearing portion 66 is entered.
- the oil 6 falls after lubricating the respective parts, and returns to the oil sump 20.
- by providing the first path 81 in the orbiting scroll 13 another part of the oil 6 supplied to the high pressure region 30 on the back surface of the end plate 13 a of the orbiting scroll 13 is removed by the orbiting movement of the orbiting scroll 13.
- the oil is intermittently supplied from the high pressure region 30 to the back pressure chamber 29 across the 78.
- the orbiting scroll 13 repeats the states of FIG. 10A and FIG.
- the inside of the seal member 78 forms the high pressure region 30, and the outer peripheral portion forms the back pressure chamber 29. Therefore, the high pressure region 30 and the back pressure chamber 29 communicate with each other through the first path 81 only when the back pressure chamber side opening end 81 b on the back pressure chamber 29 side of the first path 81 is located on the outer peripheral portion of the seal member 78. Is done.
- the high pressure oil 6 is supplied from the high pressure region 30 to the back pressure chamber 29.
- the oil 6 can be supplied in the state shown in FIG.
- the oil 6 is supplied from the high pressure region 30 to the back pressure chamber 29 by intermittent communication. Accordingly, it is possible to supply an appropriate amount of oil 6 to the back pressure chamber 29 by adjusting the communication time.
- the oil 6 lubricates the sliding portion of the rotation restricting mechanism 14 and contributes to the back pressure application of the orbiting scroll 13 in the back pressure chamber 29.
- a second path 82 is provided in the orbiting scroll 13 for communicating the back pressure chamber 29 and the compression chamber 15.
- a recess 84 is provided on the bottom surface 12c of the fixed scroll 12 so as to intermittently open the compression chamber side opening end 82b on the compression chamber 15 side of the second path 82 by the orbiting motion of the orbiting scroll 13. ing. That is, in the state of FIG. 10A, the compression chamber side opening end 82 b of the second path 82 opens into the recess 84 provided in the wrap groove bottom surface 12 c of the fixed scroll 12. Since the recess 84 communicates with the compression chamber 15b, the back pressure chamber 29 communicates with the compression chamber 15b.
- the oil 6 in the back pressure chamber 29 is supplied to the compression chamber 15b, contributing to prevention of leakage between the compression chambers 15 and lubrication of the sliding portion.
- the compression chamber side opening end 82b does not open into the recess 84, and therefore the back pressure chamber 29 does not communicate with the compression chamber 15b.
- the back pressure chamber 29 and the compression chamber 15b are intermittently communicated in a short time, it is easy to maintain the pressure in the back pressure chamber 29 at a predetermined pressure with little fluctuation.
- the back pressure chamber 29 communicates only with the compression chambers 15 b of the pair of compression chambers 15, the pressure in the back pressure chamber 29 is always higher than the pressure in the compression chamber 15. Therefore, the backflow from the compression chamber 15 to the back pressure chamber 29 can be prevented, and high efficiency can be realized.
- the orbiting scroll 13 passes through a third path 83 for communicating the high pressure region 30 with a compression chamber 15a different from the compression chamber 15b with which the second path 82 communicates.
- a recess 85 is provided in the wrap tip 13d of the orbiting scroll 13 so that the compression chamber side opening end 83b on the compression chamber 15 side of the third path 83 communicates with the compression chamber 15a. Accordingly, an appropriate amount of oil 6 is supplied from the back pressure chamber 29 to the compression chamber 15b through the second passage 82, and further, an appropriate amount of oil 6 is supplied from the high pressure region 30 to the compression chamber 15a through the third passage 83. Can do.
- the optimum amount of oil 6 can be supplied by adjusting the installation position and shape of the recess 85 or the depth of the recess 85.
- the second path 82 communicates with the compression chamber 15b and the third path 83 communicates with the compression chamber 15a.
- the second path 82 communicates with the compression chamber 15a.
- FIG. 12 is a cross-sectional view of the compression mechanism of the scroll compressor according to the fourth embodiment of the present invention.
- an invention part different from the third embodiment will be described. That is, in FIG. 12, the same components as those in FIG. 10 are denoted by the same reference numerals, and description thereof is omitted. The same applies to Example 5 described later.
- the orbiting scroll 13 is provided with a third path 83 for communicating the high pressure region 30 with a compression chamber 15 a different from the compression chamber 15 b with which the second path 82 communicates.
- a recess 86 for intermittently opening the compression chamber side opening end 83b of the third path 83 is provided on the bottom surface 12c of the wrap groove of the fixed scroll 12 by a turning motion. That is, in the state of FIG. 12A, the compression chamber side opening end 83 b of the third path 83 opens to the recess 86 provided on the bottom surface 12 c of the wrap groove of the fixed scroll 12. And since the recessed part 86 is connected with the compression chamber 15a, the high voltage
- the compression chamber side opening end 83b does not open into the recess 86, and therefore the high pressure region 30 does not communicate with the compression chamber 15a.
- an appropriate amount of oil 6 can be supplied to the compression chamber 15 b through the second path 82, and the oil 6 can also be supplied to the compression chamber 15 a through the third path 83.
- the compression chamber side opening end 83b of the third path 83 is communicated with the compression chamber 15a.
- the time and the path resistance of the third path 83 can be controlled. By this control, an appropriate amount of oil 6 can be supplied to the compression chamber 15a, and a highly efficient scroll compressor can be realized.
- FIG. 13 is a cross-sectional view of the compression mechanism of the scroll compressor according to the fifth embodiment of the present invention.
- a side opening end 87 b is provided on the bottom surface 13 c of the wrap groove of the orbiting scroll 13. That is, in the state of FIG. 13A, the compression chamber side opening end 87b of the third path 87 opens into the compression chamber 15a, so that the high pressure region 30 communicates with the compression chamber 15a.
- the oil 6 in the high pressure region 30 is supplied to the compression chamber 15a, and contributes to prevention of leakage between the compression chambers 15 and lubrication of the sliding portion.
- the compression chamber side opening end 87b of the third path 87 is blocked by the wrap tip 12d or the end plate 12a of the fixed scroll 12 and does not open to the compression chamber 15a. 30 does not communicate with the compression chamber 15a.
- the processing can be simplified and the rigidity of the wrap 13b of the orbiting scroll 13 can be suppressed from being lowered.
- the high pressure region side opening end 81a on the high pressure region 30 side of the first path 81 and the high pressure region side opening end 87a on the high pressure region 30 side of the third path 87 are set at the same position.
- the machining can be simplified, and the number of parts can be reduced by unifying the parts necessary for each path.
- the number of machining points is reduced, it is possible to suppress a decrease in the rigidity of the orbiting scroll 13 due to machining.
- the scroll compressor of the present invention can supply an appropriate amount of oil.
- FIG. 14 is a cross-sectional view of the compression mechanism of the scroll compressor according to the sixth embodiment of the present invention
- FIG. 15 is a cross-sectional view of the compression mechanism of FIG. .
- the present embodiment is similar to the first embodiment and the second embodiment.
- an invention part different from the first and second embodiments will be described. That is, in FIG. 14, the same components as those in FIGS. 2 and 7 are denoted by the same reference numerals, and the description thereof is omitted.
- the high pressure region 30 and the back pressure chamber 29 are intermittently communicated by moving the seal member 78 back and forth at the back pressure chamber side opening end 54 b of the first path 54.
- FIG. 15A is a detailed view when the back pressure chamber side opening end 57a of the second path 57 communicates with the back pressure chamber 29
- FIG. 7 is a detailed view when the back pressure chamber side opening end 57a of 57 is not in communication with the back pressure chamber 29.
- the oil 6 that has entered the back pressure chamber 29 through the first path 54 is guided to the compression chamber 15 through the back pressure chamber side opening end 57a of the second path 57, and is compressed. It can play a role of improving sealing performance and lubricity.
- the amount of oil 6 flowing from the high pressure region 30 into the back pressure chamber 29 via the first path 54 is reduced from the back pressure chamber 29 to the compression chamber via the second path 57.
- excess oil 6 is supplied to the back pressure chamber 29, so that the pressure increases.
- the first path 54 and the second path 57 are intermittently communicated. Thereby, since excessive oil 6 is not supplied to the back pressure chamber 29, an abnormal increase in pressure can be prevented.
- the amount of oil supplied from the high pressure region 30 to the back pressure chamber 29 can be controlled by the communication ratio. Therefore, it is possible to provide a scroll compressor that eliminates the need for throttling of pores and the like, can eliminate foreign matter biting and blockage, and realizes high efficiency and high reliability.
- the communication ratio of the second path 57 is set to be equal to or greater than the communication ratio of the first path 54.
- the high pressure region 30 is communicated with the back pressure chamber 29 through the first path 54 only when the second path 57 communicates with the compression chamber 15 from the back pressure chamber 29.
- the back pressure chamber 29 is always in communication with the compression chamber 15 while the oil 6 is being supplied from the high pressure region 30 to the back pressure chamber 29. Therefore, the oil 6 does not accumulate in the back pressure chamber 29 and the back pressure does not rise abnormally. That is, since no excessive back pressure is applied to the orbiting scroll 13, a scroll compressor that realizes high efficiency and high reliability can be provided.
- the second path 57 is provided at a position where the back pressure chamber 29 and the suction port 17 do not communicate with each other. According to this configuration, since the back pressure chamber 29 communicates only with the compression chamber 15, fluctuations in the back pressure per rotation are reduced, and as a result, it is easy to set a predetermined back pressure. And the scroll compressor which implement
- FIG. 16 and 17 are sectional views of the compression mechanism of the scroll compressor according to the seventh embodiment of the present invention.
- FIG. 16 shows internal communication
- FIG. 17 shows external communication.
- 18 is a plan view of the compression mechanism of FIGS. 16 and 17 in a state where the fixed scroll and the orbiting scroll are engaged with each other
- FIG. 19 is the state where the fixed scroll and the orbiting scroll of the compression mechanism of FIGS. It is a cross-sectional view in the combined state.
- the present embodiment is similar to the first embodiment, and in the seventh embodiment, an invention part different from the first embodiment will be described. That is, in FIG. 16 and FIG. 17, the same components as those in FIG.
- the compression chamber 15 formed by the fixed scroll 12 and the orbiting scroll 13 is formed on the wrap outer wall side of the orbiting scroll 13 and the outer compression chamber 95 a formed on the wrap inner wall side.
- An inner compression chamber 95b, and the suction volume of the outer compression chamber 95a is larger than the suction volume of the inner compression chamber 95b.
- the pressure increase rate of the inner compression chamber 114b with respect to the crank angle is faster than the pressure increase rate of the outer compression chamber 114a.
- the pressure difference between the inner compression chamber 114b-1 and the inner compression chamber 114b-2 partitioned by the lap side surface gap D2 increases.
- the working fluid is more likely to leak in the wrap side surface gap D2 of the inner compression chamber 95b, which is the same as the inner compression chamber 114b, than in the wrap side surface gap D1 of the outer compression chamber 95a, which is the same as the outer compression chamber 114a.
- the oil supply path leading from the oil reservoir 20 to the inner compression chamber 95b is constituted by the first path 91 and the fourth path 92 formed in the orbiting scroll 13.
- the cross-sectional area of the inner side compression chamber communication recessed part 99b is set larger than the cross-sectional area of the outer side compression chamber communication recessed part 99a.
- the inner compression chamber 95b-1 formed one before is changed to the inner compression chamber 95b-2 formed next.
- the leakage of the working fluid can be suppressed.
- the oil 6 in the oil supply hole 26 flows into the first path 91 from the high pressure region side opening end 91 a of the first path 91 and flows out from the back pressure chamber side opening end 91 b of the first path 91. Further, since the high pressure region 30 and the back pressure chamber 29 are closely separated by the seal member 78, the oil 6 does not leak between the high pressure region 30 and the back pressure chamber 29.
- the pressure in the back pressure chamber 29 is maintained at a pressure intermediate between the high pressure and the suction pressure, it is lower than the pressure in the high pressure region 30. Therefore, the oil 6 flows from the high pressure region 30 into the back pressure chamber 29 due to the pressure difference. That is, the back pressure chamber side opening end 91b of the first path 91 moves over the seal member 78 depending on the crank angle, thereby repeating the non-communication state and the communication state of the high pressure region 30 and the back pressure chamber 29. Therefore, the amount of oil 6 supplied to the back pressure chamber 29 or the inner compression chamber 95b can be reduced. Therefore, it is possible to widen the adjustment range of the oil supply amount into the inner compression chamber 95b.
- the oil 6 that has flowed into the back pressure chamber 29 reaches the compression chamber side opening end 92b of the fourth path 92 from the back pressure chamber side opening end 92a of the fourth path 92 through the fourth path 92. Then, after passing through the inner compression chamber communication recess 99b and the outer compression chamber communication recess 99a provided on the bottom surface 12c of the wrap groove of the fixed scroll 12, they are distributed to the inner compression chamber 95b and the outer compression chamber 95a and flow into the respective compression chambers. To do. That is, at the crank angle shown in FIG. 16 (the crank angle shown in FIG.
- the compression chamber side opening end 92b of the fourth path 92 opens into the inner compression chamber communication recess 99b, and the back pressure chamber 29 Is in communication with the inner compression chamber 95b (that is, inner communication), and the oil 6 is supplied to the inner compression chamber 95b.
- the compression chamber side opening end 92b of the fourth path 92 opens into the outer compression chamber communication recess 99a, and the back The pressure chamber 29 is in communication with the outer compression chamber 95a (that is, external communication), and the oil 6 is supplied to the outer compression chamber 95a.
- the cross-sectional area of the inner compression chamber communication recess 99b is larger than the cross-sectional area of the outer compression chamber communication recess 99a. Therefore, the opening time of the compression chamber side opening end 92b and the inner compression chamber communication recess 99b accompanying the turning of the orbiting scroll 13 is longer than the opening time of the compression chamber side opening end 92b and the outer compression chamber communication recess 99a. Accordingly, the amount of oil supplied to the inner compression chamber 95b is greater than the amount of oil supplied to the outer compression chamber 95a. With this configuration, the oil 6 can be positively supplied to the inner compression chamber 95b having a high pressure increase rate, and the inner compression chamber 95b-2 formed next is changed from the inner compression chamber 95b-1 formed first.
- the amount of oil supplied from the high pressure region 30 to the back pressure chamber 29 can be controlled by changing the cross-sectional area and the opening position of the back pressure chamber side opening end 91b of the first path 91.
- the amount of oil supplied from the back pressure chamber 29 to the inner compression chamber 95b and the outer compression chamber 95a changes the cross-sectional area of the fourth path 92 and the cross-sectional area of the compression chamber side opening end 92b of the fourth path 92. It is possible to control. Further, at the crank angle shown in FIGS. 19B and 19D, the compression chamber side opening end 92b of the fourth path 92 is not opened to the inner compression chamber communication recess 99b and the outer compression chamber communication recess 99a.
- the back pressure chamber 29 does not communicate with the inner compression chamber 95b and the outer compression chamber 95a. Therefore, no oil is supplied to the inner compression chamber 95b and the outer compression chamber 95a. Therefore, an increase in viscosity loss due to excessive oil supply can be suppressed, and the efficiency of the compressor can be improved.
- the amount of oil supply in the inner compression chamber 95b and the outer compression chamber 95a is controlled by the size of the cross-sectional areas of the inner compression chamber communication recess 99b and the outer compression chamber communication recess 99a. It is good also as a structure which controls the magnitude of the amount of oil supply by changing the depth and position of the compression chamber communication recessed part 99b and the outer side compression chamber communication recessed part 99a.
- FIG. 20 and 21 are sectional views of the compression mechanism of the scroll compressor according to the eighth embodiment of the present invention.
- 20 shows internal communication
- FIG. 21 shows external communication.
- FIG. 22 is a cross-sectional view of the scroll compressor of FIGS. 20 and 21 in a state where the fixed scroll and the orbiting scroll are engaged with each other.
- 20 and FIG. 21 except for the compression chamber side opening end of the fourth path 92 related to the oil supply to the compression chamber 15, the same reference numerals are used for the same components as in FIG. Only the compression chamber side opening end of the fourth path 92 will be described, and the others will be omitted. As shown in FIG.
- the compression chamber side opening end of the fourth path 92 is formed on the orbiting scroll 13 (the lap groove bottom surface 13c), and the inner compression chamber side opening end 92c and the outer compression chamber are formed. And a side opening end 92d.
- the oil 6 that has flowed into the back pressure chamber 29 passes from the back pressure chamber side opening end 92a of the fourth path 92 through the fourth path 92, and passes through the inner compression chamber side opening end 92c and the outer compression chamber of the fourth path 92. It is distributed to the side opening end 92d.
- the inner compression chamber side opening end 92c of the fourth path 92 opens into the inner compression chamber 95b.
- the back pressure chamber 29 is in communication with the inner compression chamber 95b (that is, internal communication), and the oil 6 is supplied from the back pressure chamber 29 to the inner compression chamber 95b.
- the outer compression chamber side opening end 92d of the fourth path 92 opens into the outer compression chamber 95a.
- the back pressure chamber 29 is in communication with the outer compression chamber 95a (that is, external communication), and the oil 6 is supplied from the back pressure chamber 29 to the outer compression chamber 95a.
- the cross-sectional area of the inner compression chamber side opening end 92c is larger than the cross-sectional area of the outer compression chamber side opening end 92d.
- the amount of oil supplied to the inner compression chamber 95b is larger than the amount of oil supplied to the outer compression chamber 95a.
- the oil 6 can be positively supplied to the inner compression chamber 95b having a high pressure increase rate, and the inner compression chamber 95b-2 formed next is changed from the inner compression chamber 95b-1 formed first. It is possible to suppress leakage of the working fluid.
- the wrap side surface gaps D1 and D2 between the compression chamber 15 in which the working fluid is confined before and the compression chamber 15 in which the working fluid is confined next from the wrap side surface gaps D1 and D2 between the compression chamber 15 in which the working fluid is confined before and the compression chamber 15 in which the working fluid is confined next.
- the leakage of the working fluid can be effectively suppressed, and the reduction in compression efficiency due to recompression can be suppressed.
- the amount of oil supplied from the back pressure chamber 29 to the inner compression chamber 95b and the outer compression chamber 95a depends on the cross-sectional area of the fourth path 92, the inner compression chamber side opening end 92c of the fourth path 92, and the outer compression chamber. It is possible to control by changing the cross-sectional area of the side opening end 92d. Further, at the crank angle shown in FIG. 22B, the inner compression chamber side opening end 92 c and the outer compression chamber side opening end 92 d of the fourth path 92 are closed by the wrap tip 12 d of the fixed scroll 12.
- the back pressure chamber 29 is not in communication with the inner compression chamber 95b and the outer compression chamber 95a, and therefore is not supplied with oil to the inner compression chamber 95b and the outer compression chamber 95a. Therefore, an increase in viscosity loss due to excessive oil supply can be suppressed, and the efficiency of the compressor can be improved.
- FIG. 23 and 24 are sectional views of a compression mechanism of the scroll compressor according to the ninth embodiment of the present invention.
- FIG. 23 shows internal communication
- FIG. 24 shows external communication.
- 25 is a cross-sectional view of the scroll compressor shown in FIGS. 23 and 24 in a state where the fixed scroll and the orbiting scroll are engaged with each other.
- the orbiting scroll 13 passes through the fifth path 93 for communicating the back pressure chamber 29 and the compression chamber 15 communicating with the suction port 17 (that is, the suction chamber 96).
- One end of the fifth path 93 is a back pressure chamber side opening end 93 a and is always open to the back pressure chamber 29.
- the other end is the suction chamber side opening end 93 b and is provided at the wrap tip 13 d of the orbiting scroll 13.
- the suction chamber side opening end 93b is always open to the suction chamber 96 through a counterbore 97 provided at the wrap tip 13d.
- the oil 6 that has flowed into the back pressure chamber 29 passes through the fifth path 93 from the back pressure chamber side opening end 93 a of the fifth path 93, and further from the suction chamber side opening end 93 b of the fifth path 93. It flows into the suction chamber 96 through 97. 23 and 24, that is, at all crank angles shown in FIGS. 25A to 25D, the suction chamber side opening end 93b of the fifth path 93 is connected to the suction chamber 96 via the counterbore 97. And always in communication. As a result, the oil 6 is always supplied to the suction chamber 96.
- the oil 6 when the oil 6 is constantly supplied from the back pressure chamber 29 to the suction chamber 96, the oil 6 serves as a seal and in the suction stroke of the compression chamber 15 (ie, the suction chamber 96) communicating with the suction port 17.
- the leakage of the working fluid can be reduced. By reducing the leakage, volume efficiency can be improved, so that the efficiency of the compressor can be improved.
- the amount of oil supplied from the back pressure chamber 29 to the suction chamber 96 includes the cross-sectional area of the fifth path 93, the cross-sectional area of the back pressure chamber-side opening end 93a, the cross-sectional area and the opening position of the suction chamber-side opening end 93b, It can be controlled by changing the cross-sectional area and depth of the counterbore 97. In addition, the structure which does not provide the counterbore 97 may be sufficient.
- 26 and 27 are sectional views of the compression mechanism of the scroll compressor according to another embodiment of the present invention.
- the suction chamber side opening end 93b of the fifth path 93 is opened to the outer suction chamber communication recess 98b or the inner suction chamber communication recess 98a, and the back pressure chamber 29 is communicated to the suction port 17.
- the suction chamber 96 that is the compression chamber 15 may be intermittently communicated.
- the oil 6 is supplied to the outer suction chamber 96b or the inner suction chamber 96a only at the crank angle at which the suction chamber side opening end 93b opens to the outer suction chamber communication recess 98b or the inner suction chamber communication recess 98a.
- the oil to the suction chamber 96 depends on the diameter and length of the fifth path 93, the cross-sectional area and the opening position of the suction chamber side opening end 93b, and the shapes of the outer suction chamber communication recess 98b and the inner suction chamber communication recess 98a. Supply amount can be controlled by communication time. Therefore, the adjustment range of the supply amount of the oil 6 into the suction chamber 96 is widened, deterioration of volumetric efficiency due to suction heating can be suppressed, and the efficiency of the compressor can be improved.
- route 93 of a present Example is the oil supply comprised by the method shown in Example 2 and Example 8 demonstrated using FIG. 7 and FIGS. 20-22. It may be a route.
- FIG. 28 and 29 are sectional views of the compression mechanism of the scroll compressor according to the tenth embodiment of the present invention.
- FIG. 28 shows the internal communication
- FIG. 29 shows the external communication.
- the orbiting scroll 13 is provided with a sixth path 94 for communicating the high pressure region 30 and the compression chamber 15 (ie, the suction chamber 96) communicating with the suction port 17. Provided.
- One end of the sixth path 94 is a high-pressure region side opening end 94 a and is always open to the high-pressure region 30.
- the other end is a suction chamber side opening end 94 b and is provided at the wrap tip 13 d of the orbiting scroll 13.
- the suction chamber side opening end 94b is always open to the suction chamber 96 through a counterbore 97 provided at the wrap tip 13d.
- the oil 6 that has flowed into the high pressure region 30 passes through the sixth route 94 from the high pressure region side opening end 94a of the sixth route 94, and further passes through the counterbore 97 from the suction chamber side opening end 94b of the sixth route 94. Then, it flows into the suction chamber 96. Also in the present embodiment shown in FIGS.
- the suction chamber side opening end 94b of the sixth path 94 is the same at all crank angles shown in FIGS. 25 (A) to 25 (D).
- the suction chamber 96 is always in communication with the counterbore 97.
- the high-pressure oil 6 is always supplied to the suction chamber 96.
- the high-pressure oil 6 is constantly supplied from the high-pressure region 30 to the suction chamber 96, so that the lubrication performance during high-load operation with a large differential pressure is improved.
- the reliability of the compressor is improved.
- the amount of oil supplied from the high pressure region 30 to the suction chamber 96 includes the cross-sectional area of the sixth path 94, the cross-sectional area of the high-pressure region side opening end 94 a, the cross-sectional area and opening position of the suction chamber side opening end 94 b, It is possible to control by changing the cross-sectional area and the depth. In addition, the structure which does not provide the counterbore 97 may be sufficient.
- FIGS. 30 and 31 are sectional views of the compression mechanism of the scroll compressor according to another embodiment of the present invention.
- the suction chamber side opening end 94 b of the sixth path 94 is opened to the outer suction chamber communication recess 98 b or the inner suction chamber communication recess 98 a, and the high pressure region 30 is compressed to communicate with the suction port 17.
- a configuration may be employed in which the suction chamber 96 which is the chamber 15 is intermittently communicated.
- the oil 6 is supplied to the outer suction chamber 96b or the inner suction chamber 96a only at the crank angle at which the suction chamber side opening end 94b opens to the outer suction chamber communication recess 98b or the inner suction chamber communication recess 98a.
- Oil supply amount can be controlled by communication time. Therefore, the adjustment range of the supply amount of the oil 6 into the suction chamber 96 is widened, deterioration of volumetric efficiency due to suction heating can be suppressed, and the efficiency of the compressor can be improved.
- route 94 of a present Example is the oil supply comprised by the method shown in Example 2 and Example 8 demonstrated using FIG. 7 and FIGS. 20-22. It may be a route.
- the working fluid is a high-pressure refrigerant, for example, carbon dioxide
- the scroll compressor of the present invention the leakage of the working fluid from the spiral wrap side surface gap between the compression chambers is effectively suppressed. Meanwhile, a stable back pressure can be applied.
- the scroll compressor of the present invention can apply a stable back pressure by allowing oil to intermittently enter the back pressure chamber from the high pressure region and the compression chamber from the back pressure chamber, In addition, considering the leakage path between the compression chambers, it is possible to suppress oil entrapment while ensuring sealing performance by effectively and minimally supplying oil.
- the present invention can also be applied to a scroll fluid machine such as an air scroll compressor, a vacuum pump, and a scroll type expander.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Rotary Pumps (AREA)
Abstract
Description
図32は、特許文献1に記載された、従来のスクロール圧縮機の圧縮機構の断面図である。旋回スクロール103の端板に設けられ、圧縮室114側に開口する圧縮室側開口部122cから背圧室112に開口する背圧室側開口部122bへ連通する連絡通路122を備え、旋回スクロール103の旋回運動に伴い、圧縮室側開口部122cが固定スクロール102の端板で開閉されることで、連絡通路122の連通及び閉塞が行われる。この連通及び閉塞の動作により、背圧室112と圧縮室114との間を流出入する流体の流動抵抗をより小さくし、かつ背圧室112の圧力を所定の圧力(=中間圧力)に維持している。
また、連絡通路122を介して、背圧室112から圧縮室114に給油されるが、背圧室112への給油方式によっては、多量のオイルが圧縮室114へ流入するため、流入したオイルによる粘性動力により、性能悪化を引き起こしていた。さらに、背圧室112から圧縮室114への連絡通路122のみでは、一方の圧縮室114に給油されるが、他方の圧縮室114には給油されにくいため、オイル不足による性能悪化を引き起こしていた。
さらに、背圧室112と圧縮室114を連通させる連絡通路122の、圧縮室側開口部122cを、旋回スクロール103の内側に形成される圧縮室114に、開口させていなかった。そのため、この圧縮室114には十分なオイルが供給されにくく、作動流体の漏れによる圧縮効率の低下が発生する場合があった。
特に、旋回スクロールのラップの外壁側に形成される外側圧縮室の吸入容積と、内壁側に形成される内側圧縮室の吸入容積とが異なるスクロール圧縮機(以後、非対称スクロール圧縮機と称する)においては、ラップ側面を介した漏れに関して言えば、内側圧縮室から一つ低圧側の内側圧縮室への漏れは、外側圧縮室から一つ低圧側の外側圧縮室への漏れよりも多くなる。
そして、外側圧縮室の吸入容積が内側圧縮室の吸入容積よりも大きい非対称スクロール圧縮機では、吸入容積の小さい内側圧縮室の方が、その吸入容積差によってクランク角に対する圧力上昇速度が大きい特徴を有する。一方、外側および内側圧縮室のいずれにおいても、各圧縮室閉じ込み完了時から旋回スクロールが一回転した時点において、次の圧縮室を形成することは、対称スクロール圧縮機と同様である。
以上の説明を、図を用いて補足する。図33および図34において、第1の内側圧縮室114b-1と、この内側圧縮室114b-1の後に形成される第2の内側圧縮室114b-2とを仕切るラップ側面隙間D2と、第1の外側圧縮室114a-1と、この外側圧縮室114a-1の後に形成される第2の外側圧縮室114a-2とを仕切るラップ側面隙間D1とが存在する。
図34において、外側圧縮室114aと内側圧縮室114bの圧力上昇速度を比較した場合、吸入容積の小さい内側圧縮室114bの方が、圧力変化が大きくなる。従って、両方の内側圧縮室114b間を仕切るラップ側面隙間D2では、両方の外側圧縮室114a間を仕切るラップ側面隙間D1よりも、漏れが発生しやすくなる。ラップ側面隙間を介する漏れは、冷媒の再圧縮を引き起こすため、結果として無駄な仕事による圧縮性能低下を生じていた。
また、適量のオイルを一方の圧縮室に供給し、さらに、高圧領域と他方の圧縮室を連通することで、適量のオイルを他方の圧縮室にも供給する。
そして、非対称スクロール圧縮機の圧縮室圧力分布と漏れ経路を考慮した給油経路と、給油量制御とにより、高効率かつ高信頼性を実現するスクロール圧縮機を提供することを目的としている。
請求項2記載の本発明は、請求項1に記載のスクロール圧縮機において、前記第2の経路の連通比率を前記第1の経路の連通比率に対し同等以上とすることを特徴とする。
請求項3記載の本発明は、請求項1に記載のスクロール圧縮機において、前記第2の経路が連通しているときのみ、前記第1の経路が連通することを特徴とする。
請求項4記載の本発明は、請求項1に記載のスクロール圧縮機において、前記背圧室を、前記第2の経路を介して、一対の前記圧縮室のうちの一方にのみ連通することを特徴とする。
請求項5記載の本発明は、請求項1に記載のスクロール圧縮機において、前記第2の経路における最小経路断面積を、前記第1の経路における最小経路断面積より大きくすることを特徴とする。
請求項6記載の本発明は、請求項1に記載のスクロール圧縮機において、前記旋回スクロールの前記背面にシール部材を配置し、前記シール部材で前記高圧領域と前記背圧室に仕切ることを特徴とする。
請求項7記載の本発明は、請求項6に記載のスクロール圧縮機において、前記第1の経路の一方の開口端が、前記シール部材を往来することを特徴とする。
請求項8記載の本発明は、請求項1に記載のスクロール圧縮機において、前記第2の経路が、前記背圧室から前記旋回スクロールの内部を経て前記旋回スクロールのラップ先端に通じる第1の制御経路と、前記固定スクロールのラップ溝底面に形成した凹部とから構成され、前記旋回運動によって、前記第1の制御経路が前記凹部に間欠的に開口することを特徴とする。
請求項9記載の本発明は、請求項1に記載のスクロール圧縮機において、前記第2の経路が、前記背圧室から前記旋回スクロールの内部を経て前記旋回スクロールのスラスト面に通じる第2の制御経路で構成され、前記旋回運動によって、前記第2の制御経路が前記固定スクロールのラップ溝に間欠的に開口することを特徴とする。
請求項10記載の本発明は、請求項1に記載のスクロール圧縮機において、相溶性の冷凍機油を用いることを特徴とする。
請求項11記載の本発明は、請求項1に記載のスクロール圧縮機において、前記高圧領域と前記圧縮室を連通する第3の経路を設けたことを特徴とする。
請求項12記載の本発明は、請求項11に記載のスクロール圧縮機において、前記第2の経路を内側圧縮室に連通させるとともに、前記第3の経路を外側圧縮室に連通させる、または、前記第2の経路を前記外側圧縮室に連通させるとともに、前記第3の経路を前記内側圧縮室に連通させることを特徴とする。
請求項13記載の本発明は、請求項11に記載のスクロール圧縮機において、前記第3の経路を前記旋回スクロールの内部に設け、前記第3の経路の前記圧縮室側の開口端を前記旋回スクロールのラップ先端に設けたことを特徴とする。
請求項14記載の本発明は、請求項13に記載のスクロール圧縮機において、前記開口端に、常時前記圧縮室に連通する凹部を設けたことを特徴とする。
請求項15記載の本発明は、請求項11に記載のスクロール圧縮機において、前記第3の経路を、前記高圧領域と前記圧縮室を間欠的に連通させることを特徴とする。
請求項16記載の本発明は、請求項15に記載のスクロール圧縮機において、前記第3の経路の前記圧縮室側の前記開口端を、前記スクロールのラップ先端に設け、前記旋回スクロールの旋回運動によって、間欠的に開口するように前記固定スクロールのラップ溝底面に凹部を設けたことを特徴とする。
請求項17記載の本発明は、請求項11に記載のスクロール圧縮機において、前記第3の経路を前記旋回スクロールの内部に設け、前記第3の経路の前記圧縮室側の開口端を前記旋回スクロールのラップ溝底面に設けたことを特徴とする。
請求項18記載の本発明は、請求項11に記載のスクロール圧縮機において、前記第1の経路の前記高圧領域側の開口端と前記第3の経路の前記高圧領域側の開口端とを同一位置としたことを特徴とする。
請求項19記載の本発明は、請求項1に記載のスクロール圧縮機において、前記第2の経路を、前記固定スクロールのスラスト面上に設けたことを特徴とする。
請求項20記載の本発明のスクロール圧縮機は、鏡板から渦巻き状のラップが立ち上がる固定スクロール及び旋回スクロールを噛み合わせて双方間に圧縮室を形成し、前記圧縮室は前記旋回スクロールのラップ外側に形成される外側圧縮室と前記旋回スクロールの内側に形成される内側圧縮室を有し、前記外側圧縮室の吸入容積が前記内側圧縮室の吸入容積より大きく、前記旋回スクロールの背面には高圧領域と背圧室を形成し、前記旋回スクロールが円軌道に沿って所定の旋回半径で旋回運動をすることで、前記圧縮室が容積を変えながら中心に向かって移動し、前記固定スクロールに形成された吸入口から作動流体を吸入し、前記圧縮室に閉じ込めた後、圧縮、吐出の一連の動作を行うスクロール圧縮機であって、前記高圧領域と前記背圧室を連通する第1の経路と、前記背圧室と前記吸入口に連通しない圧縮室を連通する第4の経路とを設け、少なくとも前記第4の経路の圧縮室側開口端が、前記外側圧縮室または前記内側圧縮室に、間欠的に開口し、前記内側圧縮室への総給油量が前記外側圧縮室への総給油量より多くしたことを特徴とする。
請求項21記載の本発明は、請求項20に記載のスクロール圧縮機において、前記第4の経路の前記圧縮室側開口端を前記旋回スクロールのラップ先端に設け、前記圧縮室側開口端が、前記旋回スクロールの旋回運動に伴い、固定スクロールのラップ溝底面に設けた凹部に、間欠的に開口することを特徴とする。
請求項22記載の本発明は、請求項20に記載のスクロール圧縮機において、前記第4の経路の前記圧縮室側開口端を前記旋回スクロールのラップ溝底面に、又は前記旋回スクロールのスラスト面に複数設け、前記圧縮室側開口端が、前記旋回スクロールの旋回運動に伴い、前記圧縮室と前記固定スクロールのラップ先端を、又は前記圧縮室と前記固定スクロールのスラスト面を周期的に移動することで、前記圧縮室に間欠的に開口することを特徴とする。
請求項23記載の本発明は、請求項20に記載のスクロール圧縮機において、前記第1の経路の背圧室側開口端が、前記旋回スクロールの前記背面に設けられて前記高圧領域と前記背圧室を仕切るシール部材を往来することを特徴とする。
請求項24記載の本発明は、請求項20に記載のスクロール圧縮機において、前記背圧室と、前記吸入口に連通する圧縮室とを連通する第5の経路を設けたことを特徴とする。
請求項25記載の本発明は、請求項20に記載のスクロール圧縮機において、前記高圧領域と、前記吸入口に連通する圧縮室とを連通する第6の経路を設けたことを特徴とする。
請求項26記載の本発明は、請求項24に記載のスクロール圧縮機において、前記第5の経路の圧縮室側開口端を、前記旋回スクロールのラップ先端に設けたことを特徴とする。
請求項27記載の本発明は、請求項25に記載のスクロール圧縮機において、前記第6の経路の圧縮室側開口端を、前記旋回スクロールのラップ先端に設けたことを特徴とする。
請求項28記載の本発明は、請求項24に記載のスクロール圧縮機において、前記第5の経路の圧縮室側開口端を前記旋回スクロールのラップ先端に設け、前記圧縮室側開口端が、前記旋回スクロールの旋回運動に伴い、前記固定スクロールのラップ溝底面に設けた凹部に、間欠的に開口することを特徴とする。
請求項29記載の本発明は、請求項25に記載のスクロール圧縮機において、前記第6の経路の圧縮室側開口端を前記旋回スクロールのラップ先端に設け、前記圧縮室側開口端が、前記旋回スクロールの旋回運動に伴い、前記固定スクロールのラップ溝底面に設けた凹部に、間欠的に開口することを特徴とする。
請求項30記載の本発明は、請求項24に記載のスクロール圧縮機において、前記第5の経路の圧縮室側開口端を前記旋回スクロールのラップ溝底面に、又は前記旋回スクロールのスラスト面に複数設け、前記旋回スクロールの旋回運動に伴い、前記圧縮室側開口端が、前記圧縮室と前記固定スクロールのラップ先端を、又は前記圧縮室と前記固定スクロールのスラスト面を周期的に移動することで、前記圧縮室に間欠的に開口することを特徴とする。
請求項31記載の本発明は、請求項25に記載のスクロール圧縮機において、前記第6の経路の圧縮室側開口端を前記旋回スクロールのラップ溝底面に、又は前記旋回スクロールのスラスト面に複数設け、前記旋回スクロールの旋回運動に伴い、前記圧縮室側開口端が、前記圧縮室と前記固定スクロールのラップ先端を、又は前記圧縮室と前記固定スクロールのスラスト面を周期的に移動することで、前記圧縮室に間欠的に開口することを特徴とする。
請求項32記載の本発明は、請求項1または請求項20に記載のスクロール圧縮機において、前記作動流体を高圧流体、例えば二酸化炭素としたことを特徴とする。
そして、高圧領域から背圧室へのオイル供給量を連通比率で制御することができるため、細孔等による絞りの必要性がなく、異物噛み込みや閉塞の課題が解消できる。従って、高効率かつ高信頼性を実現するスクロール圧縮機を提供することができる。
また、本発明のスクロール圧縮機は、旋回スクロールの背面に形成される背圧室に、安定した圧力を印加することができる。それとともに、双方間に形成される圧縮室に、適量のオイルを供給することができる。そのため、高効率で高信頼性なスクロール圧縮機を実現することができる。
さらに、本発明のスクロール圧縮機は、吸入口に連通しない内側圧縮室、および外側圧縮室へ、オイルを給油しつつ、外側圧縮室への総給油量より内側圧縮室への総給油量を多くする。これにより、両方の圧縮室間における渦巻き状のラップ側面隙間からの作動流体の漏れを効果的に抑制できるため、圧縮効率を向上できる。同時に、これらの圧縮室へ間欠的に給油を行うことで、給油量を絞る方向へ給油量制御の幅を広げることができる。これにより、給油量過多による粘性損失の増大を抑制できるため、高効率なスクロール圧縮機を提供できる。
2 圧縮機構
3 モータ部
4 クランク軸
4a 偏心軸部
6 オイル
11 主軸受部材
12 固定スクロール
12a 鏡板
12b ラップ
12c ラップ溝底面
12d ラップ先端
12e 凹部
12f スラスト面
12g ラップ溝
13 旋回スクロール
13a 鏡板
13b ラップ
13c ラップ溝底面
13d ラップ先端
13e 背面
13f スラスト面
14 自転拘束機構
15 圧縮室
15a 内側圧縮室
15b 外側圧縮室
16 吸入パイプ
17 吸入口
18 吐出口
19 リード弁
20 オイル溜め
25 ポンプ
26 オイル供給穴
29 背圧室
30 高圧領域
54 第1の経路
54a 開口端(高圧領域側)
54b 開口端(背圧室側)
54s 第1の経路における最小経路断面積
55 第2の経路
55a 開口端(背圧室側)
55b 開口端(圧縮室側)
55s 第2の経路における最小経路断面積
56 第2の経路
56a 開口端(背圧室側)
56b 開口端(圧縮室側)
57 第2の経路
57a 背圧室側開口端
66 軸受部
78 シール部材
81 第1の経路
81a 高圧領域側開口端
81b 背圧室側開口端
82 第2の経路
82a 背圧室側開口端
82b 圧縮室側開口端
83 第3の経路
83a 高圧領域側開口端
83b 圧縮室側開口端
84,85,86 凹部
87 第3の経路
87a 高圧領域側開口端
87b 圧縮室側開口端
90 給油量制御経路
91 第1の経路
91a 高圧領域側開口端
91b 背圧室側開口端
92 第4の経路
92a 背圧室側開口端
92b 圧縮室側開口端
92c 内側圧縮室側開口端
92d 外側圧縮室側開口端
93 第5の経路
93a 背圧室側開口端
93b 吸入室側開口端
94 第6の経路
94a 高圧領域側開口端
94b 吸入室側開口端
95a 外側圧縮室
95b 内側圧縮室
96 吸入室
96a 内側吸入室
96b 外側吸入室
97 ザグリ
98a 内側吸入室連通凹部
98b 外側吸入室連通凹部
99a 外側圧縮室連通凹部
99b 内側圧縮室連通凹部
A,B 制御経路
D1,D2 ラップ側面隙間
本発明の第2の実施の形態は、第1の実施の形態によるスクロール圧縮機において、第2の経路の連通比率を第1の経路の連通比率に対し同等以上とするものである。本実施の形態によれば、1回転のうち、高圧領域から背圧室へオイルを供給している区間より、背圧室から圧縮室に連通している区間の方が長いため、背圧室の圧力が異常上昇する恐れがない。即ち、旋回スクロールに対し過剰背圧の印加がないため、高効率かつ高信頼性を実現するスクロール圧縮機を提供することができる。
本発明の第3の実施の形態は、第1の実施の形態によるスクロール圧縮機において、第2の経路が連通しているときのみ、第1の経路が連通するものである。本実施の形態によれば、高圧領域から背圧室へオイルを供給している間は、必ず圧縮室に連通している。そのため、背圧室にオイルが溜まり込むことがなく、背圧が異常上昇する恐れもない。即ち、旋回スクロールに対し過剰背圧の印加がないため、高効率かつ高信頼性を実現するスクロール圧縮機を提供することができる。
本発明の第4の実施の形態は、第1の実施の形態によるスクロール圧縮機において、背圧室を、第2の経路を介して、一対の圧縮室のうちの一方にのみ連通するものである。本実施の形態によれば、背圧室は一方の圧縮室にしか連通しないため、1回転あたりの背圧の変動が小さく、結果として所定の背圧に設定することが容易となる。また安定状態では背圧室から圧縮室への逆流の恐れがないので、高効率かつ高信頼性を実現するスクロール圧縮機を提供することができる。
本発明の第5の実施の形態は、第1の実施の形態によるスクロール圧縮機において、第2の経路における最小経路断面積を、第1の経路における最小経路断面積より大きくするものである。本実施の形態によれば、背圧室へのオイル流入抵抗に対し、背圧室からのオイル流出抵抗を小さくできる。そのため、背圧室の圧力は高圧の変動に関わらず、圧縮室の圧力に依存させることができる。即ち、旋回スクロールに対し過剰背圧の印加がないため、高効率かつ高信頼性を実現するスクロール圧縮機を提供することができる。
本発明の第6の実施の形態は、第1の実施の形態によるスクロール圧縮機において、旋回スクロールの背面にシール部材を配置し、シール部材で高圧領域と背圧室に仕切るものである。本実施の形態によれば、高圧領域から背圧室への圧力の漏れ込みを防止できるので、背圧室へのオイル流入は第1の経路のみで制御することができる。即ち所定の背圧に設定することが容易になると同時に、安定した背圧が印加できるので、高効率かつ高信頼性を実現するスクロール圧縮機を提供することができる。
本発明の第7の実施の形態は、第6の実施の形態によるスクロール圧縮機において、第1の経路の一方の開口端が、シール部材を往来するものである。本実施の形態によれば、第1の経路の一方の開口端が高圧領域と背圧室を往来することにより、第1の経路の両方の開口端で圧力差が生じたときのみ、背圧室へオイルは供給される。即ち、オイル供給は、開口端がシール部材を往来する割合で調整できるため、細孔等の絞りの必要性もなく、異物噛み込みや閉塞も解消できる。従って、高効率かつ高信頼性を実現するスクロール圧縮機を提供することができる。
本発明の第8の実施の形態は、第1の実施の形態によるスクロール圧縮機において、第2の経路が、背圧室から旋回スクロールの内部を経て旋回スクロールのラップ先端に通じる第1の制御経路と、固定スクロールのラップ溝底面に形成した凹部とから構成され、旋回運動によって、第1の制御経路が凹部に間欠的に開口するものである。本実施の形態によれば、制御経路と凹部により、任意の圧縮室に背圧室を間欠的に連通させることができる。スクロール圧縮機はその用途によって必要な背圧が異なるが、本実施の形態であれば、吸入圧力から吐出圧力までの間のいかなる背圧であっても、その対応が可能となる。従って、用途に合わせた高効率かつ高信頼性を実現するスクロール圧縮機を提供することができる。
本発明の第9の実施の形態は、第1の実施の形態によるスクロール圧縮機において、第2の経路が、背圧室から旋回スクロールの内部を経て旋回スクロールのスラスト面に通じる第2の制御経路で構成され、旋回運動によって、第2の制御経路が固定スクロールのラップ溝に間欠的に開口するものである。本実施の形態によれば、第2の経路が固定スクロールのスラスト面(ラップ外周部)及びラップ溝を往来することで、背圧室と圧縮室を間欠的に連通させることができる。また第2の経路を構成する要素としては、旋回スクロールに形成した制御経路のみであるため、寸法公差の影響が小さい。即ちラップ溝への開口のばらつきが抑制され、その結果背圧の変動も抑制される。従って、高効率かつ高信頼性を実現するスクロール圧縮機を提供することができる。
本発明の第10の実施の形態は、第1の実施の形態によるスクロール圧縮機において、相溶性の冷凍機油を用いたものである。本実施の形態によれば、高圧領域から背圧室へオイルが供給された時点で、オイルは減圧するため、オイルに溶け込んでいた作動流体が発泡する。その結果、背圧室には気体状態となった作動流体が存在する。そのため、万一背圧室のオイル流入とオイル流出のバランスが崩れたとしても、その気体が圧縮され、極端な背圧上昇には至らない。即ち旋回スクロールに対し過剰背圧の印加がないため、高効率かつ高信頼性を実現するスクロール圧縮機を提供することができる。
本発明の第11の実施の形態は、第1の実施の形態によるスクロール圧縮機において、高圧領域と圧縮室を連通する第3の経路を設けたものである。本実施の形態によれば、高圧領域と背圧室、および背圧室と圧縮室のそれぞれを間欠的に連通することで、安定した背圧の印加を実現することができる。それとともに、適量のオイルを一方の圧縮室に供給することができる。さらに、高圧領域と圧縮室を連通することで、適量のオイルを他方の圧縮室にも供給することができる。これにより、高効率で高信頼性なスクロール圧縮機を実現できる。
本発明の第12の実施の形態は、第11の実施の形態によるスクロール圧縮機において、第2の経路を内側圧縮室に連通させるとともに、第3の経路を外側圧縮室に連通させる、または、第2の経路を外側圧縮室に連通させるとともに、第3の経路を内側圧縮室に連通させるものである。本実施の形態によれば、内側圧縮室および外側圧縮室のそれぞれに別経路でオイルを供給することができる。そのため、それぞれの圧縮室に最適量のオイルを供給することができ、高効率で高信頼性なスクロール圧縮機を実現できる。
本発明の第13の実施の形態は、第11の実施の形態によるスクロール圧縮機において、第3の経路を旋回スクロールの内部に設け、第3の経路の圧縮室側の開口端を旋回スクロールのラップ先端に設けたものである。本実施の形態によれば、第3の経路の圧縮室側の開口端を旋回スクロールのラップ先端に設けているため、開口端の設置位置や形状を調整することが容易である。そのため、圧縮室へ最適な位置に最適量のオイルを供給することができ、高効率なスクロール圧縮機を実現できる。
本発明の第14の実施の形態は、第13の実施の形態によるスクロール圧縮機において、開口端に、常時圧縮室に連通する凹部を設けたものである。本実施の形態によれば、旋回スクロールのラップ先端に設けた凹部の位置を調整することにより、第3の経路を経由したオイルを内側圧縮室あるいは外側圧縮室のいずれか一方の圧縮室に供給することができる。また、凹部の形状や深さを調整することにより、圧縮室へのオイル供給量を容易に調整することができ、高効率なスクロール圧縮機を実現できる。
本発明の第15の実施の形態は、第11の実施の形態によるスクロール圧縮機において、第3の経路を、高圧領域と圧縮室を間欠的に連通させるものである。本実施の形態によれば、高圧領域を間欠的に圧縮室へ連通させることによって、容易に圧縮室へ適量のオイルを供給することができ、高効率なスクロール圧縮機を実現できる。
本発明の第16の実施の形態は、第15の実施の形態によるスクロール圧縮機において、第3の経路の圧縮室側の開口端を、スクロールのラップ先端に設け、旋回スクロールの旋回運動によって、間欠的に開口するように固定スクロールのラップ溝底面に凹部を設けたものである。本実施の形態によれば、固定スクロールのラップ溝底面に設けた凹部の形状を調整することによって、第3の経路の圧縮室側の開口端が圧縮室に連通するための時間を容易に制御することができる。そのため、適量のオイルを圧縮室に供給することができ、高効率なスクロール圧縮機を実現できる。
本発明の第17の実施の形態は、第11の実施の形態によるスクロール圧縮機において、第3の経路を旋回スクロールの内部に設け、第3の経路の圧縮室側の開口端を旋回スクロールのラップ溝底面に設けたものである。本実施の形態によれば、旋回スクロールのラップを加工しないため、加工を単純化することができる。それとともに、旋回スクロールのラップの剛性低下を抑制することができる。
本発明の第18の実施の形態は、第11の実施の形態によるスクロール圧縮機において、第1の経路の高圧領域側の開口端と第3の経路の高圧領域側の開口端とを同一位置としたものである。本実施の形態によれば、加工を単純化できるとともに、それぞれの経路に必要な部品を統一して、部品点数を減少させることができる。また、加工箇所が減少するため、加工することによる旋回スクロールの剛性低下を抑制することができる。
本発明の第19の実施の形態は、第1の実施の形態によるスクロール圧縮機において、第2の経路を、固定スクロールのスラスト面上に設けたものである。本実施の形態によれば、過剰な背圧を防止し、安定した背圧の印加が可能となる。また高圧領域から背圧室へのオイル供給量を連通比率で制御することができるため、細孔等の絞りの必要性もなく、異物噛み込みや閉塞も解消できる。従って、高効率かつ高信頼性を実現するスクロール圧縮機を提供することができる。
本発明の第20の実施の形態によるスクロール圧縮機は、高圧領域と背圧室を連通する第1の経路と、背圧室と吸入口に連通しない圧縮室を連通する第4の経路とを設け、少なくとも第4の経路の圧縮室側開口端が、外側圧縮室または内側圧縮室に、間欠的に開口し、内側圧縮室への総給油量が外側圧縮室への総給油量より多くしたものである。本実施の形態によれば、内側圧縮室、および外側圧縮室において、1つ前に作動流体を閉じ込めた圧縮室と次に作動流体を閉じ込めた圧縮室の間の、ラップ側面隙間からの漏れを効果的に抑制でき、かつ給油量過多による粘性損失の増大を抑制できる。
本発明の第21の実施の形態は、第20の実施の形態によるスクロール圧縮機において、第4の経路の圧縮室側開口端を旋回スクロールのラップ先端に設け、圧縮室側開口端が、旋回スクロールの旋回運動に伴い、固定スクロールのラップ溝底面に設けた凹部に、間欠的に開口するものである。本実施の形態によれば、第4の経路の径や長さや、凹部の形状によって、オイル供給量を連通時間で制御できるため、圧縮室内へのオイル供給量の調整範囲や、背圧室の圧力調整範囲が広がり、圧縮機の効率と背圧の安定性を更に向上できる。
本発明の第22の実施の形態は、第20の実施の形態によるスクロール圧縮機において、第4の経路の圧縮室側開口端を旋回スクロールのラップ溝底面に、又は旋回スクロールのスラスト面に複数設け、圧縮室側開口端が、旋回スクロールの旋回運動に伴い、圧縮室と固定スクロールのラップ先端を、又は圧縮室と固定スクロールのスラスト面を周期的に移動することで、圧縮室に間欠的に開口するものである。本実施の形態によれば、第21の実施の形態の効果に加えて、鏡板への孔加工のみで第4の経路が形成できるため、加工工数が低減できる。
本発明の第23の実施の形態は、第20の実施の形態によるスクロール圧縮機において、第1の経路の背圧室側開口端が、旋回スクロールの背面に設けられて高圧領域と背圧室を仕切るシール部材を往来するものである。本実施の形態によれば、圧縮室への給油量を更に絞ることができるため、圧縮室内へのオイル供給量の調整範囲や、背圧室の圧力調整範囲がより広がり、圧縮機の効率と背圧の安定性を更に向上できる。また、クランク軸の1回転中に、第4の経路が背圧室と圧縮室を連通しない状態が存在しても、第1の経路を間欠的に連通させることで、過剰な背圧上昇を抑制できる。さらに、高圧領域から背圧室へ流入するオイル量を連通時間で制御できる。そのため、第1の経路に油量調節のための絞り部を設ける必要がなくなり、絞り部に異物が噛み込むトラブルを回避でき、信頼性も向上できる。
本発明の第24の実施の形態は、第20の実施の形態によるスクロール圧縮機において、背圧室と、吸入口に連通する圧縮室とを連通する第5の経路を設けたものである。本実施の形態によれば、背圧室から供給されるオイルが、吸入に連通する圧縮室のシールの役割を果たす。そのため、吸入行程における作動流体の漏れが抑制されて、体積効率が向上するので、圧縮機の効率をさらに向上できる。
本発明の第25の実施の形態は、第20の実施の形態によるスクロール圧縮機において、高圧領域と、吸入口に連通する圧縮室とを連通する第6の経路を設けたものである。本実施の形態によれば、高圧のオイルが吸入に連通する圧縮室に供給される。そのため、差圧の大きい高負荷運転時の潤滑性能が向上し、ラップの異常磨耗が抑えられるので、信頼性を向上できる。
本発明の第26の実施の形態は、第24の実施の形態によるスクロール圧縮機において、第5の経路の圧縮室側開口端を、旋回スクロールのラップ先端に設けたものである。本実施の形態によれば、給油経路の開閉によるウォーターハンマ現象が発生せず、作動流体に起因する騒音を低減できる。
本発明の第27の実施の形態は、第25の実施の形態によるスクロール圧縮機において、第6の経路の圧縮室側開口端を、旋回スクロールのラップ先端に設けたものである。本実施の形態によれば、第6の経路の径や長さや、先端部に形成したザグリの形状によって、オイル供給量を制御することができる。そのため、圧縮室内へのオイル供給量の調整範囲が広がり、吸入加熱による体積効率の悪化が抑えられるので、圧縮機の効率を向上できる。
本発明の第28の実施の形態は、第24の実施の形態によるスクロール圧縮機において、第5の経路の圧縮室側開口端を旋回スクロールのラップ先端に設け、圧縮室側開口端が、旋回スクロールの旋回運動に伴い、固定スクロールのラップ溝底面に設けた凹部に、間欠的に開口するものである。本実施の形態によれば、旋回スクロールのラップ先端の圧縮室側開口端と固定スクロールのラップ溝底面の凹部との連通時間でオイル供給量を制御できるため、より細かな調整が可能となり、吸入加熱による体積効率の悪化が抑えられるので、圧縮機の効率を向上できる。
本発明の第29の実施の形態は、第25の実施の形態によるスクロール圧縮機において、第6の経路の圧縮室側開口端を旋回スクロールのラップ先端に設け、圧縮室側開口端が、旋回スクロールの旋回運動に伴い、固定スクロールのラップ溝底面に設けた凹部に、間欠的に開口するものである。本実施の形態によれば、旋回スクロールのラップ先端の圧縮室側開口端と固定スクロールのラップ溝底面の凹部との連通時間でオイル供給量を制御できるため、より細かな調整が可能となり、吸入加熱による体積効率の悪化が抑えられるので、圧縮機の効率を向上できる。
本発明の第30の実施の形態は、第24の実施の形態によるスクロール圧縮機において、第5の経路の圧縮室側開口端を旋回スクロールのラップ溝底面に、又は旋回スクロールのスラスト面に複数設け、旋回スクロールの旋回運動に伴い、圧縮室側開口端が、圧縮室と固定スクロールのラップ先端を、又は圧縮室と固定スクロールのスラスト面を周期的に移動することで、圧縮室に間欠的に開口するものである。本実施の形態によれば、旋回スクロールへの加工のみで間欠的に圧縮室へ給油できるので、加工工数を低減できると同時に、連通時間で給油量を調整することができる。
本発明の第31の実施の形態は、第25の実施の形態によるスクロール圧縮機において、第5の経路の圧縮室側開口端を旋回スクロールのラップ溝底面に、又は旋回スクロールのスラスト面に複数設け、旋回スクロールの旋回運動に伴い、圧縮室側開口端が、圧縮室と固定スクロールのラップ先端を、又は圧縮室と固定スクロールのスラスト面を周期的に移動することで、圧縮室に間欠的に開口するものである。本実施の形態によれば、旋回スクロールへの加工のみで間欠的に圧縮室へ給油できるので、加工工数を低減できると同時に、連通時間で給油量を調整することができる。
本発明の第32の実施の形態は、第1または第20の実施の形態によるスクロール圧縮機において、作動流体を、高圧冷媒、例えば二酸化炭素としたものである。本実施の形態によれば、動作圧力が高くなっても、変動が少なく、安定した背圧が得られる。即ち、本発明の効果が顕著に現れて、高効率かつ高信頼性を実現するスクロール圧縮機を提供することができる。
本発明の第1の実施例について説明する。図1は、本発明の第1の実施例におけるスクロール圧縮機の縦断面図、図2は、図1のスクロール圧縮機の圧縮機構の断面図である。以下、本実施例1のスクロール圧縮機について、その構成、動作、作用を説明する。
そして、密閉容器1内に溶接や焼き嵌めなどして固定したクランク軸4の主軸受部材11と、この主軸受部材11上にボルト止めした固定スクロール12との間に、固定スクロール12と噛み合う旋回スクロール13を挟み込んで、スクロール式の圧縮機構2を構成している。旋回スクロール13と主軸受部材11との間には、旋回スクロール13の自転を防止して円軌道運動するように案内するオルダムリングなどによる自転拘束機構14を設けている。
そして、クランク軸4の上端にある偏心軸部4aにて、旋回スクロール13を偏心駆動することにより、旋回スクロール13を円軌道運動させる。
これにより、固定スクロール12と旋回スクロール13との間に形成している圧縮室15が、外周側から中央部に向かってその容積を減少しながら移動する。この容積変化を利用して、密閉容器1外に通じた吸入パイプ16および固定スクロール12の外周部の吸入口17から、作動流体である冷媒ガスを吸入し、圧縮室15に閉じ込めて圧縮する。そして、所定圧以上になった冷媒ガスが、リード弁19を押し開いて、固定スクロール12の中央部の吐出口18から、密閉容器1内に吐出することを繰り返す構成となっている。
旋回スクロール13のラップ先端13dには、運転中の温度分布を測定した結果をもとに、中心部である巻き始め部から外周部である巻き終わり部にかけて、徐々にハネ高さが高くなるように、スロープ形状が設けられている。これにより熱膨張による寸法変化を吸収し、局所摺動を防止することができる。
また、旋回スクロール13の背面13eには、高圧領域30と、高圧と低圧の中間圧に設定された背圧室29とが形成されている。この背面13eへの圧力付加により、旋回スクロール13は固定スクロール12に安定的に押しつけられるので、漏れを低減することができる。それとともに、安定して円軌道運動を行うことができる。
このように供給されたオイル6の一部は、供給圧や自重によって、逃げ場を求めるようにして、偏心軸部4aと旋回スクロール13との嵌合部や、クランク軸4と主軸受部材11との間の軸受部66に進入する。そして、このオイル6は、それぞれの部分を潤滑した後落下し、オイル溜め20へ戻る。
高圧領域30に供給されたオイル6の別の一部は、高圧領域30に開口する第1の経路54を通って、旋回スクロール13の外周部まわりにあって自転拘束機構14が位置している背圧室29に、進入する。そして、オイル6は、スラスト摺動部および自転拘束機構14の摺動部を潤滑するとともに、背圧室29にて旋回スクロール13の背圧印加に寄与する。
また、図2に示すように、旋回スクロール13には、背圧室29に常時開口し、一方の開口端55aを有する第2の経路55としての第1の制御経路が形成されている。そして、この第2の経路55は、旋回スクロール13の旋回運動に伴って、背圧室29と圧縮室15を間欠的に連通する。
例えば図3に示す構成の場合、第2の経路55としての第1の制御経路が有する他方の開口端55bを、固定スクロール12のラップ溝底面12cに形成した凹部12eに周期的に開口させることで、間欠連通を実現させている。
図3の(B)の状態で、開口端55bが凹部12eに開口している。この状態で、オイル6は、第2の経路55としての第1の制御経路を通って、背圧室29から圧縮室15へ供給される。
これに対し図3の(A)、(C)、(D)の状態では、開口端55bが凹部12eに開口していないため、背圧室29から圧縮室15へオイル6が供給されることはない。
以上のことから、第1の経路54を通って背圧室29に進入したオイル6は、第2の経路55を通って、圧縮室15へ導かれ、圧縮時のシール性向上や潤滑性向上の役割を果たしている。
そして、前者のオイル量が多い場合、背圧室29には過剰なオイル6が供給されるため、圧力が上昇する。その結果、旋回スクロール13に過剰な背圧が印加される。過剰な背圧が印加された場合には、スラスト荷重が増大するため、性能悪化や信頼性悪化を引き起こすという課題がある。
そこで、本実施例のスクロール圧縮機では、第1の経路54及び第2の経路55を、それぞれ間欠的に連通させる。具体的には、第1の経路54の一方の開口端54aを常時高圧領域30に開口させ、旋回スクロール13の背面13eに形成した他方の開口端54bを、高圧領域30と背圧室29を周期的に往来させるものである。
これにより、背圧室29へ過剰なオイル6が供給されることがないため、圧力の異常な上昇が防止できる。結果として、旋回スクロール13への過剰な背圧が防止でき、安定した背圧の印加が可能となる。
また、高圧領域30から背圧室29へのオイル供給量を、連通比率で制御することができる。そのため、第1の経路54の径をオイルフィルタに対し、10倍以上の寸法で構成することが可能となる。これにより、通路に異物が噛み込んで閉塞する恐れがなくなる。そのため、安定した背圧を印加することができると同時に、スラスト摺動部及び自転拘束機構14の潤滑を良好な状態で維持することができる。従って、高効率かつ高信頼性を実現するスクロール圧縮機を提供することができる。
なお、図2に示すように、第1の経路54は、一方の開口端54aと他方の開口端54bとを、第1の経路54の端部に有し、高圧領域30と背圧室29とを間欠連通している。
図4に示すように、1回転のうち、第1の経路54が高圧領域30から背圧室29へ連通している区間より、第2の経路55が背圧室29から圧縮室15に連通している区間を、同等以上に設定するものである。
この構成によると、第1の経路54による背圧室29へのオイル流入時間より、第2の経路55による背圧室29からのオイル流出時間の方が長くなるため、背圧室29の圧力が異常上昇する恐れがない。即ち、旋回スクロール13に対し過剰背圧の印加がないため、高効率かつ高信頼性を実現するスクロール圧縮機を提供することができる。
図5に示すように、1回転のうち、第2の経路55が背圧室29から圧縮室15に連通している区間の中で、第1の経路54が高圧領域30から背圧室29へ連通しているように設定するものである。
この構成によると、第1の経路54によって、高圧領域30から背圧室29へオイル6を供給している間は、必ず第2の経路55によって、背圧室29から圧縮室15へオイル6を供給している。そのため、背圧室29にオイル6が溜まりこむこともなく、背圧室29の圧力が異常上昇する恐れもない。即ち、旋回スクロール13に対し過剰背圧の印加がないため、高効率かつ高信頼性を実現するスクロール圧縮機を提供することができる。
また、第2の経路55を介して、背圧室29を、一対の圧縮室15のうち、一方の圧縮室15aにのみ連通させる。これにより、背圧室29は圧縮室15aにしか連通しないため、1回転あたりの背圧の変動が小さく、結果として所定の背圧に設定することが容易となる。また、安定状態では、背圧室29から圧縮室15への逆流の恐れもないので、高効率かつ高信頼性を実現するスクロール圧縮機を提供することができる。
また、第2の経路55における最小経路断面積55sを、第1の経路54における最小経路断面積54sより大きくする。これにより、背圧室29へのオイル流入抵抗より、背圧室29からのオイル流出抵抗を小さくできる。そのため、背圧室29の圧力を、高圧の変動に関わらず、圧縮室15の圧力に依存させることができる。即ち、旋回スクロール13に対し過剰背圧の印加がないため、高効率かつ高信頼性を実現するスクロール圧縮機を提供することができる。
また、旋回スクロール13の背面13eにシール部材78を配置することで、高圧領域30と背圧室29に仕切ることができる。これにより、高圧領域30から背圧室29への圧力の漏れ込みを、シール部材78により防止できるので、背圧室29へのオイル流入を、第1の経路54のみで、制御することができる。即ち所定の背圧に設定することが容易になると同時に、安定した背圧印加が可能となるので、高効率かつ高信頼性を実現するスクロール圧縮機を提供することができる。
図6は、固定スクロール12に旋回スクロール13を噛み合わせ、旋回スクロール13の背面から見た状態での平面図であり、位相を90度ずつずらした図を図6(A)、(B)、(C)、(D)の順に示している。
図6に示すように、シール部材78で、旋回スクロール13の背面領域を、内側の高圧領域30と外側の背圧室29に仕切っている。
図6(B)の状態で、開口端54bがシール部材78の外側である背圧室29に開口しているため、オイル6が高圧領域30から背圧室29へ供給される。
これに対し図6(A)、(C)、(D)の状態では、開口端54bはシール部材78の内側である高圧領域30に開口しているため、オイル6が高圧領域30から背圧室29へ供給されることはない。
即ち、第1の経路54の開口端54bが、高圧領域30と背圧室29を往来する際に、第1の経路54の開口端54aと開口端54bの間に圧力差が生じたときのみ、高圧領域30から背圧室29へオイル6は供給される。
この構成では、オイル供給は、開口端54bがシール部材78を往来する割合を変えることで調整できる。そのため、第1の経路54の径をオイルフィルタに対し、10倍以上の寸法で構成することが可能となる。これにより、通路に異物が噛み込んで閉塞する恐れがなくなる。そのため、安定した背圧の印加と同時にスラスト摺動部及び自転拘束機構14の潤滑も良好な状態を維持でき、高効率かつ高信頼性を実現するスクロール圧縮機を提供することができる。
なお、本実施例では、第1の経路54の開口端54aが常時高圧領域30にあり、開口端54bが高圧領域30と背圧室29を往来する場合の例を説明した。しかしながら、第1の経路54の開口端54aが高圧領域30と背圧室29を往来し、開口端54bが常時背圧室29にある場合でも、両方の開口端54a,54bに圧力差が生じるため、間欠連通が実現でき同様の効果が得られる。
図7に示すように、本実施例のスクロール圧縮機では、第2の経路56が、背圧室29から旋回スクロール13の内部を経て、旋回スクロール13のスラスト面13fへ通じる第2の制御経路で構成されている。そして、旋回運動によって、第2の制御経路が固定スクロール12のラップ溝12gに間欠的に開口したものである。
図8は、固定スクロール12に旋回スクロール13を噛み合わせた状態での横断面図であり、位相を90度ずつずらした図を、図8(A)、(B)、(C)、(D)の順に示している。
例えば図8に示す構成の場合、第2の経路56としての第2の制御経路が有する開口端56bを、固定スクロール12のスラスト面12f及びラップ溝12gを往来させることで、背圧室29と圧縮室15の間欠連通を実現させている。
図8の(B)の状態では、開口端56bがラップ溝12gに開口している。この状態で、オイル6は、第2の経路56としての第2の制御経路を通って、背圧室29からラップ溝12gを介して圧縮室15へ供給される。
これに対し図8(A)、(C)、(D)の状態では、開口端56bがスラスト面12fに面しているので、ラップ溝12gに開口していない。そのため、背圧室29から圧縮室15へとオイル6が供給されることはない。
そして、実施例1に示すように、第2の経路55を構成する要素が2つ(例えば2個の孔)の場合、それぞれの要素が各ラップに対して公差を持つことになるため、2つの要素分の寸法公差が影響してくる。つまり、第2の経路55の開口比率の範囲が拡大し、開口が最小の場合と最大の場合では、背圧変動や性能ばらつきが発生する。
これに対し本実施例に示すように、第2の経路56を構成する要素が1つ(例えば1個の孔)の場合、寸法公差の影響は1つの要素分のみとなる。即ち、開口比率の範囲が縮小し、その結果、背圧変動や性能ばらつきが抑制されるので、高効率かつ高信頼性を実現するスクロール圧縮機を提供することができる。
また、作動流体を、高圧冷媒、例えば二酸化炭素とした場合にも本発明のスクロール圧縮機によれば、圧力変動が少なく安定した背圧印加ができる。
図9に示すように、本実施例のスクロール圧縮機は、密閉容器1内に溶接や焼き嵌めなどして固定したクランク軸4の主軸受部材11と、この主軸受部材11上にボルト止めした固定スクロール12との間に、固定スクロール12と噛み合う旋回スクロール13を挟み込んで、スクロール式の圧縮機構2を構成している。そして、旋回スクロール13と主軸受部材11との間に、旋回スクロール13の自転を防止して円軌道運動するように案内するオルダムリングなどによる自転規制機構14を設けている。
そして、クランク軸4の上端にある偏心軸部4aにて、旋回スクロール13を偏心駆動することにより、旋回スクロール13を円軌道運動させる。これにより、固定スクロール12と旋回スクロール13との間に、固定スクロール12のラップ12bの外壁と旋回スクロール13のラップ13bの内壁に挟まれた内側圧縮室15aと、固定スクロール12のラップ12b内壁と旋回スクロール13のラップ13bの外壁に挟まれた外側圧縮室15bとが形成される。(図11参照)
その内側圧縮室15a(以下、圧縮室15a)と外側圧縮室15b(以下、圧縮室15b)のそれぞれは、外周側から中央部に向かってその容積を減少する。この変化を利用して、密閉容器1外に通じた吸入パイプ16および固定スクロール12の外周部の吸入口17から、冷媒ガスを吸入して圧縮する。そして、所定圧以上になった冷媒ガスを、固定スクロール12の中央部の吐出口18から、リード弁19を押し開いて、密閉容器1内に吐出させることを繰り返す構成となっている。
旋回スクロール13の背面部分には、主軸受部材11に配置されているシール部材78がある。そして、旋回運動を行いながら、シール部材78により、シール部材78の内側領域である吐出圧力雰囲気の高圧領域30と、外側領域である高圧と低圧の中間圧に設定された背圧室29とに仕切られている。この背面への圧力付加により、旋回スクロール13は固定スクロール12に安定的に押しつけられるので、漏れを低減することができる。それとともに、安定して円軌道運動を行うことができる。
このように供給されたオイル6の一部は、供給圧や自重によって、逃げ場を求めるようにして、偏心軸部4aと旋回スクロール13との嵌合部や、クランク軸4と主軸受部材11との間の軸受部66に進入する。そして、このオイル6は、それぞれの部分を潤滑した後落下し、オイル溜め20へ戻る。
そして、第1の経路81を旋回スクロール13に設けることで、旋回スクロール13の鏡板13aの背面の高圧領域30に供給されたオイル6の別の一部を、旋回スクロール13の旋回運動によってシール部材78を跨いで、間欠的に高圧領域30から背圧室29へ給油する。
上記構成により、高圧領域30から背圧室29へのオイル6の供給が、間欠的な連通によって行われる。従って、その連通時間を調整することにより、背圧室29へ適量のオイル6を供給することが可能となる。そして、オイル6は、自転規制機構14の摺動部を潤滑するとともに、背圧室29にて旋回スクロール13の背圧印加に寄与する。
すなわち、図10(a)の状態の時、第2の経路82の圧縮室側開口端82bが、固定スクロール12のラップ溝底面12cに設けられた凹部84に開口する。そして、凹部84は、圧縮室15bと連通しているため、背圧室29は圧縮室15bに連通する。そして、背圧室29のオイル6は圧縮室15bへ供給され、圧縮室15間の漏れ防止と摺動部の潤滑に寄与している。
一方、図10(b)の状態の時、圧縮室側開口端82bが凹部84に開口しないため、背圧室29は、圧縮室15bに連通しない。
上記構成により、背圧室29と圧縮室15bが短い時間で間欠的に連通するため、背圧室29の圧力を、変動の少ない所定の圧力に維持することが容易となる。また、一対の圧縮室15の圧縮室15bにのみ、背圧室29が連通しているため、背圧室29の圧力が圧縮室15の圧力より常に高い状態となる。そのため、圧縮室15から背圧室29への逆流を防止できるので、高効率化を実現できる。
これにより、第2の経路82により背圧室29から圧縮室15bに適量のオイル6を供給し、さらに、第3の経路83により高圧領域30から圧縮室15aに適量のオイル6を供給することができる。これにより、高効率で高信頼性なスクロール圧縮機を実現できる。
また、凹部85の設置位置や形状、あるいは凹部85の深さを調整することにより、最適量のオイル6を供給することが可能である。
また、上記実施例では、第2の経路82が圧縮室15bに連通し、第3の経路83が圧縮室15aに連通している構成であるが、第2の経路82が圧縮室15aに連通し、第3の経路83が圧縮室15bに連通している構成としても、同様の効果があることは言うまでもない。
図12に示すように、高圧領域30と、第2の経路82が連通する圧縮室15bとは別の圧縮室15aとを連通するための第3の経路83を旋回スクロール13に設ける。それとともに、旋回運動によって、第3の経路83の圧縮室側開口端83bを間欠的に開口するための、凹部86を固定スクロール12のラップ溝底面12cに設けている。
すなわち、図12(a)の状態の時、第3の経路83の圧縮室側開口端83bが、固定スクロール12のラップ溝底面12cに設けられた凹部86に開口する。そして、凹部86は、圧縮室15aと連通しているため、高圧領域30は圧縮室15aに連通する。そして、高圧領域30のオイル6は、圧縮室15aへ供給され、圧縮室15間の漏れ防止と摺動部の潤滑に寄与している。
一方、図12(b)の状態の時、圧縮室側開口端83bが凹部86に開口しないため、高圧領域30は圧縮室15aに連通しない。
この構成により、第2の経路82により、圧縮室15bに適量のオイル6を供給するとともに、第3の経路83によって、圧縮室15aにもオイル6を供給することができる。このとき、固定スクロール12のラップ溝底面12cに設けた凹部86の形状、位置、深さを調整することによって、第3の経路83の圧縮室側開口端83bが圧縮室15aに連通するための時間や、第3の経路83の経路抵抗を制御することができる。この制御によって、適量のオイル6を圧縮室15aに供給することができ、高効率なスクロール圧縮機を実現できる。
図13に示すように、高圧領域30と、第2の経路82が連通する圧縮室15bとは別の圧縮室15aとを連通するための、第3の経路87の圧縮室15側の圧縮室側開口端87bを旋回スクロール13のラップ溝底面13cに設けている。
すなわち、図13(a)状態の時、第3の経路87の圧縮室側開口端87bが圧縮室15aに開口するため、高圧領域30は圧縮室15aに連通する。そして、高圧領域30のオイル6は、圧縮室15aへ供給され、圧縮室15間の漏れ防止と摺動部の潤滑に寄与している。
一方、図13(b)の状態の時、第3の経路87の圧縮室側開口端87bが、固定スクロール12のラップ先端12dあるいは鏡板12aにより閉塞し、圧縮室15aに開口しないため、高圧領域30は、圧縮室15aに連通しない。
この構成により、第2の経路82によって、圧縮室15bに適量のオイル6を供給し、第3の経路87によって、間欠的に圧縮室15aにオイル6を供給するため、高効率なスクロール圧縮機を実現できる。
また、旋回スクロール13のラップ13bを加工しないため、加工を単純化することができるとともに、旋回スクロール13のラップ13bの剛性低下を抑制することができる。
また、第1の経路81の高圧領域30側の高圧領域側開口端81aと第3の経路87の高圧領域30側の高圧領域側開口端87aを同一位置としている。これによって、加工を単純化できるとともに、それぞれの経路に必要な部品を統一して、部品点数を減少させることができる。また、加工箇所が減少するため、加工することによる旋回スクロール13の剛性低下を抑制することができる。
図14に示すように、第1の経路54の背圧室側開口端54bを、シール部材78を往来させることで、高圧領域30と背圧室29を間欠的に連通させる。
また、固定スクロール12のスラスト面12f上には、背圧室29に開口する背圧室側開口端57aを有する第2の経路57が形成されている。この背圧室側開口端57aは、旋回スクロール13の旋回運動に伴い、旋回スクロール13のスラスト面13fにより開閉することで、背圧室29と圧縮室15を間欠的に連通させる。
即ち、図15(a)は、第2の経路57の背圧室側開口端57aが背圧室29と連通しているときの詳細図であり、図15(b)は、第2の経路57の背圧室側開口端57aが背圧室29と連通していないときの詳細図である。
この構成により、第1の経路54を通って背圧室29に進入したオイル6は、第2の経路57の背圧室側開口端57aを通って圧縮室15へと導かれ、圧縮時のシール性向上や潤滑性向上の役割を果たすことができる。
そこで、本実施例のスクロール圧縮機では、第1の経路54及び第2の経路57をそれぞれ間欠的に連通させる。これにより、背圧室29へ過剰なオイル6が供給されることがないため、圧力の異常な上昇が防止できる。結果として、旋回スクロール13への過剰な背圧が防止でき、安定した背圧の印加が可能となる。
また、高圧領域30から背圧室29へのオイル供給量を、連通比率で制御することができる。そのため、細孔等の絞りの必要性もなく、異物噛み込みや閉塞も解消でき、高効率かつ高信頼性を実現するスクロール圧縮機を提供することができる。
また、第2の経路57の連通比率を、第1の経路54の連通比率に対し同等以上とする。これにより、1回転のうち、高圧領域30から背圧室29へのオイル流入区間より、背圧室29から圧縮室15へのオイル流出区間が長いため、背圧室29の圧力が異常上昇する恐れがない。即ち、旋回スクロール13に対し過剰背圧の印加がないため、高効率かつ高信頼性を実現するスクロール圧縮機を提供することができる。
また、第2の経路57が背圧室29から圧縮室15に連通しているときのみ、第1の経路54で高圧領域30を背圧室29に連通させる。これにより、高圧領域30から背圧室29へオイル6が供給されている間は、必ず背圧室29は圧縮室15に連通している。そのため、背圧室29にオイル6が溜まり込むこともなく、背圧が異常上昇する恐れもない。即ち、旋回スクロール13に対し過剰背圧の印加がないため、高効率かつ高信頼性を実現するスクロール圧縮機を提供することができる。
また、第2の経路57を、背圧室29と吸入口17とが連通しない位置に設ける構成とする。この構成によれば、背圧室29は圧縮室15にしか連通しないため、1回転あたりの背圧の変動が小さくなり、結果として所定の背圧に設定することが容易となるので、高効率かつ高信頼性を実現するスクロール圧縮機を提供することができる。
本実施例は、実施例1と類似であり、実施例7では、実施例1と異なる発明部分について説明する。即ち、図16と図17において図2と同じ構成要素については同じ符号を用い、その説明を省略する。
従って、外側圧縮室114aと同じである外側圧縮室95aのラップ側面隙間D1と比較して、内側圧縮室114bと同じである内側圧縮室95bのラップ側面隙間D2の方が、作動流体は漏れやすいことになる。
そこで、本実施例のスクロール圧縮機では、オイル溜め20から内側圧縮室95bに導く給油経路を、旋回スクロール13に形成した、第1の経路91と第4の経路92とで構成する。そして、内側圧縮室連通凹部99bの断面積を外側圧縮室連通凹部99aの断面積より大きく設定する。これによって、圧力上昇速度の大きい内側圧縮室95bへ、積極的にオイル供給することで、1つ前に形成された内側圧縮室95b-1から、次に形成された内側圧縮室95b-2への作動流体の漏れを抑制することができる。
オイル供給穴26内のオイル6は、第1の経路91の高圧領域側開口端91aから第1の経路91に流入し、第1の経路91の背圧室側開口端91bから流出する。また、高圧領域30と背圧室29は、シール部材78によって密接に区画されているため、高圧領域30と背圧室29の間のオイル6の漏れ出しはない。
上記に対して、図17に示すクランク角(図18(A)に示すクランク角)においては、第1の経路91の背圧室側開口端91bが、シール部材78を跨いで背圧室29に開口している。背圧室29の圧力は、高圧と吸入圧の中間の圧力に保たれているので、高圧領域30の圧力より低い。従って、その圧力差によって、オイル6が高圧領域30から背圧室29へ流入する。
即ち、クランク角によって、第1の経路91の背圧室側開口端91bが、シール部材78の上を往来することにより、高圧領域30と背圧室29の非連通状態と連通状態を繰り返す。従って、背圧室29、または内側圧縮室95bへのオイル6の給油量を絞ることができる。そのため、内側圧縮室95b内へのオイル供給量の調整範囲を広げることが可能となる。従って、内側圧縮室95b内への過剰なオイル6の供給による粘性損失の増大を抑制でき、圧縮機の効率を向上することができる。
また、高圧領域30から背圧室29に流入させるオイル6の調整範囲も広がり、背圧を下げることができる。そのため、旋回スクロール13の固定スクロール12への押付力を緩和することが可能となる。従って、旋回スクロール13のスラスト面13fやラップ先端13dでの摺動損失を緩和でき、圧縮機の効率を向上することができる。
また、第4の経路92が背圧室29と内側圧縮室95bを連通しない場合が、クランク軸の1回転中に存在しても、第1の経路91を間欠的に連通させることで、過剰な背圧上昇を抑制でき、圧縮機構2の信頼性が向上できる。
さらに、高圧領域30から背圧室29へ流入するオイル量を連通時間で制御できるため、第1の経路91に油量調節のための絞り部を設ける必要がなくなり、絞り部に異物が噛み込むトラブルを回避でき、圧縮機構2の信頼性が向上できる。
即ち、図16に示すクランク角(図19(C)に示すクランク角)においては、第4の経路92の圧縮室側開口端92bが内側圧縮室連通凹部99bに開口して、背圧室29が内側圧縮室95bと連通している状態(即ち、内連通)であり、内側圧縮室95bにオイル6が供給されている。
上記に対して、図17に示すクランク角(図19(A)に示すクランク角)においては、第4の経路92の圧縮室側開口端92bが外側圧縮室連通凹部99aに開口して、背圧室29が外側圧縮室95aと連通している状態(即ち、外連通)にあり、外側圧縮室95aにオイル6が供給されている。
また、内側圧縮室連通凹部99bの断面積は、外側圧縮室連通凹部99aの断面積より、大きい構成とする。そのため、旋回スクロール13の旋回に伴う、圧縮室側開口端92bと内側圧縮室連通凹部99bの開口時間は、圧縮室側開口端92bと外側圧縮室連通凹部99aの開口時間より、長くなる。従って、内側圧縮室95bへの給油量が、外側圧縮室95aへの給油量より多くなる。この構成により、圧力上昇速度の大きい内側圧縮室95bへ、積極的にオイル6が供給でき、1つ前に形成された内側圧縮室95b-1から、次に形成された内側圧縮室95b-2への作動流体の漏れを抑制することができる。
言い換えれば、内側圧縮室95bにおいても、外側圧縮室95aにおいても、1つ前に作動流体を閉じ込めた圧縮室15と次に作動流体を閉じ込めた圧縮室15間の、ラップ側面隙間D1及びD2からの作動流体の漏れを効果的に抑制でき、再圧縮による圧縮効率の低下を抑制できる。
また、図19(B)、(D)に示すクランク角では、第4の経路92の圧縮室側開口端92bは、内側圧縮室連通凹部99bと外側圧縮室連通凹部99aに開口していない。即ち、背圧室29は、内側圧縮室95bと外側圧縮室95aに連通していない。そのため、内側圧縮室95bと外側圧縮室95aへ給油されない。従って、給油量過多による粘性損失の増大を抑制できるため、圧縮機の効率を向上することができる。
なお、本実施例は、内側圧縮室95bと外側圧縮室95aの給油量の大小を、内側圧縮室連通凹部99bと外側圧縮室連通凹部99aの断面積の大小により制御する構成であるが、内側圧縮室連通凹部99bと外側圧縮室連通凹部99aの深さや、位置を変化させて給油量の大小を制御する構成としても良い。
図20と図21において、圧縮室15へのオイル供給に係わる第4の経路92の圧縮室側開口端以外は、実施例7と同様なので、図16と同じ構成要素については同じ符号を用い、第4の経路92の圧縮室側開口端に関する説明のみを行い、他は省略する。
図20に示すように、本実施例では、第4の経路92の圧縮室側開口端が、旋回スクロール13(のラップ溝底面13c)に形成した、内側圧縮室側開口端92cと外側圧縮室側開口端92dとから構成されている。背圧室29に流入したオイル6は、第4の経路92の背圧室側開口端92aから第4の経路92を経て、第4の経路92の内側圧縮室側開口端92cと外側圧縮室側開口端92dに振り分けられる。
そして、図20に示すクランク角(図22(C)、(D)のクランク角)においては、第4の経路92の内側圧縮室側開口端92cが内側圧縮室95bに開口している。従って、背圧室29が内側圧縮室95bと連通している状態(即ち、内連通)であり、背圧室29から内側圧縮室95bにオイル6が供給されている。
上記に対して、図21に示すクランク角(図22(A)に示すクランク角)においては、第4の経路92の外側圧縮室側開口端92dが外側圧縮室95aに開口している。従って、背圧室29が外側圧縮室95aと連通している状態(即ち、外連通)にあり、背圧室29から外側圧縮室95aにオイル6が供給されている。
また、内側圧縮室側開口端92cの断面積は、外側圧縮室側開口端92dの断面積より大きい構成とする。そのため、内側圧縮室95bへの給油量が、外側圧縮室95aへの給油量より多くなる。この構成により、圧力上昇速度の大きい内側圧縮室95bへ、積極的にオイル6が供給でき、1つ前に形成された内側圧縮室95b-1から、次に形成された内側圧縮室95b-2への作動流体の漏れを抑制することができる。
言い換えれば、内側圧縮室95bにおいても、外側圧縮室95aにおいても、1つ前に作動流体を閉じ込めた圧縮室15と次に作動流体を閉じ込めた圧縮室15間の、ラップ側面隙間D1及びD2からの作動流体の漏れを効果的に抑制でき、再圧縮による圧縮効率の低下を抑制できる。
また、図22(B)に示すクランク角では、第4の経路92の内側圧縮室側開口端92cや外側圧縮室側開口端92dが、固定スクロール12のラップ先端12dによって閉塞されている。そのため、背圧室29は、内側圧縮室95bと外側圧縮室95aに連通していないので、内側圧縮室95bと外側圧縮室95aへ給油されない。従って、給油量過多による粘性損失の増大を抑制できるため、圧縮機の効率を向上することができる。
図23と図24において、吸入室96へのオイル供給に係わる第5の経路93以外は、実施例7と同様なので、図16と同じ構成要素については同じ符号を用い、第5の経路93に関する説明のみを行い、他は省略する。
図23に示すように、本実施例では、背圧室29と、吸入口17に連通する圧縮室15(即ち、吸入室96)とを連通するための、第5の経路93を旋回スクロール13に設けている。第5の経路93の一端は、背圧室側開口端93aであり、背圧室29に常時開口している。他端は、吸入室側開口端93bであり、旋回スクロール13のラップ先端13dに設けられている。そして、吸入室側開口端93bは、ラップ先端13dに設けたザグリ97を通じて、常時吸入室96に開口している。
そして、背圧室29に流入したオイル6は、第5の経路93の背圧室側開口端93aから第5の経路93を経て、さらに第5の経路93の吸入室側開口端93bからザグリ97を経て、吸入室96に流入する。
図23と図24においても、即ち、図25(A)から(D)に示す全てのクランク角において、第5の経路93の吸入室側開口端93bは、ザグリ97を介して、吸入室96と常時連通状態である。これにより、常時吸入室96にオイル6が供給されている。
従って、背圧室29から吸入室96にオイル6が常時供給されることにより、オイル6がシールの役割を果たし、吸入口17に連通する圧縮室15(即ち、吸入室96)の吸入行程における作動流体の漏れが低減できる。この漏れ低減により、体積効率を向上できるため、圧縮機の効率向上が可能である。
また、背圧室29から吸入室96への給油量は、第5の経路93の断面積や、背圧室側開口端93aの断面積、吸入室側開口端93bの断面積や開口位置、ザグリ97の断面積や深さを変化させることで制御することが可能である。なお、ザグリ97を設けない構成であっても良い。
図に示すように、第5の経路93の吸入室側開口端93bを、外側吸入室連通の凹部98bまたは内側吸入室連通凹部98aに開口させて、背圧室29を、吸入口17に連通する圧縮室15である吸入室96に間欠的に連通させる構成としても良い。
この場合、吸入室側開口端93bが、外側吸入室連通凹部98bまたは内側吸入室連通凹部98aに開口しているクランク角においてのみ、外側吸入室96bもしくは内側吸入室96aに、オイル6が供給されるので、背圧室29から吸入室96への間欠的な給油が可能となる。
また、第5の経路93の径や長さや、吸入室側開口端93bの断面積や開口位置、外側吸入室連通凹部98bや内側吸入室連通凹部98a凹部の形状によって、吸入室96へのオイル供給量を連通時間で制御できる。そのため、吸入室96内へのオイル6の供給量の調整範囲が広がり、吸入加熱による体積効率の悪化を抑制でき、圧縮機の効率を向上することができる。
なお、本実施例の第5の経路93である間欠的な給油経路は、図7、および図20から図22を用いて説明した、実施例2、および実施例8に示す方法で構成した給油経路でもよい。
図28と図29において、吸入室96へのオイル供給に係わる第6の経路94以外は、実施例7と同様なので、図16と同じ構成要素については同じ符号を用い、第6の経路94に関する説明のみを行い、他は省略する。
図28に示すように、本実施例では、高圧領域30と、吸入口17に連通する圧縮室15(即ち、吸入室96)とを連通するための、第6の経路94を旋回スクロール13に設けている。第6の経路94の一端は、高圧領域側開口端94aであり、高圧領域30に常時開口している。他端は、吸入室側開口端94bであり、旋回スクロール13のラップ先端13dに設けられている。そして、吸入室側開口端94bは、ラップ先端13dに設けたザグリ97を通じて、常時吸入室96に開口している。
そして、高圧領域30に流入したオイル6は、第6の経路94の高圧領域側開口端94aから第6の経路94を経て、さらに第6の経路94の吸入室側開口端94bからザグリ97を経て、吸入室96に流入する。
図28と図29に示す本実施例においても、実施例9と同様に、図25(A)から(D)に示す全てのクランク角において、第6の経路94の吸入室側開口端94bは、ザグリ97を介して、吸入室96と常時連通状態である。これにより、常時吸入室96に高圧のオイル6が供給される。
従って、高圧領域30から吸入室96に高圧のオイル6が常時供給されることにより、差圧の大きい高負荷運転時の潤滑性能が向上する。そして、旋回スクロール13や固定スクロール12のラップ上面や側面の異常磨耗が抑制できるので、圧縮機の信頼性が向上する。
また、高圧領域30から吸入室96への給油量は、第6の経路94の断面積や、高圧領域側開口端94aの断面積、吸入室側開口端94bの断面積や開口位置、ザグリ97の断面積や深さを変化させることで制御することが可能である。なお、ザグリ97を設けない構成であっても良い。
図に示すように、第6の経路94の吸入室側開口端94bを、外側吸入室連通凹部98bまたは内側吸入室連通凹部98aに開口させて、高圧領域30を、吸入口17に連通する圧縮室15である吸入室96に間欠的に連通させる構成としても良い。
この場合、吸入室側開口端94bが、外側吸入室連通凹部98bまたは内側吸入室連通凹部98aに開口しているクランク角においてのみ、外側吸入室96bもしくは内側吸入室96aに、オイル6が供給されるので、高圧領域30から吸入室96への間欠的な給油が可能となる。
また、第6の経路94の径や長さや、吸入室側開口端94bの断面積や開口位置、外側吸入室連通凹部98bや内側吸入室連通凹部98aの凹部の形状によって、吸入室96へのオイル供給量を連通時間で制御できる。そのため、吸入室96内へのオイル6の供給量の調整範囲が広がり、吸入加熱による体積効率の悪化を抑制でき、圧縮機の効率を向上することができる。
なお、本実施例の第6の経路94である間欠的な給油経路は、図7、および図20から図22を用いて説明した、実施例2、および実施例8に示す方法で構成した給油経路でもよい。
ところで、作動流体を、高圧冷媒、例えば二酸化炭素とした場合にも、本発明のスクロール圧縮機によれば、圧縮室間の渦巻き状のラップ側面隙間からの作動流体の漏れを効果的に抑制しつつ、安定した背圧を印加することができる。
Claims (32)
- 鏡板から渦巻き状のラップが立ち上がる固定スクロール及び旋回スクロールを噛み合わせて双方間に圧縮室を形成し、前記旋回スクロールの背面には高圧領域と背圧室を形成し、自転拘束機構による規制により前記旋回スクロールが円軌道に沿って所定の旋回半径で旋回運動をすることで、前記圧縮室が容積を変えながら中心に向かって移動し、前記固定スクロールに形成された吸入口から作動流体を吸入し、圧縮、吐出の一連の動作を行うスクロール圧縮機であって、
前記高圧領域と前記背圧室を間欠的に連通する第1の経路と、
前記背圧室と前記圧縮室を間欠的に連通する第2の経路とを設けたことを特徴とするスクロール圧縮機。 - 前記第2の経路の連通比率を前記第1の経路の連通比率に対し同等以上とすることを特徴とする請求項1に記載のスクロール圧縮機。
- 前記第2の経路が連通しているときのみ、前記第1の経路が連通することを特徴とする請求項1に記載のスクロール圧縮機。
- 前記背圧室を、前記第2の経路を介して、一対の前記圧縮室のうちの一方にのみ連通することを特徴とする請求項1に記載のスクロール圧縮機。
- 前記第2の経路における最小経路断面積を、前記第1の経路における最小経路断面積より大きくすることを特徴とする請求項1に記載のスクロール圧縮機。
- 前記旋回スクロールの前記背面にシール部材を配置し、前記シール部材で前記高圧領域と前記背圧室に仕切ることを特徴とする請求項1に記載のスクロール圧縮機。
- 前記第1の経路の一方の開口端が、前記シール部材を往来することを特徴とする請求項6に記載のスクロール圧縮機。
- 前記第2の経路が、前記背圧室から前記旋回スクロールの内部を経て前記旋回スクロールのラップ先端に通じる第1の制御経路と、前記固定スクロールのラップ溝底面に形成した凹部とから構成され、
前記旋回運動によって、前記第1の制御経路が前記凹部に間欠的に開口することを特徴とする請求項1に記載のスクロール圧縮機。 - 前記第2の経路が、前記背圧室から前記旋回スクロールの内部を経て前記旋回スクロールのスラスト面に通じる第2の制御経路で構成され、
前記旋回運動によって、前記第2の制御経路が前記固定スクロールのラップ溝に間欠的に開口することを特徴とする請求項1に記載のスクロール圧縮機。 - 相溶性の冷凍機油を用いることを特徴とする請求項1に記載のスクロール圧縮機。
- 前記高圧領域と前記圧縮室を連通する第3の経路を設けたことを特徴とする請求項1に記載のスクロール圧縮機。
- 前記第2の経路を内側圧縮室に連通させるとともに、前記第3の経路を外側圧縮室に連通させる、または、前記第2の経路を前記外側圧縮室に連通させるとともに、前記第3の経路を前記内側圧縮室に連通させることを特徴とする請求項11に記載のスクロール圧縮機。
- 前記第3の経路を前記旋回スクロールの内部に設け、前記第3の経路の前記圧縮室側の開口端を前記旋回スクロールのラップ先端に設けたことを特徴とする請求項11に記載のスクロール圧縮機。
- 前記開口端に、常時前記圧縮室に連通する凹部を設けたことを特徴とする請求項13に記載のスクロール圧縮機。
- 前記第3の経路を、前記高圧領域と前記圧縮室を間欠的に連通させることを特徴とする請求項11に記載のスクロール圧縮機。
- 前記第3の経路の前記圧縮室側の前記開口端を、前記スクロールのラップ先端に設け、前記旋回スクロールの旋回運動によって、間欠的に開口するように前記固定スクロールのラップ溝底面に凹部を設けたことを特徴とする請求項15に記載のスクロール圧縮機。
- 前記第3の経路を前記旋回スクロールの内部に設け、
前記第3の経路の前記圧縮室側の開口端を前記旋回スクロールのラップ溝底面に設けたことを特徴とする請求項11に記載のスクロール圧縮機。 - 前記第1の経路の前記高圧領域側の開口端と前記第3の経路の前記高圧領域側の開口端とを同一位置としたことを特徴とする請求項11に記載のスクロール圧縮機。
- 前記第2の経路を、前記固定スクロールのスラスト面上に設けたことを特徴とする請求項1に記載のスクロール圧縮機。
- 鏡板から渦巻き状のラップが立ち上がる固定スクロール及び旋回スクロールを噛み合わせて双方間に圧縮室を形成し、前記圧縮室は前記旋回スクロールのラップ外側に形成される外側圧縮室と前記旋回スクロールの内側に形成される内側圧縮室を有し、前記外側圧縮室の吸入容積が前記内側圧縮室の吸入容積より大きく、前記旋回スクロールの背面には高圧領域と背圧室を形成し、前記旋回スクロールが円軌道に沿って所定の旋回半径で旋回運動をすることで、前記圧縮室が容積を変えながら中心に向かって移動し、前記固定スクロールに形成された吸入口から作動流体を吸入し、前記圧縮室に閉じ込めた後、圧縮、吐出の一連の動作を行うスクロール圧縮機であって、
前記高圧領域と前記背圧室を連通する第1の経路と、前記背圧室と前記吸入口に連通しない圧縮室を連通する第4の経路とを設け、
少なくとも前記第4の経路の圧縮室側開口端が、前記外側圧縮室または前記内側圧縮室に、間欠的に開口し、
前記内側圧縮室への総給油量が前記外側圧縮室への総給油量より多くしたことを特徴とするスクロール圧縮機。 - 前記第4の経路の前記圧縮室側開口端を前記旋回スクロールのラップ先端に設け、
前記圧縮室側開口端が、前記旋回スクロールの旋回運動に伴い、固定スクロールのラップ溝底面に設けた凹部に、間欠的に開口することを特徴とする請求項20に記載のスクロール圧縮機。 - 前記第4の経路の前記圧縮室側開口端を前記旋回スクロールのラップ溝底面に、又は前記旋回スクロールのスラスト面に複数設け、
前記圧縮室側開口端が、前記旋回スクロールの旋回運動に伴い、前記圧縮室と前記固定スクロールのラップ先端を、又は前記圧縮室と前記固定スクロールのスラスト面を周期的に移動することで、前記圧縮室に間欠的に開口することを特徴とする請求項20に記載のスクロール圧縮機。 - 前記第1の経路の背圧室側開口端が、前記旋回スクロールの前記背面に設けられて前記高圧領域と前記背圧室を仕切るシール部材を往来することを特徴とする請求項20に記載のスクロール圧縮機。
- 前記背圧室と、前記吸入口に連通する圧縮室とを連通する第5の経路を設けたことを特徴とする請求項20に記載のスクロール圧縮機。
- 前記高圧領域と、前記吸入口に連通する圧縮室とを連通する第6の経路を設けたことを特徴とする請求項20に記載のスクロール圧縮機。
- 前記第5の経路の圧縮室側開口端を、前記旋回スクロールのラップ先端に設けたことを特徴とする請求項24に記載のスクロール圧縮機。
- 前記第6の経路の圧縮室側開口端を、前記旋回スクロールのラップ先端に設けたことを特徴とする請求項25に記載のスクロール圧縮機。
- 前記第5の経路の圧縮室側開口端を前記旋回スクロールのラップ先端に設け、
前記圧縮室側開口端が、前記旋回スクロールの旋回運動に伴い、前記固定スクロールのラップ溝底面に設けた凹部に、間欠的に開口することを特徴とする請求項24に記載のスクロール圧縮機。 - 前記第6の経路の圧縮室側開口端を前記旋回スクロールのラップ先端に設け、
前記圧縮室側開口端が、前記旋回スクロールの旋回運動に伴い、前記固定スクロールのラップ溝底面に設けた凹部に、間欠的に開口することを特徴とする請求項25に記載のスクロール圧縮機。 - 前記第5の経路の圧縮室側開口端を前記旋回スクロールのラップ溝底面に、又は前記旋回スクロールのスラスト面に複数設け、前記旋回スクロールの旋回運動に伴い、前記圧縮室側開口端が、前記圧縮室と前記固定スクロールのラップ先端を、又は前記圧縮室と前記固定スクロールのスラスト面を周期的に移動することで、前記圧縮室に間欠的に開口することを特徴とする請求項24に記載のスクロール圧縮機。
- 前記第6の経路の圧縮室側開口端を前記旋回スクロールのラップ溝底面に、又は前記旋回スクロールのスラスト面に複数設け、前記旋回スクロールの旋回運動に伴い、前記圧縮室側開口端が、前記圧縮室と前記固定スクロールのラップ先端を、又は前記圧縮室と前記固定スクロールのスラスト面を周期的に移動することで、前記圧縮室に間欠的に開口することを特徴とする請求項25に記載のスクロール圧縮機。
- 前記作動流体を高圧流体、例えば二酸化炭素としたことを特徴とする請求項1または請求項20に記載のスクロール圧縮機。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2009239310A AU2009239310A1 (en) | 2008-04-22 | 2009-04-20 | Scroll compressor |
CN200980114359.9A CN102016319B (zh) | 2008-04-22 | 2009-04-20 | 涡旋压缩机 |
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-111207 | 2008-04-22 | ||
JP2008111207 | 2008-04-22 | ||
JP2008199353A JP5141432B2 (ja) | 2008-08-01 | 2008-08-01 | スクロール圧縮機 |
JP2008-199353 | 2008-08-01 | ||
JP2008282726A JP5304178B2 (ja) | 2008-04-22 | 2008-11-04 | スクロール圧縮機 |
JP2008-282726 | 2008-11-04 | ||
JP2008-298969 | 2008-11-25 | ||
JP2008298969A JP2010127071A (ja) | 2008-11-25 | 2008-11-25 | スクロール圧縮機 |
JP2009-022135 | 2009-02-03 | ||
JP2009022135A JP5304285B2 (ja) | 2009-02-03 | 2009-02-03 | スクロール圧縮機 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009130878A1 true WO2009130878A1 (ja) | 2009-10-29 |
Family
ID=41216620
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/001799 WO2009130878A1 (ja) | 2008-04-22 | 2009-04-20 | スクロール圧縮機 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2009130878A1 (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102454603A (zh) * | 2010-10-28 | 2012-05-16 | 日立空调·家用电器株式会社 | 涡旋式压缩机 |
CN102472274A (zh) * | 2010-06-11 | 2012-05-23 | 松下电器产业株式会社 | 涡旋式压缩机 |
JP2012102612A (ja) * | 2010-11-08 | 2012-05-31 | Panasonic Corp | スクロール圧縮機 |
CN103154521A (zh) * | 2010-09-27 | 2013-06-12 | 松下电器产业株式会社 | 旋转式压缩机 |
CN103306974A (zh) * | 2013-07-02 | 2013-09-18 | 上海星易汽车空调股份有限公司 | 一种热泵系统用涡旋压缩机 |
WO2013145017A1 (ja) * | 2012-03-30 | 2013-10-03 | 日立アプライアンス株式会社 | スクロール圧縮機 |
US10801496B2 (en) | 2017-03-10 | 2020-10-13 | OET GmbH | Positive-displacement machine according to the spiral principle, method for operating a positive-displacement machine, positive-displacement spiral, vehicle air-conditioning system and vehicle |
DE102020210453A1 (de) | 2020-05-14 | 2021-11-18 | Brose Fahrzeugteile SE & Co. Kommanditgesellschaft, Würzburg | Scrollverdichter eines elektrischen Kältemittelantriebs |
CN114294225A (zh) * | 2021-12-24 | 2022-04-08 | 广东美的环境科技有限公司 | 动涡盘、压缩机及空调 |
EP4269799A1 (en) * | 2022-04-29 | 2023-11-01 | Robert Bosch GmbH | Orbiting scroll plate and scroll compressor |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08303369A (ja) * | 1996-06-14 | 1996-11-19 | Matsushita Electric Ind Co Ltd | スクロール気体圧縮機 |
JPH08303370A (ja) * | 1996-06-14 | 1996-11-19 | Matsushita Electric Ind Co Ltd | スクロール気体圧縮機 |
JP2005147101A (ja) * | 2003-11-20 | 2005-06-09 | Mitsubishi Electric Corp | スクロール圧縮機及びこれを用いた冷凍空調装置 |
-
2009
- 2009-04-20 WO PCT/JP2009/001799 patent/WO2009130878A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08303369A (ja) * | 1996-06-14 | 1996-11-19 | Matsushita Electric Ind Co Ltd | スクロール気体圧縮機 |
JPH08303370A (ja) * | 1996-06-14 | 1996-11-19 | Matsushita Electric Ind Co Ltd | スクロール気体圧縮機 |
JP2005147101A (ja) * | 2003-11-20 | 2005-06-09 | Mitsubishi Electric Corp | スクロール圧縮機及びこれを用いた冷凍空調装置 |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102472274A (zh) * | 2010-06-11 | 2012-05-23 | 松下电器产业株式会社 | 涡旋式压缩机 |
US20120128518A1 (en) * | 2010-06-11 | 2012-05-24 | Sadayuki Yamada | Scroll compressor |
US9239052B2 (en) * | 2010-06-11 | 2016-01-19 | Panasonic Intellectual Property Management Co., Ltd. | Scroll compressor having out-of-phase back pressure chamber and compression chamber oil-feeding paths |
CN103154521A (zh) * | 2010-09-27 | 2013-06-12 | 松下电器产业株式会社 | 旋转式压缩机 |
CN103939340A (zh) * | 2010-10-28 | 2014-07-23 | 日立空调·家用电器株式会社 | 涡旋式压缩机 |
CN102454603A (zh) * | 2010-10-28 | 2012-05-16 | 日立空调·家用电器株式会社 | 涡旋式压缩机 |
CN102454603B (zh) * | 2010-10-28 | 2014-10-29 | 日立空调·家用电器株式会社 | 涡旋式压缩机 |
JP2012102612A (ja) * | 2010-11-08 | 2012-05-31 | Panasonic Corp | スクロール圧縮機 |
WO2013145017A1 (ja) * | 2012-03-30 | 2013-10-03 | 日立アプライアンス株式会社 | スクロール圧縮機 |
CN103306974A (zh) * | 2013-07-02 | 2013-09-18 | 上海星易汽车空调股份有限公司 | 一种热泵系统用涡旋压缩机 |
US10801496B2 (en) | 2017-03-10 | 2020-10-13 | OET GmbH | Positive-displacement machine according to the spiral principle, method for operating a positive-displacement machine, positive-displacement spiral, vehicle air-conditioning system and vehicle |
DE102020210453A1 (de) | 2020-05-14 | 2021-11-18 | Brose Fahrzeugteile SE & Co. Kommanditgesellschaft, Würzburg | Scrollverdichter eines elektrischen Kältemittelantriebs |
DE102020210453B4 (de) | 2020-05-14 | 2024-02-01 | Brose Fahrzeugteile SE & Co. Kommanditgesellschaft, Würzburg | Scrollverdichter eines elektrischen Kältemittelantriebs |
CN114294225A (zh) * | 2021-12-24 | 2022-04-08 | 广东美的环境科技有限公司 | 动涡盘、压缩机及空调 |
EP4269799A1 (en) * | 2022-04-29 | 2023-11-01 | Robert Bosch GmbH | Orbiting scroll plate and scroll compressor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009130878A1 (ja) | スクロール圧縮機 | |
JP4892238B2 (ja) | スクロール圧縮機 | |
CN102016319B (zh) | 涡旋压缩机 | |
JP2011027076A (ja) | スクロール圧縮機 | |
JP5345636B2 (ja) | スクロール圧縮機 | |
JP4519489B2 (ja) | スクロール圧縮機 | |
JP5022291B2 (ja) | スクロール圧縮機 | |
JP5304285B2 (ja) | スクロール圧縮機 | |
JP5304178B2 (ja) | スクロール圧縮機 | |
JP2005180320A (ja) | スクロール圧縮機 | |
JP5428522B2 (ja) | スクロール圧縮機 | |
CN100501164C (zh) | 涡旋式压缩机 | |
JP2008309078A (ja) | スクロール圧縮機 | |
JP4256801B2 (ja) | 圧縮機および空気調和装置 | |
JP4930314B2 (ja) | 容積型膨張機、膨張機一体型圧縮機、および冷凍サイクル装置 | |
JP5061584B2 (ja) | スクロール圧縮機 | |
JP5786130B2 (ja) | スクロール圧縮機 | |
JP2009052464A (ja) | スクロール圧縮機 | |
JP5141432B2 (ja) | スクロール圧縮機 | |
JP2011012638A (ja) | スクロール圧縮機 | |
JP5071355B2 (ja) | スクロール圧縮機 | |
JP2006009640A (ja) | スクロール圧縮機 | |
JP2007182870A (ja) | スクロール圧縮機 | |
JP2006214335A (ja) | スクロール圧縮機 | |
JP2014105692A (ja) | スクロール圧縮機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980114359.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09735681 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009239310 Country of ref document: AU |
|
ENP | Entry into the national phase |
Ref document number: 2009239310 Country of ref document: AU Date of ref document: 20090420 Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09735681 Country of ref document: EP Kind code of ref document: A1 |