WO2013145017A1 - スクロール圧縮機 - Google Patents
スクロール圧縮機 Download PDFInfo
- Publication number
- WO2013145017A1 WO2013145017A1 PCT/JP2012/002212 JP2012002212W WO2013145017A1 WO 2013145017 A1 WO2013145017 A1 WO 2013145017A1 JP 2012002212 W JP2012002212 W JP 2012002212W WO 2013145017 A1 WO2013145017 A1 WO 2013145017A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- back pressure
- pressure chamber
- oil
- scroll
- chamber
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/02—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
- F04C18/0207—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
- F04C18/0215—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/02—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
- F04C18/0207—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
- F04C18/0246—Details concerning the involute wraps or their base, e.g. geometry
- F04C18/0253—Details concerning the base
- F04C18/0261—Details of the ports, e.g. location, number, geometry
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C23/00—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
- F04C23/008—Hermetic pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/02—Lubrication; Lubricant separation
- F04C29/025—Lubrication; Lubricant separation using a lubricant pump
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/02—Lubrication; Lubricant separation
- F04C29/028—Means for improving or restricting lubricant flow
Definitions
- the present invention relates to a scroll compressor.
- the amount of lubricating oil supplied from the high pressure hydraulic chamber to the back pressure chamber can be adjusted by the size of the small holes etc.
- a scroll compressor capable of easily optimizing the amount of lubricating oil leaking to the low pressure chamber side and improving the reliability.
- the amount of oil in the back pressure chamber is high until the lubricating oil in the back pressure chamber is discharged to the compression chamber through the hole connecting the back pressure chamber provided in the orbiting scroll mirror plate and the compression chamber.
- the lubricating oil supplied intermittently to the low pressure chamber side across the seal ring from the hydraulic chamber As a result, more lubricating oil than necessary may be accumulated in the back pressure chamber, and the pivoting motion of the orbiting scroll may cause stirring loss.
- the present application includes a plurality of means for solving the above-mentioned problems, the fixed-side flat plate portion and a fixed-side wrap which is erected by holding a spiral shape on one surface of the fixed-side flat plate portion And a revolving side flat plate portion, and a revolving side wrap which is erected while holding a spiral shape on one surface of the revolving side flat plate portion, and the revolving side wrap and the stationary side wrap are engaged with each other.
- An orbiting scroll forming a compression chamber by orbiting relative to the fixed scroll, and an electric motor driving the orbiting scroll via a crankshaft, and the center side of the back side of the orbiting scroll relative to the fixed scroll
- oil is supplied from the back pressure chamber to the compression chamber by intermittently communicating the first oil supply means for supplying oil from the central space to the back pressure chamber, and the compression chamber and the back pressure chamber.
- a second oil supply means for supplying an amount of oil to the back pressure chamber when the oil is supplied from the back pressure chamber to the compression chamber by the second oil supply means; It is characterized by "being configured.”
- FIG. 1 is a longitudinal sectional view of a scroll compressor showing a first embodiment.
- FIG. 8 is a view for explaining the principle of communication between a fixed scroll notch and a revolving scroll back pressure hole in the first embodiment.
- the A section enlarged view of FIG. FIG. 2 is a diagram for explaining the operation principle in the first embodiment, and showing the timing of refueling.
- FIG. 6 is a view showing the relationship between the oil supply to the back pressure chamber and the back pressure indoor oil amount in the first embodiment. The figure explaining the positional relationship of the turning scroll back surface and seal member in conventional structure.
- FIG. 7 is a diagram showing Embodiment 1, corresponding to FIG. 6;
- FIG. 7 is a view showing a second embodiment, which corresponds to FIG.
- FIG. 18 is a diagram showing Embodiment 7, corresponding to FIG. 6;
- FIG. 18 is a view showing Example 8, corresponding to FIG. 6;
- FIG. 1 is an example of a scroll compressor block diagram of the present embodiment.
- the scroll compressor 1 is configured by housing the compression mechanism unit 2 and the drive unit 3 in the closed container 100.
- it is a vertical scroll compressor in which the compression mechanism portion 2 is disposed at the upper portion, the drive portion 3 is disposed at the middle portion, and the oil reservoir 4 is disposed at the lower portion.
- the compression mechanism unit 2 is configured with the fixed scroll 101, the orbiting scroll 102, and the frame 103 as basic elements.
- the frame 103 is fixed to the closed container 100 and has a main bearing 106.
- the fixed scroll 101 basically has a fixed side wrap 101a, a fixed side flat plate portion 101b (top plate portion), an inlet 101c, and an outlet 101d, and is fixed to the frame 103 with a bolt.
- the stationary side wrap 101a is vertically erected while maintaining a spiral shape on one surface of the lower side of the stationary side flat plate portion 101b.
- the orbiting scroll 102 includes an orbiting side wrap 102a, an orbiting side flat plate portion 102b (end plate portion), and a boss portion 102c as basic components.
- the turning side wrap 102a is vertically erected while holding a spiral shape on one surface of one side of the turning side flat plate portion 102b, and a boss portion 102c is provided on the back side (anti-turning side wrap side) of the turning side flat plate portion 102b. It is provided.
- 102d is an end face of the boss portion, and 102e is a thrust surface (turning bearing support portion) inside the boss.
- the orbiting scroll 102 is formed by processing a component from a cast material such as cast iron or aluminum.
- the drive unit 3 for causing the orbiting scroll 102 to orbit is configured by a stator 108, a rotor 107, a crankshaft 104, an orbiting scroll 102, an Oldham joint 109, a frame 103, a main bearing 106, an orbiting bearing 105, an auxiliary bearing 110, and the like. .
- the crankshaft 104 includes a main shaft portion 104b and an eccentric pin portion 104a eccentric to a tip end portion, and the eccentric pin portion 104a is inserted inside a boss portion 102c of the orbiting scroll.
- a pivot bearing 105 is provided on the inner side of the boss portion 102c, and is configured to slide on the eccentric pin portion 104a.
- the main bearing 106 rotatably holds one end of the crankshaft scroll 104b on the side of the orbiting scroll 102 on the compression chamber side of the motor.
- An Oldham joint 109 is disposed on the back of the swing side flat plate portion 102 b of the swing scroll 102.
- the eccentric pin portion 104a is rotated by the rotation of the crankshaft 104 connected to the motor composed of the stator 108 and the rotor 107, the orbiting scroll 102 is opposed to the fixed scroll 101 via the crankshaft 104.
- It is a joint as an anti-rotation mechanism that makes a turning motion without rotating.
- the auxiliary bearing 110 is fixed to the closed container 100 via the housing 111 and the lower frame 112.
- the sub bearing 110 rotatably holds one end on the oil sump side of the crankshaft main shaft portion 104 b using a slide bearing, a rolling bearing, a spherical bearing member, or the like.
- the working fluid is sucked into the compression chamber 130 via the suction pipe 11 and the suction port 101c of the fixed scroll 101, and the volume is reduced while moving to the central portion to compress the gas and discharge the compressed gas.
- the discharge pressure space 20 is discharged from the outlet 101d.
- the gas discharged into the discharge pressure space 20 circulates around the compression mechanism portion 2 and the motor, and then is discharged from the discharge pipe 12 attached to the closed container 100 to the outside of the compressor. Therefore, the space in the closed container 100 is maintained at the discharge pressure.
- a pump portion 114 is provided at the lower end of the housing 111 and is driven via a pump joint 113 at the lower end of the crank stick shaft 104.
- the oil in the oil reservoir 4 is sent to the oil supply passage 104 e in the crankshaft 104 by the pump portion 114.
- a part of the oil flows into the secondary bearing 110 through the oil supply passage 104 f (lateral hole) and then returns to the oil sump 4.
- the oil reaching the upper portion of the eccentric pin portion 104a through the oil supply passage 104e passes through the pivot bearing 105 and flows to the back pressure chamber 140 and the main bearing 106.
- the oil lubricating the main bearing 106 passes through the oil discharge pipe 115 and returns to the oil sump 4.
- the oil that has flowed into the back pressure chamber 140 flows into the compression chamber 130 and is then released together with the refrigerant gas from the discharge port 101 d of the fixed scroll and separated from the refrigerant gas in the closed container 100. It is a back oiling route.
- a back pressure hole 102g is provided in the turning side flat plate portion 102b of the turning scroll 102 to communicate the back pressure chamber 140 of the compression chamber 130 and the back surface of the turning side flat portion 102b of the turning scroll 102.
- the pressure is maintained at an intermediate pressure between the suction pressure and the discharge pressure.
- the orbiting scroll 102 is pressed from the back to the fixed scroll 101 by the resultant force of the intermediate pressure and the discharge pressure acting on the center side space (high pressure hydraulic chamber 150) inside the seal member 117.
- the thrust load when the eccentric pin portion 104 a moves upward is received by the thrust surface 102 e by the projection provided on the back surface of the orbiting scroll 102.
- a recess is formed on the thrust surface 102e so as not to close the oil supply passage 104e formed in the crankshaft 104.
- the thrust surface 102e and the upper end surface of the eccentric pin portion 104a are arranged so that the boss end face 102d on the rear surface of the orbiting scroll 102 does not contact the flange upper surface 104d of the crankshaft when the eccentric pin portion 104a moves upward most. It is configured.
- FIG. 2 is a view of the orbiting scroll and the fixed scroll as seen from the direction in which the spiral portion is provided.
- the back pressure hole 102g provided in the turning side flat plate portion 102b of the turning scroll 102 cuts the groove constituting the back pressure chamber provided on the surface of the fixed side flat portion 101b of the fixed scroll 101 by the turning motion of the turning scroll 102. It has a structure which opens intermittently with the notch part 101e, and the back pressure chamber 140 and the compression chamber 130 connect in the opening area of FIG.
- FIG.2 (c) is the figure which expanded FIG. 2 (a) B part.
- the back pressure hole trajectory 102h shown in FIG. 2C represents an example of a motion trajectory of the back pressure hole 102g of the orbiting scroll 102 in a state in which the fixed scroll and the orbiting scroll are engaged.
- the pressure in the region where the back pressure hole 102g is installed in the orbiting scroll 102 is lower than the pressure in the back pressure chamber (the rotation angle section shown by A in FIG. 4) It flows from the chamber 140 into the compression chamber 130. In addition, oil flows into the compression chamber 130 partially through the minute gap of the end plate sliding surface 102 f.
- FIG. 3 is an enlarged view of the high pressure hydraulic chamber 150 and the back pressure chamber 140 shown in FIG.
- the back pressure chamber 140 is a space surrounded by the back surface side of the orbiting scroll 102, the frame 103, and a groove provided on the surface of the fixed flat portion 101 b of the fixed scroll 101.
- the sealing means 117 for separating the back pressure chamber 140 and the high pressure hydraulic chamber 150 is a ring shaped end face 103d on the rear face of the orbiting scroll 102, an end face 103a of the frame opposed thereto, and the end face 103a.
- the groove 103b and the seal member 117 disposed in the ring-like groove are provided.
- the boss end face 102d is a seal surface in contact with the seal member 117, and must be processed smoothly.
- the seal member 117 separates the back pressure chamber 140 and the high pressure hydraulic chamber 150 (center side space) from each other in pressure.
- the high pressure hydraulic chamber 150 is composed of a central space 151 formed by the swing bearing 105 and the eccentric pin portion 104a, and a space formed by the boss end face 102d and the outer peripheral portion of the flange portion 104c of the crankshaft. There is.
- FIG. 6 shows a conventional structure in which a plurality of small holes 120a are provided at equal intervals as a refueling mechanism 120 for transporting oil from the high pressure hydraulic chamber 150 to the back pressure chamber 140 on the boss end face 102d of the orbiting scroll 102. It is. Further, FIG. 6 shows the relationship between the seal member 117 and the orbiting scroll boss end face 102d when the orbiting scroll 102 orbits, at every rotation angle of 90 °. The order of rotation is in the order of (a) ⁇ (b) ⁇ (c) ⁇ (d) in the figure. Note that since this point is the same as in FIGS. 7 to 14 described later, the description in each example is omitted.
- the small hole 120 a moves back and forth between the back pressure chamber 140 and the high pressure hydraulic chamber 150 via the seal member 117 by the turning motion of the turning scroll 102.
- the oil is pushed into the small holes 120 a in the high pressure hydraulic chamber 150, and after being moved to the back pressure chamber 140, the pushed oil is discharged. Oil is conveyed from the high pressure hydraulic chamber 150 to the back pressure chamber 140 by this series of actions.
- the amount of oil supply is proportional to time, and the amount of oil in the back pressure chamber 140 is constant as shown in FIG. It becomes a straight line with a slope. Since the oil in the back pressure chamber 140 is discharged in the section where the back pressure chamber 140 and the compression chamber 130 communicate with each other, the amount of oil in the back pressure chamber 140 is rapidly reduced. Since the oil in the back pressure chamber 140 needs to secure the amount of oil required for sliding of the Oldham ring 109, it is possible to secure the amount of oil required even when the oil is discharged to the compression chamber 130. It is necessary to arrange the small holes 120a.
- the arrangement intervals of the small holes 120a are arranged to be concentrated at the timing at which the back pressure chamber 140 and the compression chamber 130 communicate with each other.
- FIG. 7 shows an example thereof.
- the uneven pitch and arrangement of the small holes and the small holes are determined by the required oil supply amount and the shape and arrangement of the notch portion 101e of the groove provided on the end plate surface of the fixed scroll 101 constituting the back pressure chamber, and the orbiting scroll back pressure hole. It is determined by the position of 102 g and the hole diameter.
- the oil is a compression chamber in the section in which the back pressure hole 102g and the notch portion 101e of the groove portion provided on the end plate surface of the fixed scroll 101 constituting the back pressure chamber communicate with each other. Only when the section discharged to 130, that is, the section shown by B in FIG. 4 starts (that is, the section shown by A in FIG. 4), the high pressure hydraulic chamber 150 supplies oil to the back pressure chamber through the seal member.
- An oil supply structure capable of temporarily increasing the amount of oil supply is provided on the boss end face 102 d of the orbiting scroll 102.
- the means for supplying oil from the high pressure hydraulic chamber 150 to the back pressure chamber 140 by the small holes 120a is called the first oil supply means, and intermittently communicates the compression chamber 130 with the back pressure chamber 140, as shown in FIG.
- the oil supply means for supplying oil from the back pressure chamber 140 to the compression chamber 130 is referred to as a second oil supply means
- the first oil supply means is configured to When oil is supplied from the pressure chamber 140 to the compression chamber 130, the amount of oil supplied to the back pressure chamber 140 is increased.
- a large amount of high temperature oil is accumulated in the back pressure chamber 140 in the conventional structure under large rotational speed conditions such as rated operating conditions.
- the input may be increased by increasing the compression torque and the performance may be reduced.
- FIG. 8 is an example of a configuration diagram showing a boss end face 102 d on the back side of the orbiting scroll 102 in the second embodiment.
- Example 1 it is the same as Example 1 except the form of the oil supply structure shown in FIG. 8, and description is abbreviate
- the small holes 120a are arranged at unequal pitches as means for concentrating the small holes 120a at the timing position where the back pressure chamber 140 and the compression chamber 130 communicate with each other on the boss end face 102d of the orbiting scroll 102. It is characterized by FIG. 8 shows an example of a boss end face 102d of the orbiting scroll 102 in which small holes 120a of unequal pitch are arranged.
- the same effect as that of the first embodiment can be obtained.
- the present embodiment 2 can be set equal to the number of small holes arranged at the same interval in the prior art, the modification of the processing process is only the coordinate value of the small holes, and there is no increase in cost.
- FIG. 9 is an example of a block diagram showing the end face of the orbiting scroll rear boss portion in the third embodiment.
- Example 1 it is the same as Example 1 except the form of the oil supply structure shown in FIG. 9, and description is abbreviate
- the small hole 120a is connected to the boss end face 102d of the orbiting scroll 102 at a timing at which the back pressure chamber 140 and the compression chamber 130 communicate with each other.
- FIG. 9 shows an example of a boss end face of the orbiting scroll in which the long holes are arranged.
- the first oil supply means of the present embodiment is constituted by a plurality of small holes 120 a formed in the circumferential direction on the back side of the orbiting scroll 102 with respect to the fixed scroll 101.
- the small holes 120a straddle the seal member 117 and reciprocate between the central space (high pressure hydraulic chamber 150) and the back pressure chamber side, the back pressure chamber 140 from the central space (high pressure hydraulic chamber 150) Supply oil.
- the small holes 120a are formed in the long holes 120b which are long in the circumferential direction in a part of the circumferential direction, whereby the first oil is supplied from the back pressure chamber 140 to the compression chamber 150 by the second oil supply means The amount of oil supplied to the back pressure chamber 140 by the supply means is increased.
- the same effect as that of the first embodiment can be obtained.
- the third embodiment as in the second embodiment, as compared with the conventional arrangement of the small holes 120a in the prior art, a significant change in the processing step is unnecessary, so that the cost increase can be minimized.
- FIG. 10 is an example of a block diagram showing the end face of the orbiting scroll rear boss portion in the fourth embodiment.
- Example 1 it is the same as Example 1 except the form of the oil supply structure shown in FIG. 10, and description is abbreviate
- a large diameter hole 120 c larger than the width of the sealing member 117 and smaller than the diameter of the turning is formed in the back pressure chamber 140 at the boss end face 102 d of the turning scroll 102 which is a sliding surface with the sealing member 117.
- the compression chamber 130 are in communication with each other.
- the same effect as that of the first embodiment can be obtained.
- the large diameter hole 120c is made larger than the width of the seal member 117 in part of the circumferential direction of the orbiting scroll 102 and smaller than the orbiting diameter.
- the center side space (high pressure hydraulic chamber 150) and the back pressure chamber 140 always communicate and are continuously supplied.
- the oil can be supplied by the differential pressure between the high pressure hydraulic chamber 150 and the back pressure chamber 140, stable oil supply can be performed even in the low speed rotation region. Furthermore, in the high speed rotation range, the amount of oil required for high speed operation can be secured by the oil supply action by the small holes whose amount of oil supply increases according to the rotation speed. Therefore, according to the fourth embodiment, the lubrication of the sliding portion and the sealability of the compression chamber mechanism can be secured from the low speed rotation region to the high speed rotation region without causing insufficient oil supply and excessive oil supply, and the compressor efficiency can be improved. It is possible to enhance.
- FIG. 11 is an example of a configuration diagram showing an end face of a revolving scroll rear boss portion in the fifth embodiment.
- Example 1 it is the same as Example 1 except the form of the oil supply structure shown in FIG. 11, and abbreviate
- a ring-shaped ring groove 120d (oiling groove) in which the inner line is eccentric to the outer line is disposed on the boss end face 102d of the orbiting scroll, which is a sliding surface with the seal member 117.
- the first oil supply means is configured by a ring groove 120d (oiling groove) formed in the circumferential direction on the back side of the orbiting scroll 102 with respect to the fixed scroll 101, and along with the orbiting of the orbiting scroll 102,
- the ring groove 120d reciprocates between the central space (high pressure hydraulic chamber 150) and the back pressure chamber 140 side across the seal member 117 to supply oil from the central space (high pressure hydraulic chamber 150) to the back pressure chamber 140.
- the ring groove 120d forms the seal member 117 so as to largely cross the back pressure chamber 140 side in a part of the turning movement of the turning scroll 102, whereby the second oil supply means
- the amount of oil supplied to the back pressure chamber 140 by the first oil supply means is increased.
- the same effect as that of the first embodiment can be obtained.
- a section in which the high pressure hydraulic chamber 150 and the back pressure chamber 140 are in communication is created, and it is possible to perform oil supply using a differential pressure.
- the oil can be supplied by the differential pressure between the high pressure hydraulic chamber 150 and the back pressure chamber 140 without depending on the rotational speed, stable oil supply can be performed even in the low speed rotation region.
- the fifth embodiment is provided with a ring-shaped ring groove 120d (oiling groove) in which the inner line is eccentric to the outer line, so that in the region where the groove width is smaller than the sealing member width It has the same refueling action as a small hole of increasing volume, and can secure the refueling amount required for high speed operation. Therefore, according to the fifth embodiment, the lubrication of the sliding portion and the sealability of the compression chamber mechanism can be secured from the low speed rotation region to the high speed rotation region without causing insufficient oil supply and excessive oil supply, and the compressor efficiency can be improved. It is possible to enhance.
- FIG. 12 is an example of a configuration diagram showing an end face of a revolving scroll rear boss portion in a sixth embodiment.
- Example 1 it is the same as Example 1 except the form of the oil supply structure shown in FIG. 12, and description is abbreviate
- the sixth embodiment has a structure in which a plurality of slit grooves 120e are disposed on a boss end face 102d of the orbiting scroll which is a sliding surface with the seal member 117.
- the slit groove 120e has an intermittent shape not penetrating to the outer diameter of the boss end face 102d of the orbiting scroll, and is supplied when the slit groove 120e communicates with the high pressure hydraulic chamber 150 and the back pressure chamber 140 across the seal member. Structure. The longer the slit length, the longer the communication time between the high pressure hydraulic chamber 150 and the back pressure chamber 140, so that more oil can be supplied.
- the first oil supply means of the present embodiment is formed toward the outside in the circumferential direction on the back side of the orbiting scroll 102 with respect to the fixed scroll 101, and is formed longer than the width of the sealing member 117.
- the center side space (the high pressure hydraulic chamber 150) and the back pressure chamber side are communicated with each other by the plurality of slit grooves 120e, which are formed by the plurality of slit grooves 120e, and the plurality of slit grooves 120e communicate with the back pressure chamber side.
- the oil is supplied to the back pressure chamber 104 from the high pressure hydraulic chamber 150).
- the slit has the longest length at the timing at which the back pressure chamber and the compression chamber communicate with each other, as shown in FIGS. 12 (a) to 12 (b).
- FIGS. 12 (a) to 12 (b) As oil supply is done.
- the same effect can be obtained by increasing the slit width or depth at the timing at which the back pressure chamber and the compression chamber communicate with each other.
- the concept is the same as in the first to fourth embodiments, and thus the detailed description is omitted.
- the same effect as the first embodiment can be obtained.
- a section in which the high pressure hydraulic chamber 150 and the back pressure chamber 140 are in communication is created, and it is possible to perform oil supply using a differential pressure.
- the oil can be supplied by the differential pressure between the high pressure hydraulic chamber 150 and the back pressure chamber 140, stable oil supply can be performed even in the low speed rotation region. Therefore, according to the sixth embodiment, the lubrication of the sliding portion and the sealability of the compression chamber mechanism can be secured without causing insufficient oil supply even in the low speed rotation region, and the compressor efficiency can be enhanced.
- FIG. 13 and FIG. 14 are examples of configuration diagrams showing the end face of the orbiting scroll rear boss portion in the seventh embodiment. In addition, it is the same as Example 1 except the form of the oil supply structure shown to FIG. 13, FIG. 14, and abbreviate
- FIGS. 13 and 14 The configuration of this embodiment shown in FIGS. 13 and 14 has a structure in which a plurality of slit grooves 120e are disposed on a boss end face 102d of the orbiting scroll 102 which is a sliding surface with the seal member 117.
- the slit groove 120e has an intermittent shape not penetrating to the outer diameter of the boss portion end face 102d of the orbiting scroll, and when the slit groove 120e communicates with the high pressure hydraulic chamber 150 and the back pressure chamber 140 across the seal member 117 Structure.
- the width of the slit groove 120e is the widest at the timing of communication between the back pressure chamber and the compression chamber, that is, at the timing of FIG.
- the depth of the slit groove 120 e is deeper, the cross sectional area of the communication passage of the high pressure hydraulic chamber 150 and the back pressure chamber 140 is larger, so that more oil can be supplied.
- the depth of the slit groove 120 e is the deepest at the timing position where the back pressure chamber and the compression chamber communicate with each other, that is, at the timing of FIG.
- the same effects as in the first embodiment can be obtained.
- a section in which the high pressure hydraulic chamber 150 and the back pressure chamber 140 are in communication is created, and it is possible to perform oil supply using a differential pressure.
- the oil can be supplied by the differential pressure between the high pressure hydraulic chamber 150 and the back pressure chamber 140, stable oil supply can be performed even in the low speed rotation region, and lubrication of the sliding portion is prevented without causing insufficient oil supply even in the low speed rotation region.
- the sealability of the compression chamber mechanism can be secured, and the compressor efficiency can be enhanced.
- a ferrite magnet motor in which a ferrite magnet is embedded in the rotor 107 constituting the drive unit 3 of the scroll compressor of the embodiment described above will be described below. Since the ferrite magnet motor is a motor (electric motor) that is easy to demagnetize at low temperature, it is necessary to suppress the jumping of the current at startup. That is, when employed in the drive portion of the scroll compressor, it is necessary to suppress torque fluctuation at the time of start-up. At this time, if the configuration of the embodiment described above is adopted, the amount of oil in the back pressure chamber 140 is suppressed, and the stirring loss of the boss portion 102c of the orbiting scroll 102, the Oldham joint 109, etc. is suppressed. Since the variation can be reduced, a highly reliable scroll compressor can be provided while employing a ferrite magnet motor.
- the ferrite magnet motor has a smaller magnetic force and is less likely to produce torque than a neodymium magnet motor having a neodymium magnet embedded therein, as described above, the stirring loss due to the boss 102c and the like is increased by adopting the configuration of this embodiment. It is possible to reduce the performance of the ferrite magnet motor and the scroll compressor using the same.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Rotary Pumps (AREA)
Abstract
旋回運動による背圧室の潤滑油の攪拌損失を低減しつつ、必要十分の潤滑油を背圧室に確保することで信頼性の高いスクロール圧縮機を提供することを目的とする。 固定スクロールに対して旋回スクロールの背面側には、中央側空間と背圧室とが形成され、中央側空間の圧力は圧縮室からの吐出圧力とほぼ同一であるとともに、背圧室の圧力は中央側空間の圧力より低くなるように構成されたスクロール圧縮機において、中央側空間から背圧室へ油を供給する第1油供給手段と、圧縮室と背圧室とを間欠的に連通することにより、背圧室から圧縮室に油を供給する第2油供給手段と、を備え、第1油供給手段は、第2油供給手段により背圧室から圧縮室に油を供給するときに前記背圧室への油供給量が多くなるように構成された。
Description
本発明は、スクロール圧縮機に関する。
本技術分野の背景技術として、特許03696683号公報(特許文献1)がある。この公報には、「スクロール圧縮機において、旋回スクロールの鏡板背面に形成され、シール区画される高圧の油圧室と低圧室との間の油の流れ量を適正化し、圧縮機の性能低下と信頼性の低下を解決すること。」と記載されている(要約参照)。
前記特許文献1には、背圧室への潤滑油の給油について、高圧油圧室から背圧室(低圧室)へ供給する潤滑油量は小孔の大きさなどで調整することができるので、低圧室側に漏れる潤滑油の量を容易に適正化でき、信頼性も改善できるスクロール圧縮機が記載されている。しかし、特許文献1では、背圧室内の潤滑油が旋回スクロール鏡板部に設けた背圧室と圧縮室を連通させる孔を介して圧縮室へ排出されるまで、背圧室内の油量は高圧油圧室からシールリングを跨いで低圧室側に間欠的に供給される潤滑油により増加を続ける。その結果、必要以上の潤滑油が背圧室に溜まり、旋回スクロールの旋回運動が攪拌損失を生む場合がある。
そこで本発明は、旋回運動による背圧室の潤滑油の攪拌損失を低減しつつ、必要十分の潤滑油を背圧室に確保することで信頼性の高いスクロール圧縮機を提供することを目的とする。
上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。
本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、「固定側平板部と、固定側平板部の一面に渦巻き形状を保持して立設される固定側ラップと、を有する固定スクロールと、旋回側平板部と、旋回側平板部の一面に渦巻き形状を保持して立設される旋回側ラップと、を有し、旋回側ラップと固定側ラップとが噛み合いながら、固定スクロールに対して旋回することにより圧縮室を形成する旋回スクロールと、旋回スクロールをクランク軸を介して駆動する電動機と、を備え、固定スクロールに対して旋回スクロールの背面側には、中央側空間と背圧室とが形成され、中央側空間の圧力は圧縮室からの吐出圧力とほぼ同一であるとともに、背圧室の圧力は中央側空間の圧力より低くなるように構成されたスクロール圧縮機において、中央側空間から背圧室へ油を供給する第1油供給手段と、圧縮室と背圧室とを間欠的に連通することにより、背圧室から圧縮室に油を供給する第2油供給手段と、を備え、第1油供給手段は、第2油供給手段により背圧室から圧縮室に油を供給するときに前記背圧室への油供給量が多くなるように構成されたこと」を特徴とする。
本発明によれば、旋回運動による背圧室の潤滑油の攪拌損失を低減しつつ、必要十分の潤滑油を背圧室に確保することで信頼性の高いスクロール圧縮機を提供することが可能となる。上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
以下、実施例を図面を用いて説明する。
本実施例では、背圧室内油量を適正化し、攪拌損失の抑制、圧縮室への効率的な給油を実現するスクロール圧縮機の例を説明する。
図1は、本実施例のスクロール圧縮機構成図の例である。
スクロール圧縮機1は、圧縮機構部2と駆動部3とを密閉容器100内に収納して構成されている。本実施例では、上部に圧縮機構部2を、中部に駆動部3を、下部に油溜まり4が配設された縦型スクロール圧縮機である。
スクロール圧縮機1は、圧縮機構部2と駆動部3とを密閉容器100内に収納して構成されている。本実施例では、上部に圧縮機構部2を、中部に駆動部3を、下部に油溜まり4が配設された縦型スクロール圧縮機である。
圧縮機構部2は、固定スクロール101と旋回スクロール102とフレーム103を基本要素として構成されている。フレーム103は密閉容器100に固定され、主軸受106を備える構成をしている。
固定スクロール101は固定側ラップ101aと固定側平板部101b(天板部)と吸入口101cと吐出口101dとを基本構成とし、フレーム103にボルトで固定されている。固定側ラップ101aは固定側平板部101bの下部の一面に渦巻き形状を保持して垂直に立設されている。
旋回スクロール102は、旋回側ラップ102aと旋回側平板部102b(端板部)とボス部102cを基本構成部として構成されている。旋回側ラップ102aは旋回側平板部102bの片側の一面に渦巻き形状を保持して垂直に立設されており、旋回側平板部102bの背面側(反旋回側ラップ側)にはボス部102cが設けられている。102dはボス部端面、102eはボス内側のスラスト面(旋回軸受支持部)である。旋回スクロール102は、鋳鉄やアルミニウムなどの部材とする鋳物から構成部分を加工することにより形成されている。
固定スクロール101と旋回スクロール102の各々の渦巻き部を互いにかみ合わせて構成した圧縮室130は、旋回スクロール102が固定スクロール101に対して旋回運動することにより、その容積が減少する圧縮動作が行われる。
旋回スクロール102を旋回運動させる駆動部3は、ステータ108、ロータ107、クランク軸104、旋回スクロール102、オルダム継手109、フレーム103、主軸受106および旋回軸受105、副軸受110などにより構成されている。
クランク軸104は、主軸部104bと先端部に偏芯した偏心ピン部104aを備え、該偏心ピン部104aが旋回スクロールのボス部102c内側に挿入されている。ボス部102c内側には、旋回軸受105が設けられており、偏心ピン部104aと摺動する構造となっている。また、主軸受106はクランク軸主軸部104bの旋回スクロール102側の一端を電動機より圧縮室側で回転自在に保持する。
旋回スクロール102の旋回側平板部102bの背面にはオルダム継手109が配設されている。該オルダム継手109は、ステータ108、およびロータ107から構成される電動機に連結したクランク軸104の回転により偏心ピン部104aが回転したとき、クランク軸104を介して旋回スクロール102が固定スクロール101に対し自転せずに旋回運動させる自転防止機構としての継手である。
副軸受110はハウジング111及び下フレーム112を介して密閉容器100に固定されている。副軸受110は、すべり軸受や転がり軸受、球面軸受部材などを使用してクランク軸主軸部104bの油溜まり側の一端を回転自在に保持する。
上記旋回運動により、作動流体が吸入管11、固定スクロール101の吸入口101cを経由して圧縮室130へ吸込まれ、中央部へ移動しながら容積を減少してガスを圧縮し、圧縮ガスを吐出口101dより吐出圧力空間20に吐出する。吐出圧力空間20に吐出されたガスは、圧縮機構部2及び電動機の周囲を循環したのち密閉容器100に取付けた吐出管12から圧縮機外へ放出される。従って、密閉容器100内の空間は吐出圧力に保たれる。
次に、給油経路について説明する。
ハウジング111の下端にポンプ部114が設けられており、クランクジク軸104下端のポンプ継手113を介して駆動する。クランク軸104が回転するとポンプ部114により油溜まり4の油がクランク軸104内の給油通路104eに送られる。一部は、給油通路104f(横孔)を通って副軸受110に流れた後、油溜まり4に戻る。給油通路104eを通って偏心ピン部104aの上部に到達した油は旋回軸受105を通り、背圧室140と主軸受106へ流れる。主軸受106を潤滑した油は排油パイプ115を通り、油溜まり4に戻る。背圧室140へ流れた油は、圧縮室130へ流入した後、固定スクロールの吐出口101dより冷媒ガスと供に放出され、密閉容器100内で冷媒ガスと分離された後、油溜まり4に戻る給油経路となっている。
ハウジング111の下端にポンプ部114が設けられており、クランクジク軸104下端のポンプ継手113を介して駆動する。クランク軸104が回転するとポンプ部114により油溜まり4の油がクランク軸104内の給油通路104eに送られる。一部は、給油通路104f(横孔)を通って副軸受110に流れた後、油溜まり4に戻る。給油通路104eを通って偏心ピン部104aの上部に到達した油は旋回軸受105を通り、背圧室140と主軸受106へ流れる。主軸受106を潤滑した油は排油パイプ115を通り、油溜まり4に戻る。背圧室140へ流れた油は、圧縮室130へ流入した後、固定スクロールの吐出口101dより冷媒ガスと供に放出され、密閉容器100内で冷媒ガスと分離された後、油溜まり4に戻る給油経路となっている。
旋回スクロール102の旋回側平板部102bには該圧縮室130と旋回スクロール102の旋回側平板部102bの背面の背圧室140を連通させる背圧孔102gが設けられており、背圧室140の圧力を吸入圧と吐出圧の中間の圧力に保っている。この中間圧力とシール部材117の内側の中央側空間(高圧油圧室150)に作用する吐出圧力の合力で、旋回スクロール102は背面から固定スクロール101に押し付けられている。
偏心ピン部104aが上方に移動した時のスラスト荷重は、旋回スクロール102の背面に設けた突起部によるスラスト面102eで受けられる。クランク軸の偏心ピン部104aの端面が前記スラスト面102eに接触した時、クランク軸104に形成した給油通路104eを閉塞させないように前記スラスト面102eには凹部が形成されている。また、偏心ピン部104aが最も上方に移動した時に、旋回スクロール102背面のボス部端面102dがクランク軸の鍔部上面104dと接触しないように、スラスト面102eと偏心ピン部104aの上端面とが構成されている。
ここで本実施例における、高圧油圧室から背圧室を通り圧縮室への給油される方法についての詳細について図を用いて説明する。
まず、背圧室140から圧縮室130へ油が給油される手段について説明する。図2は、旋回スクロールおよび固定スクロールを渦巻き部が設けられた方向から見た図である。旋回スクロール102の旋回側平板部102bに設けられた背圧孔102gは、旋回スクロール102の旋回運動により、固定スクロール101の固定側平板部101b表面に設けられた背圧室を構成する溝の切り欠き部101eと間欠的に開口する構造となっており、図4の開口区間において背圧室140と圧縮室130が連通する。図2(c)は図2(a)B部を拡大した図である。図2(c)に示す背圧孔軌跡102hは、固定スクロールと旋回スクロールがかみ合わさった状態における旋回スクロール102の背圧孔102gの運動軌跡の一例を表している。
該背圧孔102gの開口区間において旋回スクロール102の背圧孔102g設置領域の圧力が背圧室圧力に比べ、相対的に低い区間(図4のAで示す回転角区間)で油が背圧室140から圧縮室130へ流入する。また、圧縮室130には一部、端板摺動面102fの微小隙間を通って油が流入する構造となっている。
次に図1、図3を用いて、旋回スクロール102の背面側に形成される高圧油圧室150(吐出圧力にほぼ等しい圧力)と背圧室140(吐出圧力よりも低い圧力)とを分離するシール手段と、高圧油圧室150から背圧室140へ給油する経路について説明する。図3は、図1の高圧油圧室150と背圧室140近傍の拡大図である。
該背圧室140は、旋回スクロール102の背面側とフレーム103と固定スクロール101の固定側平板部101b表面に設けられた溝とで囲まれた空間となっている。この背圧室140と高圧油圧室150を分離するシール手段117は、旋回スクロール102背面のボス部端面102dと、これに対向するフレームの端面部103aと、該端面部103aに構成されたリング状溝103bと、該リング状溝に配設されたシール部材117などにより構成されている。ここで、該ボス部端面102dは、該シール部材117と接するシール面であり、滑らかに加工する必要がある。シール部材117は、背圧室140と高圧油圧室150(中央側空間)とを仕切り、圧力的に分離している。高圧油圧室150は、旋回軸受105と偏心ピン部104aとで形成された中央部空間151と、ボス部端面102d及びクランク軸の鍔部104cの外周部分などで形成された空間とで構成されている。
図6は、旋回スクロール102のボス部端面102dに、高圧油圧室150から背圧室140に油を搬送するため給油機構部120として、小孔120aが等間隔に複数箇所設けられている従来構造である。また、図6は旋回スクロール102が旋回運動する際のシール部材117と旋回スクロールボス部端面102dとの関係を回転角90°ごとに示している。回転の順序は図中(a)→(b)→(c)→(d)の順である。なお、この点は以降に説明する図7~図14についても同様であるため、それぞれの実施例においての説明は省略している。
旋回スクロール102の旋回運動により、小孔120aはシール部材117を介し、背圧室140と高圧油圧室150を行き来する運動を行う。小孔120aには高圧油圧室150で油が押し込められ、背圧室140に移動後、押し込められた油が吐き出される。この一連の作用により、高圧油圧室150から背圧室140に油が搬送される構造となっている。
図6に示すような従来構造では、小孔120aは等間隔に配置されているため、給油量は時間に比例し、図5(a)に示すように背圧室140の油量は一定の勾配を持った直線となる。背圧室140と圧縮室130が連通する区間において背圧室140内の油が吐出されるため、背圧室140内の油量は急激に減少する。背圧室140内の油は、オルダムリング109の摺動のための必要油量を確保しておく必要があるため、圧縮室130へ油が吐き出された際にも必要油量を確保できるだけの小孔120aを配置しておく必要がある。従って、図5(b)の斜線部に示すように背圧室140には、多量の油を確保しておく必要があり、この多量の油により、旋回スクロール102の旋回運動などによる攪拌ロスが発生し、性能低下を招くおそれがあった。
そこで本実施例では、小孔120aの配置間隔を背圧室140と圧縮室130が連通するタイミングの位置に集中させた配置とする。
図7はその一例を示すものである。小孔と小孔の不等ピッチおよび配置は、必要給油量と背圧室を構成する固定スクロール101端板面に設けられた溝の切り欠き部101eの形状と配置、また旋回スクロール背圧孔102gの位置と孔径等によって決定される。
図7に示すように本実施例では、背圧孔102gと背圧室を構成する固定スクロール101端板面に設けられた溝部の切り欠き部101eとが連通する区間のうち、油が圧縮室130へ排出される区間、即ち図4のBで示す区間が開始するまでに(すなわち図4のAに示す区間)限定して、高圧油圧室150からシール部材を介して背圧室に給油する給油量を一時的に増加させることが可能な給油構造を旋回スクロール102のボス部端面102dに設けたものである。
すなわち、小孔120aによる高圧油圧室150から背圧室140への油供給手段を第1油供給手段と呼び、圧縮室130と背圧室140とを間欠的に連通することにより、図2に示す構成により、背圧室140から圧縮室130に油を供給する油供給手段を第2油供給手段と呼ぶとすると、本実施例では、第1油供給手段は、第2油供給手段により背圧室140から圧縮室130に油を供給するときに背圧室140への油供給量が多くなるように構成したものである。
図7では、図7(d)から図7(a)にかけて小孔120aに高圧油圧室150にて高圧油が押し込められ、この油が図7(a)から図7(b)にかけて小孔120aが背圧室140に移動することから、背圧室140に供給される。そこで本実施例では、上記第2油供給手段による背圧室140から圧縮室130に油を供給するタイミングに合わせて、この図7(a)から図7(b)となるように、小孔120aを集中させる構成を採用することで、第1油供給手段による背圧室140への油供給量を多くするものである。
なお、一時的に給油量を増加させるタイミングを背圧孔102gが開口するまで、つまり図4のAで示す区間が開始するまでにするとなお良い。その結果、図5(a)に示すように、背圧室140から圧縮室130へ油を効率よく排出できるため、背圧室140内の油量を最小限に抑えることが可能となるため、背圧室油量過大による攪拌損失を抑制しながら背圧室140内に配設されているオルダム継手109等の摺動部を潤滑することができる。また、従来の等間隔配置に比べて、加工工程の大幅な変更は不要であることから、コスト増は最小限に抑えることができる。
また、例えば冷媒R32のような高温冷媒においては、定格運転条件等の回転数の大きい条件において、従来構造では高温の油が背圧室140に多量に溜まるため、旋回スクロール102を介して、圧縮室内のガスを加熱することにより、圧縮トルクが増大することで入力が増え、性能を低下させる恐れがあるが、本実施例によれば、背圧室内の油量を少なくすることが可能となるため、性能の高い圧縮機を提供することができる。
図8は、実施例2における旋回スクロール102の背面側のボス部端面102dを示す構成図の例である。
なお、図8に示す給油構造の形態以外は実施例1と同じであり、同一の機能を有する部分については、説明を省略する。
本実施例2は、旋回スクロール102のボス部端面102dに、背圧室140と圧縮室130が連通するタイミングの位置に小孔120aを集中させる手段として、不等ピッチに小孔120aを配置していることを特徴としている。図8は不等ピッチの小孔120aを配置した旋回スクロール102のボス部端面102dの一例を示す。
本実施例2においても、実施例1と同様な効果が得られる。また、本実施例2は従来の等間隔配置の小孔数と同等に設定可能のため、加工工程の変更は小孔の座標値のみであり、コスト増は無い。
図9は、実施例3における旋回スクロール背面ボス部端面を示す構成図の例である。
なお、図9に示す給油構造の形態以外は実施例1と同じであり、同一の機能を有する部分については、説明を省略する。
本実施例3は、旋回スクロール102のボス部端面102dに、背圧室140と圧縮室130が連通するタイミングの位置に小孔120aを集中させる手段として、小孔と小孔が連結した長孔120bもしくは溝部を配置する。図9は該長孔を配置した旋回スクロールのボス部端面の一例を示す。
より具体的に説明すると本実施例の第1油供給手段は、固定スクロール101に対して旋回スクロール102の背面側の周方向に形成された複数の小孔120aにより構成され、旋回スクロール101の旋回に伴い、複数の小孔120aがシール部材117を跨いで中央側空間(高圧油圧室150)と背圧室側とを往復することにより、中央側空間(高圧油圧室150)から背圧室140へ油を供給する。そして、周方向の一部において小孔120aが周方向に長い長孔120bに形成されることにより、第2油供給手段により背圧室140から圧縮室150に油を供給するときに第1油供給手段による背圧室140への油供給量が多くなるように構成したものである。
なお、図9では、図7と同様の考え方で図9(d)から図9(a)にかけて小孔120a及び長孔120bに高圧油圧室150にて高圧油が押し込められ、この油が図9(a)から図9(b)にかけて小孔120a及び長孔120bが背圧室140に移動することから、背圧室140に供給される。第2油供給手段による油供給とタイミングを合わせる点については、実施例1と同様なので説明を省略する。
本実施例2においても、実施例1と同様な効果が得られる。また、本実施例3は実施例2と同様に従来の小孔120aの等間隔配置に比べて、加工工程の大幅な変更は不要であることから、コスト増は最小限に抑えることができる。
図10は、実施例4における旋回スクロール背面ボス部端面を示す構成図の例である。
なお、図10に示す給油構造の形態以外は実施例1と同じであり、同一の機能を有する部分については、説明を省略する。
図を用いて説明する。本実施例4は、シール部材117との摺動面である旋回スクロール102のボス部端面102dに、シール部材117の幅よりも大きく、且つ旋回直径よりも小さい大径孔120cが背圧室140と圧縮室130が連通するタイミングの位置に配置された給油構造を備える。
本実施例4においても、実施例1と同様な効果が得られる。また実施例3と同様に従来の小孔120aの等間隔配置に比べて、加工工程の大幅な変更は不要であることから、コストを抑える効果がある。さらに本実施例4では、旋回スクロール102の周方向の一部において大径孔120cの孔径をシール部材117の幅より大きくし、かつ、旋回直径よりも小さく形成することにより、高圧油圧室150と背圧室140とが連通する区間が生まれ、差圧を利用した給油が可能となる。なお、大径孔120cの孔径が、「旋回直系+シール部材幅/2」よりも大きいと中央側空間(高圧油圧室150)と背圧室140とが常に連通して連続的に給油されてしまい、一定区間で給油量を増やすという本実施例の目的が果たせなくなるが、上記した構成(大径孔120cの孔径<旋回直径)とすることで、これを回避することができる。
図10では、図7、図9と同様の考え方で図10(d)から図10(a)にかけて小孔120a及び大径孔120cに高圧油圧室150にて高圧油が押し込められ、この油が図10(a)から図10(b)にかけて小孔120a及び大径孔120cが背圧室140に移動することから、背圧室140に供給される。第2油供給手段による油供給とタイミングを合わせる点については、実施例1、2と同様なので説明を省略する。
その結果、高圧油圧室150と背圧室140との差圧で給油できるため、低速回転域でも安定した給油を行うことができる。さらに、高速回転域では回転数に応じて給油量が増加する小孔による給油作用により高速運転時に必要とされる給油量も確保できる。従って、本実施例4によれば、給油不足や給油過多を起こすことなく、低速回転域から高速回転域まで、摺動部の潤滑および圧縮室機構部のシール性も確保でき、圧縮機効率を高めることが可能となる。
図11は、実施例5における旋回スクロール背面ボス部端面を示す構成図の例である。
なお、図11に示す給油構造の形態以外は実施例1と同じであり、同一の機能を有する部分については、説明を省略する。
図を用いて説明する。本実施例5は、シール部材117との摺動面である旋回スクロールのボス部端面102dに、外線に対して内線が偏芯したリング状のリング溝120d(給油溝)を配置し、且つ背圧室と圧縮室が連通するタイミングの位置においては、溝の幅が最も拡大する給油構造を備える。
具体的に説明すると、第1油供給手段を固定スクロール101に対して旋回スクロール102の背面側の周方向に形成されたリング溝120d(給油溝)により構成し、旋回スクロール102の旋回に伴い、リング溝120dがシール部材117を跨いで中央側空間(高圧油圧室150)と背圧室140側とを往復することにより、中央側空間(高圧油圧室150)から背圧室140へ油を供給する。
このとき旋回スクロール102の旋回運動の一部においてリング溝120dが、シール部材117を背圧室140側に大きく跨ぐように形成することにより、第2油供給手段により背圧室140から圧縮室130に油を供給するときに第1油供給手段による背圧室140への油供給量が多くなるように構成したものである。
図11では、図7、図9、図10と同様の考え方で図11(d)から図11(a)にかけてリング溝120dに高圧油圧室150にて高圧油が押し込められ、この油が図11(a)から図11(b)にかけてリング溝120dが背圧室140に移動することから、背圧室140に供給される。第2油供給手段による油供給とタイミングを合わせる点については、実施例1~3と同様なので説明を省略する。
本実施例5においても、実施例1と同様な効果が得られる。本実施例5では、実施例4と同様に、高圧油圧室150と背圧室140とが連通する区間が生まれ、差圧を利用した給油が可能となる。その結果、回転数に依存することなく、高圧油圧室150と背圧室140との差圧で給油できるため、低速回転域でも安定した給油を行うことができる。さらに、本実施例5は外線に対して内線が偏芯したリング状のリング溝120d(給油溝)を備えることで、溝の幅がシール部材の幅より小さい領域では、回転数に応じて給油量が増加する小孔と同様の給油作用があり高速運転時に必要とされる給油量も確保できる。従って、本実施例5によれば、給油不足や給油過多を起こすことなく、低速回転域から高速回転域まで、摺動部の潤滑および圧縮室機構部のシール性も確保でき、圧縮機効率を高めることが可能となる。
図12は、実施例6における旋回スクロール背面ボス部端面を示す構成図の例である。
なお、図12に示す給油構造の形態以外は実施例1と同じであり、同一の機能を有する部分については、説明を省略する。
本実施例6は、シール部材117との摺動面である旋回スクロールのボス部端面102dに、複数のスリット溝120eを配置した構造となっている。スリット溝120eは旋回スクロールのボス部端面102d外径まで貫通していない間欠形状となっており、スリット溝120eがシール部材を跨いで高圧油圧室150と背圧室140に連通した際に給油される構造である。スリット長さが長いほど、高圧油圧室150と背圧室140の連通時間が長くなるため、より多くの給油を行うことができる。
より具体的には、本実施例の第1油供給手段は、固定スクロール101に対して旋回スクロール102の背面側の周方向外側に向かって形成され、かつ、シール部材117の幅よりも長く形成された複数のスリット溝120eにより構成され、旋回スクロール102の旋回に伴い、複数のスリット溝120eが中央側空間(高圧油圧室150)と背圧室側とを連通することにより、中央側空間(高圧油圧室150)から背圧室104へ油を供給する。
そして複数のスリット溝120eのうち一部が、旋回スクロール102の背面側の周方向外側に向かって長く形成されることにより、第2油供給手段により背圧室140から圧縮室130に油を供給するときに第1油供給手段による背圧室140への油供給量が多くなるように構成したものである。
実施例1~4と同様に本実施例においても背圧室と圧縮室が連通するタイミングの位置において、スリットの長さが最も長くなっており、図12(a)から(b)にかけて示されるように油供給が行われる。同様に、背圧室と圧縮室が連通するタイミングの位置でのスリット幅もしくは深さを大きくすることでも同様の効果を得ることができる。考え方は実施例1~4と同様なので詳細な説明は省略する。
本実施例6においても、実施例1と同様な効果が得られる。本実施例6では、実施例4と同様に、高圧油圧室150と背圧室140とが連通する区間が生まれ、差圧を利用した給油が可能となる。その結果、高圧油圧室150と背圧室140との差圧で給油できるため、低速回転域でも安定した給油を行うことができる。従って、本実施例6によれば、低速回転域でも給油不足を起こすことなく、摺動部の潤滑および圧縮室機構部のシール性も確保でき、圧縮機効率を高めることが可能となる。
図13、図14は、実施例7における旋回スクロール背面ボス部端面を示す構成図の例である。なお、図13、図14に示す給油構造の形態以外は実施例1と同じであり、同一の機能を有する部分については、説明を省略する。
図を用いて説明する。図13、図14に示す本実施例の構成は、シール部材117との摺動面である旋回スクロール102のボス部端面102dに、複数のスリット溝120eを配置した構造となっている。スリット溝120eは旋回スクロールのボス部端面102d外径まで貫通していない間欠形状となっており、スリット溝120eがシール部材117を跨いで高圧油圧室150と背圧室140に連通した際に給油される構造である。
図13においては、スリット溝120eの幅が広いほど、高圧油圧室150と背圧室140の連通通路断面積が大きくなるため、より多くの給油を行うことができる。図13においては背圧室と圧縮室が連通するタイミングの位置において、つまり、図13(a)のタイミングでスリット溝120eの幅が最も広くなっている。また図14においては、スリット溝120eの深さが深いほど、高圧油圧室150と背圧室140の連通通路断面積が大きくなるため、より多くの給油を行うことができる。図14では背圧室と圧縮室が連通するタイミングの位置において、つまり、図14(a)のタイミングでスリット溝120eの深さが最も深くなっている。
本実施例においても、実施例1と同様な効果が得られる。本実施例では、実施例4と同様に、高圧油圧室150と背圧室140とが連通する区間が生まれ、差圧を利用した給油が可能となる。その結果、高圧油圧室150と背圧室140との差圧で給油できるため、低速回転域でも安定した給油を行うことができ、低速回転域でも給油不足を起こすことなく、摺動部の潤滑および圧縮室機構部のシール性も確保でき、圧縮機効率を高めることが可能となる。
以上に説明した実施例のスクロール圧縮機の駆動部3を構成するロータ107にフェライト磁石が埋設されたフェライト磁石モータを採用した場合について以下に説明する。フェライト磁石モータは、低温で減磁し易いモータ(電動機)であることから、起動時の電流の跳ね上がりを抑える必要がある。すなわち、スクロール圧縮機の駆動部に採用した場合には、起動時のトルク変動を小さく抑える必要がある。このとき以上に説明した実施例の構成を採用すると、背圧室140の油量が抑えられ、旋回スクロール102のボス部102c、オルダム継手109等の攪拌ロスが抑えられることから、起動時のトルク変動を小さくすることができるため、フェライト磁石モータを採用しつつ信頼性の高いスクロール圧縮機を提供することができる。
また、フェライト磁石モータは、ネオジ磁石を埋設したネオジ磁石モータに比べ、磁力が小さく、トルクが出しにくいが、本実施例の構成を採用することで上記したとおり、ボス部102c等による攪拌ロスが減り、フェライト磁石モータ及びこれを用いたスクロール圧縮機の性能向上を図ることが可能である。
1 スクロール圧縮機
2 圧縮機構部
3 駆動部
4 油溜まり
11 吸入管
12 吐出管
20 吐出圧力空間
100 密閉容器
101 固定スクロール(101a:固定側ラップ、101b:固定側平板部、101c:吸入口、101d:吐出口、101e:切り欠き部)
102 旋回スクロール(102a:旋回側ラップ、102b:端板、102c:ボス部、102d:ボス部端面、102e:スラスト面、102f:摺動面、102g:背圧孔、102h:背圧孔軌跡)
103 フレーム(103a:端面部、103b:リング状溝)
104 クランク軸(104a:偏心ピン部、104b:主軸部、104c:鍔部、104d:鍔部上面、104e、104f:給油通路)
105 旋回軸受
106 主軸受
107 ロータ
108 ステータ
109 オルダム継手
110 副軸受
111 ハウジング
112 下フレーム
113 ポンプ継手
114 ポンプ部
115 排油パイプ
120 給油機構部(120a:小孔、120b:長孔、120c:大径孔、120d:リング溝、120e:スリット溝)
130 圧縮室
140 背圧室
150 高圧油圧室
2 圧縮機構部
3 駆動部
4 油溜まり
11 吸入管
12 吐出管
20 吐出圧力空間
100 密閉容器
101 固定スクロール(101a:固定側ラップ、101b:固定側平板部、101c:吸入口、101d:吐出口、101e:切り欠き部)
102 旋回スクロール(102a:旋回側ラップ、102b:端板、102c:ボス部、102d:ボス部端面、102e:スラスト面、102f:摺動面、102g:背圧孔、102h:背圧孔軌跡)
103 フレーム(103a:端面部、103b:リング状溝)
104 クランク軸(104a:偏心ピン部、104b:主軸部、104c:鍔部、104d:鍔部上面、104e、104f:給油通路)
105 旋回軸受
106 主軸受
107 ロータ
108 ステータ
109 オルダム継手
110 副軸受
111 ハウジング
112 下フレーム
113 ポンプ継手
114 ポンプ部
115 排油パイプ
120 給油機構部(120a:小孔、120b:長孔、120c:大径孔、120d:リング溝、120e:スリット溝)
130 圧縮室
140 背圧室
150 高圧油圧室
Claims (11)
- 固定側平板部と、該固定側平板部の一面に渦巻き形状を保持して立設される固定側ラップと、を有する固定スクロールと、
旋回側平板部と、該旋回側平板部の一面に渦巻き形状を保持して立設される旋回側ラップと、を有し、前記旋回側ラップと前記固定側ラップとが噛み合いながら、前記固定スクロールに対して旋回することにより圧縮室を形成する旋回スクロールと、
前記旋回スクロールをクランク軸を介して駆動する電動機と、
を備え、
前記固定スクロールに対して前記旋回スクロールの背面側には、中央側空間と背圧室とが形成され、
前記中央側空間の圧力は前記圧縮室からの吐出圧力とほぼ同一であるとともに、前記背圧室の圧力は前記中央側空間の圧力より低くなるように構成されたスクロール圧縮機において、
前記中央側空間から前記背圧室へ油を供給する第1油供給手段と、
前記圧縮室と前記背圧室とを間欠的に連通することにより、前記背圧室から前記圧縮室に油を供給する第2油供給手段と、を備え、
前記第1油供給手段は、前記第2油供給手段により前記背圧室から前記圧縮室に油を供給するときに前記背圧室への油供給量が多くなるように構成されたことを特徴とするスクロール圧縮機。 - 請求項1に記載のスクロール圧縮機において、
前記中央側空間と前記背圧室とを仕切るシール部材と、
前記クランク軸を前記電動機より前記圧縮室側で回転自在に支持する軸受部と、を備えたことを特徴とするスクロール圧縮機。 - 請求項1に記載のスクロール圧縮機において、
前記中央側空間と前記背圧室とを仕切るシール部材を備え、
前記第1油供給手段は、
前記固定スクロールに対して前記旋回スクロールの背面側の周方向に形成された複数の孔により構成され、
前記旋回スクロールの旋回に伴い、前記複数の孔が前記シール部材を跨いで前記中央側空間と前記背圧室側とを往復することにより、前記中央側空間から前記背圧室へ油を供給し、さらに、
周方向の一部において前記孔が密に形成されることにより、前記第2油供給手段により前記背圧室から前記圧縮室に油を供給するときに前記背圧室への油供給量が多くなるように構成されたことを特徴とするスクロール圧縮機。 - 請求項1に記載のスクロール圧縮機において、
前記中央側空間と前記背圧室とを仕切るシール部材を備え、
前記第1油供給手段は、
前記固定スクロールに対して前記旋回スクロールの背面側の周方向に形成された複数の孔により構成され、
前記旋回スクロールの旋回に伴い、前記複数の孔が前記シール部材を跨いで前記中央側空間と前記背圧室側とを往復することにより、前記中央側空間から前記背圧室へ油を供給し、さらに、
周方向の一部において前記孔が周方向に長い長孔に形成されることにより、前記第2油供給手段により前記背圧室から前記圧縮室に油を供給するときに前記背圧室への油供給量が多くなるように構成されたことを特徴とするスクロール圧縮機。 - 請求項1に記載のスクロール圧縮機において、
前記中央側空間と前記背圧室とを仕切るシール部材を備え、
前記第1油供給手段は、
前記固定スクロールに対して前記旋回スクロールの背面側の周方向に形成された複数の孔により構成され、
前記旋回スクロールの旋回に伴い、前記複数の孔が前記シール部材を跨いで前記中央側空間と前記背圧室側とを往復することにより、前記中央側空間から前記背圧室へ油を供給し、さらに、
周方向の一部において前記孔の直径が、前記シール部材の幅よりも大きく、かつ、旋回直径よりも小さく形成されることにより、前記第2油供給手段により前記背圧室から前記圧縮室に油を供給するときに前記背圧室への油供給量が多くなるように構成されたことを特徴とするスクロール圧縮機。 - 請求項1に記載のスクロール圧縮機において、
前記中央側空間と前記背圧室とを仕切るシール部材を備え、
前記第1油供給手段は、
前記固定スクロールに対して前記旋回スクロールの背面側の周方向に形成された溝により構成され、
前記旋回スクロールの旋回に伴い、前記溝が前記シール部材を跨いで前記中央側空間と前記背圧室側とを往復することにより、前記中央側空間から前記背圧室へ油を供給し、さらに、
前記旋回スクロールの旋回運動の一部において前記溝が、前記シール部材を前記背圧室側に大きく跨ぐように形成されることにより、前記第2油供給手段により前記背圧室から前記圧縮室に油を供給するときに前記背圧室への油供給量が多くなるように構成されたことを特徴とするスクロール圧縮機。 - 請求項1に記載のスクロール圧縮機において、
前記中央側空間と前記背圧室とを仕切るシール部材を備え、
前記第1油供給手段は、
前記固定スクロールに対して前記旋回スクロールの背面側の周方向外側に向かって形成され、かつ、前記シール部材の幅よりも長く形成された複数の溝により構成され、
前記旋回スクロールの旋回に伴い、前記複数の溝が前記中央側空間と前記背圧室側とを連通することにより、前記中央側空間から前記背圧室へ油を供給し、さらに、
前記複数の溝のうち一部が、前記旋回スクロールの背面側の周方向外側に向かって長く形成されることにより、前記第2油供給手段により前記背圧室から前記圧縮室に油を供給するときに前記背圧室への油供給量が多くなるように構成されたことを特徴とするスクロール圧縮機。 - 請求項1に記載のスクロール圧縮機において、
前記中央側空間と前記背圧室とを仕切るシール部材を備え、
前記第1油供給手段は、
前記固定スクロールに対して前記旋回スクロールの背面側の周方向外側に向かって形成され、かつ、前記シール部材の幅よりも長く形成された複数の溝により構成され、
前記旋回スクロールの旋回に伴い、前記複数の溝が前記中央側空間と前記背圧室側とを連通することにより、前記中央側空間から前記背圧室へ油を供給し、さらに、
前記複数の溝の一部の周方向幅が長く形成されることにより、前記第2油供給手段により前記背圧室から前記圧縮室に油を供給するときに前記背圧室への油供給量が多くなるように構成されたことを特徴とするスクロール圧縮機。 - 請求項1に記載のスクロール圧縮機において、
前記中央側空間と前記背圧室とを仕切るシール部材を備え、
前記第1油供給手段は、
前記固定スクロールに対して前記旋回スクロールの背面側の周方向外側に向かって形成され、かつ、前記シール部材の幅よりも長く形成された複数の溝により構成され、
前記旋回スクロールの旋回に伴い、前記複数の溝が前記中央側空間と前記背圧室側とを連通することにより、前記中央側空間から前記背圧室へ油を供給し、さらに、
前記複数の溝の一部の溝深さが深く形成されることにより、前記第2油供給手段により前記背圧室から前記圧縮室に油を供給するときに前記背圧室への油供給量が多くなるように構成されたことを特徴とするスクロール圧縮機。 - 請求項1に記載のスクロール圧縮機において、
前記第2油供給手段は、
前記固定スクロールの前記背圧室側の一面に形成された溝と、
前記旋回スクロールに設けられ、前記圧縮室と連通する背圧穴とにより構成され、
前記旋回スクロールの旋回運動に伴い、前記背圧穴と前記溝とが間欠的に連通することにより前記背圧室と前記圧縮室とが連通し、かつ、前記圧縮室よりも前記背圧室の方が圧力が高い場合に、前記背圧室から前記圧縮室に油を供給することを特徴とするスクロール圧縮機。 - 請求項1~10の何れかに記載のスクロール圧縮機において、
前記電動機は、
ステータ及びロータとを備えて構成され、
該ロータはフェライト磁石が埋設されたフェライト磁石電動機であることを特徴とするスクロール圧縮機。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014507009A JP5764715B2 (ja) | 2012-03-30 | 2012-03-30 | スクロール圧縮機 |
PCT/JP2012/002212 WO2013145017A1 (ja) | 2012-03-30 | 2012-03-30 | スクロール圧縮機 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/002212 WO2013145017A1 (ja) | 2012-03-30 | 2012-03-30 | スクロール圧縮機 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013145017A1 true WO2013145017A1 (ja) | 2013-10-03 |
Family
ID=49258390
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/002212 WO2013145017A1 (ja) | 2012-03-30 | 2012-03-30 | スクロール圧縮機 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5764715B2 (ja) |
WO (1) | WO2013145017A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3239529A3 (en) * | 2016-04-26 | 2017-11-15 | LG Electronics Inc. | Scroll compressor |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1113673A (ja) * | 1997-06-30 | 1999-01-19 | Matsushita Electric Ind Co Ltd | 密閉型スクロール圧縮機 |
JP3696683B2 (ja) * | 1996-02-21 | 2005-09-21 | 株式会社日立製作所 | スクロール圧縮機 |
JP2008138578A (ja) * | 2006-12-01 | 2008-06-19 | Hitachi Appliances Inc | スクロール圧縮機 |
JP2009024664A (ja) * | 2007-07-23 | 2009-02-05 | Sanden Corp | スクロール型流体機械 |
WO2009130878A1 (ja) * | 2008-04-22 | 2009-10-29 | パナソニック株式会社 | スクロール圧縮機 |
-
2012
- 2012-03-30 JP JP2014507009A patent/JP5764715B2/ja active Active
- 2012-03-30 WO PCT/JP2012/002212 patent/WO2013145017A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3696683B2 (ja) * | 1996-02-21 | 2005-09-21 | 株式会社日立製作所 | スクロール圧縮機 |
JPH1113673A (ja) * | 1997-06-30 | 1999-01-19 | Matsushita Electric Ind Co Ltd | 密閉型スクロール圧縮機 |
JP2008138578A (ja) * | 2006-12-01 | 2008-06-19 | Hitachi Appliances Inc | スクロール圧縮機 |
JP2009024664A (ja) * | 2007-07-23 | 2009-02-05 | Sanden Corp | スクロール型流体機械 |
WO2009130878A1 (ja) * | 2008-04-22 | 2009-10-29 | パナソニック株式会社 | スクロール圧縮機 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3239529A3 (en) * | 2016-04-26 | 2017-11-15 | LG Electronics Inc. | Scroll compressor |
US10570899B2 (en) | 2016-04-26 | 2020-02-25 | Lg Electronics Inc. | Scroll compressor having scroll with oil dimples |
Also Published As
Publication number | Publication date |
---|---|
JPWO2013145017A1 (ja) | 2015-08-03 |
JP5764715B2 (ja) | 2015-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11002278B2 (en) | Pump mechanism and horizontal compressor having same | |
JP5260608B2 (ja) | スクロール圧縮機 | |
US9605676B2 (en) | Variable speed scroll compressor | |
JP5178668B2 (ja) | スクロール圧縮機 | |
KR20130037115A (ko) | 축방향 지지부재를 갖는 스크롤 압축기 | |
JP2012184743A (ja) | スクロール圧縮機 | |
JP2008303844A (ja) | スクロール流体機械 | |
JP6554926B2 (ja) | スクロール圧縮機 | |
JP6042530B2 (ja) | スクロール圧縮機 | |
JP2007085297A (ja) | スクロール圧縮機 | |
JP5511438B2 (ja) | スクロール圧縮機 | |
JP2008082272A (ja) | 流体圧縮機 | |
JP2012184709A (ja) | スクロール圧縮機 | |
JP6633305B2 (ja) | スクロール圧縮機 | |
WO2013145017A1 (ja) | スクロール圧縮機 | |
US10697455B2 (en) | Compressor having lubrication structure for thrust surface | |
JP2017172484A (ja) | スクロール圧縮機 | |
JP2007162679A (ja) | 流体機械 | |
JP5270993B2 (ja) | スクロール型流体機械 | |
US11603840B2 (en) | Scroll compressor having compression chamber oil supplies having stages in which oil supply overlaps and stages in which oil supply does not overlap | |
WO2021184723A1 (zh) | 压缩机 | |
JP2008031976A (ja) | 電動圧縮機 | |
JP6385706B2 (ja) | スクロール圧縮機 | |
JP6462265B2 (ja) | 開放型圧縮機 | |
JP2013204476A (ja) | スクロール圧縮機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12873067 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014507009 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12873067 Country of ref document: EP Kind code of ref document: A1 |