WO2011152420A1 - 情報提供装置、情報提供方法、情報提供プログラム、及びそのプログラムを記憶するコンピュータ読取可能な記録媒体 - Google Patents

情報提供装置、情報提供方法、情報提供プログラム、及びそのプログラムを記憶するコンピュータ読取可能な記録媒体 Download PDF

Info

Publication number
WO2011152420A1
WO2011152420A1 PCT/JP2011/062532 JP2011062532W WO2011152420A1 WO 2011152420 A1 WO2011152420 A1 WO 2011152420A1 JP 2011062532 W JP2011062532 W JP 2011062532W WO 2011152420 A1 WO2011152420 A1 WO 2011152420A1
Authority
WO
WIPO (PCT)
Prior art keywords
recommendation
user
application
users
mail
Prior art date
Application number
PCT/JP2011/062532
Other languages
English (en)
French (fr)
Inventor
正宏 渡辺
学 大城
典子 原田
英和 浜田
玲子 安田
鉄平 肥田
裕子 古性
浩一 柳本
愛 下郡
Original Assignee
楽天株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 楽天株式会社 filed Critical 楽天株式会社
Priority to US13/581,414 priority Critical patent/US8935345B2/en
Priority to JP2012518410A priority patent/JP5400962B2/ja
Publication of WO2011152420A1 publication Critical patent/WO2011152420A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L51/00User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/10Office automation; Time management
    • G06Q10/107Computer-aided management of electronic mailing [e-mailing]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/01Social networking

Definitions

  • One embodiment of the present invention relates to an information providing apparatus, an information providing method, an information providing program, and a computer-readable recording medium storing the program.
  • Patent Literature 1 describes a sales promotion system for facilitating sales promotion of products by introduction.
  • this sales promotion system when an introducer who purchases a product using a mobile terminal selects a product that he / she wants to introduce from among the products for which payment has been completed, the introduction advertisement ID of the selected product is provided to the referee. Is done.
  • Patent Document 2 listed below describes a member management system that introduces membership to a membership card or the like to another person using a mobile terminal. In this member management system, when the first mobile terminal notifies the server of the mail address of the second mobile terminal, the server notifies the second terminal of the URL of the application downloaded at the time of membership by mail.
  • An information providing apparatus obtains recommendation information indicating that a first user recommends a predetermined recommendation target to a plurality of second users from a terminal of the first user.
  • a first generation unit for generating a recommendation mail for recommending a recommendation target to a plurality of second users based on the recommendation information, and a first transmission for transmitting the recommendation mail to a plurality of second users
  • application information indicating the application for the recommendation target is received from the terminal of the applicant
  • a second acquisition unit for acquiring, a second generation unit for generating an application mail including application information, and a second transmission unit for transmitting the application mail to a second user other than the applicant.
  • An information providing method is an information providing method executed by an information providing apparatus, wherein the first user recommends a predetermined recommendation target to a plurality of second users.
  • An information providing program obtains recommendation information indicating that a first user recommends a predetermined recommendation target to a plurality of second users from the terminal of the first user.
  • a first generation unit for generating a recommendation mail for recommending a recommendation target to a plurality of second users based on the recommendation information, and a first transmission for transmitting the recommendation mail to a plurality of second users
  • application information indicating the application for the recommendation target is received from the terminal of the applicant
  • the computer executes a second acquisition unit to acquire, a second generation unit that generates an application mail including application information, and a second transmission unit that transmits the application mail to a second user other than the applicant.
  • a computer-readable recording medium obtains recommendation information indicating that a first user recommends a predetermined recommendation target to a plurality of second users from the terminal of the first user.
  • a first generation unit that generates a recommendation email for recommending a recommendation target to a plurality of second users based on the recommendation information; and a recommendation email that is transmitted to the plurality of second users.
  • the application information indicating the application for the recommendation target is given to the applicant.
  • the computer executes a second acquisition unit that acquires from the terminal, a second generation unit that generates an application email including application information, and a second transmission unit that transmits the application email to a second user other than the applicant Memorize information providing program That.
  • an application email indicating the application is generated and other than the applicant Sent to a second user.
  • the second user can be encouraged to apply for the recommendation object. I can expect.
  • other 2nd users apply for a recommendation object according to application mail, it can be expected that the satisfaction of the 1st user who is a recommender will rise.
  • a plurality of second user candidates are selected and selected by referring to a first storage unit that stores recommendation data in which the first user and the second user are associated with each other.
  • a selection unit that transmits candidate information indicating the plurality of candidates to the first user's terminal, wherein the first acquisition unit specifies a plurality of second specified from the candidates indicated by the candidate information in the first user's terminal.
  • Recommendation information indicating the second user may be acquired. In this case, since the second user candidate is presented to the first user, the first user can easily select the second user.
  • the recommendation data includes the transmission date and time of the latest recommendation mail transmitted to the second user as attribute information of the second user
  • the selection unit transmits A plurality of candidates may be selected in descending order of date and time.
  • the recommendation data includes a transmission date / time of a recent recommendation email transmitted to the second user, a recommendation target indicated by the recommendation email, an application date / time of the recommendation target, May be included as attribute information of the second user, and the selection unit may select a plurality of candidates in ascending order of time from the transmission date / time to the application date / time.
  • the second user who responded quickly to the recommendation email and applied for the recommendation object is preferentially presented to the first user as a candidate, so that the first user can be expected to apply for the recommendation object. You can easily choose.
  • the recommendation data includes the number of recommendation emails transmitted to the second user in the past as attribute information of the second user, and the selection unit receives the recommendation email.
  • a plurality of candidates may be selected in descending order of the number.
  • the recommendation data includes a category to be recommended corresponding to the hobby of the second user as the attribute information of the second user
  • the selection unit includes the first user.
  • a plurality of candidates may be selected in descending order of the degree of coincidence between the category of the recommendation target recommended by and the category of the recommendation target indicated by the recommendation data.
  • the second user who has a hobby with a high degree of coincidence with the category to be recommended is preferentially presented to the first user as a candidate, so that the first user can expect application for the recommendation target. Can be selected easily.
  • the selection unit refers to the second storage unit that stores the relationship data indicating the relationship between the users represented by the directed graph, and the two-way friend relationship with the first user
  • the first group, the second group, and the third group may be specified, and a plurality of candidates may be selected in the order of the first group, the second group, and the third group.
  • the selection unit is applied by the second storage unit, a third storage unit that stores a transmission history indicating the transmission date and time of the recommendation email and the recommendation target indicated by the recommendation email.
  • the transmission corresponding to the other recommendation target in the same category as the recommendation target indicated by the recommendation mail generated by the first generation unit with reference to the fourth storage unit storing the application history indicating the recommended target and the application date and time A plurality of candidates may be selected in ascending order of difference in date / time and application date / time. In this way, the second user who responded quickly to the recommendation email and applied for the recommendation object is preferentially presented to the first user as a candidate, so that the first user can be expected to apply for the recommendation object. You can easily choose.
  • the selection unit generates the first generation unit with reference to the fifth storage unit that stores the browsing history indicating the recommendation target and the browsing date and time browsed by the second user.
  • a plurality of candidates may be selected in descending order of the number of browsing of other recommended objects in the same category as the recommended object indicated by the recommended email.
  • the first user recommends the first user by preferentially presenting the second user who has browsed more recommendation objects in the same category as the recommendation object indicated in the recommendation email to the first user. hardly select people who can expect the target application.
  • the selection unit generates the first generation unit with reference to the sixth storage unit that stores the application history indicating the recommendation target and the application date and time applied by the second user.
  • a plurality of candidates may be selected in descending order of the number of applications of other recommended objects in the same category as the recommended object indicated in the recommended email.
  • the first user is recommended by presenting the second user who applied more for other recommendation targets in the same category as the recommendation target indicated in the recommendation email to the first user as a candidate. easily select people who can expect the target application.
  • the recommendation target may be a product
  • the recommendation target application may be a product purchase application.
  • FIG. 1 is a diagram illustrating a configuration of an information providing system 1 according to the embodiment.
  • the information providing system 1 includes a server 11, the Internet 12, a client 13, a client 14, a user relation database 15 (second storage unit), and a user ID conversion table 16.
  • the server 11 is connected to the clients 13 and 14, the user relation database 15, and the user ID conversion table 16 via the Internet, whereby the clients 13 and 14, the user relation database 15, and the user ID conversion table 16 are connected. Two-way communication is possible.
  • the server 11 is an information providing apparatus that provides the client 13 or the client 14 with a web page for selling the product and accepts an application for purchasing the product from the client 13 or the client 14. That is, the server 11 provides an online shopping site to the user.
  • the product may be tangible or intangible such as a service.
  • the server 11 may be a dedicated server, a personal computer, a virtual server, or a system formed by a combination of these.
  • the Internet 12 is an example of a communication network.
  • the Internet 12 includes a wired or wireless general-purpose line or dedicated line, a LAN (Local Area Network), a WAN (Wide Area Network), or the like.
  • Clients 13 and 14 are terminals having a browser and a mail function.
  • the clients 13 and 14 acquire a web page from the server 11 according to a user operation and display it on the browser.
  • the clients 13 and 14 receive the mail transmitted from the server 11. Examples of the clients 13 and 14 include personal computers and mobile phones, but the types of the clients 13 and 14 are not limited to these.
  • the user relationship database 15 is a means for storing relationship data indicating relationships between users.
  • the user relationship database 15 is provided in a computer system that controls a social networking service (SNS) and exists separately from the server 11. But the installation location of this database is not limited, For example, the server 11 may be provided with the user relation database 15.
  • SNS social networking service
  • the relationship data is data in which a user ID of one user and an ID (friend ID) of a user who has a friendship with the user and SNS are associated with each other.
  • the user specified by the user ID “001” has a two-way friend relationship with the two users specified by the user IDs “002” and “003”, respectively.
  • the friendship may be unidirectional.
  • the user indicated by the user ID “001” is in a friendship relationship with the two users specified by the user IDs “002” and “003”.
  • the user indicated by the user ID “001” is a completely different person.
  • the relationship data indicates the relationship between the users indicated by the directed graph.
  • the user ID conversion table 16 is a means for storing the correspondence of user IDs between systems.
  • a single user does not always use one type of user ID in a plurality of systems, and in some cases, the user uses a user ID for each system.
  • the user ID managed by the online shopping site (server 11) may be different from the user ID managed by the SNS (user relation database 15). Since the user ID conversion table 16 is used to compensate for such differences in user IDs between systems, the user ID conversion table 16 is not necessary if the IDs of the respective users completely match between the systems.
  • the installation location of the user ID conversion table 16 is not limited, and may be provided in the server 11 or may be provided in the same system as the user relationship database 15.
  • the data in the user ID conversion table 16 is generated by exchanging an OAuth token, which is a mechanism related to delegation of authorization information, between services.
  • OAuth token is a mechanism related to delegation of authorization information, between services.
  • the data in the first row indicates that the user identified by the user ID “001” on the online shopping site (server 11) side is “1001” in SNS and “2001” in other services. It indicates that the user ID is registered. Note that the same user ID may be assigned between sites for one user, such as ID “1002” in the second row.
  • the server 11 will be specifically described.
  • the server 11 transmits an email (recommendation email) for recommending a product to one or more users of the client 14.
  • the user (first user) of the client 13 who recommends a product is referred to as a recommender
  • the user (second user) of the client 14 who receives the product recommendation is referred to as a partner user.
  • this partner user is referred to as a “nominated person”.
  • the server 11 purchases the product from the other user other than the purchaser.
  • the purchaser is a kind of applicant, and the purchase mail is a kind of application mail.
  • FIG. 4 is a diagram illustrating product recommendation in the information providing system 1.
  • A indicates a recommender
  • B 1 to B 10 indicate counterpart users.
  • the recommender A who wants to get a referral reward recommends a product to the other user by sending a recommendation email.
  • the partner user is a colleague of the recommender's company, a person who has the same hobby as the recommender, an acquaintance with the recommender at the off meeting, or a person who is registered in the same mailing list as the recommender.
  • the partner users B 1 to B 10 may not know each other. Also, the other users B 1 to B 10 may not know that the recommended mail sent to them is sent to the other user. Therefore, it may be difficult to encourage the other user to purchase recommended products simply by sending a recommendation email.
  • the other party in the case where the user B 1 has purchased the goods in accordance with the recommendation e-mail other partner user as a message to purchase e-mail such as "I bought in accordance with recommended!”
  • the counterpart users B 2 to B 10 know that another person has actually purchased the product.
  • the recommender can achieve the purpose of the recommendation to some extent, and therefore, a certain level of satisfaction can be obtained.
  • FIG. 5 is a block diagram illustrating a hardware configuration example of the server 11.
  • a CPU Central Processing Unit
  • a ROM Read Only Memory
  • RAM Random Access Memory
  • An input / output interface 35 is further connected to the bus 34.
  • the input / output interface 35 includes an input unit 36 such as a keyboard, a mouse, and a microphone, an output unit 37 such as a display and a speaker, a storage unit 38 such as a hard disk and a nonvolatile memory, a communication unit 39 such as a network interface, and a magnetic field.
  • a drive 40 that drives a removable medium 41 such as a disk, an optical disk, a magneto-optical disk, or a semiconductor memory is connected.
  • the CPU 31 loads a program stored in the storage unit 38 to the RAM 33 via the input / output interface 35 and the bus 34 and executes the program, thereby performing a series of processes described later.
  • the information providing program executed by the server 11 is recorded on a removable medium 41 such as a magnetic disk (including a flexible disk), an optical disk (CD-ROM or DVD-ROM), a magneto-optical disk, or a semiconductor memory.
  • a removable medium 41 such as a magnetic disk (including a flexible disk), an optical disk (CD-ROM or DVD-ROM), a magneto-optical disk, or a semiconductor memory.
  • the information providing program is provided via a wired or wireless transmission medium such as the Internet 12.
  • the information providing program can be installed in the computer by attaching the removable medium 41 to the drive 40 and storing it in the storage unit 38 via the input / output interface 35. Further, the information providing program can be installed in the computer by being received by the communication unit 39 and stored in the storage unit 38. Furthermore, the information providing program may be installed in advance in the computer.
  • FIG. 6 is a block diagram illustrating an example of a functional configuration of the server 11.
  • a user database 61 by executing an information providing program or the like, a user database 61, a product database 62, a mailing list database 63, a history database (first, third, fourth, fifth, and sixth storage units) 64, An initial data generation unit 65, a Web server function (first acquisition unit, second acquisition unit) 66, a page generation unit 67, an authentication unit 68, a sales processing unit 69, and a recommendation unit 70 are realized.
  • the user database 61 is a means for storing user data.
  • the user data includes a user ID, various user attributes (name, nickname, address, telephone number, e-mail address, hobby, etc.) and a login password.
  • the product database 62 is a means for storing product data.
  • Product data includes a product ID that identifies the product, various product attributes (product name, product image, product category, product manufacturer or provider name, manufacturer or provider address, sales area or service area , URL (Uniform Resource Locator) of a web page that sells the product, product price, etc.).
  • the mailing list database 63 is a means for storing mailing list data.
  • the mailing list data includes a mail address representative of the mailing list and mail addresses of one or more users included in the mailing list.
  • the history database 64 is a means for storing various history data (browsing history, purchase history, recommendation history, and transmission history).
  • the browsing history record includes the user ID, the ID of the viewed product, and the browsing date and time.
  • the record of purchase history includes a user ID, an ID of a purchased product, and a purchase date and time (application date and time).
  • the browsing history is generated and stored by a Web server function 66 described later, and the purchase history is generated and stored by a sales processing unit 69 described later.
  • the recommendation history is data in which a user ID (recommendation ID) for specifying a recommender and attribute information of one or more other users are associated with each other.
  • the attribute information of each partner user includes a user ID (partner ID) for identifying the partner user, a transmission date / time of the recommended email (for example, recent transmission date / time), a name of the partner user (for example, a nickname), and a recommendation from the recommender.
  • FIG. 1 An example of recommendation history is shown in FIG.
  • the recommender ID is “001” and the partner IDs are “101” to “104”. From this example, the user K has recently purchased the recommended product A, the user J has not yet purchased the product A, the user L has not been sent a recommendation email regarding the product A, etc. I understand. Categories may be shown hierarchically, such as “CD / Classic”. The category item may be omitted in the recommendation history.
  • the transmission history is generated and recorded for each of the recommendation mail and purchase mail described later.
  • the record of the transmission history is indicated by the mail ID for identifying the mail, the user ID and mail address of the recommender, the user ID and mail address of one or more other users, the transmission date and time of the mail, and the mail.
  • Product ID of the recommended product is indicated by the mail ID for identifying the mail, the user ID and mail address of the recommender, the user ID and mail address of one or more other users, the transmission date and time of the mail, and the mail.
  • each history data is not limited to the above example, and various modifications are possible.
  • the email addresses of the recommender and the other user may be included in the recommendation history instead of the transmission history.
  • These databases 61 to 64 may be directly constructed on a file system provided by the operating system, or may be constructed by a database management system.
  • the initial data generation unit 65 is means for generating initial data of recommendation history and storing it in the history database 64.
  • the initial data generation unit 65 refers to a database in which a relationship between users is defined, and associates a plurality of users as recommenders and counterpart users, thereby newly generating a recommendation history record.
  • the timing for generating the initial data is arbitrary.
  • the initial data generation unit 65 generates the initial data periodically or in response to an instruction from the administrator of the server 11. There are several methods for generating initial data of recommendation history as shown below.
  • the initial data generation unit 65 may generate initial data with reference to the user database 61 and the user relation database 15. For each user, when there is a possibility that the user ID in the user database 61 and the user ID in the user relation database 15 are different, the initial data generation unit 65 refers to the user ID conversion table 16 and uses the user ID in advance. The user ID in the relational database 15 is converted into the user ID in the user database 61 in advance.
  • the initial data generation unit 65 sets one user ID in the user database 61 as a recommender ID, and reads another user ID corresponding to the user ID from the user relation database 15. In this case, when one or more other user IDs can be acquired, the initial data generation unit 65 sets the user ID as a partner ID. Subsequently, the initial data generation unit 65 reads the user data of each counterpart user from the user database 61 to identify the user name and hobby of each counterpart user. Subsequently, the initial data generation unit 65 specifies the category of each counterpart user. The initial data generation unit 65 specifies a category by allowing the other user to input a category via a predetermined web page or by extracting a product category corresponding to a hobby based on a predetermined correspondence table held in advance. To do.
  • the initial data generation unit 65 When the user ID of the recommender and the other user and the user name, hobby, and category of each other user are specified in this way, the initial data generation unit 65 generates initial data of the recommendation history using these data, and the history Store in database 64. In the example of FIG. 7, the initial data generation unit 65 reads out the partner IDs “101”, “102”, “103”, and “104” corresponding to the recommender ID “001” from the user relation database 15, and It is assumed that the user name, hobby, and category are specified, and four records related to the recommender ID “001” are generated.
  • the initial data generation unit 65 executes the above initial data generation process for each user ID in the user database 61. If no other corresponding user ID is found in the user relational database 15, the initial data generation unit 65 terminates the process at that time, so that a recommendation history is generated for all user IDs in the user database 61. Not exclusively.
  • the initial data generation unit 65 may generate initial data of recommendation history with reference to the user database 61 and the mailing list database 63.
  • the initial data generation unit 65 sets a user ID corresponding to the representative mail address indicated by the mailing list data as a recommender ID. Further, the initial data generation unit 65 sets one or more user IDs corresponding to other mail addresses belonging to the same group as the representative mail address as the partner ID. The user ID corresponding to each mail address is obtained by referring to the user data. Subsequently, the initial data generating unit 65 specifies the user name, hobby, and category of each counterpart user as described above, and generates and stores initial data of the recommendation history.
  • the initial data generation unit 65 can generate initial data of a recommendation history.
  • the blank items (transmission date / time, recommended product, purchase record, purchase date / time, number of emails) at the time of initial data generation are updated by the processing of the recommendation unit 70 described later.
  • the Web server function 66 is based on a procedure defined in HTTP (Hypertext Transfer Protocol), an arbitrary markup language (for example, HTML (Hypertext Markup Language), compact HTML, HDML (Handheld Device Markup Language), XML (Extensible Markup Language). Language)) is transmitted to the client 13 or the client 14.
  • the web page includes various objects such as text or images.
  • the web server function 66 receives various data transmitted from the client 13 or the client 14.
  • the web server function 66 monitors the access to the web page by the users of the clients 13 and 14, and generates a browsing history and stores it in the history database 64 whenever the access occurs.
  • the web server function 66 is realized by executing a web server program.
  • the page generation unit 67 is a means for generating a web page transmitted to the clients 13 and 14 via the web server function 66.
  • the page generation unit 67 generates a web page (sales page) for performing a product purchase procedure in response to an HTTP request from the client 13.
  • the page generation unit 67 acquires product data corresponding to the HTTP request from the product database 62, and generates a sales page using the product data.
  • the sales page includes product information such as product name (“wooden bat”), product image, product price, “shopping basket” button for placing the product in the shopping cart, and recommendations regarding this product.
  • a link to send an email (a link that says “Recommend email to a friend”) is placed.
  • the generated sales page is transmitted to the client 13 by the Web server function 66 and displayed on the client 13.
  • the client 13 When a link “Prompt with a friend by e-mail” in the sales page is clicked, the client 13 requests a web page for sending a recommendation e-mail, and the web server function 66 receives the request.
  • the page generation unit 67 generates an authentication page for authenticating the user of the client 13. For example, the page generation unit 67 generates the authentication page shown in FIG.
  • the “Next” button in FIG. 9 is an interface for causing the server 11 to execute authentication processing.
  • the generated authentication page is transmitted to the client 13 by the Web server function 66 and displayed on the client 13.
  • the page generation unit 67 causes the recommender to input the body text of the recommendation email and to select a final partner user (recommended email transmission page). ) And the recommended mail transmission page is transmitted to the client 13 via the Web server function 66.
  • the client 13 displays a recommendation mail transmission page, and the recommender inputs the text and selects the other user.
  • a list of candidates for the other user As shown in FIG. 10, in the recommended mail transmission page, a list of candidates for the other user, a check box for selecting the other user, the mail address and name of the recommender, and the text of the recommended mail are input. , The name and handling store of the recommended product, and a button (send button) for sending the input contents to the server 11.
  • a message “This is a good product!” Is input as the body of the recommendation email, and three users K, J, and M are selected as the other users.
  • the list of candidates for the other user (candidate information) is generated by a recommendation candidate selection unit 71 described later.
  • the page generation unit 67 allows the purchaser to input the text of the purchase email (a purchase email transmission page). ) Is generated.
  • the client 14 applies the purchase application data (application data). ) To the server 11.
  • This application data includes the purchaser's user ID, the user ID of the recommender who sent the recommendation email, and information indicating that the sales page has been accessed from the link of the recommendation email.
  • the page generation unit 67 generates a purchase email transmission page according to the application data, and transmits the purchase email transmission page to the purchaser's client 14 via the Web server function 66.
  • the purchase email transmission page includes product information of recommended products. Note that the text of the purchase email may be sent to the server 11 as part of the application data.
  • the authentication unit 68 is a means for authenticating the users of the clients 13 and 14.
  • the client 13 or 14 inputs the user ID and password on the authentication page and clicks the “Next” button, the client 13 or 14 transmits the user ID and password to the server 11 and the Web server function 66 These data are received.
  • the authentication unit 68 authenticates the user by performing processing for checking the user ID and password.
  • the sales processing unit 69 is a means for performing sales processing such as product arrangement and billing when a purchase of a product is requested from the client 14.
  • the sales processing unit 69 generates a purchase history indicating the purchase of the product by the user of the client 14 and stores it in the history database 64.
  • the recommendation unit 70 is a means for acquiring a recommendation email text recommending a product from the client 13 and transmitting a recommendation email including the acquired text and product information corresponding to the recommended product (recommended product) to the other user. is there.
  • the recommendation unit 70 transmits a purchase email including a message indicating the purchase of the recommended product from the partner user (purchaser) to the partner user other than the purchaser. It is also a means.
  • the processing executed by the recommendation unit 70 is based on the assumption that the user of the client 13 has been authenticated by the authentication unit 68.
  • the recommendation unit 70 includes a recommendation candidate selection unit 71, a recommendation email generation unit (first generation unit) 72, a recommendation email transmission unit (first transmission unit) 73, a purchase email generation unit (second generation unit) 74, and a purchase email transmission.
  • the recommendation candidate selection unit 71 is means for selecting a candidate for the other user based on the recommendation history recorded in the history database 64.
  • a predetermined link in the sales page for example, a link called “Recommend Email with Friends” in FIG. 8
  • the recommendation candidate selecting unit 71 performs the following based on the user ID of the recommender. Execute the process.
  • the method for selecting candidates is not limited. For example, the candidates may be selected by the following method.
  • the recommendation candidate selection unit 71 may read a recommendation history corresponding to the recommender ID, and select all the other users indicated by the recommendation history as candidates.
  • the recommendation candidate selection unit 71 may select a predetermined number of partner users as candidates from the top after rearranging the partner users indicated by the recommendation history corresponding to the recommender ID according to a specific item.
  • the items used as the basis for the rearrangement and the order of the rearrangement may be arbitrarily determined.
  • the recommendation candidate selection unit 71 may sort the other users in descending order of the transmission date and time, or may sort the other users in the descending order of the number of past mails. Moreover, the recommendation candidate selection part 71 may rearrange an other party user in order with a short period after purchasing a recommendation mail and purchasing the recommendation goods shown by the mail. This means that based on the difference between the purchase date / time and the transmission date / time indicated in the recommendation history, the other users are rearranged in the order of quick response to the latest recommended mail. In the example of FIG. 7, when the counterpart users are rearranged in order of increasing difference between the purchase date and time and the transmission date and time, the order is user K, user M, user L, and user J. When the other users are rearranged in this way, the recommendation candidate selecting unit 71 selects a predetermined number of other users as candidates from the top. The number of partner users to be selected may be arbitrarily determined, for example, 10, 8, 4 or the like.
  • candidates are extracted after rearranging the other users based on the past transmission results of recommended emails, or the other users who have purchased products in response to the recommended emails are extracted preferentially as candidates.
  • a person who can expect to purchase the product can be presented to the recommender.
  • the recommendation candidate selection unit 71 may select a predetermined number of partner users as candidates from the top after rearranging the partner users in descending order of the degree of matching between the attribute of the recommended product and the hobby of the partner user.
  • the recommendation history includes a category item as shown in FIG.
  • the recommendation candidate selection unit 71 acquires the product ID of the recommended product shown on the sales page together with the recommender ID.
  • the recommendation candidate selection unit 71 reads the recommendation history corresponding to the recommender ID, and reads the product data corresponding to the product ID of the recommended product from the product database 62. Subsequently, the recommendation candidate selection unit 71 compares the category indicated by each recommendation history with the category of the recommended product, and rearranges the recommendation history in the order in which they are similar.
  • the similarity of categories is defined in advance as a correspondence table by an arbitrary method, and the recommendation candidate selection unit 71 compares the two categories with reference to the correspondence table. After performing such rearrangement, the recommendation candidate selection unit 71 selects a predetermined number of partner users from the top as candidates. The number of partner users to be selected may be arbitrarily determined.
  • the recommendation candidate selection unit 71 may rearrange the other users based on the content of the friendship between the recommender and the other user, and then select a predetermined number of recommended offers from the top as candidates.
  • the recommendation candidate selection unit 71 refers to the user relationship database 15 and determines which of the following relationships a to c the relationship between the recommender and the other user corresponds.
  • relationship a can be said to be a relationship in which the other user and the recommender follow each other, and relationship b follows the recommender by the other user.
  • relationship c can be said to be a relationship in which the other user is followed by the recommender.
  • A Two-way friend relationship
  • b One-way friend relationship from the other user to the recommender (relation data in which the user ID of the recommender is specified as the friend ID corresponding to the user ID of the other user exists) However, there is no relational data indicating a connection in the opposite direction)
  • C One-way friend relationship from the recommender to the partner user (there is relationship data in which the user ID of the partner user is specified as the friend ID corresponding to the user ID of the recommender, but in the opposite direction There is no relational data that shows the connection)
  • the recommendation candidate selection part 71 is the other party user (1st group) applicable to the said relationship a, the other party user (2nd group) applicable to the said relationship b, and the other party user (3rd group) applicable to the said relationship c. ) Sort the other users in the order. And the recommendation candidate selection part 71 selects a predetermined number of other party users as a candidate in order from the 1st group of users. The number of partner users to be selected may be arbitrarily determined.
  • the candidate of the other user determines the candidate of the other user based on the strength and direction of the friendship. Since the two-way friendship is stronger than the one-way friendship, the relationship a has the highest priority.
  • the other user receives a recommendation email from a recommender he / she thinks is a friend, whereas in relation c, the recommender is another person for the other user. Therefore, when selecting a candidate, the second group has priority over the third group.
  • the recommendation candidate selection unit 71 may select a predetermined number of recommended offers from the top as candidates after rearranging the other users based on the browsing history or purchase history in the history database 65. For example, the recommendation candidate selecting unit 71 may rearrange the other users in descending order of the number of browsed or purchased products in the category corresponding to the recommended product.
  • the recommendation candidate selection unit 71 refers to the transmission history and purchase history, and responds quickly to the product in the category corresponding to the recommended product (the person who has a short time from receiving the recommendation email to purchasing the product).
  • the other users may be rearranged in order. This means that the other users are sorted in ascending order of the difference between the transmission date / time and the purchase date / time corresponding to other products in the same category as the product indicated by the recommendation email generated by the recommendation email generation unit 72.
  • the recommendation candidate selection unit 71 may rearrange the other users based on statistical values such as a median value and an average value regarding the difference between the transmission date and time and the purchase date and time.
  • the purchase of the product can be performed by extracting the other users who have browsed or purchased more products in the same category as the product indicated in the recommendation email, or the other users who have purchased the product in response to the recommendation email as candidates.
  • the person who can expect can be shown to the recommender.
  • the recommended candidate selection unit 71 outputs a candidate user list selected by any one of the above methods to the page generation unit 67 as candidate information.
  • the page generation unit 67 generates a recommended email transmission page using the list.
  • the recommendation candidate selection unit 71 may cause the recommender to select a candidate selection method, and extract the candidate of the partner user by the selected method.
  • the partner user candidate may be extracted by a method selected by the recommender from the methods shown in the first to fifth examples.
  • the recommendation email generation unit 72 is a means for generating a recommendation email based on an instruction from the recommender.
  • the recommender makes a necessary input on the recommendation mail transmission page and presses the transmission button, the client 13 transmits the data shown on the page to the server 11.
  • the web server function 66 receives the data and outputs it to the recommended mail generator 72.
  • the recommended mail generation unit 72 acquires the text of the recommended mail from the input data. Also, the recommended mail generation unit 72 acquires the nickname of the other user actually designated by the recommender from the data, and converts the nickname into the user ID with reference to the user database 61. Subsequently, the recommended mail generation unit 72 reads the mail address corresponding to the user ID of the other user from the user database 61. Subsequently, the recommendation mail generation unit 72 has a predetermined subject, a recommender ID, the text of the acquired recommendation mail, and the product information (product name, manufacturer or offer provided on the recommendation mail transmission page). The name of the trader, the URL of the sales page, the price, etc.) are shown, and a recommendation mail is generated with the read mail address as the destination. Here, in the recommendation mail, the URL of the web page that sells the recommended product is arranged as a link. The recommended email generator 72 outputs the generated recommended email to the recommended email transmitter 73.
  • the text of the recommendation email is an example of recommendation information. Since the recommendation information may be information for product recommendation, the recommendation information may be expressed in a format other than the mail text. For example, the evaluation level (1, 2, 3, etc.) or ranking (for example, the ranking indicated as “Top n”) of the recommended product designated by the recommender may be added or attached to the recommendation email. Good.
  • the recommended email transmitting unit 73 is a means for transmitting the recommended email input from the recommended email generating unit 72 to each designated user.
  • the purchase email generation unit 74 is a means for generating a purchase email indicating that the other user has purchased the recommended product indicated by the recommendation email.
  • the client 14 transmits the data shown on the page to the server 11.
  • the input data includes the text of the purchase email (for example, “This is a really good product!”).
  • the Web server function 66 receives the data and outputs it to the purchase mail generation unit 74.
  • the purchase email generation unit 74 acquires the text of the purchase email from the input data. Further, the purchase mail generation unit 74 reads the transmission history corresponding to the purchaser and the purchased product from the history database 64, and specifies the mail address of another partner user who has received the same recommendation mail as that sent to the purchaser. At the same time, the mail address of the recommender who is the sender of the recommended mail is acquired from the user database 61. Subsequently, the purchase email generation unit 74 determines a predetermined subject, the text of the acquired purchase email, and the product information displayed on the purchase email transmission page (product name, manufacturer or provider name, sales Page URL, price, etc.) are displayed, and a purchase email addressed to the read email address is generated. The purchase e-mail address does not include the purchaser. The purchase email generation unit 74 outputs the generated purchase email to the purchase email transmission unit 75.
  • the body of the purchase email is an example of purchase information (application information). Since the purchase information may be information indicating that the product has been purchased, the purchase information may be expressed in a format other than the mail text. For example, purchase prices, product evaluations, product images, and the like may be used as purchase information.
  • the purchase mail may include information (for example, a nickname) for specifying a purchaser and purchase date and time.
  • the purchase email transmission unit 75 is a means for transmitting the purchase email input from the purchase email generation unit 74 to the recommender and other counterpart users.
  • the recommendation history update unit 76 is a means for updating the recommendation history in the history database 64.
  • the recommendation history update unit 76 updates the record of the recommender and the other user corresponding to the recommendation email in response to the transmission of the recommendation email by the recommendation email transmission unit 73.
  • the items updated here are the transmission date / time, the recommended product, the purchase record, the purchase date / time, and the past number of emails.
  • the purchase record is updated to “no purchase”, and the purchase date and time is cleared.
  • the recommendation history update unit 76 updates the purchaser record in response to the purchase email transmission by the purchase email transmission unit 75. Specifically, the purchase record of the purchaser is updated to “purchased”, and the transmission date and time of purchase email is set as the purchase date and time.
  • the transmission history recording unit 77 is a means for recording in the history database 64 the transmission history for the recommendation email transmitted by the recommendation email transmission unit 73 and the transmission history for the purchase email transmitted by the purchase email transmission unit 75.
  • the payment processing unit 78 is a means of performing a process of paying a reward to the recommender when the other user purchases a product from the web page indicated by the product information in the recommendation email. That is, the payment processing unit 78 performs processing related to the affiliate.
  • affiliate payments are not limited to cash payments, and may be made at points that can be exchanged for products.
  • the page generation unit 67 generates a sales page in response to an HTTP request from the client 13, and the Web server function transmits the sales page to the client 13 (steps S1001 and S1002).
  • the client 13 receives and displays the sales page (steps S2001 and S2002).
  • the client 13 requests the transmission page from the server 11 (step S2003).
  • the Web server function receives the HTTP request, and the page generation unit 67 generates an authentication page in response to the HTTP request (steps S1003 and S1004). Then, the web server function 66 transmits an authentication page to the client 13 (step S1005).
  • the client 13 receives and displays the authentication page (steps S2004 and S2005). When a user ID and password are input on this authentication page and a button for instructing authentication is clicked, the client 13 acquires these user ID and password and transmits them to the server 11 (steps S2006 and S2007).
  • the Web server function 66 receives the user ID and password (step S1006). Subsequently, the authentication unit 68 authenticates the user of the client 13 by comparing the user ID and password with the user ID and password recorded in the user database 61 (step S1007).
  • the recommendation candidate selection unit 71 selects a partner user candidate (step S1008).
  • the recommended candidate selection unit 71 can select candidates using various methods such as the first to fifth examples.
  • the page generation unit 67 generates a recommended mail transmission page (step S1009), and the Web server function 66 transmits the recommended mail transmission page to the client 13 (step S1010).
  • the client 13 receives and displays the recommended email transmission page (steps S2008 and S2009).
  • the body text of the recommended mail is input, and the send button is clicked, the client 13 acquires the body text and data indicating the other user, and stores these data in the server 11. Transmit (steps S2010 and S2011).
  • the Web server function 66 receives the text of the recommendation mail and data indicating the other user (step S1011, first acquisition step). Subsequently, the recommendation mail generation unit 72 generates a recommendation mail using these data (step S1012, first generation step), and the recommendation mail transmission unit 73 sends the recommendation mail to the other user selected by the recommender. Transmit (step S1013, first transmission step). This recommendation mail is received by each client 14 (steps S3001, S4001, S5001). In the server 11, the recommendation history update unit 76 updates the recommendation history in response to the transmission of the recommendation email (step S1014), and the transmission history recording unit 77 records the transmission history of the recommendation email in the history database 64 (step S1015).
  • the client 14 When the user of the client 14 who is one of the other users clicks the link to the sales page of the product (recommended product) indicated in the recommendation email, the client 14 requests the sales page (step S3002).
  • the Web server function 66 receives the HTTP request (step S1016). Subsequently, the page generation unit 67 generates a sales page for the recommended product in response to the HTTP request (step S1017), and the Web server function 66 transmits the sales page to the client 14 (step S1018).
  • the client 14 receives and displays the sales page (steps S3003 and S3004).
  • the user of the client 14 performs a series of operations (for example, an operation of putting a product in a shopping cart, an operation of inputting a user ID and a password, an operation of specifying a payment method) on the sales page
  • the client 14 Acquires purchase application data (application data) and transmits it to the server 11 (steps S3005 and S3006).
  • the Web server function 66 receives the application data (step S1019). Subsequently, the sales processing unit 69 executes a series of sales processing (step S1020), and the payment processing unit 78 performs affiliate payment processing for the recommender (step S1021). Subsequently, the page generation unit 67 generates a purchase mail transmission page (step S1022), and the Web server function 66 transmits the purchase mail transmission page to the purchaser's client 14 (step S1023).
  • the purchaser's client 14 receives and displays the purchase mail transmission page (steps S3007 and S3008).
  • the client 14 acquires the text and transmits it to the server 11 (steps S3009 and S3010).
  • the Web server function 66 receives the text of the purchase mail (step S1024, second acquisition step). Subsequently, the purchase email generation unit 74 generates a purchase email including the text (step S1025, second generation step), and the purchase email transmission unit 75 uses the purchase email as a recommender and other users other than the purchaser. (Step S1026, second transmission step). This purchase mail is received by the client 13 and the client 14 of a user other than the purchaser (steps S2012, S4002, and S5002). Subsequently, the recommendation history update unit 76 updates the record related to the purchaser of the recommendation history (step S1027), and the transmission history recording unit 77 records the transmission history related to the purchase mail in the history database 64 (step S1028). This completes the recommendation process using the recommendation email and the purchase email.
  • the series of processes described above can be executed by hardware or software.
  • a series of processing is executed by software, a program constituting the software is installed in the computer from the program recording medium.
  • the program executed by the computer may be a program that is processed in time series in the order shown in the present embodiment, or in parallel or at a necessary timing such as when a call is made. It may be a program for processing.
  • a purchase email indicating the purchase is generated, Sent to other partner users.
  • Sent to other partner users Sent to other partner users.
  • the recommender can also obtain financial satisfaction. That is, more rewards can be obtained by purchasing more products.
  • the server 11 includes the payment processing unit 78, but the payment processing unit 78 may be omitted. That is, the process related to the affiliate payment can be omitted.
  • the various databases 61 to 64 may be provided on a computer different from the server 11.
  • the server 11 may access various databases via the network.
  • the server 11 recommends a product by a recommendation email, but the target of recommendation is not limited to the product.
  • admission, invitation to a membership card, participation in a campaign, or the like may be recommended. Therefore, the type of application is not limited to an application for purchase, and there may be various application modes such as an application for membership and an application for participation.
  • SYMBOLS 1 Information provision system, 11 ... Server (information provision apparatus), 12 ... Internet, 13, 14 ... Client, 15 ... User relation database (2nd memory

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Theoretical Computer Science (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • Primary Health Care (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Information Transfer Between Computers (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

 サーバ11は、第1のユーザが複数の第2のユーザに所定の推薦対象を推薦することを示す推薦情報に基づいて、推薦対象を複数の第2のユーザに推薦するための推薦メールを生成する推薦メール生成部72と、推薦メールを複数の第2のユーザ宛に送信する推薦メール送信部73と、複数の第2のユーザの一人が推薦メールで示される推薦対象を申し込んで該推薦対象の申込者になった場合に、該推薦対象の申込みを示す申込情報を含む申込メールを生成する購入メール生成部74と、申込メールを申込者以外の第2のユーザ宛に送信する購入メール送信部75とを備える。

Description

情報提供装置、情報提供方法、情報提供プログラム、及びそのプログラムを記憶するコンピュータ読取可能な記録媒体
 本発明の一形態は、情報提供装置、情報提供方法、情報提供プログラム、及びそのプログラムを記憶するコンピュータ読取可能な記録媒体に関する。
 従来から、ウェブサイトを介して様々な推薦対象を他人に推薦するためのシステムが知られている。例えば、下記特許文献1には、紹介による商品の販売促進を容易にするための販売促進システムが記載されている。この販売促進システムでは、携帯端末を用いて商品を購入した紹介者が、決済が終了した商品の中から他人に紹介したい商品を選択すると、選択された商品の紹介広告IDが被紹介者に提供される。また、下記特許文献2には、携帯端末を用いて他人に会員証等への入会を紹介する会員管理システムが記載されている。この会員管理システムでは、第1の携帯端末が第2の携帯端末のメールアドレスをサーバに通知すると、そのサーバが、入会時にダウンロードされるアプリケーションのURLを第2の端末にメールで通知する。
特開2008-234436号公報 特開2009-237894号公報
 しかしながら、推薦対象を単に相手に推薦するだけでは相手にその推薦対象への興味を生じさせることは難しい。このことは、推薦者の立場から見ると自身の推薦が相手に影響していないことを意味するので、推薦者は満足を得ることができない。そのため、推薦対象を他人に推薦するユーザの満足度を上げることが要請されている。
 本発明の一形態に係る情報提供装置は、第1のユーザが複数の第2のユーザに所定の推薦対象を推薦することを示す推薦情報を該第1のユーザの端末から取得する第1取得部と、推薦情報に基づいて、推薦対象を複数の第2のユーザに推薦するための推薦メールを生成する第1生成部と、推薦メールを複数の第2のユーザ宛に送信する第1送信部と、複数の第2のユーザの一人が推薦メールで示される推薦対象を申し込んで該推薦対象の申込者になった場合に、該推薦対象の申込みを示す申込情報を該申込者の端末から取得する第2取得部と、申込情報を含む申込メールを生成する第2生成部と、申込メールを申込者以外の第2のユーザ宛に送信する第2送信部とを備える。
 本発明の一形態に係る情報提供方法は、情報提供装置により実行される情報提供方法であって、第1のユーザが複数の第2のユーザに所定の推薦対象を推薦することを示す推薦情報を該第1のユーザの端末から取得する第1取得ステップと、推薦情報に基づいて、推薦対象を複数の第2のユーザに推薦するための推薦メールを生成する第1生成ステップと、推薦メールを複数の第2のユーザ宛に送信する第1送信ステップと、複数の第2のユーザの一人が推薦メールで示される推薦対象を申し込んで該推薦対象の申込者になった場合に、該推薦対象の申込みを示す申込情報を該申込者の端末から取得する第2取得ステップと、申込情報を含む申込メールを生成する第2生成ステップと、申込メールを申込者以外の第2のユーザ宛に送信する第2送信ステップとを含む。
 本発明の一形態に係る情報提供プログラムは、第1のユーザが複数の第2のユーザに所定の推薦対象を推薦することを示す推薦情報を該第1のユーザの端末から取得する第1取得部と、推薦情報に基づいて、推薦対象を複数の第2のユーザに推薦するための推薦メールを生成する第1生成部と、推薦メールを複数の第2のユーザ宛に送信する第1送信部と、複数の第2のユーザの一人が推薦メールで示される推薦対象を申し込んで該推薦対象の申込者になった場合に、該推薦対象の申込みを示す申込情報を該申込者の端末から取得する第2取得部と、申込情報を含む申込メールを生成する第2生成部と、申込メールを申込者以外の第2のユーザ宛に送信する第2送信部とをコンピュータに実行させる。
 本発明の一形態に係るコンピュータ読取可能な記録媒体は、第1のユーザが複数の第2のユーザに所定の推薦対象を推薦することを示す推薦情報を該第1のユーザの端末から取得する第1取得部と、推薦情報に基づいて、推薦対象を複数の第2のユーザに推薦するための推薦メールを生成する第1生成部と、推薦メールを複数の第2のユーザ宛に送信する第1送信部と、複数の第2のユーザの一人が推薦メールで示される推薦対象を申し込んで該推薦対象の申込者になった場合に、該推薦対象の申込みを示す申込情報を該申込者の端末から取得する第2取得部と、申込情報を含む申込メールを生成する第2生成部と、申込メールを申込者以外の第2のユーザ宛に送信する第2送信部とをコンピュータに実行させる情報提供プログラムを記憶する。
 このような形態によれば、推薦メールを受け取った複数の第2のユーザの誰かがその推薦メールで示される推薦対象を申し込むと、その申込を示す申込メールが生成されて申込者以外の他の第2のユーザに送られる。このように、誰かが推薦対象を実際に申し込んだという事実を、推薦対象を未だ申し込んでいない第2のユーザに示すことで、その第2のユーザに推薦対象の申込みの意思を生じさせることが期待できる。そして、申込メールに応じて他の第2のユーザも推薦対象を申し込めば、推薦者である第1のユーザの満足度が上がると期待できる。
 別の形態に係る情報提供装置では、第1のユーザと第2のユーザとが関連付けられた推薦データを記憶する第1記憶部を参照して第2のユーザの候補を複数選択し、選択された複数の候補を示す候補情報を第1のユーザの端末に送信する選択部を更に備え、第1取得部が、第1のユーザの端末において候補情報で示される候補から指定された複数の第2のユーザを示す推薦情報を取得してもよい。この場合には、第1のユーザに第2のユーザの候補が提示されるので、第1のユーザは簡単に第2のユーザを選ぶことができる。
 さらに別の形態に係る情報提供装置では、推薦データが、第2のユーザ宛に送信された最近の推薦メールの送信日時を該第2のユーザの属性情報として含んでおり、選択部が、送信日時の降順に複数の候補を選択してもよい。このように、最近推薦メールを送った第2のユーザを優先的に候補として第1のユーザに提示することで、第1のユーザは推薦対象の申込みが期待できる人を容易に選ぶことができる。
 さらに別の形態に係る情報提供装置では、推薦データが、第2のユーザ宛に送信された最近の推薦メールの送信日時と、該推薦メールで示される推薦対象と、該推薦対象の申込日時とを該第2のユーザの属性情報として含んでおり、選択部が、送信日時から申込日時までの時間が短い順に複数の候補を選択してもよい。このように、推薦メールに早く反応して推薦対象を申し込んだ第2のユーザを優先的に候補として第1のユーザに提示することで、第1のユーザは推薦対象の申込みが期待できる人を容易に選ぶことができる。
 さらに別の形態に係る情報提供装置では、推薦データが、第2のユーザ宛に過去に送信された推薦メールの個数を該第2のユーザの属性情報として含んでおり、選択部が、推薦メールの個数の降順に複数の候補を選択してもよい。このように、推薦メールを多く受け取った第2のユーザを優先的に候補として第1のユーザに提示することで、第1のユーザは推薦対象の申込みが期待できる人を容易に選ぶことができる。
 さらに別の形態に係る情報提供装置では、推薦データが、第2のユーザの趣味に対応する推薦対象のカテゴリを該第2のユーザの属性情報として含んでおり、選択部が、第1のユーザにより推薦される推薦対象のカテゴリと推薦データで示される推薦対象のカテゴリとの一致度が高い順に複数の候補を選択してもよい。このように、推薦対象のカテゴリとの一致度が高い趣味を持つ第2のユーザを優先的に候補として第1のユーザに提示することで、第1のユーザは推薦対象の申込みが期待できる人を容易に選ぶことができる。
 さらに別の形態に係る情報提供装置では、選択部が、有向グラフで表されるユーザ間の関係を示す関係データを記憶する第2記憶部を参照して、第1のユーザと双方向の友人関係にある第2のユーザと、該第1のユーザへの一方向の友人関係にある第2のユーザと、該第1のユーザからの一方向の友人関係にある第2のユーザとを、それぞれ第1群、第2群、及び第3群として特定し、該第1群、該第2群、及び該第3群の順に複数の候補を選択してもよい。このように、友人関係の強さや向きに基づいて第2のユーザの候補を決めることで、第1のユーザは推薦対象の申込みが期待できる人を容易に選ぶことができる。
 さらに別の形態に係る情報提供装置では、選択部が、推薦メールの送信日時と該推薦メールで示される推薦対象とを示す送信履歴を記憶する第3記憶部と、第2のユーザにより申し込まれた推薦対象及び申込日時を示す申込履歴を記憶する第4記憶部とを参照して、第1生成部により生成される推薦メールで示される推薦対象と同じカテゴリの他の推薦対象に対応する送信日時及び申込日時の差が小さい順に複数の候補を選択してもよい。このように、推薦メールに早く反応して推薦対象を申し込んだ第2のユーザを優先的に候補として第1のユーザに提示することで、第1のユーザは推薦対象の申込みが期待できる人を容易に選ぶことができる。
 さらに別の形態に係る情報提供装置では、選択部が、第2のユーザにより閲覧された推薦対象及び閲覧日時を示す閲覧履歴を記憶する第5記憶部を参照して、第1生成部により生成される推薦メールで示される推薦対象と同じカテゴリの他の推薦対象の閲覧数が多い順に複数の候補を選択してもよい。このように、推薦メールで示される推薦対象と同じカテゴリの他の推薦対象をより多く閲覧した第2のユーザを優先的に候補として第1のユーザに提示することで、第1のユーザは推薦対象の申込みが期待できる人を容易に選ぶことができる。
 さらに別の形態に係る情報提供装置では、選択部が、第2のユーザにより申し込まれた推薦対象及び申込日時を示す申込履歴を記憶する第6記憶部を参照して、第1生成部により生成される推薦メールで示される推薦対象と同じカテゴリの他の推薦対象の申込数が多い順に複数の候補を選択してもよい。このように、推薦メールで示される推薦対象と同じカテゴリの他の推薦対象をより多く申し込んだ第2のユーザを優先的に候補として第1のユーザに提示することで、第1のユーザは推薦対象の申込みが期待できる人を容易に選ぶことができる。
 さらに別の形態に係る情報提供装置では、推薦対象が商品であり、推薦対象の申込みが商品の購入の申込みであってもよい。
 本発明の一側面によれば、推薦対象を他人に推薦するユーザの満足度を上げることができる。
実施形態に係る情報提供システムの全体構成を示す図である。 図1に示すユーザ関係データベースの例を示す図である。 図1に示すユーザID変換テーブルの例を示す図である。 実施形態における商品の推薦の概念を説明する図である。 図1に示すサーバのハードウェア構成を示す図である。 図1に示すサーバの機能構成を示すブロック図である。 推薦履歴の例を示す図である。 販売ページの例を示す図である。 認証ページの例を示す図である。 推薦メール送信ページの例を示す図である。 図1に示す情報提供システムの動作を示すシーケンス図である。 図1に示す情報提供システムの動作を示すシーケンス図である。 図1に示す情報提供システムの動作を示すシーケンス図である。 図1に示す情報提供システムの動作を示すシーケンス図である。
 以下、添付図面を参照しながら本発明の実施形態を詳細に説明する。なお、図面の説明において同一又は同等の要素には同一の符号を付し、重複する説明を省略する。
 図1は、実施形態に係る情報提供システム1の構成を示す図である。情報提供システム1は、サーバ11、インターネット12、クライアント13、クライアント14、ユーザ関係データベース15(第2記憶部)、及びユーザID変換テーブル16を備えている。サーバ11は、インターネットを介してクライアント13,14、ユーザ関係データベース15、及びユーザID変換テーブル16と接続されており、これにより各クライアント13,14、ユーザ関係データベース15、及びユーザID変換テーブル16と双方向に通信することができる。
 サーバ11は、商品を販売するためのウェブページをクライアント13またはクライアント14に提供し、クライアント13またはクライアント14から商品の購入の申し込みを受け付ける情報提供装置である。すなわち、サーバ11はユーザにオンライン・ショッピング・サイトを提供する。なお、商品は有体物であってもよいし、サービスなどの無体物であってもよい。サーバ11は、専用サーバ、パーソナルコンピュータ、または仮想サーバであってもよいし、これらの組み合わせからなるシステムであってもよい。
 インターネット12は通信ネットワークの一例である。インターネット12は、有線または無線の汎用回線または専用回線や、LAN(Local Area Network)、WAN(Wide Area Network)などで構成される。
 クライアント13,14は、ブラウザ及びメール機能を備える端末である。クライアント13,14は、ユーザの操作に応じてサーバ11からウェブページを取得してブラウザ上に表示する。また、クライアント13,14はサーバ11から送信されてきたメールを受信する。クライアント13,14の例としてはパーソナルコンピュータや携帯電話機などが挙げられるが、クライアント13,14の種類はこれらに限定されない。
 ユーザ関係データベース15は、ユーザ間の関係を示す関係データを記憶する手段である。本実施形態では、ユーザ関係データベース15はソーシャル・ネットワーキング・サービス(SNS)を制御するコンピュータ・システム内に設けられ、サーバ11とは別に存在している。もっとも、このデータベースの設置箇所は限定されず、例えばサーバ11がユーザ関係データベース15を備えてもよい。
 図2に示すように、関係データは、一のユーザのユーザIDと、そのユーザとSNSにおいて友人関係にあるユーザのID(友人ID)とが互いに関連付けられたデータである。図2の1~3行目のデータからは、ユーザID「001」で特定されるユーザが、それぞれユーザID「002」「003」で特定される二人のユーザと双方向の友人関係にあることが分かる。もっとも、友人関係は片方向であってもよい。例えば、図2における2,3行目のデータが無い場合には、ユーザID「001」で示されるユーザは、ユーザID「002」「003」で特定される二人のユーザと友人関係にあるが、当該二人のユーザから見ると、ユーザID「001」で示されるユーザは全くの他人となる。このように、関係データは、有向グラフにより示されるユーザの関係を示している。
 ユーザID変換テーブル16は、システム間でのユーザIDの対応を記憶する手段である。一人のユーザが一種類のユーザIDを複数のシステムで共通に用いるとは限らず、場合によっては当該ユーザがシステム毎にユーザIDを使い分ける場面もある。例えば、一人のユーザについて、オンライン・ショッピング・サイト(サーバ11)で管理されているユーザIDと、SNS(ユーザ関係データベース15)で管理されているユーザIDとが異なる場合もある。ユーザID変換テーブル16はこのようなシステム間でのユーザIDの相違を補うために用いられるので、各ユーザのIDがシステム間で完全に一致するならばユーザID変換テーブル16は不要である。ユーザID変換テーブル16の設置場所は限定されず、サーバ11内に設けられてもよいし、ユーザ関係データベース15と同じシステム内に設けられてもよい。
 ユーザID変換テーブル16内のデータは、認可情報の委譲に関する仕組みであるOAuthのトークンがサービス間でやり取りされることで生成される。図3の例では、1行目のデータは、オンライン・ショッピング・サイト(サーバ11)側ではユーザID「001」で特定されるユーザが、SNSでは「1001」、他のサービスでは「2001」というユーザIDで登録されていることを示している。なお、2行目におけるID「1002」のように、一人のユーザについてサイト間で同一のユーザIDが割り当てられる場合もある。
 サーバ11について具体的に説明する。サーバ11は、クライアント13からの指示に応じて、1以上のクライアント14のユーザに、商品を推薦するための電子メール(推薦メール)を送信する。以下では、商品を推薦するクライアント13のユーザ(第1のユーザ)を推薦者と称し、商品の推薦を受けるクライアント14のユーザ(第2のユーザ)を相手ユーザと称する。なお、本願の優先権主張の基礎である2010年5月31日付提出の日本国特許出願2010-123683では、この相手ユーザのことを「被推薦者」と言っている。推薦メールを受信した相手ユーザが推薦された商品(以下では「レコメンド商品」ともいう)を購入して該商品の購入者になると、サーバ11は、その購入者を除く相手ユーザに、商品の購入を示すメール(購入メール)を送信する。購入者は申込者の一種であり、購入メールは申込メールの一種である。
 図4は、情報提供システム1における商品の推薦を示す図である。図4では、Aは推薦者を示し、B~B10は相手ユーザを示している。情報提供システム1において、紹介の報酬を得たい推薦者Aは推薦メールを送信することで相手ユーザに商品を推薦する。例えば、相手ユーザは、推薦者の会社の同僚や、推薦者と趣味が同じ人、オフ会での推薦者との知り合い、または推薦者と同じメーリングリストに登録されている人である。
 相手ユーザB~B10はお互いのことを知らないこともある。また、相手ユーザB~B10は、自分宛に送られた推薦メールが他の相手ユーザに送られたことを知らないこともある。したがって、単に推薦メールを送信しただけでは、相手ユーザにレコメンド商品の購入を促すことが難しい場合がある。
 これに対して、例えば相手ユーザBが推薦メールに応じて商品を購入した場合に、その相手ユーザBから「お勧めに従い買いました!」というようなメッセージが購入メールとして他の相手ユーザB~B10に送信されれば、その相手ユーザB~B10は他人が実際に商品を購入したことを知ることになる。そして、実際に商品が購入されたという事実により、相手ユーザB~B10に商品購入の意思が生ずることが期待できる。このように商品の購入が促されれば、推薦者にとっては推薦の目的をある程度達することができ、したがって一定の満足を得ることができる。
 図5は、サーバ11のハードウェアの構成例を示すブロック図である。サーバ11では、CPU(Central Processing Unit)31、ROM(Read Only Memory)32、及びRAM(Random Access Memory)33がバス34を介して相互に接続されている。バス34にはさらに入出力インタフェース35が接続されている。入出力インタフェース35には、キーボードやマウス、マイクロホンなどの入力部36と、ディスプレイやスピーカの出力部37と、ハードディスクや不揮発性メモリなどの記憶部38と、ネットワークインタフェースなどの通信部39と、磁気ディスクや光ディスク、光磁気ディスク、半導体メモリなどのリムーバブルメディア41を駆動するドライブ40とが接続されている。
 サーバ11では、CPU31が記憶部38に記憶されているプログラムを入出力インタフェース35及びバス34を介してRAM33にロードして実行することにより、後述する一連の処理が行われる。
 サーバ11(CPU31)により実行される情報提供プログラムは、例えば、磁気ディスク(フレキシブルディスクを含む)や光ディスク(CD-ROMやDVD-ROM)、光磁気ディスク、もしくは半導体メモリなどのリムーバブルメディア41に記録された態様で提供される。あるいは、情報提供プログラムは、インターネット12などの有線または無線の伝送媒体を介して提供される。
 情報提供プログラムは、リムーバブルメディア41をドライブ40に装着し、入出力インタフェース35を介して記憶部38に記憶されることで、コンピュータにインストールすることができる。また、情報提供プログラムは、通信部39で受信されて記憶部38に記憶されることで、コンピュータにインストールすることができる。さらに、情報提供プログラムはコンピュータに予めインストールされていてもよい。
 図6は、サーバ11の機能構成の例を示すブロック図である。サーバ11では、情報提供プログラムなどが実行されることで、ユーザデータベース61、商品データベース62、メーリングリストデータベース63、履歴データベース(第1、第3、第4、第5、及び第6記憶部)64、初期データ生成部65、Webサーバ機能(第1取得部、第2取得部)66、ページ生成部67、認証部68、販売処理部69、及び推薦部70が実現される。
 ユーザデータベース61は、ユーザデータを格納する手段である。ユーザデータは、ユーザIDと、各種ユーザ属性(氏名、ニックネーム、住所、電話番号、電子メールアドレス、趣味など)と、ログインパスワードとを含んでいる。
 商品データベース62は、商品データを格納する手段である。商品データは、商品を特定する商品IDと、各種商品属性(商品名、商品の画像、商品のカテゴリ、商品の製造業者又は提供業者の名前、製造業者又は提供業者の住所、販売地域又は提供地域、商品を販売するウェブページのURL(Uniform Resource Locator)、商品価格など)とを含んでいる。
 メーリングリストデータベース63は、メーリングリストデータを格納する手段である。メーリングリストデータは、メーリングリストの代表のメールアドレスと、そのメーリングリストに含まれる1以上のユーザのメールアドレスとを含んでいる。
 履歴データベース64は、各種の履歴データ(閲覧履歴、購入履歴、推薦履歴、及び送信履歴)を記憶する手段である。
 閲覧履歴のレコードは、ユーザIDと、閲覧された商品のIDと、閲覧日時とを含む。購入履歴(申込履歴)のレコードは、ユーザIDと、購入された商品のIDと、購入日時(申込日時)とを含む。閲覧履歴は後述するWebサーバ機能66により生成及び格納され、購入履歴は後述する販売処理部69により生成及び格納される。
 推薦履歴(推薦データ)は、推薦者を特定するユーザID(推薦者ID)と、1以上の相手ユーザの属性情報とが関連付けられたデータである。各相手ユーザの属性情報は、相手ユーザを特定するユーザID(相手ID)と、推薦メールの送信日時(例えば、最近の送信日時)と、相手ユーザの名前(例えばニックネーム)と、推薦者からの最近の推薦メールで示されたレコメンド商品の商品IDと、その商品の購入実績および購入日時(申込日時)と、過去に推薦者から送信されたメールの個数と、相手ユーザの趣味と、その趣味に対応する商品カテゴリとを含んでいる。推薦履歴は相手ユーザが商品を購入したか否かも示すデータであるので、相手ユーザのユーザ情報の一例であるとも言える。
 推薦履歴の例を図7に示す。この例では、推薦者IDは「001」であり、相手IDは「101」~「104」である。この例からは、ユーザKが最近勧められた商品Aを購入したことや、ユーザJがその商品Aを未だ購入していないこと、ユーザLには商品Aに関する推薦メールが送られなかったことなどがわかる。カテゴリは「CD/クラシック」などのように階層的に示されてもよい。推薦履歴においてカテゴリの項目が省略されていてもよい。
 送信履歴は、後述する推薦メール及び購入メールのそれぞれについて生成され記録される。送信履歴のレコードは、メールを特定するためのメールIDと、推薦者のユーザID及びメールアドレスと、1以上の相手ユーザのユーザID及びメールアドレスと、そのメールの送信日時と、そのメールで示されるレコメンド商品の商品IDとを含む。
 各履歴データの構成は上記の例に限定されず、様々な変形が可能である。例えば、推薦者及び相手ユーザのメールアドレスを送信履歴ではなく推薦履歴の方に含めてもよい。
 これらのデータベース61~64は、オペレーティングシステムが提供するファイルシステム上に直接構築されてもよいし、データベースマネジメントシステムにより構築されてもよい。
 初期データ生成部65は、推薦履歴の初期データを生成して履歴データベース64に格納する手段である。初期データ生成部65はユーザ間の関係が規定されたデータベースを参照して複数のユーザを推薦者と相手ユーザとして関連付けることで、推薦履歴のレコードを新規に生成する。初期データを生成する時期は任意であり、例えば初期データ生成部65は定期的にあるいはサーバ11の管理者の指示に応じて初期データを生成する。推薦履歴の初期データの生成方法は以下に示すようにいくつか考えられる。
 初期データ生成部65はユーザデータベース61及びユーザ関係データベース15を参照して初期データを生成してもよい。各ユーザについて、ユーザデータベース61内のユーザIDとユーザ関係データベース15内のユーザIDとが異なる可能性がある場合には、初期データ生成部65はユーザID変換テーブル16を参照して、事前にユーザ関係データベース15内のユーザIDをユーザデータベース61のユーザIDに変換しておく。
 初期データ生成部65は、ユーザデータベース61内の一のユーザIDを推薦者IDとして設定し、そのユーザIDに対応する他のユーザIDをユーザ関係データベース15から読み出す。この際に1以上の他のユーザIDを取得できた場合には、初期データ生成部65はそのユーザIDを相手IDとして設定する。続いて、初期データ生成部65は各相手ユーザのユーザデータをユーザデータベース61から読み出すことで各相手ユーザのユーザ名及び趣味を特定する。続いて、初期データ生成部65は各相手ユーザのカテゴリを特定する。初期データ生成部65は所定のウェブページを介して相手ユーザにカテゴリを入力させるか、あるいは予め保持している所定の対応表に基づいて趣味に対応する商品カテゴリを抽出することで、カテゴリを特定する。
 このように推薦者及び相手ユーザのユーザIDと、各相手ユーザのユーザ名、趣味、及びカテゴリとを特定すると、初期データ生成部65はこれらのデータを用いて推薦履歴の初期データを生成し履歴データベース64に格納する。図7の例は、初期データ生成部65が推薦者ID「001」に対応する相手ID「101」「102」「103」「104」をユーザ関係データベース15から読み出し、これら4人の相手ユーザのユーザ名、趣味、及びカテゴリを特定し、推薦者ID「001」に関する4個のレコードを生成したことを前提としている。
 初期データ生成部65はユーザデータベース61内の各ユーザIDについて上記の初期データ生成処理を実行する。対応する他のユーザIDがユーザ関係データベース15内で見つからない場合には初期データ生成部65はその時点で処理を終了するので、ユーザデータベース61内の全ユーザIDについて推薦履歴が生成されるとは限らない。
 初期データ生成部65はユーザデータベース61及びメーリングリストデータベース63を参照して推薦履歴の初期データを生成してもよい。初期データ生成部65はメーリングリストデータで示される代表メールアドレスに対応するユーザIDを推薦者IDとして設定する。さらに、初期データ生成部65はその代表メールアドレスと同じグループに属する他のメールアドレスに対応する1以上のユーザIDを相手IDとして設定する。各メールアドレスに対応するユーザIDはユーザデータを参照することで得られる。続いて、初期データ生成部65は上記のように各相手ユーザのユーザ名、趣味、及びカテゴリを特定し、推薦履歴の初期データを生成及び格納する。
 このように、ユーザ間の関係がユーザ関係データベース15やメーリングリストデータベース63などのデータベースに規定されていれば、初期データ生成部65は推薦履歴の初期データを生成することが可能である。初期データ生成時に空欄の項目(送信日時、レコメンド商品、購入実績、購入日時、メール数)は、後述する推薦部70の処理により更新される。
 Webサーバ機能66は、HTTP(Hypertext Transfer Protocol)に規定される手順に基づいて、任意のマークアップ言語(例えばHTML(Hypertext Markup Language)やcompact HTML、HDML(Handheld Device Markup Language)、XML(Extensible Markup Language))で記述されたウェブページをクライアント13またはクライアント14に送信する。ウェブページには、テキストまたは画像などの各種のオブジェクトが含まれる。また、Webサーバ機能66は、クライアント13またはクライアント14から送信されてくる各種のデータを受信する。Webサーバ機能66は、クライアント13,14のユーザによるウェブページへのアクセスを監視しており、アクセスが発生する度に閲覧履歴を生成して履歴データベース64に格納する。Webサーバ機能66はWebサーバプログラムを実行することにより実現される。
 ページ生成部67は、Webサーバ機能66を介してクライアント13,14に送信されるウェブページを生成する手段である。
 ページ生成部67はクライアント13からのHTTPリクエストに応じて、商品の購入手続を行うためのウェブページ(販売ページ)を生成する。ページ生成部67は、HTTPリクエストに対応する商品データを商品データベース62から取得し、その商品データを用いて販売ページを生成する。図8に示すように、販売ページには、商品名(「木製バット」)や商品画像、商品価格などの商品情報や、商品を買い物かごに入れるための「買い物かご」ボタン、この商品に関する推薦メールを送信するためのリンク(「友達にメールですすめる」と表示されているリンク)などが配置される。生成された販売ページはWebサーバ機能66によりクライアント13に送信され、クライアント13上に表示される。
 販売ページ内のリンク「友達にメールですすめる」がクリックされると、クライアント13は推薦メールを送信するためのウェブページを要求し、Webサーバ機能66がその要求を受信する。この要求に応じて、ページ生成部67はクライアント13のユーザを認証するための認証ページを生成する。例えば、ページ生成部67は図9に示す認証ページを生成する。図9における「次へ」ボタンは、サーバ11に認証処理を実行させるためのインタフェースである。生成された認証ページはWebサーバ機能66によりクライアント13に送信され、クライアント13上に表示される。
 入力されたユーザID及びパスワードにより推薦者が認証されると、ページ生成部67は、推薦者に推薦メールの本文を入力させるとともに最終的な相手ユーザを選択させるためのウェブページ(推薦メール送信ページ)を生成し、Webサーバ機能66を介してその推薦メール送信ページをクライアント13に送信する。クライアント13では推薦メール送信ページが表示され、推薦者が本文を入力し相手ユーザを選択する。
 図10に示すように、推薦メール送信ページには、相手ユーザの候補の一覧と、相手ユーザを選択するためのチェックボックスと、推薦者のメールアドレス及び名前と、推薦メールの本文を入力するためのフィールドと、レコメンド商品の名前及び取扱店舗と、入力内容をサーバ11に送信するためのボタン(送信ボタン)とが含まれる。図10の例では、推薦メールの本文として「これは良い商品だ!」というメッセージが入力され、ユーザK,J,Mという3人のユーザが相手ユーザとして選択されている。相手ユーザの候補の一覧(候補情報)は、後述する推薦候補選択部71により生成される。
 相手ユーザの一人が推薦メールで示された商品(レコメンド商品)を購入して購入者になると、ページ生成部67はその購入者に購入メールの本文を入力させるためのウェブページ(購入メール送信ページ)を生成する。相手ユーザの一人が推薦メールで示されたレコメンド商品の販売ページへのリンクをクリックしてその販売ページにアクセスし、その販売ページで商品を購入すると、クライアント14が購入の申し込みのデータ(申込データ)をサーバ11に送信する。この申込データには、購入者のユーザIDと、推薦メールを送信した推薦者のユーザIDと、推薦メールのリンクから販売ページをアクセスしたことを示す情報とが含まれる。ページ生成部67はその申込データに応じて購入メール送信ページを生成し、Webサーバ機能66を介してその購入メール送信ページを購入者のクライアント14に送信する。購入メール送信ページはレコメンド商品の商品情報を含む。なお、購入メールの本文は、申込データの一部としてサーバ11に送られてもよい。
 認証部68は、クライアント13,14のユーザを認証する手段である。クライアント13,14のユーザが認証ページ上でユーザID及びパスワードを入力して「次へ」ボタンをクリックすると、クライアント13,14はそのユーザIDおよびパスワードをサーバ11に送信し、Webサーバ機能66がこれらのデータを受信する。認証部68はそのユーザID及びパスワードを照合する処理を行うことで、ユーザを認証する。
 販売処理部69は、クライアント14から商品の購入が申し込まれた場合に、商品の手配や代金請求などの販売処理を行う手段である。販売処理部69は、クライアント14のユーザによる商品の購入を示す購入履歴を生成して履歴データベース64に格納する。
 推薦部70は、商品を推薦する推薦メールの本文をクライアント13から取得し、取得した本文と推薦する商品(レコメンド商品)に対応する商品情報とを含む推薦メールを相手ユーザ宛に送信する手段である。また、推薦部70は、一人の相手ユーザがレコメンド商品を購入した場合に、その相手ユーザ(購入者)からレコメンド商品の購入を示すメッセージを含む購入メールを、購入者を除く相手ユーザに送信する手段でもある。推薦部70で実行される処理は、クライアント13のユーザが認証部68により認証されたことを前提とする。
 推薦部70は、推薦候補選択部71、推薦メール生成部(第1生成部)72、推薦メール送信部(第1送信部)73、購入メール生成部(第2生成部)74、購入メール送信部(第2送信部)75、推薦履歴更新部76、送信履歴記録部77、および支払処理部78を含む。
 推薦候補選択部71は、履歴データベース64に記録されている推薦履歴に基づいて相手ユーザの候補を選択する手段である。販売ページ内の所定のリンク(例えば図8における「友達にメールですすめる」というリンク)がクリックされて推薦者が認証されると、推薦候補選択部71はその推薦者のユーザIDに基づいて以下の処理を実行する。候補の選択方法は限定されるものではなく、例えば以下に示す方法により候補を選択してもよい。
 [第1の例]
 推薦候補選択部71は、推薦者IDに対応する推薦履歴を読み出し、その推薦履歴で示される相手ユーザのすべてを候補として選択してもよい。
 [第2の例]
 推薦候補選択部71は、推薦者IDに対応する推薦履歴で示される相手ユーザを特定の項目に従って並べ替えた上で、先頭から所定数の相手ユーザを候補として選択してもよい。並べ替えの基準となる項目や並び順は任意に定めてよい。
 例えば、推薦候補選択部71は、送信日時の降順に相手ユーザを並べ替えてもよいし、過去のメール数の降順に相手ユーザを並べ替えてもよい。また、推薦候補選択部71は、推薦メールを送信してからそのメールで示されるレコメンド商品を購入するまでの期間が短い順に相手ユーザを並べ替えてもよい。これは、推薦履歴で示される購入日時と送信日時との差に基づいて、最近の推薦メールに対する反応が早い順に相手ユーザを並べ替えることを意味する。図7の例において購入日時と送信日時との差が小さい順に相手ユーザを並べ替えると、ユーザK、ユーザM、ユーザL、ユーザJの順となる。このように相手ユーザを並べ替えると、推薦候補選択部71は先頭から所定数の相手ユーザを候補として選択する。選択する相手ユーザの人数は、例えば10、8、4などのように任意に定めてよい。
 このように過去の推薦メールの送信実績に基づいて相手ユーザを並べ替えた上で候補を抽出したり、推薦メールに早く反応して商品を購入した相手ユーザを候補として優先的に抽出したりすることで、商品の購入が期待できる人を推薦者に提示することができる。
 [第3の例]
 推薦候補選択部71は、レコメンド商品の属性と相手ユーザの趣味との一致の度合いが高い順に相手ユーザを並べ替えた上で、先頭から所定数の相手ユーザを候補として選択してもよい。このような第3の例では、推薦履歴が図7に示すようにカテゴリの項目を備えていることを前提とする。また、推薦候補選択部71が、推薦者IDとともに、販売ページに示されたレコメンド商品の商品IDを取得することも前提とする。
 推薦候補選択部71は、推薦者IDに対応する推薦履歴を読み出すとともに、レコメンド商品の商品IDに対応する商品データを商品データベース62から読み出す。続いて、推薦候補選択部71は各推薦履歴で示されるカテゴリとレコメンド商品のカテゴリとを比較し、両者が似ている順に推薦履歴を並べ替える。カテゴリの類似性は予め任意の方法で対応表として定義されており、推薦候補選択部71はその対応表を参照して二つのカテゴリを比較する。このような並べ替えを行った後に、推薦候補選択部71は先頭から所定数の相手ユーザを候補として選択する。選択する相手ユーザの人数は任意に定めてよい。
 このように、商品カテゴリとの一致度が高い趣味を持つ相手ユーザを優先的に抽出することで、商品の購入が期待できる人を推薦者に提示することができる。
 [第4の例]
 推薦候補選択部71は、推薦者と相手ユーザとの間の友人関係の内容に基づいて相手ユーザを並べ替えた上で、先頭から所定数の推薦内定を候補として選択してもよい。
 推薦候補選択部71はユーザ関係データベース15を参照して、推薦者と相手ユーザとの関係が以下の関係a~cのどれに該当するかを判定する。Twitter(商標または登録商標)の例を用いて説明すると、関係aは相手ユーザと推薦者とが互いにフォローし合う関係であると言うことができ、関係bは相手ユーザが推薦者をフォローしている関係であると言うことができ、関係cは相手ユーザが推薦者にフォローされている関係であると言うことができる。
 (a)双方向の友人関係
 (b)相手ユーザから推薦者への一方向の友人関係(相手ユーザのユーザIDに対応する友人IDとして推薦者のユーザIDが指定されている関係データは存在するが、これとは逆方向のつながりを示す関係データは存在しない)
 (c)推薦者から相手ユーザへの一方向の友人関係(推薦者のユーザIDに対応する友人IDとして相手ユーザのユーザIDが指定されている関係データは存在するが、これとは逆方向のつながりを示す関係データは存在しない)
 続いて、推薦候補選択部71は、上記関係aに該当する相手ユーザ(第1群)、上記関係bに該当する相手ユーザ(第2群)、上記関係cに該当する相手ユーザ(第3群)の順に相手ユーザを並べ替える。そして、推薦候補選択部71は第1群のユーザから順に所定数の相手ユーザを候補として選択する。選択する相手ユーザの人数は任意に定めてよい。
 このように、友人関係の強さや向きに基づいて相手ユーザの候補を決めることで、商品の購入が期待できる人を推薦者に提示することができる。双方向の友人関係は一方向の友人関係よりも強いつながりなので、関係aが最優先される。関係bでは、相手ユーザは、自身が友人であると思っている推薦者から推薦メールを受け取るのに対し、関係cでは、相手ユーザにとっては推薦者は他人である。したがって、候補を選択する際には第2群の方が第3群よりも優先される。
 [第5の例]
 推薦候補選択部71は、履歴データベース65内の閲覧履歴又は購買履歴に基づいて相手ユーザを並べ替えた上で、先頭から所定数の推薦内定を候補として選択してもよい。例えば、推薦候補選択部71はレコメンド商品に対応するカテゴリの商品の閲覧数又は購入数が多い順に相手ユーザを並べ替えてもよい。
 また、推薦候補選択部71は送信履歴及び購入履歴を参照して、レコメンド商品に対応するカテゴリの商品への反応が早い者(推薦メールを受け取ってから商品を購入するまでの時間が短い者)から順に相手ユーザを並べ替えてもよい。これは、推薦メール生成部72により生成される推薦メールで示される商品と同じカテゴリの他の商品に対応する送信日時及び購入日時の差が小さい順に相手ユーザを並べ替えることを意味する。この場合には、第2の例(最近の推薦メールについてのみ送信日時及び購入日時の差を求める場合)とは異なり、過去の複数の送信履歴及び購入履歴に基づいて、複数のレコメンド商品に対応する複数の時間差が得られる場合がある。そのような場合には、推薦候補選択部71は送信日時及び購入日時の差に関する中央値や平均値などの統計値に基づいて相手ユーザを並べ替えてもよい。
 このように、推薦メールで示される商品と同じカテゴリの商品をより多く閲覧又は購入した相手ユーザや、推薦メールに早く反応して商品を購入した相手ユーザを候補として抽出することで、商品の購入が期待できる人を推薦者に提示することができる。
 推薦候補選択部71は、上記のいずれかの手法により選択した相手ユーザの候補のリストを候補情報としてページ生成部67に出力する。ページ生成部67はそのリストを用いて推薦メール送信ページを生成する。
 推薦候補選択部71は、候補の選択方法を推薦者に選択させ、選択された方法により相手ユーザの候補を抽出してもよい。例えば、上記第1~第5の例に示す方法の中から推薦者により選択された方法により相手ユーザの候補を抽出してもよい。
 推薦メール生成部72は、推薦者の指示に基づいて推薦メールを生成する手段である。推薦者が推薦メール送信ページにて必要な入力を行って送信ボタンを押すと、クライアント13はそのページに示されているデータをサーバ11に送信する。Webサーバ機能66はそのデータを受信して推薦メール生成部72に出力する。
 推薦メール生成部72は入力されたデータから推薦メールの本文を取得する。また、推薦メール生成部72は推薦者により実際に指定された相手ユーザのニックネームをそのデータから取得し、ユーザデータベース61を参照してニックネームからユーザIDへの変換を行う。続いて、推薦メール生成部72は、相手ユーザのユーザIDに対応するメールアドレスをユーザデータベース61から読み出す。続いて、推薦メール生成部72は、予め定められた件名と、推薦者IDと、取得した推薦メールの本文と、推薦メール送信ページ上に表示されていた商品情報(商品名、製造業者又は提供業者の名前、販売ページのURL、価格など)とが示され、且つ読み出されたメールアドレスを宛先とする推薦メールを生成する。ここで、推薦メールにおいては、レコメンド商品を販売するウェブページのURLはリンクとして配置される。推薦メール生成部72は生成した推薦メールを推薦メール送信部73に出力する。
 なお、推薦メールの本文は推薦情報の一例である。推薦情報は商品の推薦のための情報であればよいので、メール本文以外の形式で推薦情報を表してもよい。例えば、推薦者により指定されたレコメンド商品の評価のレベル(1,2,3など)やランキング(例えば「上位n位」と示されたランキング)などが推薦メールに追記あるいは添付されたりしてもよい。
 推薦メール送信部73は、推薦メール生成部72から入力された推薦メールを指定された各相手ユーザに送信する手段である。
 購入メール生成部74は、相手ユーザが推薦メールで示されるレコメンド商品を購入したことを示す購入メールを生成する手段である。商品を購入した一人の相手ユーザ(購入者)が購入メール送信ページにて必要な入力を行って送信ボタンを押すと、クライアント14はそのページに示されているデータをサーバ11に送信する。入力されるデータには、購入メールの本文(例えば、「これは本当に良い商品だ!」)が含まれる。Webサーバ機能66はそのデータを受信して購入メール生成部74に出力する。
 購入メール生成部74は入力されたデータから購入メールの本文を取得する。また、購入メール生成部74は購入者及び購入商品に対応する送信履歴を履歴データベース64から読み出し、その購入者に送られたものと同じ推薦メールを受信した他の相手ユーザのメールアドレスを特定するとともに、その推薦メールの送信者である推薦者のメールアドレスをユーザデータベース61から取得する。続いて、購入メール生成部74は、予め定められた件名と、取得した購入メールの本文と、購入メール送信ページ上に表示されていた商品情報(商品名、製造業者又は提供業者の名前、販売ページのURL、価格など)とが示され、読み出されたメールアドレスを宛先とする購入メールを生成する。購入メールの宛先には購入者は含まれない。購入メール生成部74は生成した購入メールを購入メール送信部75に出力する。
 なお、購入メールの本文は購入情報(申込情報)の一例である。購入情報は商品を購入したことを示す情報であればよいので、メール本文以外の形式で購入情報を表してもよい。例えば、購入価格や商品の評価、商品画像などを購入情報として用いてもよい。購入メールには、購買者を特定する情報(例えばニックネーム)や購買日時が含まれていてもよい。
 購入メール送信部75は、購入メール生成部74から入力された購入メールを推薦者及び他の相手ユーザに送信する手段である。
 推薦履歴更新部76は、履歴データベース64内の推薦履歴を更新する手段である。推薦履歴更新部76は、推薦メール送信部73による推薦メールの送信に応じて、推薦メールに対応する推薦者及び相手ユーザのレコードを更新する。ここで更新される項目は、送信日時、レコメンド商品、購入実績、購入日時及び過去のメール数である。購入実績は「購入無」に更新され,購入日時はクリアされる。さらに、推薦履歴更新部76は、購入メール送信部75による購入メールの送信に応じて、購入者のレコードを更新する。具体的には、購入者の購入実績が「購入有」に更新され、購入日時に購入メールの送信日時が設定される。
 送信履歴記録部77は、推薦メール送信部73により送信された推薦メールについての送信履歴、及び購入メール送信部75により送信された購入メールについての送信履歴を履歴データベース64に記録する手段である。
 支払処理部78は、相手ユーザが推薦メールの商品情報で示されるウェブページから商品を購入した場合に、推薦者に報酬を支払う処理を行う手段である。すなわち、支払処理部78はアフィリエイトに関する処理を行う。アフィリエイトの支払いは現金での支払いとは限らす、商品等と交換可能なポイントなどで支払いが行われてもよい。
 次に、図11~14を参照して、クライアント13のユーザからクライアント14のユーザに商品を推薦する処理(情報提供方法)を説明する。
 まず、サーバ11において、ページ生成部67がクライアント13からのHTTPリクエストに応じて販売ページを生成し、Webサーバ機能がその販売ページをクライアント13に送信する(ステップS1001,S1002)。
 クライアント13はその販売ページを受信し表示する(ステップS2001,S2002)。この販売ページにおいて、推薦メール送信ページへのリンクがクリックされると、クライアント13は当該送信ページをサーバ11にリクエストする(ステップS2003)。
 サーバ11では、Webサーバ機能がそのHTTPリクエストを受け付け、ページ生成部67がそのHTTPリクエストに応じて認証ページを生成する(ステップS1003,S1004)。そして、Webサーバ機能66が認証ページをクライアント13に送信する(ステップS1005)。
 クライアント13は、その認証ページを受信し表示する(ステップS2004,S2005)。この認証ページにおいてユーザIDおよびパスワードが入力され、認証を指示するためのボタンがクリックされると、クライアント13はこれらのユーザIDおよびパスワードを取得してサーバ11に送信する(ステップS2006,S2007)。
 サーバ11では、Webサーバ機能66がユーザIDおよびパスワードを受信する(ステップS1006)。続いて、認証部68がそれらのユーザIDおよびパスワードと、ユーザデータベース61に記録されているユーザIDおよびパスワードとを照合することでクライアント13のユーザを認証する(ステップS1007)。
 クライアント13のユーザが認証されると、推薦候補選択部71が相手ユーザの候補を選択する(ステップS1008)。推薦候補選択部71は上記第1~第5の例のような様々な手法を用いて候補を選択することができる。続いて、ページ生成部67が推薦メール送信ページを生成し(ステップS1009)、Webサーバ機能66がその推薦メール送信ページをクライアント13に送信する(ステップS1010)。
 クライアント13は、その推薦メール送信ページを受信し表示する(ステップS2008,S2009)。このページにおいて相手ユーザが選択されるとともに推薦メールの本文が入力され、そして送信ボタンがクリックされると、クライアント13はその本文と相手ユーザを示すデータとを取得し、これらのデータをサーバ11に送信する(ステップS2010,S2011)。
 サーバ11では、Webサーバ機能66が推薦メールの本文と相手ユーザを示すデータとを受信する(ステップS1011、第1取得ステップ)。続いて、推薦メール生成部72がこれらのデータを用いて推薦メールを生成し(ステップS1012、第1生成ステップ)、推薦メール送信部73が推薦者により選択された相手ユーザ宛にその推薦メールを送信する(ステップS1013、第1送信ステップ)。この推薦メールは各クライアント14により受信される(ステップS3001,S4001,S5001)。サーバ11では、推薦履歴更新部76が推薦メールの送信に応じて推薦履歴を更新し(ステップS1014)、送信履歴記録部77が推薦メールの送信履歴を履歴データベース64に記録する(ステップS1015)。
 相手ユーザの一人であるクライアント14のユーザが推薦メールで示された商品(レコメンド商品)の販売ページへのリンクをクリックすると、クライアント14が販売ページをリクエストする(ステップS3002)。
 サーバ11では、Webサーバ機能66がそのHTTPリクエストを受け付ける(ステップS1016)。続いて、ページ生成部67がそのHTTPリクエストに応じてレコメンド商品の販売ページを生成し(ステップS1017)、Webサーバ機能66がその販売ページをクライアント14に送信する(ステップS1018)。
 クライアント14はその販売ページを受信し表示する(ステップS3003,S3004)。クライアント14のユーザがその販売ページで商品を購入する一連の操作(例えば、商品を買い物かごに入れる操作やユーザIDおよびパスワードを入力する操作、支払い方法を指定する操作など)を実行すると、クライアント14は購入の申し込みのデータ(申込データ)を取得してサーバ11に送信する(ステップS3005,S3006)。
 サーバ11では、Webサーバ機能66がその申込データを受け付ける(ステップS1019)。続いて、販売処理部69が一連の販売処理を実行し(ステップS1020)、支払処理部78が推薦者に対するアフィリエイトの支払いの処理を行う(ステップS1021)。続いて、ページ生成部67が購入メール送信ページを生成し(ステップS1022)、Webサーバ機能66がその購入メール送信ページを購入者のクライアント14に送信する(ステップS1023)。
 購入者のクライアント14は、その購入メール送信ページを受信し表示する(ステップS3007,S3008)。購入者が購入メール送信ページで購入メールの本文を入力すると、クライアント14はその本文を取得してサーバ11に送信する(ステップS3009,S3010)。
 サーバ11では、Webサーバ機能66が購入メールの本文を受信する(ステップS1024、第2取得ステップ)。続いて、購入メール生成部74がその本文を含む購入メールを生成し(ステップS1025、第2生成ステップ)、購入メール送信部75がその購入メールを推薦者と、購入者以外の他の相手ユーザとへ送信する(ステップS1026、第2送信ステップ)。この購入メールは、クライアント13と、購入者以外のユーザのクライアント14とにより受信される(ステップS2012,S4002,S5002)。続いて、推薦履歴更新部76が推薦履歴の購入者に関するレコードを更新し(ステップS1027)、送信履歴記録部77が購入メールに関する送信履歴を履歴データベース64に記録する(ステップS1028)。以上で、推薦メール及び購入メールによる推薦処理が終了する。
 他のクライアント14のユーザがレコメンド商品を購入した場合にも、上述の処理が行われて、推薦者および相手ユーザ(レコメンド商品の購入者を除く)宛に購入メールが送信される。したがって、複数の購入メールが送信され得る。
 上述した一連の処理は、ハードウェアにより実行することもできるし、ソフトウエアにより実行することもできる。一連の処理をソフトウエアにより実行する場合には、そのソフトウエアを構成するプログラムがプログラム記録媒体からコンピュータにインストールされる。
 なお、コンピュータが実行するプログラムは、本実施形態で示した順序に沿って時系列に処理が行われるプログラムであってもよいし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであってもよい。
 以上説明したように、本実施形態によれば、推薦メールを受け取った複数の相手ユーザの誰かがその推薦メールで示される商品を購入すると、その購入を示す購入メールが生成されて購入者以外の他の相手ユーザに送られる。このように、誰かが商品を実際に購入したという事実を、商品を未だ購入していない相手ユーザに示すことで、その相手ユーザに商品購入の意思を生じさせることが期待でき、商品の推薦を効率良く行うことができる。そして、購入メールに応じて他の相手ユーザも商品を購入すれば、推薦者の満足度が上がると期待できる。
 本実施形態のように推薦者がアフィリエイトの報酬を受け取る仕組みを用意すれば、推薦者は金銭的満足も得ることができる。すなわち、商品が多く購入されることでより多くの報酬を得ることができる。
 以上、本発明をその実施形態に基づいて詳細に説明した。しかし、本発明は上記実施形態に限定されるものではない。本発明は、その要旨を逸脱しない範囲で様々な変形が可能である。
 上記実施形態ではサーバ11が支払処理部78を備えていたが、支払処理部78は省略してもよい。すなわち、アフィリエイトの支払いに関する処理は省略可能である。
 各種データベース61~64はサーバ11とは異なるコンピュータ上に設けられていてもよい。この場合には、サーバ11はネットワークを介して各種データベースにアクセスすればよい。
 上記実施形態ではサーバ11が推薦メールにより商品が推薦されたが、推薦の対象は商品に限定されない。例えば、入会や会員カードへの誘い、キャンペーンへの参加などが推薦対象であってもよい。したがって、申込みの種類も購入の申込みに限定されず、入会の申込みや参加の申込みなどのように、様々な申込みの態様がありうる。
 1…情報提供システム、11…サーバ(情報提供装置)、12…インターネット、13,14…クライアント、15…ユーザ関係データベース(第2記憶部)、16…ユーザID変換テーブル、61…ユーザデータベース、62…商品データベース、63…メーリングリストデータベース、64…履歴データベース(第1、第3、第4、第5、及び第6記憶部)、65…初期データ生成部、65…履歴データベース、66…Webサーバ機能(第1取得部、第2取得部)、67…ページ生成部、68…認証部、69…販売処理部、70…推薦部、71…推薦候補選択部、72…推薦メール生成部(第1生成部)、73…推薦メール送信部(第1送信部)、74…購入メール生成部(第2生成部)、75…購入メール送信部(第2送信部)、76…推薦履歴更新部、77…送信履歴記録部、78…支払処理部。

Claims (14)

  1.  第1のユーザが複数の第2のユーザに所定の推薦対象を推薦することを示す推薦情報を該第1のユーザの端末から取得する第1取得部と、
     前記推薦情報に基づいて、前記推薦対象を前記複数の第2のユーザに推薦するための推薦メールを生成する第1生成部と、
     前記推薦メールを前記複数の第2のユーザ宛に送信する第1送信部と、
     前記複数の第2のユーザの一人が前記推薦メールで示される前記推薦対象を申し込んで該推薦対象の申込者になった場合に、該推薦対象の申込みを示す申込情報を該申込者の端末から取得する第2取得部と、
     前記申込情報を含む申込メールを生成する第2生成部と、
     前記申込メールを前記申込者以外の前記第2のユーザ宛に送信する第2送信部と
    を備える情報提供装置。
  2.  前記第1のユーザと前記第2のユーザとが関連付けられた推薦データを記憶する第1記憶部を参照して前記第2のユーザの候補を複数選択し、選択された複数の候補を示す候補情報を前記第1のユーザの端末に送信する選択部を更に備え、
     前記第1取得部が、前記第1のユーザの端末において前記候補情報で示される候補から指定された前記複数の第2のユーザを示す前記推薦情報を取得する、
    請求項1に記載の情報提供装置。
  3.  前記推薦データが、前記第2のユーザ宛に送信された最近の前記推薦メールの送信日時を該第2のユーザの属性情報として含んでおり、
     前記選択部が、前記送信日時の降順に前記複数の候補を選択する、
    請求項2に記載の情報提供装置。
  4.  前記推薦データが、前記第2のユーザ宛に送信された最近の前記推薦メールの送信日時と、該推薦メールで示される推薦対象と、該推薦対象の申込日時とを該第2のユーザの属性情報として含んでおり、
     前記選択部が、前記送信日時から前記申込日時までの時間が短い順に前記複数の候補を選択する、
    請求項2に記載の情報提供装置。
  5.  前記推薦データが、前記第2のユーザ宛に過去に送信された前記推薦メールの個数を該第2のユーザの属性情報として含んでおり、
     前記選択部が、前記推薦メールの個数の降順に前記複数の候補を選択する、
    請求項2に記載の情報提供装置。
  6.  前記推薦データが、前記第2のユーザの趣味に対応する推薦対象のカテゴリを該第2のユーザの属性情報として含んでおり、
     前記選択部が、前記第1のユーザにより推薦される推薦対象のカテゴリと前記推薦データで示される推薦対象のカテゴリとの一致度が高い順に前記複数の候補を選択する、
    請求項2に記載の情報提供装置。
  7.  前記選択部が、有向グラフで表されるユーザ間の関係を示す関係データを記憶する第2記憶部を参照して、前記第1のユーザと双方向の友人関係にある前記第2のユーザと、該第1のユーザへの一方向の友人関係にある前記第2のユーザと、該第1のユーザからの一方向の友人関係にある前記第2のユーザとを、それぞれ第1群、第2群、及び第3群として特定し、該第1群、該第2群、及び該第3群の順に前記複数の候補を選択する、
    請求項2に記載の情報提供装置。
  8.  前記選択部が、推薦メールの送信日時と該推薦メールで示される推薦対象とを示す送信履歴を記憶する第3記憶部と、前記第2のユーザにより申し込まれた推薦対象及び申込日時を示す申込履歴を記憶する第4記憶部とを参照して、前記第1生成部により生成される推薦メールで示される推薦対象と同じカテゴリの他の推薦対象に対応する前記送信日時及び前記申込日時の差が小さい順に前記複数の候補を選択する、
    請求項2に記載の情報提供装置。
  9.  前記選択部が、前記第2のユーザにより閲覧された推薦対象及び閲覧日時を示す閲覧履歴を記憶する第5記憶部を参照して、前記第1生成部により生成される推薦メールで示される推薦対象と同じカテゴリの他の推薦対象の閲覧数が多い順に前記複数の候補を選択する、
    請求項2に記載の情報提供装置。
  10.  前記選択部が、前記第2のユーザにより申し込まれた推薦対象及び申込日時を示す申込履歴を記憶する第6記憶部を参照して、前記第1生成部により生成される推薦メールで示される推薦対象と同じカテゴリの他の推薦対象の申込数が多い順に前記複数の候補を選択する、
    請求項2に記載の情報提供装置。
  11.  前記推薦対象が商品であり、前記推薦対象の申込みが商品の購入の申込みである、
    請求項1~10のいずれか一項に記載の情報提供装置。
  12.  情報提供装置により実行される情報提供方法であって、
     第1のユーザが複数の第2のユーザに所定の推薦対象を推薦することを示す推薦情報を該第1のユーザの端末から取得する第1取得ステップと、
     前記推薦情報に基づいて、前記推薦対象を前記複数の第2のユーザに推薦するための推薦メールを生成する第1生成ステップと、
     前記推薦メールを前記複数の第2のユーザ宛に送信する第1送信ステップと、
     前記複数の第2のユーザの一人が前記推薦メールで示される前記推薦対象を申し込んで該推薦対象の申込者になった場合に、該推薦対象の申込みを示す申込情報を該申込者の端末から取得する第2取得ステップと、
     前記申込情報を含む申込メールを生成する第2生成ステップと、
     前記申込メールを前記申込者以外の前記第2のユーザ宛に送信する第2送信ステップと
    を含む情報提供方法。
  13.  第1のユーザが複数の第2のユーザに所定の推薦対象を推薦することを示す推薦情報を該第1のユーザの端末から取得する第1取得部と、
     前記推薦情報に基づいて、前記推薦対象を前記複数の第2のユーザに推薦するための推薦メールを生成する第1生成部と、
     前記推薦メールを前記複数の第2のユーザ宛に送信する第1送信部と、
     前記複数の第2のユーザの一人が前記推薦メールで示される前記推薦対象を申し込んで該推薦対象の申込者になった場合に、該推薦対象の申込みを示す申込情報を該申込者の端末から取得する第2取得部と、
     前記申込情報を含む申込メールを生成する第2生成部と、
     前記申込メールを前記申込者以外の前記第2のユーザ宛に送信する第2送信部と
    をコンピュータに実行させる情報提供プログラム。
  14.  第1のユーザが複数の第2のユーザに所定の推薦対象を推薦することを示す推薦情報を該第1のユーザの端末から取得する第1取得部と、
     前記推薦情報に基づいて、前記推薦対象を前記複数の第2のユーザに推薦するための推薦メールを生成する第1生成部と、
     前記推薦メールを前記複数の第2のユーザ宛に送信する第1送信部と、
     前記複数の第2のユーザの一人が前記推薦メールで示される前記推薦対象を申し込んで該推薦対象の申込者になった場合に、該推薦対象の申込みを示す申込情報を該申込者の端末から取得する第2取得部と、
     前記申込情報を含む申込メールを生成する第2生成部と、
     前記申込メールを前記申込者以外の前記第2のユーザ宛に送信する第2送信部と
    をコンピュータに実行させる情報提供プログラムを記憶するコンピュータ読取可能な記録媒体。
PCT/JP2011/062532 2010-05-31 2011-05-31 情報提供装置、情報提供方法、情報提供プログラム、及びそのプログラムを記憶するコンピュータ読取可能な記録媒体 WO2011152420A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/581,414 US8935345B2 (en) 2010-05-31 2011-05-31 Information providing apparatus, information providing method, information providing program, and computer-readable recording medium having information providing program recorded therein
JP2012518410A JP5400962B2 (ja) 2010-05-31 2011-05-31 情報提供装置、情報提供方法、情報提供プログラム、及びそのプログラムを記憶するコンピュータ読取可能な記録媒体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-123683 2010-05-31
JP2010123683 2010-05-31

Publications (1)

Publication Number Publication Date
WO2011152420A1 true WO2011152420A1 (ja) 2011-12-08

Family

ID=45066779

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2011/062532 WO2011152420A1 (ja) 2010-05-31 2011-05-31 情報提供装置、情報提供方法、情報提供プログラム、及びそのプログラムを記憶するコンピュータ読取可能な記録媒体
PCT/JP2011/062524 WO2011152417A1 (ja) 2010-05-31 2011-05-31 データベース管理装置、データベース管理方法、データベース管理プログラム、及びそのプログラムを記憶するコンピュータ読取可能な記録媒体

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062524 WO2011152417A1 (ja) 2010-05-31 2011-05-31 データベース管理装置、データベース管理方法、データベース管理プログラム、及びそのプログラムを記憶するコンピュータ読取可能な記録媒体

Country Status (3)

Country Link
US (2) US8935345B2 (ja)
JP (2) JP5400962B2 (ja)
WO (2) WO2011152420A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013168111A (ja) * 2012-02-17 2013-08-29 Fujitsu Ltd プログラム、方法、および情報処理装置
JP2013257292A (ja) * 2012-06-14 2013-12-26 Navitime Japan Co Ltd 情報処理システム、情報処理装置、サーバ、端末装置、情報処理方法、プログラム、及びデータベース
JP2014002562A (ja) * 2012-06-18 2014-01-09 Nippon Telegr & Teleph Corp <Ntt> アイテム利用促進装置、アイテム利用促進装置の動作方法およびコンピュータプログラム
JP2014219815A (ja) * 2013-05-07 2014-11-20 株式会社 ディー・エヌ・エー 電子コンテンツを推奨するシステム
WO2015060787A1 (en) * 2013-10-22 2015-04-30 Paratu Pte. Ltd. Online campaign system and method
US9137322B2 (en) 2013-11-05 2015-09-15 DeNA Co., Ltd. System and method for providing electronic content
JP2016521422A (ja) * 2013-05-09 2016-07-21 マイクロソフト テクノロジー ライセンシング,エルエルシー レコメンデーションを生成する際のソーシャル情報の考慮
JP2020091532A (ja) * 2018-12-03 2020-06-11 株式会社 資生堂 サーバ、及び、プログラム

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4857419B1 (ja) * 2011-02-17 2012-01-18 楽天株式会社 情報登録装置、情報登録方法、情報登録プログラム及び記録媒体
US9098600B2 (en) * 2011-09-14 2015-08-04 International Business Machines Corporation Deriving dynamic consumer defined product attributes from input queries
US9147002B2 (en) * 2012-07-31 2015-09-29 Fujitsu Limited System and method for content storage and retrieval
US10218751B2 (en) 2012-08-07 2019-02-26 Paypal, Inc. Social sharing system
US20160140624A1 (en) * 2014-06-25 2016-05-19 Rakuten, Inc. Transmitting device, transmitting method, non-transitory information recording medium, and program
US11343553B2 (en) * 2014-08-05 2022-05-24 Piksel, Inc. Context driven recommendation for content delivery and display system
CN105812345B (zh) * 2014-12-31 2019-08-23 广州市动景计算机科技有限公司 一种实现网页到客户端通信的方法及装置
KR101782387B1 (ko) * 2016-06-15 2017-09-27 (주)이미지드롬 친구계정 페이지로 직접 상품을 푸시하여 친구의 구매과정에 관여하는 방법
WO2018016660A1 (ko) * 2016-07-18 2018-01-25 강찬고 웹 사이트 자동 추천 시스템 및 그 방법과 이를 위한 프로그램 기록매체
US10528964B1 (en) * 2018-11-05 2020-01-07 Douglas Logan Darrow Clements Designated user management and value transfer
US11978002B2 (en) 2018-11-05 2024-05-07 Douglas Logan Darrow Clements Computer enhancements for increasing service growth speed
JP7418238B2 (ja) * 2020-02-21 2024-01-19 日本瓦斯株式会社 情報処理装置、情報処理方法、及びプログラム
CN113595864B (zh) * 2020-04-30 2023-04-18 北京字节跳动网络技术有限公司 一种转发邮件的方法、装置、电子设备及存储介质
CN111737305B (zh) * 2020-05-27 2024-03-15 上海晶赞融宣科技有限公司 信息推送中人群特征确定方法及装置、可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002015219A (ja) * 2000-06-30 2002-01-18 Yafoo Japan Corp 商品紹介サービス提供方法、商品紹介サービス提供システム、商品を他人に紹介することが可能な電子モールシステム
JP2002024694A (ja) * 2000-07-11 2002-01-25 Nippon Telegr & Teleph Corp <Ntt> お薦め情報紹介方法、お薦め情報紹介システム、お薦め情報紹介プログラムを記録した記録媒体
JP2002230411A (ja) * 2001-02-05 2002-08-16 Isao:Kk コミュニケーションシステム、コミュニケーション情報処理装置、情報端末装置、商品リコメンド方法、および、プログラム
JP2007115220A (ja) * 2004-12-27 2007-05-10 Dainippon Printing Co Ltd 商品情報提供システム、ユーザメモ管理装置、端末装置、及び情報提供装置等
JP2007317177A (ja) * 2006-04-28 2007-12-06 Nec Corp ネットワーク広告配信システム、ネットワーク広告配信装置、方法及びプログラム
JP2010165097A (ja) * 2009-01-14 2010-07-29 Ntt Docomo Inc 人間関係推定装置、及び、人間関係推定方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7720723B2 (en) 1998-09-18 2010-05-18 Amazon Technologies, Inc. User interface and methods for recommending items to users
JP2001306927A (ja) * 2000-04-21 2001-11-02 Toru Onishi 無料提供情報システム
US8260656B1 (en) 2001-04-19 2012-09-04 Amazon.Com, Inc. Mining of user-generated playlists for data regarding relationships between digital works
JP2003016336A (ja) 2001-06-27 2003-01-17 Fujitsu Ltd 新規顧客獲得方法及び新規顧客獲得プログラム
US8275673B1 (en) * 2002-04-17 2012-09-25 Ebay Inc. Method and system to recommend further items to a user of a network-based transaction facility upon unsuccessful transacting with respect to an item
JP2004265013A (ja) * 2003-02-28 2004-09-24 Mekiki Creates Co Ltd 情報の紹介方法とそのシステム、装置、並びにプログラム
EP1850286A1 (en) 2006-04-28 2007-10-31 NEC Corporation Network advertisement delivery system
WO2008116202A1 (en) * 2007-03-21 2008-09-25 Eight Years, Inc. System and method for target advertising
JP2008234436A (ja) 2007-03-22 2008-10-02 Nec Corp 販売促進システム、販売促進方法およびプログラム
US7974888B2 (en) 2007-03-30 2011-07-05 Amazon Technologies, Inc. Services for providing item association data
US20080255934A1 (en) * 2007-04-16 2008-10-16 Jeffrey Leventhal Method and system for selling or promoting a product online
US8180680B2 (en) * 2007-04-16 2012-05-15 Jeffrey Leventhal Method and system for recommending a product over a computer network
US8090621B1 (en) 2007-06-27 2012-01-03 Amazon Technologies, Inc. Method and system for associating feedback with recommendation rules
US20090106081A1 (en) * 2007-10-22 2009-04-23 Yahoo! Inc. Internet advertising using product conversion data
JP5309646B2 (ja) 2008-03-27 2013-10-09 大日本印刷株式会社 会員管理システム、会員管理方法、及びサーバ
US8621028B2 (en) 2008-11-04 2013-12-31 Microsoft Corporation Content-recommendation message

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002015219A (ja) * 2000-06-30 2002-01-18 Yafoo Japan Corp 商品紹介サービス提供方法、商品紹介サービス提供システム、商品を他人に紹介することが可能な電子モールシステム
JP2002024694A (ja) * 2000-07-11 2002-01-25 Nippon Telegr & Teleph Corp <Ntt> お薦め情報紹介方法、お薦め情報紹介システム、お薦め情報紹介プログラムを記録した記録媒体
JP2002230411A (ja) * 2001-02-05 2002-08-16 Isao:Kk コミュニケーションシステム、コミュニケーション情報処理装置、情報端末装置、商品リコメンド方法、および、プログラム
JP2007115220A (ja) * 2004-12-27 2007-05-10 Dainippon Printing Co Ltd 商品情報提供システム、ユーザメモ管理装置、端末装置、及び情報提供装置等
JP2007317177A (ja) * 2006-04-28 2007-12-06 Nec Corp ネットワーク広告配信システム、ネットワーク広告配信装置、方法及びプログラム
JP2010165097A (ja) * 2009-01-14 2010-07-29 Ntt Docomo Inc 人間関係推定装置、及び、人間関係推定方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013168111A (ja) * 2012-02-17 2013-08-29 Fujitsu Ltd プログラム、方法、および情報処理装置
JP2013257292A (ja) * 2012-06-14 2013-12-26 Navitime Japan Co Ltd 情報処理システム、情報処理装置、サーバ、端末装置、情報処理方法、プログラム、及びデータベース
JP2014002562A (ja) * 2012-06-18 2014-01-09 Nippon Telegr & Teleph Corp <Ntt> アイテム利用促進装置、アイテム利用促進装置の動作方法およびコンピュータプログラム
JP2014219815A (ja) * 2013-05-07 2014-11-20 株式会社 ディー・エヌ・エー 電子コンテンツを推奨するシステム
JP2016521422A (ja) * 2013-05-09 2016-07-21 マイクロソフト テクノロジー ライセンシング,エルエルシー レコメンデーションを生成する際のソーシャル情報の考慮
WO2015060787A1 (en) * 2013-10-22 2015-04-30 Paratu Pte. Ltd. Online campaign system and method
US9137322B2 (en) 2013-11-05 2015-09-15 DeNA Co., Ltd. System and method for providing electronic content
JP2020091532A (ja) * 2018-12-03 2020-06-11 株式会社 資生堂 サーバ、及び、プログラム
JP7137450B2 (ja) 2018-12-03 2022-09-14 株式会社 資生堂 サーバ、及び、プログラム

Also Published As

Publication number Publication date
JP5400962B2 (ja) 2014-01-29
US20130132491A1 (en) 2013-05-23
JPWO2011152420A1 (ja) 2013-08-01
US8935345B2 (en) 2015-01-13
JPWO2011152417A1 (ja) 2013-08-01
JP5087721B2 (ja) 2012-12-05
WO2011152417A1 (ja) 2011-12-08
US20130080549A1 (en) 2013-03-28
US9037663B2 (en) 2015-05-19

Similar Documents

Publication Publication Date Title
JP5400962B2 (ja) 情報提供装置、情報提供方法、情報提供プログラム、及びそのプログラムを記憶するコンピュータ読取可能な記録媒体
US10497069B2 (en) System and method for providing a social customer care system
US7885844B1 (en) Automatically generating task recommendations for human task performers
WO2013158839A1 (en) System and method for providing a social customer care system
JP5425961B2 (ja) 情報提供装置、情報提供方法、情報提供プログラム、及びそのプログラムを記憶するコンピュータ読取可能な記録媒体
US10679273B2 (en) Product clarity score and channel tagging
US20170004515A1 (en) Techniques for providing a retail poll service
JP2010108119A (ja) アンケート調査装置、アンケート調査システム、アンケート調査方法及びプログラム
JP6388994B1 (ja) 情報処理装置、情報処理方法及び情報処理プログラム
US20030187721A1 (en) Method and apparatus for rating information management
JP3717789B2 (ja) 通信システムおよび情報仲介方法並びに記録媒体
US10049399B1 (en) System and method for intelligent gift registry
JP7195230B2 (ja) 通知装置、通知方法及び通知プログラム
JP6562446B2 (ja) 福祉サービス第三者評価における利用者及び職員Web調査に関わる匿名アンケートシステム
JP6496506B2 (ja) 情報処理装置、情報処理方法、及びプログラム
JP2014191449A (ja) データ通信装置およびプログラム
JP2012234227A (ja) 商品・サービスの販売購入のための方法、サーバ装置およびプログラム
JP6353491B2 (ja) ウェブサイト自動推薦システム、方法、及びプログラム
Kuo et al. HKICSS-0031 The Relationship between Participation and Satisfaction for Online Career Community-A Case of LinkedIn
Jiang et al. Chinese Cross-Border Online Shopping through Agents from Sweden–An Exploratory Study of the Determinants of
JP2012208844A (ja) マッチング情報提供方法、マッチング情報提供用サーバ装置
JP2001312612A (ja) 情報仲介システム、情報仲介方法及び記録媒体
JP2001188843A (ja) ネーミング等の採択支援用流通仲介システム
JP2010123008A (ja) 箸袋を利用した環境貢献型広告システム
JP2011233070A (ja) 販売価格調査システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789823

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012518410

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13581414

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11789823

Country of ref document: EP

Kind code of ref document: A1