WO2011152128A1 - 車両用電動モータのトルク応答制御装置 - Google Patents
車両用電動モータのトルク応答制御装置 Download PDFInfo
- Publication number
- WO2011152128A1 WO2011152128A1 PCT/JP2011/059251 JP2011059251W WO2011152128A1 WO 2011152128 A1 WO2011152128 A1 WO 2011152128A1 JP 2011059251 W JP2011059251 W JP 2011059251W WO 2011152128 A1 WO2011152128 A1 WO 2011152128A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- torque response
- electric motor
- torque
- vehicle
- motor
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
- B60L15/2009—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/51—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L7/00—Electrodynamic brake systems for vehicles in general
- B60L7/10—Dynamic electric regenerative braking
- B60L7/14—Dynamic electric regenerative braking for vehicles propelled by ac motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/10—Vehicle control parameters
- B60L2240/12—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
- B60L2240/421—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
- B60L2240/423—Torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2250/00—Driver interactions
- B60L2250/26—Driver interactions by pedal actuation
- B60L2250/28—Accelerator pedal thresholds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2270/00—Problem solutions or means not otherwise provided for
- B60L2270/10—Emission reduction
- B60L2270/14—Emission reduction of noise
- B60L2270/145—Structure borne vibrations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/08—Electric propulsion units
- B60W2710/083—Torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W50/08—Interaction between the driver and the control system
- B60W50/087—Interaction between the driver and the control system where the control system corrects or modifies a request from the driver
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Definitions
- the present invention relates to a vehicle that controls the torque response of an electric motor so that the acceleration feeling of a vehicle that can run by driving wheels with torque from the electric motor is close to the required acceleration according to changes in the vehicle driving situation.
- the present invention relates to a torque response control device for an electric motor.
- Patent Document 1 controls the torque response of the electric motor so that the torsional vibration of the motor drive system does not occur, and the acceleration feeling as expected by the driver due to changes in the vehicle driving situation. Torque response control that gives
- the present invention provides a torque response control device for an electric motor for a vehicle that controls the torque response of the electric motor so that the sense of acceleration of the vehicle is close to the required acceleration corresponding to a change in the vehicle driving situation. It is intended to solve the problem of giving the driver dissatisfaction that the acceleration feeling is not sufficient and the problem of making it difficult to perform a delicate driving operation due to excessive torque.
- the torque response control device for a vehicular electric motor is the same as the required acceleration corresponding to the change in the vehicle driving situation for a vehicle capable of driving by driving wheels with torque from the electric motor.
- the torque response control of the electric motor can provide a feeling of acceleration so that the driver feels the deviation of the actual acceleration from the required acceleration small. Therefore, there is no problem of giving the driver dissatisfaction that the feeling of acceleration is not sufficient, or causing the driver to feel that it is difficult to perform a delicate driving operation due to excessive torque.
- FIG. 1 is a schematic system diagram showing a vehicle drive system including a motor torque response control device according to an embodiment of the present invention and a control system thereof.
- FIG. 2 is a functional block diagram related to a motor torque response control unit of the motor controller in FIG. 3 is an operation time chart by the motor torque response control unit of FIG. It is a motor torque characteristic figure which shows the change characteristic of the maximum motor torque with respect to the motor rotation speed of an electric motor.
- FIG. 4 is a region map diagram of a torque response determination coefficient used in torque response control by the motor torque response control device according to the embodiment of FIGS.
- FIG. 6 is a change characteristic diagram of a torque response determination coefficient using the vehicle speed VSP as a parameter, redrawing the region map of FIG.
- FIG. 6 is a change characteristic diagram of a torque response determination coefficient using the accelerator opening APO as a parameter, redrawing the region map of FIG. 5 when the accelerator opening APO is 0, A1 to A6.
- FIG. 1 shows a drive system and a control system of a vehicle having a torque response control device according to an embodiment of the present invention.
- the vehicle in FIG. 1 includes left and right front wheels (or left and right rear wheels) 1L, An electric vehicle that can run by driving 1R.
- the left and right wheels 1L and 1R are driven by the electric motor (traveling power source) 2 via the differential gear device 3.
- the motor controller 4 converts the power of the battery 5 as a power source into DC-AC conversion by the inverter 6 and supplies this AC power to the electric motor 2 under the control of the inverter 6.
- the electric motor 2 is controlled so that the torque of the electric motor 2 matches the calculation result (target motor torque) in the motor controller 4.
- the motor controller 4 applies a power generation load to the electric motor 2 via the inverter 6. .
- the electric power generated by the electric motor 2 due to the regenerative braking action is AC-DC converted by the inverter 6 to charge the battery 5.
- the motor controller 4 includes, as information for calculating the target motor torque, a signal from the vehicle speed sensor 7 that detects the vehicle speed VSP that is the ground speed of the electric vehicle, and an accelerator opening that is the amount of depression of the accelerator pedal by the driver.
- a signal from the accelerator opening sensor 8 that detects the degree APO (electric motor required load) and the current of the electric motor 2 (in FIG. 1, the current iu, iv is a three-phase alternating current consisting of U phase, V phase, and W phase) , iw) is input with a signal from the current sensor 9.
- the motor controller 4 generates a PWM signal for controlling the electric motor 2 according to the input information, and generates a drive signal for the inverter 6 through the drive circuit according to the PWM signal.
- the inverter 6 is composed of, for example, two switching elements (for example, power semiconductor elements such as IGBT) for each phase, and the DC current supplied from the battery 5 is turned on / off according to the drive signal. Is converted into alternating current and reversely converted, and the electric motor 2 is supplied with a current corresponding to the target motor torque.
- the electric motor 2 generates a driving force according to the alternating current supplied from the inverter 6 and transmits the driving force to the left and right wheels 1L and 1R through the differential gear device 3. Also, when the electric motor 2 is driven by the left and right wheels 1L, 1R during vehicle travel, the vehicle motion is achieved by applying a regenerative braking action to the electric motor 2 by applying a power generation load to the electric motor 2. The energy is regenerated and stored in the battery 5.
- the motor controller 4 obtains a transient value tTv of the target driving force (target acceleration) by the calculation shown in the functional block diagram of FIG. 2, and calculates a motor torque that can realize the target driving force (target acceleration) transient value tTv.
- a command is given to the inverter 6 as the target motor torque described above, which contributes to drive control of the electric motor 2.
- the target driving force (target acceleration) steady value calculation unit 11 in FIG. 2 calculates the target driving force (target acceleration) of the vehicle requested by the driver from the accelerator opening APO and the vehicle speed VSP based on the planned driving force map.
- the steady value Tv is calculated.
- This target driving force (target acceleration) steady-state value Tv indicates that the accelerator pedal is depressed stepwise and the accelerator opening APO changes from 0 to a corresponding opening, and thereafter the accelerator opening APO is maintained. It increases with a step-like time series change as shown by the broken line in FIG.
- the motor controller 4 uses the motor torque that realizes the target driving force (target acceleration) steady value Tv as the target motor torque as an inverter. Command to 6. For this reason, the torque response of the electric motor 2 is uniquely determined according to the output torque characteristics of the electric motor 2, and cannot be controlled.
- the motor torque Tm increases in the region where the motor rotational speed Nm is low, and the motor torque Tm decreases in the region where the motor rotational speed Nm is high.
- the motor torque Tm suddenly decreases from a high value to a low value, which greatly deviates from the torque characteristics required by the vehicle.
- the electric motor 2 cannot achieve the required acceleration as expected due to its output torque characteristics, and gives the driver dissatisfaction that the vehicle running performance (acceleration feeling) is insufficient, or the torque is excessive and delicate. This causes a problem that makes it difficult to perform proper driving operations.
- using a general method for obtaining the required acceleration by providing a transmission causes the transmission to increase friction loss. Since energy is consumed to control the transmission, a decisive problem that the traveling distance is shortened is caused, and the general solution is difficult to adopt.
- the electric motor 2 can easily control the output torque response, and the torque response control can control the acceleration feeling felt by the driver. From the standpoint that the driver can be satisfied, this idea is embodied and the torque response of the electric motor 2 is controlled as follows.
- a torque response determination coefficient calculation unit 12 and a primary delay processing unit 13 corresponding to the motor torque response control means in the present invention are provided.
- the torque response determination coefficient calculation unit 12 is suitable for the current driving situation (vehicle speed VSP and accelerator opening APO) from the vehicle speed VSP and accelerator opening APO based on the planned torque response determination coefficient region map shown in FIG. A coefficient K for determining the torque response of the electric motor 2 is obtained.
- the higher torque response is assigned sequentially.
- FIG. 5 is a region map showing a torque response (torque response determination coefficient K) of the electric motor 2 suitable for each driving situation (vehicle speed VSP and accelerator opening APO), and a suitable motor torque response (torque response) for each driving situation.
- the determination coefficient K) will be described in detail later.
- the torque response determination coefficient calculation unit 12 in FIG. 2 calculates the torque response determination coefficient K (K1 ⁇ ) used for torque response control of the electric motor 2 from the vehicle speed VSP and the accelerator opening APO based on the torque response determination coefficient region map in FIG. K10) is obtained and transmitted to the first-order lag processing unit 13.
- the first-order lag processing unit 13 calculates a torque response determination coefficient for the target driving force (target acceleration) steady value Tv of the vehicle illustrated by the broken line in FIG. First-order lag processing using a first-order lag filter time constant corresponding to the torque response determination coefficient K (K1 to K10) from the unit 12 is performed, and a target driving force (target acceleration) transient value tTv illustrated by a solid line in FIG. 3 is obtained.
- the target driving force (target acceleration) transient value tTv exemplified by the solid line in FIG. 3 is determined by the first-order lag filter time constant, that is, the torque response determination coefficient K (K1 to K10).
- the motor controller 4 in FIG. 1 sets the target driving force (target acceleration) transient value tTv obtained as described above by the first-order lag processing unit 13 as the target motor torque, and supplies the electric motor 2 with a current that can achieve this target motor torque. Therefore, the inverter 6 is controlled.
- the preferred torque response (torque response determination coefficient K) of the electric motor 2 for each driving situation (vehicle speed VSP and accelerator opening APO) shown in the region map of FIG. 5 will be described in detail below.
- the torque characteristics of the electric motor 2 are such that the maximum value of the motor torque Tm is larger than that of other motor rotation ranges in the low rotation range where the motor rotation number Nm is less than Nm1, and the motor rotation number Nm.
- the maximum value of the motor torque Tm is smaller than that of other motor rotation regions in a high rotation region where Nm2 or more.
- the motor torque Tm tends to be insufficient in the high speed range (high vehicle speed range), and the driver tends to be dissatisfied with insufficient vehicle driving performance (acceleration feeling).
- the motor torque is excessive, and it is easy for the driver to feel that it is difficult to perform delicate driving operation for delicate driving force control that is often required in the rotation range.
- the region map of FIG. 5 is redrawn when the vehicle speed VSP is V1 to V6, and the region map of FIG.
- FIG. 7 redrawn in the case of A1 to A6, when the vehicle speed VSP is low, the torque response determination coefficient K is decreased to reduce the torque response of the electric motor 2, and the higher the vehicle speed VSP is, the higher the vehicle speed is.
- the torque response determination coefficient K is increased to increase the torque response of the electric motor 2.
- the torque response determination coefficient K is decreased to reduce the torque response of the electric motor 2 to a low response.
- the torque response determination coefficient K is increased to increase the torque response of the electric motor 2 as the accelerator opening APO (the required load on the electric motor 2) increases.
- the high torque response of the electric motor 2 needs to be the highest response within a range in which torsional vibration is generated in the motor drive system and the ride comfort of the vehicle is not deteriorated.
- the torque response determination coefficient K is set to the minimum K1 and the torque of the electric motor 2
- the response will be the lowest response, but in the creep travel region, since the accelerator pedal is hardly depressed, a certain degree of acceleration is required, so the torque response determination coefficient K is 1 less than the minimum K1.
- the torque response of the electric motor 2 is made higher by one step than the lowest response by making the step K2 larger.
- the change density of the torque response determination coefficient K that is, the torque response change density of the electric motor 2 according to the accelerator opening APO (required load), the change density of the torque response determination coefficient K in the large load range of APO ⁇ A4 (torque response change) Density).
- the torque response determination coefficient K is set to the highest value determined for each vehicle speed VSP by the above-described region setting (2), and the torque response of the electric motor 2 is set to the highest response.
- the maximum torque response of the electric motor 2 is the highest high response within a range in which torsional vibration is generated in the motor drive system and the ride comfort of the vehicle does not deteriorate, and varies depending on the vehicle speed VSP.
- the motor torque Tm is large in the low rotation range (low vehicle speed range), and the delicate driving operation for delicate driving force control that is often required in the low rotation range (low vehicle speed range).
- the driver in order to make the torque response of the electric motor 2 low response by reducing the torque response determination coefficient K in this low rotation range (low vehicle speed range), The driver can easily perform the delicate driving operation for delicate driving force control described above.
- the motor torque Tm is small as illustrated in FIG. 4 in the high rotation range (high vehicle speed range), and the driver has a vehicle running performance (acceleration feeling) due to insufficient motor torque in the high rotation range (high vehicle speed range).
- the torque response determination coefficient K is increased to increase the torque response of the electric motor 2 to a high response. Therefore, the above-mentioned dissatisfaction regarding acceleration feeling can be eliminated or at least mitigated.
- the driver in a small load region where the accelerator opening APO is reduced, the driver is often required to perform delicate driving force control by delicate driving operation, and during this time, if the torque response of the electric motor 2 is high response, The driver feels that it is difficult to perform the delicate driving operation described above. Also, in a small load region where the accelerator opening APO is small, the driver may unconsciously release his / her foot from the accelerator pedal, and during this time, if the torque response of the electric motor 2 is high response, When the accelerator pedal is released, sudden deceleration is performed to make the passenger uncomfortable.
- the torque response determination coefficient K is reduced to make the torque response of the electric motor 2 low response, so that the driver can easily perform the delicate driving operation described above. And you do n’t feel it is difficult to do this operation.
- the torque response of the electric motor 2 is made low response. Does not cause the problem of making passengers uncomfortable.
- the driver needs sufficient acceleration with a large driving force, but if the torque response of the electric motor 2 is low during this period, the driver You can't feel the feeling of acceleration as predicted by the pedal operation, and you are dissatisfied.
- the torque response determination coefficient K is increased to increase the torque response of the electric motor 2, so that the torque rises faster and the driver predicted by operating the accelerator pedal. A feeling of acceleration at or near the street can be felt, and the above-mentioned dissatisfaction with the feeling of acceleration can be eliminated or at least alleviated.
- the torque response determination coefficient K is set to K2 which is one step larger than the minimum K1, and the torque response of the electric motor 2 is made only one step higher than the lowest response. Acceleration to the extent required by this is possible, and creep running can be performed.
- the vehicle speed VSP is
- the change density of the torque response determination coefficient K according to the vehicle speed VSP that is, the torque response change density of the electric motor 2 according to the vehicle speed VSP is higher than the change density of the torque response determination coefficient K (torque response change density) in other vehicle speed ranges. Therefore, the following effects can be obtained.
- the change density of the torque response determination coefficient K corresponding to the vehicle speed VSP (the torque response of the electric motor 2 corresponding to the vehicle speed VSP) in the medium vehicle speed range V3 to V5 corresponding to the motor rotation range Nm1 to Nm2.
- the motor torque in the motor rotation range Nm1 to Nm2 (medium vehicle speed range V3 to V5) This makes it possible to quickly increase the response, thereby making up for the lack of acceleration due to the sudden decrease in the motor torque Tm described above and making the driver feel as little as possible of this acceleration.
- the accelerator opening APO in the medium and high vehicle speed range where the accelerator opening APO is less than A4 and the vehicle speed VSP is V3 or higher (see ⁇ area in Fig. 5).
- Change of torque response determination coefficient K according to load that is, torque response change density of electric motor 2 according to accelerator opening APO (request load), change of torque response determination coefficient K in APO ⁇ A4 large load range
- the density higher than the density (torque response change density)
- the change density of the torque response determination coefficient K that is, the torque response change density of the electric motor 2 according to the accelerator opening APO (required load)
- the change density of the torque response determination coefficient K in the large load range of APO ⁇ A4 (torque response) Therefore, the acceleration response that is emphasized when the accelerator pedal is depressed in the middle / high vehicle speed range is improved, and the driver's request at this time can be satisfied with certainty.
- the torque response determination coefficient K is set to the highest value determined for each vehicle speed VSP by the torque response control described in (2) above, and the torque response of the electric motor 2 is possible for each vehicle speed VSP. In order to obtain a maximum response, the driver can surely feel the maximum acceleration required by the driver due to such a heavy load.
- the torque response of the electric motor 2 when the torque response of the electric motor 2 is maximized, as described above, although it differs depending on the vehicle speed VSP as described above, torsional vibration occurs in the motor drive system and the ride comfort of the vehicle is poor.
- the above-mentioned effect is achieved by making the motor torque response the highest response while satisfying the condition that the ride comfort of the vehicle is not deteriorated by the torsional vibration of the motor drive system. Can be enjoyed.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
車速VSPが低いときはトルク応答決定係数Kを小さくしてモータトルク応答を低応答にし、車速VSPが高くなるにつれトルク応答決定係数Kを大きくしてモータトルク応答を高応答にする。これにより、低車速で要求される微妙な駆動力制御用のデリケートな運転操作を容易に行うことができ、高車速でトルク上昇が速くなって、この高車速で要求される加速度感を満足させることができる。アクセル開度APOが小さい小負荷時は、トルク応答決定係数Kを小さくしてモータトルク応答を低応答にし、大負荷になるほど、トルク応答決定係数Kを大きくしてモータトルク応答を高応答にする。これにより、低負荷で要求される微妙な駆動力制御用のデリケートな運転操作を容易に行うことができ、大負荷でトルク上昇が速くなって、この大負荷で要求される加速度感を満足させることができる。
Description
本発明は、電動モータからのトルクにより車輪を駆動して走行可能な車両の加速度感が、車両運転状況の変化に応じた要求加速度に近いものとなるよう、電動モータのトルク応答を制御する車両用電動モータのトルク応答制御装置に関するものである。
車両は、同じ車両運転状況(アクセルペダル踏み込み量のような運転状態や、車速のような走行状況)の変化の基でも、得られる加速度が、走行動力源の出力トルク特性によって大きく異なり、運転者が車両運転状況(アクセルペダル踏み込み量のような運転状態や、車速のような走行状況)の変化により期待した通りの加速度を得られないのが実情である。
その理由は、大抵の動力源の出力トルク特性が、運転操作によって期待する要求加速度の変化に対応していないためで、この場合、運転者に車両走行性能(加速度感)が十分でないとの不満感を与えたり、トルクが過大で微妙な運転操作を行い難いと感じさせる。
そのため、エンジン搭載車などの一般的な車両においては、動力源のトルクを加減する変速機を動力源の後段に配置し、これにより、期待した通りの加速度が得られようにしている。
そのため、エンジン搭載車などの一般的な車両においては、動力源のトルクを加減する変速機を動力源の後段に配置し、これにより、期待した通りの加速度が得られようにしている。
走行動力源として電動モータを搭載した電気自動車の場合も、電動モータがご多分にもれず、その出力トルク特性によって期待通りの要求加速度を実現することができないものであるため、運転者に車両走行性能(加速度感)が十分でないとの不満感を与えたり、トルクが過大で微妙な運転操作を行い難いと感じさせる。
しかし、電動モータを走行動力源とする電気自動車においては、その後段に変速機を配置して要求加速度が得られようにすると、変速機が摩擦損失の増大要因になる上に、変速機の制御にエネルギーが消費されることから、走行距離が短くなるという決定的な問題を生じる。
そのため、電気自動車の場合、電動モータの後段に変速機を搭載するという上記の一般的な解決策は採用困難である。
そのため、電気自動車の場合、電動モータの後段に変速機を搭載するという上記の一般的な解決策は採用困難である。
ところで電動モータの場合、内燃機関などの動力源と違って、出力トルクの応答性を制御し易く、本発明者は、このトルク応答を操作して加速度感を調整すれば、運転者に満足感を与えられるのでは、と考えた。
電動モータのトルク応答を制御する技術としては従来、特許文献1に記載のごとく、電動モータが低回転で大トルクを発生し、モータ駆動系に捩り振動を生じさせることから、電動モータのトルク応答を、上記したモータ駆動系の捩り振動が生じなくなるよう制御する技術が提案されているのみである。
しかし、特許文献1に記載の提案技術は、モータ駆動系の捩り振動が生じなくなるよう電動モータのトルク応答を制御するものであって、運転者が車両運転状況の変化により期待した通りの加速度感を付与するようなトルク応答制御たり得ない。
従って特許文献1に記載の提案技術によっては、運転者に車両走行性能(加速度感)が十分でないとの不満感を与えるという前記の問題、および、トルクが過大で微妙な運転操作を行い難いと感じさせるような前記の問題を解消することができない。
本発明は、上記の実情に鑑み、車両の加速度感が、車両運転状況の変化に応じた要求加速度に近いものとなるよう、電動モータのトルク応答を制御する車両用電動モータのトルク応答制御装置を提供して、運転者に加速度感が十分でないとの不満感を与えるという問題や、トルクが過大で微妙な運転操作を行い難いと感じさせるような問題を解消することを目的とする。
この目的のため、本発明による車両用電動モータのトルク応答制御装置は、電動モータからのトルクにより車輪を駆動して走行可能な車両に対し、車両運転状況の変化に応じた要求加速度と、同じ車両運転状況の変化時に上記電動モータのトルク特性で得られる実加速度との違いを補って、要求加速度に対する実加速度の乖離を運転者が小さく感じるよう上記電動モータのトルク応答を制御するモータトルク応答制御手段を設けた構成に特徴づけられるものである。
かかる本発明による車両用電動モータのトルク応答制御装置によれば、上記電動モータのトルク応答制御により、要求加速度に対する実加速度の乖離を運転者が小さく感じるような加速度感が得られる。
そのため、運転者に加速度感が十分でないとの不満感を与えるという問題や、トルクが過大で微妙な運転操作を行い難いと感じさせるような問題を生ずることがない。
そのため、運転者に加速度感が十分でないとの不満感を与えるという問題や、トルクが過大で微妙な運転操作を行い難いと感じさせるような問題を生ずることがない。
以下、本発明の実施の形態を、図面に示す実施例に基づき詳細に説明する。
<構成>
図1は、本発明の一実施例になるトルク応答制御装置を具えた車両の駆動系およびその制御系を示し、本実施例において図1における車両は、左右前輪(または左右後輪)1L,1Rを駆動して走行可能な電気自動車とする。
これら左右輪1L,1Rの駆動に際しては、電動モータ(走行動力源)2によりディファレンシャルギヤ装置3を介し、当該左右輪1L,1Rの駆動を行うものとする。
<構成>
図1は、本発明の一実施例になるトルク応答制御装置を具えた車両の駆動系およびその制御系を示し、本実施例において図1における車両は、左右前輪(または左右後輪)1L,1Rを駆動して走行可能な電気自動車とする。
これら左右輪1L,1Rの駆動に際しては、電動モータ(走行動力源)2によりディファレンシャルギヤ装置3を介し、当該左右輪1L,1Rの駆動を行うものとする。
電動モータ2の駆動力制御に際しては、モータコントローラ4が、電源であるバッテリ5の電力をインバータ6により直流-交流変換して、またこの交流電力をインバータ6による制御下で電動モータ2へ供給することで、電動モータ2のトルクをモータコントローラ4での演算結果(目標モータトルク)に一致させるよう、当該電動モータ2の制御を行うものとする。
なお、モータコントローラ4での演算結果(目標モータトルク)が、電動モータ2に回生制動作用を要求する負極性のものである場合、モータコントローラ4はインバータ6を介し電動モータ2に発電負荷を与える。
このとき電動モータ2が回生制動作用により発電した電力は、インバータ6により交流-直流変換してバッテリ5に充電するものとする。
このとき電動モータ2が回生制動作用により発電した電力は、インバータ6により交流-直流変換してバッテリ5に充電するものとする。
モータコントローラ4には、上記の目標モータトルクを演算するための情報として、電気自動車の対地速度である車速VSPを検出する車速センサ7からの信号と、運転者によるアクセルペダル踏み込み量であるアクセル開度APO(電動モータ要求負荷)を検出するアクセル開度センサ8からの信号と、電動モータ2の電流(図1ではU相、V相、W相よりなる三相交流であるから電流iu,iv,iw)を検出する電流センサ9からの信号とを入力する。
モータコントローラ4は、これら入力情報に応じて電動モータ2を制御するPWM信号を生成し、このPWM信号に応じドライブ回路を通じてインバータ6の駆動信号を生成する。
インバータ6は、例えば各相ごとに2個のスイッチング素子(例えばIGBT等のパワー半導体素子)からなり、駆動信号に応じてスイッチング素子をON/OFFすることにより、バッテリ5から供給される直流の電流を交流に変換・逆変換し、電動モータ2に目標モータトルク対応の電流を供給する。
インバータ6は、例えば各相ごとに2個のスイッチング素子(例えばIGBT等のパワー半導体素子)からなり、駆動信号に応じてスイッチング素子をON/OFFすることにより、バッテリ5から供給される直流の電流を交流に変換・逆変換し、電動モータ2に目標モータトルク対応の電流を供給する。
電動モータ2は、インバータ6より供給される交流電流により、これに応じた駆動力を発生し、ディファレンシャルギヤ装置3を通して左右輪1L,1Rに駆動力を伝達する。
また車両走行中、電動モータ2が左右輪1L,1Rに連れ回される所謂逆駆動時は、電動モータ2に発電負荷を与えて電動モータ2に回生制動作用を行わせることで、車両の運動エネルギーを回生してバッテリ5に蓄電する。
また車両走行中、電動モータ2が左右輪1L,1Rに連れ回される所謂逆駆動時は、電動モータ2に発電負荷を与えて電動モータ2に回生制動作用を行わせることで、車両の運動エネルギーを回生してバッテリ5に蓄電する。
<電動モータのトルク応答制御>
モータコントローラ4は、図2の機能別ブロック線図により示した演算により目標駆動力(目標加速度)の過渡値tTvを求め、この目標駆動力(目標加速度)過渡値tTvを実現可能なモータトルクを上記の目標モータトルクとしてインバータ6へ指令し、電動モータ2の駆動制御に資する。
モータコントローラ4は、図2の機能別ブロック線図により示した演算により目標駆動力(目標加速度)の過渡値tTvを求め、この目標駆動力(目標加速度)過渡値tTvを実現可能なモータトルクを上記の目標モータトルクとしてインバータ6へ指令し、電動モータ2の駆動制御に資する。
図2における目標駆動力(目標加速度)定常値演算部11は、予定の駆動力マップを基にアクセル開度APOおよび車速VSPから、運転者が要求している車両の目標駆動力(目標加速度)定常値Tvを演算する。
この目標駆動力(目標加速度)定常値Tvは、アクセルペダルがステップ的に踏み込まれてアクセル開度APOが0から一気に対応開度となり、以後このアクセル開度APOが維持される場合について示すと、図3の破線ごとき階段状の時系列変化をもって増大する。
この目標駆動力(目標加速度)定常値Tvをそのまま電動モータ2の駆動制御に資する場合、モータコントローラ4が、当該目標駆動力(目標加速度)定常値Tvを実現するモータトルクを目標モータトルクとしてインバータ6へ指令する。
このため電動モータ2のトルク応答は、電動モータ2の出力トルク特性に応じ一義的に決まってしまい、制御不能である。
このため電動モータ2のトルク応答は、電動モータ2の出力トルク特性に応じ一義的に決まってしまい、制御不能である。
一方で電動モータ2の最大出力トルクに係わるトルク特性は例えば図4に示すごとく、モータ回転数Nmの低い領域でモータトルクTmが高くなり、モータ回転数Nmの高い領域でモータトルクTmが低くなり、これら回転領域間のモータ回転領域Nm1~Nm2においてモータトルクTmが高い値から低い値へと急低下する、というように車両が必要とするトルク特性から大きく乖離する。
従って電動モータ2は、その出力トルク特性によって期待通りの要求加速度を実現することができず、運転者に車両走行性能(加速度感)が十分でないとの不満感を与えたり、トルクが過大で微妙な運転操作を行い難いと感じさせるような問題を生ずる。
かといって電動モータ2を走行動力源とする電気自動車の場合、変速機を設けて要求加速度が得られようにする一般的な手法を用いると、変速機が摩擦損失の増大要因になる上に、変速機の制御にエネルギーが消費されることから、走行距離が短くなるという決定的な問題を生じ、当該一般的な解決策は採用困難である。
かといって電動モータ2を走行動力源とする電気自動車の場合、変速機を設けて要求加速度が得られようにする一般的な手法を用いると、変速機が摩擦損失の増大要因になる上に、変速機の制御にエネルギーが消費されることから、走行距離が短くなるという決定的な問題を生じ、当該一般的な解決策は採用困難である。
そこで本実施例においては、電動モータ2が、内燃機関などの動力源と違って、出力トルクの応答性を制御し易く、また、このトルク応答制御により運転者が感じる加速度感を制御し得て、運転者に満足感を与え得るとの観点から、この着想を具体化して電動モータ2のトルク応答を以下のごとくに制御するようにしたものである。
そのため図2に示すごとく、本発明におけるモータトルク応答制御手段に相当するトルク応答決定係数演算部12および一次遅れ処理部13を設ける。
トルク応答決定係数演算部12は、図5に示す予定のトルク応答決定係数領域マップを基に、車速VSPおよびアクセル開度APOから、現在の運転状況(車速VSPおよびアクセル開度APO)において好適な電動モータ2のトルク応答を決定するための係数Kを求める。
トルク応答決定係数演算部12は、図5に示す予定のトルク応答決定係数領域マップを基に、車速VSPおよびアクセル開度APOから、現在の運転状況(車速VSPおよびアクセル開度APO)において好適な電動モータ2のトルク応答を決定するための係数Kを求める。
このトルク応答決定係数Kは図5に示すごとく、0と1との間を10段階に区切って、第1段階のトルク応答決定係数K=K1=0~0.1を最も低いトルク応答に対応させ、第10段階のトルク応答決定係数K=K10=0.9~1を最も高いトルク応答に対応させる。
そして第1段階から、第2段階のトルク応答決定係数K=K2=0.1~0.2、第3段階のトルク応答決定係数K=K3=0.2~0.3、第4段階のトルク応答決定係数K=K4=0.3~0.4、第5段階のトルク応答決定係数K=K5=0.4~0.5、第6段階のトルク応答決定係数K=K6=0.5~0.6、第7段階のトルク応答決定係数K=K7=0.6~0.7、第8段階のトルク応答決定係数K=K8=0.7~0.8、第9段階のトルク応答決定係数K=K9=0.8~0.9となるにつれて、順次高いトルク応答を割り付ける。
そして第1段階から、第2段階のトルク応答決定係数K=K2=0.1~0.2、第3段階のトルク応答決定係数K=K3=0.2~0.3、第4段階のトルク応答決定係数K=K4=0.3~0.4、第5段階のトルク応答決定係数K=K5=0.4~0.5、第6段階のトルク応答決定係数K=K6=0.5~0.6、第7段階のトルク応答決定係数K=K7=0.6~0.7、第8段階のトルク応答決定係数K=K8=0.7~0.8、第9段階のトルク応答決定係数K=K9=0.8~0.9となるにつれて、順次高いトルク応答を割り付ける。
図5は、運転状況(車速VSPおよびアクセル開度APO)ごとの好適な電動モータ2のトルク応答(トルク応答決定係数K)を示す領域マップで、運転状況ごとの好適なモータトルク応答(トルク応答決定係数K)については後で詳述する。
図2のトルク応答決定係数演算部12は、図5のトルク応答決定係数領域マップを基に車速VSPおよびアクセル開度APOから、電動モータ2のトルク応答制御に用いるトルク応答決定係数K(K1~K10)を求め、これを一次遅れ処理部13へ送信する。
図2のトルク応答決定係数演算部12は、図5のトルク応答決定係数領域マップを基に車速VSPおよびアクセル開度APOから、電動モータ2のトルク応答制御に用いるトルク応答決定係数K(K1~K10)を求め、これを一次遅れ処理部13へ送信する。
一次遅れ処理部13は、目標駆動力定常値演算部11で前記のごとくに求めた、図3に破線で例示する車両の目標駆動力(目標加速度)定常値Tvに対し、トルク応答決定係数演算部12からのトルク応答決定係数K(K1~K10)に対応した一次遅れフィルタ時定数による一次遅れ処理を施し、図3に実線で例示する目標駆動力(目標加速度)過渡値tTvを求める。
図3に実線で例示する目標駆動力(目標加速度)過渡値tTvは、上記の一次遅れフィルタ時定数、つまりトルク応答決定係数K(K1~K10)により決まる。
トルク応答決定係数K(K1~K10)が小さい場合は、目標駆動力(目標加速度)過渡値tTvが一点鎖線で例示するごとく、目標駆動力(目標加速度)定常値Tvに対する遅れが大きくなり、電動モータ2のトルク応答が低応答になることを意味する。
かかる低応答は、電動モータ2への同じトルク増大要求時でも、モータトルクの増大を緩やかに行わせることとなり、運転者は、微妙な駆動力の加減が必要な場合でも、そのための微妙な運転操作を行いやすいと感じることができる。
かかる低応答は、電動モータ2への同じトルク増大要求時でも、モータトルクの増大を緩やかに行わせることとなり、運転者は、微妙な駆動力の加減が必要な場合でも、そのための微妙な運転操作を行いやすいと感じることができる。
逆にトルク応答決定係数K(K1~K10)が大きい場合は、目標駆動力(目標加速度)過渡値tTvが二点鎖線で例示するごとく、目標駆動力(目標加速度)定常値Tvに対する遅れが小さくなり、電動モータ2のトルク応答が高応答になることを意味する。
かかる高応答は、電動モータ2への同じトルク増大要求時でも、モータトルクの増大を速やかに完遂させることとなり、運転者は、大きな駆動力が必要な場合において、そのための運転操作に見合った十分な加速度感を感じることができる。
かかる高応答は、電動モータ2への同じトルク増大要求時でも、モータトルクの増大を速やかに完遂させることとなり、運転者は、大きな駆動力が必要な場合において、そのための運転操作に見合った十分な加速度感を感じることができる。
図1のモータコントローラ4は、一次遅れ処理部13で上記のごとくに求めた目標駆動力(目標加速度)過渡値tTvを目標モータトルクとし、これが実現されるような電流を電動モータ2に供給すべくインバータ6を制御する。
図5の領域マップに示した、運転状況(車速VSPおよびアクセル開度APO)ごとの好適な電動モータ2のトルク応答(トルク応答決定係数K)を以下に詳述する。
(1)電動モータ2のトルク特性は図4に例示するごとく、モータ回転数NmがNm1未満の低回転域でモータトルクTmの最大値が他のモータ回転域よりも大きくなり、モータ回転数NmがNm2以上の高回転域でモータトルクTmの最大値が他のモータ回転域よりも小さくなるのが普通である。
このため、高回転域(高車速域)ではモータトルクTmが不足気味で、運転者は車両走行性能(加速度感)が十分でないとの不満感を持つ傾向にあり、逆に低回転域(低車速域)ではモータトルクが過大で、当該回転域において要求されることの多い微妙な駆動力制御用のデリケートな運転操作を行い難いと運転者は感じやすい。
このため、高回転域(高車速域)ではモータトルクTmが不足気味で、運転者は車両走行性能(加速度感)が十分でないとの不満感を持つ傾向にあり、逆に低回転域(低車速域)ではモータトルクが過大で、当該回転域において要求されることの多い微妙な駆動力制御用のデリケートな運転操作を行い難いと運転者は感じやすい。
そこで本実施例においては図5に示すように、また図5の領域マップを車速VSPがV1~V6である場合につき描き直した図6、および、図5の領域マップをアクセル開度APOが0,A1~A6である場合につき描き直した図7から明らかなごとく、車速VSPが低いときはトルク応答決定係数Kを小さくして電動モータ2のトルク応答を低応答にし、車速VSPが高い高車速時ほどトルク応答決定係数Kを大きくして電動モータ2のトルク応答を高応答にする。
ただし、電動モータ2のトルク応答を高応答にし過ぎると、モータ駆動系に捩り振動を生じて車両の乗り心地を悪化させることから、電動モータ2のトルク応答を高応答にするときは、車速VSPごとに異なるものの、モータ駆動系が捩り振動を生じない範囲内で最も高い高応答にする必要がある。
(2) 一方、アクセル開度APO(電動モータ2に対する要求負荷)が小さい小負荷領域においては、運転者はデリケートな運転操作により微妙な駆動力制御を要求されることが多く、この間に電動モータ2のトルク応答が高応答だと、運転者は上記のデリケートな運転操作を行い難いと感じる。
またアクセル開度APOが小さい小負荷領域においては、運転者が無意識のうちにアクセルペダルから足を離して釈放することがあり、この間に電動モータ2のトルク応答が高応答だと、上記無意識のアクセルペダル釈放時に急減速が行われて乗員を不快にさせる。
逆に、アクセル開度APO(電動モータ2に対する要求負荷)が大きい大負荷領域においては、運転者が大きな駆動力による十分な加速度を必要としているところながら、この間に電動モータ2のトルク応答が低応答だと、運転者はアクセルペダル操作により予測したほどの加速度感を感じ得ず、走行性能(加速度感)が十分でないとの不満を持つことになる。
またアクセル開度APOが小さい小負荷領域においては、運転者が無意識のうちにアクセルペダルから足を離して釈放することがあり、この間に電動モータ2のトルク応答が高応答だと、上記無意識のアクセルペダル釈放時に急減速が行われて乗員を不快にさせる。
逆に、アクセル開度APO(電動モータ2に対する要求負荷)が大きい大負荷領域においては、運転者が大きな駆動力による十分な加速度を必要としているところながら、この間に電動モータ2のトルク応答が低応答だと、運転者はアクセルペダル操作により予測したほどの加速度感を感じ得ず、走行性能(加速度感)が十分でないとの不満を持つことになる。
そこで本実施例においては図5~7から明らかなごとく、アクセル開度APO(電動モータ2に対する要求負荷)が小さいときは、トルク応答決定係数Kを小さくして電動モータ2のトルク応答を低応答にし、アクセル開度APO(電動モータ2に対する要求負荷)が大きい大負荷になるほど、トルク応答決定係数Kを大きくして電動モータ2のトルク応答を高応答にする。
この場合も電動モータ2の高トルク応答は、モータ駆動系に捩り振動が生じて車両の乗り心地が悪くならない範囲内で最も高い高応答にする必要があるのは言うまでもない。
この場合も電動モータ2の高トルク応答は、モータ駆動系に捩り振動が生じて車両の乗り心地が悪くならない範囲内で最も高い高応答にする必要があるのは言うまでもない。
(3) 極低車速、且つ極小負荷のクリープ走行領域(図5のα領域)では、上記した(1),(2)によるとトルク応答決定係数Kを最小のK1にして電動モータ2のトルク応答を最低応答にすることになるが、当該クリープ走行領域では、アクセルペダルを殆ど踏み込まない走行故に、或る程度の加速が必要であることから、トルク応答決定係数Kを最小のK1よりも1段階大きなK2にして電動モータ2のトルク応答を最低応答よりも1段階だけ高応答にする。
(4)図4に示すようにモータ回転数Nmの上昇につれモータトルクTmが急低下するモータ回転域Nm1~Nm2においては、運転者が回転上昇(車速上昇)に伴うモータトルクTmの急低下によって加速度不足を感じることから、モータトルク応答の速やかな高応答化によりこれを補って、運転者がこの加速度不足をできるだけ感じないようにする必要がある。
そこで本実施例においては図5に示すごとく、上記のモータ回転域Nm1~Nm2に対応する中車速域V3~V5において、車速VSPに応じたトルク応答決定係数Kの変化密度、つまり車速VSPに応じた電動モータ2のトルク応答変化密度を、他の車速域におけるトルク応答決定係数Kの変化密度(トルク応答変化密度)よりも高密度にする。
そこで本実施例においては図5に示すごとく、上記のモータ回転域Nm1~Nm2に対応する中車速域V3~V5において、車速VSPに応じたトルク応答決定係数Kの変化密度、つまり車速VSPに応じた電動モータ2のトルク応答変化密度を、他の車速域におけるトルク応答決定係数Kの変化密度(トルク応答変化密度)よりも高密度にする。
(5) 図5にβで示す領域、つまりアクセル開度APOをA4未満にした小・中負荷、車速VSPがV3以上の中・高車速域においては、当該中・高車速域でのアクセルペダル踏み込み時における加速応答が重視される。
この要求に鑑み本実施例においては図5のβ領域に示すごとく、APO<A4の小・中負荷域、VSP≧V3の中・高車速域で、アクセル開度APO(要求負荷)に応じたトルク応答決定係数Kの変化密度、つまりアクセル開度APO(要求負荷)に応じた電動モータ2のトルク応答変化密度を、APO≧A4大負荷域におけるトルク応答決定係数Kの変化密度(トルク応答変化密度)よりも高密度にする。
この要求に鑑み本実施例においては図5のβ領域に示すごとく、APO<A4の小・中負荷域、VSP≧V3の中・高車速域で、アクセル開度APO(要求負荷)に応じたトルク応答決定係数Kの変化密度、つまりアクセル開度APO(要求負荷)に応じた電動モータ2のトルク応答変化密度を、APO≧A4大負荷域におけるトルク応答決定係数Kの変化密度(トルク応答変化密度)よりも高密度にする。
なおAPO≧A4大負荷域においては、前記した(2)の領域設定によりトルク応答決定係数Kが、車速VSPごとに決まる最高の値にされ、電動モータ2のトルク応答を最高応答にするため、かかる大負荷により運転者が要求する最高の加速度感を、運転者に確実に感じさせることができる。
ここにおける電動モータ2の最高トルク応答は前記した通り、モータ駆動系に捩り振動が生じて車両の乗り心地が悪くならない範囲内の最も高い高応答で、車速VSPごとに異なる。
ここにおける電動モータ2の最高トルク応答は前記した通り、モータ駆動系に捩り振動が生じて車両の乗り心地が悪くならない範囲内の最も高い高応答で、車速VSPごとに異なる。
<作用効果>
本実施例の図5に基づく電動モータ2のトルク応答制御によれば、以下に説明する作用効果を得ることができる。
(1)つまり、車速VSP(モータ回転数Nm)が低いときはトルク応答決定係数Kを小さくして電動モータ2のトルク応答を低応答にし、車速VSP(モータ回転数Nm)が高くなるにつれトルク応答決定係数Kを大きくして電動モータ2のトルク応答を高応答にするため、以下の効果が奏し得られる。
本実施例の図5に基づく電動モータ2のトルク応答制御によれば、以下に説明する作用効果を得ることができる。
(1)つまり、車速VSP(モータ回転数Nm)が低いときはトルク応答決定係数Kを小さくして電動モータ2のトルク応答を低応答にし、車速VSP(モータ回転数Nm)が高くなるにつれトルク応答決定係数Kを大きくして電動モータ2のトルク応答を高応答にするため、以下の効果が奏し得られる。
つまり、図4に例示したごとく低回転域(低車速域)ではモータトルクTmが大きく、当該低回転域(低車速域)において要求されることの多い微妙な駆動力制御用のデリケートな運転操作を行い難いと運転者が感じやすいところながら、本実施例においては、かかる低回転域(低車速域)でトルク応答決定係数Kを小さくして電動モータ2のトルク応答を低応答にするため、運転者は上記した微妙な駆動力制御用のデリケートな運転操作を容易に行うことができる。
逆に、高回転域(高車速域)ではモータトルクTmが図4に例示したごとく小さく、当該高回転域(高車速域)においてモータトルクの不足気味により運転者は車両走行性能(加速度感)が十分でないとの不満感を持つ傾向にあるが、本実施例においては、車速VSP(モータ回転数Nm)が高くなるにつれトルク応答決定係数Kを大きくして電動モータ2のトルク応答を高応答にするため、トルク上昇が速くて加速度感に関する上記の不満を解消、若しくは少なくとも緩和することができる。
(2)また、アクセル開度APO(電動モータ2に対する要求負荷)が小さい小負荷時は、トルク応答決定係数Kを小さくして電動モータ2のトルク応答を低応答にし、大負荷になるほど、トルク応答決定係数Kを大きくして電動モータ2のトルク応答を高応答にするため、以下の効果が奏し得られる。
つまり、アクセル開度APOを小さくした小負荷領域においては、運転者はデリケートな運転操作により微妙な駆動力制御を要求されることが多く、この間に電動モータ2のトルク応答が高応答だと、運転者は上記のデリケートな運転操作を行い難いと感じる。
またアクセル開度APOが小さい小負荷領域においては、運転者が無意識のうちにアクセルペダルから足を離して釈放することがあり、この間に電動モータ2のトルク応答が高応答だと、上記無意識のアクセルペダル釈放時に急減速が行われて乗員を不快にさせる。
またアクセル開度APOが小さい小負荷領域においては、運転者が無意識のうちにアクセルペダルから足を離して釈放することがあり、この間に電動モータ2のトルク応答が高応答だと、上記無意識のアクセルペダル釈放時に急減速が行われて乗員を不快にさせる。
しかし本実施例によれば、かかる小負荷領域ではトルク応答決定係数Kを小さくして電動モータ2のトルク応答を低応答にしているため、運転者は上記のデリケートな運転操作を容易におこなうことができ、この運転操作を行い難いと感じることがない。
またかかる小負荷領域において、運転者が無意識のうちにアクセルペダルから足を離して釈放することがあっても、電動モータ2のトルク応答を低応答にしているため、当該アクセルペダル釈放時に急減速が行われて乗員を不快にさせるという問題も生じない。
またかかる小負荷領域において、運転者が無意識のうちにアクセルペダルから足を離して釈放することがあっても、電動モータ2のトルク応答を低応答にしているため、当該アクセルペダル釈放時に急減速が行われて乗員を不快にさせるという問題も生じない。
逆に、アクセル開度APOが大きい大負荷領域においては、運転者が大きな駆動力による十分な加速度を必要としているところながら、この間に電動モータ2のトルク応答が低応答だと、運転者はアクセルペダル操作により予測したほどの加速度感を感じ得ず、不満を持つことになる。
しかし本実施例によれば、大負荷になるほど、トルク応答決定係数Kを大きくして電動モータ2のトルク応答を高応答にするため、トルク上昇が速くて、運転者はアクセルペダル操作により予測した通りの、若しくは少なくともこれに近い加速度感を感じることができ、加速度感に関する上記の不満を解消、若しくは少なくとも緩和することができる。
しかし本実施例によれば、大負荷になるほど、トルク応答決定係数Kを大きくして電動モータ2のトルク応答を高応答にするため、トルク上昇が速くて、運転者はアクセルペダル操作により予測した通りの、若しくは少なくともこれに近い加速度感を感じることができ、加速度感に関する上記の不満を解消、若しくは少なくとも緩和することができる。
(3)ところで上記した(1),(2)の車速VSPおよびアクセル開度APOに応じたトルク応答制御によれば、極低車速、且つ極小負荷のクリープ走行領域(図5のα領域)でトルク応答決定係数Kを最小のK1にして電動モータ2のトルク応答を最低応答にすることになる。
しかして当該クリープ走行領域では、アクセルペダルを殆ど踏み込まない走行故に、或る程度の加速が必要であり、最低トルク応答によっては所定のクリープ走行を行い難い。
しかして当該クリープ走行領域では、アクセルペダルを殆ど踏み込まない走行故に、或る程度の加速が必要であり、最低トルク応答によっては所定のクリープ走行を行い難い。
しかるに本実施例では、当該クリープ走行領域においてトルク応答決定係数Kを最小のK1よりも1段階大きなK2にして電動モータ2のトルク応答を最低応答よりも1段階だけ高応答にするため、クリープ走行で要求される程度の加速が可能となり、クリープ走行を行うことができる。
(4)更に本実施例においては、図4に示すようにモータ回転数Nmの上昇につれモータトルクTmが急低下するモータ回転域Nm1~Nm2に対応する中車速域V3~V5において、車速VSPに応じたトルク応答決定係数Kの変化密度、つまり車速VSPに応じた電動モータ2のトルク応答変化密度を、他の車速域におけるトルク応答決定係数Kの変化密度(トルク応答変化密度)よりも高密度にするため、以下のような作用効果を奏し得る。
つまり、図4に示すようにモータ回転数Nmの上昇につれモータトルクTmが急低下するモータ回転域Nm1~Nm2においては、運転者が回転上昇(車速上昇)に伴うモータトルクTmの急低下によって加速度不足を感じる。
しかし本実施例においては、このモータ回転域Nm1~Nm2に対応する中車速域V3~V5で、車速VSPに応じたトルク応答決定係数Kの変化密度(車速VSPに応じた電動モータ2のトルク応答変化密度)を、他の車速域におけるトルク応答決定係数Kの変化密度(トルク応答変化密度)よりも高密度にするため、当該モータ回転域Nm1~Nm2(中車速域V3~V5)においてモータトルク応答の速やかな高応答化が可能となり、これにより、上記したモータトルクTmの急低下による加速度不足を補って、運転者がこの加速度不足をできるだけ感じないようにすることができる。
(5) 加えて実施例では、アクセル開度APOをA4未満にした小・中負荷、車速VSPがV3以上の中・高車速域において(図5のβ領域参照)、アクセル開度APO(要求負荷)に応じたトルク応答決定係数Kの変化密度、つまりアクセル開度APO(要求負荷)に応じた電動モータ2のトルク応答変化密度を、APO≧A4大負荷域におけるトルク応答決定係数Kの変化密度(トルク応答変化密度)よりも高密度にするため、以下のような作用効果を奏し得る。
つまり、当該小・中負荷、中・高車速域においては(図5のβ領域においては)、当該中・高車速域でのアクセルペダル踏み込み時における加速応答が重視される。
本実施例のように、当該領域で図5のβ領域に示すごとく、APO<A4の小・中負荷域、VSP≧V3の中・高車速域で、アクセル開度APO(要求負荷)に応じたトルク応答決定係数Kの変化密度、つまりアクセル開度APO(要求負荷)に応じた電動モータ2のトルク応答変化密度を、APO≧A4大負荷域におけるトルク応答決定係数Kの変化密度(トルク応答変化密度)よりも高密度にするため、上記した中・高車速域でのアクセルペダル踏み込み時に重視される加速応答が向上され、この時における運転者の要求を確実に満足させることができる。
本実施例のように、当該領域で図5のβ領域に示すごとく、APO<A4の小・中負荷域、VSP≧V3の中・高車速域で、アクセル開度APO(要求負荷)に応じたトルク応答決定係数Kの変化密度、つまりアクセル開度APO(要求負荷)に応じた電動モータ2のトルク応答変化密度を、APO≧A4大負荷域におけるトルク応答決定係数Kの変化密度(トルク応答変化密度)よりも高密度にするため、上記した中・高車速域でのアクセルペダル踏み込み時に重視される加速応答が向上され、この時における運転者の要求を確実に満足させることができる。
なおAPO≧A4大負荷域においては、前記した(2)のトルク応答制御によりトルク応答決定係数Kが、車速VSPごとに決まる最高の値にされ、電動モータ2のトルク応答を車速VSPごとに可能な最高応答にするため、かかる大負荷により運転者が要求する最高の加速度感を運転者に確実に感じさせることができる。
ところで本実施例においては、電動モータ2のトルク応答を最高応答にするに際し、いずれの場合も前記した通り、車速VSPごとに異なるが、モータ駆動系に捩り振動が生じて車両の乗り心地が悪くならない範囲内の最も高い高応答にするため、モータ駆動系の捩り振動で車両の乗り心地が悪くならないようにするという条件を満足しつつ、モータトルク応答を最高応答にすることによる前記の作用効果を享受することができる。
Claims (9)
- 電動モータからのトルクにより車輪を駆動して走行可能な車両において、
車両運転状況の変化に応じた要求加速度と、同じ車両運転状況の変化時に前記電動モータのトルク特性で得られる実加速度との違いを補って、要求加速度に対する実加速度の乖離を運転者が小さく感じるよう前記電動モータのトルク応答を制御するモータトルク応答制御手段を設けた車両用電動モータのトルク応答制御装置。 - 請求項1に記載された車両用電動モータのトルク応答制御装置において、
前記モータトルク応答制御手段は、車速に応じて前記電動モータのトルク応答を制御するものである車両用電動モータのトルク応答制御装置。 - 請求項1または2に記載された車両用電動モータのトルク応答制御装置において、
前記モータトルク応答制御手段は、前記電動モータに対する要求負荷に応じて電動モータのトルク応答を制御するものである車両用電動モータのトルク応答制御装置。 - 請求項2または3に記載された車両用電動モータのトルク応答制御装置において、
前記モータトルク応答制御手段は、前記車速が高い高車速時ほど前記電動モータのトルク応答を高応答にするものである車両用電動モータのトルク応答制御装置。 - 請求項3または4に記載された車両用電動モータのトルク応答制御装置において、
前記モータトルク応答制御手段は、前記電動モータに対する要求負荷が大きい大負荷時ほど前記電動モータのトルク応答を高応答にするものである車両用電動モータのトルク応答制御装置。 - 請求項3~5のいずれか1項に記載された車両用電動モータのトルク応答制御装置において、
前記モータトルク応答制御手段は、極低車速、且つ極小負荷のクリープ走行領域で、前記電動モータのトルク応答を最低応答よりも高応答にするものである車両用電動モータのトルク応答制御装置。 - 請求項2~6のいずれか1項に記載された車両用電動モータのトルク応答制御装置において、
前記モータトルク応答制御手段は、前記電動モータのトルク特性が急な変化割合を呈する中車速域において、車速に応じた前記電動モータのトルク応答変化密度を、他の車速域におけるトルク応答変化密度よりも高密度にしたものである車両用電動モータのトルク応答制御装置。 - 請求項3~7のいずれか1項に記載された車両用電動モータのトルク応答制御装置において、
前記モータトルク応答制御手段は、小・中負荷、中・高車速域において、負荷に応じた前記電動モータのトルク応答変化密度を、大負荷域におけるトルク応答変化密度よりも高密度にしたものである車両用電動モータのトルク応答制御装置。 - 請求項3~8のいずれか1項に記載された車両用電動モータのトルク応答制御装置において、
前記モータトルク応答制御手段は、大負荷域における前記電動モータの最高トルク応答を、モータ駆動系の捩り振動が発生しない範囲内で最も高い応答とするものである車両用電動モータのトルク応答制御装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201180024171.2A CN102892618B (zh) | 2010-05-31 | 2011-04-14 | 车辆用电动机的扭矩响应控制装置 |
US13/700,356 US9002556B2 (en) | 2010-05-31 | 2011-04-14 | Torque response control apparatus for electric motor of vehicle |
EP11789538.3A EP2578439B1 (en) | 2010-05-31 | 2011-04-14 | Torque response control apparatus for electric motor of vehicle |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-123779 | 2010-05-31 | ||
JP2010123779A JP5516081B2 (ja) | 2010-05-31 | 2010-05-31 | 車両用電動モータのトルク応答制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011152128A1 true WO2011152128A1 (ja) | 2011-12-08 |
Family
ID=45066513
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/059251 WO2011152128A1 (ja) | 2010-05-31 | 2011-04-14 | 車両用電動モータのトルク応答制御装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9002556B2 (ja) |
EP (1) | EP2578439B1 (ja) |
JP (1) | JP5516081B2 (ja) |
CN (1) | CN102892618B (ja) |
WO (1) | WO2011152128A1 (ja) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5857781B2 (ja) * | 2012-02-15 | 2016-02-10 | 日産自動車株式会社 | 電動モータを用いた車両の制振制御装置 |
CN103481797B (zh) * | 2012-06-14 | 2016-06-22 | 财团法人车辆研究测试中心 | 动力控制装置 |
US9045045B2 (en) * | 2013-02-28 | 2015-06-02 | Komatsu Ltd. | Work vehicle |
CN104417537B (zh) * | 2013-08-26 | 2018-03-13 | 长沙市比亚迪汽车有限公司 | 控制电动车驱动、制动的系统、电动车及其控制方法 |
JP6211353B2 (ja) | 2013-09-03 | 2017-10-11 | Ntn株式会社 | 電気自動車の制御装置 |
JP6146396B2 (ja) * | 2014-11-14 | 2017-06-14 | トヨタ自動車株式会社 | 電動モーターによって駆動する車両、および、その車両の制御方法 |
KR20170124357A (ko) * | 2016-05-02 | 2017-11-10 | 현대자동차주식회사 | 친환경 자동차의 안티-저크 제어 시스템 및 방법 |
CN107444195A (zh) * | 2017-08-21 | 2017-12-08 | 合肥君信信息科技有限公司 | 一种电动汽车二次急加速抖动控制方法 |
CN108715139B (zh) * | 2018-05-30 | 2021-05-07 | 北京新能源汽车股份有限公司 | 一种电动汽车的扭矩控制方法、装置和设备 |
JP7135915B2 (ja) * | 2019-02-12 | 2022-09-13 | トヨタ自動車株式会社 | 電動車両の制御装置 |
CN111746294B (zh) | 2019-03-28 | 2022-07-12 | 台达电子工业股份有限公司 | 电动机车的加速补偿系统及加速补偿方法 |
TWI691418B (zh) * | 2019-03-28 | 2020-04-21 | 台達電子工業股份有限公司 | 電動機車的加速補償系統及加速補償方法 |
CN112092646B (zh) * | 2020-08-18 | 2022-01-04 | 北汽福田汽车股份有限公司 | 车辆控制方法和装置、存储介质、车辆 |
CN113511211B (zh) * | 2021-05-31 | 2022-09-06 | 重庆长安汽车股份有限公司 | 一种基于电动汽车电驱系统的扭振控制方法 |
CN114211972B (zh) * | 2021-12-31 | 2024-04-09 | 一重集团(黑龙江)农业机械发展有限公司 | 一种基于电机曲线的拖拉机控制方法、装置及存储介质 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10164704A (ja) * | 1996-11-27 | 1998-06-19 | Nissan Motor Co Ltd | 電気自動車のモーター駆動制御装置 |
JPH10201013A (ja) * | 1997-01-10 | 1998-07-31 | Mitsubishi Motors Corp | 電気自動車用モータ制御装置 |
JPH11205913A (ja) * | 1998-01-20 | 1999-07-30 | Toyota Motor Corp | 車両推進用モータの出力制御装置 |
JP2001025109A (ja) * | 1999-07-05 | 2001-01-26 | Mitsubishi Motors Corp | 電気自動車のモータトルク制御装置 |
JP2003111213A (ja) | 2001-10-01 | 2003-04-11 | Fuji Heavy Ind Ltd | 電気自動車の制御装置 |
JP2006274962A (ja) * | 2005-03-30 | 2006-10-12 | Toyota Motor Corp | 車両の駆動力制御装置 |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3216501B2 (ja) * | 1995-10-13 | 2001-10-09 | トヨタ自動車株式会社 | ハイブリッド駆動装置 |
US6078859A (en) * | 1997-08-04 | 2000-06-20 | Ford Global Technologies, Inc. | System and method for torque based vehicle speed control |
JP3096447B2 (ja) * | 1997-09-17 | 2000-10-10 | 本田技研工業株式会社 | ハイブリッド車両の制御装置 |
US6249097B1 (en) * | 1997-11-21 | 2001-06-19 | Valeo Electrical Systems, Inc. | Optimum motor speed control system |
US6327524B1 (en) * | 2000-04-28 | 2001-12-04 | Ford Global Technologies, Inc. | System for high efficiency motor control |
US7122979B2 (en) * | 2000-12-27 | 2006-10-17 | Transportation Techniques, Llc | Method and apparatus for selective operation of a hybrid electric vehicle in various driving modes |
US7090613B2 (en) * | 2004-05-15 | 2006-08-15 | General Motors Corporation | Method of providing electric motor torque reserve in a hybrid electric vehicle |
US7254472B2 (en) * | 2005-02-09 | 2007-08-07 | General Motors Corporation | Coordinated torque control security method and apparatus |
JP2006298317A (ja) * | 2005-04-25 | 2006-11-02 | Toyota Motor Corp | 駆動力制御装置 |
WO2007118082A2 (en) * | 2006-04-03 | 2007-10-18 | Bluwav Systems, Llc | Vehicle power unit designed as retrofittable axle comprising motor, battery and suspension |
US20070296281A1 (en) * | 2006-06-07 | 2007-12-27 | Husky Injection Molding Systems Ltd. | Electrical motor |
JP4245069B2 (ja) * | 2007-06-27 | 2009-03-25 | トヨタ自動車株式会社 | 車両用制御装置及び車両駆動制御方法 |
WO2009003380A1 (en) * | 2007-06-29 | 2009-01-08 | Byd Company Limited | Hybrid power driving system and the driving method |
JP4874192B2 (ja) * | 2007-08-10 | 2012-02-15 | 株式会社デンソー | 車両用制御装置及び制御システム |
US9008926B2 (en) * | 2007-11-04 | 2015-04-14 | GM Global Technology Operations LLC | Control of engine torque during upshift and downshift torque phase for a hybrid powertrain system |
CN101259845A (zh) * | 2007-12-05 | 2008-09-10 | 奇瑞汽车股份有限公司 | 一种混合动力电机扭矩平滑处理控制系统 |
JP5401999B2 (ja) * | 2008-03-03 | 2014-01-29 | 日産自動車株式会社 | 車両のトラクション制御装置 |
US8430789B2 (en) * | 2009-01-08 | 2013-04-30 | Aisin Aw Co., Ltd. | Vehicle control device |
US20100240491A1 (en) * | 2009-03-17 | 2010-09-23 | Parag Vyas | System for vehicle propulsion having and method of making same |
JP5302749B2 (ja) * | 2009-04-20 | 2013-10-02 | 富士重工業株式会社 | 電気自動車の制御装置 |
JP5062494B2 (ja) * | 2009-10-30 | 2012-10-31 | アイシン・エィ・ダブリュ株式会社 | 車両用制御装置 |
US9020726B2 (en) * | 2009-11-04 | 2015-04-28 | Daimler Trucks North America Llc | Vehicle torque management |
-
2010
- 2010-05-31 JP JP2010123779A patent/JP5516081B2/ja active Active
-
2011
- 2011-04-14 WO PCT/JP2011/059251 patent/WO2011152128A1/ja active Application Filing
- 2011-04-14 US US13/700,356 patent/US9002556B2/en active Active
- 2011-04-14 EP EP11789538.3A patent/EP2578439B1/en active Active
- 2011-04-14 CN CN201180024171.2A patent/CN102892618B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10164704A (ja) * | 1996-11-27 | 1998-06-19 | Nissan Motor Co Ltd | 電気自動車のモーター駆動制御装置 |
JPH10201013A (ja) * | 1997-01-10 | 1998-07-31 | Mitsubishi Motors Corp | 電気自動車用モータ制御装置 |
JPH11205913A (ja) * | 1998-01-20 | 1999-07-30 | Toyota Motor Corp | 車両推進用モータの出力制御装置 |
JP2001025109A (ja) * | 1999-07-05 | 2001-01-26 | Mitsubishi Motors Corp | 電気自動車のモータトルク制御装置 |
JP2003111213A (ja) | 2001-10-01 | 2003-04-11 | Fuji Heavy Ind Ltd | 電気自動車の制御装置 |
JP2006274962A (ja) * | 2005-03-30 | 2006-10-12 | Toyota Motor Corp | 車両の駆動力制御装置 |
Also Published As
Publication number | Publication date |
---|---|
EP2578439B1 (en) | 2021-02-17 |
EP2578439A1 (en) | 2013-04-10 |
JP5516081B2 (ja) | 2014-06-11 |
CN102892618A (zh) | 2013-01-23 |
JP2011250647A (ja) | 2011-12-08 |
EP2578439A4 (en) | 2017-10-18 |
US9002556B2 (en) | 2015-04-07 |
CN102892618B (zh) | 2015-05-13 |
US20130124024A1 (en) | 2013-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5516081B2 (ja) | 車両用電動モータのトルク応答制御装置 | |
JP5247000B2 (ja) | 車両のコースト減速制御装置 | |
JP5839045B2 (ja) | ハイブリッド車 | |
CN212289508U (zh) | 车辆加速踏板组件 | |
RU2729837C1 (ru) | Способ и устройство управления электромотором для транспортного средства с электроприводом | |
KR101807012B1 (ko) | 하이브리드 전기자동차의 제어장치 및 방법 | |
JP6915696B2 (ja) | 回生ブレーキ制御方法及び回生ブレーキ制御装置 | |
JP5333683B1 (ja) | ハイブリッド車 | |
CN103043056A (zh) | 控制车轮轴扭矩的方法和用于其的控制系统 | |
CN107487327B (zh) | 扭矩控制方法、控制系统和车辆 | |
JP2012062039A (ja) | ハイブリッド車両の制御装置及び方法 | |
US20150266415A1 (en) | Brake lamp control device | |
JP2013023052A (ja) | ハイブリッド車両の制御装置 | |
GB2594292A (en) | Torque request modification strategies for vehicles | |
JP2010241245A (ja) | 車両用駆動力制御装置 | |
JP2018033290A (ja) | 電気自動車 | |
JP2016144284A (ja) | 電動車両 | |
JP2011218930A (ja) | 車両の動力伝達制御装置 | |
JPH10304508A (ja) | 電気自動車のモータ制御装置 | |
JP2020033884A (ja) | 車両の制御方法及び制御装置 | |
JP2005269793A (ja) | ハイブリッド車両 | |
JP3894049B2 (ja) | ハイブリッド車両とその制御装置 | |
JP2019018646A (ja) | ハイブリッド車両の制動力制御装置 | |
JP5900633B2 (ja) | 車両用制御装置及び車両の制御方法 | |
JP2016088441A (ja) | ハイブリッド駆動車両の出力制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180024171.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11789538 Country of ref document: EP Kind code of ref document: A1 |
|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2011789538 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13700356 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |