TWI691418B - 電動機車的加速補償系統及加速補償方法 - Google Patents

電動機車的加速補償系統及加速補償方法 Download PDF

Info

Publication number
TWI691418B
TWI691418B TW108111043A TW108111043A TWI691418B TW I691418 B TWI691418 B TW I691418B TW 108111043 A TW108111043 A TW 108111043A TW 108111043 A TW108111043 A TW 108111043A TW I691418 B TWI691418 B TW I691418B
Authority
TW
Taiwan
Prior art keywords
throttle
change rate
compensation
electric locomotive
acceleration
Prior art date
Application number
TW108111043A
Other languages
English (en)
Other versions
TW202035202A (zh
Inventor
黃建評
謝忠安
黃祥熙
黃正賢
Original Assignee
台達電子工業股份有限公司
光陽工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台達電子工業股份有限公司, 光陽工業股份有限公司 filed Critical 台達電子工業股份有限公司
Priority to TW108111043A priority Critical patent/TWI691418B/zh
Application granted granted Critical
Publication of TWI691418B publication Critical patent/TWI691418B/zh
Publication of TW202035202A publication Critical patent/TW202035202A/zh

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一種電動機車的加速補償系統,應用於具有油門單元、處理器及電機構件的電動機車,其中處理器包括加速補償計算模組、油門補償計算模組以及扭矩控制模組。電動機車啟動後,由油門單元接受駕駛人操作以產生原始油門訊號。加速補償計算模組依據原始油門訊號及油門單元操作幅度之變化計算油門變化率,並於油門變化率大或等於補正門檻時依據油門變化率計算油門補償量。油門補償計算模組接收並加總原始油門訊號以及油門補償量以產生新油門訊號。扭矩控制模組依據新油門訊號產生對應的扭矩指令,並將扭矩指令輸出至電機構件,以令電機構件進行對應運作。

Description

電動機車的加速補償系統及加速補償方法
本發明涉及電動機車,尤其涉及電動機車的加速補償系統以及加速補償方法。
隨著環保意識抬頭以及電力電子技術的進步,近年來電動車的技術開始蓬勃發展。其中,又屬電動機車的應用範疇最廣大且最具市場性,加上電動機車的成本與技術門檻較低,因此相較於電動汽車,電動機車的發展更為迅速。
然而,傳統的燃油機車因為綜合了自動變速器例如CVT(Continuously Variable Transmission),傳動特性以及燃油引擎的動力曲線不同,其操控感與騎乘感皆比電動機車更勝一籌,這是目前的電動機車騎乘感無法與傳統的燃油機車媲美的地方。
具體地,燃油機車可透過引擎晶片所設計的補償機制而在短時間內獲得較大的輸出扭矩,進而令駕駛人感到明顯的加速感。相對之下,電動機車的加速一般為線性的動力曲線,雖然這樣的加速方式令駕駛人可以精準地 對電動機車進行控制,但也因為騎乘感太過平順而缺少了爆發力,進而影響騎乘感。
參閱圖1A及圖1B,分別為相關技術的電動機車的方塊圖及加速曲線的示意圖。
如圖1A所示,現有的電動機車1主要包括油門單元11、扭矩控制模組12以及電機構件13,其中電機構件13包含了電瓶、馬達等與電動機車1的運作有關的內部元件,但不加以限定。
當油門單元11接受駕駛人的操作後,會輸出油門訊號(TPS)至扭矩控制模組12。扭矩控制模組12依據油門訊號產生了對應的扭矩指令(TqCmd)後,再將扭矩指令輸出至電機構件13,以令電機構件13進行對應運作並帶動電動機車1移動。
如圖1B所示,在相關技術中,油門訊號在任何操作區間都會被對應至固定比例的扭矩指令。由圖1B可看出,相關技術中的電動機車1的加速曲線相當線性,因此在急加速時缺乏了爆發力。
於相關技術中,部分的電動機車會採用了二次曲線或多點TN設計曲線的方式來提供一個較為彈性的輸出。然而,這樣的特性仍然無法達到一般燃油機車藉由引擎晶片補償所能實現的加速效果。
有鑑於此,市場上實需提供一種補償系統與補償方法,可令電動機車達到如同燃油機車藉由引擎所實現的加速效果。
本發明的主要目的,在於提供一種電動機車的加速補償系統及加速補償方法,可藉由偵測瞬間的油門變化率來對輸出扭矩進行高速響應補償,以令電動機車能在短時間內提供高效率的加速性能。
為了達成上述的目的,本發明的電動機車的加速補償系統主要包括:一油門單元,接受外部操作,並依據操作幅度產生對應的一原始油門訊號;一處理器,電性連接該油門單元,包括一加速補償計算模組、一油門補償計算模組及一扭矩控制模組,其中該加速補償計算模組接收該原始油門訊號並依據該油門單元操作幅度之變化計算一油門變化率,並且依據該油門變化率計算一油門補償量;該油門補償計算模組加總該原始油門訊號與該油門補償量以產生一新油門訊號;該扭矩控制模組依據該新油門訊號產生對應的一扭矩指令;及一電機構件,電性連接該處理器,自該處理器接收該扭矩指令,並依據該扭矩指令進行對應運作,其中該加速補償計算模組持續監控該油門單元操作幅度之變化,且該加速補償計算模組於計算該油門變化率後將該油門變化率與一補正門檻進行比較,並且於該油門變化率大於或等於該補正門檻時啟動加速補償並計算該油門補償量。
為了達成上述的目的,本發明的電動機車的加速補償方法主要包括下列步驟:a)接受外部操作以產生一原始油門訊號; b)依據該原始油門訊號計算一油門變化率;c)將該油門變化率與一補正門檻進行比較;d)於該油門變化率大於或等於該補正門檻時,依據該油門變化率計算一油門補償量;e)加總該原始油門訊號與該油門補償量以產生一新油門訊號;f)依據該新油門訊號產生對應的一扭矩指令;g)由該電動機車的該電機構件接收該扭矩指令,並依據該扭矩指令進行對應運作;及h)重覆執行該步驟a)至該步驟g)直至該電動機車關閉。
相對於相關技術,本發明依據油門變化率來對輸出扭矩進行補償,藉此可令輸出扭矩在短時間內到達極限,進而令電動機車達到類似燃油引擎配合晶片補償所能帶來的加速性能。
另外,本發明可綜合考量多項因素來調整系統所採用的補正係數,藉此在補償輸出扭矩的同時,令電動機車仍可兼具舒適性、安全性與節能之效果。
1、2:電動機車
11、21:油門單元
12:扭矩控制模組
13、23:電機構件
22:處理器
24:加速補償計算模組
241:微分計算器
242:移動平均程序
243:控制增益
244:環境因子計算係數
2441:驅動器狀態
2442:車速
2443:行車模式
2444:電池輸出狀態
2445:剎車狀態
245:權重計算器
25:油門補償計算模組
26:扭矩控制模組
31:原始油門訊號
32:原始輸出扭矩
33:新油門訊號
34:新輸出扭矩
41:油門變化率
42:油門補償量
5:補償區
6:超頻區
S10~S16:計算步驟
S20~S32、S40~S58:補償步驟
TPS:油門訊號
TPS_Old:原始油門訊號
TPS_New:新油門訊號
TPS_Comp:油門補償量
TqCmd:扭矩指令
△TPS:油門變化率
圖1A為相關技術的電動機車的方塊圖。
圖1B為相關技術的加速曲線的示意圖。
圖2為本發明的電動機車的方塊圖的第一具體實施例。
圖3A為本發明的加速曲線的示意圖的第一具體實施例。
圖3B為本發明的加速曲線的示意圖的第二具體實施例。
圖4為本發明的電動機車的方塊圖的第二具體實施例。
圖5為本發明的加速補償計算模組的方塊圖的第一具體實施例。
圖6為本發明的油門變化率計算流程圖的第一具體實施例。
圖7為本發明的加速補償流程圖的第一具體實施例。
圖8為本發明的加速補償流程圖的第二具體實施例。
圖9為本發明的訊號變化示意圖的第一具體實施例。
圖10為本發明的訊號變化示意圖的第二具體實施例。
圖11為本發明的訊號變化示意圖的第三具體實施例。
圖12為本發明的訊號變化示意圖的第四具體實施例。
茲就本發明之一較佳實施例,配合圖式,詳細說明如後。
本發明揭露了一種電動機車的加速補償系統,可偵測駕駛人操作電動機車時的油門變化率,並且依據油門變化率來對輸出扭矩進行高速響應補償,藉此令電動機車達到類似噴射引擎的加速效能。
參閱圖2,為本發明的電動機車的方塊圖的第一具體實施例。如圖所示,本發明的電動機車2主要包括油門單元21、電性連接油門單元21的處理器22、以及電性連接處理器22的電機構件23,其中,所述電機構件23為可帶動電動機車2移動的內部元件,例如馬達、電流迴路控制單元及電池管理系統等,不加以限定。
所述油門單元21用以接受駕駛人的外部操作,以產生原始油門訊號(TPS_Old)。具體地,所述原始油門訊號對應至駕駛人對於油門單元21的操作幅度(通常為轉動角度),故油門訊號之變化主要是對應至駕駛人對於油門單元21的操作幅度之變化;亦即,駕駛人對於油門的操作幅度越小(即,油門單元21的操作幅度之變化越小),所對應產生的原始油門訊號就越小;反之,駕駛人對於油門的操作幅度越大(即,油門單元21的操作幅度之變化越大),所對應產生的原始油門訊號就越大。處理器22接收所述原始油門訊號及油門訊號之變化(即,油門單元21的操作幅度之變化),藉此對原始油門訊號進行分析以及補償,並且再依據補償後的油門訊號計算產生對應的扭矩指令(TqCmd),其中,扭矩指令的內容記錄了對應補償後的油門訊號的輸出扭矩。
如圖2所示,所述處理器22主要可包含加速補償計算模組24、油門補償計算模組25及扭矩控制模組26。於一實施例中,上述多個模組24-26可由處理器22內部的多個硬體元件來各別實現。於另一實施例中,處理器22可依據不同的韌體功能來虛擬劃分上述的多個模組24-26,不加以限定。
於一實施例中,處理器22由加速補償計算模組24接收所述原始油門訊號,並且依據所接收的原始油門訊號來計算油門變化率(△TPS)。具體地,加速補償計算模組24可於短時間內(例如0.1秒)接收由油門單元21發送的前、後兩筆原始油門訊號,並且依據這兩筆原始油門訊號來計算這一段時間內(即,0.1秒)的油門變化率。接著,加速補償計算模組24再依據油門變化率來啟動加速補償機制,並進一步計算油門補償量(TPS_Comp)。需說明的是當駕駛人維持油門單元21於一定操作位置時,瞬間的油門變化率(△TPS)為零,相關油門補償量(TPS_Comp)計算方式稍後詳述。
本發明中,所述油門變化率是指原始油門訊號於短時間內(例如0.1秒)的瞬間變化量。在油門變化率大於電動機車2所設定的一個補正門檻值的前提下,所述油門補償量與油門變化率成正比,意即,駕駛人瞬間轉動油門的幅度越大(即,油門單元21的操作幅度之瞬間變化越大),最終輸出的扭矩指令(即,輸出扭矩)會受到越大的補償。藉此,本發明可達到對輸出扭矩的高速響應補償。
另外,油門補償計算模組25同樣自油門單元21接收原始油門訊號,同時由加速補償計算模組24接收所述油門補償量。並且,油門補償計算模組25依據原始油門訊號以及油門補償量來計算一個新油門訊號(TPS_New)。於一實施例中,油門補償計算模組25是將原始油門訊號與油門補償量進行加總,並將加總結果做為新油門訊號。本實施例中,新油門訊號大於或等於原始油門訊號。
值得一提的是,油門補償計算模組25可持續接收原始油門訊號與油門補償量以計算新油門訊號,若加速補償計算模組24於某一個時間點未輸出油門補償量,或是計算出的油門補償量為零,則油門補償計算模組25於這個時間點所輸出的新油門訊號即相等於油門單元21於這個時間點所輸出的原始油門訊號。
扭矩控制模組26自油門補償計算模組25接收所述新油門訊號,並且依據新油門訊號計算產生對應的扭矩指令(TqCmd),其中,所計算產生的扭矩指令的內容即記錄了基於新油門訊號(即,被補償過的油門訊號)所計算產生的輸出扭矩(即,被補償過的輸出扭矩)。最後,扭矩控制模組26再將扭矩指令輸出至電機構件23,以令電機構件23依據扭矩指令的內容進行對應運作。
值得一提的是,本實施例中,扭矩控制模組26可如同相關技術中的電動機車,將所接收的新油門訊號對應至固定比例的輸出扭矩(例如圖1B所示的曲線)。然而,因為駕駛人操作油門單元21所計算產生為原始油門訊號,但扭矩控制模組26是依據已被補償過的新油門訊號來計算產生扭矩指令,也就是說扭矩控制模組26所輸出的扭矩指令將會大於依據原始油門訊號所計算產生的扭矩指令,因此駕駛人可以得到較強烈的加速感。
續請參閱圖3A,為本發明的加速曲線的示意圖的第一具體實施例。如圖2及3A所示,於相關技術中,若油門單元21經駕駛人操作後輸出原始油門訊號31,則處理器22將會依據原始油門訊號31來按比例計算產生原始輸出扭矩32。如此一來,電動機車2的動力曲線會呈現線性,而令駕駛人感受不到急加速時的爆發力。
本發明中,若油門單元21經駕駛人操作後輸出原始油門訊號31,則處理器22會先對原始油門訊號31進行補償以計算產生新油門訊號33(主要是基於油門變化率來進行補償),並且依再依據新油門訊號33按比例計算產生新輸出扭矩34。經過處理器22的補償動作,新油門訊號33以及新輸出扭矩34可以早一步到達電動機車2的額定上限,使得駕駛人在急加速時(即,位於加速區中)可以感受到明顯的瞬間爆發力。
於圖3A的實施例中,新油門訊號33會比原始油門訊號31早一步到達額定上限(本實施例中以100%為例,即,油門單元21的額定上限為100%),而新輸出扭矩34也會比原始輸出扭矩32早一步到達額定上限(本實施例中以300%為例,即,電機構件23的額定上限為300%)。換句話說,所述新輸出扭矩34可使電機構件23運作於額定上限之100%至300%之區間。當新輸 出扭矩34到達額定上限後,無論原始油門訊號31/新油門訊號33是否持續上昇,新輸出扭矩34皆會維持在相同的比率,不會再上昇。
當駕駛人停止加速後(即,離開加速區),由於油門變化率為零,因此處理器22不會再為原始油門訊號31進行補償(即,油門補償量為零,故新油門訊號33相等於原始油門訊號31),且新輸出扭矩34相等於原始輸出扭矩32。
於圖3A中,原始輸出扭矩32與新輸出扭矩34中間的時間差異,即為通過本發明的技術方案所能計算產生的補償區5。因此,由圖3A可看出,通過本發明的技術方案,駕駛人可以在加速初期得到明顯的加速度感,以模擬燃油機車藉由噴射引擎所實現的加速效能。
一般來說,輸出扭矩的額定上限並不一定是指電動機車2的效能極限,而是為了避免電動機車2的驅動器、電池等元件過熱故障而刻意設定的上限值,有保護的用意。因此,於特定情況下(例如超頻或是Boost模式),電動機車2仍可在短時間內允許輸出扭矩超過所述額定上限。
參閱圖3B,為本發明的加速曲線的示意圖的第二具體實施例。如圖2及3B所示,若處理器22計算產生的新輸出扭矩34已到達額定上限,但原始油門訊號31仍在持續上昇時(即,油門變化率仍大於補償門檻),則處理器22可持續對新輸出扭矩34進行補償,以令新輸出扭矩34可達到超頻上限(本實施例中以330%為例),即,新輸出扭矩34可使電機構件23運作於超頻上限330%之扭矩輸出。並且,當原始油門訊號31停止上昇時(即,油門變化率為零或小於補正門檻),再令新輸出扭矩34下降至對應的比率(例如當原始油門訊號31停留在100%時,令新輸出扭矩34回歸至額定上限的300%),即,新輸 出扭矩34可使電機構件23運作於額定上限300%之扭矩輸出。如圖所示,本發明可藉由新輸出扭矩34的輸出對電機構件23進行補償控制,使得電機構件23可運作於額定上限的100%至300%之扭矩輸出,令駕駛人得到類似燃油機車透過噴射引擎晶片加速補償的騎乘感。
於圖3B的實施例中,原始輸出扭矩32與新輸出扭矩34中間的時間差異,包含了上述的補償區5以及經由短暫超頻所計算產生的超頻區6。本實施例中,駕駛人的加速動作(即,圖3B中所示的加速區)僅會維持相當短暫的時間(例如0.1~0.2秒),因此即使處理器22進行超頻而令新輸出扭矩34超過額定上限而到達所述超頻上限,仍不致於對電動機車2的驅動器、電池等元件造成危害。惟藉由上述的超頻動作,處理器22可以提供駕駛人更進一步的加速感。
續請參閱圖4,為本發明的電動機車的方塊圖的第二具體實施例。本實施例中,所述加速補償計算模組24可依據所執行的功能而虛擬劃分成多個不同的功能區塊。於圖4的實施例中,加速補償計算模組24至少包含了微分計算器241(Derivative Calculator)、移動平均程序242及控制增益243。
具體地,當加速補償計算模組24從油門單元21接收了原始油門訊號(TPS_Old)後,可先通過微分計算器241對原始油門訊號執行微分計算程序以產生所述油門變化率(△TPS),藉此,即可依據油門變化率來計算產生對應的油門補償量(TPS_Comp)。
於一實施例中,加速補償計算模組24在計算出所述油門變化率後,進一步藉由移動平均程序242(Moving Average)來取得油門變化率的平均值,並且再依據所述油門變化率的平均值來計算產生對應的油門補償量 (TPS_Comp)。本實施例中,加速補償計算模組24主要是基於移動平均法來建立原始油門訊號的趨勢預測模型,並且依據這個趨勢預測模型來計算產生油門補償量,藉此提早響應油門訊號。移動平均法為技術領域中計算平均值所常用的技術手段,於此不再贅述。
於另一實施例中,加速補償計算模組24在取得了油門變化率的平均值後,進一步將所述平均值乘上預先設定的控制增益243,藉此計算產生所述油門補償量(TPS_Comp)。於一實施例中,所述控制增益243可依據實際所需而預先設定為1.0,並可依使用需求調整;於另一實施例中,該控制增益243設定於0.6或0.8不等之區間,但不加以限定。上述增益控制主要用於訊號輸入與輸出的比率控制。
值得一提的是,本發明的技術方案是將原始油門訊號加上油門補償量,使得最終輸出的扭矩值變大,進而達到快速響應,而與一般加速模式(Boost)僅透過TN設定曲線直接增加輸出扭矩值的方式完全不同。
並且,本案在計算油門補償量時會先判斷油門變化率是否符合補正條件,並於油門變化率符合補正條件時才計算產生所述油門補償量。如此一來,可以在不過度影響電動機車2的安全性、穩定性及節能效果的前提下,改善電動機車2的加速性能及操作感。
如前文中所述,本發明的油門補償計算模組25可從油門單元21接收原始油門訊號(TPS_Old),由加速補償計算模組24取得油門補償量(TPS_Comp),並且將原始油門號加上油門補償量,以計算產生並輸出新油門訊號(TPS_New)。接著,扭矩控制模組26可以依據新油門訊號來計算產生並輸出對應的扭矩指令(TqCmd),以令電機構件23依據該扭矩指令的內容進行對應運 作。其中,扭矩控制模組26所輸出的扭矩指令的內容即記錄了新油門訊號所對應的輸出扭矩。
續請參閱圖5,為本發明的加速補償計算模組的方塊圖的第一具體實施例。本實施例中,所述加速補償計算模組24可依據所執行的功能進一步虛擬規劃出環境因子計算係數244以及權重計算器245(Weight Calculator)的功能區塊。
具體地,在本實施例中,加速補償計算模組24是藉由權重計算器245來依據所述控制增益243以及一或多個環境因子計算係數計算產生一個最終的補正係數。具體地,所述權重計算器245是在所述微分計算器241的程序與移動平均程序242執行完畢後,持續將所述多個油門變化率(△TPS)的平均值乘上所述補正係數,以計算產生所述油門補償量(TPS_Comp)。
本發明中,所述權重計算器245會先分析油門變化率的當前條件(例如大於或小於補正門檻、大於或小於解除門檻等,容後詳述),並且再依據分析結果來綜合控制增益243以及各項環境因子計算係數244,以計算產生對應的油門補償量。於一實施例中,所述權重計算器245主要是在油門變化率大於或等於補正門檻時,計算油門變化率(的平均值)、控制增益243及一或多個環境因子計算係數244的乘積值,並以這個乘積值做為所述油門補償量,但不加以限定。
於圖5的實施例中,所述處理器22可以連接電動機車2內部的電池管理系統(Battery Management System,BMS),並且將電動機車2的驅動器狀態2441、車速2442、行車模式2443、電池輸出狀態2444及剎車狀態 2445…等資料視為一或多個環境因子,並且依據這些環境因子來決定所述一或多個環境因子計算係數244。
於一實施例中,所述車速之環境因子至少包含一低中速狀態及一高速狀態。為考量安全性與操控性,加速補償計算模組24可以在電動機車2的車速之環境因子為低中速狀態時對應生成較大的計算係數(例如1.2倍),而在電動機車2的車速之環境因子為高速狀態時對應生成較小的計算係數(例如0.5倍)。藉此,可以在電動機車2剛起步時提供較大的動力輸出及加速感,並且在車速變快時顧及安全性及操控性。
於另一實施例中,所述行車模式之環境因子至少包括一節能模式及一動力模式。為使駕駛人可在不同情境下獲得不同的動力及耗能表現,加速補償計算模組24可以在電動機車2的行車模式之環境因子為動力模式時對應生成較大的計算係數(例如1.0倍),而在電動機車2的行車模式之環境因子為節能模式時對應生成較小的計算係數(例如0.6倍)。藉此,可以讓電動機車2的各個行車模式符合其設計目的,即,加速感或節能。
於又一實施例中,所述電池輸出狀態之環境因子至少包括一電池電量、一電池溫度及一電池電壓。由於電池的殘電量、溫度及電壓是影響電動機車2續航力與操作安全性的重要指標,因此加速補償計算模組24可以在電池輸出狀態之環境因子於下列狀態任一情況時介入控制,例如當電池電量小於預設的一殘電量門檻(例如總電量的30%)、電池溫度高於一過溫保護門檻(例如高於300℃),或電池電壓低於一低壓保護門檻時(例如電壓低於40V),對應前述狀況設定電池輸出狀態之環境因子所對應的計算係數為零,令相乘計算後 的補正係數為零(即,取消油門補償)。通過上述技術手段,本發明可藉由令最終輸出的油門補償量為零,達到對電池的保護以及節能的目的。
續請參閱圖6,為本發明的油門變化率計算流程圖的第一具體實施例。
本發明中,處理器22主要是在駕駛人進行加速的短暫時間內(例如0.1至0.2秒)持續取得油門單元21輸出的原始油門訊號(步驟S10),持續對原始油門訊號執行微分計算程序以計算產生油門變化率(步驟S12)、持續通過移動平均程序242取得油門變化率的平均值(步驟S14),並且再輸出所述油門變化率的平均值(步驟S16),以進一步計算所述油門補償值。
續請參閱圖7,為本發明的加速補償流程圖的第一具體實施例。圖7主要揭露了本發明的加速補償系統所採用的加速補償方法的各個步驟。
本發明的加速補償方法主要應用於如圖2至圖5所示的電動機車2,以協助在電動機車2進行加速時對輸出扭矩進行補償。
如圖7所示,首先,電動機車2通過處理器22偵測油門變化率(步驟S20)。具體地,處理器22主要是持續對油門單元21進行監控,並且依據圖6所示的各步驟來計算油門變化率(若具備步驟S14,則計算油門變化率的平均值)。
接著,處理器22通過所述加速補償計算模組24來依據油門變化率計算油門補償量(步驟S22),並且通過所述油門補償計算模組25加總所述原始油門訊號以及所述油門補償量,藉以計算產生新油門訊號(步驟S24)。
接著,處理器22通過所述扭矩控制模組26接收新油門訊號,並且依據新油門訊號來計算產生對應的扭矩指令(步驟S26)。最後,處理器22輸出扭矩指令至電動機車2的電機構件23(步驟S28),以令電機構件23可依據扭矩指令的內容來進行對應運作(步驟S30)。
步驟30後,處理器22判斷電動機車2的電源是否關閉(步驟S32),並且於電源機車2的電源關閉前重覆執行步驟S20至步驟S30直至電動機車2的電源關閉為止,以於駕乘期間持續監控所述原始油門訊號及油門單元操作幅度之變化率、持續計算產生油門補償量、持續計算新油門訊號,並且持續判斷是否對輸出扭矩進行補償,以提供良好的駕乘感。
值得一提的是,本發明是在電動機車2的油門變化率滿足特定條件時(例如大於或等於預先設定的一個補正門檻),才會計算產生所述油門補償值以對輸出扭矩進行補償。因此,若駕駛人緩慢的加速,則因為瞬間的油門變化率持續小於所述補正門檻,故處理器22將不會計算產生油門補償值,即,不會對輸出扭矩進行補償,如此一來,駕駛人仍可獲得電動機車的安全性及操作穩定性。
參閱圖8,為本發明的加速補償流程圖的第二具體實施例。本實施例中,處理器22可依據圖6所示的各步驟來持續偵測電動機車2的油門變化率(步驟S40)。接著,加速補償計算模組24通過上述權重計算器245來將油門變化率(或油門變化率的平均值)與預先設定的補正門檻進行比較,以判斷油門變化率是否大於或等於補正門檻(步驟S42)。於一實施例中,所述補正門檻可例如設定為油門訊號的額定上限的5%,但不加以限定。
若經過判斷後發現當前的油門變化率大於或等於所述補正門檻,則權重計算器245可如前文所述,依據油門變化率(或油門變化率的平均值)、控制增益243及一或多個環境因子計算係數244來計算油門補償量(步驟S44)。於一實施例中,權重計算器245主要是將油門變化率、控制增益243及一或多個環境因子計算係數244相乘,以計算產生油門補償量。
步驟S44後,處理器22的油門補償計算模組25即可加總原始油門訊號和油門補償量以計算產生新油門訊號(步驟S46)。並且,處理器22的扭矩控制模組26可依據新油門訊號來計算產生對應的扭矩指令(步驟S48),並且輸出扭矩指令至電機構件23(步驟S50),以令電機構件23進行對應運作。本實施例中,若新油門訊號大於原始油門訊號,則扭矩指令所記錄的輸出扭矩已經過補償;反之,若新油門訊號等於原始油門訊號,則扭矩指令所記錄的輸出扭矩將會相等於依據原始油門訊號所直接計算產生的輸出扭矩。
若於步驟S42中判斷當前的油門變化率小於所述補正門檻,則權重計算器245進一步將油門變化率(或油門變化率的平均值)與預先設定的解除門檻進行比較,以判斷油門變化率是否大於或等於解除門檻(步驟S54)。於一實施例中,解除門檻小於所述補正門檻,並且可例如設定為油門訊號的額定上限的0%,但不加以限定。
若於步驟S54中判斷當前的油門變化率小於所述解除門檻(即,油門變化率小於0%,例如駕駛人主動回油),表示處理器22不需要再對輸出扭矩進行補償。然而,若在油門變化率小於解除門檻時直接取消先前提供的所有補償,將可能因為瞬間速度下降而令駕駛人產生失速感。為避免駕駛人 產生失速感,權重計算器245可將所計算的最後一筆油門補償量以階梯式方式遞減至零(步驟S56),以對電動機車2進行緩和降載。
於上述步驟S56中,所述權重計算器245主要是在一段時間內緩慢將所述油門補償量遞減至零,在此期間,油門補償計算模組25持續依據原始油門訊號以及遞減後的油門補償量來計算新油門訊號(步驟S46),並且扭矩控制模組26持續依據新油門訊號來計算產生對應的扭矩指令(步驟S48),並且輸出扭矩指令至電機構件23(步驟S50)。
若於步驟S54中判斷當前的油門變化率大於或等於所述解除門檻(但小於所述補正門檻),表示駕駛人的加速行為已經開始減緩。於此實施例中,權重計算器245停止更新油門補償量,並且維持採用所計算的最後一筆油門補償量達到一段維持時間(例如0.5秒),並且於所述維持時間經過後,再將所述油門補償量以階梯式方式遞減至零(步驟S58)。在此期間,油門補償計算模組25持續依據原始油門訊號以及所維持或遞減後的油門補償量來計算新油門訊號(步驟S46),並且扭矩控制模組26持續依據新油門訊號來計算產生對應的扭矩指令(步驟S48),並且輸出扭矩指令至電機構件23(步驟S50)。
本實施例中,處理器22持續監控電動機車2的電源是否關閉(步驟S52),並且於電動機車2的電源關閉前持續執行步驟S40至步驟S58,以對應駕駛人的持續地操作時的加速行為即時判斷是否對輸出扭矩進行對應補償,藉此令駕駛人獲得較佳的加速感。
續請參閱圖9,為本發明的訊號變化示意圖的第一具體實施例。
圖9揭露了原始油門訊號31由0%上昇至100%的變化過程,即,電動機車2由靜止狀態加速至油門訊號的額定上限的變化過程。於圖9的實施例中,所述補正門檻為油門訊號的額定上限的5%,所述解除門檻為油門訊號的額定上限的0%,但不以此為限。
如圖9所示,當油門變化率41大於或等於補正門檻時,所述權重計算器245會開始計算產生油門補償量42,並且油門補償計算模組25將原始油門訊號31加上油門補償量42以計算產生新油門訊號33。
續請參閱圖10,為本發明的訊號變化示意圖的第二具體實施例。
圖10揭露了原始油門訊號31由0%上昇至100%後再下降至0%的變化過程,即,電動機車2由靜止狀態加速至油門訊號的額定上限,之後再恢復成靜止狀態的變化過程。於圖10的實施例中,所述補正門檻為油門訊號的額定上限的5%,而所述解除門檻為油門訊號的額定上限的0%,但不以此為限。
如圖10所示,當油門變化率41大於或等於補正門檻時,所述權重計算器245會開始計算產生油門補償量42,並且油門補償計算模組25將原始油門訊號31加上油門補償量42以計算產生新油門訊號33。當油門變化率41小於解除門檻時,所述權重計算器245開始將所計算的最後一筆油門補償量42做階梯式遞減。如此一來,權重計算器245將使得油門補償計算模組25所計算產生的新油門訊號33漸漸與原始油門訊號31相同,最終結束補償。
續請參閱圖11,為本發明的訊號變化示意圖的第三具體實施例。
圖11揭露了原始油門訊號31由50%至100%之間反復變化的過程,即,駕駛人反復地進行加速/回油的動作。於圖11的實施例中,所述補正門檻為油門訊號的額定上限的5%,而所述解除門檻為油門訊號的額定上限的0%,但不以此為限。
如圖11所示,即使油門變化率41已小於解除門檻(油門補償量42開始階梯式遞減),但當油門變化率41突然又大於補正門檻時,所述權重計算器245會重新啟動並且更新油門補償量42,以令電動機車2再度獲得較大的輸出扭矩,進而令駕駛人獲得明顯的加速感。
本發明中,駕駛人可以通過電動機車2的人機介面(圖未標示)自行選擇要開啟或關閉本發明的補正功能。若駕駛人選擇關閉補正功能,則電動機車2可以提供如圖1B所示的線性動力曲線,藉此提供較佳的安全性與操作性,並且令電動機車2整體較為省電。若駕駛人選擇開啟補正功能,則電動機車2可藉由本發明的技術方案提供類似噴射引擎所能給予的加速效能。
續請參閱圖12,為本發明的訊號變化示意圖的第四具體實施例。圖12揭露了電動機車2在關閉補正功能以及開啟補正功能時的輸出扭矩的響應比較。
由圖12左部可看出,當電動機車2的補正功能關閉時,輸出扭矩(原始輸出扭矩32)是直接隨著原始油門訊號31依比例進行變化的。於圖12的實施例中,原始輸出扭矩32可以在150ms內到達額定上限的100%。
當電動機車2的補正功能開啟時,輸出扭矩(新輸出扭矩34)是隨著補償後的新油門訊號33進行變化的。於圖12右部示意的實施例中,新輸出扭矩34可以在50ms內快速到達額定上限的100%,並且,可隨著油門變化 率延續至額定上限的200%(即,前文中所指的超頻動作)。並且,當油門變化率為零時,即,原始油門訊號31呈水平時,電動機車2可通過所述權重計算器245進行緩和降載(即,將最後一筆油門補償量做階梯式遞減),以避免駕駛人在回油時有立即性的失速感產生。
綜上所述,本發明依據油門變化率來對輸出扭矩進行補償,可有效令電動機車達到類似燃油引擎配合晶片補償所能帶來的加速性能。再者,本發明綜合考量控制增益以及多項環境因素來調整油門補償量,藉此可在補償輸出扭矩的同時兼具舒適性、安全性與節能之效果。
2:電動機車
21:油門單元
22:處理器
23:電機構件
24:加速補償計算模組
25:油門補償計算模組
26:扭矩控制模組
TPS_Old:原始油門訊號
TPS_New:新油門訊號
TPS_Comp:油門補償量
TqCmd:扭矩指令

Claims (20)

  1. 一種電動機車的加速補償系統,包括:一油門單元,接受外部操作,並依據操作幅度產生對應的一原始油門訊號;一處理器,電性連接該油門單元,包括一加速補償計算模組、一油門補償計算模組及一扭矩控制模組,其中該加速補償計算模組接收該原始油門訊號並依據該油門單元操作幅度之變化計算一油門變化率,並且依據該油門變化率計算一油門補償量;該油門補償計算模組加總該原始油門訊號與該油門補償量以產生一新油門訊號;該扭矩控制模組依據該新油門訊號產生對應的一扭矩指令;及一電機構件,電性連接該處理器,自該處理器接收該扭矩指令,並依據該扭矩指令進行對應運作;其中,該加速補償計算模組持續監控該油門單元操作幅度之變化,且該加速補償計算模組於計算該油門變化率後將該油門變化率與一補正門檻進行比較,並且於該油門變化率大於或等於該補正門檻時啟動加速補償並計算該油門補償量。
  2. 如請求項1所述的電動機車的加速補償系統,其中該電機構件依據該扭矩指令可運作於一額定上限之100%至300%間之扭矩輸出。
  3. 如請求項1所述的電動機車的加速補償系統,其中該加速補償計算模組於該油門變化率小於該補正門檻時將該油門變化率與一解除門檻進行比較,並於該油門變化率小於該解除門檻時將所計算的最後一筆該油門補償量階梯式遞減至零;並且於該油門變化率大於或等於該解除門檻時維持採用所計算 的最後一筆該油門補償量達一維持時間;並且於該維持時間過後將該油門補償量階梯式遞減至零,其中該解除門檻小於該補正門檻。
  4. 如請求項1所述的電動機車的加速補償系統,其中該加速補償計算模組自該油門單元接收該原始油門訊號,並對該原始油門訊號執行一微分計算程序以產生該油門變化率。
  5. 如請求項4所述的電動機車的加速補償系統,其中該加速補償計算模組通過一移動平均程序取得該油門變化率的一平均值,並且依據該平均值計算產生該油門補償量。
  6. 如請求項5所述的電動機車的加速補償系統,其中該加速補償計算模組將該油門變化率的該平均值乘上一控制增益以產生該油門補償量。
  7. 如請求項6所述的電動機車的加速補償系統,其中該控制增益的預設值為0.6至1.0。
  8. 如請求項5所述的電動機車的加速補償系統,其中該加速補償計算模組藉由一權重計算器來依據一控制增益以及至少一個環境因子的計算係數計算產生一補正係數,並且將該油門變化率的該平均值乘上該補正係數以計算產生該油門補償量。
  9. 如請求項8所述的電動機車的加速補償系統,其中該至少一個環境因子至少包括一驅動器狀態、一車速、一行車模式、一電池輸出狀態或一剎車狀態。
  10. 如請求項9所述的電動機車的加速補償系統,其中該車速之該環境因子包括一低中速狀態及一高速狀態,並且該車速之該環境因子為該低中速狀態時對應的該計算係數大於該車速之該環境因子為該高速狀態時對應的該 計算係數;其中該行車模式之該環境因子包括一節能模式及一動力模式,並且該行車模式之該環境因子為該動力模式時對應的該計算係數大於該行車模式之該環境因子為該節能模式時對應的該計算係數;其中該電池輸出狀態之該環境因子至少包括一電池電量、一電池溫度及一電池電壓,並且當該電池電量小於一殘電量門檻、該電池溫度高於一過溫保護門檻或該電池電壓低於一低壓保護門檻時,設定該電池輸出狀態之該環境因子對應的該計算係數為零。
  11. 一種電動機車的加速補償方法,應用於具有一油門單元、一處理器及一電機構件的一電動機車,並且包括下列步驟:a)通過該油門單元接受外部操作,並依據操作幅度產生對應的一原始油門訊號;b)由該處理器的一加速補償計算模組接收該原始油門訊號並依據該油門單元操作幅度之變化計算一油門變化率;c)將該油門變化率與一補正門檻進行比較;d)於該油門變化率大於或等於該補正門檻時,由該加速補償計算模組依據該油門變化率計算一油門補償量;e)由該處理器的一油門補償計算模組加總該原始油門訊號與該油門補償量以產生一新油門訊號;f)由該處理器的一扭矩控制模組依據該新油門訊號產生對應的一扭矩指令;g)由該電機構件自該處理器接收該扭矩指令,並依據該扭矩指令進行對應運作;及h)重覆執行該步驟a)至該步驟g)直至該電動機車關閉。
  12. 如請求項11所述的電動機車的加速補償方法,其中該電機構件具有扭矩輸出之一額定上限,該扭矩指令可使該電機構件運作於該額定上限之100%至300%間之扭矩輸出。
  13. 如請求項11所述的電動機車的加速補償方法,更包括下列步驟:c1)於該步驟c)後,於該油門變化率小於該補正門檻時,將該油門變化率與一解除門檻進行比較,其中該解除門檻小於該補正門檻;c2)於該油門變化率小於該解除門檻時將所計算的最後一筆該油門補償量階梯式遞減至零,期間並以遞減後的該油門補償量執行該步驟e);及c3)於該油門變化率大於或等於該解除門檻時維持採用所計算的最後一筆該油門補償量達一維持時間,於該維持時間過後將該油門補償量階梯式遞減至零,期間並以所維持或遞減後的該油門補償量執行該步驟e)。
  14. 如請求項11所述的電動機車的加速補償方法,其中該步驟b)是對該原始油門訊號執行一微分計算程序以產生該油門變化率。
  15. 如請求項14所述的電動機車的加速補償方法,其中該步驟b)是藉由一移動平均程序取得該油門變化率的一平均值,並且該步驟d)是依據該油門變化率的該平均值計算產生該油門補償量。
  16. 如請求項15所述的電動機車的加速補償方法,其中該步驟d)是將該油門變化率的該平均值乘上一控制增益以產生該油門補償量。
  17. 如請求項16所述的電動機車的加速補償方法,其中該控制增益預設值為0.6至1.0。
  18. 如請求項15所述的電動機車的加速補償方法,其中該步驟d)是藉由一權重計算器來依據一控制增益以及至少一個環境因子的計算係數計算產生一補正係數,並且將該油門變化率的該平均值乘上該補正係數以計算產生該油門補償量。
  19. 如請求項18所述的電動機車的加速補償方法,其中該至少一個環境因子至少包括一驅動器狀態、一車速、一行車模式、一電池輸出狀態或一剎車狀態。
  20. 如請求項19所述的電動機車的加速補償方法,其中該車速之該環境因子包括一低中速狀態及一高速狀態,並且該車速之該環境因子為該低中速狀態時對應的該計算係數大於該車速之該環境因子為該高速狀態時對應的該計算係數;該行車模式之該環境因子包括一節能模式及一動力模式,並且該行車模式之該環境因子為該動力模式時對應的該計算係數大於該行車模式之該環境因子為該節能模式時對應的該計算係數;該電池輸出狀態之該環境因子至少包括一電池電量、一電池溫度及一電池電壓,並且當該電池電量小於一殘電量門檻、該電池溫度高於一過溫保護門檻或該電池電壓低於一低壓保護門檻時,設定該電池輸出狀態之該環境因子對應的該計算係數為零。
TW108111043A 2019-03-28 2019-03-28 電動機車的加速補償系統及加速補償方法 TWI691418B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108111043A TWI691418B (zh) 2019-03-28 2019-03-28 電動機車的加速補償系統及加速補償方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108111043A TWI691418B (zh) 2019-03-28 2019-03-28 電動機車的加速補償系統及加速補償方法

Publications (2)

Publication Number Publication Date
TWI691418B true TWI691418B (zh) 2020-04-21
TW202035202A TW202035202A (zh) 2020-10-01

Family

ID=71132577

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108111043A TWI691418B (zh) 2019-03-28 2019-03-28 電動機車的加速補償系統及加速補償方法

Country Status (1)

Country Link
TW (1) TWI691418B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113044136A (zh) * 2021-03-08 2021-06-29 京东鲲鹏(江苏)科技有限公司 无人车越障的控制方法、装置、介质
CN114194329A (zh) * 2020-09-18 2022-03-18 光阳工业股份有限公司 电动摩托车的档位变换系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI307319B (zh) * 2006-11-24 2009-03-11 Evt Technology Co Ltd
CN102165224A (zh) * 2008-09-23 2011-08-24 通用汽车环球科技运作有限责任公司 在动力降档事件中控制扭矩转换器离合器压力的方法
CN102892618A (zh) * 2010-05-31 2013-01-23 日产自动车株式会社 车辆用电动机的扭矩响应控制装置
CN103373347A (zh) * 2012-04-19 2013-10-30 日产自动车株式会社 车辆的控制装置
CN109466537A (zh) * 2017-09-07 2019-03-15 现代自动车株式会社 车辆和用于控制车辆的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI307319B (zh) * 2006-11-24 2009-03-11 Evt Technology Co Ltd
CN102165224A (zh) * 2008-09-23 2011-08-24 通用汽车环球科技运作有限责任公司 在动力降档事件中控制扭矩转换器离合器压力的方法
CN102892618A (zh) * 2010-05-31 2013-01-23 日产自动车株式会社 车辆用电动机的扭矩响应控制装置
CN103373347A (zh) * 2012-04-19 2013-10-30 日产自动车株式会社 车辆的控制装置
CN109466537A (zh) * 2017-09-07 2019-03-15 现代自动车株式会社 车辆和用于控制车辆的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114194329A (zh) * 2020-09-18 2022-03-18 光阳工业股份有限公司 电动摩托车的档位变换系统及方法
CN113044136A (zh) * 2021-03-08 2021-06-29 京东鲲鹏(江苏)科技有限公司 无人车越障的控制方法、装置、介质

Also Published As

Publication number Publication date
TW202035202A (zh) 2020-10-01

Similar Documents

Publication Publication Date Title
CN111746294B (zh) 电动机车的加速补偿系统及加速补偿方法
JP5878906B2 (ja) 電気自動車のモータ位置及びクリープ制御装置とその制御方法
US7777439B2 (en) Method and device for determining a gradient-limited cumulative setpoint torque from a setpoint torque of a closed-loop speed control
TWI691418B (zh) 電動機車的加速補償系統及加速補償方法
EP2965963B1 (en) Hybrid vehicle and power- train torque control method thereof
JP4270079B2 (ja) 駆動力制御装置
JP6077656B2 (ja) 原動機の駆動制御装置及び方法
JP5233697B2 (ja) 車両の制御装置及び制御方法
US11591010B2 (en) Electrical power steering system
US11685375B2 (en) Braking and driving force control device
CN101292102B (zh) 车辆的驱动力控制设备和方法
JP2002264882A (ja) 電動アシスト自転車のアシスト力制御方法
WO2011101944A1 (ja) 電動アシスト自転車用モータ制御方法
RU2482989C2 (ru) Способ возвращения регулирования крутящего момента из ограниченного состояния в неограниченное состояние
US11761391B2 (en) Electronic control method for throttle and electronic control throttle device
CN114872785B (zh) 助力转向系统控制方法、控制装置及车辆
CN113733928A (zh) 一种车辆的控制方法、装置、控制设备及汽车
US20210061249A1 (en) Real-time optimization control method for electro-mechanical transmission system
JP2017165307A (ja) 電動パワーステアリング装置
JP2010078084A (ja) 車両のデータ生成装置およびデータ生成方法
JP2004343926A (ja) 車両の駆動力制御装置
CN112585865A (zh) 电源电流控制装置、电动致动器产品以及电动助力转向装置
JP7524993B1 (ja) 電動車両の制御装置
KR20220084634A (ko) 구동모터의 응답성 향상 시스템 및 방법
EP4063251A1 (en) Driving device and driving method for electric assisted bicycle