WO2011151914A1 - 同期確立方法、受信装置及び送信装置 - Google Patents

同期確立方法、受信装置及び送信装置 Download PDF

Info

Publication number
WO2011151914A1
WO2011151914A1 PCT/JP2010/059464 JP2010059464W WO2011151914A1 WO 2011151914 A1 WO2011151914 A1 WO 2011151914A1 JP 2010059464 W JP2010059464 W JP 2010059464W WO 2011151914 A1 WO2011151914 A1 WO 2011151914A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
synchronization
frame
multiplexed
unit
Prior art date
Application number
PCT/JP2010/059464
Other languages
English (en)
French (fr)
Inventor
利明 大久保
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2010/059464 priority Critical patent/WO2011151914A1/ja
Priority to JP2012518189A priority patent/JP5440699B2/ja
Publication of WO2011151914A1 publication Critical patent/WO2011151914A1/ja
Priority to US13/688,798 priority patent/US20130089111A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0602Systems characterised by the synchronising information used
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1652Optical Transport Network [OTN]

Definitions

  • the embodiments discussed herein divide a frame into a plurality of signal blocks, transmit the plurality of signal blocks in parallel, and then multiplex and transmit the multiplexed signal as a multiplexed signal.
  • the present invention relates to a frame transmission technique in which a plurality of signal blocks obtained by separation are transmitted in parallel and then combined into a frame format.
  • One frame is divided into a plurality of signal blocks, each of the plurality of signal blocks is transmitted in parallel and then multiplexed and transmitted as a multiplexed signal, and a plurality of signal blocks obtained by separating the received multiplexed signal are divided into
  • a frame transmission technique is used in which the frames are combined into a frame format after being transmitted in parallel.
  • the transmitting device divides one frame into a plurality of signal blocks, and the plurality of signal blocks are transmitted in parallel in a plurality of lanes, then multiplexed to generate an optical signal, and the optical signal is transmitted to the opposite receiving device.
  • the communication device on the receiving side transmits a plurality of signal blocks obtained by demultiplexing the optical signal in parallel on a plurality of lanes. Thereafter, the receiving-side communication device reproduces the frame by combining these signal blocks into a frame format.
  • the signal block output from the lane of the communication device on the receiving side is different due to the difference in the delay amount of each of the multiple lanes. Also, from which lane of the communication device on the reception side the signal block input to any lane of the communication device on the transmission side differs depending on the state of the optical signal. The polarity of the received signal may be reversed depending on the state of the optical signal.
  • the lane of the communication device on the transmission side may be expressed as “transmission lane”
  • the lane of the communication device on the reception side may be expressed as “reception lane”.
  • a synchronization establishment technique called MLD Multi-Lane-Distribution
  • a transmission apparatus divides a frame into a plurality of signal blocks and inputs the signal blocks to a transmission lane.
  • OH Over Head
  • the receiving apparatus adjusts the phase of the signal block output from the reception lane using a known pattern included in the OH. And polarity determination.
  • the transmission device stores the identifier of the transmission lane to which the signal block including OH is input in an unused area in the OH.
  • the receiving apparatus determines to which receiving lane the signal block input to which transmission lane is output according to the receiving lane in which the OH is detected and the identifier of the transmitting lane stored in the OH. .
  • the transmission apparatus switches the transmission lane for inputting the signal block extracted from the same position in the frame for each frame. For this reason, the signal block including the OH of the frame is distributed to different lanes for each frame.
  • FIG. 1 is an explanatory diagram of an example of an OTU4 frame.
  • the OTU4 frame 100 includes an OH 101, an ODU-OH (Optical channel data Unit unit-over header) 102, a payload 103, and an FEC (Forward Error Correction) unit 104.
  • the size of the OH 101 is 16 bytes ⁇ 1 row
  • the size of the ODU-OH 102 is 16 bytes ⁇ 3 rows.
  • the size of the payload 103 is 3808 bytes ⁇ 4 rows
  • the size of the FEC 104 is 256 bytes ⁇ 4 rows.
  • FIG. 2 is an explanatory diagram of an example of division of the OTU4 frame.
  • the OTU4 frame 100 shown in FIG. 1 is divided into 51 columns ⁇ 20 rows of signal blocks OH, 1-2 to 1-51, 2-1 to 2-51... 20-1 to 20-51.
  • the size of one signal block is 4 bytes ⁇ 32 bits.
  • the signal block OH is a signal block including OH101 of the OTU4 frame 100.
  • FIGS. 3A to 3C are explanatory diagrams of a mode of distributing the divided frames to the lanes.
  • FIG. 3A shows a mode in which a signal block obtained by dividing the nth OTU4 frame is distributed to 1st to 20th lanes.
  • FIGS. 3B and 3C show a mode in which a signal block obtained by dividing the (n + 1) th OTU4 frame and a signal block obtained by dividing the (n + 2) th OTU4 frame are distributed to the first to 20th lanes, respectively.
  • the signal block OH and the signal blocks 1-2 to 1-51 are input to the first lane, and the signal blocks 2-1 to 2-51 are input to the second lane.
  • the signal blocks 20-1 to 20-51 are input to the 20th lane.
  • the signal block OH and the signal blocks 1-2 to 1-51 are input to the second lane, and the signal blocks 2-1 to 2-51 are input to the third lane.
  • the signal blocks 20-1 to 20-51 are input to the first lane.
  • the signal block OH and the signal blocks 1-2 to 1-51 are input to the third lane, and the signal blocks 2-1 to 2-51 are input to the fourth lane.
  • the signal blocks 20-1 to 20-51 are input to the second lane.
  • the receiving device since the signal block including the OH of the frame is sequentially input to different lanes for each frame, phase adjustment and polarity determination are performed in all lanes. In addition, for all lanes, since the correspondence relationship between the transmission lane to which the signal block is input and the reception lane from which the signal block is output is determined, the receiving device outputs the signal output from each reception lane according to the determined correspondence relationship. Combine and reproduce the frame.
  • the signal light whose phase, frequency, or polarization plane is binary-modulated is converted into two intensity-modulated lights whose logics are inverted, and at least one of the two intensity-modulated lights is converted into an electric signal.
  • a frame synchronization method for establishing a frame synchronization by searching for a specific frame synchronization pattern is proposed. In this method, when a specific frame synchronization pattern cannot be detected, the frame synchronization pattern is searched by reverse logic.
  • the conventional synchronization establishment technology switches the transmission lane of a signal block containing OH, and inputs a signal block at the same in-frame position for each frame so that the signal block containing OH is transmitted in any lane.
  • the transmission lane to be switched was changed. Transmission lane switching is realized by temporarily storing a frame in a memory and controlling an address from which data input to each lane is read. For this reason, the memory for storing the frame has caused an increase in the circuit scale of a circuit used for frame synchronization.
  • a frame is divided into a plurality of signal blocks, and the plurality of signal blocks are transmitted in parallel and then multiplexed and transmitted as multiplexed signals.
  • the object is to reduce the scale of the circuit used.
  • one frame is divided into a plurality of signal blocks, each of the plurality of signal blocks is transmitted in parallel and then multiplexed and transmitted as a multiplexed signal, and the received multiplexed signal is separated.
  • a synchronization establishment method is provided for establishing frame synchronization in a communication system in which a plurality of signal blocks obtained in this way are transmitted in parallel and then combined into a frame format. The method performs a sequence for establishing frame synchronization. In this sequence, a synchronization signal is input to a plurality of signal blocks multiplexed to a multiplexed signal, a synchronization signal is detected from a plurality of signal blocks separated from the multiplexed signal, and detected. Adjusting the phase of each of the plurality of separated signal blocks based on the phase of the synchronization signal.
  • a communication apparatus that divides one frame into a plurality of signal blocks, multiplexes the plurality of signal blocks, and then multiplexes and transmits the multiplexed signal as a multiplexed signal, it is used for frame synchronization.
  • the circuit scale is reduced.
  • FIG. 3 is a second diagram illustrating a configuration example of a communication system. It is a figure which shows the structural example of a multilane transmission part.
  • the communication system 1 includes transmission apparatuses 2-1 and 2-2, optical transmission units 3-1 and 3-2, optical reception units 4-1 and 4-2, and optical transmission lines 5-1 and 5-2. Is provided.
  • the transmission apparatuses 2-1 and 2-2 may be collectively referred to as “transmission apparatus 2”.
  • the optical transmission units 3-1 and 3-2 may be collectively referred to as “optical transmission unit 3”.
  • the optical receivers 4-1 and 4-2 may be collectively referred to as “optical receiver 4”.
  • the optical transmission lines 5-1 and 5-2 may be collectively referred to as “optical transmission line 5”.
  • the transmission apparatus 2 generates a frame by multiplexing a plurality of input transmission data.
  • the transmission apparatus 2 divides the generated frame into a plurality of signal blocks.
  • each of a plurality of signal blocks obtained by dividing a frame may be referred to as a “partial signal”.
  • the transmission device 2 distributes the partial signal to the first lane to the Mth lane which are electric signal lines.
  • the partial signals are transmitted in parallel on the first to Mth lanes and input to the optical transmitter 3.
  • the optical transmitter 3 multiplexes the partial signals received respectively in the plurality of lanes to generate an optical signal as a multiplexed signal.
  • the optical transmitter 3 transmits this optical signal to the optical receiver 4 via the optical transmission path 5.
  • the optical receiving unit 4 demultiplexes the received optical signal by demultiplexing the received optical signal, and acquires a plurality of partial signals included in the optical signal.
  • the optical receiving unit 4 is an example of a separation unit described in the claims.
  • the optical receiving unit 4 converts the plurality of partial signals into electric signals, and then distributes the signal blocks to the first lane to the Mth lane. Each partial signal is transmitted in parallel on the first lane to the Mth lane and input to the transmission apparatus 2.
  • the transmission apparatus 2 reproduces the frame by combining the partial signals received from the optical receiver 4 and configuring the frame format.
  • the transmission device 2 outputs a plurality of reception data acquired by decomposing the reproduced partial signal.
  • the transmission apparatus 2 includes a transmission unit 10 and a reception unit 20 that process electrical signals.
  • the transmission unit 10 includes a frame generation unit 11 and a multilane transmission unit 12.
  • the receiving unit 20 includes a multilane receiving unit 21 and a frame decomposing unit 22.
  • the frame generation unit 11 generates a frame by multiplexing a plurality of transmission data.
  • the frame generation unit 11 outputs the generated frame to the multilane transmission unit 12 as a parallel signal having a bit width of M ⁇ N bits.
  • the multilane transmission unit 12 divides each received parallel signal into M partial signals.
  • the partial signal is parallel data having a bit width of N bits.
  • the multilane transmission unit 12 converts M partial signals into serial data.
  • the multilane transmission unit 12 inputs M partial signals to the first to Mth lanes.
  • the multi-lane receiving unit 21 converts the format of the M partial signals received from the optical receiving unit 4 via the first lane to the M-th lane from a serial format to a parallel format.
  • the multilane receiving unit 21 inputs a parallel signal having a bit width of M ⁇ N bits in which M partial signals having a bit width of N bits are arranged to the frame decomposing unit 22.
  • the frame decomposing unit 22 reproduces a frame by combining the partial signals received from the multi-lane receiving unit 21 into a frame format.
  • the frame decomposing unit 22 outputs a plurality of received data obtained by decomposing the configured frame. Further, the frame decomposing unit 22 determines whether or not the synchronization of the received frame is established. When the received frame is out of synchronization, the frame decomposing unit 22 outputs a first alarm signal indicating that the received frame is out of synchronization to the frame generating unit 11 and the multilane receiving unit 21.
  • the frame generation unit 11 includes the first alarm signal in the transmission frame.
  • the frame generation unit 11 may include the first alarm signal in the OH of the transmission frame.
  • the frame including the first alarm signal is transmitted to the opposite transmission device 2.
  • the frame decomposing unit 22 detects the first alarm signal included in the received frame received from the opposing transmission device 2. When the first alarm signal is detected, the frame decomposition unit 22 outputs the second alarm signal to the multilane transmission unit 12.
  • the multilane receiving unit 21 that has received the first alarm signal executes a synchronization establishment sequence for establishing frame synchronization. The synchronization establishment sequence will be described later.
  • the multilane transmission unit 12 that has received the second alarm signal executes a synchronization establishment sequence.
  • FIG. 6 is a diagram illustrating a configuration example of the multilane transmission unit 12.
  • the multilane transmission unit 12 includes a first sequence control unit 30, a synchronization signal generation unit 31, a signal switching unit 32, and parallel / serial conversion units 33-1 to 33-M.
  • the parallel-serial conversion unit may be referred to as “P / S”.
  • P / S 33-1 to 33-M may be collectively referred to as “P / S33”.
  • the synchronization signal generation unit 31 generates a synchronization signal including a known pattern used in the synchronization establishment sequence.
  • the synchronization signal may be a dummy frame including a known pattern.
  • the synchronization signal may be a training signal including a known pattern.
  • the signal switching unit 32 selects either the real signal or the synchronization signal and inputs it to the first lane to the Mth lane.
  • the actual signal is a partial signal obtained by dividing the frame including the transmission data input to the transmission device 2 by the frame generation unit 11.
  • the signal switching unit 32 may include, for example, selectors 34-1 to 34-M that respectively select signals input to the first lane to the Mth lane.
  • selectors 34-1 to 34-M that respectively select signals input to the first lane to the Mth lane.
  • the selector may be referred to as “SEL”.
  • SEL 34-1 to 34-M may be collectively referred to as “SEL 34”.
  • the first sequence control unit 30 receives the second alarm signal from the frame decomposition unit 22. When the second alarm signal is received from the frame decomposition unit 22, the first sequence control unit 30 starts a synchronization establishment sequence.
  • the first sequence control unit 30 ends the synchronization establishment sequence.
  • the signal switching unit 32 inputs a synchronization signal to the first lane to the Mth lane.
  • FIG. 7 is a diagram illustrating a first example of the configuration of the multilane receiving unit 21.
  • the multilane receiver 21 includes a second sequence controller 40, serial / parallel converters 41-1 to 41-M, and received signal processors 42-1 to 42-M.
  • the serial-parallel converter may be referred to as “S / P”.
  • S / Ps 41-1 to 41-M may be collectively referred to as “S / P41”.
  • the received signal processing units 42-1 to 42-M may be collectively referred to as “received signal processing unit 42”.
  • S / Ps 41-1 to 41-M convert signals transmitted from the first lane to the Mth lane from serial format to parallel format.
  • the parallel signals converted by the S / Ps 41-1 to 41-M are input to the reception signal processing units 42-1 to 42-M, respectively.
  • the second sequence control unit 40 receives the first alarm signal from the frame decomposition unit 22.
  • the second sequence control unit 40 starts a synchronization establishment sequence.
  • the reception signal processing units 42-1 to 42-M detect the synchronization signals received in the first lane to the Mth lane, respectively.
  • the received signal processing units 42-1 to 42-M adjust the phases of the partial signals transmitted in the first lane to the Mth lane, respectively, based on the detected phase of the synchronization signal.
  • FIG. 8 is a diagram illustrating a first example of the configuration of the reception signal processing unit 42.
  • the reception signal processing unit 42 includes a phase adjustment unit 50 and a synchronization detection unit 51.
  • the synchronization detector 51 detects the synchronization signal received in each lane. That is, the synchronization detection unit 51 detects a synchronization signal from the plurality of partial signals separated by the optical reception unit 4.
  • the phase adjustment unit 50 adjusts the phase of the partial signal transmitted in each lane based on the detected phase of the synchronization signal. That is, the phase adjusting unit 50 adjusts the phases of the plurality of partial signals separated by the optical receiving unit 4.
  • the phase adjustment by the phase adjustment unit 50 may include, for example, bit alignment in S / P41. Bit alignment is a bit position adjustment process in which a parallel signal is cut out from a serial signal in S / P41.
  • the synchronization detection unit 51 When synchronization is detected, the synchronization detection unit 51 outputs a synchronization detection signal indicating that synchronization has been detected to the second sequence control unit 40. When synchronization detection is completed for all lanes, the second sequence control unit 40 ends the synchronization establishment sequence.
  • the multi-lane receiving unit 21 arranges the M partial signals subjected to the phase adjustment by the received signal processing unit 42 and outputs them to the frame decomposing unit 22.
  • FIG. 9 is a diagram illustrating another configuration example of the transmission apparatus 2. Components that are the same as those shown in FIGS. 4 and 5 are referred to by the same reference number.
  • the transmission apparatus 2 may include a third sequence control unit 61 and a communication unit 62. The same applies to the other embodiments described herein.
  • the third sequence control unit 61 automatically executes a synchronization establishment sequence in response to an input from the user or when the transmission apparatus 2 is activated.
  • the third sequence control unit 61 may include a CPU, a memory, and an auxiliary storage device that stores a computer program that executes a synchronization establishment sequence.
  • the communication unit 62 is connected to the communication unit 62 of the opposite transmission device 2 and realizes communication between the third sequence control units 61 of the transmission devices facing each other.
  • the third sequence control unit 61 starts a synchronization establishment sequence.
  • the third sequence control unit 61 ends the synchronization establishment sequence in the reception unit 20.
  • the third sequence control unit 61 notifies the third sequence control unit 61 of the opposite transmission apparatus 2 that the synchronization detection in the reception unit 20 has been completed.
  • the third sequence control unit 61 notified of the completion of the synchronization detection in the reception unit 20 of the opposite transmission apparatus 2 ends the synchronization establishment sequence in the transmission unit 10.
  • FIG. 10 is an explanatory diagram of a first example of a synchronization establishment sequence in the transmission apparatus 2-1.
  • the following operations AA to AD may be steps.
  • the first sequence control unit 30 or the third sequence control unit 61 determines whether to start the synchronization establishment sequence. For example, the first sequence control unit 30 may start the synchronization establishment sequence when receiving the second alarm signal from the frame decomposition unit 22. For example, the first sequence control unit 30 may not start the synchronization establishment sequence when the second alarm signal from the frame decomposition unit 22 is not received.
  • the third sequence control unit 61 may start a synchronization establishment sequence. For example, the third sequence control unit 61 may determine that the synchronization establishment sequence is not started when there is no sequence start instruction from the user during operation of the transmission apparatus 2.
  • operation AA: Y If the synchronization establishment sequence starts (operation AA: Y), the process proceeds to operation AB. If the synchronization establishment sequence does not start (operation AA: N), the processing returns to operation AA.
  • the synchronization signal generator 31 In operation AB, the synchronization signal generator 31 generates a synchronization signal.
  • the signal switching unit 32 inputs a synchronization signal to the first to Mth lanes instead of the actual signal.
  • the first sequence control unit 30 or the third sequence control unit 61 determines whether or not the synchronization of the received frame is established in the transmission apparatus 2-2.
  • the first sequence control unit 30 may determine that the synchronization of the received frame has been established when the second alarm signal from the frame decomposition unit 22 stops. The first sequence control unit 30 may determine that the synchronization of the received frame is not established when the second alarm signal from the frame decomposition unit 22 continues.
  • the third sequence control unit 61 of the transmission device 2-1 when the third sequence control unit 61 of the transmission device 2-1 is notified by the third sequence control unit 61 of the transmission device 2-2 that the synchronization detection in the reception unit 20 of the transmission device 2-2 is completed. It may be determined that synchronization of the received frame has been established. The third sequence control unit 61 of the transmission device 2-1 may determine that the synchronization of the received frame has not been established when not notified that the synchronization detection in the reception unit 20 of the transmission device 2-2 has been completed.
  • operation AC: Y If the synchronization of the received frame is established (operation AC: Y), the process proceeds to operation AD. If the synchronization of the received frame is not established (operation AC: N), the processing returns to operation AB. In operation AD, the first sequence control unit 30 or the third sequence control unit 61 ends the synchronization establishment sequence.
  • FIG. 11 is an explanatory diagram of a first example of a synchronization establishment sequence in the transmission apparatus 2-2.
  • the following operations BA to BD may be steps.
  • the second sequence control unit 40 or the third sequence control unit 61 determines whether or not to start the synchronization establishment sequence. For example, the second sequence control unit 40 may start the synchronization establishment sequence when receiving the first alarm signal from the frame decomposition unit 22. For example, the second sequence control unit 40 may determine that the synchronization establishment sequence is not started when the first alarm signal from the frame decomposition unit 22 is not received.
  • the third sequence control unit 61 may start a synchronization establishment sequence. For example, when the transmission apparatus 2 is activated and there is no sequence start instruction from the user, the third sequence control unit 61 may determine that the synchronization establishment sequence is not started.
  • operation BA: Y If the synchronization establishment sequence starts (operation BA: Y), the process proceeds to operation BB. If the synchronization establishment sequence does not start (operation BA: N), the processing returns to operation BA.
  • the reception signal processing units 42-1 to 42-M perform the partial signal synchronization establishment process in the first lane to the Mth lane, respectively.
  • the synchronization establishment process in each lane will be described later with reference to FIG.
  • the second sequence control unit 40 or the third sequence control unit 61 inputs the synchronization detection signal output from each received signal processing unit 42, and determines whether synchronization is established in all lanes.
  • operation BC: Y When synchronization is established in all lanes (operation BC: Y), the process proceeds to operation BD.
  • operation BC: N When synchronization is not established in all lanes (operation BC: N), the processing returns to operation BB.
  • operation BD the second sequence control unit 40 or the third sequence control unit 61 ends the synchronization establishment sequence.
  • the third sequence control unit 61 notifies the third sequence control unit 61 of the transmission apparatus 2-1 that the synchronization detection in the reception unit 20 of the transmission apparatus 2-2 has been completed.
  • FIG. 12 is an explanatory diagram of a first example of synchronization establishment processing in the reception signal processing unit 42.
  • the following operations CA to CC may be steps.
  • the synchronization detector 51 attempts to detect synchronization of the synchronization signal by detecting a known pattern included in the synchronization signal.
  • operation CA: Y the process proceeds to operation CB.
  • operation CA: N the processing returns to operation CA.
  • the phase adjustment unit 50 adjusts the phase of the partial signal transmitted in each lane based on the detected phase of the synchronization signal.
  • the synchronization detection unit 51 outputs a synchronization detection signal to the second sequence control unit 40.
  • the real signal OH input lane is switched to perform synchronization establishment processing in all lanes.
  • frame synchronization is established by executing a specific synchronization establishment sequence in which a synchronization signal is input instead of an actual signal. Therefore, in the communication system of the present embodiment, a synchronization signal can be input to an arbitrary lane in an arbitrary period. Therefore, in this embodiment, the circuit scale can be reduced by omitting the memory for switching the OH input lane.
  • FIG. 13 is a diagram illustrating a second example of the configuration of the reception signal processing unit 42. Components that are the same as those shown in FIG. 8 are referred to by the same reference numerals.
  • the reception signal processing unit 42 includes a polarity correction unit 52. When the known pattern cannot be detected from the synchronization signal, the synchronization detector 51 detects the polarity of the known pattern from the synchronization signal.
  • the synchronization detection unit 51 notifies the polarity correction unit 52 that the received signal is inverted.
  • the polarity correcting unit 52 inverts the polarity of the signal output from the phase adjusting unit 50 and outputs the inverted signal to the frame decomposing unit 22.
  • the polarity inversion of the received signal is detected using a synchronization signal transmitted instead of the actual signal in the synchronization establishment sequence. Therefore, according to the present embodiment, it is possible to omit the memory for switching the OH input lane, which has been conventionally used for detecting the polarity inversion of the received signal.
  • the signal switching unit 32 selects one lane from the first lane to the Mth lane in a specific order by controlling the switching operation of the SELs 34-1 to 34-M by the first sequence control unit 30.
  • the synchronization signal is input to one lane.
  • the signal switching unit 32 selects one lane from the first lane to the Mth lane in a specific order by controlling the switching operation of the SELs 34-1 to 34-M by the third sequence control unit 61, and selects one lane at a time.
  • a synchronization signal may be input to one lane.
  • the signal switching unit 32 may input synchronization signals to these lanes in the order of the first lane, the second lane, the third lane, and the Mth lane.
  • FIG. 14 is a diagram illustrating a second example of the configuration of the multilane receiving unit 21. Components that are the same as those shown in FIG. 7 are referred to by the same reference number.
  • the multilane receiving unit 21 includes an arrangement unit 43.
  • the multilane receiver 21 receives the synchronization detection signal output from each received signal processor 42. Since the synchronization signal is input to one lane at a time, the reception signal processing unit 42 that outputs the synchronization detection signal is also one at a time.
  • the arrangement unit 43 stores the order in which the reception signal processing unit 42 detects synchronization.
  • the arrangement unit 43 Based on the specific order of the lanes in which the signal switching unit 32 inputs the synchronization detection signal and the order of the lanes in which the reception signal processing unit 42 has detected the synchronization, the arrangement unit 43 receives the transmission side lanes The correspondence relationship with the lane on the receiving side from which this signal is output is specified. The arrangement unit 43 arranges the parallel signals input from the reception signal processing unit 42 in the arrangement order corresponding to the specific order of the lanes to which the signal switching unit 32 inputs the synchronization detection signal.
  • the array unit 43 may be a cross-connect switch, for example.
  • the arranged parallel signals are output to the frame decomposition unit 22.
  • the first N-bit partial signal is in the first lane
  • the second N-bit partial signal is in the second lane.
  • a partial signal for the Mth N bits is input to the Mth lane.
  • the specific order in which the signal switching unit 32 inputs the synchronization signal to the first lane, the second lane,..., The Mth lane is assumed to be X1, X2,.
  • the arrangement unit 43 outputs the first and second M ⁇ N-bit parallel signals output from the X1, X2,..., XMth detected lane to the frame decomposing unit 22, respectively. ...
  • the signals are arranged so as to be a portion corresponding to the Mth N bits.
  • FIG. 15 is an explanatory diagram of a synchronization establishment sequence in the transmission apparatus 2-1.
  • the following operations DA to DG may be steps.
  • operation DA the first sequence control unit 30 or the third sequence control unit 61 determines whether or not to start the synchronization establishment sequence.
  • operation DA: Y the processing proceeds to operation DB. If the synchronization establishment sequence does not start (operation DA: N), the processing returns to operation DA.
  • the first sequence control unit 30 or the third sequence control unit 61 assigns 1 to the variable i.
  • the synchronization signal generator 31 generates a synchronization signal.
  • the first sequence control unit 30 or the third sequence control unit 61 controls the SELs 34-1 to 34-M so that the synchronization signal is input to the i-th lane.
  • the first sequence control unit 30 or the third sequence control unit 61 increases the value of the variable i by one.
  • the first sequence control unit 30 or the third sequence control unit 61 determines whether or not the variable i is larger than the number of lanes M. When the variable i is larger than the lane number M (operation DE: Y), the processing proceeds to operation DF. When the variable i is equal to or less than the number of lanes M (operation DE: N), the process returns to operation DC.
  • the first sequence control unit 30 or the third sequence control unit 61 determines whether to re-execute the synchronization establishment sequence. For example, the first sequence control unit 30 determines that re-execution is performed when the second alarm signal is received even though the input of the synchronization signal to all lanes has been completed and the processing has reached operation DF. Good. For example, the first sequence control unit 30 may determine not to re-execute when the second alarm signal is stopped.
  • the third sequence control unit 61 has completed the synchronization detection in the reception unit 20 of the transmission apparatus 2-2 from the third sequence control unit 61 of the transmission apparatus 2-2 in spite of reaching the operation DF. May be determined to be re-executed.
  • the third sequence control unit 61 may determine not to re-execute when notified of completion of synchronization detection in the reception unit 20 of the transmission apparatus 2-2.
  • operation DF When it is determined to re-execute (operation DF: Y), the processing returns to the operation DB. When it is determined not to re-execute (operation DF: N), the processing proceeds to operation DG. In operation DG, the first sequence control unit 30 or the third sequence control unit 61 ends the synchronization establishment sequence.
  • FIG. 16 is an explanatory diagram of a synchronization establishment sequence in the transmission apparatus 2-2.
  • the following operations EA to EF may be steps.
  • the second sequence control unit 40 or the third sequence control unit 61 determines whether to start the synchronization establishment sequence.
  • operation EA: Y the processing proceeds to operation EB. If the synchronization establishment sequence does not start (operation EA: N), the process returns to operation EA.
  • FIG. 17 is an explanatory diagram of a second example of synchronization establishment processing in the received signal processing unit 42.
  • the following operations FA to FD may be steps.
  • operation FA the synchronization detector 51 attempts to detect synchronization of the synchronization signal.
  • operation FA: Y the processing proceeds to operation FB.
  • operation FA: N the processing returns to operation FA.
  • the phase adjustment unit 50 adjusts the phase of the partial signal transmitted in each lane based on the detected phase of the synchronization signal.
  • the synchronization detection unit 51 outputs a synchronization detection signal to the arrangement unit 43.
  • the arrangement unit 43 stores the order in which the synchronization detection signal is output from each lane.
  • the arrangement unit 43 determines whether synchronization has been established in all lanes by determining whether synchronization detection signals have been output from the reception signal processing units 42-1 to 42-M of all lanes. Determine.
  • the arrangement unit 43 outputs from each lane based on the specific order of the lanes in which the synchronization detection signal is input in the transmission apparatus 2-1 and the order in which the synchronization detection signal is output from each lane. Arrange parallel signals.
  • the arrangement unit 43 notifies the second sequence control unit 40 or the third sequence control unit 61 that synchronization in each lane has been established.
  • the second sequence control unit 40 or the third sequence control unit 61 ends the synchronization establishment sequence.
  • the third sequence control unit 61 notifies the third sequence control unit 61 of the transmission apparatus 2-1 that the synchronization detection in the reception unit 20 of the transmission apparatus 2-2 has been completed.
  • the transmission device on the transmission side stores the identifier of the lane on the transmission side in the OH of the actual signal, and sequentially switches the lane to which the OH is input.
  • the transmission apparatus on the reception side detects from which lane the OH storing which identifier is output, and specifies the relationship between the signal input lane on the transmission side and the signal output lane on the reception side.
  • the transmission apparatus on the transmission side sequentially inputs a synchronization signal to each lane instead of the actual signal one by one in a specific order in the synchronization establishment sequence. Then, the transmission device on the reception side, based on the order of the lanes for inputting the synchronization signal on the transmission side and the order of the lanes on which the synchronization is detected on the reception side, the signal input lane on the transmission side and the signal on the reception side. Specify the output lane relationship.
  • this embodiment it is possible to omit the switching of the OH input lane used for specifying the relationship between the signal input lane on the transmission side and the signal output lane on the reception side. In this way, this embodiment can omit the memory for switching the OH input lane.

Abstract

 1つのフレームを複数の信号ブロックに分割し、複数の信号ブロックをそれぞれ並列に伝送した後に多重して多重化信号として伝送し、受信した多重化信号を分離して得た複数の信号ブロックを並列に伝送した後に組み合わせてフレームの形式に構成する通信システムにおいてフレームの同期を確立する同期確立方法が与えられる。本方法は、フレームの同期を確立するためのシーケンスを実行する。このシーケンスは、同期用信号を、多重化信号に多重される複数の信号ブロックに入力すること、多重化信号から分離された複数の信号ブロックから同期用信号を検出すること、及び検出された同期用信号の位相に基づいて分離された複数の信号ブロックの各々の位相を調整すること、を含む。

Description

同期確立方法、受信装置及び送信装置
 本明細書で論じられる実施態様は、1つのフレームを複数の信号ブロックに分割し、この複数の信号ブロックをそれぞれ並列に伝送した後に多重して多重化信号として伝送し、受信した多重化信号を分離して得た複数の信号ブロックを並列に伝送した後に組み合わせてフレームの形式に構成するフレーム伝送技術に関する。
 1つのフレームを複数の信号ブロックに分割し、この複数の信号ブロックをそれぞれ並列に伝送した後に多重して多重化信号として伝送し、受信した多重化信号を分離して得た複数の信号ブロックを並列に伝送した後に組み合わせてフレームの形式に構成するフレーム伝送技術が用いられている。このような伝送技術の一例として、光伝送路において送受信されるフレームを分割して得た複数の信号ブロックを、電気信号処理部にて複数レーンで並列に伝送するフレーム伝送技術がある。送信装置は、1つのフレームを複数の信号ブロックに分割し、この複数の信号ブロックを複数レーンで並列に伝送された後に多重化して光信号を生成し、この光信号を対向する受信装置へ伝送する。受信側の通信装置は、光信号を逆多重化して得た複数の信号ブロックを複数レーンで並列して伝送する。その後、受信側の通信装置は、これら複数の信号ブロックを組み合わせてフレームの形式に構成することで、フレームを再現する。
 複数レーンの各々の遅延量の差に起因して、受信側の通信装置のレーンから出力される信号ブロックの位相が異なる。また、送信側の通信装置のいずれかのレーンに入力される信号ブロックが受信側の通信装置のどのレーンから出力されるかは、光信号の状態によって異なる。また光信号の状態によって、受信信号の極性が反転することもある。以下の説明において、送信側の通信装置のレーンを「送信レーン」と表記することがあり、受信側の通信装置のレーンを「受信レーン」と表記することがある。
 上記の問題を解決するため、従来、MLD(Multi Lane Distribution)と呼ばれる同期確立技術が使用される。MLDを採用するシステムにおいて送信装置は、フレームを複数の信号ブロックに分割して信号ブロックを送信レーンに入力する。フレームのオーバーヘッド(OH:Over Head)を含んだ信号ブロックが受信レーンで検出されると、受信装置は、OHに含まれている既知パターンを利用して受信レーンから出力される信号ブロックの位相調整と極性判定を行う。
 送信装置は、OHを含んだ信号ブロックが入力される送信レーンの識別子をOH中の未使用領域に格納する。OHを検出すると、受信装置は、OHが検出された受信レーンとOHに格納された送信レーンの識別子とに従って、どの送信レーンに入力された信号ブロックがどの受信レーンに出力されるかを決定する。
 また送信装置は、フレーム毎に、同じフレーム内位置から取り出された信号ブロックを入力する送信レーンを切り換える。このため、フレームのOHを含む信号ブロックはフレーム毎に異なるレーンに分配される。
 以下にOTU(Optical-channel Transport Unit)4フレームを伝送する場合におけるレーンへの分配例を説明する。図1は、OTU4フレームの例の説明図である。OTU4フレーム100は、OH101と、ODU-OH(Optical channel Data Unit - Over Head)102と、ペイロード103と、FEC(Forward Error Correction)部104を含む。OH101の大きさは16バイト×1行であり、ODU-OH102の大きさは16バイト×3行である。また、ペイロード103の大きさは3808バイト×4行であり、FEC104の大きさは256バイト×4行である。
 図2は、OTU4フレームの分割例の説明図である。図1に示すOTU4フレーム100は、51列×20行の信号ブロックOH、1-2~1-51、2-1~2-51…20-1~20-51に分割される。1つの信号ブロックの大きさは、4バイト×32ビットである。信号ブロックOHは、OTU4フレーム100のOH101を含む信号ブロックである。
 図3A~図3Cは、分割されたフレームをレーンへ分配する態様の説明図である。図3Aは、第n番目のOTU4フレームを分割した信号ブロックを、第1~20レーンに分配する態様を示す。図3B及び図3Cは、それぞれ第(n+1)番目のOTU4フレームを分割した信号ブロック及び第(n+2)番目のOTU4フレームを分割した信号ブロックを、第1~20レーンに分配する態様を示す。
 図3Aに示すように、第n番目のフレームでは、信号ブロックOH及び信号ブロック1-2~1-51は第1レーンに入力され、信号ブロック2-1~2-51は第2レーンに入力され、信号ブロック20-1~20-51は第20レーンに入力される。
 図3Bに示すように、第(n+1)番目のフレームでは、信号ブロックOH及び信号ブロック1-2~1-51は第2レーンに入力され、信号ブロック2-1~2-51は第3レーンに入力され、信号ブロック20-1~20-51は第1レーンに入力される。図3Cに示すように、第(n+2)番目のフレームでは、信号ブロックOH及び信号ブロック1-2~1-51は第3レーンに入力され、信号ブロック2-1~2-51は第4レーンに入力され、信号ブロック20-1~20-51は第2レーンに入力される。
 このように、フレームのOHを含む信号ブロックがフレーム毎に異なるレーンに順次入力されるので、全てレーンにおいて位相調整と極性判定が実施される。また、全レーンについて、信号ブロックを入力する送信レーンと信号ブロックが出力される受信レーンとの対応関係が判明するので、受信装置は、判明した対応関係にしたがって各受信レーンから出力される信号を組み合わせてフレームを再現する。
 なお、位相、周波数または偏波面が2値変調された信号光を互いに論理が反転した二つの強度変調光に変換し、この二つの強度変調光の少なくとも一方を電気信号に変換し、この電気信号から特定のフレーム同期パターンを検索してフレーム同期を確立するフレーム同期方法が提案されている。この方法では、特定のフレーム同期パターンを検出できない場合には逆論理でフレーム同期パターンを検索する。
特開2008-92406号公報
 従来の同期確立技術は、OHを含んだ信号ブロックの送信レーンを切り換え、OHを含んだ信号ブロックがどのレーンでも送信されるようにするため、フレーム毎に、同じフレーム内位置の信号ブロックを入力する送信レーンを切り換えていた。送信レーンの切換は、フレームを一時的にメモリに格納し、各レーンへ入力するデータを読み出すアドレスを制御することにより実現していた。このため、フレームを記憶するメモリが、フレームの同期に使用される回路の回路規模の増大を招いていた。
 実施態様に係る装置及び方法は、1つのフレームを複数の信号ブロックに分割し、この複数の信号ブロックをそれぞれ並列に伝送した後に多重して多重化信号として伝送する通信装置において、フレームの同期に使用される回路の規模を低減することを目的とする。
 実施例の一態様によれば、1つのフレームを複数の信号ブロックに分割し、複数の信号ブロックをそれぞれ並列に伝送した後に多重して多重化信号として伝送し、受信した多重化信号を分離して得た複数の信号ブロックを並列に伝送した後に組み合わせてフレームの形式に構成する通信システムにおいてフレームの同期を確立する同期確立方法が与えられる。本方法はフレームの同期を確立するためのシーケンスを実行する。このシーケンスは、同期用信号を、多重化信号に多重される複数の信号ブロックに入力すること、多重化信号から分離された複数の信号ブロックから、同期用信号を検出すること、及び検出された同期用信号の位相に基づいて、分離された複数の信号ブロックの各々の位相を調整すること、を含む。
 上記実施例によれば、1つのフレームを複数の信号ブロックに分割し、この複数の信号ブロックをそれぞれ並列に伝送した後に多重して多重化信号として伝送する通信装置において、フレームの同期に使用される回路の規模を低減される。
 本発明の目的及び利点は、特に特許請求の範囲に示した要素及びその組合せを用いて具現化され達成される。前述の一般的な記述及び以下の詳細な記述の両方は、単なる例示及び説明であり、特許請求の範囲のように本発明を限定するものではないと解するべきである。
伝送されるフレームの例の説明図である。 フレームの分割例の説明図である。 分割されたフレームをレーンへ分配する態様の説明図である。 分割されたフレームをレーンへ分配する態様の説明図である。 分割されたフレームをレーンへ分配する態様の説明図である。 通信システムの構成例を示す図(その1)である。 通信システムの構成例を示す図(その2)である。 マルチレーン送信部の構成例を示す図である。 マルチレーン受信部の構成の第1例を示す図である。 受信信号処理部の構成の第1例を示す図である。 伝送装置の他の構成例を示す図である。 送信側の伝送装置における同期確立シーケンスの第1例の説明図である。 受信側の伝送装置における同期確立シーケンスの第1例の説明図である。 受信信号処理部における同期確立処理の第1例の説明図である。 受信信号処理部の構成の第2例を示す図である。 マルチレーン受信部の構成の第2例を示す図である。 送信側の伝送装置における同期確立シーケンスの第2例の説明図である。 受信側の伝送装置における同期確立シーケンスの第2例の説明図である。 受信信号処理部における同期確立処理の第2例の説明図である。
 以下、添付される図面を参照して、好ましい実施例について説明する。図4及び図5は、通信システムの構成例を示す図である。通信システム1は、伝送装置2-1及び2-2と、光送信部3-1及び3-2と、光受信部4-1及び4-2と、光伝送路5-1及び5-2を備える。
 以下の説明において伝送装置2-1及び2-2を、総称して「伝送装置2」と表記することがある。以下の説明において光送信部3-1及び3-2を、総称して「光送信部3」と表記することがある。以下の説明において光受信部4-1及び4-2を、総称して「光受信部4」と表記することがある。以下の説明において光伝送路5-1及び5-2を、総称して「光伝送路5」と表記することがある。
 伝送装置2は、入力された複数の送信データを多重化することによりフレームを生成する。伝送装置2は、生成されたフレームを複数の信号ブロックに分割する。以下の説明において、フレームを分割することによって得られた複数の信号ブロックのそれぞれを「部分信号」と表記することがある。伝送装置2は、電気信号線路である第1レーン~第Mレーンへ部分信号を分配する。各部分信号は第1レーン~第Mレーン上にて並列に伝送され、光送信部3へ入力される。
 光送信部3は、複数のレーンにてそれぞれ受信した部分信号を多重化して、多重化信号としての光信号を生成する。光送信部3は、光伝送路5を介してこの光信号を光受信部4へ送信する。光受信部4は、受信した光信号を逆多重化することによって受信した光信号を分離し、光信号に含まれていた複数の部分信号を取得する。光受信部4は、特許請求の範囲に記載の分離部の一例として挙げられる。光受信部4は、複数の部分信号を電気信号へと変換した後に、第1レーン~第Mレーンへ信号ブロックを分配する。各部分信号は第1レーン~第Mレーン上にて並列に伝送され、伝送装置2へ入力される。
 伝送装置2は、光受信部4から受信した部分信号を組み合わせてフレームの形式に構成することによりフレームを再現する。伝送装置2は、再現された部分信号を分解することにより取得された複数の受信データを出力する。
 伝送装置2は、電気信号を処理する送信部10と受信部20を備える。送信部10は、フレーム生成部11とマルチレーン送信部12を備える。受信部20は、マルチレーン受信部21とフレーム分解部22を備える。
 フレーム生成部11は、複数の送信データを多重化することによりフレームを生成する。フレーム生成部11は、生成されたフレームをM×Nビットのビット幅のパラレル信号としてマルチレーン送信部12へ出力する。マルチレーン送信部12は、受信したパラレル信号を、それぞれM個の部分信号に分割する。部分信号は、Nビットのビット幅を有するパラレルデータである。マルチレーン送信部12は、M個の部分信号をシリアルデータに変換する。マルチレーン送信部12は、M個の部分信号を第1レーン~第Mレーンへ入力する。
 マルチレーン受信部21は、光受信部4から、第1レーン~第Mレーンを介してそれぞれ受信したM個の部分信号の形式を、シリアル形式からパラレル形式へ変換する。マルチレーン受信部21は、Nビットのビット幅を有するM個の部分信号が配列されたM×Nビットのビット幅を有するパラレル信号をフレーム分解部22へ入力する。
 フレーム分解部22は、マルチレーン受信部21から受信した部分信号を組み合わせてフレームの形式に構成することによりフレームを再現する。フレーム分解部22は、構成されたフレームを分解することにより取得された複数の受信データを出力する。またフレーム分解部22は、受信フレームの同期が確立しているか否かを判定する。フレーム分解部22は、受信フレームの同期が外れたとき、受信フレームの同期外れを示す第1アラーム信号を、フレーム生成部11とマルチレーン受信部21へ出力する。
 フレーム生成部11は、第1アラーム信号を送信フレームに含める。フレーム生成部11は、例えば送信フレームのOHに第1アラーム信号を含めてよい。第1アラーム信号を含んだフレームは、対向する伝送装置2へ送信される。
 フレーム分解部22は、対向する伝送装置2から受信した受信フレーム内に含まれる第1アラーム信号を検出する。第1アラーム信号が検出されたとき、フレーム分解部22は、第2アラーム信号をマルチレーン送信部12へ出力する。第1アラーム信号を受信したマルチレーン受信部21は、フレームの同期を確立するための同期確立シーケンスを実行する。同期確立シーケンスについては、後述する。第2アラーム信号を受信したマルチレーン送信部12は、同期確立シーケンスを実行する。
 次に、伝送装置2の各部の構成と処理を説明する。図6は、マルチレーン送信部12の構成例を示す図である。マルチレーン送信部12は、第1シーケンス制御部30と、同期用信号生成部31と、信号切換部32と、パラレルシリアル変換部33-1~33-Mを備える。図面及び以下の説明においてパラレルシリアル変換部を「P/S」と表記することがある。以下の説明において、またP/S33-1~33-Mを総称して「P/S33」と表記することがある。
 同期用信号生成部31は、同期確立シーケンスにおいて使用される既知のパターンを含む同期用信号を生成する。同期用信号は、既知のパターンを含むダミーフレームであってよい。また同期用信号は、既知のパターンを含むトレーニング信号であってよい。
 信号切換部32は、実信号及び同期用信号のいずれかを選択して、第1レーン~第Mレーンにそれぞれ入力する。実信号は、伝送装置2に入力された送信データを含んだフレームを、フレーム生成部11にて分割して得られた部分信号である。信号切換部32は、例えば、第1レーン~第Mレーンにそれぞれ入力する信号をそれぞれ選択するセレクタ34-1~34-Mを備えていてよい。信号切換部32が、第1レーン~第Mレーンのそれぞれに同期用信号を入力することにより、光送信部3にて光信号に多重化される部分信号に同期用信号が入力される。図面及び以下の説明においてセレクタを「SEL」と表記することがある。以下の説明において、またSEL34-1~34-Mを総称して「SEL34」と表記することがある。
 P/S33-1~33-Mは、第1レーン~第Mレーンで伝送される信号を、パラレル形式からシリアル形式へ変換する。第1シーケンス制御部30は、フレーム分解部22から第2アラーム信号を受信する。フレーム分解部22から第2アラーム信号を受信すると、第1シーケンス制御部30は同期確立シーケンスを開始する。
 フレーム分解部22からの第2アラーム信号の受信が停止すると、第1シーケンス制御部30は、同期確立シーケンスを終了する。同期確立シーケンス中において信号切換部32は、第1レーン~第Mレーンへ同期用信号を入力する。
 図7は、マルチレーン受信部21の構成の第1例を示す図である。マルチレーン受信部21は、第2シーケンス制御部40と、シリアルパラレル変換部41-1~41-Mと、受信信号処理部42-1~42-Mを備える。図面及び以下の説明においてシリアルパラレル変換部を「S/P」と表記することがある。以下の説明において、またS/P41-1~41-Mを総称して「S/P41」と表記することがある。また以下の説明において、受信信号処理部42-1~42-Mを総称して「受信信号処理部42」と表記することがある。
 S/P41-1~41-Mは、第1レーン~第Mレーンで伝送される信号を、シリアル形式からパラレル形式へ変換する。S/P41-1~41-Mにより変換されたパラレル信号は、それぞれ受信信号処理部42-1~42-Mへ入力される。
 第2シーケンス制御部40は、フレーム分解部22から第1アラーム信号を受信する。フレーム分解部22から第1アラーム信号を受信すると、第2シーケンス制御部40は、同期確立シーケンスを開始する。
 同期確立シーケンス中において受信信号処理部42-1~42-Mは、それぞれ第1レーン~第Mレーンにて受信された同期用信号を検出する。受信信号処理部42-1~42-Mは、検出された同期用信号の位相に基づいて、それぞれ第1レーン~第Mレーンで伝送される部分信号の位相を調整する。
 図8は、受信信号処理部42の構成の第1例を示す図である。受信信号処理部42は、位相調整部50と、同期検出部51を備える。同期確立シーケンス中において同期検出部51は、各レーンで受信された同期用信号を検出する。すなわち同期検出部51は、光受信部4により分離された複数の部分信号から同期用信号を検出する。位相調整部50は、検出された同期用信号の位相に基づいて、各レーンで伝送される部分信号の位相を調整する。すなわち位相調整部50は、光受信部4により分離された複数の部分信号の位相を調整する。位相調整部50による位相調整は、例えばS/P41におけるビットアライメントを含んでよい。ビットアライメントは、S/P41においてシリアル信号からパラレル信号を切り出すビット位置の調整処理である。
 同期が検出されると、同期検出部51は、同期が検出されたことを示す同期検出信号を、第2シーケンス制御部40へ出力する。全てのレーンにおいて同期検出を終了すると、第2シーケンス制御部40は同期確立シーケンスを終了する。
 マルチレーン受信部21は、受信信号処理部42による位相調整が施されたM個の部分信号を配列して、フレーム分解部22へ出力する。
 次に、伝送装置2の他の構成例を説明する。図9は、伝送装置2の他の構成例を示す図である。図4及び図5に示す構成要素と同じ構成要素は、同一の参照番号によって参照される。伝送装置2は、第3シーケンス制御部61及び通信部62を備えてもよい。本明細書において説明される他の実施例においても同様である。
 第3シーケンス制御部61は、ユーザからの入力に応じて又は伝送装置2の起動時に自動的に同期確立シーケンスを実行する。例えば、第3シーケンス制御部61は、CPUとメモリ、及び同期確立シーケンスを実行するコンピュータプログラムを格納した補助記憶装置を含んでいてよい。
 通信部62は、対向する伝送装置2の通信部62と接続され、互いに対向しあう伝送装置の第3シーケンス制御部61間における通信を実現する。ユーザからのシーケンス開始指示が受信されたとき、又は伝送装置2が起動したとき第3シーケンス制御部61は、同期確立シーケンスを開始する。
 受信信号処理部42が全てのレーンにおいて同期検出を終了すると、第3シーケンス制御部61は、受信部20における同期確立シーケンスを終了する。第3シーケンス制御部61は、対向する伝送装置2の第3シーケンス制御部61へ受信部20における同期検出が完了したことを通知する。対向する伝送装置2の受信部20における同期検出が完了したことを通知された第3シーケンス制御部61は、送信部10における同期確立シーケンスを終了する。
 次に、同期確立シーケンスの処理について説明する。以下の説明では、伝送装置2-1から伝送装置2-2へ送信されるフレームの同期を確立する場合における処理を説明する。図10は、伝送装置2-1における同期確立シーケンスの第1例の説明図である。なお、他の実施態様においては、下記のオペレーションAA~ADの各オペレーションはステップであってもよい。
 オペレーションAAにおいて第1シーケンス制御部30又は第3シーケンス制御部61は、同期確立シーケンスを開始するか否かを判定する。例えば第1シーケンス制御部30は、フレーム分解部22からの第2アラーム信号を受信したとき、同期確立シーケンスを開始してよい。例えば、第1シーケンス制御部30は、フレーム分解部22からの第2アラーム信号を受信していないとき、同期確立シーケンスを開始しなくてよい。
 例えば、ユーザからのシーケンス開始指示が受信されたとき又は伝送装置2が起動したとき、第3シーケンス制御部61は同期確立シーケンスを開始してよい。また、例えば第3シーケンス制御部61は、伝送装置2の運用中にユーザからのシーケンス開始指示がないとき同期確立シーケンスを開始しないと判断してよい。
 同期確立シーケンスが開始する場合(オペレーションAA:Y)、処理はオペレーションABへ進む。同期確立シーケンスが開始しない場合(オペレーションAA:N)、処理はオペレーションAAへ戻る。
 オペレーションABにおいて同期用信号生成部31は、同期用信号を生成する。信号切換部32は、実信号の代わりに同期用信号を第1レーン~第Mレーンへ入力する。オペレーションACにおいて第1シーケンス制御部30又は第3シーケンス制御部61は、伝送装置2-2において受信フレームの同期が確立したか否かを判定する。
 例えば第1シーケンス制御部30は、フレーム分解部22からの第2アラーム信号が止まったとき、受信フレームの同期が確立したと判断してよい。第1シーケンス制御部30は、フレーム分解部22からの第2アラーム信号が続いているとき、受信フレームの同期が確立していないと判断してよい。
 例えば伝送装置2-1の第3シーケンス制御部61は、伝送装置2-2の第3シーケンス制御部61から、伝送装置2-2の受信部20における同期検出が完了したことを通知されたとき、受信フレームの同期が確立したと判断してよい。伝送装置2-1の第3シーケンス制御部61は、伝送装置2-2の受信部20における同期検出が完了したことを通知されないとき、受信フレームの同期が確立していないと判断してよい。
 受信フレームの同期が確立した場合(オペレーションAC:Y)、処理はオペレーションADへ進む。受信フレームの同期が確立しない場合(オペレーションAC:N)、処理はオペレーションABへ戻る。オペレーションADにおいて第1シーケンス制御部30又は第3シーケンス制御部61は、同期確立シーケンスを終了する。
 図11は、伝送装置2-2における同期確立シーケンスの第1例の説明図である。なお、他の実施態様においては、下記のオペレーションBA~BDの各オペレーションはステップであってもよい。
 オペレーションBAにおいて第2シーケンス制御部40又は第3シーケンス制御部61は、同期確立シーケンスを開始するか否かを判定する。例えば第2シーケンス制御部40は、フレーム分解部22からの第1アラーム信号を受信したとき、同期確立シーケンスを開始してよい。例えば、第2シーケンス制御部40は、フレーム分解部22からの第1アラーム信号を受信していないとき、同期確立シーケンスを開始しないと判断してよい。
 例えば、ユーザからのシーケンス開始指示が受信されたとき又は伝送装置2が起動したとき、第3シーケンス制御部61は同期確立シーケンスを開始してよい。例えば、伝送装置2の起動後であってユーザからのシーケンス開始指示がないとき、第3シーケンス制御部61は同期確立シーケンスを開始しないと判断してよい。
 同期確立シーケンスが開始する場合(オペレーションBA:Y)、処理はオペレーションBBへ進む。同期確立シーケンスが開始しない場合(オペレーションBA:N)、処理はオペレーションBAへ戻る。
 オペレーションBBにおいて、受信信号処理部42-1~42-Mは、それぞれ第1レーン~第Mレーンにおける部分信号の同期確立処理を行う。各レーンにおける同期確立処理については、図12を参照して後述する。オペレーションBCにおいて第2シーケンス制御部40又は第3シーケンス制御部61は、各受信信号処理部42から出力される同期検出信号を入力し、全てのレーンで同期が確立したか否かを判定する。
 全てのレーンで同期が確立したとき(オペレーションBC:Y)、処理はオペレーションBDへ進む。全てのレーンで同期が確立していないとき(オペレーションBC:N)、処理はオペレーションBBへ戻る。オペレーションBDにおいて第2シーケンス制御部40又は第3シーケンス制御部61は、同期確立シーケンスを終了する。第3シーケンス制御部61は、伝送装置2-1の第3シーケンス制御部61へ、伝送装置2-2の受信部20における同期検出が完了した旨を通知する。
 図12は、受信信号処理部42における同期確立処理の第1例の説明図である。なお、他の実施態様においては、下記のオペレーションCA~CCの各オペレーションはステップであってもよい。オペレーションCAにおいて同期検出部51は、同期用信号に含まれる既知のパターンを検出することにより同期用信号の同期を検出することを試みる。同期が検出されたとき(オペレーションCA:Y)、処理はオペレーションCBへ進む。同期が検出されないとき(オペレーションCA:N)、処理はオペレーションCAへ戻る。
 オペレーションCBにおいて位相調整部50は、検出された同期用信号の位相に基づいて、各レーンで伝送される部分信号の位相を調整する。オペレーションCCにおいて同期検出部51は、同期検出信号を第2シーケンス制御部40へ出力する。
 従来の同期確立方法では、実信号のOHの入力レーンを切り換えて、全レーンにおける同期確立処理を行っている。本実施例の通信システムでは、同期用信号を実信号に代えて入力する特定の同期確立シーケンスを実行させることによりフレームの同期確立を行う。このため本実施例の通信システムでは、任意の期間に任意のレーンに同期用信号を入力することができる。従って、本実施例は、OHの入力レーンの切り換えのためのメモリを省略することにより、回路規模を低減することができる。
 図13は、受信信号処理部42の構成の第2例を示す図である。図8に示す構成要素と同じ構成要素は、同一の参照番号によって参照される。受信信号処理部42は、極性訂正部52を備える。同期検出部51は、同期用信号から既知のパターンが検出できないときは、既知のパターンの極性を反転パターンを同期用信号から検出する。
 反転パターンが検出されたとき、同期検出部51は、受信信号が反転していることを極性訂正部52へ通知する。受信信号が反転しているとき、極性訂正部52は、位相調整部50から出力される信号の極性を反転させてフレーム分解部22へ出力する。
 本実施例の通信システムでは、同期確立シーケンスにて実信号に代えて伝送される同期用信号を用いて受信信号の極性反転を検出する。したがって本実施例によれば、受信信号の極性反転を検出するために従来使用されていた、OHの入力レーンの切り換えのためのメモリを省略することができる。
 次に、伝送装置2の他の実施例を説明する。図6を参照する。同期確立シーケンスにおいて信号切換部32は、第1シーケンス制御部30によるSEL34-1~34-Mの切換動作の制御により、特定の順序で第1レーン~第Mレーンから1レーンずつ選択し、一度に1つのレーンに同期用信号を入力する。または、信号切換部32は、第3シーケンス制御部61によるSEL34-1~34-Mの切換動作の制御により、特定の順序で第1レーン~第Mレーンから1レーンずつ選択し、一度に1つのレーンに同期用信号を入力してもよい。
 例えば信号切換部32は、第1レーン、第2レーン、第3レーン…第Mレーンの順序で、これらレーンに同期用信号を入力してもよい。
 図14は、マルチレーン受信部21の構成の第2例を示す図である。図7に示す構成要素と同じ構成要素は、同一の参照番号によって参照される。マルチレーン受信部21は配列部43を備える。マルチレーン受信部21は、各受信信号処理部42が出力する同期検出信号を受信する。同期用信号が入力されるレーンは1度に1つなので、同期検出信号を出力する受信信号処理部42も一度に1つである。配列部43は、受信信号処理部42が同期を検出した順序を記憶する。
 配列部43は、信号切換部32が同期検出信号を入力するレーンの特定の順序と、受信信号処理部42が同期を検出したレーンの順序に基づいて、信号が入力される送信側のレーンと、この信号が出力される受信側のレーンとの対応関係を特定する。配列部43は、信号切換部32が同期検出信号を入力するレーンの特定の順序に対応する配列順序で、受信信号処理部42から入力されるパラレル信号を配列する。配列部43は、例えばクロスコネクトスイッチであってよい。配列されたパラレル信号はフレーム分解部22へ出力される。
 例えば、マルチレーン送信部12において、M×Nビットのパラレル入力信号のうち、1番目のNビット分の部分信号が第1レーンに、2番目のNビット分の部分信号が第2レーンに、…M番目のNビット分の部分信号が第Mレーンに入力される場合を考える。また、例えば信号切換部32が第1レーン、第2レーン、…第Mレーンに同期用信号を入力する特定の順番は、X1、X2、…XMであるとする。
 配列部43は、第X1、X2、…XM番目に同期が検出されたレーンから出力される信号が、フレーム分解部22へ出力されるM×Nビットパラレル信号のそれぞれ第1番目、第2番目、…第M番目のNビット分の部分になるように、信号を配列する。
 次に、図14に示すマルチレーン受信部21を備えた伝送装置2における同期確立シーケンスを説明する。以下の説明では、伝送装置2-1から伝送装置2-2へ送信されるフレームの同期を確立する場合における処理を説明する。図15は、伝送装置2-1における同期確立シーケンスの説明図である。なお、他の実施態様においては、下記のオペレーションDA~DGの各オペレーションはステップであってもよい。
 オペレーションDAにおいて第1シーケンス制御部30又は第3シーケンス制御部61は、同期確立シーケンスを開始するか否かを判定する。同期確立シーケンスが開始する場合(オペレーションDA:Y)、処理はオペレーションDBへ進む。同期確立シーケンスが開始しない場合(オペレーションDA:N)、処理はオペレーションDAへ戻る。
 オペレーションDBにおいて第1シーケンス制御部30又は第3シーケンス制御部61は、変数iに1を代入する。オペレーションDCにおいて同期用信号生成部31は、同期用信号を生成する。第1シーケンス制御部30又は第3シーケンス制御部61は、第i番目のレーンに同期用信号が入力されるように、SEL34-1~34-Mを制御する。
 オペレーションDDにおいて第1シーケンス制御部30又は第3シーケンス制御部61は、変数iの値を1つ増加させる。オペレーションDEにおいて第1シーケンス制御部30又は第3シーケンス制御部61は、変数iがレーン数Mより大きいか否かを判定する。変数iがレーン数Mより大きいとき(オペレーションDE:Y)、処理はオペレーションDFへ進む。変数iがレーン数M以下のとき(オペレーションDE:N)、処理はオペレーションDCへ戻る。
 オペレーションDFにおいて第1シーケンス制御部30又は第3シーケンス制御部61は、同期確立シーケンスを再実行するか否かを判定する。例えば第1シーケンス制御部30は、全レーンへの同期用信号の入力が完了して処理がオペレーションDFに至ったにも関わらず第2アラーム信号が受信されているとき、再実行すると判定してよい。例えば第1シーケンス制御部30は、第2アラーム信号が停止したとき再実行しないと判定してよい。
 また例えば、第3シーケンス制御部61は、オペレーションDFに至ったにも関わらず伝送装置2-2の第3シーケンス制御部61から、伝送装置2-2の受信部20における同期検出が完了したことを通知されないとき、再実行すると判定してよい。第3シーケンス制御部61は、伝送装置2-2の受信部20における同期検出が完了したことを通知されたとき、再実行しないと判定してよい。
 再実行すると判定されたとき(オペレーションDF:Y)、処理はオペレーションDBへ戻る。再実行しないと判定されたとき(オペレーションDF:N)、処理はオペレーションDGへ進む。オペレーションDGにおいて第1シーケンス制御部30又は第3シーケンス制御部61は、同期確立シーケンスを終了する。
 図16は、伝送装置2-2における同期確立シーケンスの説明図である。なお、他の実施態様においては、下記のオペレーションEA~EFの各オペレーションはステップであってもよい。
 オペレーションEAにおいて第2シーケンス制御部40又は第3シーケンス制御部61は、同期確立シーケンスを開始するか否かを判定する。同期確立シーケンスが開始する場合(オペレーションEA:Y)、処理はオペレーションEBへ進む。同期確立シーケンスが開始しない場合(オペレーションEA:N)、処理はオペレーションEAへ戻る。
 オペレーションEBにおいて受信信号処理部42-1~42-Mは、それぞれ第1レーン~第Mレーンにおける部分信号の同期確立処理を行う。図17は、受信信号処理部42における同期確立処理の第2例の説明図である。なお、他の実施態様においては、下記のオペレーションFA~FDの各オペレーションはステップであってもよい。
 オペレーションFAにおいて同期検出部51は、同期用信号の同期を検出することを試みる。同期が検出されたとき(オペレーションFA:Y)、処理はオペレーションFBへ進む。同期が検出されないとき(オペレーションFA:N)、処理はオペレーションFAへ戻る。
 オペレーションFBにおいて位相調整部50は、検出された同期用信号の位相に基づいて、各レーンで伝送される部分信号の位相を調整する。オペレーションFCにおいて同期検出部51は、同期検出信号を配列部43へ出力する。オペレーションFDにおいて配列部43は、各レーンから同期検出信号が出力された順序を記憶する。
 図16を参照する。オペレーションECにおいて配列部43は、全てのレーンの受信信号処理部42-1~42-Mから同期検出信号が出力されたか否かを判断することによって、全てのレーンで同期が確立したか否かを判定する。
 全てのレーンで同期が確立したとき(オペレーションEC:Y)、処理はオペレーションEDへ進む。全レーンへの同期用信号の入力が完了する期間が経過しても全てのレーンで同期が確立していないとき(オペレーションEC:N)、第2シーケンス制御部40又は第3シーケンス制御部61は、処理がオペレーションEBへ戻し、同期確立シーケンスを再実行する。
 オペレーションEDにおいて配列部43は、伝送装置2-1にて同期検出信号が入力されるレーンの特定の順序と、各レーンから同期検出信号が出力された順序に基づいて、各レーンから出力されるパラレル信号を配列する。
 配列部43は、各レーンにおける同期が確立したことを第2シーケンス制御部40又は第3シーケンス制御部61へ通知する。オペレーションEEにおいて第2シーケンス制御部40又は第3シーケンス制御部61は、同期確立シーケンスを終了する。第3シーケンス制御部61は、伝送装置2-1の第3シーケンス制御部61へ、伝送装置2-2の受信部20における同期検出が完了した旨を通知する。
 従来の同期確立方法では、送信側の伝送装置は、実信号のOHに送信側のレーンの識別子を格納し、OHを入力するレーンを順次切り換える。受信側の伝送装置は、どの識別子を格納したOHがどのレーンから出力されるかを検出して、送信側における信号の入力レーンと受信側における信号の出力レーンの関係を特定する。
 本実施例によれば、送信側の伝送装置は、同期確立シーケンスにおいて特定の順序で1レーンずつ順次、実信号の代わりに同期用信号を各レーンに入力する。そして、受信側の伝送装置は、送信側で同期用信号を入力するレーンの順序と受信側にて同期を検出したレーンの順序に基づいて、送信側における信号の入力レーンと受信側における信号の出力レーンの関係を特定する。
 したがって本実施例によれば、送信側における信号の入力レーンと受信側における信号の出力レーンの関係を特定するために使用されていた、OHの入力レーンの切り換えを省略することができる。このようにして本実施例は、OHの入力レーンの切り換えのためのメモリを省略することができる。
 ここに記載されている全ての例及び条件的な用語は、読者が、本発明と技術の進展のために発明者により与えられる概念とを理解する際の助けとなるように、教育的な目的を意図したものであり、具体的に記載されている上記の例及び条件、並びに本発明の優位性及び劣等性を示すことに関する本明細書における例の構成に限定されることなく解釈されるべきものである。本発明の実施例は詳細に説明されているが、本発明の精神及び範囲から外れることなく、様々な変更、置換及び修正をこれに加えることが可能であると解すべきである。
 1  通信システム
 2-1、2-2  伝送装置
 3-1、3-2  光送信部
 4-1、4-2  光受信部
 5-1、5-2  光伝送路
 10  送信部
 11  フレーム生成部
 12  マルチレーン送信部
 20  受信部
 21  マルチレーン受信部
 22  フレーム分解部
 30  第1シーケンス制御部
 31  同期用信号生成部
 32  信号切換部
 40  第2シーケンス制御部
 42-1~42-M  受信信号処理部

Claims (7)

  1.  1つのフレームを複数の信号ブロックに分割し、前記複数の信号ブロックをそれぞれ並列に伝送した後に多重して多重化信号として伝送し、受信した前記多重化信号を分離して得た複数の信号ブロックを並列に伝送した後に組み合わせて前記フレームの形式に構成する通信システムにおいてフレームの同期を確立する同期確立方法であって、
     前記フレームの同期を確立するためのシーケンスを実行し、
     前記シーケンスは、
     同期用信号を、前記多重化信号に多重される前記複数の信号ブロックに入力すること、
     前記多重化信号から分離された前記複数の信号ブロックから、前記同期用信号を検出すること、及び
     検出された前記同期用信号の位相に基づいて、前記分離された複数の信号ブロックの各々の位相を調整すること、
     を含む同期確立方法。
  2.  前記シーケンスは、
     前記多重化信号に多重される前記複数の信号ブロックに前記同期用信号を特定順序で入力すること、及び
     前記分離された複数の信号ブロックから前記同期用信号を検出した検出順序に基づいて、前記分離された複数の信号ブロックを前記特定順序に対応する配列順序で配列すること、
     を含む請求項1に記載の同期確立方法。
  3.  前記フレームの同期を検出し、
     前記フレームの同期が外れた場合に、前記シーケンスを実行する請求項1又は2に記載の同期確立方法。
  4.  1つのフレームを分割して得られる複数の信号ブロックをそれぞれ並列に伝送した後に多重した多重化信号を受信する受信装置であって、
     前記多重化信号を複数の信号ブロックに分離する分離部と、
     前記フレームの同期を確立するシーケンスを開始及び終了するシーケンス制御部と、
     前記シーケンス中に、前記多重化信号に多重される前記複数の信号ブロックに入力された同期用信号を、前記多重化信号から分離された前記複数の信号ブロックから検出する同期検出部と、
     前記同期用信号の位相に基づいて、前記分離された複数の信号ブロックの各々の位相を調整する位相調整部と、
     を備える受信装置。
  5.  前記受信装置は、前記多重化信号に多重される前記複数の信号ブロックに特定順序で前記同期用信号を、前記分離された複数の信号ブロックから検出した検出順序に基づいて、前記分離された複数の信号ブロックを前記特定順序に対応する配列順序で配列する配列部を備える請求項4に記載の受信装置。
  6.  1つのフレームを分割して得られる複数の信号ブロックをそれぞれ並列に伝送した後に多重した多重化信号を送信する送信装置であって、
     前記多重化信号を受信する受信装置において前記フレームの同期を確立するためのシーケンスを開始及び終了するシーケンス制御部と、
     特定の同期用信号を生成する同期用信号生成部と、
     前記シーケンス中に、前記多重化信号に多重される前記複数の信号ブロックに前記同期用信号を入力する信号切換部と、
     を備える送信装置。
  7.  前記信号切替部は、前記多重化信号に多重される前記複数の信号ブロックに特定順序で前記同期用信号を入力する請求項6に記載の送信装置。
PCT/JP2010/059464 2010-06-03 2010-06-03 同期確立方法、受信装置及び送信装置 WO2011151914A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2010/059464 WO2011151914A1 (ja) 2010-06-03 2010-06-03 同期確立方法、受信装置及び送信装置
JP2012518189A JP5440699B2 (ja) 2010-06-03 2010-06-03 同期確立方法、受信装置及び送信装置
US13/688,798 US20130089111A1 (en) 2010-06-03 2012-11-29 Synchronization establishing method, receiving device and transmitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/059464 WO2011151914A1 (ja) 2010-06-03 2010-06-03 同期確立方法、受信装置及び送信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/688,798 Continuation US20130089111A1 (en) 2010-06-03 2012-11-29 Synchronization establishing method, receiving device and transmitting device

Publications (1)

Publication Number Publication Date
WO2011151914A1 true WO2011151914A1 (ja) 2011-12-08

Family

ID=45066309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059464 WO2011151914A1 (ja) 2010-06-03 2010-06-03 同期確立方法、受信装置及び送信装置

Country Status (3)

Country Link
US (1) US20130089111A1 (ja)
JP (1) JP5440699B2 (ja)
WO (1) WO2011151914A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013207592A (ja) * 2012-03-28 2013-10-07 Fujitsu Ltd 光送信器、光受信器、及び光伝送方法
JP2014220709A (ja) * 2013-05-09 2014-11-20 日本電信電話株式会社 多重伝送システム及び多重伝送方法
WO2017154135A1 (ja) * 2016-03-09 2017-09-14 三菱電機株式会社 伝送システム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2642017C (en) * 2006-07-25 2012-09-18 Il-Gyu Kim Cell search method, forward link frame transmission method, apparatus using the same and forward link frame structure
WO2014013601A1 (ja) * 2012-07-20 2014-01-23 富士通株式会社 伝送装置
JP6180664B2 (ja) * 2014-12-15 2017-08-16 三菱電機株式会社 送信装置、通信装置および信号伝送システム

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008092406A (ja) * 2006-10-04 2008-04-17 Nippon Telegr & Teleph Corp <Ntt> フレーム同期方法および光信号受信装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8274892B2 (en) * 2001-10-09 2012-09-25 Infinera Corporation Universal digital framer architecture for transport of client signals of any client payload and format type
US7257154B2 (en) * 2002-07-22 2007-08-14 Broadcom Corporation Multiple high-speed bit stream interface circuit
US7227899B2 (en) * 2003-08-13 2007-06-05 Skystream Networks Inc. Method and system for re-multiplexing of content-modified MPEG-2 transport streams using interpolation of packet arrival times
US20080298400A1 (en) * 2007-06-04 2008-12-04 Honeywell International Inc. Method and system to decommute a variable synchronization pattern using a fixed decommutator
US20100002678A1 (en) * 2008-07-02 2010-01-07 Kabushiki Kaisha Toshiba Mobile radio terminal and radio communication method
JP5359202B2 (ja) * 2008-11-06 2013-12-04 富士通株式会社 フレーム生成装置、光伝送システム、フレーム生成方法および光伝送方法
JP5251620B2 (ja) * 2009-03-09 2013-07-31 富士通株式会社 フレーム生成装置およびフレーム生成方法
JP2011254122A (ja) * 2009-03-23 2011-12-15 Nec Corp 回路、制御システム、制御方法及びプログラム
US8205141B2 (en) * 2009-04-29 2012-06-19 Applied Micro Circuits Corporation Virtual lane forward error correction in multilane distribution
JP5419534B2 (ja) * 2009-05-11 2014-02-19 三菱電機株式会社 Fecフレーム構成装置および方法
JP5287536B2 (ja) * 2009-06-19 2013-09-11 富士通株式会社 光伝送システムおよび光伝送方法
JP2012010070A (ja) * 2010-06-24 2012-01-12 Nec Corp 偏波多重光伝送システム、偏波多重光受信器、および偏波多重光伝送方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008092406A (ja) * 2006-10-04 2008-04-17 Nippon Telegr & Teleph Corp <Ntt> フレーム同期方法および光信号受信装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013207592A (ja) * 2012-03-28 2013-10-07 Fujitsu Ltd 光送信器、光受信器、及び光伝送方法
JP2014220709A (ja) * 2013-05-09 2014-11-20 日本電信電話株式会社 多重伝送システム及び多重伝送方法
WO2017154135A1 (ja) * 2016-03-09 2017-09-14 三菱電機株式会社 伝送システム
JPWO2017154135A1 (ja) * 2016-03-09 2018-08-09 三菱電機株式会社 伝送システム

Also Published As

Publication number Publication date
JPWO2011151914A1 (ja) 2013-07-25
JP5440699B2 (ja) 2014-03-12
US20130089111A1 (en) 2013-04-11

Similar Documents

Publication Publication Date Title
JP5440699B2 (ja) 同期確立方法、受信装置及び送信装置
CN102439964A (zh) 相机系统、信号延迟量调整方法和程序
KR101133069B1 (ko) 정보 처리 장치, 데이터 전송 장치 및 데이터 전송 방법
US20140164883A1 (en) Optical transmission module and optical signal transmission apparatus
CN101001332A (zh) 应用弹性化接收器架构的数字电视接收器及其相关方法
JP5703957B2 (ja) 光パケット信号伝送装置およびwdm光通信ネットワーク
EP2876828B1 (en) Transmission device
US8624762B2 (en) Variable bitrate equipment
CN102439965A (zh) 相机系统、信号延迟量调整方法和程序
JPWO2014013601A1 (ja) 伝送装置
JP6525004B2 (ja) マルチキャリア光送信器、マルチキャリア光受信器、およびマルチキャリア光伝送方法
US20110284727A1 (en) Ccd charge transfer drive device
JP2013126035A (ja) 光伝送システム及び光伝送方法
US20230104943A1 (en) Optical Network with Optical Core and Node Using Time-Slotted Reception
US20180054345A1 (en) Transmission apparatus and transmission method, reception apparatus and reception method, transmission system, and program
JP5477474B2 (ja) 伝送装置、伝送方法、及びプログラム
JP6493756B2 (ja) 送信装置、受信装置、送受信システムおよびプログラム
CN107396214B (zh) 128×128路宽带数据信号实时交换系统及交换方法
JP6494883B2 (ja) フレーム処理装置、光伝送装置およびフレーム処理方法
JP6461299B1 (ja) フレーム送信装置およびフレーム受信装置
US8005356B2 (en) Video transmission system of a ring network
US8660151B2 (en) Encoding system and encoding apparatus
KR101079143B1 (ko) 다중채널 수신 시스템 및 수신 방법
KR20220104932A (ko) 광 스위칭 방법 및 장치
JP4327755B2 (ja) デジタル放送信号切替送出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10852519

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012518189

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10852519

Country of ref document: EP

Kind code of ref document: A1