WO2011151898A1 - (pmda)2(dade)2(bpda)2(dade以外の芳香族ジアミン)2の成分比より構成される有機溶媒に可溶なポリイミド - Google Patents

(pmda)2(dade)2(bpda)2(dade以外の芳香族ジアミン)2の成分比より構成される有機溶媒に可溶なポリイミド Download PDF

Info

Publication number
WO2011151898A1
WO2011151898A1 PCT/JP2010/059324 JP2010059324W WO2011151898A1 WO 2011151898 A1 WO2011151898 A1 WO 2011151898A1 JP 2010059324 W JP2010059324 W JP 2010059324W WO 2011151898 A1 WO2011151898 A1 WO 2011151898A1
Authority
WO
WIPO (PCT)
Prior art keywords
dade
bpda
pmda
organic solvent
aromatic diamine
Prior art date
Application number
PCT/JP2010/059324
Other languages
English (en)
French (fr)
Inventor
博 板谷
Original Assignee
ソルピー工業株式会社
双日株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソルピー工業株式会社, 双日株式会社 filed Critical ソルピー工業株式会社
Priority to PCT/JP2010/059324 priority Critical patent/WO2011151898A1/ja
Publication of WO2011151898A1 publication Critical patent/WO2011151898A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds

Definitions

  • Polyimides soluble in the organic solvents of the present invention are pyromellitic dianhydride (PMDA), diaminodiphenyl ether (DADE), biphenyltetracarboxylic dianhydride (BPDA) and (other than DADE).
  • PMDA pyromellitic dianhydride
  • DADE diaminodiphenyl ether
  • BPDA biphenyltetracarboxylic dianhydride
  • DADE includes 4,4'-diaminodiphenyl ether or 3,4'-diaminodiphenyl ether.
  • the polyimide soluble in the organic solvent of the present invention has a PMDA-DADE-BPDA component. Further, for example, in addition to the above components, bis (3-amino-4-hydroxyphenyl) sulfone (referred to as HOAB ⁇ SO 2 ) A heat-resistant polyimide having functionality containing components is also an object of the present invention. 9,9-bis (4-aminophenyl) fluorene (referred to as FDA) can also be included as a component.
  • the production method of the present invention is not film formation from a conventional polyamic acid solution such as production of KAPTON. It is a polyimide soluble in an organic solvent produced by a direct imidization reaction in the presence of a catalyst in a solvent by a new synthesis process.
  • Benzophenone tetracarboxylic dianhydride can be used instead of BPDA. Moreover, it can be set as the functional polyimide by polycondensation using various aromatic diamines other than DADE.
  • KAPTON known as a conventional super heat-resistant polyimide
  • PMDA pyromellitic dianhydride
  • 4,4'-DADE 4,4'-diaminodiphenyl ether
  • UPILEX® is a two-component polyimide composed of biphenyltetracarboxylic dianhydride (BPDA) and p-phenylenediamine, both of which are insoluble and infusible.
  • BPDA biphenyltetracarboxylic dianhydride
  • p-phenylenediamine both of which are insoluble and infusible.
  • KAPTON has a glass transition temperature (Tg) of 420 ° C. and a thermal decomposition onset temperature (Tm) of 500 ° C. or more.
  • Tg glass transition temperature
  • Tm thermal decomposition onset temperature
  • the polyimide film “Upilex” manufactured by Ube Industries, Ltd. in the 1980s is composed of biphenyltetracarboxylic dianhydride (referred to as BPDA) and 1,4-diaminobenzene, and has heat resistance of Tg 500 ° C. and Tm 550 ° C. It is a film (Non-patent Document 1)
  • KAPTON and Upilex are sparingly soluble in solvents, polymerized at low temperature in anhydrous solvents (eg dimethylacetamide, N-methylpyrrolidone, etc.) to synthesize polyamic acid, then cast and heated to remove solvent At the same time, an imidization reaction is performed to produce a polyimide film.
  • anhydrous solvents eg dimethylacetamide, N-methylpyrrolidone, etc.
  • the polyamic acid synthesized by KAPTON and Upilex is stored frozen in an anhydrous solvent, is easily decomposed with water, and has poor storage stability. Polyamic acid undergoes an exchange reaction in a solution, and when other components are added, the exchange reaction is carried out quickly, so that it becomes a random copolymer and is not easily modified.
  • Non-patent Document 1 It is known that various aromatic tetracarboxylic dianhydrides and aromatic diamines are directly imidized by heating them in an organic solvent (Non-patent Document 1). For example, a large amount of acetic anhydride and pyridine are added to a polyamic acid solution and heated to produce polyimide, but this is not adopted as a process suitable for industrial production.
  • Patent Document 4 Y. Oie, H. Itatani, US Patent No. 5,502,143.
  • a small amount of ⁇ -valerolactone and pyridine (or N-methylmorpholine) are added to the reaction system and heated to 160 to 200 ° C. to carry out an imidization reaction.
  • ⁇ Water ⁇ produced early in the reaction produces [acid] + [base] ⁇ to accelerate the imidization reaction.
  • water generated during the reaction is removed from the system by the azeotropy of toluene.
  • Patent Document 1 International Publication No. 2008/120398 pamphlet
  • BPDA biphenyltetracarboxylic dianhydride
  • 4,4′-diaminodiphenyl ether 4,4′-DADE
  • a 4-component of pyromellitic dianhydride (PMDA) and 2,4-diaminotoluene (DAT), a heat-resistant polyimide copolymer soluble in an organic polar solvent, and DADE binds to both ends of BPDA
  • the heat resistant polyimide copolymer having a glass transition temperature of 430 ° C. or higher is disclosed.
  • Patent Document 2 converts 1 molar equivalent of biphenyltetracarboxylic dianhydride (BPDA) and 2 molar equivalents of diaminodiphenyl ether (DADE) to organic polarity.
  • BPDA biphenyltetracarboxylic dianhydride
  • DADE diaminodiphenyl ether
  • PMDA pyromellitic dianhydride
  • DAT diaminotoluene
  • a 6,6-imide segment which is an imide oligomer having a PMDA terminal, was synthesized, and 1 molar equivalent of tetracarboxylic dianhydride (referred to as A) and 2 molar equivalent of an aromatic diamine were added to the solution of the 6,6-imide segment.
  • A 1 molar equivalent of tetracarboxylic dianhydride
  • 2 molar equivalent of an aromatic diamine were added to the solution of the 6,6-imide segment.
  • (6) Preparation of 6,6-polyimide copolymer by the three-stage polymerization method produced by adding (B) and heating It discloses.
  • Patent Documents 1 and 2 it is reported that a polyimide having a glass transition temperature of 430 ° C. or higher, which is soluble in an organic solvent, preferably a polar organic solvent, can be synthesized by performing the reaction in three steps. .
  • the PMDA-DADE system which is a two-component polyimide
  • a solvent-soluble polyimide is not obtained. Therefore, in the present invention, a multi-component polyimide was examined. Furthermore, the present inventor found that the PMDA-DADE-PMDA component and the DADE-PMDA-DADE component are hardly soluble in a solvent, and studied a method for synthesizing a polyimide polymer not containing these components.
  • the present invention is a further development of a polyimide soluble in a polar organic solvent by carrying out the reaction in three steps disclosed in Patent Documents 1 and 2. That is, while maintaining the characteristic that it is soluble in an organic solvent, preferably a polar organic solvent, by reacting in three steps, which is a characteristic of the polyimides of Patent Documents 1 and 2, an aromatic diamine other than DADE is used as a component. By including as, it is making it the subject to provide the property to a polyimide.
  • the present invention comprises (a) 2 molar equivalents of pyromellitic dianhydride (PMDA), (B) (i) 2 molar equivalents of biphenyltetracarboxylic dianhydride (BPDA) or (ii) 1 molar equivalent of BPDA and 1 molar equivalent of benzophenone tetracarboxylic dianhydride (BTDA), (C) 2 molar equivalents of diaminodiphenyl ether (DADE) and (d) 2 molar equivalents of an aromatic diamine other than DADE, wherein the aromatic diamine is one or two, and in the case of two, the mole The equivalence ratio is 1: 1.
  • PMDA pyromellitic dianhydride
  • BPDA biphenyltetracarboxylic dianhydride
  • BTDA benzophenone tetracarboxylic dianhydride
  • DADE diaminodiphenyl ether
  • DADE diamino
  • the number of molecules of the components (a), (b), (c) and (d) in the repeating unit is all 2, and the polyimide is synthesized by a three-step reaction, In the first stage, an imide oligomer is generated. In the second stage, an imide oligomer is generated by imide bonding at both ends of the imide oligomer. In the third stage, a polycondensation reaction is performed. A heat-resistant polyimide that is soluble in an organic solvent and has a temperature of 480 ° C. or higher is provided.
  • the above-mentioned term “synthesized from components consisting of” can be interpreted as “synthesized from components consisting essentially of”, more preferably “consisting only of”.
  • the present invention provides (a) pyromellitic dianhydride (PMDA), (b) biphenyltetracarboxylic dianhydride (BPDA), (c) diaminodiphenyl ether (DADE) and (d) aromatics other than DADE.
  • PMDA pyromellitic dianhydride
  • BPDA biphenyltetracarboxylic dianhydride
  • DADE diaminodiphenyl ether
  • aromatics other than DADE aromatics other than DADE.
  • heat-resistant polyimide which is composed of diamine and has a thermal decomposition starting temperature of 480 ° C.
  • BPDA and 2 molar equivalents of DADE are reacted to produce a first stage low molecular weight imide compound having both ends of DADE
  • 2 molar equivalents of PMDA are added to the first stage low molecular weight imide compound solution
  • 1 molar equivalent of BPDA is added to imide bond the acid dianhydride to both ends.
  • 2 molar equivalents of aromatic diamine other than DADE are added and reacted to perform a polycondensation reaction.
  • the present invention provides (a) pyromellitic dianhydride (PMDA), (b) biphenyltetracarboxylic dianhydride (BPDA), (c) diaminodiphenyl ether (DADE) and (d) aromatics other than DADE.
  • PMDA pyromellitic dianhydride
  • BPDA biphenyltetracarboxylic dianhydride
  • DADE diaminodiphenyl ether
  • aromatics other than DADE aromatics other than DADE.
  • heat-resistant polyimide that is soluble in an organic solvent having a thermal decomposition starting temperature of 480 ° C.
  • the number of molecules of the components (a), (b), (c) and (d) in the repeating unit is all 2, and the polyimide is synthesized by a three-step addition reaction, (1) In the first stage, a first stage low molecular weight imide compound having both ends of DADE is produced by reaction of 1 molar equivalent of BPDA and 2 molar equivalents of DADE, (2) In the second stage, 2 molar equivalents of PMDA are added to the solution of the first stage low molecular weight imide compound, then 1 molar equivalent of BPDA is added, and then an aromatic diamine other than 1 molar equivalent of DADE.
  • the present invention provides (a) pyromellitic dianhydride (PMDA), (b) biphenyltetracarboxylic dianhydride (BPDA), (c) benzophenone tetracarboxylic dianhydride (BTDA), (d In a heat-resistant polyimide soluble in an organic solvent, comprising an aromatic diamine other than (a) diaminodiphenyl ether (DADE) and (e) DADE,
  • DADE diaminodiphenyl ether
  • DADE diaminodiphenyl ether
  • the number of molecules of the components (a), (b), (c), (d) and (e) in the repeating unit is 2: 1: 1: 2: 2, and the thermal decomposition onset temperature is 480.
  • the polyimide is synthesized by a three-step addition reaction, (1) In the first stage, a first stage low molecular weight imide compound having both ends of DADE is produced by the reaction of BPDA and DADE, (2) In the second stage, (i) 2 molar equivalents of PMDA are added to the first stage low molecular weight imide compound, and then 1 molar equivalent of BTDA is added and reacted to cause the first stage low molecular weight imide compound to react.
  • PMDA is imide-bonded to DADE, which is both ends of the compound, to mainly produce a second stage low molecular weight imide compound consisting of PMDA- (DADE-BPDA-DADE) -PMDA, (3) In the third stage, a polycondensation reaction is carried out by reacting an aromatic diamine other than DADE.
  • the thermal decomposition starting temperature of the polyimide of the present invention is 480 ° C. or higher, and the range measured in the examples of the present invention is 480 ° C. to 525 ° C.
  • the glass transition temperature of the present invention is in the range of 340 ° C. to 410 ° C., more specifically in the range of 350 ° C. to 400 ° C.
  • PMDA is an acid dianhydride having four carbonyl groups in one benzene ring. It behaves differently from other aromatic dianhydrides. Polyimide using PMDA produces a crosslinked polyimide together with a linear polyimide. Therefore, the molecular weight increases rapidly with the reaction time, and it is difficult to determine the end point of the reaction.
  • the molecular weight of the polymer increases with the reaction time.
  • the reaction time increases, the increasing tendency of the molecular weight decreases, indicating a parabolic relationship.
  • pyromellitic acid is a compound having four carbonyl groups in one benzene ring, and forms a linear polyimide and undergoes a cross-linking reaction between the molecules. Therefore, the molecular weight of the polymer produced increases with the reaction time. Increases rapidly.
  • the relationship between the reaction time and the molecular weight shows a hyperbolic shape, and a high molecular weight polyimide is rapidly formed. Therefore, special considerations that are not conventionally required are necessary to produce a certain high molecular weight polyimide.
  • the solvent-soluble polyimide of the present invention is characterized by its composition.
  • aromatic diamines other than DADE examples include 2,4-diaminotoluene (DAT), bis (3-amino-4-hydroxyphenyl) sulfone (HOAB ⁇ SO 2 ), 9,9-bis (4-aminophenol).
  • DAT 2,4-diaminotoluene
  • HOAB ⁇ SO 2 bis (3-amino-4-hydroxyphenyl) sulfone
  • DABz 3,5-diaminobenzoic acid
  • HOAB ⁇ SO 2 film adhesion and photoresist characteristics can be improved and used as a component of a composite material.
  • FDA has the highest thermal decomposition temperature and is excellent in weather resistance, addition of this can increase the thermal decomposition start temperature of polyimide and can provide weather resistance.
  • CH 3 AB it is possible to impart elongation and break strength as polyimide.
  • MPD the solubility in the container solvent can be further improved.
  • the adhesion of the produced film is improved.
  • DABz film adhesion and electrodeposition characteristics can be improved.
  • the functional properties can be improved by adding HOAB.SO 2 , FDA and DABz.
  • the polyimide of the present invention can be used as a composite material having different adhesion, adhesiveness of metal, resin and film.
  • KAPTON is difficult to use, and can be widely used for materials for electronic / electrical parts / transportation vehicles, semiconductors, and the like. It is also expected as a heat-resistant foam.
  • the polyimide of the present invention is a polyimide that is soluble in organic solvents, and is easy to process, and is widely used as an energy-saving material such as medical materials, building materials, and household high-temperature materials. Can be used.
  • HOAB ⁇ SO 2 has the following chemical formula.
  • CH 3 AB has the following chemical formula.
  • the solvent-soluble polyimide of the present invention is composed of PMDA-DADE-BPDA-diamine.
  • KAPTON made of PMDA and DADE is a polyimide that is hardly soluble in a solvent, and to date, almost no solvent-soluble polyimide containing these two components is known.
  • the present invention synthesizes a solvent-soluble polyimide having heat resistance equivalent to that of KAPTON by being composed of a four-component polyimide to which BPDA and another diamine are added.
  • a block copolymerization method is known as a multi-component polyimide.
  • almost no solvent-soluble polyimide containing PMDA and DADE is known.
  • the first stage reaction produces an oligomer (first stage low molecular weight imide compound) produced by the reaction of (2DADE and BPDA) whose both ends are DADE. That is, in the first stage, a reaction of BPDA + 2DADE ⁇ DADE-BPDA-DADE is performed (the bond between DADE and BPDA, and the bond between BPDA and DADE is an imide bond).
  • BTDA BTDA
  • PMDA is added to this (DADE-BPDA-DADE) oligomer to form an oligomer having both ends of PMDA (second stage low molecular weight imide compound).
  • second stage 2 molar equivalents of PMDA and 1 molar equivalent of BPDA are added.
  • BPDA is added after PMDA is added. If 1 molar equivalent of BPDA is added and then 2 molar equivalents of PMDA are added, PMDA will be imide-bonded to one end of the oligomer produced in the first stage and BPDA will be imide-bonded to the other end. is there.
  • the second stage oligomer produced thereby is also an oligomer within the scope of the present invention.
  • the second stage low molecular weight imide compound produced in the second stage is (II-1) (DADE-BPDA-DADE) + 2PMDA + BPDA ⁇ PMDA- (DADE-BPDA-DADE) -PMDA + BPDA (II-2) (DADE-BPDA-DADE) + 2PMDA + BPDA ⁇ PMDA- (DADE-BPDA-DADE) -BPDA + PMDA It is.
  • (II-1) is the main product and (II-2) is the by-product. However, it does not change that both reaction products are intermediate products produced in the present invention.
  • an aromatic diamine other than 1 molar equivalent of DADE can be added in the second stage.
  • PMDA is added
  • BPDA is added
  • aromatic diamine other than DADE is added. This is because when an aromatic diamine other than DADE is added first or second, polymerization occurs. To avoid polymerization, an aromatic diamine other than DADE is added last.
  • the reaction formula in this case is as follows.
  • BTDA can be used in place of BPDA in the first stage or the second stage, or in both the first stage and the second stage.
  • aromatic diamine (X) other than DADE or aromatic diamine (Y) other than DADE is added and subjected to polycondensation to produce a high molecular weight polyimide.
  • X used in the second stage may be used again in the third stage, and X may be used in the second stage and Y different from X may be used in the third stage.
  • the component ratio of the polyimide of the present invention is (PMDA) 2 (DADE) 2 (BPDA) 2 (aromatic diamine other than DADE) 2 .
  • Polyimides with this simple composition are excellent in both heat resistance and film properties.
  • the present invention can be used as a high molecular weight polyimide having various functionalities by replacing an aromatic diamine other than DADE.
  • a heat-resistant polyimide it can be used as a composite material useful as an adhesive, electrodeposition, photosensitive, or foamable polyimide.
  • the first step in the process for producing the polyimide of the present invention involves reacting 1 molar equivalent of BPDA and 2 molar equivalents of DADE in an organic polar solvent in the presence of a catalyst at 160 to 200 ° C. to obtain two acids of BPDA.
  • the first stage low molecular weight imide compound having DADE as both ends and having DADE bonded to the anhydride group is produced.
  • a catalyst used in the present invention a mixture of ⁇ -valerolactone and pyridine or a mixture of ⁇ -valerolactone and N-methylmorpholine can be used.
  • the number of molecules of the components (a), (b), (c) and (d) in the repeating unit is all 2, and the polyimide is synthesized by a three-step addition reaction, (1) In the first stage, a first stage low molecular weight imide compound having both ends of DADE is produced by reaction of 1 molar equivalent of BPDA and 2 molar equivalents of DADE, (2) In the second stage, (i) 2 molar equivalents of PMDA are added to the first stage low molecular weight imide compound, then 1 molar equivalent of BPDA and 1 molar equivalent of an aromatic diamine other than DADE are added.
  • PMDA is bonded to DADE at both ends of the first stage low molecular weight imide compound, then aromatic diamine other than DADE and BPDA are bonded, and PMDA- (DADE-BPDA-DADE) -PMDA- (other than DADE)
  • a second stage low molecular weight imide compound with aromatic diamine) -BPDA is formed, or (ii) the first stage low molecular weight imide compound is other than 2 molar equivalents of PMDA, 1 molar equivalent of BPDA and 1 molar equivalent of DADE To the DADE at one end of the first stage low molecular weight imide compound, and PMDA binds to the DADE at the other end.
  • BPDA is bonded to DE, and an aromatic diamine other than DADE is bonded to BPDA
  • a polycondensation reaction is performed by reacting an aromatic diamine other than 1 molar equivalent of DADE, and the following repeating unit: [PMDA- (DADE-BPDA-DADE) -PMDA- (aromatic diamine other than DADE) -BPDA- (aromatic diamine other than DADE)] n or [PMDA- (DADE-BPDA-DADE) -BPDA- ( Aromatic diamines other than DADE) -PMDA- (Aromatic diamines other than DADE)] n or [BPDA- (D
  • BPDA may be replaced with BTDA.
  • the molecular weight and molecular weight distribution were measured for the polyimides shown in the examples.
  • the NMP (N-methylpyrrolidone) solution of the polyimide was further diluted with NMP, and the high performance liquid chromatograph was measured using GPC: HLC-8320PCC (manufactured by Tosoh Corporation). Number average molecular weight (Mn), weight average molecular weight (Mw), Z average molecular weight (Mz) and molecular weight ratio Mw / Mn were measured.
  • the polyimide is cast on a glass plate, dried at 150 ° C. for 30 minutes in a dryer, the produced film is peeled off, this is fixed to a metal frame, and then at 250 ° C. for 10 minutes in a dryer.
  • the film dried in (1) was heated to 600 ° C. using a McScience TG-GTA, and the thermal decomposition onset temperature (Tm) and glass transition temperature (Tg) were measured.
  • Tm thermal decomposition onset temperature
  • Tg glass transition temperature
  • a polyimide solution is applied on a glass plate, dried at 150 ° C. for 30 minutes, then the polyimide is peeled off from the glass plate, fixed on a metal frame and dried at 280 ° C. for 1 hour, and a TG-GTA device manufactured by McScience is used as a sample. And thermal analysis. The temperature was raised to 600 ° C. at 10 ° C./1 minute, and the thermal decomposition start temperature (Tm) and the glass transition temperature (Tg) were measured. Tm 515 ° C Tg 358 ° C
  • Example 1 produced a polyimide having the repeating unit [PMDA- (DADE-BPDA-DADE) (PMDA-DAT-BPDA) -DAT) n .
  • the polyimide which has the following repeating unit can also be produced
  • a first step low molecular weight imide compound (DADE-BPDA-DADE) having both ends as DADE is produced by reaction of 1 molar equivalent of BPDA and 2 molar equivalents of DADE.
  • Example 2 (BPDA + 2DADE), (2 PMDA+BTDA) and (2DAT) were added in that order and synthesized by a three-step addition reaction.
  • the same operation as in Example 1 was performed.
  • the reactor was placed in a silicon bath, heated and stirred at 180 ° C. and 180 rpm for 45 minutes, and air-cooled for 20 minutes.
  • Example 2 produced a polyimide with the repeating unit [PMDA- (DADE-BPDA-DADE) (PMDA-DAT-BTDA) -DAT] n .
  • the polyimide which has the following repeating unit can also be produced
  • Reference Example 1 [PMDA- (DADE-BPDA-DADE) (BTDA-DAT-PMDA) -DAT]
  • Example 2 (BTDA + 2DADE), (2 PMDA+BTDA) and (2DAT) were added in that order, and synthesized by a three-step addition reaction.
  • the same operation as in Example 1 was performed.
  • Reference Example 1 produced a polyimide having the repeating unit [PMDA- (DADE-BTDA-DADE) (PMDA-DAT-BTDA) -DAT] n .
  • the polyimide which has the following repeating unit can also be produced
  • Example 3
  • a glass reaction vessel is charged with 2.94 g (10 mmol) of BPDA, 4.00 g (20 mmol) of DADE, 1.0 g of valerolactone, 2.0 g of pyridine, 80 g of NMP, and 25 g of toluene.
  • the reactor was placed in a silicon bath and heated and stirred at 180 ° C. and 180 rpm for 40 minutes.
  • PMDA 20 mmol
  • 2.94 g (10 mmol) of BPDA were added in that order, then 1.22 g (10 mmol) of metaphenylenediamine (MPD) was added along with 60 g of NMP, Stir for 20 minutes at room temperature.
  • MPD metaphenylenediamine
  • Example 3 produced a polyimide having the repeating unit [PMDA- (DADE-BPDA-DADE) (PMDA-MPD-BPDA)-(FDA)] n .
  • the polyimide which has the following two repeating units can also be produced
  • Example 4 [Example 4]
  • BPDA + 2DADE (2 PMDA+BPDA+FDA) and (FDA) were added in that order and synthesized by a three-step addition reaction.
  • Example 4 produced a polyimide having the repeating unit [PMDA- (DADE-BPDA-DADE) (PMDA-FDA-BPDA)-(FDA)] n .
  • the polyimide which has the following repeating unit can also be produced
  • Example 5 [PMDA- (DADE-BPDA-DADE) (BPDA-FDA-PMDA) -FDA]
  • BPDA + 2DADE (2 PMDA+BPDA+DAT) and (FDA) were added in that order and synthesized by a three-step addition reaction.
  • (1) 2.94 g (10 mmol) of BPDA, 4.00 g (20 mmol) of DADE, 1.2 g of valerolactone, 2.0 g of pyridine, 80 g of NMP, and 20 g of toluene were charged into a reactor, and the temperature was 40 ° C. at 180 ° C. and 180 rpm. The mixture was heated and stirred for minutes, and then air-cooled for 20 minutes.
  • Example 5 produced a polyimide with the repeat unit [(PMDA)-(DADE-BPDA-DADE) (PMDA-DAT-BPDA) -FDA] n .
  • the polyimide which has the following two repeating units can also be produced
  • Example 6 Example 6
  • BPDA + 2DADE (2 PMDA+BPDA+DABz) and (FDA) were added in that order and synthesized by a three-step addition reaction.
  • a glass reactor was charged with 2.94 g (10 mmol) of BPDA, 4.00 g (20 mmol) of DADE, 1.2 g of valerolactone, 2.0 g of pyridine, 80 g of NMP, and 25 g of toluene and stirred. The mixture was heated and stirred for 40 minutes at 180 ° C. and 180 rpm in a nitrogen stream, and then air-cooled for 20 minutes.
  • Example 6 produced a polyimide having the repeating unit [(PMDA)-(DADE-BPDA-DADE) (PMDA-DABz-BPDA)-(FDA)] n .
  • the polyimide which has the following two repeating units can also be produced
  • Example 7 Example 7
  • BPDA + 2DADE (2 PMDA+BPDA+FDA), and (CH 3 AB) were added in that order, and synthesized by a three-step addition reaction.
  • a polyimide solution having a concentration of 9% was obtained.
  • the molecular weight was measured.
  • Thermal analysis was performed. Thermal decomposition start temperature 510 °C The glass transition temperature was unknown.
  • Example 7 produced a polyimide having the repeating unit [(PMDA)-(DADE-BPDA-DADE) (PMDA-FDA-BPDA)-(CH 3 AB)] n .
  • the polyimide which has the following two repeating units can also be produced
  • Example 8 [Example 8]
  • BPDA + 2DADE (2 PMDA+BTDA+FDA) and (FDA) were added in that order and synthesized by a three-step addition reaction.
  • Example 8 produced a polyimide having the repeating unit [PMDA- (DADE-BPDA-DADE) (PMDA-FDA-BTDA)-(FDA)] n .
  • the polyimide which has the following repeating unit can also be produced
  • Example 9 [PMDA- (DADE-BPDA-DADE) (BTDA-FDA-PMDA) -FDA]
  • BPDA + 2DADE (2 PMDA+BPDA+MPD) and (HOAB ⁇ SO 2 ) were added in that order, and synthesized by a three-step addition reaction.
  • (1) BPDA 2.94 g (10 mmol), DADE 4.00 g (20 mmol), valerolactone 1.2 g pyridine 2.0 g, NMP 80 g, toluene 25 g were added to the reactor.
  • the solution dissolved by stirring was heated and stirred at 180 ° C. and 180 rpm for 40 minutes.
  • the molecular weight was measured. Number average molecular weight (Mn) 16,710 Weight average molecular weight (Mw) 37,830 Z average molecular weight (Mz) 69,360 Mw / Mn 2.26 Thermal analysis was performed. Thermal decomposition start temperature 546 ° C Glass transition temperature 377 ° C
  • Example 9 produced a polyimide having the repeating unit [PMDA- (DADE-BPDA-DADE) (PMDA-MPD-BPDA)-(HOAB.SO 2 )] n .
  • the polyimide which has the following two repeating units can also be produced
  • Example 10 [Example 10]
  • BPDA + 2DADE (2 PMDA+BPDA+FDA) and (HOAB ⁇ SO 2 ) were added in that order, and synthesized by a three-step addition reaction.
  • Example 10 produced a polyimide having the repeating unit [PMDA- (DADE-BPDA-DADE) (PMDA-FDA-BPDA)-(HOAB.SO 2 )] n .
  • the polyimide which has the following two repeating units can also be produced
  • Reference Example 2 [Reference Example 2]
  • BTDA 9.66 g (30 mmol), DADE 12.00 g (60 mmol), valerolactone 3.6 g, pyridine 6 g, NMP 240 g and toluene 50 g are added to the reactor. After heating and stirring at 180 ° C. and 180 rpm for 1 hour, the mixture was air-cooled for 30 minutes, 13.08 g (60 mmol) of PMDA and 9.66 g (30 mmol) of BTDA were added, and then 8.4 g (30 mmol) of HOAB ⁇ SO 2. ), And 188 g of NMP were added and stirred. After heating and stirring at 180 ° C. and 180 rpm for 20 minutes, the mixture was air-cooled for 10 minutes.
  • Reference Example 2 produced a polyimide having the repeating unit [PMDA- (DADE-BTDA-DADE) (PMDA-HOAB.SO 2 -BTDA) -FDA] n .
  • the polyimide which has the following two repeating units can also be produced

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

 熱分解開始温度が480℃以上の、有機溶媒に可溶な、耐熱性ポリイミドを提供する。前記ポリイミドは、三段階反応によって合成され、第一段階及び第二段階では、低分子量イミド化合物を生成し、三段階では、重縮合反応を行うことからなる。前記ポリイミドは、実質的に、 (a)2モル当量のピロメリット酸ジ無水物(PMDA)、 (b)(i)2モル当量のビフェニルテトラカルボン酸ジ無水物(BPDA)又は(ii)1モル当量のBPDA及び1モル当量のベンゾフェノンテトラカルボン酸ジ無水物(BTDA)、 (c)2モル当量のジアミノジフェニルエーテル(DADE)及び (d)2モル当量のDADE以外の芳香族ジアミン、 のみからなる。ここで、前記芳香族ジアミンは、一種又は二種であり、二種の場合、そのモル当量比は、1:1である。

Description

(PMDA)2(DADE)2(BPDA)2(DADE以外の芳香族ジアミン)2の成分比より構成される有機溶媒に可溶なポリイミド
 本発明の有機溶媒、好ましくは、極性有機溶媒に可溶なポリイミドは、ピロメリット酸ジ無水物(PMDA)、ジアミノジフェニルエーテル(DADE)、ビフェニルテトラカルボン酸ジ無水物(BPDA)及び(DADE以外の芳香族ジアミン)をそれぞれ2:2:2:2のモル比で含んでいる。DADEは、4,4’-ジアミノジフェニルエーテル又は3,4’-ジアミノジフェニルエーテルを含む。
 本発明の有機溶媒に可溶のポリイミドはPMDA-DADE-BPDA成分を有し、さらに、例えば、前記成分に加えて、ビス(3-アミノ-4-ヒドロキシフェニル)スルホン(HOAB・SOという)成分を含有する機能性をもった耐熱性ポリイミドも本発明の対象である。9,9―ビス(4-アミノフェニル)フルオレン(FDAという)も成分として含ませることができる。本発明の製造方法は、KAPTONの製造のような従来のポリアミック酸溶液からの製膜ではない。新たな合成プロセスによる溶媒中で触媒の存在下、直接イミド化反応によって生成する有機溶媒に可溶のポリイミドである。
 BPDAの代りにベンゾフェノンテトラカルボン酸ジ無水物(BTDA)を用いることができる。また、DADE以外の各種の芳香族ジアミンを用いて重縮合することによって、機能性をもつポリイミドにすることができる。
 従来の超耐熱性ポリイミドとして知られるKAPTONは、1960年代、初めてデュポン社によって製造、販売され、ピロメリット酸ジ無水物(PMDA)及び4,4’-ジアミノジフェニルエーテル(4,4’-DADE)よりなる二成分系のポリイミドであり、同様に、UPILEX は、ビフェニルテトラカルボン酸ジ無水物(BPDA)及びp-フェニレンジアミンよりなるは二成分系のポリイミドであり、いずれのポリイミドも不溶、不融のポリマーとして知られている。
 KAPTONは、ガラス転移温度が(Tg)420℃で、熱分解開始温度(Tm)が500℃以上の特性を示し、電気絶縁性、機械的強度、耐薬品性にすぐれたポリマーとして、宇宙航空、車輌用の材料、電気・電子部品、半導体用材料等として広く利用されている(非特許文献:  Polyimides; D. Wilson, H.D. Steinberger, R.M. Morgenrother, Blackie, New York (1990))。
 1980年代、宇部興産株式会社によって製造されたポリイミドフィルム”Upilex”は、ビフェニルテトラカルボン酸ジ無水物(BPDAという)および1,4-ジアミノベンゼンより構成され、Tg 500℃,Tm 550℃の耐熱性フイルムである(非特許文献1)
 以後、今日まで、KAPTON、Upilexと同等な耐熱性ポリイミドフィルムは製造されていない。これらは、溶媒に難溶のポリイミドであり、KAPTON、Upilexで使用されているPMDA、BPDAに代替できるテトラカルボン酸ジ無水物が開発されていない。
 KAPTON、Upilexは溶媒に難溶であり、無水の溶媒(例えばジメチルアセトアミド、N-メチルピロリドン等)中で低温で重合して、ポリアミック酸を合成し、ついで、流延、加熱して、脱溶媒と共にイミド化反応をしてポリイミドフィルムが製造される。
 KAPTON、Upilexで合成されるポリアミック酸は無水溶媒中、冷凍保存されていて、水で分解し易く、保存安定性が悪い。ポリアミック酸は溶液中で交換反応を行っていて、他の成分を加えると交換反応が速やかに行われているためランダム共重合体となり、改質が容易ではない。
 種々の芳香族テトラカルボン酸ジ無水物と芳香族ジアミンとを有機溶媒中に加熱して、直接イミド化することが知られている(非特許文献1)。例えば、ポリアミック酸溶液に多量の無水酢酸及びピリジンを加えて、加熱して、ポリイミドを生成するが、工業的生産に適するプロセスとしては採用されていない。
 触媒を用いる溶液中のイミド化反応も知られている。例えばトルエンスルホン酸やリン酸等の酸触媒によるイミド化反応では、溶媒中に触媒が残存して、フイルムにすると残存した触媒が劣化原因となるため、ポリイミドと触媒の分離操作が必要となる。[特許文献3: A. Berger, 米国特許第4,011,279号, 米国特許第 4,395,527号]
 溶媒に可溶なポリイミドの合成には、先ず、新規な触媒の開発が必要であった.重縮合反応中は触媒として作用し、反応の終点では消失する新規な触媒の開発が行われた(特許文献4: Y. Oie, H. Itatani, 米国特許第5,502,143号)。
 ラクトンの平衡を利用する新規な触媒である。γ―バレロラクトンとピリジン(又はN―メチルモルホリン)との混合物は、水の存在に[酸][塩基]となり、この系から水を除くとラクトンとアミンになる平衡を利用する (式1)
Figure JPOXMLDOC01-appb-M000001
 反応系中に少量のγ―バレロラクトンとピリジン(又はN-メチルモルホリン)を添加し、160 ?200℃に加熱して、イミド化反応を行う。
反応の初期に生成した{水}によって、[酸][塩基]が生成して、イミド化反応を促進する。反応系中には加えられていたトルエンによって、反応中に生成する水はトルエンの共沸によって系外に除かれる。
 イミド化反応が終結と、反応系は無水の状態に近づき、[酸][塩基]はγ―バレロラクトンとピリジン(又はN-メチルモルホリン)となり系外に除かれる。かくして、高純度のポリイミド重合体が得られる。
 本発明者は、特許文献1(国際公開第2008/120398号パンフレット)により、主発明として、ビフェニルテトラカルボン酸ジ無水物(BPDA)、4,4’-ジアミノジフェニルエーテル(4,4’-DADE)、ピロメリット酸ジ無水物(PMDA)及び2,4-ジアミノトルエン(DAT)の4成分からなる、有機極性溶媒に可溶の耐熱性ポリイミド共重合体において、BPDAの両末端にDADEが結合するオリゴマーを生成する第一段階、ついで、PMDA及びDATを添加することにより、その両末端にPMDAが結合するイミドオリゴマーにする第二段階及びDATを添加する重縮合の第三段階、の反応生成物であり、ガラス転移温度が430℃以上である、前記耐熱性ポリイミド共重合体が開示した。
 さらに、本発明者は、特許文献2(国際公開第2008/155811号パンフレット)により、1モル当量のビフェニルテトラカルボン酸ジ無水物(BPDA)と2モル当量のジアミノジフェニルエーテル(DADE)とを有機極性溶媒中、触媒の存在下に160~200℃に加熱して生成したイミドオリゴマーに4モル当量のピロメリット酸ジ無水物(PMDA)と2モル当量のジアミノトルエン(DAT)を添加することによって両末端がPMDAのイミドオリゴマーである6,6-イミドセグメントを合成し、前記6,6-イミドセグメントの溶液に1モル当量のテトラカルボン酸ジ無水物(Aという)と2モル当量の芳香族ジアミン(Bという)を添加し加熱して生成する三段重合法による6,6-ポリイミド共重合体の製造方法を開示している。
 特許文献1及び2から、三段階により反応を行うことにより、有機溶媒、好ましくは、極性有機溶媒に可溶の、ガラス転移温度が430℃以上であるポリイミドが合成できたことを報告している。
国際公開第2008/120398号パンフレット 国際公開第2008/155811号パンフレット A.Berger、 米国特許第4,011,279号; 米国特許第4,395,527号 Y. Oie, H. Itatani, 米国特許第5,502,143号
Polyimides; D. Wilson, H.D. Steinberger, R.M.Morgenrother; Blackie, New York (1990)
二成分系のポリイミドでPMDA-DADE系では、溶媒可溶のポリイミドは得られていない。従って、本発明では、多成分系のポリイミドを検討した。さらに、本発明者は、PMDA-DADE-PMDA成分及びDADE-PMDA-DADE成分が溶媒に難溶であることを見出し、これらの成分を含まないポリイミド重合体の合成法を検討した。
 さらに、PMDAとDADEとがポリイミドの重合に直接関与しないプロセスを検討した。その結果、特殊な添加反応を行ことによってPMDA-DADEを含む溶媒可溶のポリイミドの合成方法が確立された。
 本発明は、特許文献1及び2で開示した三段階により反応を行うことにより、極性有機溶媒に可溶のポリイミドをさらに発展させたものである。即ち、特許文献1及び2のポリイミドの特徴である三段階により反応させることによる有機溶媒、好ましくは極性有機溶媒に可溶であるという特徴を保持しつつ、さらに、DADE以外の芳香族ジアミンを成分として含むことにより、その性質をポリイミドに付与することを課題としている。
 本発明は、(a)2モル当量のピロメリット酸ジ無水物(PMDA)、
(b)(i)2モル当量のビフェニルテトラカルボン酸ジ無水物(BPDA)又は(ii)1モル当量のBPDA及び1モル当量のベンゾフェノンテトラカルボン酸ジ無水物(BTDA)、
(c)2モル当量のジアミノジフェニルエーテル(DADE)及び
(d)2モル当量のDADE以外の芳香族ジアミン、ここで、前記芳香族ジアミンは、一種又は二種であり、二種の場合、そのモル当量比は、1:1である、
からなる成分より合成され、繰り返し単位中の(a)、(b)、(c)及び(d)の成分の分子の数が、全て2であり、前記ポリイミドは、三段階反応によって合成され、第一段階においてイミドオリゴマーを生成し、第二段階では、前記イミドオリゴマーの両末端にイミド結合を行なうことによりイミドオリゴマーを生成し、三段階では、重縮合反応を行うことからなる、熱分解開始温度が480℃以上の、有機溶媒に可溶な、耐熱性ポリイミドを提供する。前記の「からなる成分より合成され」の語は、「実質的にからなる成分より合成され」と解釈でき、より好ましくは、「のみからなる」と解釈される。
 さらに、本発明は、(a)ピロメリット酸ジ無水物(PMDA)、(b)ビフェニルテトラカルボン酸ジ無水物(BPDA)、(c)ジアミノジフェニルエーテル(DADE)及び(d)DADE以外の芳香族ジアミンからなる、熱分解開始温度が480℃以上の、有機溶媒に可溶な、耐熱性ポリイミドにおいて、
第一段階では、1モル当量のBPDAと2モル当量のDADEを反応させ、DADEを両末端とする第一段階低分子量イミド化合物を生成させ、
第二段階では、前記第一段階低分子量イミド化合物の溶液中に、2モル当量のPMDAを添加し、次いで、1モル当量のBPDAを添加して、両末端に酸ジ無水物をイミド結合させた第二段階低分子量イミド化合物を生成させ、
第三段階では、DADE以外の芳香族ジアミン2モル当量を添加して反応させ、重縮合反応を行うことからなる、
下記の繰り返し単位:
[PMDA-DADE-BPDA-DADE-PMDA-(DADE以外の芳香族ジアミン)-BPDA-(DADE以外の芳香族ジアミン)] 又は、
[PMDA-DADE-BPDA-DADE-BPDA-(DADE以外の芳香族ジアミン)-PMDA-(DADE以外の芳香族ジアミン)] 
を有する、前記耐熱性ポリイミドを提供する。
 さらに、本発明は、(a)ピロメリット酸ジ無水物(PMDA)、(b)ビフェニルテトラカルボン酸ジ無水物(BPDA)、(c)ジアミノジフェニルエーテル(DADE)及び(d)DADE以外の芳香族ジアミンからなる、熱分解開始温度が480℃以上の、有機溶媒に可溶な耐熱性ポリイミドにおいて、
 繰り返し単位中の(a)、(b)、(c)及び(d)の成分の分子の数が、全て2であり、前記ポリイミドは、三段階添加反応により合成され、
(1)第一段階では、1モル当量のBPDAと2モル当量のDADEとの反応によりDADEを両末端とする第一段階低分子量イミド化合物を生成させ、
(2)第二段階では、第一段階低分子量イミド化合物の溶液中に、2モル当量のPMDAを添加し、次いで1モル当量のBPDAを添加した後、1モル当量のDADE以外の芳香族ジアミンを添加して、前記両末端に酸ジ無水物がイミド結合した第二段階低分子量イミド化合物を生成させ、
(3)第三段階では、第二段階低分子量イミド化合物に、1モル当量のDADE以外の芳香族ジアミンを反応させ重縮合反応を行うことからなり、下記の繰り返し単位:
PMDA-(DADE―BPDA―DADE)-PMDA-(DADE以外の芳香族ジアミン)-BPDA-(DADE以外の芳香族ジアミン)]、又は[PMDA-(DADE―BPDA―DADE)-BPDA-(DADE以外の芳香族ジアミン)-PMDA-(DADE以外の芳香族ジアミン)]、若しくは[BPDA-(DADE―BPDA―DADE)-PMDA-(DADE以外の芳香族ジアミン)-PMDA-(DADE以外の芳香族ジアミン)]
(ここで、前記化合物間の結合は、イミド結合である。)を有する、前記有機溶媒に可溶な耐熱性ポリイミドを提供する。
 さらにまた、本発明は、(a)ピロメリット酸ジ無水物(PMDA)、(b)ビフェニルテトラカルボン酸ジ無水物(BPDA)、(c)ベンゾフェノンテトラカルボン酸ジ無水物(BTDA)、(d)ジアミノジフェニルエーテル(DADE)及び(e)DADE以外の芳香族ジアミンからなる、有機溶媒に可溶な耐熱性ポリイミドにおいて、
前記繰り返し単位中の(a)、(b)、(c)、(d)及び(e)の成分の分子の数が、2:1:1:2:2である、熱分解開始温度が480℃以上の、有機溶媒に可溶な耐熱性ポリイミドにおいて、前記ポリイミドは、三段階添加反応により合成され、
(1)第一段階では、BPDAとDADEとの反応によりDADEを両末端とする第一段階低分子量イミド化合物を生成させ、
(2)第二段階では、(i)前記第一段階低分子量イミド化合物に、2モル当量のPMDAを添加し、次いで1モル当量のBTDAを添加し反応させて前記第一段階低分子量イミド化合物の両末端であるDADEにPMDAをイミド結合させPMDA-(DADE―BPDA―DADE)-PMDAからなる第二段階低分子量イミド化合物を主に生成させ、
(3)第三段階では、DADE以外の芳香族ジアミンを反応させて重縮合反応を行うことからなり、下記の繰り返し単位、
(i)[PMDA-(DADE―BPDA―DADE)-PMDA-(DADE以外の芳香族ジアミン)-BTDA-(DADE以外の芳香族ジアミン)(DADE以外の芳香族ジアミン)]n 又は
(ii)[PMDA-(DADE―BPDA―DADE)-BTDA-(DADE以外の芳香族ジアミン)-PMDA-(DADE以外の芳香族ジアミン)(DADE以外の芳香族ジアミン)]
(ここで、前記化合物間の結合は、イミド結合である。)を有する、前記有機溶媒に可溶な耐熱性ポリイミドを提供する。
 本発明のポリイミドの熱分解開始温度は、480℃以上であり、本発明の実施例で測定した範囲は、480℃~525℃である。本発明のガラス転移温度は、340℃~410℃の範囲、より特定した範囲は、350℃~400℃である。
 PMDAは一つのべンゼン環に4ヶのカルボ二ル基を有する酸ジ無水物である。他の芳香族酸ジ無水物とは異った挙動をする。PMDAを用いるポリイミドは線状ポリイミドと共に架橋ポリイミドを生成する。従って、反応時間と共に分子量は急激に増大し、反応の終点の決定が困難である。
 一般の線状ポリイミドは反応時間と共にポリマーの分子量が増大する。一般に反応時間が長くなるにつれ分子量の増加傾向が減少して、放物線状の関係を示す。然し、ピロメリット酸は一つのべンゼン環に4ヶのカルボ二ル基をもつ化合物であって、線状ポリイミドを生成すると共に分子間に架橋反応するため、生成するポリマーの分子量は反応時間と共に急激に増大する。反応時間と分子量の関係は双曲線状を示し、急激に高分子量ポリイミドが生成する。従って、一定の高分子量ポリイミドを生成するためには従来にない特別な配慮が必要である。
本発明の溶媒可溶ポリイミドはその組成に特徴がある。
(PMDA)(DADE)(BPDA)(DADE以外の芳香族ジアミン)
各成分の分子比が等しい新規なポリイミドである。
分子の配列に規則性があるため、その特性が優れている。
 また、多種のDADE以外の芳香族ジアミンを使用することによって、機能の異った特性のあるポリイミドフィルムを生成することができる。DADE以外の芳香族ジアミンの例は、2,4-ジアミノトルエン(DAT)、ビス(3-アミノ-4-ヒドロキシフェ二ル)スルホン(HOAB・SO)、9,9-ビス(4-アミノフェ二ル)フルオレン(FDA)、3,3’―ジメチルベンジジン(CHAB)、メタフェ二レンジアミン(MPD)、3,5―ジアミノ安息香酸(DABz)である。DATは、安価であるため、本発明のポリイミドにDATを添加することにより、安価にポリイミドを製造できる。HOAB・SOを添加することにより、フイルムの密着性、光レジスト特性を改善でき、複合材料の成分として使用できる。FDAは、最も高い熱分解温度を有しており、耐候性にも優れているため、これを添加することにより、ポリイミドの熱分解開始温度を上げることができ、耐候性を付与できる。CHABを添加することにより、ポリイミドとしての伸び、破断の強さを付与できる。MPDを添加することにより、容器溶媒への溶解性をさらに改善ことができる。また、生成されたフイルムの密着性も改善される。DABzを添加することにより、フイルムの密着性、電着特性を改善できる。特に、HOAB・SO、FDA及びDABzを添加することにより、その機能特性を改善できる。
 本発明のポリイミドは、金属、樹脂、フィルムの密着性、接着性の異なる複合材料として利用することができる。また、機能性のある耐熱性ポリイミドとして、KAPTONの利用し難い領域で、電子・電気部品・輸送用車両の材料、半導体等に広く利用できる。耐熱性の発泡体としても期待されている。本発明のポリイミドは、有機溶媒可溶のポリイミドであり、保面安定性のすぐれたワ二スである加工性も容易となり、医療用の材料、建材、家庭用高温材料等、省エネルギー材料として広く利用することができる。
 HOAB・SOは、下記の化学式を有する。
Figure JPOXMLDOC01-appb-C000002
FDAは、下記の化学式を有する。
Figure JPOXMLDOC01-appb-C000003
CHABは、下記の化学式を有する。
Figure JPOXMLDOC01-appb-C000004
 本発明の溶媒可溶ポリイミドはPMDA-DADE-BPDA-ジアミンより構成される。PMDAとDADEよりなるKAPTONは溶媒に難溶のポリイミドであり、今日までこの2成分を含む溶媒可溶ポリイミドは殆ど知られていない。本発明はこの成分の他に、BPDAと他のジアミンを加える4成分系のポリイミドからなることによってKAPTONと同等の耐熱性をもち、且つ溶媒可溶のポリイミドを合成することにある。多成分系のポリイミドとしてブロック共重合による方法が知られている。然し、PMDAとDADEを含む溶媒可溶ポリイミドは殆ど知られていない。その原因はPMDA DADE―PMDAとDADE―BPDA―DADE成分が生成して、沈殿を生成するためである。これらの成分の生成を回避するために、従来と異なる三段階重合方法を考案することによりPMDA-DADEを含む溶媒可溶ポリイミドが合成された。
 第1段階の反応は(2DADEとBPDA)の反応によって生成する両末端がDADEであるオリゴマー(第一段階低分子量イミド化合物)を生成する。すなわち、第一段階ではBPDA + 2DADE → DADE-BPDA-DADEの反応を行う(DADEとBPDAの結合、BPDAとDADEの結合はイミド結合である。)。ここで、BPDAの代わりにBTDAを使用することも、場合により可能である。
 第二段階の反応はこの(DADE-BPDA-DADE)のオリゴマーにPMDAを加えて両末端がPMDAのオリゴマー(第二段階低分子量イミド化合物)にする。ここで、第二段階において、2モル当量のPMDAと1モル当量のBPDAを添加する。この場合、PMDAを添加した後、BPDAを添加する。1モル当量のBPDAを添加した後、2モル当量のPMDAを添加すると、第一段階で生成したオリゴマーの一方の末端にPMDAがイミド結合し、他方の末端にBPDAがイミド結合してしまうからである。ただし、これによって生成した、第二段階のオリゴマーもまた、本発明の範囲内のオリゴマーである。第二段階で生成する第二段階低分子量イミド化合物は、
(II-1)(DADE-BPDA-DADE)+ 2PMDA + BPDA → 
PMDA-(DADE-BPDA-DADE)-PMDA + BPDA
(II-2)(DADE-BPDA-DADE)+ 2PMDA + BPDA →
PMDA-(DADE-BPDA-DADE)-BPDA + PMDA
 である。(II-1)が主生成物であり、(II-2)が副生成物である。ただし、両反応生成物ともに、本発明で生成する中間生成物であることにはかわりない。
 なお、第二段階において、2モル当量のPMDA、1モル当量のBPDAに加えて、1モル当量のDADE以外の芳香族ジアミンを添加できる。この場合、PMDAを添加した後、BPDAを添加し、その後、DADE以外の芳香族ジアミンを添加する。DADE以外の芳香族ジアミンを最初又は2番目に添加すると、重合が起こってしまうためである。重合を回避するために、DADE以外の芳香族ジアミンを最後に添加する。この場合の反応式は、次のとおりである。
(II-3)(DADE-BPDA-DADE)+2PMDA+BPDA+(DADE以外の芳香族ジアミン(X))→
PMDA-(DADE-BPDA-DADE)-PMDA-X-BPDA
(II-4)(DADE-BPDA-DADE)+2PMDA+BPDA+(DADE以外の芳香族ジアミン(X))→
PMDA-(DADE-BPDA-DADE)-BPDA-X-PMDA
 である。
 なお、第一段階又は第二段階、又は第一段階と第二段階の両方において、BPDAに代えてBTDAを使用できる場合がある。
 第三段階の反応においては、DADE以外の芳香族ジアミン(X)又はDADE以外の芳香族ジアミン(Y)を加えて重縮合を行い、高分子量ポリイミドを生成する。例えば、DAT、MPD、FDA及びDABzである。第二段階で使用したXを第三段階で再度使用する場合があり、また、第二段階でXを使用し、第三段階でXと異なるYを使用する場合がある。
(A)第二段階低分子量イミド化合物が、(II-1)の式の生成物である場合、
2Xを添加することにより、
(III-1)PMDA-(DADE-BPDA-DADE)-PMDA+BPDA+2X →
[X-PMDA-(DADE-BPDA-DADE)-PMDA―X―BPDA]
を繰り返し単位とするポリイミドを生成する。
(B)第二段階低分子量イミド化合物が、(II-2)の式の生成物である場合、2Xを添加することにより、
(III -2)PMDA-(DADE-BPDA-DADE)-BPDA+PMDA+2X →
[X-PMDA-(DADE-BPDA-DADE)-BPDA―X―PMDA]
を繰り返し単位とするポリイミドを生成する。
(C)第二段階低分子量イミド化合物が、(II-3)の式の生成物である場合、
Xを添加することにより、(III-1)と同一の繰り返し単位とするポリイミドを生成する。
(D)第二段階低分子量イミド化合物が、(II-4)の式の生成物である場合、
Xを添加することにより、(III-2)と同一の繰り返し単位とするポリイミドを生成する。
(E)第二段階低分子量イミド化合物が、(II-3)の式の生成物である場合、
Yを添加することにより、
PMDA-(DADE-BPDA-DADE)-PMDA-X-BPDA +Y → [PMDA-(DADE-BPDA-DADE)-PMDA-X-BPDA-Y]
を繰り返し単位とするポリイミドを生成する。
(F)第二段階低分子量イミド化合物が、(II-4)の式の生成物である場合、
Yを添加することにより、
PMDA-(DADE-BPDA-DADE)-BPDA-X-PMDA+Y →
[PMDA-(DADE-BPDA-DADE)-BPDA-X-PMDA-]
を繰り返し単位とするポリイミドを生成する。
 本発明のポリイミドの成分比は、(PMDA)(DADE)(BPDA)(DADE以外の芳香族ジアミン)である。この単純な組成によるポリイミドは耐熱特性、フイルム特性共に優れている。
 本発明では、DADE以外の芳香族ジアミンを代えることによって、各種の機能性をもつ高分子量ポリイミドとして利用することが出来る。耐熱性ポリイミドとして、接着用、電着用、感光性、発泡性ポリイミドとして有用な複合材料として使用することができる。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 本発明のポリイミドの製造方法における第一段階は、1モル当量のBPDAと2モル当量DADEとを有機極性溶媒中で、触媒の存在下に160~200℃で反応させて、BPDAの2つの酸無水物基にDADEが結合した、DADEを両末端とする第一段階低分子量イミド化合物を生成する。本発明で使用する触媒は、γ-バレロラクトンとピリジンの混合物、又はγ-バレロラクトンとN-メチルモルホリンの混合物を使用できる。
 本発明では、
(a)ピロメリット酸ジ無水物(PMDA)、(b)ビフェニルテトラカルボン酸ジ無水物(BPDA)、(c)ジアミノジフェニルエーテル(DADE)及び(d)DADE以外の芳香族ジアミンからなる、熱分解開始温度が480℃以上の、有機溶媒に可溶な耐熱性ポリイミドが製造される。
 繰り返し単位中の(a)、(b)、(c)及び(d)の成分の分子の数が、全て2であり、前記ポリイミドは、三段階添加反応により合成され、
(1)第一段階では、1モル当量のBPDAと2モル当量のDADEとの反応によりDADEを両末端とする第一段階低分子量イミド化合物を生成させ、
(2)第二段階では、(i)第一段階低分子量イミド化合物に、2モル当量のPMDAを添加し、次いで1モル当量のBPDAと1モル当量のDADE以外の芳香族ジアミンを添加して、前記第一段階低分子量イミド化合物の両末端のDADEにPMDAを結合させ、次いで、DADE以外の芳香族ジアミンとBPDAを結合させ、PMDA-(DADE―BPDA―DADE)-PMDA-(DADE以外の芳香族ジアミン)-BPDAを有する第二段階低分子量イミド化合物が生成し、又は(ii)第一段階低分子量イミド化合物に、2モル当量のPMDA、1モル当量のBPDA及び1モル当量のDADE以外の芳香族ジアミンを添加して、第一段階低分子量イミド化合物の一方の末端のDADEにPMDAが結合し、他方の末端のDADEにBPDAを結合し、さらにDADE以外の芳香族ジアミンとBPDAを結合させ、PMDA-(DADE―BPDA―DADE)-BPDA-(DADE以外の芳香族ジアミン)-PMDA、若しくはBPDA-(DADE―BPDA―DADE)-PMDA-(DADE以外の芳香族ジアミン)-PMDAを有する第二段階低分子量イミド化合物を生成させ、
(3)第三段階では、1モル当量のDADE以外の芳香族ジアミンを反応さ重縮合反応を行うことからなり、下記の繰り返し単位:
[PMDA-(DADE―BPDA―DADE)-PMDA-(DADE以外の芳香族ジアミン)-BPDA-(DADE以外の芳香族ジアミン)]、又は[PMDA-(DADE―BPDA―DADE)-BPDA-(DADE以外の芳香族ジアミン)-PMDA-(DADE以外の芳香族ジアミン)]、若しくは[BPDA-(DADE―BPDA―DADE)-PMDA-(DADE以外の芳香族ジアミン)-PMDA-(DADE以外の芳香族ジアミン)]
(ここで、前記化合物間の結合は、イミド結合である。)を有する、前記有機溶媒に可溶な耐熱性ポリイミドが製造される。
 本発明において、BPDAをBTDAに置き換えることができる場合がある。
 以下、実施例をあげて本発明を説明するが 
(PMDA)2 (DADE)(BPDA)(ジアミン)2 の成分比を示す溶媒可溶ポリイミドの合成に関する、その生成物の特性としての分子量及び熱分析の結果を記載する。本発明にはジアミンについて数種類について記載するが、これらにのみ限定されるものではない。
 これらの共重合体について機器による分析がおこなわれた。
 分子量及び分子量分布の測定は、実施例に示すポリイミドについて行った。そのポリイミドのNMP(N-メチルピロリドン)溶液をNMPでさらに希釈して、高速液体クロマトグラフはGPC:HLC-8320PCC(東ソー(株)製)を用いて測定した。数平均分子量(Mn)、重量平均分子量(Mw),Z平均分子量(Mz)及び分子量比Mw/Mnが測定された。
 熱分析についてはポリイミドをガラス板に流延し、150℃で、30分乾燥機中で乾燥し、生成したフイルムをはぎ取り、これを金枠に固定して、250℃で、10分間乾燥機中で乾燥したフイルムを、McScience TG-GTAを用いて、昇温速度 10℃/1分、600℃まで昇温して、熱分解開始温度(Tm)及びガラス転移温度(Tg)を測定した。
[実施例1]
 (BPDA+2DADE)、(2PMDA+BPDA)及び(2DAT)をその順に添加した、三段階添加反応によって合成した。
 ステンレス製碇型撹拌機をとりつけた500mlの3つ口ガラスフラスコに水分分離トラップを備える蛇管式冷却器をとりつける。
 窒素ガスを通じながら、上記フラスコをシリコン浴につけて、加熱、攪拌した。反応液中に加えられた少量のトルエンが還流して生成した水をトルエンと共沸で水分分離トラップに留める。  
(1)3つ口フラスコ中にBPDA 5.88g(20ミリモル)、DADE 8.00g(40ミリモル),バレロラクトン 1.8g、ピリジン 3.6g、NMP 170g、及び トルエン 40g を加える。ガラス反応器をシリコン浴につけて、180℃、180r,p,m.で50分間加熱、攪拌する。
(2)30分間空冷後PMDA 8.72g (40ミリモル) 及びBPDA 5.85g(20ミリモル)をNMP 100g をこの順に加え30分間攪拌し、
(3)DAT 4.88g (40ミリモル)を NMP 100g と共に添加し、20分間高温で攪拌した後、180℃, 180rpm で加熱、攪拌して重合反応を開始する。反応後、2時間後、NMP 50gで反応液を希釈した後、40分間反応をして、加熱を停止した。9% 濃度のポリイミド溶液を得た。
 反応液の一部を取りNMPで希釈して、高速液体クロマトグラフ(東ソー(株)製;HLC- 8320PCC)を用いて測定した。
 数平均分子量 (Mn)     10,928
 重量平均分子量 (Mw)   28,205
  Z平均分子量 (Mz)     56,020
     Mw/Mn     2.58
 ポリイミド溶液をガラス板上に塗布し、150℃、30分間乾燥後ポリイミドをガラス板よりはぎとり、金属枠に固定して280℃で1時間乾燥したフイルムを、試料として、McScience社製TG-GTA装置で熱分析した。10℃/1分で600℃まで昇温して熱分解開始温度(Tm)及びガラス転移温度(Tg)を測定した。
      Tm     515℃
      Tg     358℃
 実施例1により、繰り返し単位[PMDA-(DADE-BPDA-DADE)(PMDA-DAT-BPDA)-DAT)を有するポリイミドが生成された。なお、次の繰り返し単位を有するポリイミドも副生成物として生成可能である。
[PMDA-(DADE-BPDA-DADE)(BPDA-DAT-PMDA)-DAT]
 第一段階では、1モル当量のBPDAと2モル当量のDADEとの反応により、両末端をDADEとする第一段階低分子量イミド化合物(DADE-BPDA-DADE)を生成する。
 第二段階では、第一段階低分子量イミド化合物に、2モル当量のPMDAを添加し、次いで、1モル当量のBPDAを添加して反応させることによって、両末端がPMDAである第二段階低分子量イミド化合物(PMDA)-(DADE-BPDA-DADE)-(PMDA) + BPDA、又は、一方の末端がPMDAであり、他方の末端がBPDAである、(PMDA)-(DADE-BPDA-DADE)-(BPDA) + PMDA を生成する。第三段階では、DADE以外の芳香族ジアミンを2モル当量反応させて、重縮合を行って下記の繰り返し単位を有する高分子量ポリイミドを生成する。
[PMDA-(DADE-BPDA-DADE)-PMDA-(芳香族ジアミン)-BPDA-(芳香族ジアミン)]、又は、[PMDA-(DADE-BPDA-DADE)-BPDA-(芳香族ジアミン)-PMDA-(芳香族ジアミン)]
[実施例2]
 (BPDA+2DADE)、(2PMDA+BTDA)及び(2DAT)をその順に添加した、三段階添加反応によって合成した。実施例1と同様に操作した。
(1)ガラス製三つ口フラスコに、BPDA 4.12g (14ミリモル)DADE 5.6g (28 ミリモル)、バレロラクトン 1.3g、 ピリジン 2.6g、NMP 126g、トルエン 30g、を加えて、窒素気流中に攪拌する。反応器をシリコン浴につけ、180℃、180rpm で45分加熱攪拌し、20分間空冷した。
(2)その後、PMDA 6.10g (28 ミリモル)、BTDA 4.51g  (14ミリモル)、NMP 70g をその順に加えて30分間攪拌した。
(3)その後、DAT 3.42g (28ミリモル)、NMP 32g  を加え、20分間撹拌後、シリコン浴につけて、180℃、180rpm で加熱攪拌し、重合反応を始める。4時間20分反応後、空冷した。濃度11%のポリイミドを得た。反応液の一部をNMPで希釈して、GPCで分子量を測定した。
   数平均分子量(Mn)     34290
   重量平均分子量(Mw)    75450
   Z平均分子量(Mz)     233860
   Mw/Mn         6.82
 McScience 社製 TG―GTA で熱分析をした。
   熱分解開始温度     490℃
   ガラス転移温度     352℃
 実施例2により、繰り返し単位[PMDA-(DADE-BPDA-DADE)(PMDA-DAT-BTDA)-DAT]を有するポリイミドが生成された。なお、次の繰り返し単位を有するポリイミドも副生成物として生成可能である。
[PMDA-(DADE-BPDA-DADE)(BTDA-DAT-PMDA)-DAT]
[参考例1]
 (BTDA+2DADE)、(2PMDA+BTDA)及び(2DAT)をその順に添加した、三段階添加反応によって合成した。実施例1と同様に操作した。
(1)ガラス製三つ口フラスコ(50ml)にBPDA 8.24g (28ミリモル)、DADE  11.2g (56ミリモル)、バレロラクトン 2.6g、ピリジン 5.2g、NMP 25g、トルエン 50g を仕込む。窒素を通じながら、180℃、180rpmで60分加熱攪拌し、空冷を30分間行った。
(2)PMDA 12.2g (56ミリモル)、BTDA 9.02g  (28ミリモル)、NMP 140g をその順に加え、20分間攪拌した。
(3)その後、DAT 4.88g (40ミリモル)、NMP 50g を加え、20分間攪拌後、180℃、 180rpmで4時間加熱攪拌し反応を行った。濃度8%のポリイミド溶液を得た。反応液の一部をとり、GPCで分子量を測定した。
     数平均分子量(Mn)      23,580
     重量平均分子量(Mw)     70,700
     Z平均分子量(Mz)     148,880
     Mw/Mn            3.00
     フイルムの熱分析 TG-GTAを測定した。
     熱分解開始温度   489℃
     ガラス転移温度   358℃
 参考例1により、繰り返し単位[PMDA-(DADE-BTDA-DADE)(PMDA-DAT-BTDA)-DAT]を有するポリイミドが生成された。なお、次の繰り返し単位を有するポリイミドも副生成物として生成可能である。
[PMDA-(DADE-BTDA-DADE)(BTDA-DAT-PMDA)-DAT]
[実施例3]
 (BPDA+2DADE)、(2PMDA+BPDA+MPD)及び(FDA)をその順に添加した、三段階添加反応によって合成した。実施例1と同じ装置を用いる。
 (1)ガラス製反応容器に、BPDA 2.94g (10ミリモル), DADE  4.00g (20ミルモル)、バレロラクトン 1.0g、ピリジン 2.0g、NMP 80g、トルエン 25g を仕込む。
反応器をシリコン浴につけ、180℃、180rpm で40分間加熱攪拌した。
(2)20分間空冷後、PMDA (20ミリモル)、BPDA 2.94g (10ミリモル)をその順に添加し、ついで、メタフェニレンジアミン(MPD) 1.22g (10ミリモル)をNMP 60gと共に加えて、20分間室温で攪拌した。
(3)FDA 3.49g(10ミリモル)、NMP 40gとを加えて攪拌し、180℃、180rpmで加熱攪拌して、反応を開始した。4時間40分の反応を行って、 空冷後、一夜放置すると、ゲル状となるが、NMPで希釈すると液状となる。濃度10%のポリイミド溶液を得た。GPCで分子量を測定した。
     数平均分子量(Mn)      16,710
     重量平均分子量(Mw)     37,810
     Z平均分子量(Mz)     69.360
     Mw/Mn           2.26
TG、GTA測定器で、熱分析した。
     熱分解開始温度   529℃
     ガラス転移温度   377℃
 実施例により、繰り返し単位[PMDA-(DADE-BPDA-DADE)(PMDA-MPD-BPDA)-(FDA)]を有するポリイミドが生成された。なお、次の2つの繰り返し単位を有するポリイミドも副生成物として生成可能である。
[PMDA-(DADE-BPDA-DADE)(BPDA-MPD-PMDA)-FDA]
[BPDA-(DADE-BPDA-DADE)(PMDA-MPD-PMDA)-FDA]
[実施例4]
 (BPDA+2DADE)、(2PMDA+BPDA+FDA)及び(FDA)をその順に添加した、三段階添加反応によって合成した。実施例4と同様に操作した。
(1)ガラス反応器に、BPDA 2.94g (10ミリモル)、DADE  4.00g (20ミリモル)、バレロラクトン 1.2g、ピリジン 2.0g、 NMP 80g、トルエン 25g を仕込み、180℃、180rpmの窒素気流中で、40分間加熱攪拌し、20分間空冷した。
(2)その後、PMDA 4.36g(20ミリモル)、BPDA 2.94g(10ミリモル)、FDA 3.49g (10ミリモル)及び、NMP 60gをその順に加えた。20分間空冷後、180℃、180rpmで窒素気流中で加熱攪拌した。(3)さらに、20分間空冷後、FDAを3.49g (10ミリモル)とNMP40g とを加えて攪拌し、180℃、180rpmで、加熱攪拌を4時間40分行った。4時間40分で反応を停止した。濃度11%のポリイミド溶液を得た。
GPCで分子量を測定した。
     数平均分子量(Mn)      35,170
     重量平均分子量(Mw)     84,360
     Z平均分子量(Mz)     155,910
     Mw/Mn            2.40
熱分析を行なった。
     熱分解開始温度   532℃
     ガラス転移温度   不明
 実施例4により、繰り返し単位[PMDA-(DADE-BPDA-DADE)(PMDA-FDA-BPDA)-(FDA)]を有するポリイミドが生成された。なお、次の繰り返し単位を有するポリイミドも副生成物として生成可能である。
[PMDA-(DADE-BPDA-DADE)(BPDA-FDA-PMDA)-FDA]
[実施例5]
 (BPDA+2DADE)、(2PMDA+BPDA+DAT)及び(FDA)をその順に添加した、三段階添加反応によって合成した。実施例4と同様に操作した。
(1)BPDA 2.94g (10ミリモル), DADE 4.00g (20ミリモル)、バレロラクトン 1.2g、ピリジン 2.0g、NMP 80g、トルエン 20g を反応器に仕込み、180℃、180rpmで、40分間加熱攪拌し、ついで20分間空冷した。
(2)PMDA 4.36g (20ミリモル)、BPDA 2.94g  (10ミリモル)をその順に加え、ついでDAT1.22g(10ミリモル)、及び NMP 60gと共に添加した。20分間空冷後、180℃、180rpmで、20分間加熱、攪拌した。
(3)さらに、20分間空冷後、FDAを3.49g (10ミリモル)とNMP40g とを加えて攪拌し、180℃、180rpmで、加熱攪拌を4時間40分行った。反応後、濃度10%のポリイミド溶液を得、分子量を測定した。
     数平均分子量(Mn)      27,090
     重量平均分子量(Mw)     75,340
     Z平均分子量(Mz)     147,400
     Mw/Mn            2.78
     熱分析をおこなった。
     熱分解開始温度(Tm)     510℃
     ガラス転移温度(Tg)     388℃ 
 実施例により、繰り返し単位[(PMDA)-(DADE-BPDA-DADE)(PMDA-DAT-BPDA)-FDA]を有するポリイミドが生成された。なお、次の2つの繰り返し単位を有するポリイミドも副生成物として生成可能である。
[(PMDA)-(DADE-BPDA-DADE)(BPDA-DAT-PMDA)-FDA]
[BPDA-(DADE-BPDA-DADE)(PMDA-DAT-PMDA)-FDA]
[実施例6]
 (BPDA+2DADE)、(2PMDA+BPDA+DABz)及び(FDA)をその順に添加した、三段階添加反応によって合成した。実施例4に準ずる。
(1)ガラス製反応器にBPDA 2.94g (10ミリモル), DADE 4.00g (20ミリモル)、バレロラクトン 1.2g、ピリジン 2.0g、NMP 80g、トルエン 25g を仕込み、攪拌した。窒素気流中、180℃、180rpmで、40分間、加熱攪拌し、20分間空冷した。
(2)ついで、PMDA 4.36g (20ミリモル)、BPDA 2.94g  (10ミリモル)、DABz(3,5-ジアミノ安息香酸)1.52g  (10ミリモル)、NMP 60gをその順に加えて攪拌した。180℃、180rpmで20分間加熱攪拌した。
(3)20分間空冷後、FDA 3.49g (10ミリモル)、NMP 60gを加えた。4時間40分間、180℃、180rpmで加熱攪拌した。10%濃度のポリイミド溶液を得た。分子量を測定した。
     数平均分子量(Mn)      23,487
     重量平均分子量(Mw)     78,310
     Z平均分子量(Mz)     169,800
     Mw/Mn            3.35
     熱分析した。
        一次分解温度        460℃
        熱分解開始温度       542℃ 
 ガラス転移温度は不明であった。
 実施例により、繰り返し単位[(PMDA)-(DADE-BPDA-DADE)(PMDA-DABz-BPDA)-(FDA)]を有するポリイミドが生成された。なお、次の2つの繰り返し単位を有するポリイミドも副生成物として生成可能である。
[PMDA-(DADE-BPDA-DADE)(BPDA-DABz-PMDA)-FDA]
[BPDA-(DADE-BPDA-DADE)(PMDA-DABz-PMDA)-FDA]
[実施例7]
(BPDA+2DADE)、(2PMDA+BPDA+FDA)及び(CHAB)をその順に添加した、三段階添加反応によって合成した。実施例4と同様に操作した。
(1)反応器に、BPDA 2.94g (10ミリモル)、DADE 4.0g (20ミリモル)、バレロラクトン 1.2g、ピリジン  2.0g、NMP 80g、トルエン 25g、 を仕込んだ。窒素を通じながら、180℃、180rpmで、40分間加熱、攪拌して、20分間空冷した。
(2)PMDAを 4.36g (20ミリモル),  BPDA 2.94g(10ミリモル)をその順に加え、ついで FDA 3.49g (10ミリモル)とNMP 60gを加えた。20分間攪拌後、180℃、180rpmで20分間加熱、攪拌し、20分間空冷する。
(3)CHAB(3,3’―ジメチルベンジジン)2.12g(10ミリモル)とNMP 30gとを加えて20分間攪拌し、180℃、180rpmで加熱、攪拌して、イミド化反応を行った。4時間30分間反応した。反応後NMPを60g追加して添加した。濃度9%のポリイミド溶液を得た。
分子量を測定した。
     数平均分子量(Mn)     31,010
     重量平均分子量(Mw)    75,540
     Z平均分子量(Mz)    140,290
     Mw/Mn           2.44
熱分析を行った。
     熱分解開始温度  510℃ 
ガラス転移温度は不明であった。
 実施例7により、繰り返し単位[(PMDA)-(DADE-BPDA-DADE)(PMDA-FDA-BPDA)-(CHAB)]を有するポリイミドが生成された。なお、次の2つの繰り返し単位を有するポリイミドも副生成物として生成可能である。
[PMDA-(DADE-BPDA-DADE)(BPDA-FDA-PMDA)-CHAB]
[BPDA-(DADE-BPDA-DADE)(PMDA-FDA-PMDA)-CHAB]
 [実施例8]
(BPDA+2DADE)、(2PMDA+BTDA+FDA)及び(FDA)をその順に添加した、三段階添加反応によって合成した。実施例4と同様に操作した。
(1)反応器に、BPDA 5.88g (20ミリモル)、DADE 8.0g (40ミリモル)、バレロラクトン 2.0g、ピリジン  4.2g、NMP 140g、トルエン 25g、 を仕込む。
攪拌溶解した後、 180℃、180rpmで、1時間加熱、攪拌した。
(2)20分間空冷後、PMDAを8.72g (40ミリモル),  BTDA 6.44g(20ミリモル)をその順に加え、ついで FDA 6.98g  (20ミリモル)をNMP 125gと共に添加して撹拌する。20分後、180℃、180rpmで30分間加熱、攪拌して、20分間空冷する。FDA 6.98g (10ミリモル)、NMP 50g を加えて攪拌し、180℃、180rpmで加熱、攪拌して反応した。5時間30分反応した。濃度13.6%のポリイミド溶液を得た。
分子量を測定した。
     数平均分子量(Mn)      33,250
     重量平均分子量(Mw)     63,180
     Z平均分子量(Mz)     125,570
     Mw/Mn    2.00
熱分析を行った。
     熱分解開始温度  525℃ 
     Tgは不明であった。
 実施例8により、繰り返し単位[PMDA-(DADE-BPDA-DADE)(PMDA-FDA-BTDA)-(FDA)]を有するポリイミドが生成された。なお、次の繰り返し単位を有するポリイミドも副生成物として生成可能である。
[PMDA-(DADE-BPDA-DADE)(BTDA-FDA-PMDA)-FDA]
[実施例9]
(BPDA+2DADE)、(2PMDA+BPDA+MPD)及び(HOAB・SO)をその順に添加した、三段階添加反応によって合成した。実施例4と同様に操作した。
(1)反応器に、BPDA 2.94g (10ミリモル)、DADE 4.00g (20ミリモル)、バレロラクトン 1.2g  ピリジン  2.0g、NMP 80g、トルエン 25g、 を加えた。攪拌し溶解した液を、 180℃、180rpmで、40分間加熱、攪拌した。
(2)空冷20分後、PMDAを4.36g (20ミリモル),  BPDA 2.94g(10ミリモル) をその順に加え、ついで MPD(メチルフェニレンジアミン)1.00g  とNMP 60gを加えて、20分攪拌溶解した。ついで、180℃、180rpmで20分間加熱、攪拌する。
(3)再び空冷20分後に、HOAB・SO 2.80g (10ミリモル) 3.49g (10ミリモル)とNMP 40gとを加え20分間攪拌する。180℃、180rpmで加熱、攪拌して重合を行った。4時間40分で反応を停止した。濃度10%のポリイミド溶液を得た。
分子量を測定した。
     数平均分子量(Mn)     16,710
     重量平均分子量(Mw)    37,830
     Z平均分子量(Mz)     69,360
     Mw/Mn           2.26
熱分析を行った。
     熱分解開始温度    546℃ 
     ガラス転移温度    377℃
 実施例により、繰り返し単位[PMDA-(DADE-BPDA-DADE)(PMDA-MPD-BPDA)-(HOAB・SO)]を有するポリイミドが生成された。なお、次の2つの繰り返し単位を有するポリイミドも副生成物として生成可能である。
[PMDA-(DADE-BPDA-DADE)(BPDA-MPD-PMDA)-HOAB・SO
[BPDA-(DADE-BPDA-DADE)(PMDA-MPD-PMDA)-HOAB・SO
[実施例10]
(BPDA+2DADE)、(2PMDA+BPDA+FDA)及び(HOAB・SO)をその順に添加した、三段階添加反応によって合成した。実施例4と同様に操作した。
(1)反応器に、BPDA 2.94g (10ミリモル)、DADE 4.00g (20ミリモル)、バレロラクトン 1.2g、ピリジン  2.0g、NMP 80g、トルエン 25g、 を仕込む。攪拌溶解し、 180℃、180rpmで、40分間加熱、攪拌した。
(2)ついで、20分間空冷後、PMDAを4.36g (20ミリモル),  BPDA 2.94g(10ミリモル)をその順に加え、ついで FDA 3.49g(1ミリモル)とNMP 60gを加えて攪拌、溶解した。20分間180℃、180rpmに加熱、攪拌して再び20分間空冷した。
(3)HOAB・SO 2.80g (10ミリモル)、NMP 60gを加えて攪拌した。180℃、180rpmで攪拌して、反応させた。4時間10分間反応した。10%濃度ポリイミド溶液を得た。
分子量を測定した。
     数平均分子量(Mn)       30,870
     重量平均分子量(Mw)    128,530
     Z平均分子量(Mz)      453,300
     Mw/Mw                   4.16
 熱分析を行った
     一次分解温度          401℃
     熱分解開始温度         548℃
     Tgは不明であった。
 実施例10により、繰り返し単位[PMDA-(DADE-BPDA-DADE)(PMDA-FDA-BPDA)-(HOAB・SO)]を有するポリイミドが生成された。なお、次の2つの繰り返し単位を有するポリイミドも副生成物として生成可能である。
[PMDA-(DADE-BPDA-DADE)(BPDA-FDA-PMDA)-HOAB・SO
[BPDA-(DADE-BPDA-DADE)(PMDA-FDA-PMDA)-HOAB・SO
[参考例2]
 (BTDA+2DADE)、(2PMDA+BTDA+HOAB・SO)及び(FDA)をその順に添加した、三段階添加反応によって合成した。実施例4と同様に操作した。
 反応器にBTDA9.66g(30ミリモル)、DADE12.00g(60ミリモル)、バレロラクトン 3.6g、ピリジン 6g、NMP240g、トルエン 50g を加える。180℃、180rpmで、1時間加熱、攪拌後、30分間空冷し、PMDA 13.08g(60ミリモル)、BTDA9.66g(30ミリモル)を加えて、ついで、HOAB・SO 8.4g(30ミリモル),とNMP188gを加えて、攪拌した。20分間180℃、180rpmで加熱、攪拌後、10分間空冷した。FDA10.47g(30ミリモル)とNMP100gとを加えた。攪拌し180℃、180rpmで反応を開始した。2時間30分間反応して、11%濃度のポリイミド溶液を得た。
 分子量を測定した。
     数平均分子量(Mn)      29,400
     重量平均分子量(Mw)    145,520
     Z平均分子量(Mz)     407,220
     Mw/Mn            2.95
熱分析を行った
熱分解開始温度     498℃
ガラス転移温度    392℃
 参考例2により、繰り返し単位[PMDA-(DADE-BTDA-DADE)(PMDA-HOAB・SO-BTDA)-FDA]を有するポリイミドが生成された。なお、次の2つの繰り返し単位を有するポリイミドも副生成物として生成可能である。
[PMDA-(DADE-BTDA-DADE)(BTDA-HOAB・SO-PMDA)-FDA]
[BTDA-(DADE-BTDA-DADE)(PMDA-HOAB・SO-PMDA)-FDA]

Claims (16)

  1.  (a)2モル当量のピロメリット酸ジ無水物(PMDA)、
    (b)(i)2モル当量のビフェニルテトラカルボン酸ジ無水物(BPDA)又は(ii)1モル当量のBPDA及び1モル当量のベンゾフェノンテトラカルボン酸ジ無水物(BTDA)、
    (c)2モル当量のジアミノジフェニルエーテル(DADE)及び
    (d)2モル当量のDADE以外の芳香族ジアミン、ここで、前記芳香族ジアミンは、一種又は二種であり、二種の場合、そのモル当量比は、1:1である、
    からなる成分より合成され、前記ポリイミドは、三段階反応によって合成され、第一段階及び第二段階では、低分子量イミド化合物を生成し、三段階では、重縮合反応を行うことからなり、熱分解開始温度が480℃以上の、有機溶媒に可溶な、耐熱性ポリイミド。
  2. 前記(d)のDADE以外の芳香族ジアミンが、2,4-ジアミノトルエン(DAT)、ビス(3-アミノ-4-ヒドロキシフェ二ル)スルホン(HOAB・SO)、9,9-ビス(4-アミノフェ二ル)フルオレン(FDA)、3,3’―ジメチルベンジジン(CHAB)、メタフェ二レンジアミン(MPD)、3,5―ジアミノ安息香酸(DABz)からなる群から選択される、請求項1記載の有機溶媒に可溶な耐熱性ポリイミド。
  3.  DADEは、4,4’-ジアミノジフェニルエーテル又は3,4’-ジアミノジフェニルエーテルである請求項1記載の有機溶媒に可溶な耐熱性ポリイミド。
  4. 前記有機溶媒は、N-メチルピロリドン及びスルホランからなる群から選択される極性有機溶媒である、請求項1記載の有機溶媒に可溶な耐熱性ポリイミド。
  5. (a)ピロメリット酸ジ無水物(PMDA)、(b)ビフェニルテトラカルボン酸ジ無水物(BPDA)、(c)ジアミノジフェニルエーテル(DADE)及び(d)DADE以外の芳香族ジアミンからなる、熱分解開始温度が480℃以上の、有機溶媒に可溶な、耐熱性ポリイミドにおいて、
    第一段階では、1モル当量のBPDAと2モル当量のDADEを反応させ、DADEを両末端とする第一段階低分子量イミド化合物を生成させ、
    第二段階では、前記第一段階低分子量イミド化合物の溶液中に、2モル当量のPMDAを添加し、次いで、1モル当量のBPDAを添加して、両末端に酸ジ無水物をイミド結合させた第二段階低分子量イミド化合物を生成させ、
    第三段階では、DADE以外の芳香族ジアミン2モル当量を添加して反応させ、重縮合反応を行うことからなる、
    下記の繰り返し単位:
    [PMDA-DADE-BPDA-DADE-PMDA-(DADE以外の芳香族ジアミン)-BPDA-(DADE以外の芳香族ジアミン)] 又は、
    [PMDA-DADE-BPDA-DADE-BPDA-(DADE以外の芳香族ジアミン)-PMDA-(DADE以外の芳香族ジアミン)] 
    を有する、前記耐熱性ポリイミド。
  6. 前記(d)のDADE以外の芳香族ジアミンが、2,4-ジアミノトルエン(DAT)、ビス(3-アミノ-4-ヒドロキシフェ二ル)スルホン(HOAB・SO)、9,9-ビス(4-アミノフェ二ル)フルオレン(FDA)、3,3’―ジメチルベンジジン(CHAB)、メタフェ二レンジアミン(MPD)、3,5―ジアミノ安息香酸(DABz)からなる群から選択される、請求項5記載の有機溶媒に可溶な耐熱性ポリイミド。
  7.  DADEは、4,4’-ジアミノジフェニルエーテル又は3,4’-ジアミノジフェニルエーテルである請求項5記載の有機溶媒に可溶な耐熱性ポリイミド。
  8. 前記有機溶媒は、N-メチルピロリドン及びスルホランからなる群から選択される極性有機溶媒である、請求項5記載の有機溶媒に可溶な耐熱性ポリイミド。
  9. (a)ピロメリット酸ジ無水物(PMDA)、(b)ビフェニルテトラカルボン酸ジ無水物(BPDA)、(c)ジアミノジフェニルエーテル(DADE)及び(d)DADE以外の芳香族ジアミンからなる、熱分解開始温度が480℃以上の、有機溶媒に可溶な耐熱性ポリイミドにおいて、
     繰り返し単位中の(a)、(b)、(c)及び(d)の成分の分子の数が、全て2であり、前記ポリイミドは、三段階添加反応により合成され、
    (1)第一段階では、1モル当量のBPDAと2モル当量のDADEとの反応によりDADEを両末端とする第一段階低分子量イミド化合物を生成させ、
    (2)第二段階では、第一段階低分子量イミド化合物の溶液中に、2モル当量のPMDAを添加し、次いで1モル当量のBPDAを添加した後、1モル当量のDADE以外の芳香族ジアミンを添加して、前記両末端に酸ジ無水物がイミド結合した第二段階低分子量イミド化合物を生成させ、
    (3)第三段階では、第二段階低分子量イミド化合物に、1モル当量のDADE以外の芳香族ジアミンを反応させ重縮合反応を行うことからなり、下記の繰り返し単位:
    [PMDA-(DADE―BPDA―DADE)-PMDA-(DADE以外の芳香族ジアミン)-BPDA-(DADE以外の芳香族ジアミン)]、又は[PMDA-(DADE―BPDA―DADE)-BPDA-(DADE以外の芳香族ジアミン)-PMDA-(DADE以外の芳香族ジアミン)]、若しくは[BPDA-(DADE―BPDA―DADE)-PMDA-(DADE以外の芳香族ジアミン)-PMDA-(DADE以外の芳香族ジアミン)]
    (ここで、前記化合物間の結合は、イミド結合である。)を有する、前記有機溶媒に可溶な耐熱性ポリイミド。
  10. 前記(d)のDADE以外の芳香族ジアミンが、2,4-ジアミノトルエン(DAT)、ビス(3-アミノ-4-ヒドロキシフェ二ル)スルホン(HOAB・SO)、9,9-ビス(4-アミノフェ二ル)フルオレン(FDA)、3,3’―ジメチルベンジジン(CHAB)、メタフェ二レンジアミン(MPD)、3,5―ジアミノ安息香酸(DABz)からなる群から選択される、請求項9記載の有機溶媒に可溶な耐熱性ポリイミド。
  11.  DADEは、4,4’-ジアミノジフェニルエーテル又は3,4’-ジアミノジフェニルエーテルである請求項9記載の有機溶媒に可溶な耐熱性ポリイミド。
  12. 前記有機溶媒は、N-メチルピロリドン及びスルホランからなる群から選択される極性有機溶媒である、請求項9記載の有機溶媒に可溶な耐熱性ポリイミド。
  13. (a)ピロメリット酸ジ無水物(PMDA)、(b)ビフェニルテトラカルボン酸ジ無水物(BPDA)、(c)ベンゾフェノンテトラカルボン酸ジ無水物(BTDA)、(d)ジアミノジフェニルエーテル(DADE)及び(e)DADE以外の芳香族ジアミンからなる、有機溶媒に可溶な耐熱性ポリイミドにおいて、
    前記繰り返し単位中の(a)、(b)、(c)、(d)及び(e)の成分の分子の数が、2:1:1:2:2である、熱分解開始温度が480℃以上の、有機溶媒に可溶な耐熱性ポリイミドにおいて、前記ポリイミドは、三段階添加反応により合成され、
    (1)第一段階では、BPDAとDADEとの反応によりDADEを両末端とする第一段階低分子量イミド化合物を生成させ、
    (2)第二段階では、(i)前記第一段階低分子量イミド化合物に、2モル当量のPMDAを添加し、次いで1モル当量のBTDAを添加し反応させて前記第一段階低分子量イミド化合物の両末端であるDADEにPMDAをイミド結合させPMDA-(DADE―BPDA―DADE)-PMDAからなる第二段階低分子量イミド化合物を主に生成させ、
    (3)第三段階では、DADE以外の芳香族ジアミンを反応させて重縮合反応を行うことからなり、下記の繰り返し単位、
    (i)[PMDA-(DADE―BPDA―DADE)-PMDA-(DADE以外の芳香族ジアミン)-BTDA-(DADE以外の芳香族ジアミン)(DADE以外の芳香族ジアミン)]n 又は
    (ii)[PMDA-(DADE―BPDA―DADE)-BTDA-(DADE以外の芳香族ジアミン)-PMDA-(DADE以外の芳香族ジアミン)(DADE以外の芳香族ジアミン)]
    (ここで、前記化合物間の結合は、イミド結合である。)を有する、前記有機溶媒に可溶な耐熱性ポリイミド。
  14. 前記(d)のDADE以外の芳香族ジアミンが、2,4-ジアミノトルエン(DAT)、ビス(3-アミノ-4-ヒドロキシフェ二ル)スルホン(HOAB・SO)、9,9-ビス(4-アミノフェ二ル)フルオレン(FDA)、3,3’―ジメチルベンジジン(CHAB)、メタフェ二レンジアミン(MPD)、3,5―ジアミノ安息香酸(DABz)からなる群から選択される、請求項13記載の有機溶媒に可溶な耐熱性ポリイミド。
  15.  DADEは、4,4’-ジアミノジフェニルエーテル又は3,4’-ジアミノジフェニルエーテルである請求項13記載の有機溶媒に可溶な耐熱性ポリイミド。
  16. 前記有機溶媒は、極性有機溶媒である、請求項13記載の有機溶媒に可溶な耐熱性ポリイミド。
PCT/JP2010/059324 2010-06-02 2010-06-02 (pmda)2(dade)2(bpda)2(dade以外の芳香族ジアミン)2の成分比より構成される有機溶媒に可溶なポリイミド WO2011151898A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/059324 WO2011151898A1 (ja) 2010-06-02 2010-06-02 (pmda)2(dade)2(bpda)2(dade以外の芳香族ジアミン)2の成分比より構成される有機溶媒に可溶なポリイミド

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/059324 WO2011151898A1 (ja) 2010-06-02 2010-06-02 (pmda)2(dade)2(bpda)2(dade以外の芳香族ジアミン)2の成分比より構成される有機溶媒に可溶なポリイミド

Publications (1)

Publication Number Publication Date
WO2011151898A1 true WO2011151898A1 (ja) 2011-12-08

Family

ID=45066295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059324 WO2011151898A1 (ja) 2010-06-02 2010-06-02 (pmda)2(dade)2(bpda)2(dade以外の芳香族ジアミン)2の成分比より構成される有機溶媒に可溶なポリイミド

Country Status (1)

Country Link
WO (1) WO2011151898A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014072222A (ja) * 2012-09-27 2014-04-21 Pi R & D Co Ltd 太陽電池およびその製造方法
WO2019089675A1 (en) * 2017-11-02 2019-05-09 Honeywell International Inc. Polyimide for flexible displays, flexible displays, and methods for making flexible displays

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5285234A (en) * 1976-01-09 1977-07-15 Showa Electric Wire & Cable Co Ltd Production of electric insulating coating
JPS59164328A (ja) * 1983-03-08 1984-09-17 Ube Ind Ltd 芳香族ポリアミツク酸溶液組成物
JPS59179623A (ja) * 1983-03-31 1984-10-12 Hitachi Chem Co Ltd ポリイミド系樹脂の製造方法
JPS61130342A (ja) * 1984-11-29 1986-06-18 Hitachi Chem Co Ltd 有機溶媒に可溶なポリイミド樹脂の製造方法
JPS63254131A (ja) * 1987-04-10 1988-10-20 Mitsubishi Electric Corp 芳香族ポリイミドの製造方法
JPH01131241A (ja) * 1986-11-29 1989-05-24 Kanegafuchi Chem Ind Co Ltd 熱的寸法安定性にすぐれたポリアミド酸及びそれからなるポリイミドの製造方法
WO2006057036A1 (ja) * 2004-11-25 2006-06-01 Pi R & D Co., Ltd. ピロメリット酸ジ無水物を含むブロック共重合ポリイミド溶液組成物及びそのフィルム
WO2008120398A1 (ja) * 2007-04-03 2008-10-09 Solpit Industries, Ltd. 溶剤に可溶な6,6-ポリイミド共重合体及びその製造方法
JP2009018521A (ja) * 2007-07-13 2009-01-29 Du Pont Toray Co Ltd 銅張り板

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5285234A (en) * 1976-01-09 1977-07-15 Showa Electric Wire & Cable Co Ltd Production of electric insulating coating
JPS59164328A (ja) * 1983-03-08 1984-09-17 Ube Ind Ltd 芳香族ポリアミツク酸溶液組成物
JPS59179623A (ja) * 1983-03-31 1984-10-12 Hitachi Chem Co Ltd ポリイミド系樹脂の製造方法
JPS61130342A (ja) * 1984-11-29 1986-06-18 Hitachi Chem Co Ltd 有機溶媒に可溶なポリイミド樹脂の製造方法
JPH01131241A (ja) * 1986-11-29 1989-05-24 Kanegafuchi Chem Ind Co Ltd 熱的寸法安定性にすぐれたポリアミド酸及びそれからなるポリイミドの製造方法
JPS63254131A (ja) * 1987-04-10 1988-10-20 Mitsubishi Electric Corp 芳香族ポリイミドの製造方法
WO2006057036A1 (ja) * 2004-11-25 2006-06-01 Pi R & D Co., Ltd. ピロメリット酸ジ無水物を含むブロック共重合ポリイミド溶液組成物及びそのフィルム
WO2008120398A1 (ja) * 2007-04-03 2008-10-09 Solpit Industries, Ltd. 溶剤に可溶な6,6-ポリイミド共重合体及びその製造方法
JP2009018521A (ja) * 2007-07-13 2009-01-29 Du Pont Toray Co Ltd 銅張り板

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014072222A (ja) * 2012-09-27 2014-04-21 Pi R & D Co Ltd 太陽電池およびその製造方法
WO2019089675A1 (en) * 2017-11-02 2019-05-09 Honeywell International Inc. Polyimide for flexible displays, flexible displays, and methods for making flexible displays

Similar Documents

Publication Publication Date Title
KR101472325B1 (ko) 피로멜리트산 디무수물(pmda), 디아미노디페닐에테르(dade), 비페닐테트라카르복실산 디무수물(bpda) 및 비시클로옥텐테트라카르복실산 디무수물(bcd)을 함유하는 유기 용매에 가용인 폴리이미드
KR101233566B1 (ko) 용제에 가용인 6,6-폴리이미드 공중합체 및 그 제조 방법
JP5667053B2 (ja) Pmda、dade、bpdaおよび9,9−ビス(4−アミノフェニル)フルオレン成分を含む有機溶媒に可溶なポリイミド組成物およびその製造方法
TW201533096A (zh) 聚醯亞胺之製造方法及由該製造方法所得之聚醯亞胺
WO2005066242A1 (ja) 芳香族ポリアミド酸及びポリイミド
JP5050269B2 (ja) 末端変性イミドオリゴマーおよびワニス並びにその高弾性率硬化物
US8349971B2 (en) 6,6-polyimide copolymers and processes for preparing them
JP3012903B2 (ja) 新規の可溶性ポリイミド樹脂
JP4398650B2 (ja) 新規な熱可塑性ポリイミド及びイミドオリゴマー
WO2011151898A1 (ja) (pmda)2(dade)2(bpda)2(dade以外の芳香族ジアミン)2の成分比より構成される有機溶媒に可溶なポリイミド
JPH1060111A (ja) シロキサン変性ポリアミドイミド樹脂組成物
WO2006057036A1 (ja) ピロメリット酸ジ無水物を含むブロック共重合ポリイミド溶液組成物及びそのフィルム
KR100200540B1 (ko) 폴리이미드 및 그의 제조방법
JP2754446B2 (ja) シロキサン変性ポリアミドイミド樹脂およびその製造方法
JP6765093B2 (ja) ポリイミド
JPH06271673A (ja) シロキサン変性ポリアミドイミド樹脂および樹脂組成物
JPH0562893B2 (ja)
JP6462236B2 (ja) ポリイミドおよび耐熱性フィルム
JP2873816B2 (ja) シロキサン変性ポリアミドイミド樹脂組成物
JP3907549B2 (ja) ワニスおよび架橋ポリイミド
JP2653401B2 (ja) ポリアミドイミドシリコン重合体の製造法
JP2004359868A (ja) 熱可塑ポリイミド性樹脂の製造方法
JP2021155496A (ja) 可溶性ポリイミドの製造方法
JPH01132631A (ja) シロキサン変性ポリスルホンイミドおよびその製造方法
JP2023163896A (ja) ポリエステルイミド及びポリエステルアミド酸

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10852504

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10852504

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP