WO2011150788A1 - 磁悬浮列车司机室及其制造方法 - Google Patents

磁悬浮列车司机室及其制造方法 Download PDF

Info

Publication number
WO2011150788A1
WO2011150788A1 PCT/CN2011/074847 CN2011074847W WO2011150788A1 WO 2011150788 A1 WO2011150788 A1 WO 2011150788A1 CN 2011074847 W CN2011074847 W CN 2011074847W WO 2011150788 A1 WO2011150788 A1 WO 2011150788A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional
dimensional skeleton
aluminum alloy
skin
component
Prior art date
Application number
PCT/CN2011/074847
Other languages
English (en)
French (fr)
Inventor
王永刚
李东锋
Original Assignee
唐山轨道客车有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 唐山轨道客车有限责任公司 filed Critical 唐山轨道客车有限责任公司
Priority to EP11789167.1A priority Critical patent/EP2578351A4/en
Publication of WO2011150788A1 publication Critical patent/WO2011150788A1/zh
Priority to US13/692,944 priority patent/US20130087068A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61DBODY DETAILS OR KINDS OF RAILWAY VEHICLES
    • B61D17/00Construction details of vehicle bodies
    • B61D17/04Construction details of vehicle bodies with bodies of metal; with composite, e.g. metal and wood body structures
    • B61D17/041Construction details of vehicle bodies with bodies of metal; with composite, e.g. metal and wood body structures with bodies characterised by use of light metal, e.g. aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/88Making other particular articles other parts for vehicles, e.g. cowlings, mudguards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61DBODY DETAILS OR KINDS OF RAILWAY VEHICLES
    • B61D17/00Construction details of vehicle bodies
    • B61D17/04Construction details of vehicle bodies with bodies of metal; with composite, e.g. metal and wood body structures
    • B61D17/06End walls
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49616Structural member making
    • Y10T29/49622Vehicular structural member making

Definitions

  • the present invention relates to passenger car manufacturing technology, and more particularly to a magnetic levitation train cab and a method of manufacturing the same. Background technique
  • the magnetic levitation train relies on the magnetic force to make the train float, and the linear motor drives the train. It has the advantages of low noise, safety and environmental protection, and is an important direction for the development of urban rail vehicles in the future. Since the magnetic levitation train is characterized by electromagnetic attraction to make the train float, and the adsorption capacity of the maglev train electromagnet is certain, in order to make the maglev train have the same carrying capacity as the urban rail train, it is necessary to solve the maglev train. Lightweight problems.
  • the maglev train is a kind of urban rail train.
  • the cab of the urban rail train generally uses a streamlined driver's cab, which mainly includes a three-dimensional skeleton and a three-dimensional skin.
  • the skeleton mainly supports its role, and the skin is covered in a three-dimensional skeleton.
  • the structure makes the entire cab have a streamlined structure to meet the needs of train travel.
  • the skeleton is generally made of steel skeleton structure, which is difficult to form and has a large weight.
  • the existing skin is generally formed in one piece, and the glass fiber reinforced plastic skin is used.
  • the existing urban rail train cab has a heavier weight, reduces the bearing capacity of the train, and is complicated in the forming and manufacturing processes.
  • the skeleton of the existing urban rail train cab also has an aluminum skeleton, but it is usually difficult to form by using a profile structure.
  • the invention provides a maglev train driver cab and a manufacturing method thereof, which can effectively simplify the skeleton and The complexity of the skin forming, the strength of the cab, and the manufacturing cost of the maglev train cab are beneficial to the promotion and application of the maglev train.
  • the invention provides a method for manufacturing a driver's cab of a magnetic levitation train, comprising:
  • the three-dimensional skin is assembled onto the three-dimensional skeleton.
  • the processing and obtaining a two-dimensional skeleton component of the aluminum alloy material, and assembling the processed two-dimensional skeleton component into a three-dimensional skeleton comprises:
  • the two-dimensional skeleton component is obtained by processing the aluminum alloy plane plate, and the two-dimensional skeleton component is an aluminum alloy flat plate structure;
  • the two-dimensional skeleton components obtained by processing are assembled to form a three-dimensional skeleton.
  • the obtaining the two-dimensional skeleton component by using the aluminum alloy flat plate material may include: cutting the aluminum alloy flat plate into a two-dimensional skeleton component having an intersecting ring structure.
  • the cutting the aluminum alloy flat sheet into a two-dimensional skeleton component having an intersecting structure may include:
  • the aluminum alloy flat sheet is cut into two-dimensional skeleton parts in an inverted U-shaped cross-ring structure in the horizontal direction and the vertical direction.
  • the processing of the two-dimensional skeleton component by using the aluminum alloy flat sheet material may include: cutting the aluminum alloy flat sheet into a two-dimensional skeleton component having a plugging groove.
  • the three-dimensional skin made of the aluminum alloy material by the small curved surfaceless molding process comprises: pressing the aluminum alloy skin material by using a molding machine to obtain a skin component;
  • the individual skin parts obtained by pressing are assembled into a three-dimensional skin.
  • the assembling the processed two-dimensional skeleton parts into a three-dimensional skeleton comprises:
  • the two-dimensional skeleton parts obtained by machining are assembled into a three-dimensional skeleton by means of welding.
  • the present invention provides a maglev train cab including a three-dimensional skeleton and a three-dimensional skin, a three-dimensional skin is coated on the three-dimensional skeleton, the three-dimensional skeleton includes: a two-dimensional skeleton component of a plurality of aluminum alloy materials, wherein the plurality of two-dimensional skeleton components are connected to each other to form an integral body;
  • the skin is made of an aluminum alloy material using a small curved surfaceless molding process.
  • the two-dimensional skeleton component may be an aluminum alloy planar sheet structure.
  • the two-dimensional skeleton component may be provided with an inverted U-shaped intersecting structure, and each two-dimensional skeleton component may be connected to each other through an intersecting structure to constitute the three-dimensional skeleton.
  • the two-dimensional skeleton component may further be provided with a insertion groove, and each two-dimensional skeleton component may be inserted into each other through the insertion groove to constitute the three-dimensional skeleton.
  • the magnetic levitation train cab and the manufacturing method thereof are provided by assembling a plurality of two-dimensional skeleton components to obtain a three-dimensional skeleton, so that the three-dimensional skeleton is simple to manufacture, and the manufacturing cost of the entire cab can be effectively reduced; ⁇ welding a plurality of skin parts to form a three-dimensional skin, which makes the manufacture of the three-dimensional skin simple, further reducing the manufacturing cost of the entire cab; the three-dimensional skeleton and the three-dimensional skin in the technical solution of the present invention are all made of aluminum alloy
  • the material makes the entire cab lighter and can effectively improve the carrying capacity of the entire train.
  • the technical scheme of the invention can effectively simplify the manufacturing process of the driver's cab, reduce the manufacturing cost of the maglev train, improve the bearing capacity of the maglev train, and facilitate the promotion and application of the maglev train.
  • Figure 1 is a front elevational view showing an embodiment of a cab of a maglev train according to the present invention
  • Figure 2 is a left side elevational view of the embodiment of the cab of the maglev train of the present invention
  • Figure 3 is a plan view showing an embodiment of a cab of a maglev train according to the present invention.
  • FIG. 4 is a schematic structural view of a three-dimensional skeleton according to an embodiment of the present invention.
  • 5A is a schematic structural view of a two-dimensional skeleton component according to an embodiment of the present invention.
  • Figure 5B is an enlarged partial schematic view of the socket at A in Figure 5A;
  • Figure 6 is a front elevational view of a three-dimensional skin in an embodiment of the present invention.
  • Figure 7 is a left side view of the three-dimensional skin in the embodiment of the present invention.
  • FIG. 8 is a schematic flow chart of an embodiment of a method for manufacturing a cab of a maglev train according to the present invention
  • FIG. 9 is a schematic diagram of a manufacturing process of a two-dimensional skeleton component according to an embodiment of the present invention
  • FIG. 10 is a schematic diagram of a three-dimensional skinning manufacturing process according to an embodiment of the present invention.
  • FIG. 1 is a front view of an embodiment of a maglev train cab of the present invention
  • FIG. 2 is a left side view of an embodiment of a maglev train cab of the present invention
  • FIG. 3 is a plan view of an embodiment of a maglev train cab according to the present invention
  • FIG. 5A is a schematic structural view of a two-dimensional skeleton component according to an embodiment of the present invention
  • FIG. 5B is an enlarged partial schematic view of a socket of FIG. 5A
  • FIG. 6 is a three-dimensional skin of an embodiment of the present invention
  • Figure 7 is a left side view of a three-dimensional skin in an embodiment of the present invention.
  • the cab of the embodiment comprises a three-dimensional skeleton 1, a three-dimensional skin 2, a front window frame composition 3, a side window frame composition 4, an escape door frame composition 5 and an end connection frame composition 6, wherein the three-dimensional skeleton 1 is composed of a plurality of two-dimensional skeletons.
  • the parts 21 are connected to each other, and the two-dimensional skeleton part 21 is made of an aluminum alloy material; the three-dimensional skin 2 is made of an aluminum alloy material and is formed by a small curved surfaceless molding process, including multiple joints. A skinned component, the three-dimensional skin 2 is coated on the three-dimensional skeleton 1.
  • the two-dimensional skeleton component 21 can be processed by a numerical control machine tool, and the raw material processed can be an aluminum alloy flat plate.
  • the two-dimensional skeleton component 21 may be provided with an intersecting ring structure. Specifically, as shown in FIG. 5A and FIG. 5B, the two-dimensional skeleton component 21 may be disposed as an inverted U-shaped intersection.
  • the two-dimensional skeleton component 21 can also be provided with a socket groove 212 for plugging and connecting, so as to facilitate mutual insertion between the two-dimensional skeleton components to ensure the two-dimensional skeleton component 21 The stability and reliability of the connection.
  • the two-dimensional skeleton parts can be connected and fixed to each other by welding, and the skin parts can also be connected and fixed to each other by welding.
  • the two-dimensional skeleton components, or the skin components may be fixedly connected by other means, for example, a fixed connection such as a bolt.
  • the three-dimensional skeleton can be composed of a plurality of two-dimensional skeleton components, and the two-dimensional skeleton component is easy to be formed, so that the combined three-dimensional skeleton is simple in manufacturing process and low in production cost.
  • the three-dimensional skin can be made by a small curved surfaceless molding process. Specifically, each skin component can be obtained by a dieless molding machine, and a three-dimensional skin is obtained by combining the skin components. The shaping of the skin is simple, and the manufacturing cost of the entire cab can be further reduced.
  • the three-dimensional skeleton and the three-dimensional skin are made of aluminum alloy material, the weight of the entire cab is light, Effectively improve the carrying capacity of the entire train, and facilitate the promotion and application of maglev trains.
  • the cab of the maglev train of the present embodiment is assembled by using a plurality of two-dimensional skeleton components to obtain a three-dimensional skeleton, so that the manufacture of the three-dimensional skeleton is simple, and the manufacturing cost of the entire cab can be effectively reduced;
  • the three-dimensional skin is welded by using multiple skin parts to make the three-dimensional skin simple to manufacture, further reducing the manufacturing cost of the entire cab; in this embodiment, the three-dimensional skeleton and the three-dimensional skin are both made of aluminum alloy material, so that the whole The light weight of the cab can effectively increase the carrying capacity of the entire train.
  • the driver's cab of the maglev train is simple in structure, easy to manufacture, has low manufacturing cost, and has high carrying capacity, which is beneficial to the promotion and application of the maglev train.
  • FIG. 8 is a schematic flow chart of an embodiment of a method for manufacturing a cab of a maglev train according to the present invention. Specifically, as shown in FIG. 8, the manufacturing method of this embodiment includes the following steps:
  • Step 101 processing and obtaining a two-dimensional skeleton component of the aluminum alloy material, and assembling the processed two-dimensional skeleton component into a three-dimensional skeleton;
  • Step 102 Prepare a three-dimensional skin of the aluminum alloy material by using a small curved surfaceless molding process
  • Step 103 assemble the three-dimensional skin to the three-dimensional skeleton.
  • the two-dimensional skeleton component obtained by the processing can be assembled into a three-dimensional skeleton by using a welding form to ensure the strength and rigidity of the three-dimensional skeleton, and the overall three-dimensional skeleton is improved. Bearing strength.
  • FIG. 9 is a schematic diagram of a manufacturing process of a two-dimensional skeleton component according to an embodiment of the present invention.
  • the two-dimensional skeleton component of the aluminum alloy material is processed and obtained, and the processed two-dimensional skeleton component is assembled into a three-dimensional skeleton, which may include the following steps. :
  • Step 1011 obtaining a two-dimensional skeleton component by using an aluminum alloy flat plate material, wherein the two-dimensional skeleton component is an aluminum alloy flat plate structure;
  • step 1012 the processed two-dimensional skeleton components are assembled to form a three-dimensional skeleton.
  • the two-dimensional skeleton component obtained by processing the aluminum alloy plane plate can be: cutting the aluminum alloy flat plate into a two-dimensional skeleton component having an intersecting ring structure, and in the process of manufacturing the two-dimensional skeleton component , an inverted U-shaped intersecting ring structure can be formed in both the horizontal direction and the vertical direction. Easy to assemble, high strength, and simple structure.
  • the aluminum alloy flat plate material in the manufacturing process of the two-dimensional skeleton component, can be cut into two-dimensional skeleton parts having the insertion groove, so that the processed two-dimensional skeleton components can be inserted into each other. Connected to ensure the convenience and stability of the two-dimensional skeleton assembly, to ensure that the assembled three-dimensional skeleton is firm and reliable.
  • the horizontal plate and the vertical plate may be interposed to form a skeleton of mutually perpendicular structures, and at the same time, the connection between the skeletons may be in a welded form to ensure assembly. The strength of the three-dimensional skeleton.
  • FIG. 10 is a schematic diagram of a three-dimensional skinning process according to an embodiment of the present invention.
  • the three-dimensional skin of the aluminum alloy material by using the small curved surfaceless molding process may specifically include the following steps:
  • Step 1021 dividing the three-dimensional skin model into a skin component suitable for the size of the molding machine in the three-dimensional model; Step 1022: Pressing the aluminum alloy skin material into a skin component by using a molding machine; Step 1023, assembling the skin components obtained by pressing into a three-dimensional skin.
  • the designed drawing in the process of manufacturing the three-dimensional skeleton, first, the designed drawing can be directly input into the numerical control machine tool, and the aluminum alloy flat plate is cut into a two-dimensional skeleton component of a desired shape and structure, and the second completed component is completed.
  • the dimensional skeleton components are assembled into a three-dimensional skeleton, and the two-dimensional skeleton components are connected and fixed by welding; secondly, when the three-dimensional skin of the aluminum alloy material is produced by the small curved surfaceless molding process, the 3 mm thick can be used.
  • the aluminum alloy sheet is used as a raw material to divide the three-dimensional skin model sheet into three skin parts models suitable for the size of the forming machine in the three-dimensional skin model, and to find the inner and outer surfaces of the skin parts, and input no In the molding machine, the thickness of the skin parts is input at the same time, the rebound coefficient and the number of molding points are adjusted, and the aluminum alloy plate material is press-formed to obtain the skin parts; finally, the press-formed skin parts can be assembled.
  • each of the skin parts is welded and joined by welding, and the entire three-dimensional skin is welded to the three-dimensional skeleton.
  • the three-dimensional skeleton and the three-dimensional skin are simple in manufacturing process, and each component is easy to form.
  • the three-dimensional skeleton and the skin are all made of aluminum alloy material, so that the weight of the entire cab is lighter, and the height is improved.
  • the entire train has a high carrying capacity and high strength.
  • the aluminum alloy material used in the manufacture of the three-dimensional skin is a weldable aluminum alloy, which not only ensures the welding performance between the skin parts, but also effectively ensures the corrosion resistance of the entire cab.
  • the aluminum alloy material used in this embodiment conforms to the European standard, and the material table is as follows:
  • the present embodiment can be used to assemble a three-dimensional skeleton by using a plurality of two-dimensional skeleton components, so that the manufacturing of the three-dimensional skeleton is simple, and the manufacturing cost of the entire cab can be effectively reduced.
  • the welding of the leather parts forms a three-dimensional skin, which makes the manufacture of the three-dimensional skin simple, further reducing the manufacturing cost of the entire cab; in this embodiment, the three-dimensional skeleton and the three-dimensional skin are both made of aluminum alloy material, so that the weight of the entire cab is Light, can effectively improve the carrying capacity of the entire train.
  • the method of the embodiment has the advantages of simple process and easy manufacture, can effectively reduce the manufacturing cost of the maglev train, improve the bearing capacity of the maglev train, and is beneficial to the promotion and application of the maglev train.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Body Structure For Vehicles (AREA)

Description

磁悬浮列车司机室及其制造方法 技术领域
本发明涉及客车制造技术, 尤其涉及一种磁悬浮列车司机室及其制造 方法。 背景技术
磁悬浮列车靠磁力使列车浮起, 靠直线电机来推动列车运行, 具有低噪 音、 安全、 环保等优点, 是未来城轨车辆发展的重要方向。 由于磁悬浮列车 的特点是依靠电磁吸力使列车浮起, 而磁悬浮列车电磁铁的吸附能力又是一 定的, 因此, 为了使磁悬浮列车具有与城轨列车一样的运载能力, 则必需要 解决磁悬浮列车的轻量化问题。
目前, 磁悬浮列车属于城轨列车的一种, 城轨列车的司机室一般釆用流 线型司机室, 主要包括三维骨架和三维蒙皮, 其中骨架主要其支撑作用, 蒙 皮是包覆在三维骨架的结构, 使得整个司机室具有流线型结构, 满足列车行 驶的需要。 现有城轨列车司机室中, 骨架一般是釆用钢骨架结构, 其成型困 难, 且重量大; 同时, 现有蒙皮一般为一体成型, 并釆用玻璃钢蒙皮。 可以 看出, 现有城轨列车司机室具有较重的重量, 降低了列车的承载能力, 且成 型和制造工艺复杂。 此外, 现有城轨列车司机室的骨架也有釆用铝骨架, 但 通常釆用型材结构, 其成型也相对较困难。
但是, 现有城轨列车司机室总体重量较重, 三维骨架和三维蒙皮的成型 复杂, 制造成本高, 如果釆用在磁悬浮列车上, 不利于磁悬浮列车的推广和 应用。 发明内容
本发明提供一种磁悬浮列车司机室及其制造方法, 可有效简化骨架和 蒙皮的成型的复杂性, 提高司机室的强度, 降低磁悬浮列车司机室的制造 成本, 有利于磁悬浮列车的推广和应用。
本发明提供一种磁悬浮列车司机室的制造方法, 包括:
加工并获得铝合金材料的二维骨架零部件, 并将加工得到的二维骨架 零件组装成三维骨架;
釆用小曲面无模成型工艺制作铝合金材料的三维蒙皮;
将所述三维蒙皮组装到所述三维骨架上。
其中, 所述加工并获得铝合金材料的二维骨架零部件, 并将加工得到 的二维骨架零件组装成三维骨架包括:
利用铝合金平面板材加工得到二维骨架零部件, 所述二维骨架零部件 为铝合金平面板材结构;
将加工得到的各二维骨架零部件组装在一起, 形成三维骨架。
所述利用铝合金平面板材加工得到二维骨架零部件可包括: 将铝合金平面板材切割成具有交圈结构的二维骨架零部件。
所述将铝合金平面板材切割成具有交圈结构的二维骨架零部件可包 括:
将铝合金平面板材切割成在水平方向和竖直方向上,均形成倒 U字形 交圈结构的二维骨架零部件。
此外, 所述利用铝合金平面板材加工得到二维骨架零部件可包括: 将铝合金平面板材切割成具有插接槽的二维骨架零部件。
所述釆用小曲面无模成型工艺制作铝合金材料的三维蒙皮包括: 利用成型机将铝合金蒙皮材料压制得到蒙皮零部件;
将压制得到的各蒙皮零部件组装成三维蒙皮。
所述将加工得到的二维骨架零件组装成三维骨架包括:
釆用焊接的形式, 将加工得到的二维骨架零部件组装成三维骨架。 本发明提供一种磁悬浮列车司机室, 包括三维骨架和三维蒙皮, 所述 三维蒙皮包覆在所述三维骨架上, 所述三维骨架包括: 多个铝合金材料的 二维骨架零部件, 所述多个二维骨架零部件之间相互连接成一体; 所述三 维蒙皮是利用铝合金材料釆用小曲面无模成型工艺制成。
所述二维骨架零部件可为铝合金平面板材结构。 二维骨架零部件上可 设置有倒 U字形的交圈结构 ,各二维骨架零件可通过交圈结构相互连接而 构成所述三维骨架。 进一步地, 二维骨架零部件上还可设置有插接槽, 各 二维骨架零部件可通过插接槽相互插接而构成所述三维骨架。
本发明提供的磁悬浮列车司机室及其制造方法, 通过釆用多个二维骨 架零部件组装得到三维骨架, 使得三维骨架的制造简单, 可有效降低整个 司机室的制造成本; 本发明技术方案通过釆用多个蒙皮零部件焊接形成三 维蒙皮, 使得三维蒙皮的制造简单, 进一步地降低了整个司机室的制造成 本; 本发明技术方案中的三维骨架和三维蒙皮均釆用铝合金材料, 使得整 个司机室的重量轻, 可有效提高整个列车的承载能力。 本发明技术方案可 有效简化司机室的制造工艺, 降低磁悬浮列车的制造成本, 提高磁悬浮列 车的承载能力, 有利于磁悬浮列车的推广和应用。 附图说明
图 1为本发明磁悬浮列车司机室实施例的主视图;
图 2为本发明磁悬浮列车司机室实施例的左视图;
图 3为本发明磁悬浮列车司机室实施例的俯视图;
图 4为本发明实施例中三维骨架的结构示意图;
图 5A为本发明实施例中二维骨架零部件的结构示意图;
图 5B为图 5A中 A处插口的放大局部示意图;
图 6为本发明实施例中三维蒙皮的主视图;
图 7为本发明实施例中三维蒙皮的左视图;
图 8为本发明磁悬浮列车司机室的制造方法实施例的流程示意图; 图 9为本发明实施例中二维骨架零部件制作流程示意图; 图 10为本发明实施例中三维蒙皮制作流程示意图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本 发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描 述,显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提 下所获得的所有其他实施例, 都属于本发明保护的范围。
图 1为本发明磁悬浮列车司机室实施例的主视图; 图 2为本发明磁悬 浮列车司机室实施例的左视图; 图 3为本发明磁悬浮列车司机室实施例的 俯视图; 图 4为本发明实施例中三维骨架的结构示意图; 图 5A为本发明 实施例中二维骨架零部件的结构示意图; 图 5B为图 5A中 A处插口的放 大局部示意图; 图 6为本发明实施例中三维蒙皮的主视图; 图 7为本发明 实施例中三维蒙皮的左视图。 本实施例司机室包括三维骨架 1、 三维蒙皮 2、 前窗框组成 3、 侧窗框组成 4、 逃生门框组成 5和端部连接框组成 6 , 其中, 三维骨架 1 由多个二维骨架零部件 21相互连接而成, 且二维骨架 零部件 21为铝合金材料制作而成; 三维蒙皮 2是利用铝合金材料釆用小 曲面无模成型工艺制成, 包括相互连接而成的多个蒙皮零部件, 该三维蒙 皮 2包覆在三维骨架 1上。
本实施例中, 二维骨架零部件 21 可通过数控机床加工而成, 其加工 的原料可以为铝合金平面板材。 同时, 本实施例中, 所述的二维骨架零部 件 21上可设置有交圈结构, 具体地, 如图 5A和图 5B所示, 二维骨架零 部件 21可设置为倒 U字形的交圈结构;且二维骨架零部件 21上还可设置 有用于插接连接的插接槽 212,以便于各二维骨架零部件之间的相互插接, 以保证各二维骨架零部件 21之间连接的稳定性和可靠性。 本实施例中, 二维骨架零部件之间可通过焊接形式相互连接固定, 蒙 皮零部件之间也可通过焊接的形式相互连接固定。 此外, 本领域技术人员 可以理解地是, 二维骨架零部件之间, 或者蒙皮零部件之间也可通过其它 方式固定连接, 例如, 螺栓等固定连接。
可以看出,本实施例中,三维骨架可由多个二维骨架零部件组合而成, 由于二维骨架零部件的成型容易, 使得组合而成的三维骨架的制作工艺简 单, 且制作成本较低; 同时, 三维蒙皮可利用小曲面无模成型工艺制作而 成, 具体地, 可通过无模成型机压制得到各个蒙皮零部件, 并由各蒙皮零 部件组合得到三维蒙皮, 三维蒙皮的成型简单, 可进一步地降低整个司机 室的制造成本; 此外, 本实施例中, 由于三维骨架和三维蒙皮均釆用铝合 金材料制作而成, 使得整个司机室的重量较轻, 可有效提高整个列车的承 载能力, 便于磁悬浮列车的推广和应用。
综上可以看出, 本实施例磁悬浮列车司机室通过釆用多个二维骨架零 部件组装得到三维骨架, 使得三维骨架的制造简单, 可有效降低整个司机 室的制造成本; 本实施例通过釆用多个蒙皮零部件焊接形成三维蒙皮, 使 得三维蒙皮的制造简单, 进一步地降低了整个司机室的制造成本; 本实施 例三维骨架和三维蒙皮均釆用铝合金材料, 使得整个司机室的重量轻, 可 有效提高整个列车的承载能力。 本实施例磁悬浮列车司机室结构简单, 制 造容易, 具有较低的制造成本, 较高的承载能力, 可利于磁悬浮列车的推 广和应用。
图 8为本发明磁悬浮列车司机室的制造方法实施例的流程示意图。 具 体地, 如图 8所示, 本实施例制造方法包括如下步骤:
步骤 101、 加工并获得铝合金材料的二维骨架零部件, 并将加工得到 的二维骨架零件组装成三维骨架;
步骤 102、 釆用小曲面无模成型工艺制作铝合金材料的三维蒙皮; 步骤 103、 将所述三维蒙皮组装到所述三维骨架上。 本实施例中,加工并得到二维骨架零部件后,可通过釆用焊接的形式, 将加工得到的二维骨架零部件组装成三维骨架, 以保证三维骨架的强度和 刚度, 提高三维骨架整体的承载强度。
图 9为本发明实施例中二维骨架零部件制作流程示意图。本实施例中, 如图 9所述, 上述图 8的步骤 101中, 加工并获得铝合金材料的二维骨架 零部件, 并将加工得到的二维骨架零件组装成三维骨架具体可包括如下步 骤:
步骤 1011、 利用铝合金平面板材加工得到二维骨架零部件, 所述二维 骨架零部件为铝合金平面板材结构;
步骤 1012、将加工得到的各二维骨架零部件组装在一起, 形成三维骨 架。
本实施例中, 利用铝合金平面板材加工得到二维骨架零部件具体可 为: 将铝合金平面板材切割成具有交圈结构的二维骨架零部件, 且在二维 骨架零部件的制作过程中, 可在水平方向和竖直方向上, 均形成倒 U字形 交圈结构。 便于组装, 强度较高, 且结构简单。
此外, 本实施例中, 二维骨架零部件制作过程中, 可将铝合金平面板 材切割成具有插接槽的二维骨架零部件, 使得加工后的各二维骨架零部件 相互之间可插接连接, 以保证二维骨架组装的便利性和稳定性, 保证组装 的三维骨架牢固可靠。 具体地, 在将二维骨架零部件组装成三维骨架时, 可将水平板和竖直板对插形成互相垂直结构的骨架, 同时, 骨架之间连接 可釆用焊接形式, 以保证组装得到的三维骨架的强度。
图 10为本发明实施例中三维蒙皮制作流程示意图。 本实施例中, 如 图 10所示, 上述图 8的步骤 103 中, 釆用小曲面无模成型工艺制作铝合 金材料的三维蒙皮具体可包括如下步骤:
步骤 1021、在三维模型中将三维蒙皮模型分割成适合成型机大小的蒙 皮零部件; 步骤 1022、 利用成型机将铝合金蒙皮材料压制成蒙皮零部件; 步骤 1023、 将压制得到的各蒙皮零部件组装成三维蒙皮。
本实施例中, 三维骨架制作过程中, 首先, 可将设计好的图紙直接输 入数控机床, 将铝合金平面板材切割成所需形状和结构的二维骨架零部 件, 并将切合完成的二维骨架零部件组装成三维骨架, 同时釆用焊接方式 将各二维骨架零部件连接固定; 其次, 在利用小曲面无模成型工艺制作铝 合金材料的三维蒙皮时, 可釆用 3mm厚的铝合金板作为原材料, 在三维 蒙皮模型中将三维蒙皮模型图紙分割成适合成型机大小的几块蒙皮零部 件模型, 并找出蒙皮零部件的内表面和外表面, 输入无模成型机中, 同时 输入蒙皮零部件的厚度, 调整回弹系数和成型点数, 将铝合金板材料压制 成型, 得到各蒙皮零部件; 最后, 可将压制成型的各蒙皮零部件组装在三 维骨架上, 釆用焊接的形式将各蒙皮零部件焊接连接, 并将整个三维蒙皮 焊接在三维骨架上。 可以看出, 本实施例中, 三维骨架和三维蒙皮制作工 艺简单, 各零部件成型容易, 同时, 三维骨架和蒙皮均釆用铝合金材料, 使得整个司机室的重量较轻, 提高了整个列车的承载能力, 且具有较高的 强度。
本实施例中, 三维蒙皮制造中釆用的铝合金材料为可焊接铝合金, 不 但可保证各蒙皮零部件之间的焊接性能, 还可有效保证整个司机室的防腐 性能。 具体地, 本实施例中釆用的铝合金材料符合欧洲标准,材料表如下:
Figure imgf000009_0001
EN 0.2m
2 1
AW-50 Hi l l m<t≤50m 275 125
75 25
83 m
综上可以看出, 本实施例通过釆用多个二维骨架零部件组装得到三维 骨架, 使得三维骨架的制造简单, 可有效降低整个司机室的制造成本; 本 实施例通过釆用多个蒙皮零部件焊接形成三维蒙皮, 使得三维蒙皮的制造 简单, 进一步地降低了整个司机室的制造成本; 本实施例三维骨架和三维 蒙皮均釆用铝合金材料, 使得整个司机室的重量轻, 可有效提高整个列车 的承载能力。 本实施例方法工艺简单, 制造容易, 可有效降低磁悬浮列车 的制造成本, 提高磁悬浮列车的承载能力, 有利于磁悬浮列车的推广和应 用。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修 改, 或者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不 使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims

权 利 要 求 书
1、 一种磁悬浮列车司机室的制造方法, 其特征在于, 包括: 加工并获得铝合金材料的二维骨架零部件, 并将加工得到的二维骨架 零件组装成三维骨架;
釆用小曲面无模成型工艺制作铝合金材料的三维蒙皮;
将所述三维蒙皮组装到所述三维骨架上。
2、 根据权利要求 1 所述的磁悬浮列车司机室的制造方法, 其特征在 于, 所述加工并获得铝合金材料的二维骨架零部件, 并将加工得到的二维 骨架零件组装成三维骨架包括:
利用铝合金平面板材加工得到二维骨架零部件, 所述二维骨架零部件 为铝合金平面板材结构;
将加工得到的各二维骨架零部件组装在一起, 形成三维骨架。
3、 根据权利要求 2所述的磁悬浮列车司机室的制造方法, 其特征在 于, 所述利用铝合金平面板材加工得到二维骨架零部件包括:
将铝合金平面板材切割成具有交圈结构的二维骨架零部件。
4、 根据权利要求 3 所述的磁悬浮列车司机室的制造方法, 其特征在 于, 所述将铝合金平面板材切割成具有交圈结构的二维骨架零部件包括: 将铝合金平面板材切割成在水平方向和竖直方向上,均形成倒 U字形 交圈结构的二维骨架零部件。
5、 根据权利要求 2或 4所述的磁悬浮列车司机室的制造方法, 其特 征在于, 所述利用铝合金平面板材加工得到二维骨架零部件包括:
将铝合金平面板材切割成具有插接槽的二维骨架零部件。
6、 根据权利要求 1 所述的磁悬浮列车司机室的制造方法, 其特征在 于, 所述釆用小曲面无模成型工艺制作铝合金材料的三维蒙皮包括:
利用成型机将铝合金蒙皮材料压制得到蒙皮零部件;
将压制得到的各蒙皮零部件组装成三维蒙皮。
7、 根据权利要求 1 所述的磁悬浮列车司机室的制造方法, 其特征在 于, 所述将加工得到的二维骨架零件组装成三维骨架包括:
釆用焊接的形式, 将加工得到的二维骨架零部件组装成三维骨架。
8、 一种磁悬浮列车司机室, 包括三维骨架和三维蒙皮, 所述三维蒙 皮包覆在所述三维骨架上, 其特征在于, 所述三维骨架包括: 多个铝合金 材料的二维骨架零部件, 所述多个二维骨架零部件之间相互连接成一体; 所述三维蒙皮是利用铝合金材料釆用小曲面无模成型工艺制成。
9、 根据权利要求 8 所述的磁悬浮列车司机室, 其特征在于, 所述二 维骨架零部件为铝合金平面板材结构。
10、 根据权利要求 8所述的磁悬浮列车司机室, 其特征在于, 二维骨 架零部件上设置有倒 u字形的交圈结构,各二维骨架零件通过交圈结构相 互连接而构成所述三维骨架。
1 1、根据权利要求 8 ~ 10任一所述的磁悬浮列车司机室,其特征在于, 二维骨架零部件上设置有插接槽, 各二维骨架零部件通过插接槽相互插接 而构成所述三维骨架。
PCT/CN2011/074847 2010-06-04 2011-05-30 磁悬浮列车司机室及其制造方法 WO2011150788A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11789167.1A EP2578351A4 (en) 2010-06-04 2011-05-30 MAGNETIC LEVITATION TRAIN CONDUCTOR CAB AND METHOD FOR MANUFACTURING THE SAME
US13/692,944 US20130087068A1 (en) 2010-06-04 2012-12-03 Driver's cab of magnetically levitated train and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010101934373A CN101856782B (zh) 2010-06-04 2010-06-04 磁悬浮列车司机室及其制造方法
CN201010193437.3 2010-06-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/692,944 Continuation-In-Part US20130087068A1 (en) 2010-06-04 2012-12-03 Driver's cab of magnetically levitated train and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2011150788A1 true WO2011150788A1 (zh) 2011-12-08

Family

ID=42943066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/074847 WO2011150788A1 (zh) 2010-06-04 2011-05-30 磁悬浮列车司机室及其制造方法

Country Status (4)

Country Link
US (1) US20130087068A1 (zh)
EP (1) EP2578351A4 (zh)
CN (1) CN101856782B (zh)
WO (1) WO2011150788A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6059963B2 (ja) * 2012-11-14 2017-01-11 川崎重工業株式会社 鉄道車両構体用の曲面板、先頭車両構体、及び鉄道車両構体用の曲面板の製造方法
CN106826119B (zh) * 2017-01-26 2019-08-02 浙江三港起重电器有限公司 一种模块化司机室的加工工艺
CN113644371B (zh) * 2021-08-19 2023-03-10 湖南汽车工程职业学院 一种新能源汽车轻量化铝合金电池支架的制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997046351A1 (en) * 1996-06-05 1997-12-11 Super Steel Schenectady Inc. Method for construction of a monocoque locomotive
EP1008504A1 (de) * 1998-12-10 2000-06-14 ALSTOM LHB GmbH Wagenkasten, insbesondere End- oder Kopfmodul oder Führerstandraum eines Schienenfahrzeuges
CN1899757A (zh) * 2006-07-21 2007-01-24 中国南车集团戚墅堰机车车辆厂 流线型机车司机室曲面加工工艺
CN101678837A (zh) * 2007-05-11 2010-03-24 西门子公司 用于车厢-白车身结构的组合件
CN201472391U (zh) * 2009-08-11 2010-05-19 南车青岛四方机车车辆股份有限公司 轨道车辆司机室车体骨架

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR784995A (fr) * 1934-04-05 1935-07-30 Budd Edward G Mfg Co Nouveaux perfectionnements aux voitures de chemins de fer
US4337708A (en) * 1980-04-11 1982-07-06 Pullman Incorporated Railway car superstructure frame
FR2681569B1 (fr) * 1991-09-20 1994-03-25 Gec Alsthom Sa Cabine de conduite pour vehicule ferroviaire.
AU6136996A (en) * 1996-06-19 1998-01-07 Hitachi Limited Vehicle, side structure for vehicles, and method of manufacturing the same
US6374750B1 (en) * 1999-11-16 2002-04-23 Aero Transportation Products, Inc. Structural panel system
CN2902826Y (zh) * 2005-11-08 2007-05-23 成都飞机工业(集团)有限责任公司 磁浮车辆车体
US8240607B2 (en) * 2006-06-28 2012-08-14 Airbus Operations Gmbh Aircraft-fuselage assembly concept
US7861970B2 (en) * 2006-11-02 2011-01-04 The Boeing Company Fuselage structure including an integrated fuselage stanchion
JP2009184460A (ja) * 2008-02-05 2009-08-20 Showa Denko Kk 車両用リンク部品
US20090266936A1 (en) * 2008-04-29 2009-10-29 Fernando Ferreira Fernandez Aircraft fuselage structural components and methods of making same
CN201193031Y (zh) * 2008-08-14 2009-02-11 铁道部运输局 高强度大型铝合金车体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997046351A1 (en) * 1996-06-05 1997-12-11 Super Steel Schenectady Inc. Method for construction of a monocoque locomotive
EP1008504A1 (de) * 1998-12-10 2000-06-14 ALSTOM LHB GmbH Wagenkasten, insbesondere End- oder Kopfmodul oder Führerstandraum eines Schienenfahrzeuges
CN1899757A (zh) * 2006-07-21 2007-01-24 中国南车集团戚墅堰机车车辆厂 流线型机车司机室曲面加工工艺
CN101678837A (zh) * 2007-05-11 2010-03-24 西门子公司 用于车厢-白车身结构的组合件
CN201472391U (zh) * 2009-08-11 2010-05-19 南车青岛四方机车车辆股份有限公司 轨道车辆司机室车体骨架

Also Published As

Publication number Publication date
CN101856782B (zh) 2012-04-18
EP2578351A1 (en) 2013-04-10
US20130087068A1 (en) 2013-04-11
EP2578351A4 (en) 2014-07-02
CN101856782A (zh) 2010-10-13

Similar Documents

Publication Publication Date Title
CN203651933U (zh) 铝合金客车l形骨架连接接头
CN205059613U (zh) 一种碳纤维复合材料车体
WO2011150788A1 (zh) 磁悬浮列车司机室及其制造方法
CN201472391U (zh) 轨道车辆司机室车体骨架
CN206615223U (zh) 一种轨道车辆头车底架一体化结构
CN206383959U (zh) 一种轨道车辆车体结构
CN104494621A (zh) 一种轨道列车的车体制造方法
CN201235858Y (zh) 一种汽车车身翼子板结构
CN205706875U (zh) 一种半挂车用工字铝
CN204821069U (zh) 整体式车门及汽车
CN203473026U (zh) 一种汽车动力电池安装结构
CN217415748U (zh) 复合材料地铁车门
CN204077826U (zh) 客车车身龙门框架
CN210337534U (zh) 一种汽车背门钣金结构
CN209274597U (zh) 车体侧墙窗口结构
CN203511773U (zh) 一种新型钢塑混合汽车前端支架
CN102071799A (zh) 一种阴角模板
CN202215124U (zh) 一种车门防撞梁
CN206983992U (zh) 一种车厢及其装饰用侧顶板
CN203155836U (zh) 拼焊板拉延模厚板镶块分割结构
CN201792901U (zh) 分段式车架纵梁及分段式车架
CN202220506U (zh) 汽车后门铰链加强板
CN208868031U (zh) 一种地铁车辆及其车头和窗框
CN201411040Y (zh) 复杂翼型全高度泡沫夹芯子翼结构
CN206265319U (zh) 航空座椅驱动板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789167

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011789167

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE