WO2011148705A1 - 弾性波デバイス - Google Patents

弾性波デバイス Download PDF

Info

Publication number
WO2011148705A1
WO2011148705A1 PCT/JP2011/056938 JP2011056938W WO2011148705A1 WO 2011148705 A1 WO2011148705 A1 WO 2011148705A1 JP 2011056938 W JP2011056938 W JP 2011056938W WO 2011148705 A1 WO2011148705 A1 WO 2011148705A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric substrate
path difference
component
forming film
wave device
Prior art date
Application number
PCT/JP2011/056938
Other languages
English (en)
French (fr)
Inventor
高志 三宅
Original Assignee
株式会社 村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 村田製作所 filed Critical 株式会社 村田製作所
Publication of WO2011148705A1 publication Critical patent/WO2011148705A1/ja
Priority to US13/665,973 priority Critical patent/US8564173B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02842Means for compensation or elimination of undesirable effects of reflections
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02614Treatment of substrates, e.g. curved, spherical, cylindrical substrates ensuring closed round-about circuits for the acoustical waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02866Means for compensation or elimination of undesirable effects of bulk wave excitation and reflections

Definitions

  • the present invention relates to an elastic wave device, and more particularly, to an elastic wave device using a surface acoustic wave or a boundary acoustic wave propagating through a piezoelectric substrate.
  • the acoustic wave device excites a surface acoustic wave or a boundary acoustic wave by an interdigital electrode (IDT) formed on the surface of a piezoelectric substrate having piezoelectricity.
  • IDT interdigital electrode
  • the outer peripheral edge of the back surface of the piezoelectric substrate 110 is formed.
  • the region 114 formed as a rough surface inside the margin frame 110a it is possible to diffusely reflect bulk waves in the region 114 on the back surface and suppress the bulk waves from reaching the output side electrodes 122a and 122b. it can. As a result, it is possible to suppress deterioration of frequency characteristics.
  • the present invention intends to provide an acoustic wave device that can suppress deterioration of frequency characteristics without roughening the back surface of a piezoelectric substrate.
  • the present invention provides an acoustic wave device configured as follows.
  • the acoustic wave device is bonded to (a) a piezoelectric substrate on which an IDT is formed on the main surface and propagating an elastic wave excited by the IDT, and (b) a bonding surface that is a surface of the piezoelectric substrate other than the main surface.
  • a structured body The structure is excited by the IDT, and is a first wave reflected in the bonding surface that propagates in the same direction in the piezoelectric substrate among bulk waves propagating in the piezoelectric substrate toward the bonding surface.
  • a path difference is formed between the component and the second component that is incident on the structure from the bonding surface, propagates through the structure, and is incident on the piezoelectric substrate from the bonding surface.
  • the bulk wave that adversely affects the device characteristics is reflected on the bonding surface of the piezoelectric substrate to which the structure is bonded, and is transmitted through the bonding surface and then propagated through the structure.
  • the second component incident on the piezoelectric substrate from the surface propagates in the same direction and cancels out due to the phase difference between them, thereby reducing adverse effects on the device characteristics.
  • the structure is bonded to the other main surface of the piezoelectric substrate facing the main surface.
  • the bulk wave reflected by the other main surface of the piezoelectric substrate can be canceled by the structure.
  • the structure is joined to a side surface of the piezoelectric substrate extending between an outer peripheral edge of the main surface and an outer peripheral edge of the other main surface of the piezoelectric substrate facing the main surface.
  • the bulk wave reflected by the side surface of the piezoelectric substrate can be canceled by the structure.
  • the absolute value of the path difference between the first component and the second component of the bulk wave formed by the structure is d
  • the wavelength of the bulk wave is ⁇
  • n is a positive integer other than 0. Then, d ⁇ n ⁇ (1) It is.
  • the absolute value of the path difference between the first component and the second component of the bulk wave formed by the structure is d
  • the wavelength of the bulk wave is ⁇
  • n is an integer greater than or equal to 0. , (N + 1/4) ⁇ ⁇ d ⁇ (n + 3/4) (2) It is.
  • the influence of the bulk wave can be weakened.
  • the absolute value of the path difference between the first component and the second component of the bulk wave formed by the structure is d
  • the wavelength of the bulk wave is ⁇
  • n is an integer greater than or equal to 0.
  • d (n + 1/2) ⁇ (3) It is.
  • the amplitude of the first component of the bulk wave when reflected by the bonding surface and the amplitude of the second component of the bulk wave when incident on the piezoelectric substrate from the bonding surface are: They are substantially the same size.
  • the structure is a path difference forming film formed of at least one film formed on the bonding surface of the piezoelectric substrate.
  • the path difference forming film can be formed by a simple process
  • the path difference can be formed by a simple process
  • the path difference forming film is an insulator.
  • the path difference forming film is a conductive material.
  • the path difference forming film also functions as a shield for shielding the influence of the electromagnetic field.
  • the path difference forming film and the piezoelectric substrate are acoustically different materials.
  • the acoustic impedance of the path difference forming film is different from the acoustic impedance of the piezoelectric substrate.
  • the bulk wave propagating in the piezoelectric substrate has both a component reflected at the interface between the piezoelectric substrate and the path difference forming film and a component incident on the path difference forming film from the interface.
  • the acoustic impedance of the piezoelectric substrate is Z1
  • the acoustic impedance of the path difference forming film is Z2
  • Z1 / Z2 1/3 (4) It is.
  • the acoustic impedance of the piezoelectric substrate is Z1
  • the acoustic impedance of the path difference forming film is Z2
  • Z1 / Z2 3 (5) It is.
  • substantially half of the bulk wave propagated in the piezoelectric substrate is reflected at the interface between the path difference forming film and the piezoelectric substrate, and the other half is incident on the path difference forming film from the interface.
  • the influence of bulk waves can be effectively reduced.
  • the path difference forming film is formed only on a partial region of the other main surface of the piezoelectric substrate facing the main surface, or on the outer peripheral edge of the main surface and the main surface of the piezoelectric substrate. It is formed only in a partial region of the side surface of the piezoelectric substrate extending between the outer peripheral edge of the other main surface.
  • a step is formed between the region where the path difference forming film is formed and the region where the path difference forming film is not formed on the other main surface or side surface of the piezoelectric substrate.
  • the path difference forming film can be formed in a necessary portion by a simple process.
  • the path difference forming film is formed in a portion where the bulk wave that adversely affects device characteristics is reflected and in the vicinity thereof on the other main surface and / or the side surface of the piezoelectric substrate.
  • the other main surface and / or the side surface of the piezoelectric substrate are alternately arranged with regions where the path difference forming film is formed and regions where the path difference forming film is not formed. .
  • other main surfaces of the piezoelectric substrate can be formed by forming a large number of path difference forming films apart from each other at the locations where the bulk waves are reflected and in the vicinity thereof.
  • a large number of steps are provided over a wide area of the side surface, and the effect of reducing bulk waves can be obtained.
  • the present invention it is possible to suppress the deterioration of the frequency characteristics without roughening the back surface of the piezoelectric substrate.
  • Example 1 It is a principal part expanded sectional view of an elastic wave device.
  • Example 1 It is a graph which shows the relationship between an acoustic impedance ratio and a reflectance.
  • Analysis example It is sectional drawing of an elastic wave device.
  • Example 2 It is sectional drawing of an elastic wave device.
  • Example 3 It is sectional drawing of an elastic wave device.
  • Comparative Example 1 It is sectional drawing of an elastic wave device.
  • Comparative Example 2 It is sectional drawing of a surface acoustic wave filter. (Conventional example)
  • Example 1 An acoustic wave device 10 of Example 1 will be described with reference to FIGS.
  • FIG. 1 is a cross-sectional view of the acoustic wave device 10 of the first embodiment.
  • FIG. 2 is an enlarged cross-sectional view of a main part of FIG.
  • an input-side IDT 14 and an output-side IDT 16 are formed on a surface 12a that is one main surface of a piezoelectric substrate 12.
  • a path difference forming film 20, which is a structure, is bonded to the back surface 12 b which is the other main surface of the piezoelectric substrate 12.
  • the back surface 12 b of the piezoelectric substrate 12 is a bonding surface with the path difference forming film 20.
  • the path difference forming film 20 is composed of at least one film.
  • One main surface of the path difference forming film 20 is bonded to the back surface 12 b of the piezoelectric substrate 12.
  • the other main surface (reflection surface) 20s of the path difference forming film 20 is exposed to the outside.
  • the piezoelectric substrate 12 and the path difference forming film 20 are formed of acoustically different materials.
  • the piezoelectric substrate 12 and the path difference forming film 20 have different acoustic impedances so that the reflectance at the bonding surface (the back surface 12b of the piezoelectric substrate 12) between the piezoelectric substrate 12 and the path difference forming film 20 does not become zero. .
  • the surface acoustic wave excited by the input side IDT 14 propagates along the surface 12 a of the piezoelectric substrate 12 to the output side IDT 16.
  • the output side IDT 16 the output side IDT 16.
  • FIGS. 1 and 2 bulk waves, which are unnecessary vibrations, are excited by the input-side IDT 14 and propagate through the piezoelectric substrate 12 toward the back surface 12b as indicated by arrows 30 and 32.
  • the first component indicated by the arrow 30 is reflected by the back surface 12b.
  • the second component indicated by the arrow 32 passes through the back surface 12 b that is the bonding surface between the path difference forming film 20 and the piezoelectric substrate 12 and enters the path difference forming film 20. Then, after being reflected by the reflecting surface 20 s of the path difference forming film 20, the light enters the piezoelectric substrate 12 from the back surface 12 b of the piezoelectric substrate 12. Thereafter, the second component propagates in the piezoelectric substrate 12 so as to overlap in the same direction as the first component reflected by the back surface 12b, as indicated by an arrow 36.
  • the path difference may be formed by bonding a structure other than the path difference forming film 20 to the back surface 12 b of the piezoelectric substrate 12.
  • the bulk waves that cancel out each other and reach the output IDT 16 are weakened. Further, since the second component is attenuated more than the first component by propagating on a path longer than the first component, the bulk wave reaching the output side IDT 16 is weakened.
  • the piezoelectric substrate 12 is thin, an adverse effect on the device characteristics due to the bulk wave is large, so that the effect of suppressing the deterioration of the frequency characteristics is increased. More specifically, when the piezoelectric substrate 12 is a lithium tantalate substrate or a lithium niobate substrate and the thickness of the piezoelectric substrate 12 is 150 ⁇ m or less, the suppression effect is increased.
  • the back surface 12b of the piezoelectric substrate 12 and the reflection surface 20s of the path difference forming film 20 are smoothed, and the first component and the second component are smoothed.
  • the second component is in a regular reflection state.
  • the arithmetic average roughness of the back surface 12b of the piezoelectric substrate 12 and the reflection surface 20s of the path difference forming film 20 is set to be less than 0.1 ⁇ m, and preferably less than 0.01 ⁇ m.
  • the path difference between the first component and the second component that is, the total length of the paths 33 and 34 shown by broken lines in FIG. 2 is d
  • the wavelength of the bulk wave is ⁇
  • n is a positive integer other than 0.
  • the influence of the bulk wave can be weakened.
  • the path difference between the first component and the second component that is, the total length of the paths 33 and 34 shown by broken lines in FIG. 2 is d
  • the wavelength of the bulk wave is ⁇
  • n is an integer of 0 or more
  • the path difference between the first component and the second component that is, the total length of the paths 33 and 34 shown by broken lines in FIG. 2
  • the wavelength of the bulk wave is ⁇
  • n is an integer of 0 or more
  • d (n + 1/2) ⁇ (3) It is preferable to make it.
  • the phase condition in which the first component and the second component of the bulk wave are the weakest is the maximum, and the effect of reducing the influence of the bulk wave is maximized.
  • the amplitude of the first component reflected by the back surface 12b of the piezoelectric substrate 12 and the back surface of the piezoelectric substrate 12 after entering the piezoelectric substrate 12 from the back surface 12b of the piezoelectric substrate 12 and reflecting by the reflecting surface 20s of the path difference forming film 20 If the amplitude of the second component incident on the piezoelectric substrate 12 from 12b is substantially the same, the first component and the second component cancel each other, and the effect of weakening the bulk wave is obtained. growing.
  • the path difference forming film 20 can be formed by various methods such as sputtering, vapor deposition, plating, laminating, printing, and coating.
  • the path difference forming film 20 can form a path difference by a simple process.
  • the path difference forming film 20 When the path difference forming film 20 is formed of an insulating material, there is no capacity between the IDTs 14 and 16 and the ground via the piezoelectric substrate 12, and the isolation characteristics are improved. On the other hand, when the path difference forming film 20 is formed of a conductive material, the path difference forming film 20 can function as a shield for shielding an electromagnetic field. Depending on the function required for the device, either the insulating material or the conductive material can be selected for the path difference forming film 20.
  • the acoustic impedance of the piezoelectric substrate 12 is Z1
  • the acoustic impedance of the path difference forming film 20 is Z2
  • substantially, Z1 / Z2 1/3 (4)
  • Z1 / Z2 3 (5)
  • the materials for the piezoelectric substrate 12 and the path difference forming film 20 may be selected so that
  • the reflectance at the interface between the piezoelectric substrate 12 and the path difference forming film 20 is
  • / (Z1 + Z2) is as shown in the graph of FIG.
  • the reflectance is 0.5, that is, the condition that half of the incident wave is reflected is:
  • / (Z1 + Z2) 0.5 (6)
  • Z1 / Z2 1/3 (8) It is.
  • the materials of the piezoelectric substrate 12 and the path difference forming film 20 are selected so that the acoustic impedance substantially satisfies the expression (7) or (8).
  • the wavelength of the bulk wave whose influence is to be reduced the sound velocity corresponding to the mode of the bulk wave, the incident angle, the piezoelectric substrate 12 and the path difference forming film 20. It depends on the material.
  • the acoustic wave device 10 is an RF band surface acoustic wave filter using a lithium tantalate substrate, which is often used for surface acoustic waves, as the piezoelectric substrate 12, it varies depending on the mode of the bulk wave, the cut angle, etc.
  • the range is approximately 2 to 5 ⁇ 10 7 (Ns / m 3 ). Since a material having an acoustic impedance with a value close to three times or one third of this may be selected, in this case, the material of the path difference forming film 20 has an acoustic impedance of about 1 ⁇ 10 7 (Ns / m 3 ).
  • Suitable materials include silicon oxide, approximately 2 ⁇ 10 7 (Ns / m 3 ) aluminum, approximately 7 ⁇ 10 7 (Ns / m 3 ) platinum, approximately 1 ⁇ 10 8 (Ns / m 3) tungsten, and the like.
  • a silicon oxide thin film is used for the path difference forming film 20, and the influence of a bulk wave having a frequency of 1.6 GHz (the wavelength of the bulk wave propagating through the silicon oxide at this time is approximately 4 ⁇ m) incident perpendicularly to the back surface 12b of the piezoelectric substrate 12
  • the film thickness of the path difference forming film 20 may be 1 ⁇ 4 wavelength
  • the film thickness of silicon oxide is about 1 ⁇ m.
  • Example 2 An acoustic wave device 10a of Example 2 will be described with reference to FIG.
  • FIG. 4 is a cross-sectional view of the acoustic wave device 10a of the second embodiment.
  • the input-side IDT 14 and the output-side IDT 16 are formed on the surface 12 a of the piezoelectric substrate 12 as in the first embodiment.
  • a path difference forming film 20 a is formed on the back surface 12 b of the piezoelectric substrate 12.
  • the first component indicated by the arrow 30 is reflected by the back surface 12 b of the piezoelectric substrate 12.
  • the second component indicated by the arrow 32 passes through the back surface 12b of the piezoelectric substrate 12, is reflected by the reflecting surface 20s of the path difference forming film 20a, and then enters the piezoelectric substrate 12 from the back surface 12b of the piezoelectric substrate 12.
  • the first component and the second component propagate in an overlapping manner in the same direction, cancel each other, and the bulk wave reaching the output side IDT 16 becomes weak. Thereby, deterioration of frequency characteristics can be suppressed.
  • the path difference forming film 20a is different in configuration from the first embodiment. That is, the path difference forming film 20 a is formed only in a partial region of the back surface 12 b of the piezoelectric substrate 12. Therefore, on the back surface 12b of the piezoelectric substrate 12, a step 20t is formed between a region where the path difference forming film 20a is formed and a region where the path difference forming film 20a is not formed.
  • the step 20t of the path difference forming film 20a is formed by forming a film on the entire back surface 12b of the piezoelectric substrate 12, and then covering the region where the path difference forming film 20a is to be formed with a resist while removing unnecessary films by dry etching.
  • it can be formed by removing it by etching using a wet etching method.
  • the path difference forming film 20a When the path difference forming film 20a is formed at a location where a bulk wave that adversely affects the device characteristics is reflected, the bulk waves can be weakened, adverse effects on the device characteristics can be reduced, and deterioration of the frequency characteristics can be suppressed.
  • the path difference is determined by the height of the step 20t, that is, the film thickness of the path difference forming film 20a.
  • a specific method for setting the height of the step 20t may be the same as the film thickness setting in the first embodiment.
  • the energy of the bulk wave that is reflected by the upper and lower portions of the step 20t (the back surface 12b of the piezoelectric substrate 12 and the reflection surface 20s of the path difference forming film 20a) at or near the location where the bulk wave that is problematic in characteristics is reflected.
  • the pattern of the path difference forming film 20a is designed so as to be approximately the same.
  • the step 20t may be formed at only one place as shown in FIG.
  • Example 3 The elastic wave device 10b of Example 3 will be described with reference to FIG.
  • FIG. 5 is a cross-sectional view of the acoustic wave device 10b according to the third embodiment.
  • the input-side IDT 14 and the output-side IDT 16 are formed on the surface 12 a of the piezoelectric substrate 12 as in the first and second embodiments.
  • a path difference forming film 20 b is formed on the back surface 12 b of the piezoelectric substrate 12.
  • the first component indicated by the arrow 30 is reflected by the back surface 12 b of the piezoelectric substrate 12.
  • the second component indicated by the arrow 32 is transmitted through the back surface 12b of the piezoelectric substrate 12, reflected by the reflecting surface 20s of the path difference forming film 20b, and then enters the piezoelectric substrate 12 from the back surface 12b of the piezoelectric substrate 12.
  • the first component and the second component propagate in an overlapping manner in the same direction, cancel each other, and the bulk wave reaching the output side IDT 16 becomes weak. Thereby, deterioration of frequency characteristics can be suppressed.
  • the path difference forming film 20b is different in configuration from the first and second embodiments. That is, on the back surface 12b of the piezoelectric substrate 12, regions where the path difference forming film 20b is formed and regions where the path difference forming film 20b is not formed are alternately arranged, thereby forming a plurality of steps 20t. ing.
  • the pattern shape and density of the path difference forming film 20b may be designed so that the energy of the bulk wave reflected above and below the step 20t is approximately the same.
  • an input side IDT 14 and an output side IDT 16 are formed on the surface 12a of the piezoelectric substrate 12. No structure is bonded to the back surface 12 b of the piezoelectric substrate 12.
  • the bulk wave excited by the input side IDT 14 propagates in the piezoelectric substrate 12 toward the back surface 12b, is reflected by the back surface 12b, reaches the output side IDT 16, and is received, as indicated by arrows 31 and 38.
  • the path difference forming films 20, 20a, 20b are bonded to the back surface 12b of the piezoelectric substrate 12 as in the first to third embodiments, the bulk wave reaching the output side ITD 16 can be weakened. As a result, it is possible to suppress deterioration of frequency characteristics.
  • the input side IDT 14 and the output side IDT 16 are formed on the surface 12a of the piezoelectric substrates 12, 12s, and 12t. No structure is bonded to the back surface 12b of the piezoelectric substrates 12, 12s, 12t.
  • the bulk wave excited by the input side IDT 14 extends within the piezoelectric substrate 12 between the back surface 12b and the outer periphery of the front surface 12a and the outer periphery of the back surface 12b.
  • the light is reflected by the side surfaces 12p to 12r of 12, 12s, and 12t, reaches the output side IDT 16, and is received.
  • the structure for forming the path difference is not limited to the path difference forming film, and may have various configurations.
  • the present invention can be applied not only to an elastic wave device using a surface acoustic wave, but also to an elastic wave device using a boundary acoustic wave, and a path difference is formed at a location where a bulk wave is reflected and its vicinity.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

 圧電基板の裏面を粗くすることなく、周波数特性の劣化を抑制することができる弾性波デバイスを提供する。 IDT14,16が形成された主面12a以外の圧電基板12の面(接合面)12bに、構造体20が接合されている。構造体20は、IDT14により励振され、圧電基板12内を接合面12bに向かって伝搬するバルク波のうち、接合面12bで反射する第1の成分とは異なる第2の成分が、接合面12bから構造体20に入射し、構造体20内を伝搬した後、接合面12bから圧電基板12に入射し、圧電基板12内において、接合面で反射した第1の成分と同じ方向36に伝搬し、第1の成分と第2の成分とに行路差が形成されように構成されている。

Description

弾性波デバイス
 本発明は弾性波デバイスに関し、詳しくは、圧電基板を伝搬する弾性表面波又は弾性境界波を利用する弾性波デバイスに関する。
 弾性波デバイスは、圧電性を有する圧電基板の表面に形成された櫛形電極(IDT;Interdigital Transducer)によって、弾性表面波又は弾性境界波を励振する。このとき、IDTで発生する不要振動のバルク波が、圧電基板の裏面で反射して圧電基板の表面に戻って来てIDTで受信されることにより、周波数特性にリップルを発生させることがある。
 これに対する対策として、圧電基板の裏面を粗面にすることが知られている。
 例えば図8の断面図に示すように、圧電基板110の表面に入力側電極120a,120bと出力側電極122a,122bとが形成されている表面波フィルタにおいて、圧電基板110の裏面の外周縁のマージン枠110aよりも内側に、粗面として形成した領域114を設けことにより、裏面の領域114においてバルク波を乱反射させ、出力側電極122a,122b側にバルク波が到達するのを抑制することができる。この結果、周波数特性の劣化を抑制することができる。(例えば、特許文献1参照)
特開2003-8396号公報
 圧電基板の裏面を粗面にする対策を施さない場合、フィルタ特性にリップルが発生し、特性上許容できない場合がある。しかしながら、圧電基板の裏面を粗くすると、圧電基板は裏面のマイクロクラックを起点として割れやすくなり、抗折強度が劣化する。弾性波デバイスの小型化のため圧電基板を薄くする場合、バルク波による周波数特性の劣化が大きくなるが、圧電基板を薄くするほど圧電基板が割れやすくなるため、圧電基板の裏面を粗くすることにより周波数特性の劣化を抑制することは困難である。
 本発明は、かかる実情に鑑み、圧電基板の裏面を粗くすることなく、周波数特性の劣化を抑制することができる弾性波デバイスを提供しようとするものである。
 本発明は、上記課題を解決するために、以下のように構成した弾性波デバイスを提供する。
 弾性波デバイスは、(a)主面にIDTが形成され、該IDTにより励振された弾性波が伝搬する圧電基板と、(b)前記主面以外の前記圧電基板の面である接合面に接合された構造体とを備える。前記構造体は、前記IDTにより励振され、前記圧電基板内を前記接合面に向かって伝搬するバルク波のうち、前記圧電基板内において、同じ方向に伝搬する、前記接合面で反射する第1の成分と、前記接合面から前記構造体に入射し、前記構造体内を伝搬した後、前記接合面から前記圧電基板に入射する第2の成分とに行路差が形成されように構成されている。
 上記構成によれば、デバイス特性に悪影響を及ぼすバルク波について、構造体が接合された圧電基板の接合面で反射する第1の成分と、接合面を透過し、構造体内を伝搬した後、接合面から圧電基板内に入射する第2の成分とが同じ方向に伝搬し、互いの位相差によって打ち消し合い、デバイス特性への悪影響を低減するようにできる。このとき、圧電基板は、IDTが形成されている主面(表面)に対向する他の主面(裏面)を粗くする必要がない。したがって、圧電基板の他の主面(裏面)を粗くすることなく、周波数特性の劣化を抑制することができる。
 好ましくは、前記構造体は、前記主面に対向する前記圧電基板の他の主面に接合されている。
 この場合、圧電基板の他の主面で反射するバルク波を、構造体によって打ち消すことができる。
 好ましくは、前記構造体は、前記主面の外周縁と前記主面に対向する前記圧電基板の他の主面の外周縁との間に延在する前記圧電基板の側面に接合されている。
 この場合、圧電基板の側面で反射するバルク波を、構造体によって打ち消すことができる。
 好ましくは、構造体によって形成される前記バルク波の前記第1の成分と前記第2の成分との行路差の絶対値をd、前記バルク波の波長をλ、nを0以外の正の整数とすると、
   d≠nλ  ・・・(1)
である。
 この場合、バルク波の第1の成分と第2の成分との位相がずれるので、構造体によってバルク波の第1の成分と第2の成分とが打ち消し合うようにすることができるので、構造体がない場合に比べ、バルク波の影響を弱めることができる。
 好ましくは、構造体によって形成される前記バルク波の前記第1の成分と前記第2の成分との行路差の絶対値をd、前記バルク波の波長をλ、nを0以上の整数とすると、
   (n+1/4)λ<d<(n+3/4)  ・・・(2)
である。
 この場合、バルク波の第1の成分と第2の成分とは、波長の半分以上において互いに逆位相で重なり、打ち消し合うため、バルク波の影響を弱めることができる。
 好ましくは、構造体によって形成される前記バルク波の前記第1の成分と前記第2の成分との行路差の絶対値をd、前記バルク波の波長をλ、nを0以上の整数とすると、実質的に、
   d=(n+1/2)λ  ・・・(3)
である。
 この場合、バルク波の第1の成分と第2の成分とが最も弱め合う位相条件となり、バルク波の影響軽減効果が最大となる。
 好ましくは、前記接合面で反射したときの前記バルク波の前記第1の成分の振幅と、前記接合面から前記圧電基板に入射したときの前記バルク波の前記第2の成分の振幅とが、実質的に同じ大きさである。
 この場合、バルク波の第1の成分と第2の成分との振幅が実質的に一致することで、第1の成分と第2の成分とが打ち消し、バルク波の弱め合いの効果が大きくなる。
 好ましくは、前記構造体は、前記圧電基板の前記接合面に形成された少なくとも1層の膜からなる行路差形成膜である。
 この場合、行路差形成膜は簡単な工程により膜を形成できるので、簡単な工程で、行路差を形成できる。
 好ましくは、前記行路差形成膜は絶縁体である。
 この場合、圧電基板を介してIDTとアースの間に容量を持つことがない。
 好ましくは、前記行路差形成膜は導電性材料である。
 この場合、行路差形成膜は、電磁界の影響を遮蔽するシールドとしても機能する。
 好ましくは、前記行路差形成膜と前記圧電基板とは、音響的に異なる材料である。
 行路差形成膜と圧電基板とを、振動伝搬速度に影響を与える密度や硬さなどが異なる材料で形成することにより、接合面でバルク波が反射するように構成できる。
 好ましくは、前記行路差形成膜の音響インピーダンスは、前記圧電基板の音響インピーダンスとは異なる。
 この場合、圧電基板内を伝搬するバルク波について、圧電基板と行路差形成膜との界面において反射する成分と、界面から行路差形成膜に入射する成分との両方が存在する状態となる。
 好ましくは、前記圧電基板の音響インピーダンスをZ1とし、前記行路差形成膜の音響インピーダンスをZ2とすると、実質的に、
  Z1/Z2=1/3  ・・・(4)
である。
 この場合、実質的に、圧電基板内を伝搬したバルク波のうち、半分が、行路差形成膜と圧電基板との界面において反射し、残りの半分が、界面から行路差形成膜に入射する状態となり、効果的にバルク波の影響を軽減できる。
 好ましくは、前記圧電基板の音響インピーダンスをZ1とし、前記行路差形成膜の音響インピーダンスをZ2とすると、実質的に、
  Z1/Z2=3  ・・・(5)
である。
 この場合、実質的に、圧電基板内を伝搬したバルク波のうち、半分が、行路差形成膜と圧電基板との界面において反射し、残りの半分が、界面から行路差形成膜に入射する状態となり、効果的にバルク波の影響を軽減できる。
 好ましくは、前記行路差形成膜は、前記主面に対向する前記圧電基板の他の主面の一部の領域のみに、又は前記主面の外周縁と前記主面に対向する前記圧電基板の他の主面の外周縁との間に延在する前記圧電基板の側面の一部の領域のみに、形成されている。
 この場合、圧電基板の他の主面又は側面において、行路差形成膜が形成された領域と行路差形成膜が形成されていない領域との間に段差が形成される。簡単な工程で、必要な部分に行路差形成膜を形成できる。
 好ましくは、前記行路差形成膜は、前記圧電基板の他の前記主面及び/又は前記側面のうち、デバイス特性に悪影響を及ぼすバルク波が反射する箇所及びその近傍領域に形成されている。
 この場合、デバイス特性に悪影響を及ぼすバルク波の影響を軽減できる。
 好ましくは、前記圧電基板の他の前記主面及び/又は前記側面は、前記行路差形成膜が形成された領域と、前記行路差形成膜が形成されていない領域とが交互に配置されている。
 デバイス特性に悪影響を及ぼすバルク波が多数の箇所で反射する場合、バルク波が反射する箇所及びその近傍領域に多数の行路差形成膜を互いに離して形成することにより、圧電基板の他の主面及び/又は側面の広い領域にわたって多数の段差を設け、バルク波低減の効果が得られる。
 本発明によれば、圧電基板の裏面を粗くすることなく、周波数特性の劣化を抑制することができる。
弾性波デバイスの断面図である。(実施例1) 弾性波デバイスの要部拡大断面図である。(実施例1) 音響インピーダンス比と反射率の関係を示すグラフである。(解析例) 弾性波デバイスの断面図である。(実施例2) 弾性波デバイスの断面図である。(実施例3) 弾性波デバイスの断面図である。(比較例1) 弾性波デバイスの断面図である。(比較例2) 弾性表面波フィルタの断面図である。(従来例)
 以下、本発明の実施の形態について、図1~図7を参照しながら説明する。
 <実施例1> 実施例1の弾性波デバイス10について、図1~図3を参照しながら説明する。
 図1は、実施例1の弾性波デバイス10の断面図である。図2は、図1の要部拡大断面図である。
 図1に示すように、実施例1の弾性波デバイス10は、圧電基板12の一方の主面である表面12aに入力側IDT14と出力側IDT16とが形成されている。圧電基板12の他方の主面である裏面12bには、構造体である行路差形成膜20が接合されている。圧電基板12の裏面12bは、行路差形成膜20との接合面である。
 行路差形成膜20は、少なくとも1層の膜からなる。行路差形成膜20は、一方の主面が圧電基板12の裏面12bに接合されている。行路差形成膜20の他方の主面(反射面)20sは、外部に露出している。
 圧電基板12と行路差形成膜20とは、音響的に異なる材料で形成する。圧電基板12と行路差形成膜20とは、音響インピーダンスが互いに異なり、圧電基板12と行路差形成膜20との接合面(圧電基板12の裏面12b)での反射率が0にならないようにする。
 弾性波デバイス10は、入力側IDT14により励振された弾性表面波が、圧電基板12の表面12aに沿って出力側IDT16に伝搬する。このとき、図1及び図2に示すように、入力側IDT14により不要な振動であるバルク波が励振され、矢印30,32で示すように、圧電基板12内を裏面12bに向かって伝搬する。
 このバルク波のうち、矢印30で示す第1の成分は、裏面12bで反射する。矢印32で示す第2の成分は、行路差形成膜20と圧電基板12との接合面である裏面12bを透過して行路差形成膜20に入射する。そして、行路差形成膜20の反射面20sで反射した後、圧電基板12の裏面12bから圧電基板12に入射する。その後、第2の成分は、圧電基板12内において、矢印36で示すように、裏面12bで反射した第1の成分と同じ方向に重なり合って伝搬する。
 矢印32で示す第2の成分は、図2において破線で示す行路33,34に沿って行路差形成膜20内を伝搬するので、第1の成分と第2の成分とに行路差が形成される。なお、圧電基板12の裏面12bに行路差形成膜20以外の構造体を接合することにより、行路差を形成しても構わない。
 矢印36で示すように同じ方向に重なり合って伝搬する第1の成分と第2の成分とに位相差があると、互いの位相差によって打ち消し合い、出力側IDT16に到達するバルク波は弱まる。また、第2の成分は、第1の成分よりも長い行路を伝搬することにより第1の成分よりも減衰するため、出力側IDT16に到達するバルク波は弱まる。
 その結果、バルク波によるデバイス特性への悪影響を低減し、周波数特性の劣化を抑制することができる。特に、圧電基板12が薄い場合は、バルク波によるデバイス特性への悪影響が大きいため、周波数特性の劣化を抑制する効果が大きくなる。より具体的には、圧電基板12がタンタル酸リチウム基板またはニオブ酸リチウム基板であって、圧電基板12の厚みが150μm以下の場合に、抑制効果が大きくなる。
 このように行路差を形成する場合、圧電基板12の裏面12bを粗くする必要がない。むしろ、バルク波の第1の成分と第2の成分とが重なり合って伝搬するには、圧電基板12の裏面12bと行路差形成膜20の反射面20sを平滑にして、第1の成分と第2の成分とが正反射状態になるようにすることが好ましい。例えば、圧電基板12の裏面12bと行路差形成膜20の反射面20sの算術平均粗さは、0.1μm未満となるようにし、好ましくは、0.01μm未満となるようにする。
 第1の成分と第2の成分との行路差、すなわち、図2において破線で示した行路33,34の合計長さをd、バルク波の波長をλ、nを0以外の正の整数とすると、
   d≠nλ  ・・・(1)
となるようにすることが、好ましい。この場合、バルク波の第1の成分と第2の成分とは、位相のずれにより打ち消し合うため、バルク波の影響を弱めることができる。
 また、第1の成分と第2の成分との行路差、すなわち、図2において破線で示した行路33,34の合計長さをd、バルク波の波長をλ、nを0以上の整数とすると、
   (n+1/4)λ<d<(n+3/4)  ・・・(2)
となるようにすることが、好ましい。この場合、バルク波の第1の成分と第2の成分とは、波長の半分以上において互いに逆位相で重なり、打ち消し合うため、バルク波の影響を弱めることができる。
 また、第1の成分と第2の成分との行路差、すなわち、図2において破線で示した行路33,34の合計長さをd、バルク波の波長をλ、nを0以上の整数とすると、
実質的に、
   d=(n+1/2)λ  ・・・(3)
であるようにすることが、好ましい。この場合、バルク波の第1の成分と第2の成分とが最も弱めあう位相条件となり、バルク波の影響軽減効果が最大となる。
 バルク波の第1の成分と第2の成分とが打ち消し合う場合、それぞれの振幅が近いほど、打ち消し合いの効果が大くなる。圧電基板12の裏面12bで反射した第1の成分の振幅と、圧電基板12の裏面12bから圧電基板12に入射し、行路差形成膜20の反射面20sで反射した後、圧電基板12の裏面12bから圧電基板12に入射した第2の成分の振幅とが、実質的に同じ大きさとなるようにすると、第1の成分と第2の成分とが打ち消し合い、バルク波の弱め合いの効果が大きくなる。
 行路差形成膜20は、スパッタ、蒸着、めっき、ラミネート、印刷、塗布など様々な方法で形成が可能である。行路差形成膜20は、簡単な工程で、行路差を形成できる。
 行路差形成膜20を絶縁性材料で形成すると、圧電基板12を介してIDT14,16とアースの間に容量を持つことがなくなり、アイソレーション特性が良好となる。一方、行路差形成膜20を導電性材料で形成すると、行路差形成膜20を、電磁界を遮蔽するシールドとして機能させることも可能である。デバイスに要求される機能によって、行路差形成膜20に、絶縁性材料か導電性材料のいずれかを選択することができる。
 圧電基板12の音響インピーダンスをZ1とし、行路差形成膜20の音響インピーダンスをZ2とすると、実質的に、
  Z1/Z2=1/3  ・・・(4)
又は
  Z1/Z2=3  ・・・(5)
となるように、圧電基板12と行路差形成膜20の材料を選択すればよい。
 すなわち、圧電基板12と行路差形成膜20の界面(圧電基板12の裏面12b)での反射率は、|Z1-Z2|/(Z1+Z2)となる。音響インピーダンス比Z1/Z2と反射率|Z1-Z2|/(Z1+Z2)の関係は、図3に示すグラフのようになる。
 反射率が0.5、すなわち入射した波の半分が反射する条件は、
  |Z1-Z2|/(Z1+Z2)=0.5  ・・・(6)
であり、このときの音響インピーダンス比Z1/Z2は、
  Z1/Z2=3  ・・・(7)
又は
  Z1/Z2=1/3  ・・・(8)
である。
 行路差形成膜20の中での減衰を考慮すると、この値からずれる。また、厳密に(7)式又は(8)式を満たす材料が存在しない場合がある。そのため、音響インピーダンスが実質的に(7)式又は(8)式を満たすように、圧電基板12と行路差形成膜20の材料を選択することになる。
 行路差形成膜20の膜厚の具体的な大きさについては、影響を軽減したいバルク波の波長、そのバルク波のモードに対応する音速、入射角度や、圧電基板12と行路差形成膜20の材料などによって変わってくる。
 次に、行路差形成膜20の材料や膜厚を決定する一例を説明する。
 弾性波デバイス10が、弾性表面波でよく用いられるタンタル酸リチウム基板を圧電基板12に用いたRF帯弾性表面波フィルタの場合、バルク波のモードやカット角などによっても変わってくるが、Z1はおよそ2~5×10(Ns/m)の範囲である。これの3倍もしくは1/3倍に近い値の音響インピーダンスの材料を選べばよいので、この場合、行路差形成膜20の材料としては、音響インピーダンスがおよそ1×10(Ns/m)の酸化珪素、およそ2×10(Ns/m)のアルミニウム、およそ7×10(Ns/m)の白金、およそ1×10(Ns/m3)のタングステンなどが、好適な材料の候補となる。
 行路差形成膜20に酸化珪素薄膜を用い、圧電基板12の裏面12bに対し垂直入射する周波数1.6GHz(このとき酸化珪素中を伝搬するバルク波の波長はおよそ4μm)のバルク波の影響を軽減する場合、行路差は1/2波長、すなわち行路差形成膜20の膜厚は1/4波長とすればよいから、酸化珪素の膜厚はおよそ1μmとなる。
 <実施例2> 実施例2の弾性波デバイス10aについて、図4を参照しながら説明する。
 図4は、実施例2の弾性波デバイス10aの断面図である。図4に示すように、実施例2の弾性波デバイス10aは、実施例1と同様に、圧電基板12の表面12aに入力側IDT14と出力側IDT16とが形成されている。圧電基板12の裏面12bには、行路差形成膜20aが形成されている。
 入力側IDT14で励振された不要振動のバルク波のうち、矢印30で示す第1の成分は圧電基板12の裏面12bで反射する。矢印32で示す第2の成分は、圧電基板12の裏面12bを透過し、行路差形成膜20aの反射面20sで反射した後、圧電基板12の裏面12bから圧電基板12に入射する。そして、矢印36で示すように、第1の成分と第2の成分とは、同じ方向に重なり合って伝搬し、打ち消し合い、出力側IDT16に到達するバルク波が弱くなる。これにより、周波数特性の劣化を抑制することができる。
 行路差形成膜20aは、実施例1と構成が異なる。すなわち、行路差形成膜20aは、圧電基板12の裏面12bの一部の領域にのみ形成されている。そのため、圧電基板12の裏面12bにおいて、行路差形成膜20aが形成された領域と行路差形成膜20aが形成されていない領域との間に、段差20tが形成される。
 行路差形成膜20aの段差20tは、例えば、圧電基板12の裏面12b全体に膜を形成した後、行路差形成膜20aを形成する領域をレジストで覆った状態で、不要な膜をドライエッチング法やウェットエッチング法でエッチングにより除去することにより、形成することができる。
 デバイス特性に悪影響を及ぼすバルク波が反射する箇所に行路差形成膜20aを形成すると、そのバルク波を弱め、デバイス特性への悪影響を低減し、周波数特性の劣化を抑制することができる。
 行路差は、段差20tの高さ、すなわち行路差形成膜20aの膜厚で決まる。段差20tの高さの具体的な設定方法は、実施例1の膜厚設定と同様にすればよい。
 例えば、特性上問題となるバルク波が反射する箇所又はその近傍領域に、段差20tの上下(圧電基板12の裏面12bと、行路差形成膜20aの反射面20s)で反射されるバルク波のエネルギーがほぼ同程度になるように、行路差形成膜20aのパターンを設計する。
 特性上問題となるバルク波が1か所だけで反射する場合、図4のように1か所だけ段差20tを形成すればよい。
 <実施例3> 実施例3の弾性波デバイス10bについて、図5を参照しながら説明する。
 図5は、実施例3の弾性波デバイス10bの断面図である。図5に示すように、実施例3の弾性波デバイス10bは、実施例1及び実施例2と同様に、圧電基板12の表面12aに入力側IDT14と出力側IDT16とが形成されている。圧電基板12の裏面12bには、行路差形成膜20bが形成されている。
 入力側IDT14で励振された不要振動のバルク波のうち、矢印30で示す第1の成分は圧電基板12の裏面12bで反射する。矢印32で示す第2の成分は、圧電基板12の裏面12bを透過し、行路差形成膜20bの反射面20sで反射した後、圧電基板12の裏面12bから圧電基板12に入射する。そして、矢印36で示すように、第1の成分と第2の成分とは、同じ方向に重なり合って伝搬し、打ち消し合い、出力側IDT16に到達するバルク波が弱くなる。これにより、周波数特性の劣化を抑制することができる。
 行路差形成膜20bは、実施例1及び実施例2と構成が異なる。すなわち、圧電基板12の裏面12bは、行路差形成膜20bが形成された領域と、行路差形成膜20bが形成されていない領域とが交互に配置され、これによって、複数の段差20tが形成されている。
 特性上問題となるバルク波が複数あるなどの理由で、図4のように1か所の段差20tでは不十分であれば、図5のように複数の段差20tを設ける。この場合、行路差形成膜20bのパターン形状や密度に関して、段差20tの上下で反射されるバルク波のエネルギーがほぼ同程度になるように考慮して設計するとよい。
 <比較例1> 比較例1の弾性波デバイス10xについて、図6を参照しながら説明する。
 比較例1の弾性波デバイス10xは、圧電基板12の表面12aに、入力側IDT14と出力側IDT16とが形成されている。圧電基板12の裏面12bには、何ら構造体が接合されていない。
 入力側IDT14により励振されたバルク波は、矢印31,38で示すように、圧電基板12内を裏面12bに向かって伝搬し、裏面12bで反射し、出力側IDT16に到達し、受信される。
 これに対し、実施例1~3のように、圧電基板12の裏面12bに行路差形成膜20,20a,20bを接合すると、出力側ITD16に到達するバルク波を弱めることができる。その結果、周波数特性の劣化を抑制することができる。
 <比較例2> 比較例2の弾性波デバイス10p~10rについて、図7を参照しながら説明する。
 比較例2の弾性波デバイス10p~10rは、圧電基板12,12s,12tの表面12aに、入力側IDT14と出力側IDT16とが形成されている。圧電基板12,12s,12tの裏面12bには、何ら構造体が接合されていない。
 入力側IDT14により励振されたバルク波は、矢印40~47で示すように、圧電基板12内において、裏面12bや、表面12aの外周縁と裏面12bの外周縁との間に延在する圧電基板12,12s,12tの側面12p~12rで反射し、出力側IDT16に到達し、受信される。
 バルク波が反射する側面12p~12qに、実施例1~3の行路差形成膜20,20a,20bのように行路差を形成する構造体を接合すると、出力側IDT16に到達するバルク波を弱めることができる。その結果、周波数特性の劣化を抑制することができる。
 <まとめ> バルク波が反射する箇所及びその近傍領域に、行路差を形成する構造体を接合することにより、圧電基板の裏面を粗くすることなく、周波数特性の劣化を抑制することができる。
 なお、本発明は、上記実施の形態に限定されるものではなく、種々変更を加えて実施することが可能である。
 例えば、行路差を形成する構造体は、行路差形成膜に限らず、種々の構成とすることができる。
 本発明は、弾性表面波を利用する弾性波デバイスに限らず、弾性境界波を利用する弾性波デバイスについても適用することができ、バルク波が反射する箇所及びその近傍領域に、行路差を形成する構造体を接合することにより、圧電基板の裏面を粗くすることなく、周波数特性の劣化を抑制することができる。
 10,10a,10b,10p,10q,10r,10x 弾性波デバイス
 12,12s,12t 圧電基板
 12a 表面
 12b 裏面(接合面)
 12p~12r 側面
 14 入力側IDT
 16 出力側IDT
 20,20a,20b 行路差形成膜(構造体)
 20s 反射面
 20t 段差

Claims (17)

  1.  主面にIDTが形成され、該IDTにより励振された弾性波が伝搬する圧電基板と、
     前記主面以外の前記圧電基板の面である接合面に接合された構造体と、
    を備え、
     前記構造体は、
     前記IDTにより励振され、前記圧電基板内を前記接合面に向かって伝搬するバルク波のうち、前記圧電基板内において、同じ方向に伝搬する、前記接合面で反射する第1の成分と、前記接合面から前記構造体に入射し、前記構造体内を伝搬した後、前記接合面から前記圧電基板に入射する第2の成分とに行路差が形成されるように構成されたことを特徴とする、弾性波デバイス。
  2.  前記構造体は、前記主面に対向する前記圧電基板の他の主面に接合されたことを特徴とする、請求項1に記載の弾性波デバイス。
  3.  前記構造体は、前記主面の外周縁と前記主面に対向する前記圧電基板の他の主面の外周縁との間に延在する前記圧電基板の側面に接合されたことを特徴とする、請求項1に記載の弾性波デバイス。
  4.  構造体によって形成される前記バルク波の前記第1の成分と前記第2の成分との行路差の絶対値をd、前記バルク波の波長をλ、nを0以外の正の整数とすると、
       d≠nλ
    であることを特徴とする、請求項1乃至3のいずれか一つに記載の弾性波デバイス。
  5.  構造体によって形成される前記バルク波の前記第1の成分と前記第2の成分との行路差の絶対値をd、前記バルク波の波長をλ、nを0以上の整数とすると、
       (n+1/4)λ<d<(n+3/4)
    であることを特徴とする、請求項1乃至3のいずれか一つに記載の弾性波デバイス。
  6.  構造体によって形成される前記バルク波の前記第1の成分と前記第2の成分との行路差の絶対値をd、前記バルク波の波長をλ、nを0以外の正の整数とすると、実質的に、
       d=(n+1/2)λ
    であることを特徴とする、請求項1乃至3のいずれか一つに記載の弾性波デバイス。
  7.  前記接合面で反射したときの前記バルク波の前記第1の成分の振幅と、前記接合面から前記圧電基板に入射したときの前記バルク波の前記第2の成分の振幅とが、実質的に同じ大きさであることを特徴とする、請求項1乃至6のいずれか一つに記載の弾性波デバイス。
  8.  前記構造体は、前記圧電基板の前記接合面に形成された少なくとも1層の膜からなる行路差形成膜であることを特徴とする、請求項1乃至7のいずれか一つに記載の弾性波デバイス。
  9.  前記行路差形成膜は絶縁体であることを特徴とする、請求項8に記載の弾性波デバイス。
  10.  前記行路差形成膜は導電性材料であることを特徴とする、請求項8に記載の弾性波デバイス。
  11.  前記行路差形成膜と前記圧電基板とは、音響的に異なる材料であることを特徴とする、請求項8乃至10のいずれか一つに記載の弾性波デバイス。
  12.  前記行路差形成膜の音響インピーダンスは、前記圧電基板の音響インピーダンスとは異なることを特徴とする、請求項11に記載の弾性波デバイス。
  13.  前記圧電基板の音響インピーダンスをZ1とし、前記行路差形成膜の音響インピーダンスをZ2とすると、実質的に、
      Z1/Z2=1/3
    であることを特徴とする請求項12に記載の弾性波デバイス。
  14.  前記圧電基板の音響インピーダンスをZ1とし、前記行路差形成膜の音響インピーダンスをZ2とすると、実質的に、
      Z1/Z2=3
    であることを特徴とする請求項12に記載の弾性波デバイス。
  15.  前記行路差形成膜は、
     前記主面に対向する前記圧電基板の他の主面の一部の領域のみに、又は前記主面の外周縁と前記主面に対向する前記圧電基板の他の主面の外周縁との間に延在する前記圧電基板の側面の一部の領域のみに、形成されたことを特徴とする、請求項1乃至7のいずれか一つに記載の弾性波デバイス。
  16.  前記行路差形成膜は、
     前記圧電基板の他の前記主面及び/又は前記側面のうち、デバイス特性に悪影響を及ぼすバルク波が反射する箇所及びその近傍領域に形成されていることを特徴とする、請求項15に記載の弾性波デバイス。
  17.  前記圧電基板の他の前記主面及び/又は前記側面は、
     前記行路差形成膜が形成された領域と、前記行路差形成膜が形成されていない領域とが交互に配置されていることを特徴とする、請求項16に記載の弾性波デバイス。
PCT/JP2011/056938 2010-05-26 2011-03-23 弾性波デバイス WO2011148705A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/665,973 US8564173B2 (en) 2010-05-26 2012-11-01 Elastic wave device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-120243 2010-05-26
JP2010120243 2010-05-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/665,973 Continuation US8564173B2 (en) 2010-05-26 2012-11-01 Elastic wave device

Publications (1)

Publication Number Publication Date
WO2011148705A1 true WO2011148705A1 (ja) 2011-12-01

Family

ID=45003698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056938 WO2011148705A1 (ja) 2010-05-26 2011-03-23 弾性波デバイス

Country Status (2)

Country Link
US (1) US8564173B2 (ja)
WO (1) WO2011148705A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014229916A (ja) * 2013-05-17 2014-12-08 京セラ株式会社 弾性表面波素子
WO2022065138A1 (ja) * 2020-09-25 2022-03-31 株式会社村田製作所 弾性波デバイスおよび弾性波モジュール

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102058279B1 (ko) * 2015-06-24 2019-12-20 가부시키가이샤 무라타 세이사쿠쇼 탄성파 필터 장치
US20240080013A1 (en) * 2022-09-01 2024-03-07 RF360 Europe GmbH Stacked acoustic wave (aw) packages with reduced excitation of reflected bulk waves

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04281611A (ja) * 1991-03-11 1992-10-07 Matsushita Electric Ind Co Ltd 弾性表面波装置
JP2007228011A (ja) * 2006-02-21 2007-09-06 Seiko Epson Corp 弾性表面波素子、弾性表面波装置および電子機器
JP2008211277A (ja) * 2007-02-23 2008-09-11 Matsushita Electric Ind Co Ltd 弾性表面波素子
JP2008219720A (ja) * 2007-03-07 2008-09-18 Matsushita Electric Ind Co Ltd 弾性表面波デバイス

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4339821A (en) * 1980-06-03 1982-07-13 Gte Products Corporation Acousto-optic mode-locked laser
US4691714A (en) * 1984-10-15 1987-09-08 Adamtek Corporation Rheological testing apparatus and method
US4636678A (en) * 1985-03-01 1987-01-13 The United States Of America As Represented By The Secretary Of The Army Compensation of acoustic wave devices
US5359250A (en) * 1992-03-04 1994-10-25 The Whitaker Corporation Bulk wave transponder
JPH1188109A (ja) 1997-09-12 1999-03-30 Kenwood Corp 表面弾性波フイルタ
JP2002330047A (ja) 2001-04-27 2002-11-15 Kyocera Corp 弾性表面波素子
JP2003008396A (ja) 2001-06-22 2003-01-10 Japan Radio Co Ltd 弾性表面波素子及びその製造方法
US7262542B2 (en) * 2005-11-07 2007-08-28 Kohji Toda Ultrasound radiation device into a material
US8035464B1 (en) * 2009-03-05 2011-10-11 Triquint Semiconductor, Inc. Bonded wafer SAW filters and methods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04281611A (ja) * 1991-03-11 1992-10-07 Matsushita Electric Ind Co Ltd 弾性表面波装置
JP2007228011A (ja) * 2006-02-21 2007-09-06 Seiko Epson Corp 弾性表面波素子、弾性表面波装置および電子機器
JP2008211277A (ja) * 2007-02-23 2008-09-11 Matsushita Electric Ind Co Ltd 弾性表面波素子
JP2008219720A (ja) * 2007-03-07 2008-09-18 Matsushita Electric Ind Co Ltd 弾性表面波デバイス

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014229916A (ja) * 2013-05-17 2014-12-08 京セラ株式会社 弾性表面波素子
WO2022065138A1 (ja) * 2020-09-25 2022-03-31 株式会社村田製作所 弾性波デバイスおよび弾性波モジュール

Also Published As

Publication number Publication date
US8564173B2 (en) 2013-10-22
US20130057113A1 (en) 2013-03-07

Similar Documents

Publication Publication Date Title
JP5392258B2 (ja) 板波素子と、これを用いた電子機器
JP5648695B2 (ja) 弾性波装置及びその製造方法
JP4337816B2 (ja) 弾性境界波装置
JP2019080093A (ja) 弾性波装置
US8773000B2 (en) Acoustic wave device
US7982365B2 (en) Elastic wave device and filter and electronic equipment using the device
KR101913933B1 (ko) 탄성파 디바이스
JP2010010832A (ja) 分波器
KR20200131188A (ko) 탄성파 장치, 고주파 프론트 엔드 회로 및 통신 장치
JP6915076B2 (ja) 複合基板、およびそれを用いた弾性波素子
WO2011148705A1 (ja) 弾性波デバイス
JP7168009B2 (ja) 弾性波デバイスおよびマルチプレクサ
JP7433873B2 (ja) 弾性波共振器、フィルタ、及びマルチプレクサ
JPH11330895A (ja) 弾性表面波装置
JP6178972B2 (ja) ローパス特性を有する電子音響フィルタ
WO2002001715A1 (fr) Dispositif a ondes acoustiques de surface
US6972508B2 (en) Surface acoustic wave device
US6781282B1 (en) Longitudinally coupled resonator-type surface acoustic wave device
WO2021241681A1 (ja) 弾性波装置
WO2022059760A1 (ja) 弾性波装置及び弾性波装置の製造方法
JP2023096370A (ja) 弾性波デバイス、ウエハ、及びウエハの製造方法
JP3252753B2 (ja) 弾性表面波素子
JP2023003555A (ja) 弾性波デバイス、フィルタ、マルチプレクサ、およびウエハ
JPS5830216A (ja) 弾性波装置
JP2012015776A (ja) 弾性波デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11786405

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11786405

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP