KR20200131188A - 탄성파 장치, 고주파 프론트 엔드 회로 및 통신 장치 - Google Patents

탄성파 장치, 고주파 프론트 엔드 회로 및 통신 장치 Download PDF

Info

Publication number
KR20200131188A
KR20200131188A KR1020200140869A KR20200140869A KR20200131188A KR 20200131188 A KR20200131188 A KR 20200131188A KR 1020200140869 A KR1020200140869 A KR 1020200140869A KR 20200140869 A KR20200140869 A KR 20200140869A KR 20200131188 A KR20200131188 A KR 20200131188A
Authority
KR
South Korea
Prior art keywords
acoustic
acoustic impedance
wave device
wave
layer
Prior art date
Application number
KR1020200140869A
Other languages
English (en)
Inventor
마사카즈 미무라
Original Assignee
가부시키가이샤 무라타 세이사쿠쇼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 무라타 세이사쿠쇼 filed Critical 가부시키가이샤 무라타 세이사쿠쇼
Publication of KR20200131188A publication Critical patent/KR20200131188A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/175Acoustic mirrors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02157Dimensional parameters, e.g. ratio between two dimension parameters, length, width or thickness
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02228Guided bulk acoustic wave devices or Lamb wave devices having interdigital transducers situated in parallel planes on either side of a piezoelectric layer
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02559Characteristics of substrate, e.g. cutting angles of lithium niobate or lithium-tantalate substrates
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02574Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02614Treatment of substrates, e.g. curved, spherical, cylindrical substrates ensuring closed round-about circuits for the acoustical waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02637Details concerning reflective or coupling arrays
    • H03H9/02653Grooves or arrays buried in the substrate
    • H03H9/02661Grooves or arrays buried in the substrate being located inside the interdigital transducers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02929Means for compensation or elimination of undesirable effects of ageing changes of characteristics, e.g. electro-acousto-migration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/058Holders; Supports for surface acoustic wave devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/12Mounting in enclosures for networks with interaction of optical and acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14538Formation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/06Forming electrodes or interconnections, e.g. leads or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/072Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by laminating or bonding of piezoelectric or electrostrictive bodies

Abstract

판파 S0 모드를 이용하고 있고, 공진 주파수나 통과 대역 근방에 스퓨리어스가 생기기 어렵고, 저손실의 탄성파 장치를 제공한다.
판파 S0 모드를 이용하고 있고, 지지 기판(2)과, 지지 기판(2) 상에 직접 또는 간접적으로 적층된 음향 반사층(3)과, 음향 반사층(3) 상에 직접 또는 간접적으로 적층된 압전체(4)와, 압전체(4) 상에 직접 또는 간접적으로 마련된 IDT 전극(5)을 포함하고, 음향 반사층(3)에서, 저음향 임피던스층(3a, 3c, 3e) 및 고음향 임피던스층(3b, 3d)이 적층 방향에서 서로 이웃하고 있는 부분 내의 적어도 하나의 부분에서, 탄성파 장치의 동작 주파수에서의 저음향 임피던스층(3a, 3c, 3e) 중을 전파하는 횡파 벌크파의 파장의 두께 방향의 성분으로 규격화한, 저음향 임피던스층(3a, 3c, 3e)의 두께를 T1, 탄성파 장치의 동작 주파수에서의 고음향 임피던스층(3b, 3d) 중을 전파하는 횡파 벌크파의 파장의 두께 방향의 성분으로 규격화한, 고음향 임피던스층(3b, 3d)의 두께를 T2로 했을 때에, T1+T2가, 0.40 이상, 0.60 이하이며, T1/(T1+T2)은 0.35 이상, 0.65 이하인 탄성파 장치(1).

Description

탄성파 장치, 고주파 프론트 엔드 회로 및 통신 장치{ELASTIC WAVE DEVICE, RADIO-FREQUENCY FRONT-END CIRCUIT, AND COMMUNICATION APPARATUS}
본 발명은, 판파(plate wave) S0 모드를 이용한 탄성파 장치, 그리고 상기 탄성파 장치를 가지는 고주파 프론트 엔드 회로 및 통신 장치에 관한 것이다.
종래, 판파를 이용한 탄성파 장치가 다양하게 제안되고 있다. 하기 특허문헌 1에 기재된 탄성파 장치에서는, 지지 기판 상에, 음향 반사층을 개재하고 압전체가 적층되어 있다. 압전체 상에 IDT 전극이 마련되어 있다. 음향 반사층은, 저음향 임피던스층과 고음향 임피던스층을 가진다. 음향 반사층을 마련함으로써, 압전체를 전파하는 판파가 적어도 압전체 내에 갇히고 있다. 특허문헌 1에 기재된 탄성파 장치에서는, 상기 판파로서, S0 모드, A0 모드, A1 모드, SH0 모드 및 SH1 모드 등이 나타내지고 있다.
WO2017/068827
본 발명자들은, 특허문헌 1에 기재된 탄성파 장치에서, 공진자의 경우에는 공진 주파수 혹은 반공진 주파수 부근에, 대역 통과형 필터의 경우에는 통과 대역 근방에, 스퓨리어스(spurious)가 생기는 것을 찾아냈다. 또한, 음향 반사층에서의 반사율이 저하되고, 손실이 커지게 되는 것이 있는 것을 찾아냈다.
본 발명은, 본원 발명자에 의해 찾아내진, 이들의 새로운 문제점을 해결하는 것이다. 본 발명의 목적은, 판파 S0 모드를 이용한 탄성파 장치로서, 탄성파 장치가 공진자의 경우에는 공진 주파수 혹은 반공진 주파수 부근, 탄성파 장치가 필터의 경우에는 통과 대역 부근에서의 스퓨리어스가 생기기 어려우면서, 저손실의 탄성파 장치를 제공하는 것에 있다. 또한, 본 발명의 다른 목적은, 상기 탄성파 장치를 가지는 고주파 프론트 엔드 회로 및 통신 장치를 제공하는 것에 있다.
본 발명은, 판파 S0 모드를 이용하는 탄성파 장치로서, 지지 기판과, 상기 지지 기판 상에 직접 또는 간접적으로 적층된 음향 반사층과, 상기 음향 반사층 상에, 직접 또는 간접적으로 적층된 압전체와, 상기 압전체 상에 직접 또는 간접적으로 마련된 IDT 전극을 포함하고, 상기 음향 반사층은, 상대적으로 음향 임피던스가 낮은, 적어도 1층의 저음향 임피던스층과, 상대적으로 음향 임피던스가 높은, 적어도 1층의 고음향 임피던스층을 가지며, 상기 음향 반사층에서, 상기 저음향 임피던스층 및 고음향 임피던스층이 적층 방향에서 서로 이웃하고 있는 부분 내의 적어도 하나의 부분에서, 상기 탄성파 장치의 동작 주파수에서의 상기 저음향 임피던스층 중을 전파하는 횡파 벌크파의 파장의 두께 방향의 성분으로 규격화한, 상기 저음향 임피던스층의 두께를 T1으로 하고, 상기 탄성파 장치의 동작 주파수에서의 상기 고음향 임피던스층 중을 전파하는 횡파 벌크파의 파장의 두께 방향의 성분으로 규격화한, 상기 고음향 임피던스층의 두께를 T2로 했을 때에, T1+T2가 0.40 이상, 0.60 이하이며, T1/(T1+T2)이 0.35 이상, 0.65 이하이다.
본 발명에 따른 탄성파 장치의 어느 특정 국면에서는, 상기 탄성파 장치가 탄성파 공진자이고, 상기 탄성파 장치의 동작 주파수가 상기 탄성파 공진자의 공진 주파수이다. 이 경우에는, 공진 주파수 혹은 반공진 주파수 부근에서의 스퓨리어스가 생기기 어렵다.
또한, 본 발명에 따른 탄성파 장치의 다른 특정 국면에서는, 상기 탄성파 장치가 대역 통과형 탄성파 필터이고, 상기 탄성파 장치의 상기 동작 주파수가 상기 탄성파 필터의 통과 대역의 중심 주파수이다. 이 경우에는, 통과 대역 내 및 통과 대역 부근에서의 스퓨리어스가 생기기 어렵다.
본 발명에 따른 탄성파 장치의 다른 특정 국면에서는, 상기 저음향 임피던스층이 복수층 마련되어 있다.
본 발명에 따른 탄성파 장치의 또 다른 특정 국면에서는, 상기 고음향 임피던스층이 복수층 마련되어 있다.
본 발명에 따른 탄성파 장치의 또 다른 특정 국면에서는, 상기 복수개의 저음향 임피던스층의 음향 임피던스가 동일하다. 이 경우에는, 복수개의 저음향 임피던스층을 같은 재료를 이용하여 용이하게 제공할 수 있다.
본 발명에 따른 탄성파 장치의 또 다른 특정 국면에서는, 상기 복수개의 고음향 임피던스층의 음향 임피던스가 동일하다. 이 경우에는, 복수개의 고음향 임피던스층을 같은 재료를 이용하여 용이하게 제공할 수 있다.
본 발명에 따른 탄성파 장치의 다른 특정 국면에서는, 상기 압전체가 니오브산 리튬이다. 이 경우에는, S0 모드의 전기기계 결합계수를 크게 할 수 있다.
본 발명에 따른 탄성파 장치의 또 다른 특정 국면에서는, 상기 압전체의 오일러 각이 (0°±5°의 범위 내, 0°~150°, 90°±10°의 범위 내), (30°±5°의 범위 내, 90°±10°의 범위 내, 35°~180°) 또는 (30°±5°의 범위 내, 90°±10°의 범위 내, 0°∼5°)이다. 이 경우에는, 판파 S0 모드의 전기기계 결합계수를 높일 수 있고, 한층 더 저손실화를 도모할 수 있다.
본 발명에 따른 고주파 프론트 엔드 회로는, 본 발명에 따라 구성된 탄성파 장치를 가지는 탄성파 필터와, 상기 탄성파 필터에 접속된 파워 앰프를 포함한다.
본 발명에 따른 통신 장치는, 본 발명에 따라 구성된 고주파 프론트 엔드 회로와, RF 신호 처리 회로를 포함한다.
본 발명에 의하면, 판파 S0 모드를 이용하고 있고, 공진자의 경우에는 공진 주파수 혹은 반공진 주파수 부근에서의 스퓨리어스, 필터의 경우에는 통과 대역 내 및 통과 대역 근방에서의 스퓨리어스가 생기기 어려우면서, 저손실의 탄성파 장치를 제공하는 것이 가능해진다.
도 1의 (a)는 본 발명의 제1 실시형태에 따른 탄성파 장치의 주요부를 나타내는 부분 정면 단면도, (b)는 이 탄성파 장치의 모식적 평면도이다.
도 2의 (a)~(f)는, 판파 A0 모드, SH0 모드, S0 모드, SH1 모드, A1모드, 및 S1 모드의 변위 방향을 설명하기 위한 각 모식도이다.
도 3은 실험예 1의 탄성파 장치의 임피던스 특성을 나타내는 도면이다.
도 4는 실험예 1의 탄성파 장치의 위상 특성을 나타내는 도면이다.
도 5는 실험예 1의 탄성파 장치에서의 탄성파의 반사 메커니즘을 설명하기 위한 모식도이다.
도 6은 탄성파의 두께 방향 성분 및 주면(主面)과 평행인 방향의 성분과, 탄성파의 전파 방향의 관계를 설명하기 위한 모식도이다.
도 7은 실험예 2에서의 No.1의 탄성파 장치의 임피던스 특성을 나타내는 도면이다.
도 8은 실험예 2에서의 No.2의 탄성파 장치의 임피던스 특성을 나타내는 도면이다.
도 9는 실험예 2에서의 No.4의 탄성파 장치의 임피던스 특성을 나타내는 도면이다.
도 10은 실험예 2에서의 No.5의 탄성파 장치의 임피던스 특성을 나타내는 도면이다.
도 11은 실험예 3에서의 탄성파 장치의 음향 반사층을 설명하기 위한 정면 단면도이다.
도 12는 실험예 3에서의, T1 및 T2가 0.25이고, T1/(T1+T2)=0.50의 경우의 반사율의 주파수 의존성을 나타내는 도면이다.
도 13은 T1/(T1+T2)과, 반사율 최댓값의 관계를 나타내는 도면이다.
도 14는 LiNbO3의 오일러 각이 (0°, θ, ψ)의 경우의 오일러 각의 θ 및 ψ와, S0 모드의 전기기계 결합계수 k2의 관계를 나타내는 도면이다.
도 15는 LiNbO3의 오일러 각이 (10°, θ, ψ)의 경우의 오일러 각의 θ 및 ψ와, S0 모드의 전기기계 결합계수 k2의 관계를 나타내는 도면이다.
도 16은 LiNbO3의 오일러 각이 (20°, θ, ψ)의 경우의 오일러 각의 θ 및 ψ와, S0 모드의 전기기계 결합계수 k2의 관계를 나타내는 도면이다.
도 17은 LiNbO3의 오일러 각이 (30°, θ, ψ)의 경우의 오일러 각의 θ 및 ψ와, S0 모드의 전기기계 결합계수 k2의 관계를 나타내는 도면이다.
이하, 도면을 참조하면서, 본 발명의 구체적인 실시형태를 설명함으로써, 본 발명을 분명히 한다.
한편, 본 명세서에 기재된 각 실시형태는 예시적인 것이고, 다른 실시형태 간에서, 구성의 부분적인 치환 또는 조합이 가능한 것을 지적해 둔다.
도 1의 (a)는, 본 발명의 제1 실시형태에 따른 탄성파 장치의 주요부를 나타내는 부분 정면 단면도이고, (b)는 이 탄성파 장치의 모식적 평면도이다. 탄성파 장치(1)는 지지 기판(2)을 가진다. 지지 기판(2) 상에, 음향 반사층(3)이 마련되어 있다. 음향 반사층(3)은, 복수개의 저음향 임피던스층(3a, 3c, 3e)과, 복수개의 고음향 임피던스층(3b, 3d)을 가진다. 저음향 임피던스층(3a, 3c, 3e)의 음향 임피던스는, 고음향 임피던스층(3b, 3d)의 음향 임피던스에 비해 상대적으로 낮다.
저음향 임피던스층(3a, 3c, 3e) 및 고음향 임피던스층(3b, 3d)의 재료에 대해서는, 상기 음향 임피던스 관계를 충족하는 한 특히 한정되지 않는다. 예를 들면, 저음향 임피던스층의 재료로서, 산화규소, 산질화규소 등의 유전체 재료나 절연성 세라믹 재료, 합성수지, 금속 등을 이용할 수 있다. 고음향 임피던스층(3b, 3d)의 재료로서도, 산화규소, 산질화규소, 질화알루미늄 등의 유전체 재료나 세라믹 재료, 반도체 재료 또는 금속 등을 적절히 이용할 수 있다.
음향 반사층(3) 상에 압전체(4)가 마련되어 있다. 압전체(4)는, LiNbO3로부터 이루어진다. 압전체(4)는 서로 대향(對向)하는 제1 주면(4a) 및 제2 주면(4b)을 가진다. 제2 주면(4b) 측에서 압전체(4)가 음향 반사층(3)에 적층되어 있다. 제1 주면(4a) 상에 IDT 전극(5)이 마련되어 있다. IDT 전극(5)은 서로 맞물려 있는 복수개의 전극지(電極指)(6, 7)를 가진다. 도 1의 (a)에서는 전극지(6)와 전극지(7)가 배치되어 있는 부분만이 확대되어 나타내지고 있다.
도 1의 (b)에 나타내는 바와 같이, IDT 전극(5)의 탄성파 전파 방향 양측에는 반사기(8, 9)가 마련되고, 그로 인해, 탄성파 장치(1)에서는 1포트형의 탄성파 공진자가 구성되어 있다.
탄성파 장치(1)는, 압전체(4)를 전파하는 판파의 S0 모드를 이용하고 있다.
여기서 판파란, 여기되는 탄성파의 전파 방향에서의 파장을 λx로 했을 때에, 파장 λx에 의해 규격화된 막두께가 1λx 이하인 압전체에서 여기되는 다양한 파를 총칭하고 있다. 판파를 이용하려면, 압전체(4)에 판파의 에너지가 집중되면 된다. 탄성파 장치(1)에서는 음향 반사층(3)이 마련되어 있기 때문에, 판파가 압전체(4) 내에 갇히고, 판파를 이용하여 특성이 얻어지고 있다.
도 2의 (a)~(f)를 참조하고, 판파의 각 모드를 설명한다. 도 2의 (a)~(f)는 압전체(4)를 정면에서 본 모식도이고, 화살표로 변위 방향이 나타내지고 있다. 한편, 도 2의 오른쪽 위에 나타내는 U1 방향, U2 방향 및 U3 방향은 좌표계를 나타낸다. U1 방향 및 U3 방향은 화살표의 방향이 정방향이고, U2 방향에서는 종이 표면(紙表)에서 종이 이면(紙背)을 향하는 방향이 정방향이다. U1 방향은 판파의 전파 방향이다. U2 방향은 압전체(4)의 제1, 제2 주면(4a, 4b)에 평행이면서, 판파의 전파 방향에 수직인 방향이다. 즉, U2 방향은 SH 방향이다. U3 방향은 압전체(4)의 두께 방향이다.
도 2의 (a) 및 (f)에 나타내는 바와 같이, A0 모드와 S1 모드에서는, 변위의 주성분이 U3 방향이다. 도 2의 (c) 및 (e)에 나타내는 바와 같이, S0 모드 및 A1 모드에서는 변위의 주성분은 U1 방향이다. 도 2의 (b) 및 (d)에 나타내는 바와 같이, SH0 모드 및 SH1 모드에서는 변위의 주성분은 U2 방향의 성분이다. 변위의 U1방향 성분과 U3 방향 성분은 서로 결합하면서 전파된다. 따라서, A0 모드 및 S1 모드에서는, U3 방향을 따르는 성분뿐만 아니라 U1 방향을 따르는 성분도 가진다. S0 모드 및 A1 모드는, U1 방향을 따르는 성분뿐만 아니라 U3 방향을 따르는 성분도 가지고 있고, U2 방향의 성분은 작다. U2 방향의 성분은 그 외의 방향의 변위 성분과 결합하지 않는다. 따라서, SH0 모드 및 SH1 모드는 U1 방향을 따르는 성분과 U3 방향을 따르는 성분을 그다지 가지고 있지 않다.
탄성파 장치(1)는 상기 판파의 각 모드 내, 도 2의 (c)에 나타내는 S0 모드를 이용하고 있다. 판파 S0 모드에서는, 압전체(4)에서, 변위의 주성분이 탄성파의 전파 방향으로 평행인 방향이면서, 압전체(4)의 두께 방향으로 노드를 가지지 않는다. 탄성파 장치(1)에서는 압전체(4)로서 LiNbO3을 사용하고 있으므로, 판파 S0 모드는 음속이 6000~7000m/s 부근에서 여기된다. 여기서 음속이란, 탄성파가 여기되는 주파수와, 탄성파의 파장의 곱으로 나타내진다. 탄성파가 여기되는 주파수란, 탄성파 장치의 동작 주파수의 것이다. 또한 탄성파의 파장이란, 탄성파 장치에서 압전체(4)의 표면에 형성되어 있는 IDT 전극(5)의 주기로 정해지는 길이이다. 하나의 IDT 전극 내에서 전극지의 주기가 변화되고 있는 경우에는, 그 IDT 전극 내의 주기의 평균을 그 IDT에서 여기되는 탄성파의 파장으로 한다. 탄성파 장치(1)에서 사용되고 있는 압전체(4)가 LiNbO3이고, 상기에 의해 구해진 탄성파가 여기되는 주파수와 탄성파의 파장의 곱이 6000~7000m/s이면, 그 탄성파 장치(1)는 판파 S0 모드를 사용하고 있다고 인정된다.
탄성파 장치(1)에서는 음향 반사층(3)에서 저음향 임피던스층(3a, 3c, 3e)과, 고음향 임피던스층(3b, 3d)이 두께 방향에서 교대로 적층되어 있다. 따라서, 저음향 임피던스층(3a, 3c 또는 3e)과, 고음향 임피던스층(3b 또는 3d)이 적층 방향에서 서로 이웃하고 있는 부분이 4부분 존재하고 있다.
한편, 본 발명에서는, 저음향 임피던스층 및 고음향 임피던스층의 적층 수는 특히 한정되지 않는다. 저음향 임피던스층과 고음향 임피던스층이 적층 방향에서 서로 이웃하고 있는 부분이 적어도 하나 존재하면 된다. 따라서, 음향 반사층은, 1층의 저음향 임피던스층에 1층의 고음향 임피던스층이 적층되어 있는 구조를 가지는 것이어도 된다.
본 실시형태에서는, 저음향 임피던스층(3a, 3c, 3e)의 두께를 T1, 고음향 임피던스층(3b, 3d)의 두께를 T2로 했을 때에, T1+T2가 0.40 이상, 0.60 이하이면서, T1/(T1+T2)이 0.35 이상, 0.65 이하의 범위에 있다. 탄성파 장치(1)는 공진자이기 때문에, 공진 주파수 혹은 반공진 주파수 부근에서 스퓨리어스가 생기기 어려우면서, 저손실화되고 있다. 이를, 이하에서 구체적인 실험예에 기초하여 설명한다.
한편, 두께(T1)는 탄성파 장치(1)의 동작 주파수에서 저음향 임피던스층(3a, 3c, 3e) 내를 전파하는 횡파 벌크파의 파장의 두께 방향 성분으로 규격화한, 저음향 임피던스층(3a, 3c, 3e)의 두께이다. 두께(T2)는 탄성파 장치(1)의 동작 주파수에서 고음향 임피던스층(3b, 3d) 내를 전파하는 횡파 벌크파의 파장의 두께 방향 성분으로 규격화한, 고음향 임피던스층(3b, 3d)의 두께이다. 한편, 탄성파 장치(1)의 동작 주파수로서는 탄성파 공진자이기 때문에, 공진 주파수로 했다. 공진 주파수를 대신하여 반공진 주파수를 동작 주파수로 해도 된다.
(실험예 1)
탄성파 장치(1)를 이하의 설계 파라미터로 제작했다.
압전체(4): LiNbO3
LiNbO3의 오일러 각: (90°, 90°, 40°)
IDT 전극(5)의 전극지 피치로 정해지는 파장=2.0㎛
IDT 전극(5)은 Al로 이루어지고, 그 막두께는 100㎚.
듀티비: 0.50
LiNbO3로 이루어지는 압전체(4)의 두께: 400㎚
저음향 임피던스층(3a, 3c, 3e): SiO2로 이루어지고, 각 층 모두 막두께는 403.5㎚로 했다.
고음향 임피던스층(3b, 3d): Pt로 이루어지고, 각 층 모두 막두께는 145.7㎚로 했다.
음향 반사층(3)의 적층 수는, 저음향 임피던스층(3a, 3c, 3e)과 고음향 임피던스층(3b, 3d)의 합계 5층.
지지 기판(2)의 재료: Si
상기한 바와 같이 하여 구성된 탄성파 공진자의 임피던스 특성을 도 3에 나타낸다. 또한 위상 특성을 도 4에 나타낸다. 도 3에 나타내는 바와 같이, 공진 주파수 및 반공진 주파수에서 날카로운 피크가 나타나고 있고, 양호한 임피던스 특성이 얻어지고 있다. 또한, 도 3 및 도 4로부터 분명한 바와 같이, 공진 주파수 혹은 반공진 주파수 부근에 스퓨리어스가 나타나고 있지 않다. 실험예 1에서는, T1=0.25및 T2=0.25이고, 그로 인해 양호한 특성이 얻어지고 있다고 생각된다. 이 이유를 이하에서 설명한다.
도 5는, 음향 반사층(3)에서의 탄성파, 즉 판파의 반사의 메커니즘을 설명하기 위한 모식도다. 도 5에서는, 음향 반사층에서부터 압전체를 향하는 측이 가로 방향이 되도록 탄성파 장치(1)의 주요부가 도시되어 있다. 압전체에서부터 음향 반사층 측에 전파한 탄성파는, 도 5에 나타내는 바와 같이, 우선 고음향 임피던스층(A)과 저음향 임피던스층(B)의 계면(界面)에서 반사된다. 또한, 이 계면을 통과한 탄성파는, 저음향 임피던스층(B)과 고음향 임피던스층(C)의 계면에서 반사된다. 더욱이, 저음향 임피던스층(B)과 고음향 임피던스층(C)의 계면을 통과한 탄성파가, 고음향 임피던스층(C)과 다음의 저음향 임피던스층의 계면에서 반사된다. 이들의 반사 경로를, 각각 도 5에 나타내는 바와 같이, 경로(Z1), 경로(Z2) 및 경로(Z3)로 한다. 이 경우, 경로(Z1), 경로(Z2) 및 경로(Z3)에서 반사되어 온 각 탄성파의 위상이 모이면, 반사되어 온 탄성파가 서로 보강하게 된다.
여기서, 저음향 임피던스층(B)을 전파하는 탄성파의 파장을 λa로 하고, 고음향 임피던스층(C)을 전파하는 탄성파의 파장을 λb로 한다. 또한, 저음향 임피던스층(B)의 두께를 Ta, 고음향 임피던스층(C)의 두께를 Tb로 한다.
경로(Z1과 Z3), 경로(Z1과 Z2), 경로(Z2와 Z3)에서 반사한 탄성파가 서로 보강하는 최적인 조건은, 탄성파의 파장 λ로 규격화한 저음향 임피던스층의 두께(Ta/λa), 그리고 탄성파의 파장 λ로 규격화한 고음향 임피던스층의 두께(Tb/λb)가, 각각 0.25인 것이 알려져 있다.
한편, 저음향 임피던스층 또는 고음향 임피던스층 중을 전파하는 탄성파의 파장 λ는, λ=f/v로 나타내진다. 여기서 f는 주파수이고, v는 각 층 중을 전파하는 탄성파의 위상 속도이다. 따라서, 전파하는 탄성파의 파장 λ는 주파수에 의존하고, 따라서 반사율은 주파수에 의해 변화된다. 즉, 상기 조건은 어느 주파수에서, 반사율이 가장 높아지는 조건을 나타내고 있다. 음향 반사층(3)의 반사율은 주파수 의존성을 가지고, US 특허출원 2004/0140869에 기재되어 있는 바와 같이, 어느 중심 주파수를 중심으로 일정한 주파수 범위에서 반사율이 높아진다. 이 때, 저음향 임피던스층과 고음향 임피던스층의 파장 규격화 두께의 합계가 그 중심 주파수에 대응하고, 저음향 임피던스층과 고음향 임피던스층의 파장 규격화 두께가 동일한 경우에 중심 주파수에서의 반사율이 높아진다.
음향 반사층(3) 상에 압전체(4) 및 IDT 전극(5)이 마련되어 있는 구조에서는 IDT 전극(5)에서 여기되며, 압전체(4)의 두께 방향으로 벌크파로서 전파하는 탄성파가 음향 반사층(3)에서 반사된다. 그로 인해, 탄성파가 압전체(4) 내에 갇힌다. 압전체(4)의 두께 방향으로 벌크파로서 전파하는 탄성파의 전파 방향은, 벌크파 음속과 주파수에서 결정되는 파수 벡터(wavenumber vector)로 나타내진다. IDT 전극(5)에 의해 이 탄성파가 여기되기 때문에, 상기 벌크파는, 압전체(4)의 제1, 제2 주면(4a, 4b)에 평행인 파수 성분을 가지고, 그 크기는 IDT 전극(5)의 전극지 피치로 정해지는 파장으로 결정된다.
도 6은, 탄성파의 두께 방향 성분(C) 및 압전체(4)의 제1, 제2 주면(4a, 4b)과 평행인 방향의 성분(B)과, 탄성파의 전파 방향(A)의 관계를 나타내는 도면이다. 도 6 중의 원은, 매질중을 전파하는 탄성파의 파수의 크기를 나타내고 있다. 화살표(B)는, 압전체(4)의 제1, 제2 주면(4a, 4b)과 평행인 방향으로 전파하는 성분이고, 상기한 바와 같이 그 크기는 IDT 전극(5)의 전극지 피치로 정해지는 파장 λ로 결정된다. 기점 O에서부터, 화살표(B)의 선단을 지면(紙面)의 아래 방향으로 연장시킨 선과 도면 중의 원이 교차하는 점을 향하는 방향이, 탄성파의 전파 방향(A)을 나타낸다. 기점 O에서부터, 그 교점을 지면의 왼쪽 방향으로 연장시킨 선과 두께 방향의 축이 교차하는 점을 향하는 방향이 화살표(C)로 나타내는 방향이고, 화살표(C)의 길이는 압전체(4)의 두께 방향으로 전파하는 파수 성분을 나타낸다. 따라서, 도 6에 나타내는 바와 같이 벌크파 내, 압전체(4)의 두께 방향의 파수 성분을 구하고, 이 파수 성분에서부터 파장의 압전체의 두께 방향 성분을 구할 수 있다.
IDT 전극(5)의 전극지 피치에 의해 규정되는 탄성파의 전파 방향에서의 파장을 λx로 하고, 주파수를 f, 매질중을 전파하는 벌크파의 전파 속도를 v, 매질중을 전파하는 벌크파의 파장의 압전체(4)의 두께 방향 성분을 λz로 한다. 매질이 등방체(等方體)인 경우, λz는 이하의 식(1)에 의해 나타내진다.
Figure pat00001
음향 반사층(3)을 이용하여 탄성파를 압전체(4) 내에 가두는 구조에서는, 상기한 바와 같이 하여 구해진 매질중을 전파하는 횡파의 두께 방향 성분 λz를 기준으로 각 매질의 두께를 설정하면 된다.
벌크파로서는 종파와 횡파가 존재하고, 각각은 다른 위상 속도로 전파된다. 따라서, 파장의 두께 방향 성분은 종파 및 횡파의 각각에 대응한 2종류가 존재한다.
탄성파 장치(1)에서는 종파 및 횡파 내 매질의 두께, 즉 저음향 임피던스층(3a, 3c, 3e) 및 고음향 임피던스층(3b, 3d)의 두께를, 횡파의 파장의 두께 방향 성분을 기준으로서 규격화했다. 이 이유는 이하의 바와 같다.
횡파는, 압전체(4)의 제1, 제2 주면(4a, 4b)에 평행인 변위 성분을 가지는 SH파와, SH파와 수직인 변위 성분을 가지는 SV파로 분해할 수 있다. 하나의 매질중에서, 종파, SV파 및 SH파의 3개의 성분은 서로 독립하여 전파한다. SH파가 매질 간의 경계면에 입사(入射)하는 때는, SH파로서 반사 또는 투과된다. 한편, 종파와 SV파가 매질 간의 경계면에 입사하는 때는, 서로 모드 변환을 일으키면서 반사 혹은 투과한다. 이 때, 횡파의 두께 방향 성분의 파장을 기준으로, 각 매질층의 두께를 설정하면, 횡파 성분 즉 SV파 및 SH파는 지지 기판(2)의 방향으로 전파하는 경우 서로 상쇄시키고, 압전체(4)의 제1, 제2 주면(4a, 4b)의 방향으로 전파하는 경우에는 서로 보강하는 위상 관계가 된다. 따라서, 지지 기판(2) 방향으로의 누설을 작게 억제할 수 있다.
한편, 종파 성분은 상기한 바와 같은 위상 관계를 나타내지 않지만, 각 매질 간의 경계에서, 종파와 SV파의 사이에서의 모드 변환이 생긴다. SV파에 모드 변환된 성분은 상기의 위상 관계가 되기 때문에, 지지 기판(2)의 방향으로 전파하는 경우는 서로 상쇄시키고, 압전체(4)의 방향으로 전파하는 경우는 서로 보강하는 관계가 된다. 따라서, 경계에서 반사 또는 투과하는 때에 모드 변환을 반복함으로써 IDT 전극(5)에서부터 종파로서 방사된 벌크파는, 최종적으로 IDT 전극(5) 방향으로 되돌아오게 된다.
탄성파 장치(1)에서는 판파 S0 모드를 이용하고 있다. S0 모드에서는 U1 성분이 최대이고, U3 성분을 가지지만 U2 성분은 작다. 즉, SH파 성분이 그다지 존재하지 않고, 종파 성분과 SV파 성분이 주체(main)이다. 따라서, 음향 반사층(3)의 각 층의 경계면에서, 모드 변환을 일으키면서 반사와 투과를 반복한다. 그리고, 최종적으로 IDT 전극(5)의 근방에 탄성파가 집중되고, 압전체(4) 내에 갇히게 된다.
한편, 예를 들면 SH0 모드의 판파에서는, U2 방향 성분이 주체이며, 그에 따라 SH파가 주체가 되기 때문에, 음향 반사층(3)의 각 층의 경계면에서의 모드 변환은 생기지 않는다.
음향 반사층(3)에 이용되는 저음향 임피던스층(3a, 3c, 3e) 및 고음향 임피던스층(3b, 3d)을 구성하는 재료는, 상기 음향 임피던스 관계를 충족하는 한 특히 한정되지 않지만, 대표적인 재료의 밀도, 종파의 음속 및 음향 임피던스, 그리고 횡파의 음속 및 음향 임피던스를 하기의 표 1에 나타낸다.
Figure pat00002
표 1에 나타낸 음향 임피던스의 차(差)가 큰 재료의 조합을 선택하고, 각각의 횡파 음속의 값에 따라 상술한 식에 의해 구한, 파장의 압전체(4)의 두께 방향 성분을 기준으로 각 층의 두께를 설정하면, 탄성파를 압전체(4)에 효과적으로 가둘 수 있다.
상기 실험예 1에서는 이와 같이 생각하고, 음향 반사층(3)에서의 저음향 임피던스층(3a, 3c, 3e) 및 고음향 임피던스층(3b, 3d)의 두께를 설정했다. 즉, 저음향 임피던스층(3a, 3c, 3e)의 재료인 SiO2 중을 전파하는 횡파 벌크파의 음속은 3768m/초이고, 고음향 임피던스층(3b, 3d)의 재료인 Pt 중을 전파하는 횡파 벌크파의 음속은 1678m/초이다. 식(1)에서의 주파수 f는 3000MHz로 하고, IDT 전극(5)의 전극지 피치로 정해지는 파장은 2.0㎛이기 때문에, SiO2 중 및 Pt 중을 전파하는 횡파 벌크파의 파장의 압전체(4)의 두께 방향 성분은 이하의 바와 같이 된다.
SiO2: λzt={((3000㎒)/(3768m/s))2-(1/(2.0㎛))2}(-1/2)=1.6141㎛
Pt: λzt={((3000㎒)/(1678m/s))2-(1/(2.0㎛))2}(-1/2)=0.5828㎛
실험예 1의 탄성파 장치(1)에서는, 상기한 바와 같이 하여 구해진 파장의 압전체(4)의 두께 방향 성분을 0.25배 함으로써, 각 저음향 임피던스층(3a, 3c, 3e) 및 고음향 임피던스층(3b, 3d)의 두께를 설정했다.
(실험예 2)
다음으로, 음향 반사층(3)에서의 저음향 임피던스층(3a, 3c, 3e) 및 고음향 임피던스층(3b, 3d)의 두께를 변화시킨 것 이외에는 실험예 1과 마찬가지로 하고, 탄성파 장치(1)를 제작하며 그 임피던스 특성을 평가했다. 저음향 임피던스층(3a, 3c, 3e) 및 고음향 임피던스층(3b, 3d)의 두께를, 횡파의 압전체(4)의 두께 방향의 파장으로 규격화한 규격화 두께(T1, T2)를 동일하게 했다. 또한, 규격화 두께(T1, T2)를 0.150 이상, 0.350 이하의 범위 내에서 하기의 표 2의 No.1∼5로 나타내는 바와 같이 변화시켰다. 공진 주파수가 약 3000㎒이기 때문에, 식(1)에서 횡파의 압전체(4)의 두께 방향의 파장을 산출하는 때의 주파수 f는 3000MHz로 했다.
Figure pat00003
표 2의 No.1, No.2, No.4 및 No.5에서 제작한 탄성파 장치의 임피던스 특성을, 도 7~도 10에 각각 나타낸다.
도 7은, No.1의 임피던스 특성을 나타내고 있다. 도 7에 나타내는 바와 같이, 공진 주파수의 저영역 측에 화살표(S1)로 나타내는 큰 스퓨리어스가 나타나고 있다. 상기 규격화 두께(T1, T2)가 0.20보다 작은 No.1에서는, 이와 같은 저영역 측의 큰 스퓨리어스가 나타나고 있었다. 이것은 음향 반사층(3)에서의 저음향 임피던스층(3a, 3c, 3e) 및 고음향 임피던스층(3b, 3d)의 두께가 얇기 때문에, 음향 반사층(3)의 반사율이 고주파수 측에서 높고, 공진 주파수 이하의 주파수 대역에서 반사율이 낮아지고 있는 것에 의한다고 생각된다.
한편, 도 8은 No.2의 임피던스 특성을 나타내고, 도 9는 No.4의 임피던스 특성을 나타내고 있지만, 도 8 및 도 9에 나타내는 바와 같이, 규격화 두께(T1, T2)가 0.20 및 0.30의 경우에는 스퓨리어스는 존재하지 않는다. 또한, 도 10은 No.5의 임피던스 특성을 나타내고 있지만, 도 10에 나타내는 바와 같이, 규격화 두께(T1, T2)가 0.325의 경우, 반공진 주파수보다도 고영역 측에 화살표(S2)로 나타내는 스퓨리어스가 나타나고 있다. 또한, 위상 특성(도시하지 않음)에서도 반공진 주파수보다도 조금 높은 주파수 측에서 상승이 확인되었다.
한편, 도 3, 도 4는, 표 2의 No.3의 조건의 특성을 나타내고 있다. 따라서, 표 2의 No.2의 조건과 No.4 사이의 조건이면, 스퓨리어스가 없는 양호한 특성이 얻어지고 있는 것을 알 수 있다.
여기서, 서로 이웃이 되는 저음향 임피던스층 및 고음향 임피던스층의 규격화 두께의 합계인 T1+T2는, 반사율이 높아지고 있는 주파수 대역의 중심 주파수에 크게 영향을 준다. 즉, T1+T2가 작으면 반사율이 높아지고 있는 중심 주파수가 높아지고, T1+T2가 크면 반사율이 높아지고 있는 중심 주파수는 낮아진다.
도 7의 조건 No.1의 경우에는 T1+T2가 작기 때문에, 반사율이 높아지고 있는 주파수 대역이 고주파 측에 있다. 이로써, 공진 주파수의 저주파 측의 반사율이 저하했기 때문에 스퓨리어스가 생겼다고 생각된다. 한편, 도 10의 조건 No.5의 경우에는 T1+T2가 크기 때문에, 반사율이 높아지고 있는 주파수 대역이 저주파 측에 있다. 이로써, 반공진 주파수의 고주파 측의 반사율이 저하했기 때문에, 스퓨리어스가 생겼다고 생각된다. 즉, 저음향 임피던스층(3a, 3c, 3e)의 규격화 두께(T1)와 고음향 임피던스층(3b, 3d)의 규격화 두께(T2)의 합계가, 0.40 이상, 0.60 이하의 범위 내이면, 스퓨리어스가 적은 양호한 특성을 얻을 수 있다.
상기 실험예 1 및 실험예 2에서는, 복수개의 저음향 임피던스층(3a, 3c, 3e)의 두께 및 복수개의 고음향 임피던스층(3b, 3d)의 두께는 모두 동일하게 설계했지만, 상기의 범위 내에서 다르게 해도 된다.
더욱이, 복수개의 저음향 임피던스층(3a, 3c, 3e)의 음향 임피던스는 동일하지 않더라도 된다. 단, 복수개의 저음향 임피던스층(3a, 3c, 3e)의 음향 임피던스는 동일한 것이 바람직하고, 그 경우에는, 같은 재료를 이용하여 복수개의 저음향 임피던스층(3a, 3c, 3e)을 용이하게 제작할 수 있다. 복수개의 고음향 임피던스층(3b, 3d)의 음향 임피던스는 달라도 되지만, 동일한 것이 마찬가지로 바람직하다.
또한, 탄성파 장치(1)에서는 압전체(4)의 두께는 0.2λ로 했지만 이에 한정되지 않고, 필요한 특성에 따라 바람직하게는, 1.0λ 이하의 범위 내에서 압전체(4)의 두께를 설정하면 된다.
IDT 전극(5)의 재료도 Al에 한하지 않고, 여러가지 금속 혹은 합금을 이용할 수 있다. 또한, 복수개의 금속막이 적층된 구조를 가지고 있어도 되고, 또한 밀착층이나 도전 보조층이 적층되어 있어도 된다. IDT 전극(5)은, 압전체(4) 상에 직접 형성되어 있어도 되고, 압전체(4) 상에 형성된 유전체막 상에 형성되는 등, 간접적으로 형성되어 있어도 된다. IDT 전극(5)에서의 각 전극층의 두께에 대해서도, 판파 S0 모드를 이용하는 한, 필요로 하는 특성에 따라 적절히 선택하면 된다.
또한, 음향 반사층(3)과 압전체(4)의 계면, 혹은 음향 반사층(3) 중의 저음향 임피던스층(3a, 3c, 3e)과 고음향 임피던스층(3b, 3d)의 계면에 밀착층으로서 Ti막 등이 형성되어 있어도 된다. 즉, 압전체(4)는 음향 반사층(3)에 직접 적층되어 있어도 되고, 간접적으로 적층되어 있어도 된다.
(실험예 3)
실험예 3에서는, 도 11에 나타내는 음향 반사층(23)을 전제로 했다. 도 11에 나타내는 바와 같이, 음향 반사층(23)에서 최상층 및 최하층에 반무한(半無限) 두께의 SiO2층(23A, 23B)을 배치했다. 이 SiO2층(23A)과 SiO2층(23B)의 사이에, 3층의 고음향 임피던스층(23b, 23d, 23f)과 2층의 저음향 임피던스층(23c, 23e)을 교대로 적층했다. 저음향 임피던스층(23c, 23e)은 SiO2로부터 이루어지고, 상기 식(1)에 의해 구해지는 탄성파의 기판 두께 방향 성분의 파장에 의해 규격화된 두께를 T1으로 했다. 고음향 임피던스층(23b, 23d, 23f)은 Pt로부터 이루어지고, 그 규격화 두께를 T2로 했다.
하기의 표 3에 나타내는 바와 같이, 저음향 임피던스층(23c, 23e)의 규격화 두께(T1) 및 고음향 임피던스층(23b, 23d, 23f)의 규격화 두께(T2)를 합계로 0.50으로 하고, 저음향 임피던스층 및 고음향 임피던스층의 두께를 다르게 하여 No.11~19의 탄성파 장치를 제작했다.
Figure pat00004
한편, 상기 규격화 두께(T1, T2)의 결정에 즈음하여, IDT 전극(5)의 전극지 피치로 정해지는 탄성파의 압전체(4)의 제1, 제2 주면(4a, 4b)과 평행인 방향의 파장은 2.0㎛으로 했다. 이 때, 반무한 두께의 최상층의 SiO2층으로부터 입력된 탄성파의 진폭과, 반사되며, 최상층의 SiO2층 중을 전파하는 탄성파의 진폭의 비를 반사율로 하고, 이 반사율의 주파수 의존성을 구했다.
T1 및 T2가 0.25, 상술한 표 2의 T1/(T1+T2)=0.50의 경우의 반사율의 주파수 의존성을 도 12에 나타낸다. 도 12의 특성은, US 특허출원 2004/0140869에 기재된 수법을, 본원의 구조에 적용하도록 일부 변경하여 구했다. 본원의 구조에서는 음향 반사층 내를 전파하는 탄성파의 파수의 두께 방향 성분은, 식(1)에서 구해지는 λz를 이용하고, 2π/λz로 나타내진다. US 특허출원 2004/0140869에서 두께 방향의 파수를 나타내고 있는 것은, 음향 반사층의 각 층 내에서의 위상 회전을 나타내고 있는 US 특허출원 2004/0140869 중의 식(2)에서의 ω/vi의 부분이다. 따라서, 이 부분을 2π/λz로 바꿔 놓고, 그 이외의 부분은 US 특허출원 2004/0140869에 기재된 방법을 이용함으로써 도 12의 특성을 구했다. 한편, 식(1)에서 이용되는 벌크파 음속 v는 횡파 벌크파의 값을 이용하고, 전파 방향의 파장 λx는 2.0㎛으로 했다.
도 12로부터 분명한 바와 같이, 약 3㎓에서 반사율이 최대로 되고 있다. 3㎓를 중심으로 어느 정도의 주파수 범위에서 반사율이 거의 1로 되고, 탄성파가 효과적으로 압전체(4)에 갇히고 있는 것을 알 수 있다.
상기 특성에서 반사율의 피크 값이 높은 만큼, 탄성파 장치(1)에서의 손실은 작아지고 있다고 생각된다. 따라서, 표 3의 각 No.의 탄성파 장치에서, 반사율의 주파수 의존성을 구하고, T1/(T1+T2)과 반사율 최댓값의 관계를 구했다. 이 관계를 도 13에 나타낸다. 도 13으로부터 분명한 바와 같이, 반사율의 최댓값은, T1/(T1+T2)이 0.50 부근에서 최대가 된다. 이것은, 저음향 임피던스층(23c, 23e) 및 고음향 임피던스층(23b, 23d, 23f)의 규격화 두께가, 0.25 즉 T1/(T1+T2)=0.50의 경우, 반사율이 가장 높아지기 때문이다. 그리고, T1/(T1+T2)은 0.50에서 멀어져 가면, 반사율이 서서히 낮아지고 손실이 커진다. T1/(T1+T2)이, 0.35 이상, 0.65 이하의 범위 내이면, 반사율이 충분히 높고, 지지 기판(2)에 누설되는 탄성파가 적어지기 때문에, 탄성파 장치(1)의 손실을 작게 할 수 있는 것을 알 수 있다.
이상에서, 판파 S0 모드를 이용하는 탄성파 장치에서, 서로 이웃이 되는 저음향 임피던스층 및 고음향 임피던스층의 규격화 두께의 합계(T1+T2)가, 0.40 이상, 0.60 이하이고, T1/(T1+T2)이 0.35 이상, 0.65 이하이면, 스퓨리어스가 적어지며, 손실을 작게 할 수 있다.
압전체(4)는 LiNbO3에 한정되지 않는다. 판파의 S0 모드로 여기 가능한 압전체이면 된다. 따라서, LiTaO3, AlN, ZnO 또는 Sc 등이 도프된 AlN 등이어도 된다.
또한, LiNbO3을 이용했을 경우, 그 오일러 각(φ, θ, ψ)을 변화시켰을 때의 S0 모드의 전기기계 결합계수 k2의 변화를 도 14~도 17에 나타낸다. 도 14~17 중에서, 전기기계 결합계수 k2이 큰 영역이 바람직하지만, 그 중에서도 k2이 0.04 이상이 되는 영역이 S0 모드를 강하게 여기시킬 수 있어 바람직하다. 그 중에서도, 오일러 각이 (0°±5°의 범위 내, 0°~150°, 90°±10°의 범위 내), (30°±5°의 범위 내, 90°±10°의 범위 내, 35°~180°), 또는 (30°±5°의 범위 내, 90°±10°의 범위 내, 0°∼5°)이면, 전기기계 결합계수 k2이 0.04 이상이 되고, S0 모드를 강하게 여기시키는 것을 할 수 있을 뿐 아니라, 결정(結晶)의 대칭성이 양호하기 때문에, 다른 모드가 여기되기 어렵고 바람직하다.
한편, LiTaO3의 결정 구조는, LiNbO3과 마찬가지로 삼방정계(三方晶系) 점군 3m이다. 그 때문에, 각 특성의 오일러 각의 의존성은 LiNbO3과 LiTaO3에서 유사하므로, LiTaO3을 이용했을 경우에도 상기와 마찬가지의 오일러 각의 범위가 바람직하다고 생각된다.
한편, 본 발명에서의 LiNbO3, LiTaO3의 오일러 각(φ, θ, ψ)은, 결정학적으로 등가이면 된다. 예를 들면, 문헌(일본 음향학회지 36권 3호, 1980년, 140∼145 페이지)에 의하면, LiTaO3, LiNbO3은 삼방정계 점군 3m에 속하는 결정이므로 이하의 식이 성립된다.
F(φ, θ, ψ)=F(60°+φ, -θ, ψ)
=F(60°-φ, -θ, 180°-ψ)
=F(φ, 180°+θ, 180°-ψ)
=F(φ, θ, 180°+ψ)
여기서, F는 전기기계 결합계수, 전파 손실, TCF, 파워 플로우 각, 내츄럴 방향성 등의 임의의 탄성파의 특성이다. 따라서, 실험예 1에 나타낸 오일러 각(90°, 90°, 40°)은, (30°, 90°, 140°)와 등가가 된다.
또한, AlN, ZnO, ScAlN 등을 압전체에 이용하는 경우는, S0 모드가 강하게 여기되는 방위로서, c축 배향면(配向面)이나, c축이 탄성파의 전파 방향으로 평행인 방위가 알려져 있고, 이들의 방위가 이용된다. 한편, AlN을 압전체로서 이용하는 경우는, S0 모드는 음속이 8000∼10000m/s 부근에서 여기된다. 압전체가 AlN인 경우에는, 전에 말한 방법에 의해 구한 음속이 8000∼10000m/s 부근이면, S0 모드를 사용하고 있다고 인정받는다.
또한 상기 실시형태에서는, 1포트형 탄성파 공진자에 대해 설명했지만, 본 발명은, 탄성파 공진자를 가지는 대역 통과형의 탄성파 필터이어도 된다. 그 경우에는, 상기 탄성파 장치의 동작 주파수로서는 탄성파 필터의 통과 대역의 중심 주파수를 이용하면 된다.
1: 탄성파 장치 2: 지지 기판
3: 음향 반사층 3a, 3c, 3e: 저음향 임피던스층
3b, 3d: 고음향 임피던스층 4: 압전체
4a, 4b: 제1, 제2 주면 5: IDT 전극
6, 7: 전극지 8, 9: 반사기
23: 음향 반사층 23b, 23d, 23f: 고음향 임피던스층
23c, 23e: 저음향 임피던스층 23A, 23B: SiO2
A: 고음향 임피던스층 B: 저음향 임피던스층
C: 고음향 임피던스층 Z1∼Z3: 경로

Claims (11)

  1. 판파(plate wave) S0 모드를 이용하는 탄성파 장치로서,
    지지 기판과,
    상기 지지 기판 상에 직접 또는 간접적으로 적층된 음향 반사층과,
    상기 음향 반사층 상에, 직접 또는 간접적으로 적층된 압전체와,
    상기 압전체 상에 직접 또는 간접적으로 마련된 IDT 전극을 포함하고,
    상기 음향 반사층은,
    상대적으로 음향 임피던스가 낮은, 적어도 1층의 저음향 임피던스층과,
    상대적으로 음향 임피던스가 높은, 적어도 1층의 고음향 임피던스층을 가지며,
    상기 음향 반사층에서, 상기 저음향 임피던스층 및 고음향 임피던스층이 적층 방향에서 서로 이웃하고 있는 부분 내의 적어도 하나의 부분에서, 상기 탄성파 장치의 동작 주파수에서의 상기 저음향 임피던스층 중을 전파하는 횡파 벌크파의 파장의 두께 방향의 성분으로 규격화한, 상기 저음향 임피던스층의 두께를 T1으로 하고, 상기 탄성파 장치의 동작 주파수에서의 상기 고음향 임피던스층 중을 전파하는 횡파 벌크파의 파장의 두께 방향의 성분으로 규격화한, 상기 고음향 임피던스층의 두께를 T2로 했을 때에, T1+T2가 0.40 이상, 0.60 이하이며,
    T1/(T1+T2)이 0.35 이상, 0.65 이하인 탄성파 장치.
  2. 제1항에 있어서,
    상기 탄성파 장치가 탄성파 공진자이고, 상기 탄성파 장치의 동작 주파수가 상기 탄성파 공진자의 공진 주파수인 탄성파 장치.
  3. 제1항에 있어서,
    상기 탄성파 장치가 대역 통과형 탄성파 필터이고, 상기 탄성파 장치의 상기 동작 주파수가 상기 탄성파 필터의 통과 대역의 중심 주파수인 탄성파 장치.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 저음향 임피던스층이 복수층 마련되어 있는 탄성파 장치.
  5. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 고음향 임피던스층이 복수층 마련되어 있는 탄성파 장치.
  6. 제4항에 있어서,
    상기 복수개의 저음향 임피던스층의 음향 임피던스가 동일한 탄성파 장치.
  7. 제5항에 있어서,
    상기 복수개의 고음향 임피던스층의 음향 임피던스가 동일한 탄성파 장치.
  8. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 압전체가 니오브산 리튬인 탄성파 장치.
  9. 제8항에 있어서,
    상기 압전체의 오일러 각이 (0°±5°의 범위 내, 0°∼150°, 90°±10°의 범위 내), (30°±5°의 범위 내, 90°±10°의 범위 내, 35°∼180°) 또는 (30°±5°의 범위 내, 90°±10°의 범위 내, 0°∼5°)인 탄성파 장치.
  10. 제1항 내지 제3항 중 어느 한 항에 기재된 탄성파 장치를 가지는 탄성파 필터와,
    상기 탄성파 필터에 접속된 파워 앰프를 포함하는 고주파 프론트 엔드 회로.
  11. 제1항 내지 제3항 중 어느 한 항에 기재된 탄성파 장치를 가지는 탄성파 필터 및 상기 탄성파 필터에 접속되어 있는 파워 앰프를 가지는 고주파 프론트 엔드 회로와,
    RF 신호 처리 회로를 포함하는 통신 장치.
KR1020200140869A 2018-02-07 2020-10-28 탄성파 장치, 고주파 프론트 엔드 회로 및 통신 장치 KR20200131188A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018020184A JP2019140456A (ja) 2018-02-07 2018-02-07 弾性波装置、高周波フロントエンド回路及び通信装置
JPJP-P-2018-020184 2018-02-07

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020190001539A Division KR102458076B1 (ko) 2018-02-07 2019-01-07 탄성파 장치, 고주파 프론트 엔드 회로 및 통신 장치

Publications (1)

Publication Number Publication Date
KR20200131188A true KR20200131188A (ko) 2020-11-23

Family

ID=67476156

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020190001539A KR102458076B1 (ko) 2018-02-07 2019-01-07 탄성파 장치, 고주파 프론트 엔드 회로 및 통신 장치
KR1020200140869A KR20200131188A (ko) 2018-02-07 2020-10-28 탄성파 장치, 고주파 프론트 엔드 회로 및 통신 장치

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020190001539A KR102458076B1 (ko) 2018-02-07 2019-01-07 탄성파 장치, 고주파 프론트 엔드 회로 및 통신 장치

Country Status (4)

Country Link
US (1) US11764755B2 (ko)
JP (1) JP2019140456A (ko)
KR (2) KR102458076B1 (ko)
CN (1) CN110120794B (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110572135B (zh) * 2019-09-17 2021-12-14 中国科学院上海微系统与信息技术研究所 高频声波谐振器及其制备方法
CN114467255A (zh) * 2019-09-27 2022-05-10 株式会社村田制作所 弹性波装置
KR20220051245A (ko) * 2019-09-27 2022-04-26 가부시키가이샤 무라타 세이사쿠쇼 탄성파 장치
CN112468109A (zh) * 2020-11-17 2021-03-09 上海师范大学 一种适用于高频、宽带声表面波器件的异质层状压电基底
CN116803003A (zh) * 2021-02-01 2023-09-22 株式会社村田制作所 弹性波装置
US20230216479A1 (en) * 2021-03-04 2023-07-06 Spectron (Shenzhen) Technologies Co., Ltd Acoustic resonator in transverse excitation shear mode
WO2022202616A1 (ja) * 2021-03-24 2022-09-29 株式会社村田製作所 弾性波装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017068827A1 (ja) 2015-10-23 2017-04-27 株式会社村田製作所 弾性波装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10262056B4 (de) 2002-11-07 2008-08-28 Infineon Technologies Ag BAW-Resonator mit akustischem Reflektor und Filterschaltung
US7307369B2 (en) * 2004-08-26 2007-12-11 Kyocera Corporation Surface acoustic wave device, surface acoustic wave apparatus, and communications equipment
WO2007060557A1 (en) * 2005-11-25 2007-05-31 Nxp B.V. Bulk acoustic wave resonator device
WO2012086441A1 (ja) * 2010-12-24 2012-06-28 株式会社村田製作所 弾性波装置及びその製造方法
CN103891139B (zh) * 2011-10-24 2016-08-24 株式会社村田制作所 弹性表面波装置
JP5850137B2 (ja) * 2012-03-23 2016-02-03 株式会社村田製作所 弾性波装置及びその製造方法
CN107636961B (zh) * 2015-06-22 2021-02-23 株式会社村田制作所 弹性波滤波器装置
DE112016003084B4 (de) 2015-07-06 2024-03-07 Murata Manufacturing Co., Ltd. Vorrichtung für elastische Wellen
WO2017068828A1 (ja) * 2015-10-23 2017-04-27 株式会社村田製作所 弾性波装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017068827A1 (ja) 2015-10-23 2017-04-27 株式会社村田製作所 弾性波装置

Also Published As

Publication number Publication date
US20190245510A1 (en) 2019-08-08
JP2019140456A (ja) 2019-08-22
KR102458076B1 (ko) 2022-10-24
CN110120794B (zh) 2023-06-27
CN110120794A (zh) 2019-08-13
KR20190095876A (ko) 2019-08-16
US11764755B2 (en) 2023-09-19

Similar Documents

Publication Publication Date Title
KR102458076B1 (ko) 탄성파 장치, 고주파 프론트 엔드 회로 및 통신 장치
KR102290079B1 (ko) 탄성파 장치
JP5503020B2 (ja) 横方向放射損失を低減させ,横方向モードの抑制により性能を高めた電気音響変換器
JP5046961B2 (ja) 高周波弾性波装置
WO2012086441A1 (ja) 弾性波装置及びその製造方法
US11177791B2 (en) High quality factor transducers for surface acoustic wave devices
WO2006114930A1 (ja) 弾性境界波装置
KR101913933B1 (ko) 탄성파 디바이스
US8427032B2 (en) Surface acoustic wave device
US7982365B2 (en) Elastic wave device and filter and electronic equipment using the device
JPWO2005086345A1 (ja) 弾性境界波装置
US11437973B2 (en) Surface acoustic wave device on composite substrate
JP2013168864A (ja) 弾性表面波素子及び電子部品
JP2011041127A (ja) 弾性波装置
CN114070257A (zh) 声波装置、滤波器及多路复用器
US20030071540A1 (en) Surface acoustic wave device and communication device
JP2002223143A (ja) 弾性表面波装置
JP2021158553A (ja) 弾性波デバイスおよびその製造方法、フィルタ、マルチプレクサおよびウエハ
JPS63198410A (ja) 表面横波共振器
JPS58188919A (ja) ラム波電子装置

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
WITB Written withdrawal of application