WO2011145544A1 - 流体ポンプ - Google Patents

流体ポンプ Download PDF

Info

Publication number
WO2011145544A1
WO2011145544A1 PCT/JP2011/061147 JP2011061147W WO2011145544A1 WO 2011145544 A1 WO2011145544 A1 WO 2011145544A1 JP 2011061147 W JP2011061147 W JP 2011061147W WO 2011145544 A1 WO2011145544 A1 WO 2011145544A1
Authority
WO
WIPO (PCT)
Prior art keywords
actuator
fluid pump
plate portion
center
diaphragm
Prior art date
Application number
PCT/JP2011/061147
Other languages
English (en)
French (fr)
Inventor
兒玉幸治
平田篤彦
大森健太
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44991647&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2011145544(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2012515871A priority Critical patent/JP5494801B2/ja
Priority to EP19208135.4A priority patent/EP3623624B1/en
Priority to KR1020127003949A priority patent/KR101333542B1/ko
Priority to EP11783478.8A priority patent/EP2557312B1/en
Priority to CN201180004549.2A priority patent/CN102597520B/zh
Publication of WO2011145544A1 publication Critical patent/WO2011145544A1/ja
Priority to US13/418,459 priority patent/US8747080B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/04Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms
    • F04B45/047Pumps having electric drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • F04B19/006Micropumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • F04B43/043Micropumps
    • F04B43/046Micropumps with piezoelectric drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/16Casings; Cylinders; Cylinder liners or heads; Fluid connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/11Kind or type liquid, i.e. incompressible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/12Kind or type gaseous, i.e. compressible
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S417/00Pumps

Definitions

  • the present invention relates to a fluid pump suitable for transporting a fluid such as gas or liquid.
  • Patent Document 1 discloses a conventional piezoelectric pump.
  • FIG. 1 is a diagram illustrating a pumping operation in the third-order resonance mode of the piezoelectric pump disclosed in Patent Document 1.
  • the pump body 10 the diaphragm 20 whose outer peripheral portion is fixed to the pump body 10, the piezoelectric element 23 attached to the center portion of the diaphragm 20, and the pump body 10 facing the substantially center portion of the diaphragm 20
  • a first opening 11 formed in the part and a second opening 12 formed in an intermediate area between the central part and the outer peripheral part of the diaphragm 20 or a part of the pump main body facing the intermediate area.
  • the piezoelectric element 23 is formed in a size that covers the first opening 11 and does not reach the second opening 12.
  • the first opening is formed.
  • the portion of the diaphragm 20 that faces the portion 11 and the portion of the diaphragm 20 that faces the second opening 12 are bent and deformed in opposite directions, and the first opening 11 and the second opening Suction fluid from one of the two, is intended to be discharged from the other.
  • a piezoelectric pump having a structure as shown in FIG. 1 has a simple structure and can be configured thinly, and is used, for example, as a pneumatic transport pump for a fuel cell system.
  • An object of the present invention is to provide a fluid pump having a small size and a low profile and high pumping capacity.
  • the conventional fluid pump has a structure that drives a diaphragm that can withstand pressure and the outer periphery of the diaphragm is fixed to the pump body. Is small.
  • the fluid pump of the present invention is configured as follows.
  • An actuator that is not substantially constrained in the periphery and bends and vibrates from the center to the periphery; and A plane portion arranged in close proximity to the actuator; One or a plurality of central vent holes disposed at or near the center of the actuator facing region facing the actuator of the planar portion; Is provided.
  • peripheral portion of the actuator (of course, the central portion) is not substantially constrained, there is little loss due to the bending vibration of the actuator, and a high pressure and a large flow rate can be obtained while being small and low-profile.
  • the actuator is disc-shaped, it is in a rotationally symmetric (concentric) vibration state, so that no unnecessary gap is generated between the actuator and the flat portion, and the operating efficiency of the pump is increased.
  • the center or the vicinity of the center is a thin plate portion capable of bending vibration
  • the peripheral portion is a thick plate portion substantially constrained.
  • a cover plate portion that is joined to the thick plate portion so as to face the thin plate portion and forms an internal space together with the thin plate portion and the thick plate portion is provided.
  • the cover plate portion includes the internal space and the fluid pump.
  • a ventilation groove was formed to communicate with the outside of the housing.
  • the cover plate portion can suppress generation of pressure waves and synthetic jet flow caused by vibration between the actuator and the thin plate portion of the flat portion in the vicinity of the central vent hole of the flat portion. Conceivable.
  • peripheral vent holes are provided in the peripheral portion of the actuator facing region, the positive pressure generated in the peripheral portion of the actuator facing region can be used, and suction / discharge is performed on the same surface. Is possible.
  • the gap between the actuator and the planar portion is automatically changed according to load fluctuations.
  • the gap can be positively increased to increase the flow rate.
  • the spring terminal bends and the gap between the actuator and the flat area is automatically reduced. It is possible to operate with pressure.
  • a position holding structure having an opening for positioning the actuator is provided on the flat portion, and the actuator is accommodated in the opening so that the actuator is not displaced by the flat portion. Can be prevented.
  • a high pressure and a large flow rate can be obtained with a small loss and a low profile with little loss due to bending vibration.
  • FIG. 1 is a diagram illustrating a pumping operation in the third-order resonance mode of the piezoelectric pump disclosed in Patent Document 1.
  • FIG. 2A is a central sectional view of the actuator 40 provided in the fluid pump according to the first embodiment.
  • FIG. 2B is a cross-sectional view of the main part of the fluid pump 101 according to the first embodiment.
  • FIG. 3A is a diagram illustrating the operating principle of the fluid pump 101.
  • FIG. 3B is a diagram illustrating the operating principle of the fluid pump 101.
  • FIG. 4 is a cross-sectional view of the main part of the fluid pump 102 according to the second embodiment.
  • FIG. 5 is a cross-sectional view of the main part of the fluid pump 103 according to the third embodiment.
  • FIG. 6 is an exploded perspective view of a part of the fluid pump according to the fourth embodiment.
  • FIG. 7 is a cross-sectional view of a main part of a fluid pump 104 according to the fourth embodiment.
  • FIG. 8 is an exploded perspective view of the fluid pump 105 according to the fifth embodiment.
  • FIG. 9 is a perspective view of the fluid pump 105.
  • FIG. 10 is a cross-sectional view of the main part of the fluid pump 105.
  • FIG. 11 is a PQ characteristic diagram when a negative pressure operation in which the discharge hole 55 of the fluid pump 105 according to the fifth embodiment is opened to the atmosphere and air is sucked from the central vent hole 52 is performed.
  • FIG. 11 is a PQ characteristic diagram when a negative pressure operation in which the discharge hole 55 of the fluid pump 105 according to the fifth embodiment is opened to the atmosphere and air is sucked from the central vent hole 52 is performed.
  • FIG. 12A is a diagram illustrating an example of a position holding structure of the actuator 40 of the fluid pump according to the sixth embodiment.
  • FIG. 12B is a diagram illustrating an example of a position holding structure of the actuator 40 of the fluid pump according to the sixth embodiment.
  • FIG. 13 is a cross-sectional view of a main part of a fluid pump 107 according to the seventh embodiment.
  • FIG. 14 is a cross-sectional view of a main part of a fluid pump 108 according to the eighth embodiment.
  • FIG. 15 is a cross-sectional view of a main part of a fluid pump 109 according to the ninth embodiment.
  • FIG. 16 is a cross-sectional view of a main part of a fluid pump 110 according to the tenth embodiment.
  • FIG. 13 is a cross-sectional view of a main part of a fluid pump 107 according to the seventh embodiment.
  • FIG. 14 is a cross-sectional view of a main part of a fluid pump 108 according to the eighth embodiment.
  • FIG. 17 is an exploded perspective view of the fluid pump 111 according to the eleventh embodiment.
  • FIG. 18 is a cross-sectional view of the main part of the fluid pump 111 according to the eleventh embodiment.
  • FIG. 19 is a PQ characteristic diagram when a negative pressure operation is performed in which the discharge hole 55 of the fluid pump 111 according to the eleventh embodiment is opened to the atmosphere and air is sucked from the central vent hole 52.
  • FIG. 2A is a central sectional view of the actuator 40 provided in the fluid pump according to the first embodiment.
  • FIG. 2B is a cross-sectional view of the main part of the fluid pump 101 according to the first embodiment when not driven.
  • the actuator 40 is obtained by attaching a disk-shaped piezoelectric element 42 to a disk-shaped diaphragm 41.
  • the diaphragm 41 is made of a metal such as stainless steel or phosphor bronze.
  • On the upper and lower surfaces of the piezoelectric element 42 almost the entire electrode film is formed. The electrode on the lower surface is electrically connected to the diaphragm 41. Or capacitively coupled.
  • a conductor wire is connected to the electrode on the upper surface, and a drive circuit is electrically connected to the conductor wire and the diaphragm 41, and a rectangular or sinusoidal drive voltage is applied.
  • the actuator 40 vibrates rotationally symmetrically (concentrically) from the center to the periphery.
  • the fluid pump 101 includes an actuator 40 and a flat portion 51 made of a metal plate such as stainless steel or phosphor bronze.
  • the actuator 40 is placed on (in contact with) the flat portion 51. Since the non-driving state is shown here, the actuator 40 seems to be fixed on the flat surface portion 51 in FIG. 2B, but the periphery of the actuator 40 is not constrained by the flat surface portion 51. At the time of non-driving, the actuator 40 is merely disposed so as to be in contact with the flat portion 51.
  • One central vent hole 52 is disposed at the center or in the vicinity of the center of the actuator facing region of the planar portion 51 facing the actuator 40 in the planar portion 51.
  • FIG. 3A and 3B are schematic diagrams showing the operation principle of the fluid pump 101.
  • the actuator is operated at a frequency of about 20 kHz, and the deformation amount of the actuator is exaggerated.
  • the actuator bends and deforms into an uneven shape.
  • FIG. 3A if the actuator 40 is bent and deformed upward, the gap between the peripheral portion of the actuator 40 and the flat portion 51 is increased. The gap is narrower than the gap between the central portion and the flat portion 51, and the pressure near the gap increases.
  • the gap between the central portion of the actuator 40 and the flat portion 51 is widened, and the pressure in the space between the central portion of the actuator 40 and the flat portion 51 becomes low (becomes negative pressure).
  • a fluid for example, air
  • the fluid flows from the pores 52.
  • the fluid tries to flow through the gap between the peripheral portion of the actuator 40 and the flat portion 51 or a little flows.
  • the gap between the peripheral portion of the actuator 40 and the flat portion 51 is narrow, and the flow path resistance of the gap is large. Therefore, the flow rate flowing from the outside through the central vent hole 52 becomes more dominant than the flow rate trying to flow from the gap between the peripheral portion of the actuator 40 and the flat portion 51, and flows through the central vent hole 52.
  • a predetermined amount of flow can be secured.
  • the gap between the central portion of the actuator 40 and the flat portion 51 becomes narrower than the gap between the peripheral portion and the flat portion 51. Nearby pressure increases.
  • the gap between the peripheral portion of the actuator 40 and the flat portion 51 widens, and the pressure between the peripheral portion of the actuator 40 and the flat portion 51 decreases. Therefore, the fluid flows from the space between the central portion of the actuator 40 and the flat portion 51 in the peripheral direction (radial direction). At this time, the fluid tends to flow backward from the central vent hole 52 or slightly flows backward.
  • the gap between the peripheral portion of the actuator 40 and the flat portion 51 is wide, and the flow path resistance of the gap is small. Therefore, the flow rate that flows out of the gap between the peripheral portion of the actuator 40 and the flat portion 51 is dominant over the flow rate that flows out of the central vent hole 52, and the flow rate that flows back to the outside through the central vent hole 52. Is suppressed.
  • the above actuator vibrates up and down several ⁇ m to several tens of ⁇ m at the center and periphery with the height of the center of gravity as the average height.
  • the above operation is repeated at a resonance frequency of the primary mode of the actuator 40, for example, a frequency of about 20 kHz, thereby performing a pump operation for sucking fluid from the central vent hole 52 and discharging it to the peripheral portion. Since the actuator 40 has a peripheral portion that is not held by the flat portion 51, a sufficient amplitude can be obtained even if the actuator 40 is small.
  • Both the pressure at the central portion of the actuator 40 and the pressure at the peripheral portion fluctuate with the bending vibration of the actuator 40.
  • a negative pressure is generated at the central portion and counteracts at the peripheral portion.
  • Proportional positive pressure is generated. Therefore, while the actuator 40 is being driven, the actuator 40 is held in the non-contact state in proximity to the flat surface portion 51.
  • the pressure in the central portion and the peripheral portion varies depending on the external pressure on the suction side and the discharge side. That is, it changes depending on the load fluctuation of the pump.
  • the average height of the actuator 40 with respect to the flat surface portion 51 decreases as the load increases, that is, as the pressure difference between the central portion and the peripheral portion of the actuator 40 increases.
  • a high load state that is, when pumping is performed by generating a large pressure difference, the gap between the actuator 40 and the flat part 51 may be reduced and the actuator 40 may contact the flat part 51. Even in this case, there is no hindrance to the pump operation.
  • a conventional fluid pump using a diaphragm as in Patent Document 1 has a peripheral portion of a diaphragm that bends and vibrates fixedly held by a flat surface in a restrained state.
  • the fluid pump of the present invention does not hold the peripheral portion of the actuator in a restrained state while using bending vibration, and causes the actuator to float non-contact by free vibration. This makes it possible to construct a fluid pump having a high pressure and a large flow rate with a small and low-profile structure that could not be obtained with a conventional fluid pump using a diaphragm.
  • peripheral portion of the actuator is not held by a flat portion, a sufficient amplitude can be obtained even if it is designed to have a high natural frequency, and it is designed to be resonantly driven in a non-audible range of 20 kHz or higher. Is also easy.
  • the flat portion 51, the actuator 40, and the gap are only stacked in the thickness direction, so that an extremely low-profile fluid pump of about 0.5 mm can be configured. .
  • the principle that the actuator 40 is held in a non-contact state is close to a phenomenon called a squeeze effect or a squeeze film effect, but in the present invention, since bending vibration is used, pressure is applied between the central part and the peripheral part. The difference is that the phase is different, and that the gap is autonomously adjusted according to the load variation of the pump while maintaining a non-contact state.
  • FIG. 4 is a cross-sectional view of the main part of the fluid pump 102 according to the second embodiment when not driven.
  • the fluid pump 102 includes an actuator 40 having a disk-shaped piezoelectric element 42 attached to a disk-shaped diaphragm 41 and a flat portion 51.
  • a spacer 53 and a lid portion 54 that surround the periphery of the actuator 40 are provided on the upper portion of the flat portion 51.
  • a discharge hole 55 is formed in the lid portion 54.
  • the actuator 40 is the same as that of the first embodiment, and its peripheral portion is not constrained by the flat portion 51. At the time of non-driving, the actuator 40 is merely disposed so as to be in contact with the flat portion 51.
  • the fluid pump 102 has both suction / discharge functions.
  • FIG. 5 is a cross-sectional view of the main part of the fluid pump 103 according to the third embodiment.
  • the fluid pump 103 includes an actuator 40 and a flat portion 51 made of a metal plate such as stainless steel or phosphor bronze. The periphery of the actuator 40 is not constrained by the flat portion 51.
  • the actuator 40 is merely disposed so as to be in contact with the flat portion 51.
  • One central air hole 52 is disposed at the center or near the center of the actuator facing region in the flat portion 51 of the flat portion 51 facing the actuator 40.
  • a plurality of peripheral vent holes 56A, 56B and the like are provided in the peripheral portion of the actuator facing region.
  • the pressure in the gap in the actuator facing region fluctuates momentarily with the bending vibration of the actuator 40 in both the central portion and the peripheral portion.
  • a negative pressure is generated in the central portion and counteracted in the peripheral portion.
  • a positive pressure that balances is generated, and while the actuator 40 is being driven, a state in which the positive pressure is close to the actuator facing region and held in a non-contact state is obtained. Therefore, by arranging the peripheral vent hole in the peripheral portion of the actuator facing region, positive pressure is generated in the peripheral vent hole.
  • peripheral air holes 56A, 56B, etc. are provided in the peripheral part of the actuator facing region, the positive pressure generated in the peripheral part can be used, and the difference from the negative pressure in the central part is used. Therefore, a larger pressure difference can be taken out. Therefore, the peripheral vent holes 56A, 56B and the like may be used as the pump discharge holes as they are, or the discharge holes of the housing (not shown) may be separately provided at one place and communicated with the peripheral vent holes for concentrated exhaust.
  • the peripheral vent hole is provided in the peripheral portion of the actuator facing region, the positive pressure generated in the peripheral portion can be used, and suction / discharge can be performed on the same surface.
  • FIG. 6 is an exploded perspective view of a part of the fluid pump 104 according to the fourth embodiment
  • FIG. 7 is a cross-sectional view of the main part of the fluid pump 104 according to the fourth embodiment.
  • a piezoelectric element 42 is attached to the upper surface of the disc-shaped diaphragm 41, and the diaphragm 41 and the piezoelectric element 42 constitute an actuator.
  • a diaphragm support frame 61 is provided around the diaphragm 41, and the diaphragm 41 is connected to the diaphragm support frame 61 by a connecting portion 62.
  • the connecting portion 62 is formed in a thin ring shape, and has an elastic structure with a small spring constant elasticity. Therefore, the diaphragm 41 is flexibly supported at two points with respect to the diaphragm support frame 61 by the two connecting portions 62. Therefore, the bending vibration of the diaphragm 41 is hardly disturbed. That is, the peripheral portion of the actuator (of course, the central portion) is not substantially restrained.
  • the spacer 53 ⁇ / b> A is provided to hold the diaphragm unit 60 with a certain gap from the flat portion 51. External terminals 63 for electrical connection are formed on the diaphragm support frame 61.
  • the diaphragm 41, the diaphragm support frame 61, the connecting portion 62, and the external terminal 63 are formed by punching a metal plate, and the diaphragm unit 60 is configured by these.
  • the diaphragm unit 60 is made of a material having a small difference in linear expansion coefficient from the piezoelectric element 42, for example, 42 nickel (42Ni-residual Fe).
  • a resin spacer 53B is bonded and fixed on the outer periphery of the diaphragm unit 60.
  • the thickness of the spacer 53B is the same as or slightly thicker than that of the piezoelectric element 42, constitutes a part of the housing, and electrically insulates the electrode conduction plate 70 and the diaphragm unit 60 described below.
  • a metal electrode conduction plate 70 is bonded and fixed on the spacer 53B.
  • the electrode conduction plate 70 includes a substantially circular opening, an internal terminal 73 protruding into the opening, and an external terminal 72 protruding outside.
  • the tip of the internal terminal 73 is soldered to the surface of the piezoelectric element 42.
  • the vibration of the internal terminal 73 can be suppressed.
  • a resin spacer 53C is bonded and fixed on the electrode conduction plate 70.
  • the spacer 53 ⁇ / b> C has the same thickness as the piezoelectric element 42.
  • a lid portion of a housing (not shown) is bonded and fixed on the spacer 53C, and a vent hole is provided in a part of the housing lid portion, from which fluid is discharged.
  • the spacer 53C is a spacer for preventing the solder portion of the internal terminal 73 from coming into contact with a housing lid portion (not shown) when the actuator vibrates.
  • the piezoelectric element 42 surface is prevented from excessively approaching a housing lid (not shown), and the vibration amplitude is prevented from lowering due to air resistance. Therefore, the thickness of the spacer 53C may be the same as that of the piezoelectric element 42 as described above.
  • a central vent 52 is formed at the center of the flat portion 51.
  • a spacer 53 ⁇ / b> A having a thickness of about several tens of ⁇ m is inserted between the flat portion 51 and the diaphragm unit 60.
  • the spacer 53A since it is somewhat affected by the restraint of the spring terminal, by inserting the spacer 53A in this way, it is possible to positively secure a gap and increase the flow rate at low loads. Further, even when the spacer 53A is inserted, the spring terminal bends under a high load, and the gap between the opposing regions of the actuator 40 and the flat surface portion 51 is automatically reduced, so that it can operate at a high pressure.
  • connection part 62 was provided in two places, you may provide in three or more places.
  • the connecting portion 62 does not disturb the vibration of the actuator 40, but has some influence on the vibration. For example, by connecting (holding) at three locations, more natural holding is possible, and cracking of the piezoelectric element is prevented. You can also
  • FIG. 8 is an exploded perspective view of the fluid pump 105 according to the fifth embodiment
  • FIG. 9 is a perspective view of the fluid pump 105
  • FIG. 10 is a cross-sectional view of the main part thereof.
  • the fluid pump 105 includes a substrate 91, a flat portion 51, a spacer 53A, a diaphragm unit 60, a reinforcing plate 43, a piezoelectric element 42, a spacer 53B, an electrode conduction plate 70, a spacer 53C, and a lid portion 54.
  • the configuration of the diaphragm unit 60, the piezoelectric element 42, the spacer 53A, the electrode conduction plate 70, and the spacer 53C is the same as that shown in FIG.
  • a reinforcing plate 43 is inserted between the piezoelectric element 42 and the vibration plate 41.
  • the reinforcing plate 43 is a metal plate having a larger linear expansion coefficient than the piezoelectric element 42 and the vibration plate 41, and is heated and cured at the time of bonding, so that an appropriate compressive stress remains in the piezoelectric element 42 without warping.
  • the piezoelectric element 42 can be prevented from cracking.
  • the diaphragm 41 may be made of a material having a small linear expansion coefficient such as 42 nickel (42Ni-residual Fe) or 36 nickel (36Ni-residual Fe), and the reinforcing plate 43 may be made of stainless steel SUS430 or the like.
  • the thickness of the spacer 53B is preferably the same as or a little thicker than the sum of the thickness of the piezoelectric element 42 and the reinforcing plate 43.
  • the diaphragm 41, the piezoelectric element 42, and the reinforcing plate 43 may be arranged in the order of the piezoelectric element 42, the diaphragm 41, and the reinforcing plate 43 from the top. Also in this case, the respective linear expansion coefficients are adjusted so that an appropriate compressive stress remains in the piezoelectric element 42.
  • a substrate 91 having a cylindrical opening 92 formed at the center is provided at the bottom of the flat portion 51.
  • a part of the flat portion 51 is exposed at the opening 92 of the substrate 91.
  • This circular exposed portion can vibrate at substantially the same frequency as that of the actuator 40 due to pressure fluctuation accompanying vibration of the actuator 40.
  • Due to the configuration of the flat portion 51 and the substrate 91, the center or the vicinity of the actuator facing region of the flat portion 51 is a thin plate portion capable of bending vibration, and the peripheral portion is a substantially constrained thick plate portion.
  • the natural frequency of the circular thin plate portion is designed to be the same as or slightly lower than the drive frequency of the actuator 40.
  • the exposed portion of the flat portion 51 centering on the central vent hole 52 also vibrates with a large amplitude. If the vibration phase of the plane part 51 is delayed (for example, delayed by 90 °) from the vibration phase of the actuator 40, the variation in the thickness of the gap space between the plane part 51 and the actuator 40 substantially increases. . As a result, the capacity of the pump can be further improved.
  • the lid 54 is placed on the upper portion of the spacer 53C and covers the periphery of the actuator 40. Therefore, the fluid sucked through the central vent hole 52 is discharged from the discharge hole 55.
  • the discharge hole 55 may be provided at the center of the lid portion 54, but is not required to be provided at the center of the lid portion 54 because it is a discharge hole that releases positive pressure in the casing including the lid portion 54.
  • the actuator 40 bends and vibrates, and the fluid is sucked from the central vent hole 52 on the bottom surface and discharged from the discharge hole 55.
  • FIG. 11 is a PQ characteristic diagram when a negative pressure operation in which the discharge hole 55 of the fluid pump 105 according to the fifth embodiment is opened to the atmosphere and air is sucked from the central vent hole 52 is performed.
  • the horizontal axis is the flow rate
  • the vertical axis is the pressure, which represents the case of driving at 30 Vp-p and the case of driving at 50 Vp-p.
  • the drive voltage is 90 Vp-p and the maximum pressure is 10 kPa and the maximum flow rate is about 0.02 liter / min. It can be seen that about twice the pressure and about ten times the flow rate can be obtained.
  • the fluid pump 105 according to the fifth embodiment can be used as a cathode air blower of a fuel cell, for example.
  • 12A and 12B are diagrams illustrating examples of the position holding structure of the actuator 40 of the fluid pump according to the sixth embodiment.
  • the sixth embodiment has a structure in which the position holding frame 80 surrounds the periphery of the actuator 40 of the fluid pump of the second embodiment.
  • the actuator 40 is housed in an opening 81 of a position holding frame 80 fixed on a flat surface (not shown).
  • a circular opening 81 is provided in the position holding frame 80, and the disc-shaped actuator 40 is disposed in the opening 81.
  • the inner diameter of the opening 81 is slightly larger than the outer diameter of the actuator 40. Therefore, the actuator 40 is accommodated in the opening 81 of the position holding frame 80 without being constrained in the periphery.
  • connection with the electrode of the piezoelectric element of the actuator 40 of FIG. 12A can also be performed through a conductor wire, for example. Thereby, even if the actuator 40 is driven without being substantially fixed to the flat surface portion, the actuator 40 can be prevented from being displaced.
  • the position is set so that the actuator 40 contacts at three points.
  • Three protrusions 82 are provided on the holding frame 80. These protrusions 82 have a clearance so that the three protrusions 82 do not contact the actuator 40 at the same time. Therefore, the actuator 40 is accommodated in the opening 82 of the position holding frame 80 without being constrained in the periphery. Thereby, even if the actuator 40 is driven without being substantially fixed to the flat surface portion, the actuator 40 can be prevented from being displaced.
  • the contact area between the actuator 40 and the position holding frame 80 is small, so that the impact of the actuator on the piezoelectric element can be reduced.
  • the thickness in the height direction of the position holding frame 80 in the sixth embodiment is preferably larger than the maximum displacement position of the peripheral portion of the actuator 40.
  • the electrical connection of the actuator 40 to the electrodes of the piezoelectric elements is not shown, but can be performed by connecting via an elastic conductor such as a conductor wire.
  • FIG. 13 is a cross-sectional view of a main part of a fluid pump 107 according to the seventh embodiment.
  • the fluid pump 107 includes an actuator 40 having a disk-shaped piezoelectric element 42 attached to a disk-shaped diaphragm 41 and a flat portion 51.
  • the actuator 40 is hold
  • a spacer 53 and a lid portion 54 that surround the periphery of the actuator 40 are provided on the upper portion of the flat portion 51.
  • a discharge hole 57 is formed in the spacer 53.
  • the actuator 40 bends and vibrates, fluid is sucked through the central vent hole 52 according to the principle described in the first embodiment.
  • the sucked fluid is discharged from the discharge hole 57. Therefore, the fluid pump 107 can be discharged (discharged) in a direction orthogonal to the thickness direction, that is, in a lateral direction.
  • FIG. 14 is a cross-sectional view of a main part of a fluid pump 108 according to the eighth embodiment.
  • the fluid pump 108 has a structure in which two fluid pumps 104 shown in the fourth embodiment are stacked. Here, a lid is formed. However, in this example, the flat portion of the upper pump also serves as the lid of the lower pump. The central vent hole 52B of the upper pump also serves as the discharge hole of the lower pump.
  • FIG. 15 is a cross-sectional view of a main part of a fluid pump 109 according to the ninth embodiment.
  • This fluid pump 109 has a structure in which four fluid pumps 107 shown in FIG. 13 are stacked.
  • inflow passages 58B, 58C, and 58D are provided so that the central vent holes 52A, 52B, 52C, and 52D are not blocked.
  • an outflow passage 59 for fluid discharged from each of the discharge holes 57A, 57B, 57C, 57D is provided.
  • FIG. 16 is a cross-sectional view of a main part of a fluid pump 110 according to the tenth embodiment.
  • This fluid pump 110 is an example in which two actuators 40A and 40B are provided in one casing.
  • the actuators 40A and 40B are each provided with a diaphragm support frame 61 having a connecting portion 62 having an elastic structure, and are held respectively.
  • a discharge hole 57 is formed in a part of the spacer 53.
  • the two actuators 40 ⁇ / b> A and 40 ⁇ / b> B bend and vibrate synchronously, they are simultaneously sucked from the central vent holes 52 ⁇ / b> A and 52 ⁇ / b> B and discharged from the discharge hole 57. Since two pumps are substantially built in, the flow rate is doubled compared to a fluid pump with a single actuator.
  • FIG. 17 is an exploded perspective view of the fluid pump 111 according to the eleventh embodiment.
  • FIG. 18 is a cross-sectional view of the main part of the fluid pump 111 according to the eleventh embodiment.
  • the fluid pump 111 according to this embodiment is different from the fluid pump 105 according to the fifth embodiment in the actuator 40 and the cover plate portion 95.
  • Other configurations are the same as those of the fluid pump 105.
  • the thickness of the spacer 53A is a length obtained by adding about several tens of ⁇ m to the thickness of the reinforcing plate 43.
  • the thickness of the spacer 53B is preferably the same as or slightly thicker than that of the piezoelectric element 42.
  • the actuator 40 has a structure in which a piezoelectric element 42, a vibration plate 41, and a reinforcing plate 43 are joined in this order from the top.
  • the cover plate portion 95 is obtained by joining the flow path plate 96 and the cover plate 99.
  • the cover plate portion 95 is joined to the thick plate portion so as to face the thin plate portion, and forms an internal space 94 together with the thin plate portion and the thick plate portion.
  • the thin plate portion is a circular central portion of the flat portion 51 exposed in the opening 92 of the substrate 91 in FIG.
  • the thin plate portion vibrates at substantially the same frequency as that of the actuator 40 due to pressure fluctuation accompanying vibration of the actuator 40.
  • the thick plate portion is a portion composed of the outer peripheral portion and the substrate 91 that are more peripheral than the central portion in the flat portion 51.
  • the cover plate portion 95 is formed with a ventilation groove 97 that communicates the internal space 94 with the outside of the casing of the fluid pump 111.
  • the actuator 40 bends and vibrates when a driving voltage is applied to the external terminals 63 and 72, and air is sucked from the vent groove 97 through the central vent hole 52 and discharged from the discharge hole 55.
  • FIG. 19 is a PQ characteristic diagram when a negative pressure operation is performed in which the discharge hole 55 of the fluid pump 111 according to the eleventh embodiment is opened to the atmosphere and air is sucked from the central vent hole 52.
  • the flow rate and pressure were measured when a fluid pump 111 having a structure provided with a cover plate portion 95 and a fluid pump having a structure excluding the cover plate portion 95 from the fluid pump 111 were driven at 30 Vp-p. The experimental results are shown.
  • the fluid pump with the structure in which the cover plate portion 95 is removed from the fluid pump 111 has the maximum pressure of 18 kPa and the maximum flow rate of 0.195 l / min, whereas the fluid pump provided with the cover plate portion 95 In 111, it is clear that the capacity is improved up to a maximum pressure of 40 kPa and a maximum flow rate of 0.235 L / min.
  • the present invention is not limited to an actuator provided with a piezoelectric element, but can be applied to an actuator provided with an actuator that bends and vibrates by electromagnetic drive.
  • the actuator may be driven in the audible sound frequency band in an application where generation of audible sound does not matter.
  • the fluid pump having the discharge hole may perform a negative pressure operation in which the discharge hole is opened to the atmosphere and air is sucked from the center vent hole. May be opened to the atmosphere, and a positive pressure operation may be performed in which air is sent out from the discharge holes.
  • the frequency of the drive voltage is determined so that the actuator 40 vibrates in the primary mode.
  • the frequency of the drive voltage is set so that the actuator 40 vibrates in other modes such as the tertiary mode. It may be determined.
  • a disk-shaped piezoelectric element and a disk-shaped diaphragm are used, but one of them may be rectangular or polygonal.
  • the fluid to be sucked or sucked / discharged is not limited to gas but may be liquid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Abstract

 小型低背でポンプ能力の高い流体ポンプ(101)を構成する。流体ポンプ(101)はアクチュエータ(40)と金属板による平面部(51)とで構成されている。アクチュエータ(40)は円板状の振動板(41)に円板状の圧電素子(42)が貼着されたものである。矩形波または正弦波状の駆動電圧が印加されることによってアクチュエータ(40)は中心部から周辺部にかけて屈曲振動する。アクチュエータ(40)は、その周辺部が拘束されていない。アクチュエータ(40)は平面部(51)に近接対向した状態で屈曲振動する。平面部(51)のうちアクチュエータ(40)と対向するアクチュエータ対向領域の中心又は中心付近には中心通気孔(52)が配置されている。

Description

流体ポンプ
 本発明は、気体や液体等の流体を輸送するのに適した流体ポンプに関するものである。
 特許文献1に従来の圧電ポンプが開示されている。図1は特許文献1の圧電ポンプの3次共振モードでのポンピング動作を示す図である。ポンプ本体10と、外周部がポンプ本体10に対して固定されたダイヤフラム20と、このダイヤフラム20の中央部に貼り付けられた圧電素子23と、ダイヤフラム20の略中央部と対向するポンプ本体10の部位に形成された第1開口部11と、ダイヤフラム20の中央部と外周部との中間領域又はこの中間領域と対向するポンプ本体の部位に形成された第2開口部12とを備え、ダイヤフラム20は金属板であり、圧電素子23は第1開口部11を覆い、且つ第2開口部12まで達しない大きさに形成され、圧電素子23に所定周波数の電圧を印加することにより、第1開口部11に対向するダイヤフラム20の部分と第2開口部12に対向するダイヤフラム20の部分とを相反方向に屈曲変形させ、第1開口部11および第2開口部12の一方から流体を吸込み、他方から吐出するものである。
国際公開第2008/069264号パンフレット
 図1に示したような構造の圧電ポンプは、構造が簡単で薄型に構成でき、例えば燃料電池システムの空気輸送用ポンプとして用いられる。
 ところが、組み込み先の電子機器は常に小型化の傾向があり、それに伴いポンプの能力(流量と圧力)を低下させることなく更なる小型化が要求される。また、組み込み先の電子機器の電源電圧の低下に伴い、駆動電圧も低電圧化が要求される。小型化する程、また駆動電圧を低くする程、ポンプの能力(流量と圧力)は低下するので、ポンプの能力を維持しつつ小型化しようとすれば、又は大型化することなくポンプの能力を高めようとすれば、従来構造の流体ポンプでは限界があった。
 また、ダイヤフラムを備えた従来構造の流体ポンプにおいて、流量を大きくするにはダイヤフラムを大きくすることが有効であるが、流体ポンプ全体のサイズが大きくなるだけでなく、適する動作周波数が低いため可聴音が発生するという問題も生じる。
 本発明の目的は、小型低背でポンプ能力の高い流体ポンプを提供することにある。
 従来の流体ポンプは、圧力に耐えうる硬さをもつダイヤフラムを駆動させ、かつ、ダイヤラムの外周部がポンプ本体に固定されている構造であるため、駆動電圧が高いわりに、得られる圧力が小さく流量が小さい。この点に鑑みて、本発明の流体ポンプは次のように構成する。
 周辺部が実質的に拘束されていなくて、中心部から周辺部にかけて屈曲振動するアクチュエータと、
 前記アクチュエータに近接対向して配置される平面部と、
 前記平面部のうち前記アクチュエータと対向するアクチュエータ対向領域の中心又は中心付近に配置された1つまたは複数の中心通気孔と、
を備える。
 このように、アクチュエータの周辺部が(勿論中心部も)実質的に拘束されていないので、アクチュエータの屈曲振動に伴う損失が少なく、小型・低背でありながら高い圧力と大きな流量が得られる。
 前記アクチュエータは円板状とすれば、回転対称形(同心円状)の振動状態となるため、アクチュエータと平面部との間に不要な隙間が発生せず、ポンプとしての動作効率が高まる。
 前記平面部におけるアクチュエータ対向領域のうち、例えば中心又は中心付近が屈曲振動可能な薄板部であり、周辺部が実質的に拘束された厚板部とする。
 この構造によれば、アクチュエータの振動に伴い、通気孔を中心とした対向面の薄板部分が振動するため、実質的に振動振幅を増すことができ、そのことにより圧力と流量を増加させることができる。
 また、前記薄板部と対向して前記厚板部と接合され、前記薄板部および前記厚板部とともに内部空間を形成するカバー板部を備え、前記カバー板部には、前記内部空間と流体ポンプ筐体の外部とを連通させる通気溝が形成された。
 この構造によれば、発生可能な圧力と流量、即ちポンプ能力を大幅に向上させることができる。この構造では、平面部の中心通気孔付近における、アクチュエータと平面部の薄板部との振動に起因する圧力波や、シンセティックジェットの流れの発生をカバー板部により抑制することができるためであると考えられる。
 また、前記アクチュエータ対向領域の周辺部分に、1つまたは複数の周辺通気孔を備えれば、アクチュエータ対向領域の周辺部分で発生している正圧を利用することができ、同一面で吸引/吐出が可能となる。
 また、前記アクチュエータは、当該アクチュエータと前記平面部との間に一定の隙間をあけて弾性構造により保持する構成とすれば、負荷変動に応じてアクチュエータと平面部との隙間を自動的に変化させることができる。たとえばアクチュエータに対して低負荷時には積極的に隙間を確保して流量を増大させることができ、高付加時にはバネ端子がたわんでアクチュエータと平面部との対向領域の隙間が自動的に減少し、高い圧力で動作することが可能である。
 また、前記平面部上に前記アクチュエータを位置決めする開口部を有する位置保持構造を設け、前記アクチュエータは前記開口部内に収められていることで、アクチュエータを平面部に拘束することなく、アクチュエータの位置ずれすることを防ぐことができる。
 本発明によれば、屈曲振動に伴う損失が少なく、小型・低背でありながら高い圧力と大きな流量が得られる。
図1は特許文献1の圧電ポンプの3次共振モードでのポンピング動作を示す図である。 図2Aは第1の実施形態に係る流体ポンプに備えるアクチュエータ40の中央断面図である。 図2Bは第1の実施形態に係る流体ポンプ101の主要部の断面図である。 図3Aは流体ポンプ101の動作原理を示す図である。 図3Bは流体ポンプ101の動作原理を示す図である。 図4は第2の実施形態に係る流体ポンプ102の主要部の断面図である。 図5は第3の実施形態に係る流体ポンプ103の主要部の断面図である。 図6は第4の実施形態に係る流体ポンプの一部の分解斜視図である。 図7は第4の実施形態に係る流体ポンプ104の主要部の断面図である。 図8は第5の実施形態に係る流体ポンプ105の分解斜視図である。 図9は流体ポンプ105の斜視図である。 図10は流体ポンプ105の主要部の断面図である。 図11は第5の実施形態に係る流体ポンプ105の吐出孔55を大気開放して中心通気孔52から空気を吸引する負圧動作をさせた場合のP-Q特性図である。 図12Aは、第6の実施形態に係る流体ポンプのアクチュエータ40の位置保持構造の例を示す図である。 図12Bは、第6の実施形態に係る流体ポンプのアクチュエータ40の位置保持構造の例を示す図である。 図13は第7の実施形態に係る流体ポンプ107の主要部の断面図である。 図14は第8の実施形態に係る流体ポンプ108の主要部の断面図である。 図15は第9の実施形態に係る流体ポンプ109の主要部の断面図である。 図16は第10の実施形態に係る流体ポンプ110の主要部の断面図である。 図17は第11の実施形態に係る流体ポンプ111の分解斜視図である。 図18は第11の実施形態に係る流体ポンプ111の主要部の断面図である。 図19は第11の実施形態に係る流体ポンプ111の吐出孔55を大気開放して中心通気孔52から空気を吸引する負圧動作をさせた場合のP-Q特性図である。
 《第1の実施形態》
 図2Aは第1の実施形態に係る流体ポンプに備えるアクチュエータ40の中央断面図である。図2Bは第1の実施形態に係る流体ポンプ101の主要部の非駆動時の断面図である。アクチュエータ40は円板状の振動板41に円板状の圧電素子42を貼着したものである。振動板41は例えばステンレススチールやりん青銅等の金属製である。圧電素子42の上下面にはそれぞれほぼ全面の電極膜が形成されている。下面の電極は振動板41と電気的に導通している。または容量結合している。上面の電極には導体線が接続され、この導体線と振動板41とに駆動回路が電気的に接続され、矩形波状または正弦波状の駆動電圧が印加される。アクチュエータ40は中心部から周辺部にかけて回転対称形(同心円状)の屈曲振動する。
 図2Bに示すように、流体ポンプ101はアクチュエータ40とステンレススチールやりん青銅等の金属板による平面部51とで構成されている。アクチュエータ40は平面部51上に載置されている(接触している)。ここでは非駆動時を表しているため、図2Bではアクチュエータ40は平面部51上に固定されているように見えるが、アクチュエータ40は、その周辺部が平面部51に拘束されていない。非駆動時にはアクチュエータ40は平面部51上に接触して対向配置されているにすぎない。平面部51のうちアクチュエータ40と対向する平面部51のアクチュエータ対向領域の中心又は中心付近には一つの中心通気孔52が配置されている。
 図3A、図3Bは流体ポンプ101の動作原理を示す模式図である。但し、例えば20kHz程度の周波数で動作させた例であり、アクチュエータの変形量は誇張している。
 アクチュエータに電圧を印加させることによりアクチュエータが凹凸に屈曲変形するが、先ず、図3Aに示すようにアクチュエータ40が上に凸に屈曲変形すれば、アクチュエータ40の周辺部と平面部51との間隙が中央部と平面部51との間隙に比べて狭まり、その間隙付近の圧力が高まる。一方、アクチュエータ40の中央部と平面部51との間隙が広がり、アクチュエータ40の中央部と平面部51との間の空間の圧力が低くなって(負圧となって)、この空間に中心通気孔52から流体(例えば空気)が流入する。このとき、アクチュエータ40の周辺部と平面部51との間隙を通して流体が流れ込もうとするか又は少しは流れ込む。しかし、アクチュエータ40の周辺部と平面部51との間隙は狭く、その間隙の流路抵抗は大きい。そのためアクチュエータ40の周辺部と平面部51との間隙から流れこもうとする流量よりも、外部から中心通気孔52を通って流入する流量が支配的になり、中心通気孔52を通って流入する流量を所定量確保できる。
 次に、図3Bに示すようにアクチュエータ40が下に凸に屈曲変形すれば、アクチュエータ40の中央部と平面部51との間隙が周辺部と平面部51との間隙に比べて狭まり、その間隙付近の圧力が高まる。一方、アクチュエータ40の周辺部と平面部51との間隙が広がり、アクチュエータ40の周辺部と平面部51との間の圧力が低下する。そのため、アクチュエータ40の中央部と平面部51との間の空間から周辺方向(放射方向)へ流体が流れる。このとき、中心通気孔52から外部方向へ流体が逆流しようとするか又は少しは逆流する。しかし、アクチュエータ40の周辺部と平面部51との間隙は広く、その間隙の流路抵抗は小さい。そのため中心通気孔52から流れ出ようとする流量よりも、アクチュエータ40の周辺部と平面部51との間隙から流れ出ようとする流量が支配的になり、中心通気孔52を通って外部へ逆流する流量は抑えられる。
 上記アクチュエータは重心の高さを平均高さとして中心部と周辺部が数μm~数10μm上下に振動する。
 上記の動作をアクチュエータ40の1次モードの共振周波数、例えば20kHz程度の周波数で繰り返すことにより、中心通気孔52から流体を吸引し、周辺部へ吐出するポンプ動作を行う。アクチュエータ40は、その周辺部が平面部51に保持されていないので、小型でも充分な振幅を得ることができる。
 アクチュエータ40の中心部の圧力も周辺部の圧力も、アクチュエータ40の屈曲振動に伴い刻々と変動するが、時間平均して見れば、中心部では負圧が発生し、周辺部ではそれに対抗して釣り合う正圧が発生する。そのため、アクチュエータ40が駆動している間は、アクチュエータ40が平面部51に近接して非接触状態で保持される。但し、中心部と周辺部の圧力は、吸引側、吐出側の外部圧力によって変化する。すなわちポンプの負荷変動に依存して変化する。
 図2A、図2Bに示した流体ポンプ101では、高負荷になるほど、すなわちアクチュエータ40の中心部と周辺部の圧力差が大きくなるほど、平面部51に対するアクチュエータ40の平均高さが低くなる。高負荷状態、すなわち大きい圧力差を発生させてポンプ動作している場合には、アクチュエータ40と平面部51との隙間が減少してアクチュエータ40が平面部51に接触する場合もあるが、このような場合でもポンプ動作に支障はない。
 特許文献1のようにダイヤフラムを用いた従来の流体ポンプは、屈曲振動するダイヤフラムの周辺部が平面部に拘束状態で固定保持されたものである。これに対し本発明の流体ポンプは、屈曲振動を用いながらも、アクチュエータの周辺部を拘束状態には保持せず、自由振動により非接触浮上させる。このことで、ダイヤフラムを用いた従来の流体ポンプでは得られなかった、小型・低背構造で高い圧力と大きな流量をもつ流体ポンプが構成できる。また、アクチュエータの周辺部を平面部で保持していないので、高い固有振動数となるように設計しても充分な振幅を得ることができ、20kHz以上の非可聴域で共振駆動させるような設計も容易である。
 図2A、図2Bに示した流体ポンプによれば、厚み方向に平面部51、アクチュエータ40及び間隙分が積層されるだけであるので、例えば0.5mm程度の極めて低背な流体ポンプが構成できる。
 なお、アクチュエータ40が非接触状態で保持される原理は、いわゆるスクイズ効果やスクイズ膜効果と呼ばれる現象に近いが、本発明では屈曲振動を利用しているため、中心部と周辺部とで圧力の位相が異なることや、非接触状態を維持しながらポンプの負荷変動に応じて自律的に隙間が調整される、という点で異なる。
《第2の実施形態》
 図4は第2の実施形態に係る流体ポンプ102の主要部の非駆動時の断面図である。この流体ポンプ102は円板状の振動板41に円板状の圧電素子42を貼着したアクチュエータ40と平面部51を備えている。平面部51の上部にはアクチュエータ40の周囲を囲むスペーサ53及び蓋部54を設けている。蓋部54には吐出孔55を形成している。アクチュエータ40は、実施例1と同様であり、その周辺部が平面部51に拘束されていない。非駆動時には、アクチュエータ40は平面部51上に接触して対向配置されているにすぎない。
 アクチュエータ40が屈曲振動すると、第1の実施形態で述べた原理により、中心通気孔52を通して流体が吸引される。この吸引された流体は吐出孔55から吐出される。したがって、この流体ポンプ102は吸引/吐出の両方の機能を備える。
《第3の実施形態》
 図5は第3の実施形態に係る流体ポンプ103の主要部の断面図である。流体ポンプ103はアクチュエータ40とステンレススチールやりん青銅等の金属板による平面部51とで構成されている。アクチュエータ40は、その周辺部が平面部51に拘束されていない。
非駆動時にはアクチュエータ40は平面部51上に接触して対向配置されているにすぎない。平面部51のうちアクチュエータ40と対向する平面部51におけるアクチュエータ対向領域の中心又は中心付近には一つの中心通気孔52が配置されている。また、同アクチュエータ対向領域の周辺部分に複数の周辺通気孔56A,56B等を備えている。
 アクチュエータ対向領域の隙間の圧力は、中心部、周辺部ともに、アクチュエータ40の屈曲振動に伴い刻々と変動するが、時間平均して見れば、中心部では負圧を発生し、周辺部ではそれに対抗して釣り合う正圧を発生して、アクチュエータ40が駆動している間はアクチュエータ対向領域に近接して非接触で保持する状態が得られる。従って、アクチュエータ対向領域のうち周辺部分に周辺通気孔を配置することで、周辺通気孔に正圧が発生する。
 このように、アクチュエータ対向領域の周辺部に周辺通気孔56A,56B等を備えれば、周辺部で発生している正圧を利用することができ、中心部での負圧との差を利用できるため、より大きな圧力差を取り出すことができる。そのため、周辺通気孔56A,56B等をそのままポンプの吐出孔としてもよいし、図示しない筺体の吐出孔を別に一箇所に設け、周辺通気孔に連通させて集中排気する構成にしてもよい。
 このように、アクチュエータ対向領域の周辺部分に周辺通気孔を備えれば、周辺部で発生している正圧を利用することができ、同一面で吸引/吐出が可能となる。
 但し、アクチュエータ40の中心部と周辺部の圧力差が小さくなる低負荷時には、周辺部の隙間が減少して圧力損失が大きくなるため、第1・第2の実施形態と比較して流量は減少する傾向がある。
《第4の実施形態》
 図6は第4の実施形態に係る流体ポンプ104の一部の分解斜視図、図7は第4の実施形態に係る流体ポンプ104の主要部の断面図である。
 円板状の振動板41の上面には圧電素子42が貼着されて、この振動板41と圧電素子42とによってアクチュエータが構成される。
 振動板41の周囲には振動板支持枠61が設けられていて、振動板41は振動板支持枠61に対して連結部62で連結されている。連結部62は細いリング状に形成されたものであり、小さなバネ定数の弾性をもたせて弾性構造としている。したがって振動板41は二つの連結部62で振動板支持枠61に対して2点で柔軟に支持されている。そのため、振動板41の屈曲振動を殆ど妨げない。すなわち、アクチュエータの周辺部が(勿論中心部も)実質的に拘束されていない状態となっている。スペーサ53Aは振動板ユニット60を平面部51と一定の隙間をあけて保持するために設けられる。振動板支持枠61には電気的に接続するための外部端子63が形成されている。
 振動板41、振動板支持枠61、連結部62及び外部端子63は金属板の打ち抜き加工により成形されていて、これらによって振動板ユニット60が構成されている。
 圧電素子42の線膨張係数に合わせて、振動板ユニット60は圧電素子42と線膨張係数の差が小さい材料、たとえば42ニッケル(42Ni-残Fe)で構成している。これにより、接着時の加熱硬化に伴う反りの発生を抑制できる。
 振動板ユニット60の外周部の上には、樹脂製のスペーサ53Bが接着固定されている。スペーサ53Bの厚さは圧電素子42と同じか少し厚く、筺体の一部を構成するとともに、次に述べる電極導通用板70と振動板ユニット60とを電気的に絶縁する。
 スペーサ53Bの上には、金属製の電極導通用板70が接着固定されている。電極導通用板70はほぼ円形の開口と、この開口内に突出する内部端子73と、外部へ突出する外部端子72とで構成されている。
 内部端子73の先端は圧電素子42の表面にはんだ付けされる。はんだ付け位置をアクチュエータの屈曲振動の節に相当する位置とすることにより内部端子73の振動は抑制できる。
 電極導通用板70の上には、樹脂製のスペーサ53Cが接着固定される。スペーサ53Cはここでは圧電素子42と同程度の厚さを有する。スペーサ53Cの上には、図示しない筺体の蓋部が接着固定され、筺体蓋部の一部には通気孔が設けられていて、そこから流体が吐出される。スペーサ53Cは、アクチュエータが振動したときに、内部端子73のはんだ部分が、図示しない筺体蓋部に接触しないようにするためのスペーサである。また、圧電素子42表面が図示しない筺体蓋部に過度に接近して、空気抵抗により振動振幅の低下するのを防止する。そのため、スペーサ53Cの厚さは、前述のとおり、圧電素子42と同程度の厚さであればよい。
 平面部51の中心には中心通気孔52が形成されている。この平面部51と振動板ユニット60との間に厚さ数10μm程度のスペーサ53Aが挿入されている。このように、スペーサ53Aが存在しても、振動板41は振動板支持枠61に拘束されているわけではないので、負荷変動に応じて間隙は自動的に変化する。但し、バネ端子の拘束の影響を多少は受けるので、このようにスペーサ53Aを挿入することで、低負荷時には積極的に隙間を確保して流量を増大することができる。また、スペーサ53Aを挿入した場合でも、高負荷時にはバネ端子がたわんで、アクチュエータ40と平面部51との対向領域の隙間が自動的に減少し、高い圧力で動作することが可能である。
 なお、図6に示した例では、連結部62を二箇所に設けたが、三箇所以上に設けてもよい。連結部62はアクチュエータ40の振動を妨げるものではないが、振動に多少の影響を与えるため、例えば三箇所で連結(保持)することにより、より自然な保持が可能となり、圧電素子の割れを防止することもできる。
《第5の実施形態》
 図8は第5の実施形態に係る流体ポンプ105の分解斜視図、図9は流体ポンプ105の斜視図、図10はその主要部の断面図である。
 この流体ポンプ105は、基板91、平面部51、スペーサ53A、振動板ユニット60、補強板43、圧電素子42、スペーサ53B、電極導通用板70、スペーサ53C及び蓋部54を備えている。これらの部材のうち、振動板ユニット60、圧電素子42、スペーサ53A、電極導通用板70及びスペーサ53Cの構成は図6に示したものと同様である。
 圧電素子42と振動板41との間には補強板43を挿入している。補強板43を圧電素子42および振動板41よりも線膨張係数の大きな金属板としておき、接着時に加熱硬化させることにより、全体が反ることなく、圧電素子42に適切な圧縮応力を残留させることができ、圧電素子42の割れを防止できる。例えば、振動板41を42ニッケル(42Ni-残Fe)または36ニッケル(36Ni-残Fe)など線膨張係数の小さな材料とし、補強板43をステンレススチールSUS430などとするのがよい。補強板を用いる場合には、スペーサ53Bの厚さは、圧電素子42と補強板43の厚さを加えたものと同じか、少し厚くしておくとよい。なお、振動板41、圧電素子42、補強板43については、上から圧電素子42、振動板41、補強板43の順に配置してもよい。この場合も圧電素子42に適切な圧縮応力が残留するように、それぞれの線膨張係数が調整されている。
 平面部51の下部には、中心に円筒形の開口部92が形成された基板91が設けられている。平面部51の一部は基板91の開口部92で露出する。この円形の露出部は、アクチュエータ40の振動に伴う圧力変動により、アクチュエータ40と実質的に同一周波数で振動することができる。この平面部51と基板91との構成により、平面部51のアクチュエータ対向領域の中心又は中心付近は屈曲振動可能な薄板部であり、周辺部は実質的に拘束された厚板部となる。この円形の薄板部の固有振動数は、アクチュエータ40の駆動周波数と同一か、やや低い周波数になるように設計している。従って、アクチュエータ40の振動に呼応して、中心通気孔52を中心とした平面部51の露出部も大きな振幅で振動する。平面部51の振動位相がアクチュエータ40の振動位相よりも遅れた(例えば90°遅れの)振動となれば、平面部51とアクチュエータ40との間の隙間空間の厚さ変動が実質的に増加する。そのことによってポンプの能力をより向上させることができる。
 蓋部54はスペーサ53Cの上部に被せられ、アクチュエータ40の周囲を覆う。そのため、中心通気孔52を通して吸引された流体は吐出孔55から吐出される。吐出孔55は蓋部54の中心に設けてもよいが、蓋部54を含む筐体内の正圧を開放する吐出孔であるので、蓋部54の中心に設ける必要はない。
 図9に表れている外部端子63,72に駆動電圧を印加することによって前記アクチュエータ40が屈曲振動し、底面の中心通気孔52から流体が吸引され、吐出孔55から吐出される。
 図11は第5の実施形態に係る流体ポンプ105の吐出孔55を大気開放して中心通気孔52から空気を吸引する負圧動作をさせた場合のP-Q特性図である。横軸は流量、縦軸は圧力であり、30Vp-pで駆動した場合と50Vp-pで駆動した場合とについて表している。ダイヤフラムを用いた従来構造の流体ポンプにおいては、ほぼ同一サイズとしたとき駆動電圧90Vp-pで最大圧力10kPa、最大流量0.02 l/min程度の能力であったのに対し、その半分の駆動電圧で、約2倍の圧力、約10倍の流量が得られることが分かる。
 第5の実施形態に係る流体ポンプ105は例えば燃料電池のカソード空気ブロアとして用いることができる。
《第6の実施形態》
 図12A、図12Bは、第6の実施形態に係る流体ポンプのアクチュエータ40の位置保持構造の例を示す図である。この第6の実施形態は、第2の実施形態の流体ポンプのアクチュエータ40の周辺を位置保持枠80で囲む構造を有するものである。アクチュエータ40は平面部(図示せず)上に固定された位置保持枠80の開口部81内に、収められている。
 図12Aの例では、位置保持枠80に円形の開口部81を設け、この開口部81内に円板状のアクチュエータ40を配置している。開口部81の内径はアクチュエータ40の外径より僅かに大きい。そのため、アクチュエータ40は周辺が拘束されることなく、位置保持枠80の開口部81内に収まる。
 なお、図12Aのアクチュエータ40の圧電素子の電極との接続は例えば導体線を介して行うこともできる。これによりアクチュエータ40を実質的に平面部に固定せずに駆動をしたとしても、アクチュエータ40が位置ずれすることを防げる。
 図12Bの例では、位置保持枠80にほぼ円形の開口部81を設け、この開口部81内に円板状のアクチュエータ40を配置した際に、アクチュエータ40を3点で接触するように、位置保持枠80に3つの突起82を設けている。これらの突起82は、それら3つの突起82がアクチュエータ40に同時に接しないようにクリアランスを持たせている。そのため、アクチュエータ40は周辺が拘束されることなく、位置保持枠80の開口部82内に収まる。これによりアクチュエータ40を実質的に平面部に固定せずに駆動をしたとしても、アクチュエータ40が位置ずれすることを防げる。また、突起82が形成されているため、アクチュエータ40と位置保持枠80との接触面積が小さいので、アクチュエータの圧電素子への衝撃を少なくすることができる。なお、第6の実施形態における上記位置保持枠80の高さ方向の厚みは、アクチュエータ40の周辺部の最大変位位置よりも大きいことが好ましい。また、アクチュエータ40の圧電素子の電極に対する電気的接続は図示されていないが、例えば導体線等の弾性を有する導体を介して接続して行うことができる。
《第7の実施形態》
 図13は第7の実施形態に係る流体ポンプ107の主要部の断面図である。この流体ポンプ107は円板状の振動板41に円板状の圧電素子42を貼着したアクチュエータ40と平面部51を備えている。なお、アクチュエータ40は第4及び第5の実施形態のように、弾性構造である連結部62を有する振動板支持枠61により保持されている。平面部51の上部にはアクチュエータ40の周囲を囲むスペーサ53及び蓋部54を設けている。スペーサ53には吐出孔57を形成している。
 アクチュエータ40が屈曲振動すると、第1の実施形態で述べた原理により、中心通気孔52を通して流体が吸引される。この吸引された流体は吐出孔57から吐出される。したがって、この流体ポンプ107は厚み方向に対して直交方向、すなわち側方に吐出(吐出)させることができる。
《第8の実施形態》
 図14は第8の実施形態に係る流体ポンプ108の主要部の断面図である。この流体ポンプ108は、第4の実施形態で示した流体ポンプ104を二つ積層した構造である。なお、ここでは蓋部が形成されている。但し、この例は、上部のポンプの平面部が下部のポンプの蓋部を兼ねている。また、上部のポンプの中心通気孔52Bが下部のポンプの吐出孔を兼ねている。
 このように二つの流体ポンプを直列に連結することによって、単一の流体ポンプに比べて、流量は変わらないが、吸引・吐出の圧力が2倍となる。同様にして、直列接続するポンプの数をN個にすることによって、吸引・吐出の圧力をN倍にすることができる。その場合も平面部と蓋部を兼用することができ、全体にコンパクトな構成とすることができる。
《第9の実施形態》
 図15は第9の実施形態に係る流体ポンプ109の主要部の断面図である。この流体ポンプ109は、図13に示した流体ポンプ107を4つ積層した構造である。但し、各中心通気孔52A,52B,52C,52Dが閉塞されないように、流入路58B,58C,58Dを設けている。また、各吐出孔57A,57B,57C,57Dから吐出される流体の流出路59を設けている。
 このように4つの流体ポンプを並列に連結することによって、単一の流体ポンプに比べて、吸引・吐出の圧力は変わらないが、流量が4倍となる。
《第10の実施形態》
 図16は第10の実施形態に係る流体ポンプ110の主要部の断面図である。この流体ポンプ110は、一つの筐体内に二つのアクチュエータ40A,40Bを設けた例である。なお、アクチュエータ40A及び40Bは、第4及び第5の実施形態のように、弾性構造である連結部62を有する振動板支持枠61がそれぞれ設けられており、それぞれ保持されている。スペーサ53の一部に吐出孔57が形成されている。このような構造により、平面部51Aとアクチュエータ40Aとによってポンプ動作し、平面部51Bとアクチュエータ40Bとによってポンプ動作する。二つのアクチュエータ40A,40Bは同期して屈曲振動するので、中心通気孔52A,52Bから同時に吸気され、吐出孔57から吐出される。実質的に二つのポンプが内蔵されているので、単一のアクチュエータを備えた流体ポンプに比べて流量が2倍になる。
《第11の実施形態》
 図17は第11の実施形態に係る流体ポンプ111の分解斜視図である。図18は第11の実施形態に係る流体ポンプ111の主要部の断面図である。この実施形態に係る流体ポンプ111が第5の実施形態に係る流体ポンプ105と相違する点は、アクチュエータ40とカバー板部95である。その他の構成については、流体ポンプ105と同じである。
 なお、スペーサ53Aの厚みは、補強板43の厚みに数10μm程度を加えた長さである。また、スペーサ53Bの厚みは、圧電素子42の厚みと同じか、少し厚くするのが好ましい。
 詳述すると、まず、アクチュエータ40は、上から圧電素子42、振動板41、補強板43の順に接合された構造となっている。
 次に、カバー板部95は、流路板96及びカバー板99を接合したものである。カバー板部95は薄板部と対向して厚板部と接合されており、薄板部および厚板部とともに内部空間94を形成する。ここで、当該薄板部は、上述したように、図10において基板91の開口部92で露出する、平面部51の円形の中央部である。当該薄板部は、アクチュエータ40の振動に伴う圧力変動により、アクチュエータ40と実質的に同一周波数で振動する。また、当該厚板部は、上述したように、平面部51における当該中央部より外周の外周部と基板91とからなる部分である。
 また、カバー板部95には、内部空間94と流体ポンプ111の筐体の外部とを連通させる通気溝97が形成されている。
 この実施形態では、外部端子63,72に駆動電圧を印加することによってアクチュエータ40が屈曲振動し、通気溝97から中心通気孔52を介して空気が吸引され、吐出孔55から吐出される。
 図19は第11の実施形態に係る流体ポンプ111の吐出孔55を大気開放して中心通気孔52から空気を吸引する負圧動作をさせた場合のP-Q特性図である。この図では、カバー板部95を設けた構造の流体ポンプ111とこの流体ポンプ111からカバー板部95を除いた構造の流体ポンプとを、30Vp-pで駆動した場合における流量と圧力を測定した実験結果を表している。
 実験により、流体ポンプ111からカバー板部95を除いた構造の流体ポンプでは、最大圧力18kPa、最大流量0.195 l/minの能力であったのに対し、カバー板部95を設けた流体ポンプ111では最大圧力40kPa、最大流量0.235 l/minまで能力が向上することが明らかとなっている。
 以上の実験結果は、平面部51の中心通気孔52付近において、アクチュエータ40と平面部51の中央部(即ち薄板部)との振動に起因する圧力波や、シンセティックジェットの流れの発生を、カバー板部95を設けることにより、抑制できたためであると考えられる。また、これ以外にも、カバー板部95を設けることで、平面部51の中央部の振動の位相や振動振幅の中心が変位することなど、種々の要因が想定される。
 以上より、この実施形態に係る流体ポンプ111によれば、発生可能な圧力と流量、即ちポンプ能力を大幅に向上させることができる。
《他の実施形態》
 以上の各実施形態ではユニモルフ型で屈曲振動するアクチュエータを設けたが、振動板の両面に圧電素子を貼着してバイモルフ型で屈曲振動するように構成してもよい。
 また、本発明は圧電素子を備えたアクチュエータに限らず、電磁駆動で屈曲振動するアクチュエータを備えたものにも適用できる。
 また、以上の各実施形態では、圧電素子と振動板との大きさをほぼ等しくした例を示したが、圧電素子より振動板のほうが大きくてもよい。
 また、本発明は可聴音の発生が問題とならない用途では、可聴音周波数帯域でアクチュエータを駆動してもよい。
 また、以上の各実施形態では、平面部51のアクチュエータ対向領域の中心付近に1個の中心通気孔52を配置した例を示したが、アクチュエータ対向領域の中心付近に複数の中心通気孔を配置してもよい。
 また、以上の各実施形態において、吐出孔を有する流体ポンプは、その吐出孔を大気開放して、中心通気孔から空気を吸引する負圧動作を行ってもよいし、逆に、中心通気孔を大気開放して、吐出孔から空気を送り出す正圧動作を行ってもよい。
 また、以上の各実施形態では、アクチュエータ40が1次モードで振動させるように駆動電圧の周波数を定めたが、アクチュエータ40を3次モード等の他のモードで振動させるように駆動電圧の周波数を定めてもよい。
 また、以上の各実施形態では円板状の圧電素子及び円板状の振動板を用いたが、これらは一方が矩形又は多角形であってもよい。
 なお、吸引する、又は吸引/吐出する流体は気体に限らず液体であってもよい。
 40  アクチュエータ
 40A,40B  アクチュエータ
 41  振動板
 42  圧電素子
 43  補強板
 51  平面部
 51A,51B  平面部
 52  中心通気孔
 52A,52B,52C,52D  中心通気孔
 53  スペーサ
 53A,53B,53C  スペーサ
 54  蓋部
 55  吐出孔
 56A,56B  周辺通気孔
 57  吐出孔
 57A,57B,57C,57D  吐出孔
 58B,58C,58D  流入路
 59  流出路
 60  振動板ユニット
 61  振動板支持枠
 62  連結部
 63,72  外部端子
 70  電極導通用板
 73  内部端子
 80  位置保持枠
 81  開口部
 91  基板
 92  開口部
 94  内部空間
 95  カバー板部
 96  流路板
 97  通気溝
 99  カバー板
 101~105  流体ポンプ
 107~110  流体ポンプ
 111  流体ポンプ

Claims (7)

  1.  周辺部が実質的に拘束されていなくて、中心部から周辺部にかけて屈曲振動するアクチュエータと、
     前記アクチュエータに近接対向して配置される平面部と、
     前記平面部のうち前記アクチュエータと対向するアクチュエータ対向領域の中心又は中心付近に配置された1つまたは複数の中心通気孔と、
    を備えた流体ポンプ。
  2.  前記アクチュエータは円板状である、請求項1に記載の流体ポンプ。
  3.  前記アクチュエータ対向領域は、中心又は中心付近が屈曲振動可能な薄板部であり、周辺部が実質的に拘束された厚板部である、請求項1又は2に記載の流体ポンプ。
  4.  前記薄板部と対向して前記厚板部と接合され、前記薄板部および前記厚板部とともに内部空間を形成するカバー板部を備え、
     前記カバー板部には、前記内部空間と流体ポンプ筐体の外部とを連通させる通気溝が形成された、請求項3に記載の流体ポンプ。
  5.  前記アクチュエータ対向領域の周辺部分に、1つまたは複数の周辺通気孔を備えた、請求項1乃至4の何れかに記載の流体ポンプ。
  6.  前記アクチュエータは、当該アクチュエータと前記平面部との間に一定の隙間をあけて弾性構造により保持されている、請求項1乃至5の何れかに記載の流体ポンプ。
  7.  前記平面部上に前記アクチュエータを位置決めする開口部を有する位置保持構造が設けられ、前記アクチュエータは前記開口部内に収められている、請求項1乃至5の何れかに記載の流体ポンプ。
PCT/JP2011/061147 2010-05-21 2011-05-16 流体ポンプ WO2011145544A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2012515871A JP5494801B2 (ja) 2010-05-21 2011-05-16 流体ポンプ
EP19208135.4A EP3623624B1 (en) 2010-05-21 2011-05-16 Fluid pump
KR1020127003949A KR101333542B1 (ko) 2010-05-21 2011-05-16 유체 펌프
EP11783478.8A EP2557312B1 (en) 2010-05-21 2011-05-16 Fluid pump
CN201180004549.2A CN102597520B (zh) 2010-05-21 2011-05-16 流体泵
US13/418,459 US8747080B2 (en) 2010-05-21 2012-03-13 Fluid pump

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-117546 2010-05-21
JP2010117546 2010-05-21
JP2011022627 2011-02-04
JP2011-022627 2011-02-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/418,459 Continuation US8747080B2 (en) 2010-05-21 2012-03-13 Fluid pump

Publications (1)

Publication Number Publication Date
WO2011145544A1 true WO2011145544A1 (ja) 2011-11-24

Family

ID=44991647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061147 WO2011145544A1 (ja) 2010-05-21 2011-05-16 流体ポンプ

Country Status (6)

Country Link
US (1) US8747080B2 (ja)
EP (2) EP2557312B1 (ja)
JP (2) JP5494801B2 (ja)
KR (1) KR101333542B1 (ja)
CN (1) CN102597520B (ja)
WO (1) WO2011145544A1 (ja)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013084909A1 (ja) * 2011-12-09 2013-06-13 株式会社村田製作所 気体制御装置
JP2013245649A (ja) * 2012-05-29 2013-12-09 Omron Healthcare Co Ltd 圧電ポンプおよびこれを備えた血圧情報測定装置
WO2015125843A1 (ja) * 2014-02-21 2015-08-27 株式会社村田製作所 流体制御装置およびポンプ
US20160038699A1 (en) * 2013-04-24 2016-02-11 Murata Manufacturing Co., Ltd. Cuff pressure controller device
JP2016519612A (ja) * 2013-03-14 2016-07-07 ゼネラル・エレクトリック・カンパニイ シンセティックジェットサスペンション構造
JP6065160B2 (ja) * 2014-05-20 2017-01-25 株式会社村田製作所 ブロア
WO2017038565A1 (ja) * 2015-08-31 2017-03-09 株式会社村田製作所 ブロア
WO2017061349A1 (ja) * 2015-10-05 2017-04-13 株式会社村田製作所 流体制御装置、減圧装置、および、加圧装置
JP2017132119A (ja) * 2016-01-27 2017-08-03 東芝テック株式会社 インクジェット記録装置
JP2017135974A (ja) * 2016-01-29 2017-08-03 研能科技股▲ふん▼有限公司 圧電アクチュエータ
CN107654358A (zh) * 2012-04-19 2018-02-02 株式会社村田制作所 流体控制装置
JP2018112188A (ja) * 2017-01-13 2018-07-19 研能科技股▲ふん▼有限公司 エアモータ
JP2019065844A (ja) * 2017-09-30 2019-04-25 研能科技股▲ふん▼有限公司 流体装置の制御方法
JP2019065847A (ja) * 2017-09-29 2019-04-25 研能科技股▲ふん▼有限公司 流体システム
US10371136B2 (en) 2016-01-29 2019-08-06 Microjet Technology Co., Ltd. Miniature pneumatic device
US10388849B2 (en) 2016-01-29 2019-08-20 Microjet Technology Co., Ltd. Piezoelectric actuator
US10451051B2 (en) 2016-01-29 2019-10-22 Microjet Technology Co., Ltd. Miniature pneumatic device
JP2020032724A (ja) * 2019-10-24 2020-03-05 東芝テック株式会社 インク供給装置
US10584695B2 (en) 2016-01-29 2020-03-10 Microjet Technology Co., Ltd. Miniature fluid control device
US10655620B2 (en) 2016-11-10 2020-05-19 Microjet Technology Co., Ltd. Miniature fluid control device
US10683861B2 (en) 2016-11-10 2020-06-16 Microjet Technology Co., Ltd. Miniature pneumatic device
US10746169B2 (en) 2016-11-10 2020-08-18 Microjet Technology Co., Ltd. Miniature pneumatic device
WO2020261686A1 (ja) * 2019-06-27 2020-12-30 株式会社村田製作所 ポンプ装置
JP2021045979A (ja) * 2020-12-24 2021-03-25 東芝テック株式会社 インク供給装置
JPWO2021079629A1 (ja) * 2019-10-21 2021-04-29
WO2021186860A1 (ja) * 2020-03-18 2021-09-23 株式会社村田製作所 アクチュエータ、流体制御装置、および、アクチュエータの製造方法
US11293429B2 (en) 2017-02-27 2022-04-05 Murata Manufacturing Co., Ltd. Fluid control device
WO2023132250A1 (ja) * 2022-01-07 2023-07-13 オムロンヘルスケア株式会社 ポンプの構造体

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2204582B1 (de) * 2008-12-15 2011-02-16 Siemens Aktiengesellschaft Schwingmembranlüfter mit gekoppelten Teileinheiten, und Gehäuse mit einem derartigen Schwingmembranlüfter
JP5528404B2 (ja) 2011-09-06 2014-06-25 株式会社村田製作所 流体制御装置
JP5505559B2 (ja) * 2011-10-11 2014-05-28 株式会社村田製作所 流体制御装置、流体制御装置の調整方法
JP5907322B1 (ja) * 2014-07-11 2016-04-26 株式会社村田製作所 吸引装置
WO2016008154A1 (zh) * 2014-07-18 2016-01-21 科际精密股份有限公司 负压伤口治疗仪
JP6327368B2 (ja) * 2015-01-28 2018-05-23 株式会社村田製作所 バルブ、流体制御装置
KR102219482B1 (ko) * 2015-03-03 2021-02-25 한국전자통신연구원 반도체 소자
TWI557321B (zh) * 2015-06-25 2016-11-11 科際精密股份有限公司 壓電泵及其操作方法
US10378529B2 (en) 2016-01-29 2019-08-13 Microjet Technology Co., Ltd. Miniature pneumatic device
US10487820B2 (en) 2016-01-29 2019-11-26 Microjet Technology Co., Ltd. Miniature pneumatic device
US10487821B2 (en) 2016-01-29 2019-11-26 Microjet Technology Co., Ltd. Miniature fluid control device
EP3203081B1 (en) 2016-01-29 2021-06-16 Microjet Technology Co., Ltd Miniature fluid control device
US9976673B2 (en) 2016-01-29 2018-05-22 Microjet Technology Co., Ltd. Miniature fluid control device
EP3203079B1 (en) 2016-01-29 2021-05-19 Microjet Technology Co., Ltd Piezoelectric actuator
US10529911B2 (en) 2016-01-29 2020-01-07 Microjet Technology Co., Ltd. Piezoelectric actuator
JP6292359B2 (ja) 2016-02-01 2018-03-14 株式会社村田製作所 気体制御装置
TWI642850B (zh) 2017-08-21 2018-12-01 研能科技股份有限公司 氣體循環控制裝置
TWI683960B (zh) * 2017-09-15 2020-02-01 研能科技股份有限公司 氣體輸送裝置
TWI689665B (zh) * 2017-09-15 2020-04-01 研能科技股份有限公司 氣體輸送裝置
WO2019111922A1 (ja) * 2017-12-08 2019-06-13 株式会社村田製作所 ポンプ
TWI635291B (zh) * 2017-12-29 2018-09-11 研能科技股份有限公司 微型丙酮檢測裝置
CN109695562A (zh) * 2018-05-25 2019-04-30 常州威图流体科技有限公司 一种流体泵及激振元件
US11464140B2 (en) 2019-12-06 2022-10-04 Frore Systems Inc. Centrally anchored MEMS-based active cooling systems
US11710678B2 (en) 2018-08-10 2023-07-25 Frore Systems Inc. Combined architecture for cooling devices
TWI695934B (zh) * 2019-03-29 2020-06-11 研能科技股份有限公司 微機電泵浦
CN109869302A (zh) * 2019-04-04 2019-06-11 常州威图流体科技有限公司 一种垂直支承微型压电泵
WO2021086873A1 (en) * 2019-10-30 2021-05-06 Frore System Inc. Mems-based airflow system
TWI747076B (zh) * 2019-11-08 2021-11-21 研能科技股份有限公司 行動裝置散熱組件
US11510341B2 (en) 2019-12-06 2022-11-22 Frore Systems Inc. Engineered actuators usable in MEMs active cooling devices
US11796262B2 (en) 2019-12-06 2023-10-24 Frore Systems Inc. Top chamber cavities for center-pinned actuators
TW202144677A (zh) * 2020-05-19 2021-12-01 研能科技股份有限公司 流體傳輸致動器
CN113685337B (zh) * 2020-05-19 2023-06-16 研能科技股份有限公司 流体传输致动器
US11765863B2 (en) 2020-10-02 2023-09-19 Frore Systems Inc. Active heat sink
US11692776B2 (en) * 2021-03-02 2023-07-04 Frore Systems Inc. Mounting and use of piezoelectric cooling systems in devices

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008069264A1 (ja) * 2006-12-09 2008-06-12 Murata Manufacturing Co., Ltd. 圧電ポンプ
WO2008111397A1 (ja) * 2007-03-12 2008-09-18 Murata Manufacturing Co., Ltd. 流体移送装置
JP2009103111A (ja) * 2007-10-25 2009-05-14 Sony Corp 冷却装置及び電子機器
JP2009121323A (ja) * 2007-11-14 2009-06-04 Daikin Ind Ltd 送風ファン
WO2009148008A1 (ja) * 2008-06-03 2009-12-10 株式会社村田製作所 圧電マイクロブロア
JP2010084527A (ja) * 2008-09-29 2010-04-15 Murata Mfg Co Ltd 圧電ポンプ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01174278A (ja) * 1987-12-28 1989-07-10 Misuzu Erii:Kk インバータ
JPH02149880U (ja) * 1989-05-23 1990-12-21
JP2007154784A (ja) * 2005-12-06 2007-06-21 Sony Corp 噴流発生装置及び電子機器
EP2090781B1 (en) 2006-12-09 2018-08-22 Murata Manufacturing Co. Ltd. Piezoelectric micro-blower
JP2009156253A (ja) * 2007-12-05 2009-07-16 Star Micronics Co Ltd ポンプ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008069264A1 (ja) * 2006-12-09 2008-06-12 Murata Manufacturing Co., Ltd. 圧電ポンプ
WO2008111397A1 (ja) * 2007-03-12 2008-09-18 Murata Manufacturing Co., Ltd. 流体移送装置
JP2009103111A (ja) * 2007-10-25 2009-05-14 Sony Corp 冷却装置及び電子機器
JP2009121323A (ja) * 2007-11-14 2009-06-04 Daikin Ind Ltd 送風ファン
WO2009148008A1 (ja) * 2008-06-03 2009-12-10 株式会社村田製作所 圧電マイクロブロア
JP2010084527A (ja) * 2008-09-29 2010-04-15 Murata Mfg Co Ltd 圧電ポンプ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2557312A4 *

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013084909A1 (ja) * 2011-12-09 2015-04-27 株式会社村田製作所 気体制御装置
US9482221B2 (en) 2011-12-09 2016-11-01 Murata Manufacturing Co., Ltd. Gas control apparatus
WO2013084909A1 (ja) * 2011-12-09 2013-06-13 株式会社村田製作所 気体制御装置
CN107654358A (zh) * 2012-04-19 2018-02-02 株式会社村田制作所 流体控制装置
CN107654358B (zh) * 2012-04-19 2020-02-21 株式会社村田制作所 流体控制装置
JP2013245649A (ja) * 2012-05-29 2013-12-09 Omron Healthcare Co Ltd 圧電ポンプおよびこれを備えた血圧情報測定装置
CN104302913A (zh) * 2012-05-29 2015-01-21 欧姆龙健康医疗事业株式会社 压电泵和具有该压电泵的血压信息测量装置
US9433359B2 (en) 2012-05-29 2016-09-06 Omron Healthcare Co., Ltd. Piezoelectric pump and blood-pressure information measurement device provided therewith
DE112013002723B4 (de) 2012-05-29 2021-09-23 Omron Healthcare Co., Ltd. Piezoelektrische Pumpe und Blutdruckinformation-Messeinrichtung, welche dazu geliefert wird
JP2016519612A (ja) * 2013-03-14 2016-07-07 ゼネラル・エレクトリック・カンパニイ シンセティックジェットサスペンション構造
US10773040B2 (en) * 2013-04-24 2020-09-15 Murata Manufacturing Co., Ltd. Cuff pressure controller device
US20160038699A1 (en) * 2013-04-24 2016-02-11 Murata Manufacturing Co., Ltd. Cuff pressure controller device
US10480502B2 (en) 2014-02-21 2019-11-19 Murata Manufacturing Co., Ltd. Fluid control device and pump
US11598330B2 (en) 2014-02-21 2023-03-07 Murata Manufacturing Co., Ltd. Fluid control device and pump
WO2015125843A1 (ja) * 2014-02-21 2015-08-27 株式会社村田製作所 流体制御装置およびポンプ
US10890171B2 (en) 2014-02-21 2021-01-12 Murata Manufacturing Co., Ltd. Fluid control device and pump
JP6065160B2 (ja) * 2014-05-20 2017-01-25 株式会社村田製作所 ブロア
WO2017038565A1 (ja) * 2015-08-31 2017-03-09 株式会社村田製作所 ブロア
GB2557088A (en) * 2015-08-31 2018-06-13 Murata Manufacturing Co Blower
US11661935B2 (en) 2015-08-31 2023-05-30 Murata Manufacturing Co., Ltd. Blower
JPWO2017038565A1 (ja) * 2015-08-31 2018-04-05 株式会社村田製作所 ブロア
US10947965B2 (en) 2015-08-31 2021-03-16 Murata Manufacturing Co., Ltd. Blower
GB2557088B (en) * 2015-08-31 2021-05-19 Murata Manufacturing Co Blower
JPWO2017061349A1 (ja) * 2015-10-05 2018-05-17 株式会社村田製作所 流体制御装置、減圧装置、および、加圧装置
WO2017061349A1 (ja) * 2015-10-05 2017-04-13 株式会社村田製作所 流体制御装置、減圧装置、および、加圧装置
US10794378B2 (en) 2015-10-05 2020-10-06 Murata Manufacturing Co., Ltd. Fluid control device, decompression device, and compression device
JP2017132119A (ja) * 2016-01-27 2017-08-03 東芝テック株式会社 インクジェット記録装置
US10371136B2 (en) 2016-01-29 2019-08-06 Microjet Technology Co., Ltd. Miniature pneumatic device
US10584695B2 (en) 2016-01-29 2020-03-10 Microjet Technology Co., Ltd. Miniature fluid control device
JP2017135974A (ja) * 2016-01-29 2017-08-03 研能科技股▲ふん▼有限公司 圧電アクチュエータ
US10451051B2 (en) 2016-01-29 2019-10-22 Microjet Technology Co., Ltd. Miniature pneumatic device
US10388849B2 (en) 2016-01-29 2019-08-20 Microjet Technology Co., Ltd. Piezoelectric actuator
US10655620B2 (en) 2016-11-10 2020-05-19 Microjet Technology Co., Ltd. Miniature fluid control device
US10746169B2 (en) 2016-11-10 2020-08-18 Microjet Technology Co., Ltd. Miniature pneumatic device
US10683861B2 (en) 2016-11-10 2020-06-16 Microjet Technology Co., Ltd. Miniature pneumatic device
JP2018112188A (ja) * 2017-01-13 2018-07-19 研能科技股▲ふん▼有限公司 エアモータ
US11530696B2 (en) 2017-01-13 2022-12-20 Microjet Technology Co., Ltd. Piezoelectric motor having a main body structured as a polygonal prism
JP7107684B2 (ja) 2017-01-13 2022-07-27 研能科技股▲ふん▼有限公司 エアモータ
US11293429B2 (en) 2017-02-27 2022-04-05 Murata Manufacturing Co., Ltd. Fluid control device
JP7177632B2 (ja) 2017-09-29 2022-11-24 研能科技股▲ふん▼有限公司 流体システム
JP2019065847A (ja) * 2017-09-29 2019-04-25 研能科技股▲ふん▼有限公司 流体システム
JP2019065844A (ja) * 2017-09-30 2019-04-25 研能科技股▲ふん▼有限公司 流体装置の制御方法
JPWO2020261686A1 (ja) * 2019-06-27 2020-12-30
JP7485002B2 (ja) 2019-06-27 2024-05-16 株式会社村田製作所 ポンプ装置
WO2020261686A1 (ja) * 2019-06-27 2020-12-30 株式会社村田製作所 ポンプ装置
JP7197008B2 (ja) 2019-06-27 2022-12-27 株式会社村田製作所 ポンプ装置
US20220056900A1 (en) * 2019-06-27 2022-02-24 Murata Manufacturing Co., Ltd. Pump device
JPWO2021079629A1 (ja) * 2019-10-21 2021-04-29
WO2021079629A1 (ja) * 2019-10-21 2021-04-29 株式会社村田製作所 流体制御装置
JP7310911B2 (ja) 2019-10-21 2023-07-19 株式会社村田製作所 流体制御装置
JP2020032724A (ja) * 2019-10-24 2020-03-05 東芝テック株式会社 インク供給装置
WO2021186860A1 (ja) * 2020-03-18 2021-09-23 株式会社村田製作所 アクチュエータ、流体制御装置、および、アクチュエータの製造方法
JP7351407B2 (ja) 2020-03-18 2023-09-27 株式会社村田製作所 アクチュエータ、流体制御装置、および、アクチュエータの製造方法
JP6997286B2 (ja) 2020-12-24 2022-01-17 東芝テック株式会社 インク供給装置
JP2021045979A (ja) * 2020-12-24 2021-03-25 東芝テック株式会社 インク供給装置
WO2023132250A1 (ja) * 2022-01-07 2023-07-13 オムロンヘルスケア株式会社 ポンプの構造体

Also Published As

Publication number Publication date
KR20120032566A (ko) 2012-04-05
US20120171062A1 (en) 2012-07-05
EP2557312A4 (en) 2018-01-03
JP5708845B2 (ja) 2015-04-30
US8747080B2 (en) 2014-06-10
JPWO2011145544A1 (ja) 2013-07-22
JP2014098396A (ja) 2014-05-29
EP2557312A1 (en) 2013-02-13
EP2557312B1 (en) 2019-11-13
EP3623624B1 (en) 2022-09-14
EP3623624A1 (en) 2020-03-18
JP5494801B2 (ja) 2014-05-21
CN102597520A (zh) 2012-07-18
CN102597520B (zh) 2015-09-02
KR101333542B1 (ko) 2013-11-28

Similar Documents

Publication Publication Date Title
JP5708845B2 (ja) 流体ポンプ
US11047376B2 (en) Actuator support structure and pump device
US10502328B2 (en) Valve and fluid control appratus
US10890171B2 (en) Fluid control device and pump
US9482217B2 (en) Fluid control device
US20130058810A1 (en) Fluid control device
JP6127361B2 (ja) 流体制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180004549.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11783478

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012515871

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127003949

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011783478

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE