WO2013084909A1 - 気体制御装置 - Google Patents

気体制御装置 Download PDF

Info

Publication number
WO2013084909A1
WO2013084909A1 PCT/JP2012/081453 JP2012081453W WO2013084909A1 WO 2013084909 A1 WO2013084909 A1 WO 2013084909A1 JP 2012081453 W JP2012081453 W JP 2012081453W WO 2013084909 A1 WO2013084909 A1 WO 2013084909A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
pump
valve
pressure
diaphragm
Prior art date
Application number
PCT/JP2012/081453
Other languages
English (en)
French (fr)
Inventor
神谷岳
平田篤彦
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2013548256A priority Critical patent/JP5776793B2/ja
Publication of WO2013084909A1 publication Critical patent/WO2013084909A1/ja
Priority to US14/296,568 priority patent/US9482221B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • F04B43/043Micropumps
    • F04B43/046Micropumps with piezoelectric drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/007Installations or systems with two or more pumps or pump cylinders, wherein the flow-path through the stages can be changed, e.g. from series to parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/22Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by means of valves

Definitions

  • the present invention relates to a gas control device that performs gas control.
  • Patent Document 1 discloses a two-stage vacuum pump that can switch the connection of two pumps to a series connection or a parallel connection depending on the situation.
  • FIG. 17A is an explanatory diagram showing the air flow when the first-stage pump 4 and the second-stage pump 5 are connected in parallel in the two-stage vacuum pump 1 of Patent Document 1.
  • FIG. 17B is an explanatory diagram showing the air flow when the first-stage pump 4 and the second-stage pump 5 are connected in series in the two-stage vacuum pump 1 of Patent Document 1.
  • 18 is a cross-sectional view of the switching valve 9 shown in FIGS. 17 (A) and 17 (B).
  • the two-stage vacuum pump 1 includes a pump suction port 2, a pump discharge port 3, a first-stage pump 4, a second-stage pump 5, and a check valve. 7 and a switching valve 9.
  • the inlet of the first stage pump 4 is connected to the pump inlet 2 and the check valve 7, and the outlet of the first stage pump 4 is connected to the inlet 912 of the switching valve 9.
  • the intake port of the second-stage pump 5 is connected to the outlet port 913 of the switching valve 9 and is connected to the pump intake port 2 via the check valve 7.
  • the exhaust port of the second stage pump 5 is connected to the outlet port 914 of the switching valve 9 and is connected to the pump discharge port 3.
  • the check valve 7 allows the passage of air from the pump suction port 2 to the second-stage pump 5, but prevents the passage of air from the second-stage pump 5 to the pump suction port 2.
  • the switching valve 9 includes a columnar case 921 and a valve body 925 provided in the case 921.
  • the case 921 includes the above-described inlet 912 and outlets 913 and 914, valve chambers 922 and 923, an introduction passage 924 that communicates both valve chambers 922 and 923, and ring-shaped elastic bodies 932 and 934. Is provided.
  • a valve body 925 is accommodated in the valve chambers 922 and 923 and the introduction path 924 so as to be slidable in the axial direction of the case 921.
  • the valve body 925 has a shape in which disc-like valve portions 927 and 928 are provided at both ends of the rod portion 926.
  • the valve body 925 of the switching valve 9 compresses the spring 929 and slides toward the valve chamber 923 side. And the peripheral part of the valve part 928 contacts the ring-shaped elastic body 932, and the inlet 912 and the outlet 913 communicate with each other. Further, the check valve 7 is closed. As a result, the first stage pump 4 and the second stage pump 5 are connected in series as shown in FIG.
  • valve structure such as the switching valve 9
  • the valve body 925 and the inner wall of the case 921 are not connected.
  • grease is applied to the surface.
  • this method has a problem in that clean air cannot be discharged from the pump outlet 3 because fine particles of oil (oil mist) are mixed with the air when the air passes through the case 921.
  • the switching valve 9 has a complicated and large structure in which the valve body 925 is slidably incorporated, so that the small and low profile of the two-stage vacuum pump 1 is hindered. . Further, the capacity of the pump (flow rate and pressure) decreases as the size of the two-stage vacuum pump 1 is reduced. Therefore, if it is attempted to reduce the size while maintaining the capacity of the pump, the two-stage vacuum pump having the conventional structure is used. At 1 there is a limit.
  • an object of the present invention is to provide a small and low-profile gas control device capable of switching the connection of a plurality of pumps to a series connection or a parallel connection and suppressing the entry of impurities into the gas. It is in.
  • the gas control device of the present invention has the following configuration in order to solve the above problems.
  • a housing having an inlet and an outlet is provided inside the housing. Inside the housing, A first check valve and a second check valve provided between the inflow port and the outflow port and blocking a gas flow from the outflow port to the inflow port; A first pump having a suction hole connected to the inlet and a discharge hole connected to the second check valve; A second pump having a suction hole connected to the first check valve and a discharge hole connected to the outlet; A gas control device comprising: a switching valve provided between a discharge hole of the first pump and a suction hole of the second pump, The switching valve includes a first diaphragm, first and second valve chambers partitioned by the first diaphragm, and a first valve seat provided on the first valve chamber side.
  • the first diaphragm has a region in contact with the first valve seat;
  • the first valve seat has an opening connected to the suction hole of the second pump,
  • the first valve chamber is connected to a discharge hole of the first pump;
  • the switching valve switches between connection and disconnection of the first pump discharge hole and the suction hole of the second pump according to a difference in force applied to both main surfaces of the first diaphragm.
  • the first check valve is provided on the second diaphragm, the third and fourth valve chambers partitioned by the second diaphragm, and the third valve chamber side. 2 valve seats,
  • the second diaphragm has a region that comes into contact with the tip of the second valve seat, and a hole that penetrates a part of the region.
  • the third valve chamber is connected to the inflow port, and the fourth valve chamber is connected to the suction hole of the second pump.
  • the second check valve is provided on the third diaphragm, the fifth and sixth valve chambers partitioned by the third diaphragm, and the fifth valve chamber side. 3 valve seats,
  • the third diaphragm has a region that comes into contact with a tip portion of the third valve seat, and a hole that penetrates a part of the region.
  • the fifth valve chamber is connected to the discharge hole of the first pump, and the sixth valve chamber is connected to the outlet.
  • the outlet is connected to a storage unit that stores gas.
  • the gas in the fourth valve chamber is sucked into the second pump and discharged to the storage unit. That is, the pressure in the fourth valve chamber is lower than the external atmospheric pressure, and the pressure in the storage unit is higher than the external atmospheric pressure.
  • the gas outside the casing is sucked into the first pump from the inlet and discharged from the discharge hole of the first pump. That is, the pressures in the first valve chamber and the fifth valve chamber are higher than the external atmospheric pressure.
  • the force of the product of the pressure and area of the second valve chamber applied to the one main surface of the first diaphragm is the pressure of the first valve chamber applied to the other main surface of the first diaphragm. And higher than the force consisting of the product of the pressure and the area of the opening. For this reason, the 1st diaphragm contacts the 1st valve seat, and the 1st valve room and the 2nd valve room are intercepted.
  • the first pump and the second pump are connected in parallel at the start of the operation of the first and second pumps.
  • the pressure in the storage unit gradually increases.
  • the pressure in the sixth valve chamber communicating with the inside of the storage unit also increases, and the pressure in the first valve chamber, the fourth valve chamber, and the opening increases.
  • the second valve force applied to the one main surface of the first diaphragm is a force formed by the product of the pressure of the first valve chamber and the pressure of the opening and the area applied to the other main surface of the first diaphragm. It becomes higher than the force consisting of the product of the pressure and area of the valve chamber. For this reason, a 1st diaphragm spaces apart from a 1st valve seat, and makes a 1st valve chamber and opening communicate.
  • the first and second pumps are connected in parallel while the pressure of the storage unit is low, and when the pressure of the storage unit increases, the first and second pumps are connected in series from the parallel connection.
  • the maximum pump pressure of the gas control device when two pumps are connected in parallel is the case where only the pump having the highest single pump maximum pressure is connected to the storage unit among the two pumps.
  • the maximum flow rate is the total flow rate of the maximum pump flow rate of each pump alone.
  • the maximum discharge flow rate of the gas control device when two pumps are connected in series is the same as the case where the pump with the larger maximum pump flow rate of the two pumps is connected to the storage unit.
  • the maximum pump pressure is the sum of the maximum pump pressures for each pump alone.
  • first and second pumps are gradually switched from parallel connection to series connection due to the displacement of the diaphragm in accordance with the pressure change in each region of the gas control device. The characteristics shift smoothly.
  • the gas control device having this configuration has a simple structure in which the diaphragm is fixed to the housing, it is possible to reduce the size and height while maintaining the characteristics (flow rate and pressure) of the pump.
  • the housing further has a vent hole, In the switching valve, the second valve chamber is connected to the vent hole, The pressure in the second valve chamber is preferably atmospheric pressure.
  • first, second, and third diaphragms are constituted by a single common diaphragm.
  • a housing having an inlet and an outlet;
  • a diaphragm that divides the inside of the housing and forms a first region communicating with the inflow port, a second region communicating with the outflow port, a third region, and a fourth region in the housing;
  • a first pump having a hole communicating with the third region;
  • a second pump with a hole communicating with the second region The diaphragm is When the first and second pumps are operating, the third region pressure is higher than the second region pressure and the fourth region pressure is lower than the first region pressure. Blocking the region and the fourth region, communicating the second region and the third region and communicating the first region and the fourth region, When the first and second pumps are in operation, the second region pressure is lower than the second region pressure and the fourth region pressure is higher than the first region pressure. The ventilation of the area and the third area and the ventilation of the first area and the fourth area are blocked, and the third area and the fourth area are communicated with each other.
  • the outlet is connected to a storage unit that stores gas.
  • the gas in the fourth region is sucked into the second pump and discharged to the second region. That is, the pressure in the fourth region is lower than the external atmospheric pressure, and the pressure in the second region is higher than the external atmospheric pressure.
  • the gas outside the housing is sucked from the inlet through the first region by the first pump and discharged to the third region. That is, the pressure in the first region is the external atmospheric pressure, and the pressure in the third region is higher than the external atmospheric pressure.
  • the diaphragm causes the first region and the fourth region to communicate with each other.
  • the diaphragm causes the second region and the third region to communicate with each other.
  • the diaphragm blocks the third region and the fourth region.
  • the first and second pumps are connected in parallel at the start of the operation of the first and second pumps.
  • the pressure in the storage unit gradually increases. Thereby, the pressure of the 2nd field connected in the storage part also increases, and the pressure of the 4th field and the 3rd field also increases.
  • the diaphragm communicates the third area and the fourth area.
  • the diaphragm blocks the ventilation of the second region and the third region.
  • the diaphragm blocks the ventilation of the first region and the fourth region.
  • the first and second pumps are connected in parallel while the storage unit pressure is low, and when the storage unit pressure increases, the first and second pumps are switched from parallel connection to series connection.
  • the maximum pump pressure of the gas control device when two pumps are connected in parallel is the case where only the pump having the highest single pump maximum pressure is connected to the storage unit among the two pumps.
  • the maximum flow rate is the total flow rate of the maximum pump flow rate of each pump alone.
  • the maximum discharge flow rate of the gas control device when two pumps are connected in series is the same as the case where the pump with the larger maximum pump flow rate of the two pumps is connected to the storage unit.
  • the maximum pump pressure is the sum of the maximum pump pressures for each pump alone.
  • first and second pumps are gradually switched from parallel connection to series connection due to the displacement of the diaphragm in accordance with the pressure change in each region of the gas control device. The characteristics shift smoothly.
  • the gas control device having this configuration has a simple structure in which the diaphragm is fixed to the housing, it is possible to reduce the size and height while maintaining the characteristics (flow rate and pressure) of the pump.
  • the housing includes an opening communicating with the fourth region, a first valve seat protruding from the periphery of the opening in the third region toward the diaphragm, and toward the diaphragm in the first region.
  • the diaphragm is fixed to the housing in contact with the first valve seat, the second valve seat, and the third valve seat,
  • the diaphragm is preferably provided with a hole in a part of a region in contact with the second valve seat and a hole in a part of a region in contact with the third valve seat.
  • the diaphragm opens and closes in contact with or away from the first valve seat due to a pressure difference between the first region and the third region, and pressure between the first region and the fourth region Opening / closing in contact with or away from the second valve seat due to a difference, and opening / closing in contact with or away from the third valve seat due to a pressure difference between the second region and the third region. Is preferred.
  • the diaphragm contacts the first valve seat and closes the opening.
  • the hole is opened away from the second valve seat, and the hole is opened away from the third valve seat.
  • the diaphragm when the pressure in the third region is lower than the pressure in the second region and the pressure in the fourth region is higher than the pressure in the first region, the diaphragm is spaced apart from the first valve seat and opens the opening, Contacting the second valve seat closes the hole and contacts the third valve seat closing the hole.
  • the diaphragm is opened and closed by a first check valve that opens and closes by a pressure difference between the first region and the fourth region, and a second check valve that opens and closes by a pressure difference between the second region and the third region.
  • the first check valve blocks gas flow from the fourth region to the first region;
  • the second check valve blocks gas flow from the second region to the third region;
  • the switching valve when the first and second pumps are operating, the pressure in the third region is higher than the pressure in the second region, and the pressure in the fourth region is lower than the pressure in the first region.
  • the gas control device includes a first pump, a second pump, a first check valve, a second check valve, a switching valve, an inlet, and an outlet.
  • the first suction hole of the first pump is connected to the inlet and the first check valve, and the first discharge hole is connected to the second check valve and the switching valve.
  • the second suction hole of the second pump is connected to the first check valve and the switching valve, and the second discharge hole is connected to the outlet and the second check valve.
  • the first check valve allows the passage of gas from the inlet to the second pump, but prevents the passage of gas from the second pump and the switching valve to the inlet.
  • the second check valve allows passage of gas from the first pump to the outlet, but prevents passage of gas from the outlet to the first pump and the switching valve.
  • the first, second, and third valve seats are preferably provided in the housing so as to pressurize the diaphragm.
  • the pressure in the third region is higher than the pressure in the second region.
  • the applied pressure can keep the diaphragm in contact with the valve seat and the valve closed.
  • the housing includes a first housing provided with the inflow port and a second housing provided with the outflow port,
  • the diaphragm is preferably made of an elastic member and is sandwiched between the first casing and the second casing from both sides.
  • the diaphragm is pressed and held between the first and second valve housings.
  • the adhesiveness of the contact portion between the diaphragm and the first and second valve housings is increased. Therefore, it is possible to prevent gas from leaking outside through the diaphragm and the first and second valve housings.
  • the outlet is connected to a storage unit, Rapid exhaust that communicates with the outlet and can quickly exhaust the gas filled in the storage by the operation of the first and second pumps when the operation of the first and second pumps is stopped. It is preferable to provide a part.
  • the gas in the storage unit is rapidly exhausted through the second region. Therefore, according to this structure, after filling a storage part with compressed air, gas can be rapidly exhausted from a storage part.
  • (13) a housing having an inlet and an outlet; A first region that communicates with the inflow port, a second region that communicates with the outflow port, a third region, and a second t (t is an integer from 2 to n ⁇ 1).
  • a diaphragm forming a region, a second t + 1 region, and a second n (n is an integer of 3 or more) region;
  • a first suction hole and a first discharge hole communicating with each other via the first pump chamber and the first pump chamber; the first suction hole communicating with the first region; and the first discharge hole
  • a t-th pump communicating with the second t + 1 region;
  • the nth suction hole and the nth discharge hole communicate with each other via the
  • the outlet is connected to a storage unit that stores gas.
  • n pumps are connected in parallel while the pressure in the storage unit is low, and n pumps are connected in series when the pressure in the storage unit is high.
  • first, t, and nth pumps are gradually switched from parallel connection to series connection due to the displacement of the diaphragm in accordance with the pressure change in each region of the gas control device.
  • the gas control device having this configuration has a simple structure in which the diaphragm is fixed to the housing, it is possible to reduce the size and height while maintaining the pump performance (flow rate and pressure).
  • connection of a some pump can be switched to serial connection or parallel connection, and the small and low-profile gas control apparatus which can suppress mixing to the gas of an impurity can be provided.
  • FIG. 1 It is a block diagram which shows the connection relation of each member with which the gas control apparatus 100 which concerns on 1st Embodiment of this invention is equipped. It is a key map of gas control device 100 concerning a 1st embodiment. It is a conceptual diagram of gas control apparatus 100 'concerning the modification of 1st Embodiment. 1 is an external perspective view of a gas control device 100 according to a first embodiment. It is a disassembled perspective view of the gas control apparatus 100 which concerns on 1st Embodiment. It is sectional drawing in the TT line
  • FIG. 3 is a cross-sectional view showing the flow of air in the gas control device 100 when the first piezoelectric pump 101 and the second piezoelectric pump 102 according to the first embodiment are connected in parallel.
  • FIG. 3 is a cross-sectional view showing the flow of air in the gas control device 100 when the first piezoelectric pump 101 and the second piezoelectric pump 102 according to the first embodiment are connected in series.
  • It is a block diagram which shows the connection relation of each member with which the gas control apparatus 200 which concerns on 2nd Embodiment of this invention is equipped.
  • FIG. 1 It is a block diagram which shows the connection relation of each member with which gas control apparatus 200 'which concerns on the modification of 2nd Embodiment of this invention is equipped. It is sectional drawing of the gas control apparatus 300 which concerns on 3rd Embodiment of this invention. It is sectional drawing which shows the flow of the air in the gas control apparatus 300 at the time of the parallel connection of the 1st piezoelectric pump 101 and the 2nd piezoelectric pump 102 which concern on 3rd Embodiment. It is sectional drawing which shows the flow of the air in the gas control apparatus 300 at the time of the serial connection of the 1st piezoelectric pump 101 and the 2nd piezoelectric pump 102 which concern on 3rd Embodiment.
  • FIG. 17A is an explanatory view showing the air flow when the pumps 4 and 5 are connected in parallel in the two-stage vacuum pump 1 of Patent Document 1.
  • FIG. 17B is an explanatory view showing the air flow when the pumps 4 and 5 are connected in series in the two-stage vacuum pump 1 of Patent Document 1.
  • FIG. It is sectional drawing of the switching valve 9 which concerns on patent document 1.
  • FIG. 1 shows a first piezoelectric pump 101, a second piezoelectric pump 102, a first check valve 103, a second check valve 104, and a switching valve provided in the gas control apparatus 100 according to the first embodiment of the present invention.
  • 105 is a block diagram showing a connection relationship between 105, inlets 28 and 29, and outlet 19.
  • FIG. 2 is a conceptual diagram of the gas control device 100.
  • FIG. 4 is an external perspective view of the gas control device 100.
  • FIG. 5 is an exploded perspective view of the gas control device 100.
  • 6 is a cross-sectional view of the gas control device 100 taken along line TT shown in FIG. First, a schematic configuration of the gas control device 100 will be described below with reference to FIGS. 1 and 2.
  • first housing corresponds to the lower housing 20
  • second housing of the present invention corresponds to the upper housing 10
  • casing corresponds to the lower housing 20 and the upper housing 10. It corresponds to the housing 10.
  • first valve chamber is the first valve chamber 153
  • second valve chamber is the second valve chamber 156
  • third valve chamber is the third valve chamber 133
  • fourth valve chamber corresponds to the fourth valve chamber 121
  • fifth valve chamber corresponds to the fifth valve chamber 143
  • the sixth valve chamber corresponds to the sixth valve chamber 146.
  • the “first region” of the present invention corresponds to the first region 1 including the second valve chamber 156, the third valve chamber 133, the eighth valve chamber 116, the communication hole 17, and the inflow chamber 111.
  • the “second region” of the present invention corresponds to the second region 2 including the outflow chamber 122, the communication hole 16, and the sixth valve chamber 146.
  • the “third region” of the present invention corresponds to the third region 3 including the first valve chamber 153, the seventh valve chamber 112, the communication hole 26, the fifth valve chamber 143, and the communication hole 27.
  • the “fourth region” of the present invention corresponds to the fourth region 4 configured by the communication path 124, the communication hole 25, and the fourth valve chamber 121.
  • first valve seat of the present invention corresponds to the first valve seat 152.
  • second valve seat of the present invention corresponds to the second valve seat 132.
  • third valve seat of the present invention corresponds to the third valve seat 142.
  • the gas control device 100 includes a housing 110 having inflow ports 28 and 29 and an outflow port 19, a first piezoelectric pump 101, a second piezoelectric pump 102, and a first reverse A stop valve 103, a second check valve 104, and a switching valve 105 are included.
  • the outflow port 19 is connected to a storage unit, for example.
  • the first piezoelectric pump 101 has a suction hole connected to the inlet 29 and a discharge hole connected to the second check valve 104.
  • the second piezoelectric pump 102 has a suction hole connected to the first check valve 103 and a discharge hole connected to the outflow port 19.
  • the switching valve 105 is provided between the discharge hole in the first piezoelectric pump 101 and the suction hole in the second piezoelectric pump 102.
  • the switching valve 105 is provided in the first valve chamber 153 so as to protrude to the first diaphragm 30A, the first valve chamber 153 and the second valve chamber 156 partitioned by the first diaphragm 30A, and the first diaphragm 30A.
  • the first valve seat 152 is provided.
  • the first diaphragm 30 ⁇ / b> A has a region in contact with the first valve seat 152.
  • the first valve seat 152 has an opening 126 connected to the suction hole of the second piezoelectric pump 102.
  • the first valve chamber 153 is connected to the discharge hole of the first piezoelectric pump 101.
  • the second valve chamber 156 is connected to, for example, a vent 18 that is open to the atmosphere.
  • the first valve seat 152 is provided in the housing 110 so as to pressurize the first diaphragm 30A.
  • the switching valve 105 switches between connection and disconnection between the discharge hole of the first piezoelectric pump 101 and the suction hole of the second piezoelectric pump 102 according to the difference in force applied to both main surfaces of the first diaphragm 30A.
  • the first check valve 103 is provided between the inlet 28 and the suction hole of the second piezoelectric pump 102.
  • the first check valve 103 allows a gas flow from the inlet 28 to the suction hole of the second piezoelectric pump 102 and blocks a gas flow from the suction hole of the second piezoelectric pump 102 to the inlet 28.
  • Check valve is provided between the inlet 28 and the suction hole of the second piezoelectric pump 102.
  • the first check valve 103 includes a second diaphragm 30B, a third valve chamber 133 and a fourth valve chamber 121 partitioned by the second diaphragm 30B, and a third valve that protrudes toward the second diaphragm 30B. And a second valve seat 132 provided in the chamber 133.
  • the second diaphragm 30 ⁇ / b> B has a region that comes into contact with the distal end portion of the second valve seat 132 in the protruding direction, and a through hole 32 is provided in a part of the region.
  • the third valve chamber 133 is connected to the inlet 28, and the fourth valve chamber 121 is connected to the suction hole of the second piezoelectric pump 102. Further, the second valve seat 132 is provided in the housing 110 so as to pressurize the second diaphragm 30B.
  • the first check valve 103 switches between connection and disconnection between the inlet 28 and the suction hole of the second piezoelectric pump 102 according to the difference in force applied to both main surfaces of the second diaphragm 30B.
  • the second check valve 104 is provided between the discharge hole of the first piezoelectric pump 101 and the outlet 19.
  • the second check valve 104 allows the gas flow from the discharge hole of the first piezoelectric pump 101 to the outlet 19 and blocks the gas flow from the outlet 19 to the discharge hole of the first piezoelectric pump 101.
  • Check valve is provided between the discharge hole of the first piezoelectric pump 101 and the outlet 19. The second check valve 104 allows the gas flow from the discharge hole of the first piezoelectric pump 101 to the outlet 19 and blocks the gas flow from the outlet 19 to the discharge hole of the first piezoelectric pump 101. Check valve.
  • the second check valve 104 includes a third diaphragm 30C, a fifth valve chamber 143 and a sixth valve chamber 146 partitioned by the third diaphragm 30C, and a fifth valve protruding toward the third diaphragm 30C. And a third valve seat 142 provided in the chamber 143.
  • the third diaphragm 30 ⁇ / b> C has a contact with the distal end portion of the third valve seat 142 in the protruding direction, and the through hole 42 is provided in a part of the region.
  • the fifth valve chamber 143 is connected to the discharge hole of the first piezoelectric pump 101, and the sixth valve chamber 146 is connected to the outlet 19. Further, the third valve seat 142 is provided in the housing 110 so as to pressurize the third diaphragm 30C.
  • the second check valve 104 switches between connection and disconnection between the discharge hole of the first piezoelectric pump 101 and the outlet 19 according to the difference in force applied to both main surfaces of the third diaphragm 30C.
  • the first diaphragm 30A, the second diaphragm 3B, and the third diaphragm 30C are configured by a single common diaphragm 30, but the present invention is not limited to this.
  • the first diaphragm 30A, the second diaphragm 3B, and the third diaphragm 30C may be constituted by three diaphragms.
  • the gas control device 100 includes a housing 110, a first check valve 103, a second check valve 104, a switching valve 105, a first piezoelectric pump 101, And the second piezoelectric pump 102.
  • the first check valve 103, the second check valve 104, and the switching valve 105 are configured by a housing 110 and a diaphragm 30. That is, the first to sixth valve chambers 153, 156, 133, 121, 143, 146, the seventh valve chamber 112, and the eighth valve chamber 116 are configured by the housing 110 and the diaphragm 30.
  • the diaphragm 30 includes a first diaphragm 30A, a second diaphragm 30B, a third diaphragm 30C, and a fourth diaphragm 30D. That is, the first diaphragm 30 ⁇ / b> A, the second diaphragm 30 ⁇ / b> B, the third diaphragm 30 ⁇ / b> C, and the fourth diaphragm 30 ⁇ / b> D are configured by one common diaphragm 30.
  • the housing 110 is composed of an upper housing 10 and a lower housing 20.
  • the upper housing 10 and the lower housing 20 are made of resin, for example.
  • a second piezoelectric pump 102 which will be described later in detail, is disposed inside the upper housing 10
  • a first piezoelectric device which will be described in detail later, is disposed inside the lower housing 20.
  • a pump 101 is arranged.
  • the upper housing 10 is divided into three layers of a lid portion 11, an intermediate portion 12, and a first sandwiching portion 13, and the lower housing 20 is The two sandwiched portions 21 and the bottom plate 22 are displayed in two layers. And in FIG. 6, the boundary line between each layer is shown with the dotted line.
  • the upper housing 10 is connected to the rubber tube 109A of the storage unit 109, and the outlet 19 through which the air in the housing 110 flows out to the storage unit 109 via the rubber tube 109A,
  • a rectangular parallelepiped outflow chamber 122 communicating with the outflow port 19 a communication hole 16 communicating with the outflow chamber 122 and the sixth valve chamber 146, a vent 18 communicating with the outside of the upper housing 10, and a second below-described second.
  • a communication hole 17 that communicates the valve chamber 156 and the eighth valve chamber 116 is provided.
  • the storage unit 109 is a toy or a tire such as a beach ball, a rubber boat, or a balloon doll.
  • the lower casing 20 has inlets 28 and 29 through which air outside the lower casing 20 flows into the casing 110 and a rectangular parallelepiped inlet chamber that communicates with the inlet 29 and houses the first piezoelectric pump 101.
  • 111 a communication hole 26 communicating with the fifth valve chamber 143 and the seventh valve chamber 112, a communication hole 27 communicating with the first valve chamber 153 and the seventh valve chamber 112, an opening 126, and a hole 35 of the diaphragm 30.
  • a communication path 124 that communicates with the fourth valve chamber 121 via the opening 126, a communication hole 25 that communicates the opening 126 and the communication path 124, and a cylindrical first valve seat 152 that protrudes toward the diaphragm 30 around the opening 126.
  • a second valve seat 132 and a third valve seat 142 projecting toward the diaphragm 30 are provided.
  • the first valve seat 152, the second valve seat 132, and the third valve seat 142 are provided in the lower housing 20 so as to pressurize the diaphragm 30.
  • the diaphragm 30 is made of a plate-like thin film and has flexibility.
  • the diaphragm 30 is sandwiched from both sides by the upper housing 10 and the lower housing 20 via the packing P, and is in contact with the first valve seat 152, the second valve seat 132, and the third valve seat 142. It is fixed to the housing 10 and the lower housing 20.
  • the diaphragm 30 divides the inside of the upper housing
  • the diaphragm 30 is made of an elastic member such as ethylene propylene rubber or silicone rubber.
  • the diaphragm 30 is pressed and sandwiched between the upper casing 10 and the lower casing 20 from both sides at a temperature higher than normal temperature. Since it is formed in this way, the diaphragm 30 is pressed by the upper casing 10 and the lower casing 20, and the adhesiveness of the contact portion between the diaphragm 30 and the upper casing 10 and the lower casing 20 is increased. Therefore, it is possible to suppress the air from passing through between the diaphragm 30 and the upper housing 10 and the lower housing 20 and leaking outside.
  • the diaphragm 30A constituting the first valve chamber 153 and the second valve chamber 156 is in contact with the cylindrical first valve seat 152, and constitutes the switching valve 105 together with the upper housing 10 and the lower housing 20.
  • the diaphragm 30 ⁇ / b> B constituting the third valve chamber 133 and the fourth valve chamber 121 contacts the second valve seat 132 and configures the first check valve 103 together with the upper housing 10 and the lower housing 20.
  • the diaphragm 30C constituting the fifth valve chamber 143 and the sixth valve chamber 146 contacts the third valve seat 142, and constitutes the second check valve 104 together with the upper housing 10 and the lower housing 20. .
  • the seventh valve chamber 112 communicates with the fifth valve chamber 143 through the communication hole 26 and also communicates with the first valve chamber 153 through the communication hole 27. Further, the eighth valve chamber 116 communicates with the second valve chamber 156 through the communication hole 17 and communicates with the outside of the lower housing 20 through the vent hole 18. For this reason, the air pressure in the second valve chamber 156 and the eighth valve chamber 116 is always atmospheric pressure.
  • FIG. 7 is an exploded perspective view of the first piezoelectric pump 101 provided in the gas control device 100 according to the first embodiment of the present invention.
  • FIG. 8 is a cross-sectional view of the main part of the first piezoelectric pump 101 shown in FIG.
  • the first piezoelectric pump 101 includes a substrate 91, a flexible plate 51, a spacer 53A, a reinforcing plate 43, a vibration plate unit 60, a piezoelectric element 44, a spacer 53B, an electrode conduction plate 70, a spacer 53C, and a lid portion 54. In order.
  • the second piezoelectric pump 102 has the same structure as the first piezoelectric pump 101, the description thereof is omitted.
  • a piezoelectric element 44 is attached to the upper surface of the disc-shaped diaphragm 41, and a reinforcing plate 43 is attached to the lower surface of the diaphragm 41.
  • the actuator 40 is formed by the diaphragm 41, the piezoelectric element 44, and the reinforcing plate 43. Is configured.
  • the piezoelectric element 44 is made of, for example, lead zirconate titanate ceramic.
  • the diaphragm 41 is a metal plate having a linear expansion coefficient larger than that of the piezoelectric element 44 and the reinforcing plate 43, and is heated and cured at the time of bonding so that an appropriate compressive stress is applied to the piezoelectric element 44 without warping.
  • the piezoelectric element 44 can be prevented from cracking.
  • the diaphragm 41 may be made of a material having a large linear expansion coefficient such as phosphor bronze (C5210) or stainless steel SUS301, and the reinforcing plate 43 may be made of 42 nickel, 36 nickel or stainless steel SUS430.
  • the thickness of the spacer 53B is preferably the same as or slightly larger than the thickness of the piezoelectric element 44.
  • the diaphragm 41, the piezoelectric element 44, and the reinforcing plate 43 may be arranged in the order of the piezoelectric element 44, the reinforcing plate 43, and the diaphragm 41 from the top. Also in this case, the linear expansion coefficient is adjusted by reversing the materials of the reinforcing plate 43 and the diaphragm 41 so that an appropriate compressive stress remains in the piezoelectric element 44.
  • a frame plate 61 is provided around the vibration plate 41, and the vibration plate 41 is connected to the frame plate 61 by a connecting portion 62.
  • the connecting portion 62 is provided in a ring shape, for example, and has an elastic structure with a small spring constant elasticity.
  • the diaphragm 41 is flexibly supported at two points with respect to the frame plate 61 by the two connecting portions 62. Therefore, the bending vibration of the diaphragm 41 is hardly disturbed. That is, the peripheral portion of the actuator 40 (of course, the central portion) is not substantially restrained.
  • the spacer 53A is provided to hold the actuator 40 with a certain gap from the flexible plate 51.
  • the frame plate 61 is provided with an external terminal 63 for electrical connection.
  • the diaphragm 41, the frame plate 61, the connecting portion 62, and the external terminal 63 are formed by punching a metal plate, and the diaphragm unit 60 is configured by these.
  • a resin spacer 53B is bonded and fixed to the upper surface of the frame plate 61.
  • the thickness of the spacer 53B is the same as or slightly thicker than that of the piezoelectric element 44, constitutes a part of the pump housing 80, and electrically insulates the electrode conduction plate 70 and the diaphragm unit 60 described below.
  • a metal electrode conduction plate 70 is bonded and fixed on the spacer 53B.
  • the electrode conduction plate 70 includes a frame portion 71 that is opened in a substantially circular shape, an internal terminal 73 that projects into the opening, and an external terminal 72 that projects outward.
  • the tip of the internal terminal 73 is soldered to the surface of the piezoelectric element 44.
  • the vibration of the internal terminal 73 can be suppressed.
  • a resin spacer 53C is bonded and fixed on the electrode conduction plate 70.
  • the spacer 53 ⁇ / b> C has the same thickness as the piezoelectric element 44.
  • the spacer 53C is a spacer for preventing the solder portion of the internal terminal 73 from contacting the lid portion 54 when the actuator vibrates. Further, it is possible to prevent the surface of the piezoelectric element 44 from excessively approaching the lid portion 54 and reducing the vibration amplitude due to air resistance. Therefore, the thickness of the spacer 53C may be the same as that of the piezoelectric element 44 as described above.
  • the lid portion 54 has a discharge hole 55 and is placed on top of the spacer 53C to cover the periphery of the actuator 40. Since the discharge hole 55 is for releasing the positive pressure in the pump housing 80 including the lid portion 54, the discharge hole 55 may be provided at any position of the lid portion 54 as long as this function can be achieved.
  • a suction hole 52 is provided at the center of the flexible plate 51.
  • a spacer 53A having a thickness obtained by adding about several tens of micrometers to the thickness of the reinforcing plate 43 is inserted between the flexible plate 51 and the diaphragm unit 60.
  • the diaphragm 41 is not restrained by the frame plate 61, it is somewhat affected by the restraint of the connecting portion 62 (spring terminal). Therefore, by inserting the spacer 53A in this way, when the pressure applied to the discharge hole 55 side is low, it is possible to positively secure a gap between the flexible plate 51 and the vibration plate 41 and increase the discharge flow rate. .
  • connection part 62 was provided in two places, you may provide in three or more places.
  • a substrate 91 provided with a cylindrical opening 92 at the center is provided at the bottom of the flexible plate 51.
  • a part of the flexible plate 51 is exposed at the opening 92 of the substrate 91.
  • This circular exposed portion can vibrate at substantially the same frequency as that of the actuator 40 due to pressure fluctuation accompanying vibration of the actuator 40.
  • the center or the vicinity of the actuator facing region of the flexible plate 51 is a movable portion capable of bending vibration, and the peripheral portion is a substantially constrained fixed portion.
  • the natural frequency of this circular movable part is designed to be the same as or slightly lower than the drive frequency of the actuator 40.
  • the exposed portion of the flexible plate 51 centered on the suction hole 52 also vibrates with a large amplitude. If the vibration phase of the flexible plate 51 becomes a vibration that is delayed (for example, delayed by 90 °) from the vibration phase of the actuator 40, the thickness variation of the gap space between the flexible plate 51 and the actuator 40 is substantially reduced. To increase. As a result, the capacity of the pump can be further improved.
  • FIG. 9 is a cross-sectional view showing the flow of air in the gas control device 100 when the first piezoelectric pump 101 and the second piezoelectric pump 102 shown in FIG. 6 are connected in parallel.
  • FIG. 10 is a cross-sectional view showing the air flow in the gas control device 100 when the first piezoelectric pump 101 and the second piezoelectric pump 102 shown in FIG. 6 are connected in series.
  • the first piezoelectric pump 101 and the second piezoelectric pump 102 start to operate, the first piezoelectric pump 101 and the second piezoelectric pump 102 are connected in parallel, and the pressure in the storage unit 109 is a constant pressure ( For example, if it exceeds 15 kPa), the first piezoelectric pump 101 and the second piezoelectric pump 102 are connected in series.
  • the gas control device 100 drives the first piezoelectric pump 101 and the second piezoelectric pump 102 when starting to fill the storage unit 109 with air.
  • the air in the fourth valve chamber 121 is sucked into the pump chamber 45 of the second piezoelectric pump 102 and flows out from the pump chamber 45 of the second piezoelectric pump 102.
  • the liquid is discharged into the storage unit 109 through the chamber 122.
  • the pressure in the fourth valve chamber 121 becomes low, and the pressure in the storage unit 109 becomes higher than the external pressure.
  • air outside the housing 110 is sucked into the pump chamber 45 of the first piezoelectric pump 101 through the inlet 29 and the inflow chamber 111, and from the pump chamber 45 of the first piezoelectric pump 101 to the seventh valve chamber 112. Discharged.
  • the pressures in the seventh valve chamber 112, the fifth valve chamber 143, and the first valve chamber 153 become higher than the external air pressure.
  • the second diaphragm 30B is separated from the second valve seat 132.
  • the third valve chamber 133 and the fourth valve chamber 121 are communicated with each other through the hole 32 of the second diaphragm 30B.
  • the third diaphragm 30C is separated from the third valve seat 142, The fifth valve chamber 143 and the sixth valve chamber 146 are communicated with each other through the hole 42 of the third diaphragm 30C.
  • a force that is a product of the pressure and area of the second valve chamber 156 applied to one main surface of the first diaphragm 30A is applied to the other main surface of the first diaphragm 30A. It is higher than the force formed by the product of the pressure in the chamber 153 and the pressure in the opening 126 and the area. For this reason, the first diaphragm 30A is in contact with the first valve seat 152, and the first valve chamber 153 and the second valve chamber 156 are shut off.
  • the first piezoelectric pump 101 and the second piezoelectric pump 102 are connected in parallel when the first piezoelectric pump 101 and the second piezoelectric pump 102 are started to be driven (see FIG. 9).
  • outside air is sucked into the pump chamber 45 of the first piezoelectric pump 101 through the inlet 29 and the inflow chamber 111 and is discharged from the pump chamber 45 of the first piezoelectric pump 101 to the seventh valve chamber 112. Then, it flows into the outflow chamber 122 via the fifth valve chamber 143 and the sixth valve chamber 146. Further, outside air is sucked into the pump chamber 45 of the second piezoelectric pump 102 via the inlet 28, the third valve chamber 133, and the fourth valve chamber 121, and then flows from the pump chamber 45 of the second piezoelectric pump 102 to the outflow chamber 122. Discharged. The merged air in the outflow chamber 122 is sent from the outlet 19 to the storage unit 109. When the storage unit 109 is filled with air while the first piezoelectric pump 101 and the second piezoelectric pump 102 are connected in parallel, the pressure (air pressure) in the storage unit 109 gradually increases.
  • the force that is the product of the pressure of the first valve chamber 153 and the pressure of the opening 126 and the area applied to the other main surface of the first diaphragm 30 ⁇ / b> A is applied to the one main surface of the first diaphragm 30 ⁇ / b> A. It becomes higher than the force formed by the product of the pressure and area of the second valve chamber 156 applied to the surface. Therefore, the first diaphragm 30A is separated from the first valve seat 153, and the first valve chamber 153 and the opening 126 are communicated with each other.
  • the pressure applied to the second valve chamber 156 is P1
  • the pressure applied to the opening 126 is P2
  • the pressure applied to the first valve chamber 153 is P0
  • the first diaphragm 30A facing the second valve chamber 156 is used.
  • the condition for opening the switching valve 105 is as follows: This is when the formula of P1 ⁇ A1> P0 ⁇ A0 + P2 ⁇ A2 is satisfied.
  • the first piezoelectric pump 101 and the second piezoelectric pump 102 are connected in series (see FIG. 10).
  • outside air is sucked into the pump chamber 45 of the first piezoelectric pump 101 through the inlet 29 and the inflow chamber 111 and discharged from the pump chamber 45 of the first piezoelectric pump 101 to the seventh valve chamber 112. Then, it flows into the fourth valve chamber 121 via the first valve chamber 153, the opening 126, the communication path 124 and the communication hole 25. Then, the air in the fourth valve chamber 121 is sucked into the pump chamber 45 of the second piezoelectric pump 102 and discharged from the pump chamber 45 of the second piezoelectric pump 102 to the outflow chamber 122. Then, the air in the outflow chamber 122 is sent from the outlet 19 to the storage unit 109, and the pressure (air pressure) in the storage unit 109 increases to the target pressure.
  • the two first piezoelectric pumps 101 and the second piezoelectric pump 102 are connected in parallel while the pressure of the storage unit 109 is low, and when the pressure of the storage unit 109 increases, the first piezoelectric pump 101 The second piezoelectric pump 102 is switched to the serial connection.
  • the maximum pump pressure of the gas control device 100 when the two first piezoelectric pumps 101 and the second piezoelectric pumps 102 are connected in parallel is the two of the first piezoelectric pumps 101 and the second piezoelectric pumps 102. This is the same as the case where only the pump having the higher maximum pump pressure alone is connected to the storage unit 109, but the maximum flow rate is the sum of the maximum pump flow rates of the individual pumps.
  • the maximum discharge flow rate of the gas control device 100 is the two of the first piezoelectric pump 101 and the second piezoelectric pump 102.
  • the maximum pump pressure is the sum of the maximum pump pressures of the individual pumps.
  • the pump pressure may be low at the initial stage of the operation when the storage unit 109 does not contain air, a large flow rate is required.
  • the sag of the storage unit 109 is achieved by parallel connection. The air can be sent to the storage unit 109 at a large flow rate until there is no more. In the latter stage of the operation in which air sufficiently enters and the volume of the storage unit 109 becomes almost constant and does not change, a high pump pressure is required although the flow rate may be small, but the gas control device 100 of this embodiment Then, highly compressed air can be filled by series connection.
  • the pressure of each valve chamber is not a binary change in which the valve structure 925 is switched to either the valve structure at the time of parallel connection or the valve structure at the time of series connection by sliding movement of the valve body 925. Because the diaphragm is gradually switched from the parallel connection to the series connection due to the displacement of the diaphragm according to the change, the transition from the large flow rate characteristic to the high pump pressure characteristic is smoothly performed.
  • the connection of a plurality of pumps can be switched to a serial connection or a parallel connection, and contamination of impurities into the gas can be suppressed.
  • the gas control apparatus 100 has a simple structure in which the diaphragm 30 is sandwiched between the upper housing 10 and the lower housing 20, the gas control device 100 can be reduced in size and height while maintaining the pump performance (flow rate and pressure). Can do.
  • the gas control device 100 of this embodiment can be manufactured at low cost.
  • FIG. 11 shows the first piezoelectric pump 101, the second piezoelectric pump 102, the third piezoelectric pump 202, the check valves 103, 104, 203, 204, and the switching valve provided in the gas control device 200 according to the second embodiment of the present invention.
  • 5 is a block diagram showing a connection relationship between 105 and 205, inlets 28 and 29, and outlet 19.
  • the gas control device 200 of this embodiment is different from the gas control device 100 shown in FIG. 5 in that it includes a piezoelectric pump 202, check valves 203 and 204, and a switching valve 205.
  • the third piezoelectric pump 202 has the same structure as the first piezoelectric pump 101 shown in FIGS.
  • the check valves 203 and 204 have the same structure as the check valve 103 shown in FIGS.
  • the switching valve 205 has the same structure as the switching valve 105 shown in FIGS.
  • the three first piezoelectric pumps 101, the second piezoelectric pump 102, and the third piezoelectric pump 202 are connected in parallel, and when the pressure of the storage unit 109 increases, Three first piezoelectric pumps 101, a second piezoelectric pump 102, and a third piezoelectric pump 202 are connected in series.
  • the maximum pump pressure of the gas control device 200 is the three first piezoelectric pumps 101, Of the two piezoelectric pumps 102 and the third piezoelectric pump 202, the same as when only the pump having the highest maximum pump pressure is connected to the storage unit 109, the maximum flow rate is the maximum of each pump alone. This is the total flow rate of the pump flow rate.
  • the maximum discharge flow rate of the gas control device 200 is the three first piezoelectric pumps 101, Of the piezoelectric pump 102 and the third piezoelectric pump 202, the pump having the largest single maximum pump flow rate is the same as that connected to the storage unit 109, but the maximum pump pressure is the maximum pump of each pump alone. The total pressure is the pressure.
  • the flexible diaphragm 30 and the casing 110 are in close contact with each other, no air leakage occurs.
  • sliding since sliding does not occur when the diaphragm 30 and the casing 110 are in close contact with and separated from each other, it is not necessary to provide grease between the diaphragm 30 and the housing 110. Therefore, the mixing of impurities into the gas can be suppressed.
  • FIG. 12 shows a first piezoelectric pump 101, a second piezoelectric pump 102, an n ⁇ 1 piezoelectric pump 702, an nth piezoelectric pump 802, which are provided in a gas control device 200 ′ according to a modification of the second embodiment of the present invention.
  • 4 is a block diagram showing a connection relationship among check valves 103, 104, 204, 703, 803, 804, switching valves 105, 205, 805, inlets 28, 29 and outlet 19.
  • the first piezoelectric pump 101 at the first stage is the first pump
  • the second piezoelectric pump 102 at the second stage is the second pump
  • the (n ⁇ 1) th pump and the nth stage nth piezoelectric pump 802 are referred to as an “nth pump”.
  • the first-stage switching valve 105 is referred to as a first switching valve
  • the second-stage switching valve 205 is referred to as a second switching valve
  • the (n-1) th switching valve 805 is referred to as an n-1th switching valve. is doing.
  • the first-stage check valve 103 is the first check valve
  • the (n-1) th-stage check valve 703 is the second-n-5 check valve
  • the n-th check valve 803 is It is described as a 2n-3 check valve.
  • the first check valve 104 is the second check valve
  • the second check valve 204 is the fourth check valve
  • the nth check valve 804 is the second n-2. Indicated as a check valve.
  • the gas control device 200 ′ includes a housing provided with the inlets 28 and 29 and the outlet 19, a diaphragm, a first pump, a t-th pump, and an n-th pump.
  • t is an integer from 2 to n ⁇ 1
  • n is an integer of 4 or more.
  • the diaphragm of the gas control device 200 ′ is divided into a first region 1 communicating with the inflow ports 28 and 29, a second region 2 communicating with the outflow port 19, and a third region 3 divided into the housing.
  • the second t region, the second t + 1 region, and the second n region 2n are formed.
  • the region between the first pump, the first switching valve, and the second check valve corresponds to the third region 3.
  • the region between the second pump, the first switching valve, and the first check valve corresponds to the fourth region 4, and the region between the second pump, the second switching valve, and the fourth check valve is This corresponds to the fifth region 5.
  • the region between the (n ⁇ 1) th pump, the (n ⁇ 2) th switching valve, and the (2n ⁇ 5) check valve corresponds to the (2n ⁇ 2) region 2n ⁇ 2 and
  • the area between the 1 switching valve and the 2n-2 check valve corresponds to the 2n-1 area 2n-1.
  • a region between the nth pump, the (n ⁇ 1) th switching valve, and the (2n ⁇ 3) check valve corresponds to the second n region 2n.
  • the first pump has a first suction hole and a first discharge hole that communicate with each other via the first pump chamber and the first pump chamber, and the first suction hole communicates with the first region 1 and the first discharge The hole communicates with the third region 3.
  • the t-th pump has a t-th suction hole and a t-th discharge hole that communicate with each other via the t-th pump chamber and the t-th pump chamber, and the t-th suction hole communicates with the second t region, Communicates with the second t + 1 region.
  • the n-th pump has an n-th suction hole and an n-th discharge hole that communicate with each other via the n-th pump chamber and the n-th pump chamber, and the n-th suction hole communicates with the second n region 2n.
  • a hole communicates with the second region 2.
  • the diaphragm of the gas control device 200 ′ is configured such that the pressure in the third region 3 and the second t + 1 region is higher than the pressure in the second region 2 when the first, t, and nth pumps are operated. And when the pressure of the second n region 2n is lower than the pressure of the first region 1, the third region 3 and the second t + 1 region are blocked from the second t region and the second n region 2n, respectively.
  • Each of the region 3 and the second t + 1 region communicates with the second region 2, and each of the second t region and the second n region 2n communicates with the first region, and the third region 3 and the second t + 1 region
  • the pressure is lower than the pressure in the second region 2 and the pressure in the second t region and the second n region 2n is higher than the pressure in the first region 1
  • each of the third region 3 and the second t + 1 region and the second region 2 and the second t region and the first region 1 are cut off, and the third region 3 and the second t + 1 region are respectively connected to the second t region and the second n region 2n. ing.
  • n piezoelectric pumps 101, 102,..., 702, 802 are connected in parallel, and when the pressure of the storage unit 109 increases, n piezoelectric pumps , 702, 802 are connected in series.
  • the maximum pump pressure of the gas control device 200 ′ when n piezoelectric pumps 101, 102,..., 702, 802 are connected in parallel is n piezoelectric pumps 101, 102,. 702 and 802 are the same as the case where only the pump having the highest maximum pump pressure alone is connected to the storage unit 109, but the maximum flow rate is the sum of the maximum pump flow rates of each single pump. Become.
  • the maximum discharge flow rate of the gas control device 200 ′ is n piezoelectric pumps 101, 102,. 802, the same as when the pump having the largest single pump flow rate is connected to the storage unit 109, but the maximum pump pressure is the sum of the maximum pump pressures of the individual pumps. .
  • the gas control apparatus 200 ′ of this embodiment it is possible to obtain a large flow rate under a low pump pressure when connected in parallel and a high pump pressure under a low flow rate when connected in series. Both characteristics can be realized. Further, since the diaphragm is gradually switched from the parallel connection to the series connection due to the displacement of the diaphragm in accordance with the pressure change of each valve chamber, the large flow characteristic is smoothly changed to the high pump pressure characteristic.
  • the gas control device 200 ′ of this embodiment also has a simple structure in which it is not necessary to provide a gap between the diaphragm and the casing, and the diaphragm is fixed to the casing.
  • FIG. 13 is a cross-sectional view of a gas control device 300 according to the third embodiment of the present invention.
  • the gas control device 300 of this embodiment is different from the gas control device 100 in that it includes a quick exhaust unit 340 capable of quick exhaust, and the other configurations are the same. Therefore, the gas control device 300 is a device suitable for connecting to a cuff 309 for blood pressure measurement that requires quick exhaust after filling with compressed air.
  • the cuff 309 also corresponds to the “storage unit” of the present invention.
  • the quick exhaust unit 340 has an exhaust valve 306 and is connected to the outflow chamber 122 via the communication hole 316.
  • the gas control device 300 includes a housing 325 and a diaphragm 330.
  • the housing 325 includes an upper housing 310 and a lower housing 320.
  • the rubber tube 309 ⁇ / b> A of the cuff 309 is connected to the outlet 19 of the upper housing 310 of the gas control device 300.
  • the upper housing 310 is divided into three layers of a lid portion 311, an intermediate portion 312, and a first sandwiching portion 313, and the lower housing 320 is the first one.
  • the two sandwiched portions 321 and the bottom plate 322 are displayed in two layers. And the boundary line between each layer is shown with the dotted line.
  • the upper casing 310 of the gas control device 300 has an exhaust port 15 for exhausting the air of the cuff 309 to the outside, a communication hole 316 communicating with the outflow chamber 122, and an opening 364 communicating with the communication hole 316. And a cylindrical fourth valve seat 362 protruding from the periphery of the opening 364 toward the fifth diaphragm 30E.
  • the diaphragm 330 further includes a fifth diaphragm 30E. That is, the first diaphragm 30 ⁇ / b> A, the second diaphragm 30 ⁇ / b> B, the third diaphragm 30 ⁇ / b> C, the fourth diaphragm 30 ⁇ / b> D, and the fifth diaphragm 30 ⁇ / b> E are configured by a single diaphragm 330.
  • the fifth diaphragm 30E divides the inside of the upper casing 310 and the lower casing 320, and communicates with the ring-shaped exhaust chamber 365 communicating with the exhaust port 15 and the seventh valve chamber 112 via a communication hole (not shown).
  • a columnar ninth valve chamber 363 is formed.
  • the fifth diaphragm 30E is in contact with the fourth valve seat 362, and constitutes the exhaust valve 306 together with the upper housing 310 and the lower housing 320.
  • the gas control device 300 includes the first piezoelectric pump 101, the second piezoelectric pump 102, the first check valve 103, the second check valve 104, the switching valve 105, and the exhaust valve 306.
  • the exhaust valve 306 includes a fifth diaphragm 30E, an exhaust chamber 365, a ninth valve chamber 363, and a fourth valve seat 362.
  • the fourth valve seat 362 is provided in the upper housing 310 so as to pressurize the fifth diaphragm 30E.
  • the exhaust valve 306 switches between connection and disconnection between the exhaust chamber 365 and the opening 364 depending on the difference in force applied to both main surfaces of the fifth diaphragm 30E.
  • the sphygmomanometer generally increases the pressure of the pump by filling the cuff with air, measures blood pressure on the high blood pressure side and the low blood pressure side sequentially while exhausting slowly, and then rapidly exhausts the air remaining in the cuff. Is.
  • FIG. 14 is a cross-sectional view showing the air flow in the gas control apparatus 300 when the first piezoelectric pump 101 and the second piezoelectric pump 102 shown in FIG. 13 are connected in parallel.
  • FIG. 15 is a cross-sectional view showing the flow of air in the gas control apparatus 300 when the first piezoelectric pump 101 and the second piezoelectric pump 102 shown in FIG. 13 are connected in series.
  • FIG. 16 is a cross-sectional view showing the flow of air in the gas control apparatus 300 immediately after the operation of the first piezoelectric pump 101 and the second piezoelectric pump 102 shown in FIG.
  • the air flow in the gas control device 300 when the first piezoelectric pump 101 and the second piezoelectric pump 102 are connected in parallel is as shown in FIG. This is the same as the air flow in the gas control device 100 (see FIG. 9).
  • FIG. 15 the flow of air in the gas control device 300 when the first piezoelectric pump 101 and the second piezoelectric pump 102 are connected in series is also shown in FIG. 15 as a series connection of the first piezoelectric pump 101 and the second piezoelectric pump 102. This is the same as the air flow in the gas control device 100 at the time (see FIG. 10).
  • the exhaust valve 306 is closed while the first piezoelectric pump 101 and the second piezoelectric pump 102 are operating. Maintain state.
  • the gas control device 300 stops the operation of the first piezoelectric pump 101 and the second piezoelectric pump 102.
  • the volumes of the pump chamber 45, the seventh valve chamber 112, and the ninth valve chamber 363 of the first piezoelectric pump 101 are extremely small compared to the volume of air that can be accommodated in the cuff 309.
  • the air in the pump chamber 45, the seventh valve chamber 112, and the ninth valve chamber 363 of the first piezoelectric pump 101 is transferred to the first piezoelectric pump 101.
  • the air is quickly exhausted from the inlet 29 of the gas control device 300 to the outside of the gas control device 300 via the suction hole 52 and the opening 92. Further, the pressure of the cuff 309 is applied to the opening 364 of the exhaust valve 306 in the quick exhaust unit 340.
  • the exhaust valve 306 of the quick exhaust part 340 when the operation of the first piezoelectric pump 101 and the second piezoelectric pump 102 stops, the pressure in the ninth valve chamber 363 immediately decreases and the fifth diaphragm 30E opens. Thus, the opening 364 and the exhaust chamber 365 communicate with each other. Thus, the air in the cuff 309 is rapidly exhausted from the exhaust port 15 via the outflow chamber 122, the communication hole 316, the opening 364, and the exhaust chamber 365 (see FIG. 16).
  • the air can be further rapidly exhausted from the cuff 309.
  • the piezoelectric pump is provided in the above embodiment, the present invention is not limited to this.
  • an electromagnetic pump that operates by electromagnetic drive may be provided instead of the piezoelectric pump.
  • the piezoelectric element 44 is composed of a lead zirconate titanate ceramic, but is not limited thereto.
  • the unimorph type piezoelectric actuator 40 that bends and vibrates is provided.
  • the piezoelectric element 44 may be attached to both surfaces of the vibration plate 41 so that the bimorph type bends and vibrates.
  • the present invention is not limited to this. In implementation, only the piezoelectric actuator 40 may bend and vibrate, and the flexible plate 51 may not necessarily bend and vibrate with the bending vibration of the piezoelectric actuator 40.
  • the disk-shaped piezoelectric actuator 40 is used, but the present invention is not limited to this.
  • the shape of the piezoelectric actuator 40 may be a rectangular plate shape, a polygonal plate shape, or an elliptical plate shape.
  • the second valve chamber 156 is released to the atmosphere through the vent hole 18, but is not limited thereto.
  • the pressure may be applied to the diaphragm 30A by filling the second valve chamber 156 with an elastic body without opening the second valve chamber 156.
  • F is designed so as to satisfy the formula of P1 ⁇ A1> P2 ⁇ A2 + F.
  • the 1st check valve 103 or the 2nd check valve 104 has a diaphragm which has a valve seat and the hole which penetrates a part of area
  • the present invention is not limited to this.
  • the first check valve 103 or the second check valve 104 may be configured with the same configuration as the switching valve 152.

Abstract

 気体制御装置(100)は、第2の圧電ポンプ(102)が接合された上部筐体(10)と第1の圧電ポンプ(101)が接合された下部筐体(20)とダイヤフラム(30)とで構成されている。上部筐体(10)には、気体が流出する流出口(19)が設けられている。下部筐体(20)には、気体が流入する流入口(28、29)と開口(126)と第1の弁座(152)と第2の弁座(132)と第3の弁座(142)とが設けられている。ダイヤフラム(30)は、上部筐体(10)及び下部筐体(20)に挟持され、第1の弁座(152)、第2の弁座(132)、及び第3の弁座(142)に当接して上部筐体(10)、下部筐体(20)に固定されている。ダイヤフラム(30)は上部筐体(10)及び下部筐体(20)内を分割して各弁室を上部筐体(10)及び下部筐体(20)と共に構成する。

Description

気体制御装置
 この発明は、気体制御を行う気体制御装置に関する。
 従来より、複数のポンプを用いて気体制御を行う気体制御装置が各種考案されている。例えば特許文献1には、状況に応じて2つのポンプの接続を、直列接続または並列接続に切り替えることができる2段式真空ポンプが開示されている。
 図17(A)は、特許文献1の2段式真空ポンプ1内における、1段目ポンプ4、2段目ポンプ5の並列接続時の空気の流れを示す説明図である。図17(B)は、特許文献1の2段式真空ポンプ1内における、1段目ポンプ4、2段目ポンプ5の直列接続時の空気の流れを示す説明図である。図18は、図17(A)(B)に示す切替弁9の断面図である。
 2段式真空ポンプ1は、図17(A)(B)に示すように、ポンプ吸入口2と、ポンプ排出口3と、1段目ポンプ4と、2段目ポンプ5と、逆止弁7と、切替弁9と、から構成されている。
 1段目ポンプ4の吸気口はポンプ吸入口2及び逆止弁7に接続されており、1段目ポンプ4の排気口は切替弁9の導入口912に接続されている。2段目ポンプ5の吸気口は、切替弁9の導出口913に接続され、逆止弁7を介してポンプ吸入口2に接続されている。2段目ポンプ5の排気口は、切替弁9の導出口914に接続され、ポンプ排出口3に接続されている。逆止弁7は、ポンプ吸入口2から2段目ポンプ5への空気の通過を許容するが、2段目ポンプ5からポンプ吸入口2への空気の通過を阻止する。
 切替弁9は、図18に示すように、円柱状のケース921と、ケース921内に設けられた弁体925と、を備える。ケース921には、前述の導入口912及び導出口913、914と、弁室922、923と、両弁室922、923を連通する導入路924と、リング状の弾性体932、934とが、設けられている。そして、弁室922、923と導入路924とには、弁体925がケース921の軸線方向にスライド自在に収納されている。そして、この弁体925は、棒部926の両端に円板状の弁部927、928が設けられた形状である。
 前記の構成において、ポンプ吸入口2とポンプ排出口3との圧力差が所定値以下の場合、切替弁9の弁体925が弁室922側にスライドする。そして弁部927の周縁部がリング状の弾性体934に当接し、導入口912と導出口914とが連通する。この結果、1段目ポンプ4、2段目ポンプ5は図17(A)に示すように並列に接続される。
 また、ポンプ吸入口2とポンプ排出口3との圧力差が所定値以上になった場合、切替弁9の弁体925がばね929を圧縮して弁室923側にスライドする。そして弁部928の周縁部がリング状の弾性体932に当接し、導入口912と導出口913とが連通する。また、逆止弁7が閉鎖される。この結果、1段目ポンプ4、2段目ポンプ5は図17(B)に示すように直列に接続される。
実開昭62-52291号公報
 しかしながら、前記切替弁9のような弁構造では、弁体925とケース921の内壁との隙間からの漏気を防ぎ、かつスライドをスムーズにするため、弁体925とケース921の内壁との間にグリスが塗布されていることが一般的である。しかし、この方法では、ケース921内を空気が通過する時にグリスの微細な粒子(オイルミスト)が該空気に混ざるため、クリーンな空気をポンプ排出口3から排出できなくなるという問題がある。
 また、前記2段式真空ポンプ1では、前記切替弁9が弁体925をスライド自在に内蔵する複雑かつ大型な構造を有するため、2段式真空ポンプ1の小型低背化を阻害してしまう。さらに、2段式真空ポンプ1が小型化する程、ポンプの能力(流量と圧力)は低下するため、ポンプの能力を維持しつつ小型化しようとすれば、従来構造を有する2段式真空ポンプ1では限界がある。
 そこで、本発明の目的は、複数のポンプの接続を、直列接続または並列接続に切り替えることが可能で、不純物の気体への混入を抑制することができる小型低背の気体制御装置を提供することにある。
 本発明の気体制御装置は、前記課題を解決するために以下の構成を備えている。
(1)流入口と流出口とを有する筺体を備え、
 前記筺体の内部に、
 前記流入口と前記流出口との間に設けられ、前記流出口から前記流入口への気体の流れを遮断する第1の逆止弁及び第2の逆止弁と、
 前記流入口と接続された吸入孔と、前記第2の逆止弁と接続された吐出孔と、を有する第1のポンプと、
 前記第1の逆止弁と接続された吸入孔と、前記流出口と接続された吐出孔と、を有する第2のポンプと、
 前記第1のポンプの吐出孔と前記第2のポンプの吸入孔との間に設けられている切替弁と、を備える気体制御装置であって、
 前記切替弁は、第1のダイヤフラムと、前記第1のダイヤフラムによって仕切られた第1及び第2の弁室と、前記第1の弁室側に設けられている第1の弁座とを備え、
 前記第1のダイヤフラムは、前記第1の弁座と当接する領域を有し、
 前記第1の弁座は、前記第2のポンプの吸入孔と接続される開口を有し、
 前記第1の弁室は前記第1のポンプの吐出孔と接続され、
 前記切替弁は、前記第1のダイヤフラムにおける両主面に加わる力の差によって、前記第1のポンプ吐出孔と、前記第2のポンプの吸入孔との接続と遮断とを切り替える。
(2)前記第1の逆止弁は、第2のダイヤフラムと、前記第2のダイヤフラムによって仕切られた第3及び第4の弁室と、前記第3の弁室側に設けられている第2の弁座とを備え、
 前記第2のダイヤフラムは、前記第2の弁座の先端部と当接する領域と、該領域の一部を貫通する孔とを有し、
 前記第3の弁室は前記流入口と接続され、前記第4の弁室は前記第2のポンプの吸入孔と接続されていることが好ましい。
(3)前記第2の逆止弁は、第3のダイヤフラムと、前記第3のダイヤフラムによって仕切られた第5及び第6の弁室と、前記第5の弁室側に設けられている第3の弁座とを備え、
 前記第3のダイヤフラムは、前記第3の弁座の先端部と当接する領域と、該領域の一部を貫通する孔とを有し、
 前記第5の弁室は前記第1のポンプの吐出孔と接続され、前記第6の弁室は前記流出口と接続されていることが好ましい。
 この構成において流出口は、気体を貯蔵する貯蔵部に接続される。この構成では、第1、第2のポンプが動作を開始すると、第4の弁室の気体が第2のポンプに吸引されて貯蔵部へ吐出される。すなわち、第4の弁室の圧力が外気圧よりも低くなり、貯蔵部の圧力が外気圧よりも高くなる。同時に、筐体外部の気体が流入口から第1のポンプに吸引されて第1のポンプの吐出孔から吐出される。すなわち、第1の弁室及び第5の弁室の圧力が外気圧よりも高くなる。
 この結果、第1の逆止弁においては、第4の弁室の圧力が第3の弁室の圧力よりも低くなるため、第2のダイヤフラムが第2の弁座から離間して、第4の弁室と第3の弁室とを連通させる。また、第2の逆止弁においては、第5の弁室の圧力が第6の弁室の圧力よりも高くなるため、第3のダイヤフラムが第3の弁座から離間して、第5の弁室と第6の弁室とを連通させる。
 なお、切替弁においては、第1のダイヤフラムの一方主面に加わる第2の弁室の圧力と面積の積からなる力が、第1のダイヤフラムの他方主面に加わる第1の弁室の圧力及び開口の圧力と面積の積からなる力よりも高い。このため、第1のダイヤフラムが第1の弁座と当接し、第1の弁室と第2の弁室とは遮断されている。
 すなわち、この構成の気体制御装置では、第1、第2のポンプの動作開始時に、第1のポンプ、第2のポンプが並列に接続される。
 第1のポンプ、第2のポンプが並列に接続された状態で貯蔵部への気体の充填が行われると、徐々に貯蔵部内の圧力が高まっていく。これにより、貯蔵部内に連通する第6の弁室の圧力も高まっていき、第1の弁室、第4の弁室および開口の圧力が高まっていく。
 そのため、切替弁においては、第1のダイヤフラムの他方主面に加わる第1の弁室の圧力及び開口の圧力と面積の積からなる力が、第1のダイヤフラムの一方主面に加わる第2の弁室の圧力と面積の積からなる力よりも高くなる。このため、第1のダイヤフラムが第1の弁座から離間し、第1の弁室及び開口を連通させる。
 また、第2の逆止弁においては、第6の弁室の圧力が第5の弁室の圧力よりも高くなるため、第3のダイヤフラムが第3の弁座と当接し、第5の弁室と第6の弁室との通気を遮断させる。
 また、第1の逆止弁においては、第4の弁室の圧力が第3の弁室の圧力よりも高くなるため、第2のダイヤフラムが第2の弁座と当接し、第4の弁室と第3の弁室との通気を遮断させる。
 すなわち、この構成の気体制御装置では、貯蔵部の圧力が高まると、第1のポンプ、第2のポンプが直列に接続される。
 前記気体制御装置は、貯蔵部の圧力が低い間、第1、第2のポンプが並列接続となっており、貯蔵部の圧力が高くなると、第1、第2のポンプが並列接続から直列接続へ切り替わる。ここで、2個のポンプを並列に接続した場合の気体制御装置の最大ポンプ圧力は、2個のポンプのうち、単体での最大ポンプ圧力が高い方のポンプのみを貯蔵部に接続した場合と同じであるが、最大流量は、おのおののポンプの単体での最大ポンプ流量を合計した流量となる。一方、2個のポンプを直列に接続した場合の気体制御装置の最大吐出流量は、2個のポンプのうち、単体での最大ポンプ流量が多い方のポンプを貯蔵部に接続した場合と同じであるが、最大ポンプ圧力は、おのおののポンプの単体での最大ポンプ圧力を合計した圧力となる。
 よって、この構成によれば、第1、第2のポンプの並列接続時において、低いポンプ圧力下で多くの流量を得ることができる。また、第1、第2のポンプの直列接続時において、少ない流量下で高いポンプ圧力を得ることができる。すなわち、これらの両方の特性を実現することができる。
 また、気体制御装置の各領域の圧力変化に併せたダイヤフラムの変位によって、第1、第2のポンプが徐々に並列接続から直列接続に切り替わるため、急激な圧力、流量の変化が起きず、ポンプの特性がスムーズに移行する。
 また、この構成では、柔軟なダイヤフラムと各々の弁座とが密着するため漏気が発生しない。また、ダイヤフラムと各々の弁座との密着及び離間の際に摺動が発生しないので、ダイヤフラムと筐体との間にグリスを設ける必要がない。そのため、気体への不純物の混入を抑制することができる。
 また、この構成の気体制御装置は、ダイヤフラムが筐体に固定される簡易な構造を有するため、ポンプの特性(流量と圧力)を維持しつつ小型低背化を図ることができる。
 したがって、この構成によれば、複数のポンプの接続を、直列接続または並列接続に切り替えることが可能で、気体への不純物の混入を抑制することができる小型低背の気体制御装置を提供できる。
(4)前記筺体は、通気孔をさらに有し、
 前記切替弁においては、前記第2の弁室が前記通気孔と接続され、
 前記前記第2の弁室の圧力は、大気圧であることが好ましい。
 この構成の切替弁においては、第2の弁室の圧力である大気圧と面積の積からなる力が、第1のダイヤフラムの一方主面に加わる。
(5)前記第1、第2、及び第3のダイヤフラムは、共通の1枚のダイヤフラムによって構成されていることが好ましい。
 この構成によれば、ダイヤフラムの枚数が一枚で済むため、気体制御装置の製造コストを低減できる。
(6)流入口と流出口とを有する筐体と、
 前記筐体内を分割して前記筐体内に、前記流入口に連通する第1領域と、前記流出口に連通する第2領域と、第3領域と、第4領域と、を形成するダイヤフラムと、
 第1ポンプ室と、前記第1ポンプ室を介して互いに連通する第1吸引孔および第1吐出孔と、を有し、前記第1吸引孔が前記第1領域に連通し、前記第1吐出孔が前記第3領域に連通する第1のポンプと、
 第2ポンプ室と、前記第2ポンプ室を介して互いに連通する第2吸引孔および第2吐出孔と、を有し、前記第2吸引孔が前記第4領域に連通し、前記第2吐出孔が前記第2領域に連通する第2のポンプと、を備え、
 前記ダイヤフラムは、
 前記第1、第2のポンプの動作時、前記第3領域の圧力が前記第2領域の圧力よりも高く、前記第4領域の圧力が前記第1領域の圧力よりも低い場合、前記第3領域および前記第4領域を遮断し、前記第2領域および前記第3領域を連通するとともに前記第1領域および前記第4領域を連通し、
 前記第1、第2のポンプの動作時、前記第3領域の圧力が前記第2領域の圧力よりも低く、前記第4領域の圧力が前記第1領域の圧力よりも高い場合、前記第2領域および前記第3領域の通気と前記第1領域および前記第4領域の通気とを遮断し、前記第3領域および前記第4領域を連通するよう、前記筐体に固定されている。
 この構成において流出口は、気体を貯蔵する貯蔵部に接続される。この構成では、第1、第2のポンプが動作を開始すると、第4領域の気体が第2のポンプに吸引されて第2領域へ吐出される。すなわち、第4領域の圧力が外気圧よりも低くなり、第2領域の圧力が外気圧よりも高くなる。同時に、筐体外部の気体が流入口から第1領域を介して第1のポンプに吸引されて第3領域へ吐出される。すなわち、第1領域の圧力が外気圧となり、第3領域の圧力が外気圧よりも高くなる。
 この結果、第4領域の圧力が第1領域の圧力よりも低くなると、ダイヤフラムが、第1領域および第4領域を連通させる。また、第3領域の圧力が第2領域の圧力よりも高くなると、ダイヤフラムが、第2領域および第3領域を連通させる。なお、ダイヤフラムは、第3領域および第4領域を遮断している。
 すなわち、この構成の気体制御装置では、第1、第2のポンプの動作開始時に、第1、第2のポンプが並列に接続される。
 第1のポンプ、第2のポンプが並列に接続された状態で貯蔵部への気体の充填が行われると、徐々に貯蔵部内の圧力が高まっていく。これにより、貯蔵部内に連通する第2領域の圧力も高まっていき、第4領域及び第3領域の圧力も高まっていく。
 そのため、ダイヤフラムが第3領域および第4領域を連通させる。
 また、第2領域の圧力が第3領域の圧力よりも高くなると、ダイヤフラムが第2領域および第3領域の通気を遮断させる。
 また、第4領域の圧力が第1領域の圧力よりも高くなると、ダイヤフラムが第1領域および第4領域の通気を遮断させる。
 すなわち、この構成の気体制御装置では、貯蔵部の圧力が高まると、第1のポンプ、第2のポンプが直列に接続される。
 この構成では、貯蔵部の圧力が低い間、第1、第2のポンプが並列接続となっており、貯蔵部の圧力が高くなると、第1、第2のポンプが並列接続から直列接続へ切り替わる。ここで、2個のポンプを並列に接続した場合の気体制御装置の最大ポンプ圧力は、2個のポンプのうち、単体での最大ポンプ圧力が高い方のポンプのみを貯蔵部に接続した場合と同じであるが、最大流量は、おのおののポンプの単体での最大ポンプ流量を合計した流量となる。一方、2個のポンプを直列に接続した場合の気体制御装置の最大吐出流量は、2個のポンプのうち、単体での最大ポンプ流量が多い方のポンプを貯蔵部に接続した場合と同じであるが、最大ポンプ圧力は、おのおののポンプの単体での最大ポンプ圧力を合計した圧力となる。
 よって、この構成によれば、第1、第2のポンプの並列接続時において、低いポンプ圧力下で多くの流量を得ることができる。また、第1、第2のポンプの直列接続時において、少ない流量下で高いポンプ圧力を得ることができる。すなわち、これらの両方の特性を実現することができる。
 また、気体制御装置の各領域の圧力変化に併せたダイヤフラムの変位によって、第1、第2のポンプが徐々に並列接続から直列接続に切り替わるため、急激な圧力、流量の変化が起きず、ポンプの特性がスムーズに移行する。
 また、この構成では、柔軟なダイヤフラムと筺体とが密着するため漏気が発生しない。また、ダイヤフラムと筺体との密着及び離間の際に摺動が発生しないので、ダイヤフラムと筐体との間にグリスを設ける必要がない。そのため、気体への不純物の混入を抑制することができる。
 また、この構成の気体制御装置は、ダイヤフラムが筐体に固定される簡易な構造を有するため、ポンプの特性(流量と圧力)を維持しつつ小型低背化を図ることができる。
 したがって、この構成によれば、複数のポンプの接続を、直列接続または並列接続に切り替えることが可能で、気体への不純物の混入を抑制することができる小型低背の気体制御装置を提供できる。
(7)前記筐体は、前記第4領域に連通する開口と、前記第3領域において前記開口の周囲から前記ダイヤフラム側へ突出する第1の弁座と、前記第1領域において前記ダイヤフラム側へ突出する第2の弁座と、前記第3領域において前記ダイヤフラム側へ突出する第3の弁座と、が設けられ、
 前記ダイヤフラムは、前記第1の弁座、及び前記第2の弁座、前記第3の弁座に当接して前記筐体に固定されており、
 前記ダイヤフラムには、前記第2の弁座に当接する領域の一部に孔が設けられ、前記第3の弁座に当接する領域の一部に孔が設けられていることが好ましい。
(8)前記ダイヤフラムは、前記第1領域と前記第3領域との圧力差により前記第1の弁座に対して接触または離間して開閉し、前記第1領域と前記第4領域との圧力差により前記第2の弁座に対して接触または離間して開閉し、前記第2領域と前記第3領域との圧力差により前記第3の弁座に対して接触または離間して開閉することが好ましい。
 この構成では、第3領域の圧力が第2領域の圧力よりも高く、第4領域の圧力が第1領域の圧力よりも低いとき、ダイヤフラムは、第1の弁座に接触して開口を閉じ、第2の弁座から離間して孔を開放し、第3の弁座から離間して孔を開放する。
 一方、第3領域の圧力が第2領域の圧力よりも低く、第4領域の圧力が第1領域の圧力よりも高いとき、ダイヤフラムは、第1の弁座から離間して開口を開放し、第2の弁座に接触して孔を閉じ、第3の弁座に接触して孔を閉じる。
(9)前記ダイヤフラムは、前記第1領域と前記第4領域との圧力差により開閉する第1の逆止弁と、前記第2領域と前記第3領域との圧力差により開閉する第2の逆止弁と、前記第1領域と前記第3領域との圧力差により開閉する切替弁と、を前記筐体とともに構成し、
 前記第1の逆止弁は、前記第4領域から前記第1領域への気体の流れを阻止し、
 前記第2の逆止弁は、前記第2領域から前記第3領域への気体の流れを阻止し、
 前記切替弁は、前記第1、第2のポンプの動作時、前記第3領域の圧力が前記第2領域の圧力よりも高く前記第4領域の圧力が前記第1領域の圧力よりも低い場合、前記第3領域および前記第4領域を遮断し、前記第3領域の圧力が前記第2領域の圧力よりも低く前記第4領域の圧力が前記第1領域の圧力よりも高い場合、前記第3領域および前記第4領域を連通することが好ましい。
 この構成では、気体制御装置は、第1のポンプ、第2のポンプ、第1の逆止弁、第2の逆止弁、切替弁、流入口及び流出口を備える。第1のポンプの第1吸引孔は、流入口及び第1の逆止弁に接続され、その第1吐出孔は、第2の逆止弁及び切替弁に接続されている。また、第2のポンプの第2吸引孔は、第1の逆止弁及び切替弁に接続され、その第2吐出孔は、流出口及び第2の逆止弁に接続されている。
 そして、第1の逆止弁は、流入口から第2のポンプへの気体の通過を許容するが、第2のポンプ及び切替弁から流入口への気体の通過を阻止する。第2の逆止弁は、第1のポンプから流出口への気体の通過を許容するが、流出口から第1のポンプ及び切替弁への気体の通過を阻止する。
(10)前記第1、第2、及び第3の弁座は、前記ダイヤフラムを与圧するように前記筐体に設けられていることが好ましい。
 この構成では、第1、第2、及び第3の弁座がダイヤフラムに張力(以下、与圧力)を付与するように接触しているため、第3領域の圧力が第2領域の圧力よりも高く、第4領域の圧力が第1領域の圧力よりも低いとき、その与圧力によって、ダイヤフラムが弁座に接触して弁を閉じた状態を維持できる。
(11)前記筐体は、前記流入口が設けられている第1の筐体と、前記流出口が設けられている第2の筐体とを有し、
 前記ダイヤフラムは、弾性部材からなり、前記第1の筐体と前記第2の筐体とに両面から挟持されていることが好ましい。
 この構成では、ダイヤフラムが第1、第2の弁筐体に押圧されて挟持される。この結果、ダイヤフラムと第1、第2の弁筐体との当接部分の密着性が高くなる。そのため、気体がダイヤフラムと第1、第2の弁筐体との間を通過して外側へ漏れるのを防ぐことができる。
 よって、この構成では、シール性向上の為のグリスが不要であるため、筐体内を気体が通過する時にグリスのオイルミストが該気体に混ざることが無い。従って、この構成によれば、クリーンな気体を流出口から送出できる。
(12)前記流出口は貯蔵部に接続されており、
 前記流出口に連通し、前記第1、第2のポンプの動作により前記貯蔵部に充填された気体を、前記第1、第2のポンプの動作の停止時に急速に排気が可能である急速排気部を備えることが好ましい。
 この構成では、貯蔵部の気体が第2領域を介して急速に排気される。従って、この構成によれば、貯蔵部に圧縮空気を充填した後に、貯蔵部から気体を急速排気することができる。
(13)流入口と流出口とを有する筐体と、
 前記筐体内を分割して前記筐体内に、前記流入口に連通する第1領域、前記流出口に連通する第2領域、第3領域、第2t(tは2からn-1までの整数)領域、第2t+1領域及び第2n(nは3以上の整数)領域を形成するダイヤフラムと、
 第1ポンプ室と前記第1ポンプ室を介して互いに連通する第1吸引孔および第1吐出孔とを有し、前記第1吸引孔が前記第1領域に連通し、前記第1吐出孔が前記第3領域に連通する第1のポンプと、
 第tポンプ室と前記第tポンプ室を介して互いに連通する第t吸引孔および第t吐出孔とを有し、前記第t吸引孔が前記第2t領域に連通し、前記第t吐出孔が前記第2t+1領域に連通する第tのポンプと、
 第nポンプ室と前記第nポンプ室を介して互いに連通する第n吸引孔および第n吐出孔とを有し、前記第n吸引孔が前記第2n領域に連通し、前記第n吐出孔が前記第2領域に連通する第nのポンプと、を備え、n段のポンプを接続した、気体制御装置であって、
 前記ダイヤフラムは、
 前記第1、第t、及び第nのポンプの動作時、前記第3領域および前記第2t+1領域の圧力が前記第2領域の圧力よりも高く、前記第2t領域および前記第2n領域の圧力が前記第1領域の圧力よりも低いとき、前記第3領域および前記第2t+1領域のそれぞれと前記第2t領域および前記第2n領域のそれぞれとを遮断し、前記第3領域および前記第2t+1領域のそれぞれと前記第2領域とを連通するとともに前記第2t領域および前記第2n領域のそれぞれと前記第1領域とを連通し、
 前記第1、第t、及び第nのポンプの動作時、前記第3領域および前記第2t+1領域の圧力が前記第2領域の圧力よりも低く、前記第2t領域および前記第2n領域の圧力が前記第1領域の圧力よりも高いとき、前記第3領域および前記第2t+1領域のそれぞれと前記第2領域とを遮断するとともに前記第2t領域および前記第2n領域のそれぞれと前記第1領域とを遮断し、前記第3領域および前記第2t+1領域のそれぞれと前記第2t領域および前記第2n領域のそれぞれとを連通するよう、前記筐体に固定されている。
 この構成において流出口は、気体を貯蔵する貯蔵部に接続される。この構成では前記(6)と同様に、貯蔵部の圧力が低い間、n個のポンプが並列に接続され、貯蔵部の圧力が高くなると、n個のポンプが直列に接続される。
 よって、この構成においても、第1、第t、第nポンプの並列接続時において、低いポンプ圧力下で多くの流量を得ることができる。また、第1、第t、第nポンプの直列接続時において、少ない流量下で高いポンプ圧力を得ることができる。すなわち、これらの両方の特性を実現することができる。
 また、気体制御装置の各領域の圧力変化に併せたダイヤフラムの変位によって、第1、第t、第nポンプが徐々に並列接続から直列接続に切り替わるため、大流量特性から高ポンプ圧力特性へスムーズに移行する。
 また、この構成では、柔軟なダイヤフラムと筺体とが密着するため漏気が発生しない。また、ダイヤフラムと筺体との密着及び離間の際に摺動が発生しないので、ダイヤフラムと筐体との間にグリスを設ける必要がない。そのため、気体への不純物の混入を抑制することができる。
 また、この構成の気体制御装置は、ダイヤフラムが筐体に固定される簡易な構造を有するため、ポンプの能力(流量と圧力)を維持しつつ小型低背化を図ることができる。
 したがって、この構成によれば、前記(6)と同様の効果を奏する。
 本発明によれば、複数のポンプの接続を、直列接続または並列接続に切り替えることが可能で、不純物の気体への混入を抑制することができる小型低背の気体制御装置を提供することができる。
本発明の第1実施形態に係る気体制御装置100に備えられる各部材の接続関係を示すブロック図である。 第1実施形態に係る気体制御装置100の概念図である。 第1実施形態の変形例に係る気体制御装置100′の概念図である。 第1実施形態に係る気体制御装置100の外観斜視図である。 第1実施形態に係る気体制御装置100の分解斜視図である。 第1実施形態に係る気体制御装置100の、図4に示すT―T線における断面図である。 第1実施形態に係る第1圧電ポンプ101の分解斜視図である。 第1実施形態に係る第1圧電ポンプ101の主要部の断面図である。 第1実施形態に係る第1圧電ポンプ101、第2圧電ポンプ102の並列接続時における気体制御装置100内の空気の流れを示す断面図である。 第1実施形態に係る第1圧電ポンプ101、第2圧電ポンプ102の直列接続時における気体制御装置100内の空気の流れを示す断面図である。 本発明の第2実施形態に係る気体制御装置200に備えられる各部材の接続関係を示すブロック図である。 本発明の第2実施形態の変形例に係る気体制御装置200′に備えられる各部材の接続関係を示すブロック図である。 本発明の第3実施形態に係る気体制御装置300の断面図である。 第3実施形態に係る第1圧電ポンプ101、第2圧電ポンプ102の並列接続時における気体制御装置300内の空気の流れを示す断面図である。 第3実施形態に係る第1圧電ポンプ101、第2圧電ポンプ102の直列接続時における気体制御装置300内の空気の流れを示す断面図である。 第3実施形態に係る第1圧電ポンプ101、第2圧電ポンプ102が動作を停止した直後における気体制御装置300内の空気の流れを示す断面図である。 図17(A)は、特許文献1の2段式真空ポンプ1内における、ポンプ4、5の並列接続時の空気の流れを示す説明図である。図17(B)は、特許文献1の2段式真空ポンプ1内における、ポンプ4、5の直列接続時の空気の流れを示す説明図である。 特許文献1に係る切替弁9の断面図である。
 《第1実施形態》
 本発明の第1実施形態に係る気体制御装置100について以下説明する。
 図1は、本発明の第1実施形態に係る気体制御装置100に備えられる第1圧電ポンプ101、第2圧電ポンプ102、第1の逆止弁103、第2の逆止弁104、切替弁105、流入口28、29及び流出口19の接続関係を示すブロック図である。図2は、気体制御装置100の概念図である。図4は、気体制御装置100の外観斜視図である。図5は、気体制御装置100の分解斜視図である。図6は、気体制御装置100の図4に示すT―T線における断面図である。まず、図1、図2を用いて、気体制御装置100の概略構成について以下説明する。
 なお、本発明の「第1の筐体」が下部筐体20に相当し、本発明の「第2の筐体」が上部筐体10に相当し、「筺体」が下部筐体20および上部筐体10に相当する。また、本発明の「第1の弁室」が第1弁室153、「第2の弁室」が第2弁室156、「第3の弁室」が第3弁室133、「第4の弁室」が第4弁室121、「第5の弁室」が第5弁室143、「第6の弁室」が第6弁室146に相当する。
 また、本発明の「第1領域」は、第2弁室156、第3弁室133、第8弁室116、連通孔17、及び流入室111で構成される第1領域1に相当する。本発明の「第2領域」は、流出室122、連通孔16、及び第6弁室146で構成される第2領域2に相当する。本発明の「第3領域」は、第1弁室153、第7弁室112、連通孔26、第5弁室143、連通孔27で構成される第3領域3に相当する。本発明の「第4領域」は、連絡路124、連通孔25、第4弁室121で構成される第4領域4に相当する。
 また、本発明の「第1の弁座」が第1の弁座152に相当する。本発明の「第2の弁座」が第2の弁座132に相当する。本発明の「第3の弁座」が第3の弁座142に相当する。
 気体制御装置100は、図1、図2に示すように、流入口28、29、及び流出口19を備える筺体110と、第1圧電ポンプ101と、第2圧電ポンプ102と、第1の逆止弁103と、第2の逆止弁104と、切替弁105と、を有する。流出口19は、例えば貯蔵部に接続される。
 第1圧電ポンプ101は、流入口29と接続された吸入孔と、第2の逆止弁104と接続された吐出孔と、を有する。
 第2圧電ポンプ102は、第1の逆止弁103と接続された吸入孔と、流出口19と接続された吐出孔と、を有する。
 切替弁105は、第1圧電ポンプ101における吐出孔と第2圧電ポンプ102における吸入孔との間に設けられている。切替弁105は、第1のダイヤフラム30Aと、第1のダイヤフラム30Aによって仕切られた第1弁室153及び第2弁室156と、第1のダイヤフラム30Aへ突出して第1弁室153に設けられている第1の弁座152とを備える。
 第1のダイヤフラム30Aは、第1の弁座152と当接する領域を有する。第1の弁座152は、第2圧電ポンプ102の吸入孔と接続される開口126を有する。切替弁105において、第1弁室153は第1圧電ポンプ101の吐出孔と接続されている。切替弁105において、第2弁室156は例えば大気開放されている通気口18と接続されている。さらに、第1の弁座152は、第1のダイヤフラム30Aを与圧するように、筺体110に設けられている。
 切替弁105は、第1のダイヤフラム30Aの両主面に加わる力の差によって、第1圧電ポンプ101の吐出孔と、第2圧電ポンプ102の吸入孔との接続と遮断とを切り替える。
 第1の逆止弁103は、流入口28と第2圧電ポンプ102の吸入孔との間に設けられている。第1の逆止弁103は、流入口28から第2圧電ポンプ102の吸入孔への気体の流れを許可し、第2圧電ポンプ102の吸入孔から流入口28への気体の流れを遮断する逆止弁である。
 第1の逆止弁103は、第2のダイヤフラム30Bと、第2のダイヤフラム30Bによって仕切られた第3弁室133及び第4弁室121と、第2のダイヤフラム30B側へ突出して第3弁室133に設けられている第2の弁座132とを備える。第2のダイヤフラム30Bは、第2の弁座132の突出方向の先端部と当接する領域を有し、該領域の一部に貫通孔32が設けられている。第3弁室133は流入口28と接続され、第4弁室121は第2圧電ポンプ102の吸入孔と接続されている。さらに、第2の弁座132は、第2のダイヤフラム30Bを与圧するように、筺体110に設けられている。
 第1の逆止弁103は、第2のダイヤフラム30Bの両主面に加わる力の差によって、流入口28と第2圧電ポンプ102の吸入孔との接続と遮断とを切り替える。
 一方、第2の逆止弁104は、第1圧電ポンプ101の吐出孔と流出口19との間に設けられている。第2の逆止弁104は、第1圧電ポンプ101の吐出孔から流出口19への気体の流れを許可し、流出口19から第1圧電ポンプ101の吐出孔への気体の流れを遮断する逆止弁である。
 第2の逆止弁104は、第3のダイヤフラム30Cと、第3のダイヤフラム30Cによって仕切られた第5弁室143及び第6弁室146と、第3のダイヤフラム30C側へ突出して第5弁室143に設けられている第3の弁座142とを備える。第3のダイヤフラム30Cは、第3の弁座142の突出方向の先端部と当接するを有し、該領域の一部に貫通孔42が設けられている。第5弁室143は第1圧電ポンプ101の吐出孔と接続され、第6弁室146は流出口19と接続されている。さらに、第3の弁座142は、第3のダイヤフラム30Cを与圧するように、筺体110に設けられている。
 第2の逆止弁104は、第3のダイヤフラム30Cの両主面に加わる力の差によって、第1圧電ポンプ101の吐出孔と流出口19との接続と遮断とを切り替える。
 なお、この実施形態では、第1のダイヤフラム30A、第2のダイヤフラム3B、及び第3のダイヤフラム30Cは、共通の1枚のダイヤフラム30によって構成されているが、これに限るものではない。実施の際は、図3に示すように、第1のダイヤフラム30A、第2のダイヤフラム3B、及び第3のダイヤフラム30Cが、3枚のダイヤフラムによって構成されていてもよい。
 次に、図4~図6を用いて、気体制御装置100の具体的な構成について以下説明する。
 気体制御装置100は、図4~図6に示すように、筺体110と、第1の逆止弁103と、第2の逆止弁104と、切替弁105と、第1圧電ポンプ101と、第2圧電ポンプ102と、から構成されている。
 第1の逆止弁103、第2の逆止弁104、及び切替弁105は、筺体110及びダイヤフラム30によって構成されている。すなわち、前述した第1ないし第6の弁室153、156、133、121、143、146と第7弁室112、第8弁室116とは、筺体110及びダイヤフラム30によって構成されている。
 また、第1の弁座152、第2の弁座132、及び第3の弁座142は、共通の筺体110によって構成されている。また、ダイヤフラム30は、第1のダイヤフラム30A、第2のダイヤフラム30B、第3のダイヤフラム30C、及び第4のダイヤフラム30Dを有する。すなわち、第1のダイヤフラム30A、第2のダイヤフラム30B、第3のダイヤフラム30C、及び第4のダイヤフラム30Dは、共通の1枚のダイヤフラム30によって構成されている。
 筺体110は、上部筐体10と、下部筐体20とから構成されている。上部筐体10と下部筐体20とは例えば樹脂からなる。図5、図6に示すように、上部筐体10の内部には、詳細を後述する第2圧電ポンプ102が配置されており、下部筐体20の内部には、詳細を後述する第1圧電ポンプ101が配置されている。
 なお、図6では気体制御装置100の構造を見易くするため便宜上、上部筐体10を蓋部11と中間部12と第1挟持部13の3層に分けて表示し、下部筐体20を第2挟持部21と底板22の2層に分けて表示している。そして、図6において各層の間の境界線を点線で示している。
 図6に示すように、上部筐体10には、貯蔵部109のゴム管109Aに接続され、筐体110内の空気をゴム管109Aを介して貯蔵部109へ流出させる流出口19と、この流出口19に連通する直方体状の流出室122と、この流出室122と第6弁室146を連通する連通孔16と、上部筐体10の外部に連通する通気口18と、後述の第2弁室156と第8弁室116を連通する連通孔17と、が設けられている。貯蔵部109は、例えばビーチボールやゴムボート、風船人形のような玩具やタイヤである。
 下部筐体20には、下部筐体20外部の空気を筐体110内部へ流入させる流入口28、29と、この流入口29に連通し、第1圧電ポンプ101を収納する直方体状の流入室111と、第5弁室143と第7弁室112を連通する連通孔26と、第1弁室153と第7弁室112を連通する連通孔27と、開口126と、ダイヤフラム30の孔35を介して第4弁室121に連通する連絡路124と、開口126及び連絡路124を連通する連通孔25と、開口126の周囲においてダイヤフラム30側へ突出した円筒状の第1の弁座152と、ダイヤフラム30側へ突出した第2の弁座132、第3の弁座142と、が設けられている。第1の弁座152、第2の弁座132、及び第3の弁座142は、ダイヤフラム30を与圧するように、下部筐体20に設けられている。
 ダイヤフラム30は、板状の薄膜からなり、可撓性を有する。ダイヤフラム30は、パッキンPを介して上部筐体10及び下部筐体20に両面から挟持され、第1の弁座152、第2の弁座132、及び第3の弁座142に当接して上部筐体10及び下部筐体20に固定されている。
 これにより、ダイヤフラム30は、上部筐体10、下部筐体20内を分割し、リング状の第1弁室153と円柱状の第2弁室156とリング状の第3弁室133と直方体状の第4弁室121とリング状の第5弁室143と円柱状の第6弁室146と直方体状の第7弁室112と円柱状の第8弁室116とを、上部筐体10及び下部筐体20とともに構成している。
 なお、ダイヤフラム30は、例えばエチレンプロピレンゴムまたはシリコーンゴム等の弾性部材で構成されている。ダイヤフラム30は、常温より高い温度で上部筐体10及び下部筐体20に両面から押圧されて挟持されている。このように形成しているので、ダイヤフラム30が上部筐体10、下部筐体20によって圧接され、ダイヤフラム30と上部筐体10、下部筐体20との当接部分の密着性が高くなる。そのため、空気がダイヤフラム30と上部筐体10、下部筐体20との間を通過して外側へ漏れることを抑制できる。
 第1弁室153及び第2弁室156を構成するダイヤフラム30Aは、円筒状の第1の弁座152に当接し、切替弁105を上部筐体10及び下部筐体20とともに構成する。第3弁室133及び第4弁室121を構成するダイヤフラム30Bは、第2の弁座132に当接し、第1の逆止弁103を上部筐体10及び下部筐体20とともに構成する。また、第5弁室143及び第6弁室146を構成するダイヤフラム30Cは、第3の弁座142に当接し、第2の逆止弁104を上部筐体10及び下部筐体20とともに構成する。
 第7弁室112は、連通孔26を介して第5弁室143に連通するとともに、連通孔27を介して第1弁室153に連通している。また、第8弁室116は、連通孔17を介して第2弁室156に連通するとともに、通気口18を介して下部筐体20外部に連通している。このため、第2弁室156及び第8弁室116の空気圧は常に大気圧となる。
 ここで、第1圧電ポンプ101、第2圧電ポンプ102の構造について詳述する。図7は、本発明の第1実施形態の気体制御装置100に備えられる第1圧電ポンプ101の分解斜視図である。図8は、図7に示す第1圧電ポンプ101の主要部の断面図である。第1圧電ポンプ101は、基板91、可撓板51、スペーサ53A、補強板43、振動板ユニット60、圧電素子44、スペーサ53B、電極導通用板70、スペーサ53C及び蓋部54を備え、それらを順に積層した構造を有している。
 なお、第2圧電ポンプ102は、第1圧電ポンプ101と同じ構造を有しているため、説明を省略する。
 円板状の振動板41の上面には圧電素子44が貼着され、振動板41の下面には補強板43が貼着されて、振動板41と圧電素子44と補強板43とによってアクチュエータ40が構成される。圧電素子44は、例えばチタン酸ジルコン酸鉛系セラミックスからなる。ここで、振動板41を圧電素子44および補強板43よりも線膨張係数の大きな金属板としておき、接着時に加熱硬化させることにより、全体が反ることなく、圧電素子44に適切な圧縮応力を残留させることができ、圧電素子44の割れを防止できる。例えば、振動板41をリン青銅(C5210)やステンレススチールSUS301など線膨張係数の大きな材料とし、補強板43を42ニッケルまたは36ニッケルまたはステンレススチールSUS430などとするのがよい。この場合スペーサ53Bの厚さは、圧電素子44の厚さと同じか、少し厚くしておくとよい。
 なお、振動板41、圧電素子44、補強板43については、上から圧電素子44、補強板43、振動板41の順に配置してもよい。この場合も圧電素子44に適切な圧縮応力が残留するように、補強板43、振動板41の材質を逆にすることで線膨張係数が調整されている。
 振動板41の周囲には枠板61が設けられていて、振動板41は枠板61に対して連結部62で連結されている。連結部62は例えばリング状に設けられており、小さなバネ定数の弾性をもたせて弾性構造としている。
 したがって振動板41は二つの連結部62で枠板61に対して2点で柔軟に支持されている。そのため、振動板41の屈曲振動を殆ど妨げない。すなわち、アクチュエータ40の周辺部が(勿論中心部も)実質的に拘束されていない状態となっている。
 なお、スペーサ53Aは可撓板51と一定の隙間をあけてアクチュエータ40を保持するために設けられる。枠板61には電気的に接続するための外部端子63が設けられている。
 振動板41、枠板61、連結部62及び外部端子63は金属板の打ち抜き加工により成形されていて、これらによって振動板ユニット60が構成されている。
 枠板61の上面には、樹脂製のスペーサ53Bが接着固定されている。スペーサ53Bの厚さは圧電素子44と同じか少し厚く、ポンプ筺体80の一部を構成するとともに、次に述べる電極導通用板70と振動板ユニット60とを電気的に絶縁する。
 スペーサ53Bの上には、金属製の電極導通用板70が接着固定されている。電極導通用板70は、ほぼ円形に開口した枠部位71と、この開口内に突出する内部端子73と、外部へ突出する外部端子72とで構成されている。
 内部端子73の先端は圧電素子44の表面にはんだ付けされる。はんだ付け位置をアクチュエータ40の屈曲振動の節に相当する位置とすることにより内部端子73の振動は抑制できる。
 電極導通用板70の上には、樹脂製のスペーサ53Cが接着固定される。スペーサ53Cはここでは圧電素子44と同程度の厚さを有する。スペーサ53Cは、アクチュエータが振動したときに、内部端子73のはんだ部分が、蓋部54に接触しないようにするためのスペーサである。また、圧電素子44表面が蓋部54に過度に接近して、空気抵抗により振動振幅の低下することを防止する。そのため、スペーサ53Cの厚さは、前述の通り、圧電素子44と同程度の厚さであればよい。
 蓋部54は吐出孔55を有しており、スペーサ53Cの上部に被せられ、アクチュエータ40の周囲を覆う。吐出孔55は、蓋部54を含むポンプ筐体80内の正圧を開放するためのものであるので、この機能を果たし得る限り、蓋部54のどの位置に設けられていてもよい。
 一方、可撓板51の中心には吸引孔52が設けられている。この可撓板51と振動板ユニット60との間に、補強板43の厚みへ数10μm程度加えた厚みを有するスペーサ53Aが挿入されている。振動板41は枠板61に拘束されているわけではないが、連結部62(バネ端子)の拘束の影響を多少受ける。そのため、このようにスペーサ53Aを挿入することで、吐出孔55側に加わる圧力が低いときには、積極的に可撓板51と振動板41との隙間を確保して吐出流量を増大することができる。また、スペーサ53Aを挿入した場合でも、吐出孔55側に加わる圧力が高いときには連結部62(バネ端子)がたわんで、アクチュエータ40と可撓板51との対向領域の隙間が自動的に減少し、高い圧力で動作することが可能である。
 なお、図7に示した例では、連結部62を二箇所に設けたが、三箇所以上に設けてもよい。
 可撓板51の下部には、中心に円筒形の開口部92が設けられた基板91が設けられている。可撓板51の一部は基板91の開口部92で露出する。この円形の露出部は、アクチュエータ40の振動に伴う圧力変動により、アクチュエータ40と実質的に同一周波数で振動することができる。この可撓板51と基板91との構成により、可撓板51のアクチュエータ対向領域の中心又は中心付近は屈曲振動可能な可動部であり、周辺部は実質的に拘束された固定部となる。この円形の可動部の固有振動数は、アクチュエータ40の駆動周波数と同一か、やや低い周波数になるように設計している。
 従って、アクチュエータ40の振動に呼応して、吸引孔52を中心とした可撓板51の露出部も大きな振幅で振動する。可撓板51の振動位相がアクチュエータ40の振動位相よりも遅れた(例えば90°遅れの)振動となれば、可撓板51とアクチュエータ40との間の隙間空間の厚さ変動が実質的に増加する。そのことによってポンプの能力をより向上させることができる。
 ここで、空気充填時における気体制御装置100の動作について説明する。
 図9は、図6に示す第1圧電ポンプ101、第2圧電ポンプ102の並列接続時における気体制御装置100内の空気の流れを示す断面図である。図10は、図6に示す第1圧電ポンプ101、第2圧電ポンプ102の直列接続時における気体制御装置100内の空気の流れを示す断面図である。
 気体制御装置100では、第1圧電ポンプ101、第2圧電ポンプ102が動作を開始すると、第1圧電ポンプ101、第2圧電ポンプ102が並列に接続され、貯蔵部109内の圧力が一定圧力(例えば15kPa)を超えると、第1圧電ポンプ101、第2圧電ポンプ102が直列に接続される。
 詳述すると、気体制御装置100は、貯蔵部109への空気の充填を開始するとき、第1圧電ポンプ101、第2圧電ポンプ102を駆動させる。
 第1圧電ポンプ101、第2圧電ポンプ102が駆動を開始すると、第4弁室121の空気が第2圧電ポンプ102のポンプ室45へ吸引されて、第2圧電ポンプ102のポンプ室45から流出室122を介して貯蔵部109へ吐出される。
 これにより、第4弁室121の圧力が低くなり、貯蔵部109の圧力が外気圧より高くなる。同時に、筐体110の外部の空気が流入口29と流入室111を介して第1圧電ポンプ101のポンプ室45へ吸引されて、第1圧電ポンプ101のポンプ室45から第7弁室112へ吐出される。これにより、第7弁室112と第5弁室143と第1弁室153との圧力が外気圧よりも高くなる。
 この結果、第1の逆止弁103においては、第4弁室121の圧力が第3弁室133の圧力よりも低くなるため、第2のダイヤフラム30Bが第2の弁座132から離間して、第2のダイヤフラム30Bの孔32を介して第3弁室133と第4弁室121とを連通させる。
 また、第2の逆止弁104においては、第5弁室143の圧力が第6弁室146の圧力よりも高くなるため、第3のダイヤフラム30Cが第3の弁座142から離間して、第3のダイヤフラム30Cの孔42を介して第5弁室143と第6弁室146とを連通させる。
 なお、切替弁105では、第1のダイヤフラム30Aの一方主面に加わる第2の弁室156の圧力と面積の積からなる力が、第1のダイヤフラム30Aの他方主面に加わる第1の弁室153の圧力及び開口126の圧力と面積の積からなる力よりも高い。このため、第1のダイヤフラム30Aが第1の弁座152と当接し、第1弁室153と第2弁室156とは遮断されている。
 すなわち、気体制御装置100では、第1圧電ポンプ101、第2圧電ポンプ102の駆動開始時に、第1圧電ポンプ101、第2圧電ポンプ102が並列に接続される(図9参照)。
 この並列接続時では、外気が流入口29と流入室111を介して第1圧電ポンプ101のポンプ室45へ吸引されて、第1圧電ポンプ101のポンプ室45から第7弁室112へ吐出され、第5弁室143と第6弁室146を経由して流出室122へ流入する。また、外気が流入口28と第3弁室133と第4弁室121を介して第2圧電ポンプ102のポンプ室45へ吸引されて、第2圧電ポンプ102のポンプ室45から流出室122へ吐出される。そして、合流した流出室122の空気が流出口19から貯蔵部109へ送出される。第1圧電ポンプ101、第2圧電ポンプ102が並列に接続された状態で貯蔵部109への空気の充填が行われると、徐々に貯蔵部109内の圧力(空気圧)が高まっていく。
 これにより、貯蔵部109内に連通する第6弁室146の圧力も高まっていき、第1弁室153、第4弁室121及び開口126の圧力も高まっていく。
 この結果、第2の逆止弁104においては、第5弁室143の圧力が第6弁室146の圧力よりも高くなるため、第3のダイヤフラム30Cが第3の弁座142から当接して、第5弁室143と第6弁室146との通気を遮断する。
 次に、切替弁105においては、第1のダイヤフラム30Aの他方主面に加わる第1の弁室153の圧力及び開口126の圧力と面積の積からなる力が、第1のダイヤフラム30Aの一方主面に加わる第2の弁室156の圧力と面積の積からなる力よりも高くなる。このため、第1のダイヤフラム30Aが第1の弁座153から離間し、第1の弁室153及び開口126を連通させる。
 なお、切替弁105において、第2弁室156に加わる圧力をP1、開口126に加わる圧力をP2、第1弁室153に加わる圧力をP0、第2弁室156に面する第1のダイヤフラム30Aの面積をA1、開口126に面する第1のダイヤフラム30Aの面積をA2、第1弁室153に面する第1のダイヤフラム30Aの面積をA0としたとき、切替弁105が開放する条件は、P1×A1>P0×A0+P2×A2の式を満たすときである。
 次に、第1の逆止弁103においては、第4弁室121の圧力が第3弁室133の圧力よりも高くなるため、第2のダイヤフラム30Bが第2の弁座132に当接して、第3弁室133と第4弁室121との通気を遮断する。
 すなわち、貯蔵部109の圧力が高まると、第1圧電ポンプ101、第2圧電ポンプ102が直列に接続される(図10参照)。
 この直列接続時では、外気が流入口29と流入室111を介して第1圧電ポンプ101のポンプ室45へ吸引されて、第1圧電ポンプ101のポンプ室45から第7弁室112へ吐出され、第1弁室153、開口126、連絡路124及び連通孔25を経由して第4弁室121へ流入する。そして、第4弁室121の空気が第2圧電ポンプ102のポンプ室45へ吸引されて、第2圧電ポンプ102のポンプ室45から流出室122へ吐出される。そして、流出室122の空気が流出口19から貯蔵部109へ送出され、貯蔵部109内の圧力(空気圧)が目標圧力まで高まる。
 以上の構成では、貯蔵部109の圧力が低い間、2個の第1圧電ポンプ101、第2圧電ポンプ102が並列接続となっており、貯蔵部109の圧力が高くなると、第1圧電ポンプ101、第2圧電ポンプ102が直列接続へ切り替わる。
 ここで、2個の第1圧電ポンプ101、第2圧電ポンプ102を並列に接続した場合の気体制御装置100の最大ポンプ圧力は、2個の第1圧電ポンプ101、第2圧電ポンプ102のうち、単体での最大ポンプ圧力が高い方のポンプのみを貯蔵部109に接続した場合と同じであるが、最大流量は、おのおののポンプの単体での最大ポンプ流量を合計した流量となる。一方、2個の第1圧電ポンプ101、第2圧電ポンプ102を直列に接続した場合の気体制御装置100の最大吐出流量は、2個の第1圧電ポンプ101、第2圧電ポンプ102のうち、単体での最大ポンプ流量が多い方のポンプを貯蔵部109に接続した場合と同じであるが、最大ポンプ圧力は、おのおののポンプの単体での最大ポンプ圧力を合計した圧力となる。
 また、貯蔵部109に空気が入っていない動作の初期には、ポンプ圧力は低くとも良いものの大きな流量が必要になるが、この実施形態の気体制御装置100では、並列接続により貯蔵部109のたるみが無くなるまで空気を大流量で貯蔵部109に送出することができる。そして、空気が十分に入り、貯蔵部109の体積がほぼ一定で変化しなくなる動作の後期には、流量は少なくてもよいものの高いポンプ圧力が必要になるが、この実施形態の気体制御装置100では、直列接続により高圧縮の空気を充填することができる。
 よって、この実施形態の気体制御装置100では、並列接続時における低ポンプ圧力下での大流量特性と、直列接続時における低流量下での高ポンプ圧力特性との両方を実現することができる。
 また、図17に示す前記切替弁9のように弁体925のスライド移動によって並列接続時の弁構造と直列接続時の弁構造とのいずれかに切り替わる二値変化ではなく、各弁室の圧力変化に応じたダイヤフラムの変位によって徐々に並列接続から直列接続に切り替わるため、大流量特性から高ポンプ圧力特性へスムーズに移行する。
 また、この実施形態の気体制御装置100では、ダイヤフラム30と上部筐体10、下部筐体20との間にシール性向上の為のグリスが不要であるため、上部筐体10、下部筐体20内を空気が通過する時にグリスのオイルミストが該空気に混ざることが無い。そのため、この実施形態の気体制御装置100によれば、クリーンな空気を流出口19から送出できる。
 したがって、気体制御装置100によれば、複数のポンプの接続を、直列接続または並列接続に切り替えることが可能で、気体への不純物の混入を抑制することができる。
 また、気体制御装置100は、ダイヤフラム30が上部筐体10、下部筐体20に挟持される簡易な構造を有するため、ポンプの能力(流量と圧力)を維持しつつ小型低背化を図ることができる。
 また、この実施形態では、逆止弁103と逆止弁104と切替弁105とが一枚のダイヤフラム30から一体設けられているため、ダイヤフラムの枚数が一枚で済む。そのため、この実施形態の気体制御装置100は安価に製造できる。
 《第2実施形態》
 図11は、本発明の第2実施形態の気体制御装置200に備えられる第1圧電ポンプ101、第2圧電ポンプ102、第3圧電ポンプ202、逆止弁103、104、203、204、切替弁105、205、流入口28、29及び流出口19の接続関係を示すブロック図である。
 この実施形態の気体制御装置200は、圧電ポンプ202と逆止弁203、204と切替弁205とを備える点で、図5に示した気体制御装置100と相違する。その他の構成については同じである。ここで、第3圧電ポンプ202は、図7、図8に示す第1圧電ポンプ101と同じ構造を有している。また、逆止弁203、204は、図5、図6に示す逆止弁103と同じ構造を有している。また、切替弁205は、図5、図6に示す切替弁105と同じ構造を有している。
 以上の構成では、貯蔵部109の圧力が低い間、3個の第1圧電ポンプ101、第2圧電ポンプ102、及び第3圧電ポンプ202が並列に接続され、貯蔵部109の圧力が高くなると、3個の第1圧電ポンプ101、第2圧電ポンプ102、及び第3圧電ポンプ202が直列に接続される。
 ここで、2個の第1圧電ポンプ101、第2圧電ポンプ102及び第3圧電ポンプ202を並列に接続した場合の気体制御装置200の最大ポンプ圧力は、3個の第1圧電ポンプ101、第2圧電ポンプ102及び第3圧電ポンプ202のうち、単体での最大ポンプ圧力が最も高いポンプのみを貯蔵部109に接続した場合と同じであるが、最大流量は、おのおののポンプの単体での最大ポンプ流量を合計した流量となる。一方、3個の第1圧電ポンプ101、第2圧電ポンプ102及び第3圧電ポンプ202を直列に接続した場合の気体制御装置200の最大吐出流量は、3個の第1圧電ポンプ101、第2圧電ポンプ102及び第3圧電ポンプ202のうち、単体での最大ポンプ流量が最も多いポンプを貯蔵部109に接続した場合と同じであるが、最大ポンプ圧力は、おのおののポンプの単体での最大ポンプ圧力を合計した圧力となる。
 よって、この実施形態の気体制御装置200においても、並列接続時における低ポンプ圧力下で多くの流量を得ることができる特性と、直列接続時における低流量下で高いポンプ圧力を得ることができる特性との両方を実現することができる。また、各弁室の圧力変化に併せたダイヤフラムの変位によって徐々に並列接続から直列接続に切り替わるため、大流量特性から高ポンプ圧力特性へスムーズに移行する。
 また、この実施形態の気体制御装置200においても、柔軟なダイヤフラム30と筺体110とが密着するため漏気が発生しない。また、ダイヤフラム30と筺体110との密着及び離間の際に摺動が発生しないので、ダイヤフラム30と筐体110との間にグリスを設ける必要がない。そのため、気体への不純物の混入を抑制することができる。
 従って、この実施形態の気体制御装置200によれば、気体制御装置100と同様の効果を奏する。
 また、以上より、図12に示すようにn段の圧電ポンプを接続した場合でも、気体制御装置100と同様の効果を奏する。
 図12は、本発明の第2実施形態の変形例に係る気体制御装置200′に備えられる第1圧電ポンプ101、第2圧電ポンプ102、第n-1圧電ポンプ702、第n圧電ポンプ802、逆止弁103、104、204、703、803、804、切替弁105、205、805、流入口28、29及び流出口19の接続関係を示すブロック図である。
 なお、図12では、1段目の第1圧電ポンプ101を第1のポンプ、2段目の第2圧電ポンプ102を第2のポンプ、n-1段目の第n-1圧電ポンプ702を第n-1のポンプ、n段目の第n圧電ポンプ802を第nのポンプ、と表記している。同様に、1段目の切替弁105を第1切替弁と、2段目の切替弁205を第2切替弁と、n-1段目の切替弁805を第n-1切替弁と、表記している。同様に、1段目の逆止弁103を第1の逆止弁と、n-1段目の逆止弁703を第2n-5の逆止弁と、n段目の逆止弁803を第2n-3の逆止弁と、表記している。また、1段目の逆止弁104を第2の逆止弁と、2段目の逆止弁204を第4の逆止弁と、n段目の逆止弁804を第2n-2の逆止弁と、表記している。
 この構成において、気体制御装置200′は、流入口28、29、及び流出口19が設けられた筐体と、ダイヤフラムと、第1ポンプと、第tポンプと、第nポンプと、を備える。ここで、tは2からn-1までの整数であり、nは4以上の整数である。
 気体制御装置200′のダイヤフラムは、筐体内を分割して筐体内に、流入口28、29に連通する第1領域1と、流出口19に連通する第2領域2と、第3領域3と、第2t領域と、第2t+1領域と、第2n領域2nとを形成する。
 ここで、第1ポンプと第1切替弁と第2の逆止弁の間の領域は第3領域3に相当する。第2のポンプと第1切替弁と第1の逆止弁の間の領域は第4領域4に相当し、第2のポンプと第2切替弁と第4の逆止弁の間の領域は第5領域5に相当する。同様に、第n-1ポンプと第n-2切替弁と第2n-5の逆止弁の間の領域は第2n-2領域2n-2に相当し、第n-1ポンプと第n-1切替弁と第2n-2の逆止弁の間の領域は第2n-1領域2n-1に相当する。第nポンプと第n-1切替弁と第2n-3の逆止弁の間の領域は第2n領域2nに相当する。
 第1ポンプは、第1ポンプ室と第1ポンプ室を介して互いに連通する第1吸引孔および第1吐出孔とを有し、第1吸引孔が第1領域1に連通し、第1吐出孔が第3領域3に連通する。第tポンプは、第tポンプ室と第tポンプ室を介して互いに連通する第t吸引孔および第t吐出孔とを有し、第t吸引孔が第2t領域に連通し、第t吐出孔が第2t+1領域に連通する。第nポンプは、第nポンプ室と第nポンプ室を介して互いに連通する第n吸引孔および第n吐出孔とを有し、第n吸引孔が第2n領域2nに連通し、第n吐出孔が第2領域2に連通する。
 そして、気体制御装置200′のダイヤフラムは、第1、第t、第nポンプの動作時、第3領域3および第2t+1領域の圧力が第2領域2の圧力よりも高く、第2t領域および第2n領域2nの圧力が第1領域1の圧力よりも低いとき、第3領域3および第2t+1領域のそれぞれと第2t領域および第2n領域2nのそれぞれとを遮断して、第3領域3および第2t+1領域のそれぞれと第2領域2とを連通するとともに第2t領域および第2n領域2nのそれぞれと第1領域とを連通し、第3領域3および第2t+1領域の圧力が第2領域2の圧力よりも低く、第2t領域および第2n領域2nの圧力が第1領域1の圧力よりも高いとき、第3領域3および第2t+1領域のそれぞれと第2領域2とを遮断するとともに第2t領域および第2n領域2nのそれぞれと第1領域1とを遮断して、第3領域3および第2t+1領域のそれぞれと第2t領域および第2n領域2nのそれぞれとを連通するよう、筐体に固定されている。
 以上の構成では、貯蔵部109の圧力が低い間、n個の圧電ポンプ101、102、・・・、702、802が並列に接続され、貯蔵部109の圧力が高くなると、n個の圧電ポンプ101、102、・・・、702、802が直列に接続される。
 ここで、n個の圧電ポンプ101、102、・・・、702、802を並列に接続した場合の気体制御装置200′の最大ポンプ圧力は、n個の圧電ポンプ101、102、・・・、702、802のうち、単体での最大ポンプ圧力が最も高いポンプのみを貯蔵部109に接続した場合と同じであるが、最大流量は、おのおののポンプの単体での最大ポンプ流量を合計した流量となる。一方、n個の圧電ポンプ101、102、・・・、702、802を直列に接続した場合の気体制御装置200′の最大吐出流量は、n個の圧電ポンプ101、102、・・・、702、802のうち、単体での最大ポンプ流量が最も多いポンプを貯蔵部109に接続した場合と同じであるが、最大ポンプ圧力は、おのおののポンプの単体での最大ポンプ圧力を合計した圧力となる。
 よって、この実施形態の気体制御装置200′においても、並列接続時における低ポンプ圧力下で多くの流量を得ることができる特性と、直列接続時における低流量下で高いポンプ圧力を得ることができる特性との両方を実現することができる。また、各弁室の圧力変化に併せたダイヤフラムの変位によって徐々に並列接続から直列接続に切り替わるため、大流量特性から高ポンプ圧力特性へスムーズに移行する。
 また、この実施形態の気体制御装置200′においても、ダイヤフラムと筐体との間に隙間を設ける必要がなく、ダイヤフラムが筐体に固定される簡易な構造を有する。
 従って、この実施形態によれば、図12に示すようにn段の圧電ポンプを接続した場合でも、気体制御装置100と同様の効果を奏する。
 《第3実施形態》
 図13は、本発明の第3実施形態の気体制御装置300の断面図である。この実施形態の気体制御装置300は、急速排気が可能な急速排気部340を備える点で気体制御装置100と相違し、その他の構成については同じである。そのため、気体制御装置300は、圧縮空気を充填した後に急速排気が必要な血圧測定用のカフ309に接続するのに好適な装置である。当該カフ309も本発明の「貯蔵部」に相当する。急速排気部340は、排気弁306を有し、連通孔316を介して流出室122に接続する。
 気体制御装置300は、図13に示すように、筺体325と、ダイヤフラム330とで構成されている。筺体325は、上部筐体310と、下部筐体320とで構成されている。そして、気体制御装置300の上部筐体310の流出口19には、カフ309のゴム管309Aが接続される。
 なお、図13では気体制御装置300の構造を見易くするため便宜上、上部筐体310を蓋部311と中間部312と第1挟持部313の3層に分けて表示し、下部筐体320を第2挟持部321と底板322の2層に分けて表示している。そして、各層の間の境界線を点線で示している。
 また、気体制御装置300の上部筐体310には、カフ309の空気を外部へ排気するための排気口15と、流出室122に連通する連通孔316と、連通孔316に連通する開口364と、開口364の周囲から第5のダイヤフラム30E側へ突出した円筒状の第4の弁座362と、が設けられている。
 また、ダイヤフラム330は、第5のダイヤフラム30Eをさらに有する。すなわち、第1のダイヤフラム30A、第2のダイヤフラム30B、第3のダイヤフラム30C、第4のダイヤフラム30D及び第5のダイヤフラム30Eは、共通の1枚のダイヤフラム330によって構成されている。
 第5のダイヤフラム30Eは、上部筐体310、下部筺体320内を分割して、排気口15に連通するリング状の排気室365と、図示しない連通孔を介して第7弁室112に連通する円柱状の第9弁室363とを構成する。第5のダイヤフラム30Eは、第4の弁座362に当接し、排気弁306を上部筐体310、下部筺体320とともに構成する。
 即ち、第1の逆止弁103と第2の逆止弁104と切替弁105と排気弁306とは一体に設けられている。この構造により、気体制御装置300は、第1圧電ポンプ101と第2圧電ポンプ102と第1の逆止弁103と第2の逆止弁104と切替弁105と排気弁306とを備える。
 排気弁306は、第5のダイヤフラム30Eと、排気室365と、第9弁室363と、第4の弁座362とを備える。第4の弁座362は、第5のダイヤフラム30Eを与圧するように、上部筐体310に設けられている。
 以上の構造において排気弁306は、第5のダイヤフラム30Eの両主面に加わる力の差によって、排気室365と開口364との接続と遮断とを切り替える。
 ここで、血圧測定時における気体制御装置300の動作について説明する。
 血圧計は、カフへ空気を充填することによってポンプの圧力を徐々に高め、ゆっくり排気しながら高血圧側と低血圧側の血圧測定を順次行い、その後カフに残った空気を急速排気するものが一般的である。
 図14は、図13に示す第1圧電ポンプ101、第2圧電ポンプ102の並列接続時における気体制御装置300内の空気の流れを示す断面図である。図15は、図13に示す第1圧電ポンプ101、第2圧電ポンプ102の直列接続時における気体制御装置300内の空気の流れを示す断面図である。図16は、図13に示す第1圧電ポンプ101、第2圧電ポンプ102が動作を停止した直後における気体制御装置300内の空気の流れを示す断面図である。
 第1圧電ポンプ101、第2圧電ポンプ102の並列接続時における気体制御装置300内の空気の流れは、図14に示すように、第1圧電ポンプ101、第2圧電ポンプ102の並列接続時における気体制御装置100内の空気の流れと同じである(図9参照)。
 また、第1圧電ポンプ101、第2圧電ポンプ102の直列接続時における気体制御装置300内の空気の流れも、図15に示すように、第1圧電ポンプ101、第2圧電ポンプ102の直列接続時における気体制御装置100内の空気の流れと同じである(図10参照)。
 なお、第9弁室363は、前述したように第7弁室112に連通しているため、第1圧電ポンプ101、第2圧電ポンプ102が動作を行っている間、排気弁306は閉じた状態を維持する。
 血圧の測定が終了した後、気体制御装置300では、第1圧電ポンプ101、第2圧電ポンプ102の動作を停止する。ここで、第1圧電ポンプ101のポンプ室45と第7弁室112と第9弁室363との体積はカフ309の収容可能な空気の体積に比べて極めて小さい。
 そのため、第1圧電ポンプ101、第2圧電ポンプ201の動作が停止すると、第1圧電ポンプ101のポンプ室45と第7弁室112と第9弁室363との空気は、第1圧電ポンプ101の吸引孔52および開口部92を経由して気体制御装置300の流入口29から気体制御装置300の外部へ速やかに排気される。また、急速排気部340における排気弁306の開口364には、カフ309の圧力がかかる。
 この結果、急速排気部340の排気弁306では、第1圧電ポンプ101、第2圧電ポンプ102が動作を停止すると、第9弁室363の圧力がすぐに低下し、第5のダイヤフラム30Eが開放して開口364と排気室365とが連通する。これにより、カフ309の空気が流出室122、連通孔316、開口364及び排気室365を経由して排気口15から急速に排気される(図16参照)。
 従って、この実施形態の気体制御装置300によれば、カフ309に圧縮空気を充填した後に、さらにカフ309から空気を急速排気することができる。
 《その他の実施形態》
 前記実施形態では気体として空気を用いているが、これに限るものではなく、当該気体が、空気以外の気体であっても適用できる。
 また、前記実施形態では圧電ポンプを設けたが、これに限るものではない。例えば、電磁駆動で動作を行う電磁ポンプを圧電ポンプの代わりに設けても構わない。
 また、前記実施形態では、圧電素子44はチタン酸ジルコン酸鉛系セラミックスから構成しているが、これに限るものではない。例えば、ニオブ酸カリウムナトリウム系及びアルカリニオブ酸系セラミックス等の非鉛系圧電体セラミックスの圧電材料などから構成してもよい。
 また、前記実施形態ではユニモルフ型で屈曲振動する圧電アクチュエータ40を設けたが、振動板41の両面に圧電素子44を貼着してバイモルフ型で屈曲振動するように構成してもよい。
 また、前記各実施形態では、圧電アクチュエータ40の屈曲振動に伴って可撓板51が屈曲振動する例を示したが、これに限るものではない。実施の際は、圧電アクチュエータ40のみが屈曲振動してもよく、必ずしも可撓板51が、圧電アクチュエータ40の屈曲振動に伴って屈曲振動しなくても良い。
 また、前記各実施形態では円板状の圧電アクチュエータ40を用いたが、これに限るものではない。例えば、圧電アクチュエータ40の形状が矩形板状や多角板状、楕円板状であってもよい。
 また、前記実施形態では、第2の弁室156は通気口18を介して大気解放されているが、これに限るものではない。例えば、第2の弁室156を開放せず、弾性体を第2の弁室156に充填することで、ダイヤフラム30Aに圧力を付与してもよい。このとき、弾性体の力をFとすると、Fは、P1×A1>P2×A2+Fの式を満たすよう設計される。
 また、前記実施形態では、第1の逆止弁103または第2の逆止弁104は、弁座と、弁座の先端部と当接する領域の一部を貫通する孔とを有するダイヤフラムと、を有しているが、これに限るものではない。例えば、切替弁152と同様の構成により、第1の逆止弁103または第2の逆止弁104を構成しても構わない。
 最後に、上述の実施形態の説明は、すべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
10  上部筐体
11  蓋部
12  中間部
13  第1挟持部
15  排気口
16、17  連通孔
18  通気口
19  流出口
20  下部筐体
21  第2挟持部
22  底板
25、26、27  連通孔
28、29  流入口
30  ダイヤフラム
32、35  孔
40  アクチュエータ
41  振動板
42  孔
43  補強板
44  圧電素子
45  ポンプ室
51  可撓板
52  吸引孔
53A、53B、53C  スペーサ
54  蓋部
55  吐出孔
60  振動板ユニット
61  枠板
62  連結部
63  外部端子
70  電極導通用板
71  枠部位
72  外部端子
73  内部端子
80  ポンプ筐体
91  基板
92  開口部
100  気体制御装置
101  第1圧電ポンプ
102  第2圧電ポンプ
103  第1逆止弁
104  第2逆止弁
105  切替弁
109  貯蔵部
109A  ゴム管
110  筺体
111  流入室
112  第7弁室
116  第8弁室
121  第4弁室
122  流出室
124  連絡路
126  開口
132  第3の弁座
133  第3弁室
142  第1の弁座
143  第5弁室
146  第6弁室
152  第2の弁座
153  第1弁室
156  第2弁室
200  気体制御装置
202  第3ポンプ
205  切替弁
300  気体制御装置
306  排気弁
309  カフ
309A  ゴム管
310  上部筐体
316  連通孔
320  下部筐体
325  筐体
330  ダイヤフラム
340  急速排気部
362  弁座
363  第9弁室
364  開口
365  排気室
702  第n-1圧電ポンプ
703  第2n-5逆止弁
802  第n圧電ポンプ
803  第2n-3逆止弁
804  第2n-2逆止弁
805  切替弁
P  パッキン

Claims (13)

  1.  流入口と流出口とを有する筺体を備え、
     前記筺体の内部に、
     前記流入口と前記流出口との間に設けられ、前記流出口から前記流入口への気体の流れを遮断する第1の逆止弁及び第2の逆止弁と、
     前記流入口と接続された吸入孔と、前記第2の逆止弁と接続された吐出孔と、を有する第1のポンプと、
     前記第1の逆止弁と接続された吸入孔と、前記流出口と接続された吐出孔と、を有する第2のポンプと、
     前記第1のポンプの吐出孔と前記第2のポンプの吸入孔との間に設けられている切替弁と、を備える気体制御装置であって、
     前記切替弁は、第1のダイヤフラムと、前記第1のダイヤフラムによって仕切られた第1及び第2の弁室と、前記第1の弁室側に設けられている第1の弁座とを備え、
     前記第1のダイヤフラムは、前記第1の弁座と当接する領域を有し、
     前記第1の弁座は、前記第2のポンプの吸入孔と接続される開口を有し、
     前記第1の弁室は、前記第1のポンプの吐出孔と接続され、
     前記切替弁は、前記第1のダイヤフラムにおける両主面に加わる力の差によって、前記第1のポンプ吐出孔と、前記第2のポンプの吸入孔との接続と遮断とを切り替える、気体制御装置。
  2.  前記第1の逆止弁は、第2のダイヤフラムと、前記第2のダイヤフラムによって仕切られた第3及び第4の弁室と、前記第3の弁室側に設けられている第2の弁座とを備え、
     前記第2のダイヤフラムは、前記第2の弁座の先端部と当接する領域と、該領域の一部を貫通する孔とを有し、
     前記第3の弁室は前記流入口と接続され、前記第4の弁室は前記第2のポンプの吸入孔と接続されている、請求項1に記載の気体制御装置。
  3.  前記第2の逆止弁は、第3のダイヤフラムと、前記第3のダイヤフラムによって仕切られた第5及び第6の弁室と、前記第5の弁室側に設けられている第3の弁座とを備え、
     前記第3のダイヤフラムは、前記第3の弁座の先端部と当接する領域と、該領域の一部を貫通する孔とを有し、
     前記第5の弁室は前記第1のポンプの吐出孔と接続され、前記第6の弁室は前記流出口と接続されている、請求項1または2に記載の気体制御装置。
  4.  前記筺体は、通気孔をさらに有し、
     前記切替弁においては、前記第2の弁室が前記通気孔と接続され、
     前記第2の弁室の圧力は、大気圧である、請求項1から3のいずれか1項に記載の気体制御装置。
  5.  前記第1、第2、及び第3のダイヤフラムは、共通の1枚のダイヤフラムによって構成されている、請求項3または4に記載の気体制御装置。
  6.  流入口と流出口とを有する筐体と、
     前記筐体内を分割して前記筐体内に、前記流入口に連通する第1領域と、前記流出口に連通する第2領域と、第3領域と、第4領域と、を形成するダイヤフラムと、
     第1ポンプ室と、前記第1ポンプ室を介して互いに連通する第1吸引孔および第1吐出孔と、を有し、前記第1吸引孔が前記第1領域に連通し、前記第1吐出孔が前記第3領域に連通する第1のポンプと、
     第2ポンプ室と、前記第2ポンプ室を介して互いに連通する第2吸引孔および第2吐出孔と、を有し、前記第2吸引孔が前記第4領域に連通し、前記第2吐出孔が前記第2領域に連通する第2のポンプと、を備え、
     前記ダイヤフラムは、
     前記第1、第2のポンプの動作時、前記第3領域の圧力が前記第2領域の圧力よりも高く、前記第4領域の圧力が前記第1領域の圧力よりも低い場合、前記第3領域および前記第4領域を遮断し、前記第2領域および前記第3領域を連通するとともに前記第1領域および前記第4領域を連通し、
     前記第1、第2のポンプの動作時、前記第3領域の圧力が前記第2領域の圧力よりも低く、前記第4領域の圧力が前記第1領域の圧力よりも高い場合、前記第2領域および前記第3領域の通気と前記第1領域および前記第4領域の通気とを遮断し、前記第3領域および前記第4領域を連通するよう、前記筐体に固定されていることを特徴とする気体制御装置。
  7.  前記筐体は、前記第4領域に連通する開口と、前記第3領域において前記開口の周囲から前記ダイヤフラム側へ突出する第1の弁座と、前記第1領域において前記ダイヤフラム側へ突出する第2の弁座と、前記第3領域において前記ダイヤフラム側へ突出する第3の弁座と、が設けられ、
     前記ダイヤフラムは、前記第1の弁座、及び前記第2の弁座、前記第3の弁座に当接して前記筐体に固定されており、
     前記ダイヤフラムには、前記第2の弁座に当接する領域の一部に孔が設けられ、前記第3の弁座に当接する領域の一部に孔が設けられていることを特徴とする、請求項6に記載の気体制御装置。
  8.  前記ダイヤフラムは、前記第1領域と前記第3領域との圧力差により前記第1の弁座に対して接触または離間して開閉し、前記第1領域と前記第4領域との圧力差により前記第2の弁座に対して接触または離間して開閉し、前記第2領域と前記第3領域との圧力差により前記第3の弁座に対して接触または離間して開閉することを特徴とする、請求項7に記載の気体制御装置。
  9.  前記ダイヤフラムは、前記第1領域と前記第4領域との圧力差により開閉する第1の逆止弁と、前記第2領域と前記第3領域との圧力差により開閉する第2の逆止弁と、前記第1領域と前記第3領域との圧力差により開閉する切替弁と、を前記筐体とともに構成し、
     前記第1の逆止弁は、前記第4領域から前記第1領域への気体の流れを阻止し、
     前記第2の逆止弁は、前記第2領域から前記第3領域への気体の流れを阻止し、
     前記切替弁は、前記第1、第2のポンプの動作時、前記第3領域の圧力が前記第2領域の圧力よりも高く前記第4領域の圧力が前記第1領域の圧力よりも低い場合、前記第3領域および前記第4領域を遮断し、前記第3領域の圧力が前記第2領域の圧力よりも低く前記第4領域の圧力が前記第1領域の圧力よりも高い場合、前記第3領域および前記第4領域を連通する、請求項7または8に記載の気体制御装置。
  10.  前記第1、第2、及び第3の弁座は、前記ダイヤフラムを与圧するように前記筐体に設けられていることを特徴とする、請求項5または7に記載の気体制御装置。
  11.  前記筐体は、前記流入口が設けられている第1の筐体と、前記流出口が設けられている第2の筐体とを有し、
     前記ダイヤフラムは、弾性部材からなり、前記第1の筐体と前記第2の筐体とに両面から挟持されていることを特徴とする、請求項5から10のいずれか1項に記載の気体制御装置。
  12.  前記流出口は貯蔵部に接続されており、
     前記流出口に連通し、前記第1、第2のポンプの動作により前記貯蔵部に充填された気体を、前記第1、第2のポンプの動作の停止時に急速に排気が可能である急速排気部を備える、請求項1から11のいずれか1項に記載の気体制御装置。
  13.  流入口と流出口とを有する筐体と、
     前記筐体内を分割して前記筐体内に、前記流入口に連通する第1領域、前記流出口に連通する第2領域、第3領域、第2t(tは2からn-1までの整数)領域、第2t+1領域及び第2n(nは3以上の整数)領域を形成するダイヤフラムと、
     第1ポンプ室と前記第1ポンプ室を介して互いに連通する第1吸引孔および第1吐出孔とを有し、前記第1吸引孔が前記第1領域に連通し、前記第1吐出孔が前記第3領域に連通する第1のポンプと、
     第tポンプ室と前記第tポンプ室を介して互いに連通する第t吸引孔および第t吐出孔とを有し、前記第t吸引孔が前記第2t領域に連通し、前記第t吐出孔が前記第2t+1領域に連通する第tのポンプと、
     第nポンプ室と前記第nポンプ室を介して互いに連通する第n吸引孔および第n吐出孔とを有し、前記第n吸引孔が前記第2n領域に連通し、前記第n吐出孔が前記第2領域に連通する第nのポンプと、を備え、n段のポンプを接続した、気体制御装置であって、
     前記ダイヤフラムは、
     前記第1、第t、及び第nのポンプの動作時、前記第3領域および前記第2t+1領域の圧力が前記第2領域の圧力よりも高く、前記第2t領域および前記第2n領域の圧力が前記第1領域の圧力よりも低いとき、前記第3領域および前記第2t+1領域のそれぞれと前記第2t領域および前記第2n領域のそれぞれとを遮断し、前記第3領域および前記第2t+1領域のそれぞれと前記第2領域とを連通するとともに前記第2t領域および前記第2n領域のそれぞれと前記第1領域とを連通し、
     前記第1、第t、及び第nのポンプの動作時、前記第3領域および前記第2t+1領域の圧力が前記第2領域の圧力よりも低く、前記第2t領域および前記第2n領域の圧力が前記第1領域の圧力よりも高いとき、前記第3領域および前記第2t+1領域のそれぞれと前記第2領域とを遮断するとともに前記第2t領域および前記第2n領域のそれぞれと前記第1領域とを遮断し、前記第3領域および前記第2t+1領域のそれぞれと前記第2t領域および前記第2n領域のそれぞれとを連通するよう、前記筐体に固定されていることを特徴とする気体制御装置。
PCT/JP2012/081453 2011-12-09 2012-12-05 気体制御装置 WO2013084909A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013548256A JP5776793B2 (ja) 2011-12-09 2012-12-05 気体制御装置
US14/296,568 US9482221B2 (en) 2011-12-09 2014-06-05 Gas control apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-270062 2011-12-09
JP2011270062 2011-12-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/296,568 Continuation US9482221B2 (en) 2011-12-09 2014-06-05 Gas control apparatus

Publications (1)

Publication Number Publication Date
WO2013084909A1 true WO2013084909A1 (ja) 2013-06-13

Family

ID=48574267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081453 WO2013084909A1 (ja) 2011-12-09 2012-12-05 気体制御装置

Country Status (3)

Country Link
US (1) US9482221B2 (ja)
JP (1) JP5776793B2 (ja)
WO (1) WO2013084909A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9739271B2 (en) 2013-10-24 2017-08-22 Koge Electronics Co., Ltd Automatic depressurizing pump
CN107795472A (zh) * 2016-09-05 2018-03-13 研能科技股份有限公司 流体控制装置
CN107795470A (zh) * 2016-09-05 2018-03-13 研能科技股份有限公司 流体控制装置
CN107795469A (zh) * 2016-09-05 2018-03-13 研能科技股份有限公司 流体控制装置的制造方法
CN107795473A (zh) * 2016-09-05 2018-03-13 研能科技股份有限公司 流体控制装置
CN109578690A (zh) * 2017-09-29 2019-04-05 研能科技股份有限公司 流体系统
JP2019063981A (ja) * 2017-09-29 2019-04-25 研能科技股▲ふん▼有限公司 流体システム
JP2019063980A (ja) * 2017-09-29 2019-04-25 研能科技股▲ふん▼有限公司 流体システム
CN109882387A (zh) * 2019-03-01 2019-06-14 浙江师范大学 一种压电气体泵
CN110513280A (zh) * 2018-05-21 2019-11-29 研能科技股份有限公司 微型输送装置
US11193479B2 (en) 2017-09-29 2021-12-07 Microjet Technology Co., Ltd. Fluid system
US11754200B2 (en) 2018-05-21 2023-09-12 Microjet Technology Co., Ltd. Miniature transportation device

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2930363B1 (en) * 2014-04-10 2020-06-10 Stichting Nationaal Lucht- en Ruimtevaart Laboratorium Piezoelectric pump assembly and pressurised circuit provided therewith
US20150314092A1 (en) * 2014-04-30 2015-11-05 Covidien Lp Tracheal tube with controlled-pressure cuff
JP6276120B2 (ja) * 2014-06-27 2018-02-07 株式会社神戸製鋼所 ガス圧縮装置
TWI602995B (zh) 2016-09-05 2017-10-21 研能科技股份有限公司 流體控制裝置
TWI613367B (zh) 2016-09-05 2018-02-01 研能科技股份有限公司 流體控制裝置
TWI625468B (zh) * 2016-09-05 2018-06-01 研能科技股份有限公司 流體控制裝置
TWI653393B (zh) * 2017-09-29 2019-03-11 研能科技股份有限公司 流體系統
TWI650483B (zh) * 2017-09-29 2019-02-11 研能科技股份有限公司 流體系統
CN110067791B (zh) * 2018-01-22 2021-11-16 研能科技股份有限公司 流体系统
TWI721241B (zh) * 2018-01-22 2021-03-11 研能科技股份有限公司 流體系統
JP6908175B2 (ja) * 2018-02-16 2021-07-21 株式会社村田製作所 流体制御装置
GB2585497B (en) * 2018-04-10 2022-11-30 Murata Manufacturing Co Fluid control device
CN110863977A (zh) * 2018-08-27 2020-03-06 研能科技股份有限公司 微型流体输送装置
CN109821095B (zh) * 2019-03-01 2021-04-13 浙江师范大学 一种可携带的输液装置
CN110529366A (zh) * 2019-07-19 2019-12-03 常州工学院 层叠式三腔并联压电泵及驱动方法
JPWO2021090729A1 (ja) * 2019-11-08 2021-05-14

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6252291U (ja) * 1985-09-19 1987-04-01
JPH0420751A (ja) * 1990-05-15 1992-01-24 Toshiba Corp 冷凍サイクル
WO2011145544A1 (ja) * 2010-05-21 2011-11-24 株式会社村田製作所 流体ポンプ

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2593602A (en) * 1945-07-04 1952-04-22 Celanese Corp Control means
US3908360A (en) * 1973-02-08 1975-09-30 Chandler Evans Inc Pump metering fuel control system
US5727529A (en) * 1994-01-14 1998-03-17 Walbro Corporation Pressure control valve for a fuel system
US5577390A (en) * 1994-11-14 1996-11-26 Carrier Corporation Compressor for single or multi-stage operation
DE19720482C5 (de) * 1997-05-16 2006-01-26 INSTITUT FüR MIKROTECHNIK MAINZ GMBH Mikromembranpumpe
NL1010144C2 (nl) * 1998-09-21 2000-03-22 Doornes Transmissie Bv Continu variabele transmissie.
US7717682B2 (en) * 2005-07-13 2010-05-18 Purity Solutions Llc Double diaphragm pump and related methods
DE102007045637A1 (de) * 2007-09-25 2009-04-02 Robert Bosch Gmbh Mikrodosiervorrichtung zum Dosieren von Kleinstmengen eines Mediums
US7637284B1 (en) * 2008-10-03 2009-12-29 Feldmeier Robert H Sanitary diaphragm valve
CN102449363B (zh) * 2009-05-25 2015-02-04 株式会社村田制作所 阀、流体装置及流体供给装置
WO2012141113A1 (ja) * 2011-04-11 2012-10-18 株式会社村田製作所 バルブ、流体制御装置
JP5761455B2 (ja) * 2012-05-09 2015-08-12 株式会社村田製作所 冷却装置、加熱冷却装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6252291U (ja) * 1985-09-19 1987-04-01
JPH0420751A (ja) * 1990-05-15 1992-01-24 Toshiba Corp 冷凍サイクル
WO2011145544A1 (ja) * 2010-05-21 2011-11-24 株式会社村田製作所 流体ポンプ

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9739271B2 (en) 2013-10-24 2017-08-22 Koge Electronics Co., Ltd Automatic depressurizing pump
CN107795473B (zh) * 2016-09-05 2019-04-05 研能科技股份有限公司 流体控制装置
CN107795472A (zh) * 2016-09-05 2018-03-13 研能科技股份有限公司 流体控制装置
CN107795469A (zh) * 2016-09-05 2018-03-13 研能科技股份有限公司 流体控制装置的制造方法
CN107795473A (zh) * 2016-09-05 2018-03-13 研能科技股份有限公司 流体控制装置
CN107795470A (zh) * 2016-09-05 2018-03-13 研能科技股份有限公司 流体控制装置
JP2019063980A (ja) * 2017-09-29 2019-04-25 研能科技股▲ふん▼有限公司 流体システム
JP2019063981A (ja) * 2017-09-29 2019-04-25 研能科技股▲ふん▼有限公司 流体システム
CN109578690A (zh) * 2017-09-29 2019-04-05 研能科技股份有限公司 流体系统
US11193479B2 (en) 2017-09-29 2021-12-07 Microjet Technology Co., Ltd. Fluid system
JP7156864B2 (ja) 2017-09-29 2022-10-19 研能科技股▲ふん▼有限公司 流体システム
CN110513280A (zh) * 2018-05-21 2019-11-29 研能科技股份有限公司 微型输送装置
US11754200B2 (en) 2018-05-21 2023-09-12 Microjet Technology Co., Ltd. Miniature transportation device
CN109882387A (zh) * 2019-03-01 2019-06-14 浙江师范大学 一种压电气体泵
CN109882387B (zh) * 2019-03-01 2020-04-21 浙江师范大学 一种压电气体泵

Also Published As

Publication number Publication date
US20140286795A1 (en) 2014-09-25
JP5776793B2 (ja) 2015-09-09
US9482221B2 (en) 2016-11-01
JPWO2013084909A1 (ja) 2015-04-27

Similar Documents

Publication Publication Date Title
JP5776793B2 (ja) 気体制御装置
US10502328B2 (en) Valve and fluid control appratus
US10781808B2 (en) Valve, fluid control device, and sphygmomanometer
JP5185475B2 (ja) バルブ、流体制御装置
WO2018020882A1 (ja) バルブ、気体制御装置、及び血圧計
JP6460219B2 (ja) バルブ、流体制御装置、及び血圧測定装置
JP5999200B2 (ja) 流体制御装置およびポンプ接続方法
JP2016200067A (ja) 流体制御装置
JP5668582B2 (ja) 流体制御装置
JP2008175265A (ja) 高真空バルブ
CN109069037B (zh) 阀、流体控制装置以及血压计
JP6089560B2 (ja) 気体制御装置
JP6293028B2 (ja) 逆止弁機構およびそれを用いたポンプ装置
WO2012140932A1 (ja) アクティブバルブ、流体制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12856025

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013548256

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12856025

Country of ref document: EP

Kind code of ref document: A1