WO2011145410A1 - 車両の操舵感改善装置 - Google Patents

車両の操舵感改善装置 Download PDF

Info

Publication number
WO2011145410A1
WO2011145410A1 PCT/JP2011/059176 JP2011059176W WO2011145410A1 WO 2011145410 A1 WO2011145410 A1 WO 2011145410A1 JP 2011059176 W JP2011059176 W JP 2011059176W WO 2011145410 A1 WO2011145410 A1 WO 2011145410A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving force
steering
vehicle
motor torque
steering feeling
Prior art date
Application number
PCT/JP2011/059176
Other languages
English (en)
French (fr)
Inventor
影山 雄介
加藤 和人
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to CN201180021994.XA priority Critical patent/CN102869556B/zh
Priority to US13/695,510 priority patent/US8666582B2/en
Priority to RU2012146382/11A priority patent/RU2519605C1/ru
Priority to BR112012028199A priority patent/BR112012028199A2/pt
Priority to EP11783347A priority patent/EP2572952A1/en
Priority to MX2012012405A priority patent/MX2012012405A/es
Publication of WO2011145410A1 publication Critical patent/WO2011145410A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/20Conjoint control of vehicle sub-units of different type or different function including control of steering systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18145Cornering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/008Control of feed-back to the steering input member, e.g. simulating road feel in steer-by-wire applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles

Definitions

  • the present invention relates to an apparatus for improving the steering feeling of a vehicle that can travel by driving wheels by a driving force from a power source by operating the wheel driving force.
  • the steering feeling of a vehicle is generally discussed based on what the steering force is with respect to the steering input (steering angle) performed by the driver. If the steering force is too light, the steering input (steering angle) tends to be excessive, and the vehicle behavior becomes larger than expected by the driver, so that the driver can have a sense of unity and security with the vehicle. Often, forced steering is required. However, if the steering force is too heavy, particularly during long distance driving, a large force is required for driving operation over a long period of time, which gives the driver a feeling of fatigue.
  • the steering force with respect to the steering input needs to have an appropriate weight.
  • the driver can have a sense of unity with the vehicle and a sense of security.
  • the opening degree change characteristic of the valve that changes the opening degree in response to the relative rotation according to the steering load is as the steering feeling is aimed at for each vehicle.
  • the assist torque characteristic of the motor that power assists (assists) the steering force is controlled so that the steering feeling is as intended for each vehicle.
  • Patent Document 1 As another countermeasure for improving the steering feeling, for example, the one described in Patent Document 1 has been proposed.
  • This proposed technology detects the lateral acceleration of the vehicle, calculates the assist torque of the power steering so as to obtain an optimum steering force according to the lateral acceleration, and assists the driver's steering force by this assist torque.
  • the steering force felt by the driver is optimized according to the lateral acceleration.
  • Patent Document 1 also requires a means for detecting the lateral acceleration of the vehicle, and is used for hydraulic power steering and electric power steering in that it causes a problem of high cost. There is no big difference from the conventional measures. For this reason, there has been a demand for the appearance of a device capable of improving the steering feeling without requiring specification changes of power steering components or requiring new means such as lateral acceleration detecting means.
  • the present invention is that the tactile sensation of a human hand as a whole when a large force and a small force are periodically input. From the point of view that he feels more powerful In addition, based on the fact that if the wheel driving force is increased or decreased during steering, the increase in driving force results in an increase in steering force, and the decrease in increased driving force results in a decrease from the increase value in steering force.
  • the present invention proposes a steering feeling improving device for a vehicle that can improve the steering feeling at an appropriate weight at a low cost.
  • a vehicle steering feeling improving device is: For vehicles that can run by driving wheels from the power source, Steering detection means for detecting that steering for steering the steering wheel of the vehicle has been performed; Driving force increasing / decreasing means for repeatedly increasing / decreasing driving force to the wheel while the steering is detected by the means is provided.
  • the steering force can be increased or decreased at the same cycle as the driving force increase / decrease cycle.
  • FIG. 1 is a schematic system diagram showing a drive system and a control system of a vehicle including a steering feeling improving device according to an embodiment of the present invention.
  • 3 is a flowchart showing a steering feeling improvement control program executed by the electric motor controller in FIG.
  • FIG. 3 is an operation time chart of steering feeling improvement control according to FIG. 2.
  • FIG. It is explanatory drawing which shows the specification regarding the tire ground contact surface of a steering wheel.
  • FIG. 3 is a steering force change characteristic diagram showing a change characteristic of a steering force with respect to a steering angle when the control program of FIG. 2 is executed in comparison with that when the control program is not executed. Steering in which the control characteristics of Fig.
  • FIG. 1 shows a drive system and a control system of a vehicle including a steering feeling improving device according to an embodiment of the present invention.
  • the vehicle in FIG. 1 is an electric vehicle that can travel by driving left and right front wheels 1L, 1R that are also steered wheels.
  • the left and right steered wheels 1L and 1R are driven by an electric motor (power source) 2 via a speed reducer (including a differential gear device) 3.
  • the electric motor controller 4 converts the power of the battery 5, which is a power source, into DC-AC conversion by the inverter 6 and supplies this AC power to the electric motor 2 under the control of the inverter 6.
  • the electric motor 2 is controlled so that the torque of the electric motor 2 matches the calculation result (target motor torque) in the electric motor controller 4.
  • the electric motor controller 4 applies an electric power generation load to the electric motor 2 via the inverter 6. At this time, the electric power generated by the electric motor 2 due to the regenerative braking action is AC-DC converted by the inverter 6 to charge the battery 5.
  • the electric motor controller 4 generates a PWM signal for controlling the electric motor 2 according to the input information, and generates a drive signal for the inverter 6 through the drive circuit according to the PWM signal.
  • the inverter 6 is composed of, for example, two switching elements (for example, power semiconductor elements such as IGBT) for each phase, and the DC current supplied from the battery 5 is turned on / off according to the drive signal. Is converted into an alternating current and reversely converted to supply a desired current to the electric motor 2.
  • the electric motor 2 generates a driving force by an alternating current supplied from the inverter 6, and transmits the driving force to the left and right front wheels (left and right steering wheels) 1L and 1R through the speed reducer 3.
  • the electric motor 2 When the vehicle is traveling, when the electric motor 2 is rotated by the left and right front wheels 1L and 1R, so-called reverse driving, the electric motor 2 is subjected to a regenerative braking action by applying a generation load to the electric motor 2 so that the vehicle motion The energy is regenerated and stored in the battery 5.
  • the electric motor controller 4 executes the control program shown in FIG. 2 and performs vehicle steering feeling improvement control through the driving force control of the electric motor 2 as follows.
  • step S11 the steering angle ⁇ is read.
  • step S12 the absolute value
  • the steering determination is performed based on whether or not the difference between the front and rear wheel speeds between the average wheel speed of the left and right front wheels 1L and 1R and the average wheel speed of the left and right rear wheels (not shown) is equal to or greater than a steering determination value. May be.
  • step S12 While it is determined in step S12 that the vehicle is not being steered, control for improving the steering feeling of the vehicle is not required. Therefore, control is returned to step S11, and standby is performed while repeatedly performing the steering start determination in step S12 until steering is performed. To do.
  • the steering feeling improvement control of the vehicle when it is determined that the steering is performed in step S12, the steering feeling improvement control of the vehicle should be started. Therefore, the control proceeds to step S13 and thereafter, and the driving force control of the electric motor 2 is performed as follows. The steering feeling improvement control of the vehicle is performed.
  • step S13 it is checked whether or not the timer TM for measuring the elapsed time from the start of steering is before the set time TM1s is reached (0 ⁇ TM ⁇ TM1s). While it is determined in step S13 that (0 ⁇ TM ⁇ TM1s), that is, while it is determined that it is within the set time TM1s from the steering start time t1 in FIG. 3, in step S14, the vehicle speed V and the accelerator opening APO are scheduled.
  • the target motor torque is corrected by adding a drive torque correction amount ⁇ Tm immediately after the steering start instant t1 shown by the torque waveform in FIG. 3 to the target motor torque of the electric motor 2 obtained based on the motor torque map of Perform motor torque increase correction.
  • target motor torque refers not only to the driver's required torque obtained from the vehicle speed V and the accelerator opening APO as described above, but is different from the driver's request.
  • the target motor torque corrected by the driving force control request is also calculated, that is, all the targets obtained from the driving state of the vehicle. Includes motor torque.
  • step S15 depending on whether or not the steering angle absolute value
  • step S15 While it is determined in step S15 that steering is in progress, control is returned to step S11 and step S12. However, since steering is in progress, control proceeds from step S12 to step S13.
  • the torque waveform of FIG. 3 performed in step S14 while determining that (0 ⁇ TM ⁇ TM1s) in step S13, that is, before the instant t2 when the set time TM1s has elapsed from the steering start time t1 in FIG. Continue the motor torque increase correction along
  • step S13 When it is determined in step S13 that (0 ⁇ TM ⁇ TM1s) is not satisfied, that is, after the instant t2 when the set time TM1s has elapsed from the steering start time t1 in FIG. 3, the control is sequentially advanced to steps S16 to S17. Thus, the motor torque increase correction in step S14 is terminated, and the process proceeds to the following motor torque correction control.
  • step S16 motor torque reduction correction is performed to correct the target motor torque by reducing the target motor torque of the electric motor 2 by the drive torque correction amount ( ⁇ Tm) immediately after the instant t2 in FIG.
  • This motor torque decrease correction is performed between the instant t2 in FIG. 3 and the instant t3 when the set time TM2s elapses from the instant t2, and the drive torque decrease correction amount ( ⁇ Tm) is the aforementioned drive torque increase correction. It is assumed that the amount ⁇ Tm and the absolute value are the same. However, the motor torque decrease correction time TM2s is shorter than the motor torque increase correction time TM1s.
  • step S17 which is executed when the motor torque reduction correction in step S16 is completed (instant t3 in FIG. 3), the above-described target motor torque of the electric motor 2 is changed to the drive torque correction immediately after the instant t3 in FIG.
  • Motor torque increase correction is performed in which the target motor torque is corrected by increasing the amount ⁇ Tm. This motor torque increase correction is performed between the instant t3 in FIG. 3 and the instant t4 at which the same set time TM1s as in step S14 elapses from the instant t3.
  • step S17 After the motor torque increase correction in step S17, the motor torque increase correction in step S17 is completed depending on whether or not the steering angle absolute value
  • step S16 determines the end of the steering based on the steering angle absolute value
  • 0 and exits from the loop of FIG.
  • the decrease correction (step S16) and the increase correction (step S17) are not performed on the target motor torque of 2, and the electric motor 2 is controlled to output the target motor torque.
  • the torque of the electric motor 2 is repeatedly increased or decreased by the amount indicated by the torque increase / decrease amount waveform in FIG. 3 during the steering after the steering start time t1 in FIG. 3 by the steering feeling improvement control in FIG.
  • the torque of the electric motor 2 is increased by the amount ⁇ Tm shown in the torque increase / decrease waveform in FIG. 3 from the target motor torque in step S14. Controlled by the value.
  • the torque of the electric motor 2 is shown in the torque increase / decrease waveform in FIG. 3 rather than the target motor torque in step S16. It is controlled to a value reduced by an amount ( ⁇ Tm).
  • the torque of the electric motor 2 is the amount indicated by the torque increase / decrease waveform in FIG. 3 rather than the target motor torque in step S17. It is controlled to a value increased by ⁇ Tm.
  • Step S14, Step S16 and Step S17 correspond to the driving force increasing / decreasing means in the present invention.
  • the steering feeling of the vehicle can be improved as follows.
  • the turning moment M generated individually by the steered wheels (front wheels) 1L and 1R is the lateral force ⁇ y of the first term on the right side as shown in the following equation: Can be obtained by subtracting the turning moment due to the driving force ⁇ x in the second term on the right side from the turning moment due to.
  • the driving force ⁇ x generates a moment to rotate the steering front wheels 1L, 1R around the kingpin axis, but the driving force ⁇ x when the motor torque increases is the steering front wheels 1L, 1L, A moment in the restoring direction to return 1R to the neutral position is applied to the front wheels 1L and 1R.
  • the moment in the restoring direction is a moment against the steering wheel operation performed by the driver, the amount of increase / decrease in the steering rack / thrust is shown on the restoring side as illustrated in the motor torque increasing period t3 to t4 in FIG. This will increase the steering force.
  • the motor torque increase / decrease correction amount ( ⁇ Tm, ⁇ Tm) described above needs to be large enough to make the amount of change in the steering force generated by the above logic as perceived by the driver. However, if the motor torque increase / decrease correction amount ( ⁇ Tm, - ⁇ Tm) is something that causes the driver to feel acceleration / deceleration, the motor torque increase / decrease will not cause the driver to feel acceleration / deceleration.
  • the correction amount is set to ( ⁇ Tm, ⁇ Tm).
  • the change characteristic by the actual measurement of the steering force with respect to the steering angle ⁇ is as shown by the solid line in FIG.
  • the driver operates the steering wheel with a smaller (decreasing) steering force.
  • the steering force of the larger one (increase) tends to be sensitively sensed, and as a whole, the steering force of the larger one (increase) is strongly felt.
  • the weight of the steering force that the driver feels to the hand during steering operation can be set to an appropriate weight only by setting the motor torque increase / decrease times TM1s and TM2s in the vehicle, and the steering feeling can be improved so that the driver can have a sense of unity and security with the vehicle.
  • the above-described improvement in steering feeling can be further ensured. Furthermore, between the motor torque increase time TM1s and the motor torque decrease time TM2s, the ratio between them (TM1s / TM2s) has a ratio that keeps a constant ratio regardless of the steering speed. It is preferable that the above-mentioned improvement in steering feeling is achieved even under speed.
  • FIG. 6 shows the change characteristic of the steering force with respect to the lateral acceleration obtained during actual driving on a test course simulating a suburban road
  • Fig. 7 shows actual characteristics during actual driving on the same test course.
  • the change characteristic of the steering force obtained in this way with respect to the yaw rate is shown.
  • the solid lines in FIGS. 6 and 7 indicate the steering force change characteristics when the steering motor torque increase / decrease correction of the present embodiment is performed to cause the above-described change in the steering force repeatedly as described above with reference to FIG.
  • the broken lines in FIGS. 6 and 7 represent the steering force change characteristics when the steering motor torque increase / decrease correction in this embodiment is not performed (the steering force is not repeatedly increased or decreased).
  • the driver When the steering motor torque increase / decrease correction in this embodiment is not performed (the steering force is not repeatedly increased / decreased), the driver does not have a sense of unity and a sense of security with the vehicle. As is apparent from the broken line 7, the driver cannot perform a smooth steering operation and frequently performs corrective steering.
  • the weight of the steering force felt by the driver during the steering operation is shown in FIG.
  • the weight By setting the motor torque increase / decrease times TM1s and TM2s during steering, the weight can be set appropriately, and the steering feeling can be improved so that the driver can have a sense of unity with the vehicle and a sense of security. Therefore, as is apparent from the solid lines in FIGS. 6 and 7, the driver can perform a smooth steering operation, and hardly performs corrective steering.
  • the above-described effects can be obtained only by setting the steering motor torque increase / decrease times TM1s and TM2s in FIG. 3, the specifications of the power steering components can be changed as in the prior art, The above-described improvement in steering feeling can be realized at low cost without the need to add new means such as a lateral acceleration detection means.
  • the torque correction to be started at the steering start time t1 in the steering motor torque increase / decrease correction in FIG. 3 is the motor torque increase correction as in the instant t1 to t2, the following advantages are obtained.
  • the wheel driving force is increased by the motor torque increase correction at the beginning of the steering between the instants t1 and t2 as in this embodiment, the driving force increase causes the turning moment of the turning direction outer wheel and the turning direction of the turning direction inner wheel at the beginning of steering.
  • the apparent turning force obtained by dividing the turning moment by the difference in turning moment (restoring moment) and dividing this moment difference by the vehicle center of gravity and the distance between the wheels increases at the beginning of steering.
  • the yaw rate of the vehicle quickly rises at the beginning of steering and the value itself increases, and the turning response (initial turning ability) of the vehicle front at the beginning of steering, that is, the steering response can be improved.
  • step S12 and step S15 in FIG. 2 when determining whether or not the steering state is in step S12 and step S15 in FIG. 2, the wheel speed of each wheel is used instead of the steering angle ⁇ of the steering wheel as described above, and steering is performed based on the wheel speed difference between the wheels.
  • the wheel speed of each wheel is used instead of the steering angle ⁇ of the steering wheel as described above, and steering is performed based on the wheel speed difference between the wheels.
  • the motor torque increase / decrease correction control in FIG. 2 is actually required when the left and right front wheels 1L, 1R are in a steered state.
  • the left and right front wheels 1L, 1R are actually steered by the response delay of the steering force transmission system from the generation of the steering wheel steering angle ⁇ , and it is determined whether or not the steering state is in the steering state based on the steering wheel steering angle ⁇ .
  • the left and right front wheels 1L and 1R are still turned because the left and right front wheels 1L and 1R are determined to be in the steering state when they are in the steered state.
  • the concern that the motor torque increase / decrease correction in FIG. 2 is performed from when not in the rudder state can be eliminated, and thus the above-described operation can be further ensured.
  • the concept of the present invention is applied to a vehicle that drives the left and right front wheels 1L and 1R, which are steering wheels.
  • the present invention is not limited to the left and right front wheels 1L and 1R, or the left and right front wheels 1L. , 1R as well as a vehicle that drives both the left and right rear wheels, and a vehicle that drives the wheels by individual electric motors.
  • the driving force increase / decrease correction control in FIG. An effect can be produced.
  • the power source for driving the wheels does not necessarily need to be a rotating electrical machine such as the electric motor 2, and even for an engine such as an internal combustion engine, the driving force increase / decrease correction control in FIG. Similar effects can be achieved.
  • the engine has a control response lower than that of the rotating electrical machine, it is advantageous to perform the driving force increase / decrease correction control of FIG. 2 on the rotating electrical machine in that the above-described effect can be further ensured.
  • the target motor torque of the electric motor 2 is used as a reference, and the motor torque correction amount ⁇ ⁇ Tm shown in FIG. 3 is added to the target motor torque to repeatedly increase or decrease the motor torque (wheel driving force).
  • the following motor torque (wheel driving force) increase / decrease method may be used.
  • the first increase / decrease method is to add the motor torque increase amount + ⁇ Tm of FIG. 3 to the target motor torque of the electric motor 2 or not repeatedly, that is, a method in which motor torque decrease correction is not performed.
  • the torque (wheel driving force) is repeatedly increased or decreased.
  • the second increase / decrease method is to add or not add the motor torque decrease amount - ⁇ Tm of FIG. 3 to the target motor torque of the electric motor 2, that is, by a method that does not perform motor torque increase correction,
  • the motor torque (wheel driving force) is repeatedly increased or decreased.
  • the deviation from the target motor torque may be less if the motor torque correction amount ⁇ ⁇ Tm is added to the target motor torque and the motor torque (wheel driving force) is repeatedly increased or decreased as shown in the illustrated example. is there.
  • the motor torque (wheel driving force) is repeatedly increased or decreased, it is arbitrary whether the increase is first performed or the decrease is first performed.
  • increasing the motor torque (wheel drive force) first is advantageous in that the effect of improving the steering response can be obtained.
  • the motor torque increase amount ⁇ Tm and the motor torque decrease amount ( ⁇ Tm) do not necessarily have the same absolute value, and can be arbitrarily determined within the range satisfying the above-described requirements.
  • the motor torque increase correction time TM1s and the motor torque are the same when the absolute value of the motor torque increase amount ⁇ Tm and the motor torque decrease amount ⁇ Tm are made the same, or the absolute value of the motor torque decrease amount ( ⁇ Tm) is made smaller.
  • the decrease correction time TM2s is preferable because it is easy to determine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

 操舵感改善装置は、t1以後の操舵中、設定時間TM1s中のモータトルク増大補正と、設定時間TM2s中のモータトルク減少補正とを順次行い、車輪駆動力を、運転者が加減速を感じない程度に繰り返し増減させる。車輪駆動力の繰り返し増減は、ステアリングラックのスラスト増減量として示すような操舵力の増減を生起させる。操舵力が繰り返し増減される場合、運転者は全体としては大きい方(増大中)の操舵力を強く感じるので、運転者が感じる操舵力の重さをモータトルク増減時間TM1s,TM2sの設定のみにより適切な重さにでき、運転者が車両との一体感や安心感を持てるように操舵感を改善することができる。

Description

車両の操舵感改善装置
 本発明は、動力源からの駆動力により車輪を駆動して走行可能な車両の操舵感を、車輪駆動力の操作により改善するための装置に関するものである。
 車両の操舵感は一般的に、運転者が行う操舵入力(操舵角)に対して操舵力が如何なるものであるかによって論じられる。
 操舵力が軽すぎる場合は、操舵入力(操舵角)が過大になる傾向により、車両挙動が運転者の予期したものよりも大きくなって、運転者が車両との一体感や安心感を持ち得ず、しばしば修正操舵を余儀なくされる。
 かといって操舵力が重すぎる場合は、特に長距離運転中、長時間に亘って運転操作に大きな力が必要となり、運転者に疲労感を与える。
 従って、操舵入力(操舵角)に対する操舵力は適切な重さであるを要し、操舵力が適切な重さである場合、運転者が車両との一体感や安心感を持ち得て、操舵感の向上により滑らかなステアリング操作を行うことができ、修正操舵を行う必要がないと共に、ステアリング操作が重くて運転者に疲労感を与えることもない。
 操舵感を向上させるには、一般的に以下のような手法を用いるのが常套である。
 つまり、操舵システムが油圧式パワーステアリングである場合は、操舵負荷に応じた相対回転に応動して開度変化するバルブの開度変化特性を、操舵感が車両ごとに狙った通りのものとなるような仕様にする。
 また操舵システムが電動式パワーステアリングである場合は、操舵力をパワーアシスト(助勢)するモータのアシストトルク特性を、操舵感が車両ごとに狙った通りのものとなるような制御態様にする。
 しかし、油圧式パワーステアリングの場合は、バルブ開度特性を所定通りのものにするのに、構成部品の仕様変更などが必要である。電動式パワーステアリングの場合は、アシストモータトルク特性を所定通りのものにするためにアシストモータの仕様変更が必要である。いずれにしてもコスト高になるという問題を生ずる。
 操舵感を向上させる別の対策として従来、例えば特許文献1に記載のようなものが提案されている。
 この提案技術は、車両の横加速度を検出し、この横加速度に応じた最適な操舵力となるようなパワーステアリングのアシストトルクを算出し、このアシストトルク分だけ運転者の操舵力を助勢して、運転者が感じる操舵力を、横加速度に応じた最適なものにするというものである。
 しかし、特許文献1に記載の提案技術も、車両の横加速度を検出する手段が不可欠であり、コスト高になるという問題を生ずる点においては、油圧式パワーステアリングや電動式パワーステアリングに対して行っていた前記の常套的な対策と大差がない。
 このため、パワーステアリング構成部品の仕様変更が必要になったり、横加速度検出手段のような新たな手段を必要とすることなしに、操舵感の改善が可能な装置の出現が望まれていた。
特開2005-343302号公報
 本発明は、NTT発行の文献「知覚の非線形性を利用した非接地型力覚インタフェース」に見られるように、人間の手による触覚が、大きな力と小さな力の周期的な入力時に、全体としては大きな力の方を強く感じる、との観点から、
 また操舵中に車輪駆動力を増減させると、駆動力の増大が操舵力の増大をもたらし、増大した駆動力の減少が操舵力の増大値からの低下をもたらすとの事実認識に基づき、
 この着想を具体化して、つまり操舵中に車輪駆動力を繰り返し増減させて操舵力を増減させることで、運転者がステアリング操作中の手に感じる操舵力を、上記のようなコスト高要因の発生なしに、安価に適切な重さにして操舵感を改善し得るようにした車両の操舵感改善装置を提案するものである。
 本発明による車両の操舵感改善装置は、
 動力源からの駆動力により車輪を駆動して走行可能な車両に対し、
 車両の操舵輪を舵取りする操舵が行われたのを検知する操舵検知手段と、
 該手段により操舵中が検知されている間、前記車輪への駆動力を繰り返し増減させる駆動力増減手段とを設けた。
 かかる本発明による車両の操舵感改善装置によれば、操舵中に、車輪への駆動力を繰り返し増減させることから、操舵力を駆動力増減周期と同じ周期で増減させることができる。
 運転者は、操舵力が繰り返し増減する場合、周期的に増減する操舵力のうち大きい方の操舵力を強く感じることから、運転者がステアリング操作中の手に感じる操舵力の重さを、駆動力増減周期の設定のみにより、従って従来のようにコスト高を伴うことなく安価に、適切な重さにし得て操舵感を改善することができる。
本発明の一実施例になる操舵感改善装置を具えた車両の駆動系およびその制御系を示す概略系統図である。 図1における電動モータコントローラが実行する操舵感改善制御プログラムを示すフローチャートである。 図2による操舵感改善制御の動作タイムチャートである。 操舵輪のタイヤ接地面に係わる諸元を示す説明図である。 図2の制御プログラムを実行した場合の操舵角に対する操舵力の変化特性を、当該制御プログラムを実行しない場合のそれと比較して示す操舵力変化特性図である。 図2の制御プログラムを実行して、郊外路を模したテストコースでの実走行により得られた操舵力の、横加速度に対する変化特性を、当該制御プログラムを実行しない場合のそれと比較して示す操舵力変化タイムチャートである。 図2の制御プログラムを実行して、郊外路を模したテストコースでの実走行により得られた操舵力の、ヨーレートに対する変化特性を、当該制御プログラムを実行しない場合のそれと比較して示す操舵力変化タイムチャートである。
 以下、本発明の実施の形態を、図面に示す実施例に基づき詳細に説明する。
<構成>
 図1は、本発明の一実施例になる操舵感改善装置を具えた車両の駆動系およびその制御系を示す。本実施例において図1における車両は、操舵輪でもある左右前輪1L,1Rを駆動して走行可能な電気自動車とする。
 これら左右前輪1L,1Rの駆動に際しては、電動モータ(動力源)2により減速機(ディファレンシャルギヤ装置を含む)3を介し、当該左右操舵輪1L,1Rの駆動を行うものとする。
 電動モータ2の駆動力制御に際しては、電動モータコントローラ4が、電源であるバッテリ5の電力をインバータ6により直流-交流変換して、またこの交流電力をインバータ6による制御下で電動モータ2へ供給することで、電動モータ2のトルクを電動モータコントローラ4での演算結果(目標モータトルク)に一致させるよう、当該電動モータ2の制御を行うものとする。
 なお、電動モータコントローラ4での演算結果(目標モータトルク)が、電動モータ2に回生制動作用を要求する負極性のものである場合、電動モータコントローラ4はインバータ6を介し電動モータ2に発電負荷を与え、このとき電動モータ2が回生制動作用により発電した電力を、インバータ6により交流-直流変換してバッテリ5に充電するものとする。
 電動モータコントローラ4には、上記の目標モータトルク(目標駆動力)を演算するための情報として、
 電気自動車の対地速度である車速Vを検出する車速センサ7からの信号と、
 運転操作に応じたアクセル開度(電動モータ要求負荷)θを検出するアクセル開度センサ8からの信号と、
 運転者が左右前輪(操舵輪)1L,1Rを転舵するときに操作するステアリングホイール(図示せず)の操舵角δを検出する操舵角センサ9からの信号と、
 電動モータ2の電流(図1ではU相、V相、W相よりなる三相交流であるから電流iu,iv,iw)を検出する電流センサ10からの信号と、を入力する。
 電動モータコントローラ4は、これら入力情報に応じて電動モータ2を制御するPWM信号を生成し、このPWM信号に応じドライブ回路を通じてインバータ6の駆動信号を生成する。
 インバータ6は、例えば各相ごとに2個のスイッチング素子(例えばIGBT等のパワー半導体素子)からなり、駆動信号に応じてスイッチング素子をON/OFFすることにより、バッテリ5から供給される直流の電流を交流に変換・逆変換し、電動モータ2に所望の電流を供給する。
 電動モータ2は、インバータ6より供給される交流電流により駆動力を発生し、減速機3を通して左右前輪(左右操舵輪)1L,1Rに駆動力を伝達する。
 また車両走行中、電動モータ2が左右前輪1L,1Rに連れ回される所謂逆駆動時は、電動モータ2に発電負荷を与えて電動モータ2に回生制動作用を行わせることで、車両の運動エネルギーを回生してバッテリ5に蓄電する。
<車両の操舵感改善制御>
 電動モータコントローラ4は、図2に示す制御プログラムを実行して、電動モータ2の駆動力制御を介し、車両の操舵感改善制御を以下のごとくに行う。
 ステップS11においては、操舵角δを読み込み、ステップS12において、操舵角δの絶対値|δ|が|δ|>0(実際は、この「0」に代え、不感帯を考慮した操舵判定用の設定値)であるか否かにより、左右前輪1L,1Rを舵取りする操舵が行われた操舵時であるのか、左右前輪1L,1Rを舵取りする操舵が行われていない非操舵中であるのかを判定する。
 従ってステップS11およびステップS12は、本発明における操舵検知手段に相当する。
 なお操舵が行われたか否かの判定に当たっては、上記の代わりに、各車輪の車輪速を基に、左右前輪1L,1Rの車輪速差、または左右後輪(図示せず)の車輪速差、或いは左右前輪1L,1Rの平均車輪速と左右後輪(図示せず)の平均車輪速との間における前後車輪速差が、操舵判定値以上であるか否かにより、当該操舵判定を行ってもよい。
 ステップS12で非操舵中と判定する間は、車両の操舵感改善制御が不要であるから、制御をステップS11に戻して、操舵が行われるまでステップS12での操舵開始判定を繰り返し実行しつつ待機する。
 ステップS12で操舵が行われたと判定する操舵開始時は、車両の操舵感改善制御を開始すべきであるから、制御をステップS13以降に進めて以下のごとくに、電動モータ2の駆動力制御を介した車両の操舵感改善制御を遂行する。
 ステップS13においては、操舵開始時からの経過時間を計測するタイマTMが設定時間TM1sを示すようになる前(0<TM<TM1s)であるか否かをチェックする。
 ステップS13で(0<TM<TM1s)と判定する間は、つまり図3の操舵開始時t1から設定時間TM1s内であると判定する間は、ステップS14において、車速Vおよびアクセル開度APOから予定のモータトルクマップを基に求めた電動モータ2の目標モータトルクに対し、図3にトルク波形で示した操舵開始瞬時t1の直後における駆動トルク補正量ΔTmを上乗せして目標モータトルクを補正する、モータトルク増大補正を行う。
 なお本明細書で「目標モータトルク」と称するは、上記のごとく車速Vおよびアクセル開度APOから求めた、運転者の要求トルクのみを意味するのみに非ず、運転者の要求とは別の要因(車両の挙動制御や、トランクションコントロール)で駆動力制御要求がある場合は、当該駆動力制御要求により補正された後の目標モータトルクをも、つまり車両の運転状態から求めた全ての目標モータトルクを含む。
 次のステップS15においては、操舵角絶対値|δ|が|δ|>0であるか否かにより、ステップS12での操舵開始判定時t1以後も操舵が継続されている操舵中であるか否かをチェックする。
 従ってステップS15は、ステップS11およびステップS12と共に、本発明における操舵検知手段を構成する。
 ステップS15で操舵中と判定する間は、制御をステップS11およびステップS12に戻すが、操舵中故に制御はステップS12からステップS13へと進む。
 ステップS13で(0<TM<TM1s)と判定する間は、つまり図3の操舵開始時t1から設定時間TM1sが経過した瞬時t2よりも前である間は、ステップS14において行う図3のトルク波形に沿ったモータトルク増大補正を継続する。
 ステップS13において、(0<TM<TM1s)でなくなったと判定する場合は、つまり図3において操舵開始時t1から設定時間TM1sが経過した瞬時t2以後は、制御を順次ステップS16~ステップS17へと進めて、ステップS14でのモータトルク増大補正を終了し、以下のモータトルク補正制御に移行する。
 ステップS16においては、電動モータ2の前記した目標モータトルクを、図3の瞬時t2の直後における駆動トルク補正量(-ΔTm)だけ減少させて目標モータトルクを補正する、モータトルク減少補正を行う。
 このモータトルク減少補正は、図3の瞬時t2と、この瞬時t2から設定時間TM2sが経過する瞬時t3との間において行わせ、駆動トルク減少補正量(-ΔTm)は、前記した駆動トルク増大補正量ΔTmと、絶対値が同じものとする。
 但し、モータトルク減少補正時間TM2sは、前記したモータトルク増大補正時間TM1sよりも短くする。
 ステップS16でのモータトルク減少補正が終了した時(図3の瞬時t3)に実行されるステップS17においては、電動モータ2の前記した目標モータトルクを、図3の瞬時t3の直後における駆動トルク補正量ΔTmだけ増大させて目標モータトルクを補正する、モータトルク増大補正を行う。
 このモータトルク増大補正は、図3の瞬時t3と、この瞬時t3からステップS14におけると同じ設定時間TM1sが経過する瞬時t4との間において行わせる。
 ステップS17でのモータトルク増大補正が行われた後は、ステップS15において、操舵角絶対値|δ|が|δ|>0であるか否かにより、ステップS17でのモータトルク増大補正が終了した図3の瞬時t4以後も操舵が継続されている操舵中であるか否かをチェックする。
 ステップS15で操舵中と判定する間は、制御をステップS11およびステップS12に戻すが、操舵中故に制御はステップS12からステップS13へと進み、このステップS13が現在のTM≧TM1sに呼応して制御を順次ステップS16およびステップS17に進める。
 このため、図3の瞬時t4以後も操舵が継続されていれば、当該瞬時t4以後に示されている駆動トルク補正量(-ΔTm,ΔTm)だけ、電動モータ2の目標モータトルクは繰り返し減少補正(ステップS16)および増大補正(ステップS17)される。
 そして、運転者がステアリングホイールを中立位置に戻し、操舵を止めたときは、ステップS15が操舵角絶対値|δ|=0により操舵終了を判定し、図2のループから抜けることから、電動モータ2の目標モータトルクに対する上記の減少補正(ステップS16)および増大補正(ステップS17)が行われなくなり、電動モータ2は目標モータトルクを出力するよう制御される。
 上記した図2の操舵感改善制御により電動モータ2のトルクは、図3の操舵開始時t1以後の操舵中、目標モータトルクよりも図3のトルク増減量波形で示す量だけ繰り返し増減される。
 先ず図3の操舵開始時t1から設定時間TM1sが経過する瞬時t2までの間、電動モータ2のトルクはステップS14において、目標モータトルクよりも図3のトルク増減量波形で示す量ΔTmだけ増大された値に制御される。
 次に、図3のモータトルク増大補正終了時t2から設定時間TM2sが経過する瞬時t3までの間、電動モータ2のトルクはステップS16において、目標モータトルクよりも図3のトルク増減量波形で示す量(-ΔTm)だけ減少された値に制御される。
 その後、図3のモータトルク減少補正終了時t3から設定時間TM1sが経過する瞬時t4までの間、電動モータ2のトルクはステップS17において、目標モータトルクよりも図3のトルク増減量波形で示す量ΔTmだけ増大された値に制御される。
 以後、電動モータ2のトルクはステップS16およびステップS17の繰り返し実行により、瞬時t2~t4間におけると同様に制御され、減少および増大のパターンを繰り返すこととなる。
 従ってステップS14、ステップS16およびテップS17は、本発明における駆動力増減手段に相当する。
 上記のモータ駆動力増減補正制御によれば、以下のように車両の操舵感を改善することができる。
 先ず、上記した操舵中におけるモータトルク(車輪駆動力)の増減と、操舵力との関係を以下に説明する。
 タイヤ接地面に係わる諸元が図4に示すごときものである場合、操舵輪(前輪)1L,1Rが個々に発生する回頭モーメントMは、次式のように右辺第1項の横力σyによる回頭モーメントから、右辺第2項の駆動力σxによる回頭モーメントを差し引く演算により求めることができる。
Figure JPOXMLDOC01-appb-M000001
 そして、図3のt1~t2間、t3~t4間のようなモータトルク増大時は、操舵状態にある前輪1L,1Rのタイヤ接地面に対し車両前方への前後力、つまり図4のような駆動力σxが発生する。
 一方で操舵中は、旋回方向外方への荷重移動により、旋回方向外側となる前輪のタイヤ接地点が車幅方向外方へ移動すると共に、旋回方向内側となる前輪のタイヤ接地点が車幅方向内方へ移動して、これら内外輪の接地点にそれぞれ上記の駆動力σxが作用する。
 このため上記の駆動力σxは、操舵状態の前輪1L,1Rをキングピン軸線の周りに回そうとするモーメントを発生させるが、モータトルク増大時の駆動力σxは、操舵状態の前輪1L,1Rを中立位置に戻そうとする復元方向のモーメントを前輪1L,1Rに付与する。
 ところで復元方向のモーメントは、運転者が行っているステアリングホイールの操作に逆らう方向のモーメントであることから、ステアリングラック・スラスト増減量を図3のモータトルク増大期間t3~t4につき例示したごとく復元側の推力となり、操舵力を重くすることとなる。
 逆に、図3のt2~t3間や、t4の直後におけるようなモータトルク減少時は、操舵状態にある前輪1L,1Rのタイヤ接地面に対し車両後方への前後力、つまり図4とは逆向きの駆動力σxが発生する。
 この駆動力σxは、上記のごとくに移動した旋回方向外側前輪のタイヤ接地点および旋回方向内側前輪のタイヤ接地点に作用して、操舵状態の前輪1L,1Rをキングピン軸線の周りに回そうとするモーメントを発生させる。
 しかし、モータトルク減少時の駆動力σxは、モータトルク増大時と逆向きであることから、操舵状態の前輪1L,1Rを切り増そうとする回頭方向のモーメントを前輪1L,1Rに付与する。
 かかる回頭方向のモーメントは、運転者が行っているステアリングホイールの操作に対し順方向のモーメントであることから、ステアリングラック・スラスト増減量を図3のモータトルク減少期間t2~t3につき例示したごとく回頭側の推力となり、操舵力を軽くすることとなる。
 前記したモータトルク増減補正量(ΔTm,-ΔTm)は、これによって上記の論理によって発生する操舵力変化量を、運転者が感じる程度のものにし得る大きさである必要がある。
 しかし、当該モータトルク増減補正量(ΔTm,-ΔTm)が、運転者に加減速を感じさせるようなものであっては違和感になることから、運転者に加減速を感じさせない程度のモータトルク増減補正量(ΔTm,-ΔTm)に定められる。
 このため本実施例の操舵時モータトルク増減補正を行っても、操舵角δに対する操舵力の実測による変化特性は図5に実線で示すごとく、当該操舵時モータトルク増減補正を行わない場合の従来における二点鎖線で示す操舵力変化特性と大差がない。
 しかし、本実施例の操舵時モータトルク増減補正により操舵力が図3につき前述したごとくに繰り返し増減されると、運転者はステアリングホイールを操作する手に、小さい方(減少中)の操舵力よりも、大きい方(増大中)の操舵力を敏感に感じ取る傾向にあり、全体としては大きい方(増大中)の操舵力を強く感じる。
 従って、本実施例の操舵時モータトルク増減補正を行って図3につき前述した操舵力の繰り返し増減変化を生じさせる場合、運転者がステアリング操作中の手に感じる操舵力の重さを、図3における操舵時モータトルク増減時間TM1s,TM2sの設定のみにより適切な重さにすることができ、運転者が車両との一体感や安心感を持てるように操舵感を改善することができる。
 そして前記したごとく、モータトルク増大時間TM1sおよびモータトルク減少時間TM2s間に、TM1s>TM2sの大小関係を持たせたことで、上記した操舵感の改善を更に確実なものにすることができる。
 モータトルク増大時間TM1sおよびモータトルク減少時間TM2s間には更に、両者間の割合(TM1s/TM2s)が、操舵速度に関係なく一定の割合であり続けるような比率関係を持たせ、これにより如何なる操舵速度のもとでも上記した操舵感の改善が達成されるようにするのがよい。
 図6は、郊外路を模したテストコースでの実走行中に実測して得られた操舵力の、横加速度に対する変化特性を示し、また図7は、同じテストコースでの実走行中に実測して得られた操舵力の、ヨーレートに対する変化特性を示す。
 図6,7における実線は、本実施例の操舵時モータトルク増減補正を行って図3につき前述した操舵力の繰り返し増減変化を生じさせた場合の操舵力変化特性である。また図6,7における破線は、本実施例の当該操舵時モータトルク増減補正を行わない(操舵力の繰り返し増減変化を生じさせない)場合の操舵力変化特性である。
 本実施例の操舵時モータトルク増減補正を行わない(操舵力の繰り返し増減変化を生じさせない)場合は、運転者が車両との一体感や安心感を持てるような操舵感でないため、図6,7の破線から明らかなように、運転者が滑らかなステアリング操作を行うことができず、頻繁に修正操舵を行っている。
 これに対し、本実施例の操舵時モータトルク増減補正を行う(操舵力の繰り返し増減変化を生じさせる)場合は、運転者がステアリング操作中の手に感じる操舵力の重さを、図3における操舵時モータトルク増減時間TM1s,TM2sの設定により適切な重さにすることができ、運転者が車両との一体感や安心感を持てるように操舵感を改善できる。従って、図6,7の実線から明らかなように、運転者が滑らかなステアリング操作を行うことができ、修正操舵を殆ど行っていない。
 しかも本実施例によれば、図3における操舵時モータトルク増減時間TM1s,TM2sの設定のみにより上記の作用効果を奏し得ることから、従来のように、パワーステアリング構成部品の仕様変更を行ったり、横加速度検出手段のような新たな手段を追加する必要なしに、上記した操舵感の改善を安価に実現することができる。
 なお本実施例においては、図3の操舵時モータトルク増減補正に際し、操舵開始時t1に開始させるべきトルク補正を、瞬時t1~t2におけるごとくモータトルク増大補正としたため、以下のような利点をも奏し得る。
 本実施例のごとく瞬時t1~t2間の操舵開始当初にモータトルク増大補正により車輪駆動力を増大させると、この駆動力増大が操舵開始当初において旋回方向外側輪の回頭モーメントおよび旋回方向内側輪の回頭モーメント(復元モーメント)の差による回頭モーメントを大きくし、従って、このモーメント差を車両重心・車輪間距離で除して求まる見かけ上の横力が、操舵開始当初において増大する。
 その結果、車両のヨーレートが操舵開始当初において速やかに立ち上がると共にその値自身も大きくなり、操舵開始当初における車両前部の転向応答(初期回頭性)、つまり操舵応答を改善することができる。
 また、図2のステップS12およびステップS15において操舵状態か否かを判定するに際し、前記したごとくステアリングホイールの操舵角δに代え各車輪の車輪速を用い、車輪間における車輪速差を基に操舵状態か否かを判定する場合、以下のような利点が得られる。
 つまり、図2のモータトルク増減補正制御が実際に必要なのは、左右前輪1L,1Rが転舵された状態にあるときである。
 ところで左右前輪1L,1Rは実際上、ステアリングホイール操舵角δの発生から、操舵力伝動系の応答遅れ分だけ遅れて転舵され、ステアリングホイール操舵角δに基づいて操舵状態か否かの判定を行う場合、左右前輪1L,1Rが未だ転舵状態でないときから図2のモータトルク増減補正が行われる懸念がある。
 しかし、車輪速差を基に操舵状態か否かを判定する場合、左右前輪1L,1Rが転舵状態になった時をもって操舵状態と判定することになるため、左右前輪1L,1Rが未だ転舵状態でないときから図2のモータトルク増減補正が行われる懸念を払拭することができ、従って、前記の作用を一層確実なものにすることができる。
<その他の実施例>
 上記した図示例では、操舵輪である左右前輪1L,1Rを駆動する車両に本発明の着想を適用する場合につき説明したが、本発明は、左右前輪1L,1Rに代えて、或いは左右前輪1L,1Rと共に左右後輪をもモータ駆動する車両や、車輪を個別の電動モータにより駆動する車両に対しても適用可能であり、この場合も図2の駆動力増減補正制御により前記したと同様な作用効果を奏し得る。
 なお車輪を駆動する動力源は、必ずしも電動モータ2のような回転電機である必要はなく、内燃機関のようなエンジンであっても、これに対し図2の駆動力増減補正制御を行うことで同様な作用を達成することができる。
 しかしエンジンは、回転電機に較べて制御応答が低いため、回転電機に対し図2の駆動力増減補正制御を行う方が、前記の作用効果を一層確実なものにし得る点において有利である。
 また図示例では、電動モータ2の目標モータトルクを基準とし、これに対し図3のモータトルク補正量±ΔTmを付加して、モータトルク(車輪駆動力)を繰り返し増減させるようにしたが、これに代えて以下のようなモータトルク(車輪駆動力)の増減方式にしてもよい。
 第1の増減方式は、電動モータ2の目標モータトルクに対し図3のモータトルク増大量+ΔTmを加算するか、加算しないかの繰り返しにより、つまりモータトルク減少補正を行わないような方式により、モータトルク(車輪駆動力)を繰り返し増減させるものである。
 第2の増減方式は、電動モータ2の目標モータトルクに対し図3のモータトルク減少量-ΔTmを加算するか、加算しないかの繰り返しにより、つまりモータトルク増大補正を行わないような方式により、モータトルク(車輪駆動力)を繰り返し増減させるものである。
 しかし、図示例のように目標モータトルクにモータトルク補正量±ΔTmを加算して、モータトルク(車輪駆動力)を繰り返し増減させる方が、目標モータトルクからの逸脱が少なくて良いのは勿論である。
 更に、モータトルク(車輪駆動力)の繰り返し増減に際し、増大を先に行うか、減少を先に行うかは任意である。
 しかし、モータトルク(車輪駆動力)の増大を先に行うようにした方が、前記した操舵応答の改善効果も奏し得られる点において有利である。
 また、モータトルク増大量ΔTmと、モータトルク減少量(-ΔTm)とは、必ずしも両者の絶対値を同じにする必要はなく、前記した要件を満たす範囲内で任意に決定することができる。
 しかし、モータトルク増大量ΔTmおよびモータトルク減少量-ΔTmの絶対値を同じにしたり、モータトルク減少量(-ΔTm)の絶対値の方を小さくした方が、モータトルク増大補正時間TM1sおよびモータトルク減少補正時間TM2sの決定が容易になって、好ましい。

Claims (9)

  1.  動力源からの駆動力により車輪を駆動して走行可能な車両において、
     車両の操舵輪を舵取りした操舵中であるのを検知する操舵検知手段と、
     該手段により操舵中が検知されている間、前記車輪への駆動力を繰り返し増減させる駆動力増減手段とを具備してなる車両の操舵感改善装置。
  2.  請求項1に記載された車両の操舵感改善装置において、
     前記操舵検知手段は、車両の複数車輪間における回転速度差から前記操舵が行われたのを検知する車両の操舵感改善装置。
  3.  請求項1または2に記載された車両の操舵感改善装置において、
     前記駆動力増減手段は、少なくとも、前記車輪への駆動力を増大させる駆動力増大処理を含んで、前記車輪への駆動力の繰り返し増減を行う車両の操舵感改善装置。
  4.  請求項3に記載された車両の操舵感改善装置において、
     前記駆動力増減手段は、前記車輪への駆動力の繰り返し増減に際し、先ず前記駆動力増大処理を行う車両の操舵感改善装置。
  5.  請求項1~4のいずれか1項に記載された車両の操舵感改善装置において、
     前記駆動力増減手段は、前記車輪への駆動力の繰り返し増減に際し、前記駆動力増大処理の時間を駆動力減少処理の時間よりも長く与える車両の操舵感改善装置。
  6.  請求項5に記載された車両の操舵感改善装置において、
     前記駆動力増減手段は、前記駆動力増大処理時間および駆動力減少処理時間の割合を、操舵速度に関わりなく一定の割合とする車両の操舵感改善装置。
  7.  請求項1~6のいずれか1項に記載された車両の操舵感改善装置において、
     前記駆動力の増減量は、車両の乗員が加減速を感じない程度のものである車両の操舵感改善装置。
  8.  請求項1~7のいずれか1項に記載された車両の操舵感改善装置において、
     前記駆動力増減手段は、前記車輪への駆動力の繰り返し増減に際し、車両の運転状態から求めた目標駆動力を基準とし、前記車輪への駆動力を該目標駆動力よりも大きな値、または該目標駆動力よりも小さな値にする車両の操舵感改善装置。
  9.  請求項1~8のいずれか1項に記載された車両の操舵感改善装置において、
     前記車両が、駆動力の少なくとも一部を電動モータで賄うようにした電動車両であり、
     前記駆動力増減手段は、前記電動モータを介して前記車輪への駆動力の繰り返し増減制御を行う車両の操舵感改善装置。
PCT/JP2011/059176 2010-05-18 2011-04-13 車両の操舵感改善装置 WO2011145410A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201180021994.XA CN102869556B (zh) 2010-05-18 2011-04-13 车辆的转向感改进装置
US13/695,510 US8666582B2 (en) 2010-05-18 2011-04-13 Apparatus for improving steering sensitivity of vehicle
RU2012146382/11A RU2519605C1 (ru) 2010-05-18 2011-04-13 Устройство для улучшения чувствительности рулевого управления транспортного средства
BR112012028199A BR112012028199A2 (pt) 2010-05-18 2011-04-13 aparelho para aprimorar a sensibilidade de direção de um veículo
EP11783347A EP2572952A1 (en) 2010-05-18 2011-04-13 Apparatus for improving steering sensitivity of vehicle
MX2012012405A MX2012012405A (es) 2010-05-18 2011-04-13 Aparato para mejorar la sensibilidad de direccion del vehiculo.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-114698 2010-05-18
JP2010114698A JP5560895B2 (ja) 2010-05-18 2010-05-18 車両の操舵感改善装置

Publications (1)

Publication Number Publication Date
WO2011145410A1 true WO2011145410A1 (ja) 2011-11-24

Family

ID=44991525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059176 WO2011145410A1 (ja) 2010-05-18 2011-04-13 車両の操舵感改善装置

Country Status (8)

Country Link
US (1) US8666582B2 (ja)
EP (1) EP2572952A1 (ja)
JP (1) JP5560895B2 (ja)
CN (1) CN102869556B (ja)
BR (1) BR112012028199A2 (ja)
MX (1) MX2012012405A (ja)
RU (1) RU2519605C1 (ja)
WO (1) WO2011145410A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104583038A (zh) * 2012-08-30 2015-04-29 丰田自动车株式会社 车辆的控制装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2998199B1 (en) * 2013-05-15 2018-08-01 Mitsubishi Electric Corporation Electric power steering control device and control method for same
US9037353B2 (en) * 2013-06-13 2015-05-19 Mitsubishi Electric Research Laboratories, Inc. System and method for controlling electric power steering system
DE112015006712T5 (de) * 2015-07-15 2018-06-07 Mitsubishi Electric Corporation Servolenkungsjustiervorrichtung
JP6252575B2 (ja) * 2015-09-28 2017-12-27 トヨタ自動車株式会社 自動運転装置
DE102015218922B4 (de) 2015-09-30 2022-05-05 Siemens Healthcare Gmbh Mobiles C-Bogen-System
JP6194942B2 (ja) * 2015-11-20 2017-09-13 マツダ株式会社 エンジンの制御装置
DE102016200006A1 (de) * 2016-01-04 2017-07-06 Magna Steyr Fahrzeugtechnik Ag & Co Kg Anti-Ruckel Verfahren
US9981686B2 (en) * 2016-08-31 2018-05-29 Ford Global Technologies, Llc Creep assist for steering management
KR102298976B1 (ko) * 2017-09-08 2021-09-06 현대자동차주식회사 동력 조향 시스템의 어시스트 토크 결정 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005343302A (ja) 2004-06-02 2005-12-15 Toyota Motor Corp 車両用操舵支援装置
JP2007001449A (ja) * 2005-06-24 2007-01-11 Nissan Motor Co Ltd 車両用操舵装置及び車両用操舵制御方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6007443A (en) * 1996-02-16 1999-12-28 Nippon Soken, Inc. Hybrid vehicle
US7014008B2 (en) * 2002-06-27 2006-03-21 Honda Giken Kogyo Kabushiki Kaisha Steering system for vehicle
JP4225150B2 (ja) * 2003-08-12 2009-02-18 アイシン・エィ・ダブリュ株式会社 電動駆動制御装置及び電動駆動制御方法
JP4349092B2 (ja) * 2003-11-12 2009-10-21 トヨタ自動車株式会社 車両のパワーステアリング制御装置
JP2005178628A (ja) * 2003-12-19 2005-07-07 Toyota Motor Corp 車両の統合制御システム
JP4400270B2 (ja) * 2004-03-19 2010-01-20 日産自動車株式会社 車両の舵角比制御装置
US7630796B2 (en) * 2004-09-06 2009-12-08 Denso Corporation Body action information system
JP2007020354A (ja) * 2005-07-11 2007-01-25 Nissan Motor Co Ltd 車両用操舵装置
JP2007282330A (ja) * 2006-04-04 2007-10-25 Toyota Motor Corp 車両制御装置
JP4628309B2 (ja) * 2006-05-18 2011-02-09 トヨタ自動車株式会社 車両およびその制御方法
JP2008081008A (ja) * 2006-09-28 2008-04-10 Mitsubishi Electric Corp 車両挙動制御装置
JP5107075B2 (ja) * 2008-01-31 2012-12-26 トヨタ自動車株式会社 制動装置
JP4529097B2 (ja) * 2008-03-24 2010-08-25 アイシン・エィ・ダブリュ株式会社 ハイブリッド駆動装置
JP2010052525A (ja) * 2008-08-27 2010-03-11 Honda Motor Co Ltd 車両用電動パワーステアリング装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005343302A (ja) 2004-06-02 2005-12-15 Toyota Motor Corp 車両用操舵支援装置
JP2007001449A (ja) * 2005-06-24 2007-01-11 Nissan Motor Co Ltd 車両用操舵装置及び車両用操舵制御方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104583038A (zh) * 2012-08-30 2015-04-29 丰田自动车株式会社 车辆的控制装置

Also Published As

Publication number Publication date
US20130054073A1 (en) 2013-02-28
JP2011240823A (ja) 2011-12-01
CN102869556A (zh) 2013-01-09
US8666582B2 (en) 2014-03-04
MX2012012405A (es) 2012-11-29
EP2572952A1 (en) 2013-03-27
CN102869556B (zh) 2015-07-01
RU2519605C1 (ru) 2014-06-20
BR112012028199A2 (pt) 2016-08-02
JP5560895B2 (ja) 2014-07-30

Similar Documents

Publication Publication Date Title
JP5560895B2 (ja) 車両の操舵感改善装置
JP6112303B2 (ja) 車両用挙動制御装置
JP5840464B2 (ja) 電気自動車
JP5400716B2 (ja) 電動車両の駆動力制御装置
WO2011136025A1 (ja) 車両の操舵時挙動改善装置
US11465674B2 (en) Steering apparatus
RU2526310C2 (ru) Устройство для улучшения поведения транспортного средства при рулении
JP4561189B2 (ja) 車両運動制御装置
CN107848426B (zh) 车轮独立驱动式车辆的驱动控制装置
JP6267440B2 (ja) 車両制御装置
JP5975337B2 (ja) 操舵制御システム
JP6291671B2 (ja) 車両の制御装置
JP6585446B2 (ja) 車両の制駆動力制御装置
JP2010132095A (ja) 車両制御システム
JP2017052299A (ja) 車両用制御装置
JP4428063B2 (ja) 車両の駆動力制御装置及び車両の駆動力制御方法
JP2001218303A (ja) 電気自動車の走行制御方法及び装置
WO2016125686A1 (ja) 車両の制駆動トルク制御装置
JP5240004B2 (ja) 車両制御装置
WO2023233903A1 (ja) 移動体の制御装置、プログラム
KR101655644B1 (ko) 하이브리드 차량의 선회 안정성 유지 방법
JP2021172215A (ja) 車両の制御装置
JP2001260919A (ja) 動力舵取装置
JP2014212583A (ja) 左右輪独立駆動車両の駆動力制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180021994.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11783347

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011783347

Country of ref document: EP

Ref document number: MX/A/2012/012405

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 13695510

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 3971/KOLNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2012146382

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012028199

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012028199

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20121101