WO2011145294A1 - 配線方法、並びに、表面に配線が設けられた構造物、半導体装置、配線基板、メモリカード、電気デバイス、モジュール及び多層回路基板 - Google Patents

配線方法、並びに、表面に配線が設けられた構造物、半導体装置、配線基板、メモリカード、電気デバイス、モジュール及び多層回路基板 Download PDF

Info

Publication number
WO2011145294A1
WO2011145294A1 PCT/JP2011/002628 JP2011002628W WO2011145294A1 WO 2011145294 A1 WO2011145294 A1 WO 2011145294A1 JP 2011002628 W JP2011002628 W JP 2011002628W WO 2011145294 A1 WO2011145294 A1 WO 2011145294A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
insulating layer
connection terminal
main body
resin
Prior art date
Application number
PCT/JP2011/002628
Other languages
English (en)
French (fr)
Inventor
愼悟 吉岡
弘明 藤原
博光 高下
剛 武田
優子 今野
Original Assignee
パナソニック電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック電工株式会社 filed Critical パナソニック電工株式会社
Priority to US13/698,975 priority Critical patent/US9082635B2/en
Priority to CN201180024358.2A priority patent/CN102893711B/zh
Priority to EP11783233A priority patent/EP2574156A1/en
Publication of WO2011145294A1 publication Critical patent/WO2011145294A1/ja
Priority to US14/733,308 priority patent/US20150271924A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/181Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
    • H05K3/182Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method
    • H05K3/184Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1607Process or apparatus coating on selected surface areas by direct patterning
    • C23C18/1608Process or apparatus coating on selected surface areas by direct patterning from pretreatment step, i.e. selective pre-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1653Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • C23C18/1886Multistep pretreatment
    • C23C18/1893Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0607Wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4821Flat leads, e.g. lead frames with or without insulating supports
    • H01L21/4828Etching
    • H01L21/4832Etching a temporary substrate after encapsulation process to form leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5389Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates the chips being integrally enclosed by the interconnect and support structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L24/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L24/25Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of a plurality of high density interconnect connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/82Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • H05K1/185Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68359Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used as a support during manufacture of interconnect decals or build up layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68377Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support with parts of the auxiliary support remaining in the finished device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/2405Shape
    • H01L2224/24051Conformal with the semiconductor or solid-state device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/24137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/24145Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/24145Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • H01L2224/24146Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked the HDI interconnect connecting to the same level of the lower semiconductor or solid-state body at which the upper semiconductor or solid-state body is mounted
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/24221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/24225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/24221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/24225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/24226Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the HDI interconnect connecting to the same level of the item at which the semiconductor or solid-state body is mounted, e.g. the item being planar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/2499Auxiliary members for HDI interconnects, e.g. spacers, alignment aids
    • H01L2224/24996Auxiliary members for HDI interconnects, e.g. spacers, alignment aids being formed on an item to be connected not being a semiconductor or solid-state body
    • H01L2224/24998Reinforcing structures, e.g. ramp-like support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/82Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
    • H01L2224/82001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI] involving a temporary auxiliary member not forming part of the bonding apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/82Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
    • H01L2224/82009Pre-treatment of the connector or the bonding area
    • H01L2224/8203Reshaping, e.g. forming vias
    • H01L2224/82035Reshaping, e.g. forming vias by heating means
    • H01L2224/82039Reshaping, e.g. forming vias by heating means using a laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/82Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
    • H01L2224/821Forming a build-up interconnect
    • H01L2224/82101Forming a build-up interconnect by additive methods, e.g. direct writing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06524Electrical connections formed on device or on substrate, e.g. a deposited or grown layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06527Special adaptation of electrical connections, e.g. rewiring, engineering changes, pressure contacts, layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06551Conductive connections on the side of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06555Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking
    • H01L2225/06568Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking the devices decreasing in size, e.g. pyramidical stack
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49579Lead-frames or other flat leads characterised by the materials of the lead frames or layers thereon
    • H01L23/49582Metallic layers on lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0655Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01051Antimony [Sb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01056Barium [Ba]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01075Rhenium [Re]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10621Components characterised by their electrical contacts
    • H05K2201/10636Leadless chip, e.g. chip capacitor or resistor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10621Components characterised by their electrical contacts
    • H05K2201/10674Flip chip
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/02Details related to mechanical or acoustic processing, e.g. drilling, punching, cutting, using ultrasound
    • H05K2203/0264Peeling insulating layer, e.g. foil, or separating mask
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0703Plating
    • H05K2203/072Electroless plating, e.g. finish plating or initial plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0703Plating
    • H05K2203/0723Electroplating, e.g. finish plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0756Uses of liquids, e.g. rinsing, coating, dissolving
    • H05K2203/0769Dissolving insulating materials, e.g. coatings, not used for developing resist after exposure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/14Related to the order of processing steps
    • H05K2203/1407Applying catalyst before applying plating resist
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/14Related to the order of processing steps
    • H05K2203/1461Applying or finishing the circuit pattern after another process, e.g. after filling of vias with conductive paste, after making printed resistors
    • H05K2203/1469Circuit made after mounting or encapsulation of the components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/284Applying non-metallic protective coatings for encapsulating mounted components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a wiring method, more specifically, a wiring method for connecting a plurality of connected portions exposed on the surface of a structure to each other by wiring, and a structure in which wiring is provided on the surface by this wiring method.
  • the present invention relates to a semiconductor device, a wiring board, a memory card, an electric device, a module, and a multilayer circuit board.
  • Patent Document 1 discloses that a swellable resin film is formed on the surface of an insulating substrate, and a groove having a depth greater than the thickness of the film is formed from the outer surface of the swellable resin film. After the catalyst metal is deposited on the surface of the groove and the surface of the swellable resin film, the swellable resin film is swollen and peeled off from the surface of the insulating substrate, and then an electroless plating film is formed only on the portion where the catalyst metal remains. It is described.
  • the outline of the circuit pattern can be maintained with high accuracy, and occurrence of short circuit and migration is suppressed.
  • the technique described in Patent Document 1 is used and a plurality of connected portions exposed on the surface of the structure are connected to each other by wiring, densification of the wiring circuit may be hindered.
  • Non-Patent Document 1 describes that a semiconductor device wire-bonded with a gold wire or the like is sealed with a sealing resin.
  • JP 2010-50435 A (paragraph 0014)
  • An object of the present invention is to prevent an increase in the density of a wiring circuit when a plurality of connected portions exposed on the surface of a structure are connected to each other by wiring.
  • the present invention has an object to suppress short circuit, cutting, and damage of wiring due to the pressure of the sealing resin when the structure is sealed with the sealing resin.
  • One aspect of the present invention is a wiring method for connecting a plurality of connected portions exposed on the surface of a structure to each other by wiring, and an insulating layer is provided on the surface of the structure where the plurality of connected portions are exposed.
  • a wiring forming step, wherein the wiring forming step is provided.
  • an insulating layer is formed on a surface of a structure from which a plurality of connected portions are exposed, and a wiring main body is provided on the surface of the insulating layer.
  • This is a structure in which wiring is provided on the surface, characterized in that the portion branches, the wiring branching portion extends into the insulating layer, and reaches the connected portion to be connected.
  • Still another aspect of the present invention is that a semiconductor chip is mounted on an insulating base, and an insulating layer is formed on a surface of a structure in which a connection terminal provided on the insulating base and a connection terminal provided on the semiconductor chip are exposed.
  • a wiring main body is provided on the surface of the insulating layer, a branching portion of the wiring branches off from the wiring main body, the wiring branch extends into the insulating layer, and is connected to the connection terminal of the insulating base and / or
  • a semiconductor device is characterized by reaching a connection terminal of a semiconductor chip.
  • Still another aspect of the present invention is that a semiconductor device is mounted on a printed wiring board, and an insulating layer is formed on a surface of a structure where a connection terminal provided on the printed wiring board and a connection terminal provided on the semiconductor device are exposed.
  • a wiring main body is provided on the surface of the insulating layer, a branching portion of the wiring branches off from the wiring main body, the wiring branching portion extends into the insulating layer, and is connected to the connection terminal of the printed wiring board and / or A wiring board characterized by reaching a connection terminal of a semiconductor device.
  • a memory package is attached to a support, and an insulating layer is formed on a surface of a structure where a connection terminal provided on the support and a connection terminal provided on the memory package are exposed, A main body portion of the wiring is provided on the surface of the insulating layer, a branch portion of the wiring branches off from the main body portion of the wiring, the wiring branch portion extends into the insulating layer, and is connected to the connection terminal of the support and / or the memory package.
  • the memory card is characterized by reaching a connection terminal.
  • Still another aspect of the present invention is that a passive element is mounted on an insulating base, and an insulating layer is formed on a surface of a structure where a connection terminal provided on the insulating base and a connection terminal provided on the passive element are exposed.
  • a wiring main body is provided on the surface of the insulating layer, a branching portion of the wiring branches off from the wiring main body, the wiring branch extends into the insulating layer, and is connected to the connection terminal of the insulating base and / or
  • An electrical device characterized in that it reaches a connection terminal of a passive element.
  • an electrical device is attached to a support, and an insulating layer is formed on a surface of a structure where a connection terminal provided on the support and a connection terminal provided on the electrical device are exposed, A main body portion of the wiring is provided on the surface of the insulating layer, a branch portion of the wiring branches off from the main body portion of the wiring, the wiring branch portion extends into the insulating layer, and is connected to the connection terminal of the support and / or the electric device.
  • the module is characterized in that it reaches the connection terminal.
  • a plurality of circuit boards are combined in a stacked state, and an insulating layer is formed on a surface of a structure where connection terminals provided on the circuit board are exposed.
  • a wiring main body is provided on the surface of the wiring, a branching portion of the wiring branches off from the wiring main body, the wiring branching portion extends into the insulating layer, and reaches connection terminals of different circuit boards.
  • the connection terminal of the circuit board is an end part of an internal circuit of the circuit board, and is a multilayer circuit board.
  • a plurality of semiconductor chips are mounted in a stacked state on an insulating base material, and an insulating layer is formed on the surface of a structure where connection terminals provided on the semiconductor chips are exposed.
  • the main body of the wiring is provided on the surface of the insulating layer, the branch of the wiring branches off from the main body of the wiring, the wiring branch extends into the insulating layer, and reaches the connection terminals of different semiconductor chips.
  • the semiconductor device is characterized by the above.
  • FIG. 1 is a process explanatory diagram of the wiring method according to the first embodiment of the present invention.
  • FIG. 2 is a more detailed process explanatory diagram of the wiring forming process in the wiring method of FIG.
  • FIG. 3 is a process explanatory diagram of the wiring method according to the second embodiment of the present invention.
  • FIG. 4 is a process explanatory diagram of the wiring method according to the third embodiment of the present invention.
  • FIG. 5 is a process explanatory diagram of the wiring method according to the fourth embodiment of the present invention.
  • FIG. 6 is a plan view of a semiconductor device according to the fifth embodiment of the present invention.
  • FIG. 7 is a partial perspective view of the semiconductor device according to the sixth embodiment of the present invention.
  • FIG. 1 is a process explanatory diagram of the wiring method according to the first embodiment of the present invention.
  • FIG. 2 is a more detailed process explanatory diagram of the wiring forming process in the wiring method of FIG.
  • FIG. 3 is a process explanatory diagram of the
  • FIG. 8 is a process explanatory diagram of the wiring method according to the seventh embodiment of the present invention.
  • FIG. 9 is a longitudinal sectional view of a wiring board according to the eighth embodiment of the present invention.
  • FIG. 10 is a longitudinal sectional view of a memory card according to the ninth embodiment of the present invention.
  • FIG. 11 is a longitudinal sectional view of an electric device according to the tenth embodiment of the present invention.
  • FIG. 12 is a longitudinal sectional view of a module according to the eleventh embodiment of the present invention.
  • FIG. 13 is a partially transparent perspective view of the multilayer circuit board according to the twelfth embodiment of the present invention.
  • FIG. 14 is a longitudinal sectional view of a semiconductor device according to a thirteenth embodiment of the present invention.
  • FIG. 15 is an explanatory diagram of problems in the prior art.
  • symbol a is a semiconductor device in which a semiconductor chip c is mounted on an insulating substrate b
  • symbol d is a connection terminal provided on the semiconductor chip c
  • symbol e is a connection provided on the insulating substrate b.
  • the terminal, symbol f is a wiring that connects the connection terminals d of the semiconductor chip c or a wiring that connects the connection terminal d of the semiconductor chip c and the connection terminal e of the insulating base material b.
  • the wiring f is provided on the surface of the insulating base material b and the surface of the semiconductor chip c.
  • the connection terminal e is exposed on the surface of the insulating base material b
  • the connection terminal d is exposed on the surface of the semiconductor chip c. Therefore, when there are other connection terminals d and e between the connection terminals d and d to be connected to each other or between d and e, the wiring f is connected to other connections as indicated by reference numerals x and y. It must be detoured so as not to touch the connection terminals d and e. This leads to an increase in the wiring area and hinders the high density of the wiring circuit.
  • the present invention has been completed for the purpose of preventing an increase in the density of a wiring circuit when a plurality of connected portions exposed on the surface of a structure are connected to each other by wiring.
  • the gold wire receives the pressure of the sealing resin, and a large load acts on the gold wire.
  • the gold wire is short-circuited, cut or damaged, and the productivity and reliability of the semiconductor device is reduced.
  • the present invention has been completed for the purpose of suppressing short-circuiting, cutting and damage of wiring due to the pressure of the sealing resin when the structure is sealed with the sealing resin.
  • connection terminal means an electrode for electrical connection, a pad, a bump, a post, a signal input terminal, a signal output terminal, and a signal input / output terminal depending on the provided member unless otherwise specified. In this case, it means an extraction electrode or the like.
  • reference numeral 1 denotes a structure in which a plurality of connected parts are exposed
  • reference numeral 10 denotes a semiconductor device
  • reference numeral 100 denotes a semiconductor device sealed with a sealing resin
  • reference numeral 101 denotes an insulating base
  • reference numeral 101a denotes an insulating base.
  • Reference numeral 102 is a semiconductor chip
  • reference numeral 102a is a connection terminal (connected part) of the semiconductor chip
  • reference numeral 103 is an insulating layer
  • reference numeral 104 is a resin coating
  • reference numeral 105 is a groove
  • reference numerals 106 and 107 Is a communication hole
  • 108 is a wiring
  • 108 a is a wiring body
  • 108 b is a wiring branch
  • 108 x is a plating catalyst
  • 109 is a sealing resin.
  • a structure 1 in which a semiconductor chip 102 is mounted on an insulating substrate 101 is prepared as shown in FIG.
  • the semiconductor chip 102 include an IC, an LSI, a VLSI, and an LED chip.
  • a plurality of connection terminals 101 a are provided on the surface of the insulating substrate 101, and a plurality of connection terminals 102 a are provided on the surface of the semiconductor chip 102. These connection terminals 101 a and 102 a are exposed on the surface of the structure 1.
  • an insulating layer 103 is formed on the surface of the structure 1 from which the plurality of connection terminals 101a and 102a are exposed (insulating layer forming step).
  • a resin film 104 is formed on the surface of the insulating layer 103 (resin film forming step).
  • a groove having a depth equal to or exceeding the thickness of the resin coating 104 from the surface side of the resin coating 104 are formed so as to pass in the vicinity of the connection terminals 101a and 102a to be connected, and communication holes 106 and 107 reaching the connection terminals 102a and 101a to be connected from the vicinity passing portions are formed.
  • the grooves 105 and the communication holes 106 and 107 are formed by, for example, laser processing.
  • the plating catalyst 108x or the plating catalyst precursor is deposited on the surfaces of the groove 105 and the communication holes 106 and 107 (catalyst deposition step).
  • the resin film 104 is removed by dissolving or swelling (resin film removal step).
  • a plating film is formed only on the portion where the plating catalyst formed from the plating catalyst 108x or the plating catalyst precursor remains by performing electroless plating. (Plating process).
  • a wiring having a main body part 108a located on the surface of the insulating layer 103 and a branch part 108b branched from the main body part 108a and extending into the insulating layer 103 and reaching the connection terminals 102a and 101a to be connected. 108 is provided (wiring forming step).
  • the outline of the wiring 108 can be accurately performed. Can be maintained, and occurrence of short circuit and migration is suppressed.
  • the semiconductor chip 102 is mounted on the insulating base material 101, and the semiconductor device (the wiring is provided on the surface) in which the connection terminal 101a of the insulating base material 101 and the connection terminal 102a of the semiconductor chip 102 are connected to each other by the wiring 108. Structure) 10 is obtained.
  • the insulating layer 103 is formed on the surface of the structure 1 where the connection terminals 101 a of the insulating base material 101 and the connection terminals 102 a of the semiconductor chip 102 are exposed, and the main body of the wiring 108 is formed on the surface of the insulating layer 103.
  • a portion 108a is provided, a branching portion 108b of the wiring 108 branches from the wiring main body portion 108a, the wiring branching portion 108b extends into the insulating layer 103, and a connection between the connection terminal 101a of the insulating base 101 and the semiconductor chip 102 is provided.
  • the terminal 102a is reached.
  • connection terminals 101a and 102a are covered with the insulating layer 103 and the main body portion 108a of the wiring 108 is provided on the surface of the insulating layer 103, another connection is made between the connection terminals 101a and 102a to be connected to each other. Even if the terminals 101a and 102a are provided, the wiring 108 need not be detoured so as not to touch the other connection terminals 101a and 102a. The wiring 108 can pass over the other connection terminals 101a and 102a that are not to be connected and overlap each other. As a result, it is possible to prevent the wiring circuit from being densified.
  • the semiconductor device 10 is sealed with a sealing resin 109.
  • the semiconductor device 100 sealed with the sealing resin 109 is obtained.
  • the wiring 108 is formed so as to cover the surface of the insulating layer 103. Therefore, when a structure (semiconductor device 10) provided with wiring 108 on the surface is inserted into the mold and sealed with the sealing resin 109, the wiring 108 receives the pressure of the sealing resin 109 and receives the wiring 108. A large load can be avoided. As a result, compared to a semiconductor device that is wire-bonded with a gold wire or the like, short-circuiting, cutting, or damage of the wiring 108 is suppressed, and the productivity and reliability of the semiconductor device are improved.
  • the plating film by electrolytic plating after the plating process and before sealing the semiconductor device 10 with the sealing resin 109 (electrolytic plating process).
  • electrolytic plating process electrolytic plating process
  • the time required for thickening the plating film can be shortened.
  • the electroless plating film is made thicker by conducting the current between the electroless plating film formed in the plating process on the anode side and the cathode side electrode. It becomes.
  • the thickness of the plating film is not particularly limited. Specifically, for example, it is preferably 0.1 to 10 ⁇ m, and more preferably about 1 to 5 ⁇ m.
  • the resin film 104 is made to contain a fluorescent substance, and after the resin film removal process, before the plating process, the removal of the resin film 104 is inspected using light emitted from the fluorescent substance. It is preferable (inspection process).
  • the resin film 104 to which the plating catalyst 108x or the plating catalyst precursor is deposited remains between the adjacent wirings 108, a plating film is formed on the remaining portion, which may cause a short circuit. Therefore, by removing the portion where the light emission is detected, it is possible to suppress the formation of a plating film on that portion and to prevent the occurrence of a short circuit.
  • the fluorescent substance that can be contained in the resin coating 104 is not particularly limited as long as it exhibits light emission characteristics when irradiated with light from a predetermined light source. Specifically, Fluoresceine, Eosine, Pyroline G, etc. are mentioned, for example.
  • the insulating base material 101 various organic base materials and inorganic base materials conventionally used for mounting semiconductor chips can be used without any particular limitation.
  • the organic base material include base materials made of epoxy resin, acrylic resin, polycarbonate resin, polyimide resin, polyphenylene sulfide resin, polyphenylene ether resin, cyanate resin, benzoxazine resin, bismaleimide resin, and the like.
  • the epoxy resin is not particularly limited as long as it is an epoxy resin that constitutes various organic substrates that can be used for manufacturing a circuit board, for example.
  • bisphenol A type epoxy resin bisphenol F type epoxy resin, bisphenol S type epoxy resin, aralkyl epoxy resin, phenol novolac type epoxy resin, alkylphenol novolac type epoxy resin, biphenol type epoxy resin, naphthalene type epoxy resin , Dicyclopentadiene type epoxy resins, epoxidized products of condensates of phenols and aromatic aldehydes having a phenolic hydroxyl group, triglycidyl isocyanurate, alicyclic epoxy resins, and the like.
  • brominated or phosphorus-modified epoxy resins, nitrogen-containing resins, silicone-containing resins and the like are also included to impart flame retardancy. These resins may be used alone or in combination of two or more.
  • a curing agent is generally used to cure the resin.
  • curing agent Specifically, a dicyandiamide, a phenol type hardening
  • phenolic curing agents examples include novolak type, aralkyl type, and terpene type. Furthermore, in order to impart flame retardancy, a phosphorus-modified phenol resin, a phosphorus-modified cyanate resin, and the like are also included. These curing agents may be used alone or in combination of two or more.
  • communication holes 106 and 107 are formed on the surface of the insulating base 101 by, for example, laser processing (if the depth of the groove 105 exceeds the thickness of the resin film 104, one of the grooves 105 is formed. Part is also formed on the surface of the insulating base material 101), and therefore, as the material of the insulating base material 101, a resin having excellent laser light absorption rate (UV absorption rate) in the wavelength region of 100 nm to 400 nm should be used. Is preferred. Specifically, a polyimide resin etc. are mentioned, for example.
  • the insulating base material 101 may contain a filler.
  • the filler may be inorganic fine particles or organic fine particles, and is not particularly limited. By containing the filler, the filler is exposed in the laser-processed portion, and the adhesion between the insulating substrate 101 and the plating film due to the unevenness of the filler can be improved.
  • the material constituting the inorganic fine particles include aluminum oxide (Al 2 O 3 ), magnesium oxide (MgO), boron nitride (BN), aluminum nitride (AlN), silica (SiO 2 ), and titanium.
  • High dielectric constant filler such as barium oxide (BaTiO 3 ) and titanium oxide (TiO 2 ); magnetic filler such as hard ferrite; magnesium hydroxide (Mg (OH) 2 ), aluminum hydroxide (Al (OH) 2 )
  • Inorganic flame retardants such as antimony trioxide (Sb 2 O 3 ), antimony pentoxide (Sb 2 O 5 ), guanidine salt, zinc borate, molybdate compound, zinc stannate; talc (Mg 3 (Si 4 O 10 ) (OH) 2 ), barium sulfate (BaSO 4 ), calcium carbonate (CaCO 3 ), mica and the like.
  • These inorganic fine particles may be used alone or in combination of two or more.
  • these inorganic fine particles have high thermal conductivity, relative dielectric constant, flame retardancy, particle size distribution, color tone freedom, etc., when selectively exerting a desired function, appropriate blending and particle size design should be performed. And high filling can be easily performed.
  • the average particle diameter of the filler is not particularly limited, but is preferably 0.01 ⁇ m to 10 ⁇ m, and more preferably 0.05 ⁇ m to 5 ⁇ m.
  • the inorganic fine particles may be surface-treated with a silane coupling agent.
  • the insulating base material 101 may contain a silane coupling agent in order to enhance the dispersibility of the inorganic fine particles in the insulating base material 101.
  • the silane coupling agent is not particularly limited. Specific examples include silane coupling agents such as epoxy silane, mercapto silane, amino silane, vinyl silane, styryl silane, methacryloxy silane, acryloxy silane, and titanate. These silane coupling agents may be used alone or in combination of two or more.
  • the insulating base material 101 may contain a dispersant in order to enhance the dispersibility of the inorganic fine particles in the insulating base material 101.
  • the dispersant is not particularly limited. Specific examples include dispersants such as alkyl ether, sorbitan ester, alkyl polyether amine, and polymer. These dispersants may be used alone or in combination of two or more.
  • the form of the insulating substrate 101 is not particularly limited. Specific examples include a sheet, a film, a prepreg, and a three-dimensional shaped molded body.
  • the thickness of the insulating substrate 101 is not particularly limited. For example, in the case of a sheet, film, prepreg, etc., 10 to 500 ⁇ m is preferable, 10 to 200 ⁇ m is more preferable, 20 to 200 ⁇ m is further preferable, and 20 to 100 ⁇ m is further preferable.
  • the insulating base material 101 may be formed into a three-dimensional shaped molded body by putting, for example, a material to be an insulating base material using a mold and a frame mold, pressurizing and curing, The sheet, film, and prepreg may be punched and the hollowed out material is cured, or may be formed by heating and pressing to form a three-dimensional shaped molded body or the like.
  • the insulating layer 103 examples include insulating organic materials such as resins, insulating inorganic materials such as ceramics including silica (SiO 2 ), and the like. In addition, the material similar to the material which comprises the insulating base material 101 may be sufficient.
  • the method for forming the insulating layer 103 is not particularly limited as long as the insulating layer 103 is formed on at least the surface of the insulating base material 101 and the surface of the semiconductor chip 102 as shown in FIG. Not. Specifically, for example, by applying a liquid material that can form the insulating layer 103 to the surface of the structure 1 and then drying, or by applying the liquid material to the supporting base material in advance and then drying it. Examples thereof include a method of transferring the formed film to the surface of the structure 1 or a method of bonding.
  • the method for applying the liquid material is not particularly limited. Specifically, for example, conventionally known spin coat method, bar coater method, dipping method, spray method and the like can be mentioned.
  • the method for forming the resin film 104 is not particularly limited as long as the resin film 104 is formed on at least the surface of the insulating layer 103 as shown in FIG. Specifically, for example, by applying a liquid material capable of forming the resin film 104 to the entire surface of the insulating layer 103 and then drying, or by applying the liquid material to the supporting base material in advance and then drying it. Examples thereof include a method of transferring the formed film to the surface of the insulating layer 103, a method of bonding, and the like.
  • the method for applying the liquid material is not particularly limited. Specifically, for example, conventionally known spin coating method, bar coater method, dipping method, spray method and the like can be mentioned.
  • the thickness of the resin coating 104 is 10 ⁇ m or less, further 5 ⁇ m or less, preferably 0.1 ⁇ m or more, and more preferably 1 ⁇ m or more.
  • the thickness is too thick, the dimensional accuracy tends to decrease when the resin coating 104 is partially removed by laser processing.
  • the thickness is too thin, it tends to be difficult to form a film having a uniform thickness.
  • the material for forming the resin film 104 is not particularly limited as long as it is a resin material that can be removed by dissolution or swelling in the resin film removal step. Specifically, for example, a resist resin used in the field of photoresist, or a resin that has a high degree of swelling with respect to a predetermined liquid and can be peeled off by swelling is used.
  • the resist resin include, for example, a photocurable epoxy resin, an etching resist, a polyester resin, and a rosin resin.
  • the swellable resin is preferably a swellable resin having a degree of swelling with respect to a predetermined liquid of 50% or more, more preferably 100% or more, and even more preferably 500% or more.
  • a resin include, for example, diene elastomers such as styrene-butadiene copolymers and acrylic resins adjusted to have a desired degree of swelling by adjusting the degree of crosslinking or gelation.
  • examples include acrylic elastomers such as acid ester copolymers, and polyester elastomers.
  • the resin coating 104 will be repeatedly described in detail.
  • the resin film 104 is not particularly limited as long as it can be removed in the resin film removal step.
  • the resin film 104 is preferably a resin film that can be easily dissolved or removed from the surface of the insulating layer 103 by dissolving or swelling with a predetermined liquid.
  • a film made of a soluble resin that can be easily dissolved by an organic solvent or an alkaline solution a film made of a swellable resin that can swell with a predetermined liquid (swelling liquid), and the like can be given.
  • the swellable resin film does not substantially dissolve in a predetermined liquid, and swells in a predetermined liquid as well as a resin film that easily peels off from the surface of the insulating layer 103 due to swelling. Further, at least a part of the resin film that dissolves and easily peels off from the surface of the insulating layer 103 due to its swelling or dissolution, or dissolves in a predetermined liquid, and easily dissolves from the surface of the insulating layer 103 due to its dissolution. A resin film that peels off is also included. By using such a resin film, the resin film 104 can be easily and satisfactorily removed from the surface of the insulating layer 103.
  • the plating catalyst 108x deposited on the resin film 104 is scattered, and the scattered plating catalyst 108x is re-deposited on the insulating layer 103 and is unnecessary in that portion. There is a problem that a proper plating is formed. In this embodiment, since the resin film 104 can be easily and satisfactorily removed from the surface of the insulating layer 103, such a problem can be prevented.
  • any resin can be used without particular limitation as long as it can be easily dissolved or removed from the surface of the insulating layer 103 by dissolving or swelling with a predetermined liquid.
  • a resin having a degree of swelling with respect to a predetermined liquid is 50% or more, more preferably 100% or more, and still more preferably 500% or more.
  • the degree of swelling is too low, the resin film tends to be difficult to peel.
  • Such a resin coating 104 is formed by applying an elastomer suspension or emulsion to the surface of the insulating layer 103 and then drying, or by applying an elastomer suspension or emulsion to the support substrate and then drying. It can be easily formed by a method of transferring the film onto the surface of the insulating layer 103 or the like.
  • the elastomer examples include diene elastomers such as a styrene-butadiene copolymer, acrylic elastomers such as an acrylate ester copolymer, and polyester elastomers. According to such an elastomer, a resin film having a desired swelling degree can be easily formed by adjusting the degree of crosslinking or gelation of the elastomer resin particles dispersed as a suspension or emulsion.
  • the resin film 104 is particularly preferably a film whose degree of swelling changes depending on the pH of the swelling liquid.
  • the resin coating 104 can be obtained at a pH in the catalyst deposition step by making the liquid conditions in the catalyst deposition step different from the liquid conditions in the resin coating removal step. While maintaining high adhesion to the insulating layer 103, the resin film 104 can be easily peeled off from the insulating layer 103 at the pH in the resin film removal step.
  • the catalyst deposition step includes a step of treating in an acidic catalyst metal colloid solution having a pH range of 1 to 3, for example, and the resin film removing step is alkaline, for example, having a pH range of 12 to 14.
  • the resin film 104 has a swelling degree with respect to the acidic catalyst metal colloid solution of 60% or less, more preferably 40% or less, and a swelling degree with respect to the alkaline solution is 50%. % Or more, preferably 100% or more, and more preferably 500% or more.
  • Examples of such resin coating 104 are used for a sheet formed from an elastomer having a predetermined amount of carboxyl groups, a dry film resist for patterning a printed wiring board (hereinafter sometimes referred to as “DFR”), and the like.
  • Examples thereof include a sheet obtained by completely curing a photocurable alkali-developable resist, a thermosetting or alkali-developable sheet, and the like.
  • the elastomer having a carboxyl group examples include diene elastomers such as a styrene-butadiene copolymer having a carboxyl group in the molecule by containing a monomer unit having a carboxyl group as a copolymerization component, and acrylic.
  • examples include acrylic elastomers such as acid ester copolymers, and polyester elastomers. According to such an elastomer, a resin film having a desired degree of alkali swelling can be formed by adjusting the acid equivalent, the degree of crosslinking or the degree of gelation of the elastomer dispersed as a suspension or emulsion.
  • prescribed liquid used in a resin film removal process can be enlarged, and the resin film which melt
  • the carboxyl group in the elastomer swells the resin film with respect to the alkaline aqueous solution, and acts to peel the resin film 104 from the surface of the insulating layer 103.
  • the acid equivalent is the polymer molecular weight per carboxyl group.
  • the monomer unit having a carboxyl group examples include (meth) acrylic acid, fumaric acid, cinnamic acid, crotonic acid, itaconic acid, maleic anhydride, and the like.
  • the content ratio of the carboxyl group in the elastomer having such a carboxyl group is preferably 100 to 2000, preferably 100 to 800 in terms of acid equivalent.
  • the acid equivalent is too small (when the number of carboxyl groups is relatively large), the compatibility with a pretreatment solution for electroless plating is reduced due to a decrease in compatibility with a solvent or other composition. Tend.
  • the acid equivalent is too large (when the number of carboxyl groups is relatively small), the peelability with respect to the alkaline aqueous solution tends to decrease.
  • the molecular weight of the elastomer is preferably 10,000 to 1,000,000, preferably 20,000 to 500,000, more preferably 20,000 to 60,000. If the molecular weight of the elastomer is too large, the releasability tends to decrease, and if it is too small, the viscosity decreases, making it difficult to maintain a uniform thickness of the resin film and before electroless plating. There is also a tendency that the resistance to the treatment liquid also decreases.
  • DFR for example, an acrylic resin, an epoxy resin, a styrene resin, a phenol resin, a urethane resin, or the like containing a predetermined amount of a carboxyl group is used as a resin component, and a photopolymerization initiator is included.
  • a sheet of curable resin composition may be used.
  • DFR for example, light as disclosed in, for example, Japanese Patent Application Laid-Open Nos. 2000-231190, 2001-201851, and 11-212262. Examples thereof include a sheet obtained by fully curing a dry film of the polymerizable resin composition, and a commercially available UFG series manufactured by Asahi Kasei Kogyo Co., Ltd. as an alkali development type DFR.
  • the resin coating 104 examples include a rosin-based resin containing a carboxyl group (for example, “NAZDAR229” manufactured by Yoshikawa Chemical Co., Ltd.), a phenol-based resin (for example, LEKTRACHEM). "104F” manufactured by the company).
  • the resin coating 104 is formed on the surface of the insulating layer 103 by applying a resin suspension or emulsion using a conventionally known coating method such as a spin coating method or a bar coater method, followed by drying or forming on a supporting substrate.
  • a resin suspension or emulsion using a conventionally known coating method such as a spin coating method or a bar coater method, followed by drying or forming on a supporting substrate.
  • the bonded DFR can be easily formed by bonding the surface of the insulating layer 103 to the surface of the insulating layer 103 using a vacuum laminator or the like and then curing the entire surface.
  • the resin film 104 for example, a resin film mainly composed of a resin (carboxyl group-containing acrylic resin) made of an acrylic resin having a carboxyl group with an acid equivalent of about 100 to 800 can be preferably used.
  • a resin film mainly composed of a resin (carboxyl group-containing acrylic resin) made of an acrylic resin having a carboxyl group with an acid equivalent of about 100 to 800 can be preferably used.
  • the characteristics necessary for the resist material constituting the resin coating 104 include, for example, (1) resistance to a liquid (plating catalyst-attached chemical solution) that immerses the structure 1 on which the resin coating 104 is formed in the catalyst deposition step.
  • Resin film removal step for example, the resin film 104 can be easily removed by the step of immersing the structure 1 on which the resin film 104 is formed in alkali, and (3) High film formability.
  • DFR Easy dry film
  • the plating catalyst attaching chemical solution As the plating catalyst attaching chemical solution, as will be described later, for example, in the case of an acidic Pd—Sn colloid catalyst system, all are acidic (eg, pH 1 to 3) aqueous solutions.
  • the catalyst imparting activator is a weak alkali (pH 8 to 12), and the others are acidic. From the above, it is necessary to withstand pH 1 to 11, preferably pH 1 to 12, as the resistance to the chemical solution with plating catalyst. In addition, being able to withstand is that when the sample on which the resin film 104 is formed is immersed in a chemical solution, the swelling or dissolution of the resin film 104 is sufficiently suppressed and plays a role as a resist.
  • the immersion temperature is generally from room temperature to 60 ° C.
  • the immersion time is from 1 to 10 minutes
  • the film thickness of the resin coating 104 is generally from about 1 to 10 ⁇ m, but is not limited thereto.
  • an alkali peeling chemical used in the resin film removing step for example, an aqueous NaOH solution or an aqueous sodium carbonate solution is generally used.
  • the pH is 11 to 14, and it is desirable that the resin film 104 can be easily removed preferably at pH 12 to 14.
  • the aqueous NaOH solution concentration is about 1 to 10%
  • the processing temperature is room temperature to 50 ° C.
  • the processing time is 1 to 10 minutes
  • the immersion or spraying is not limited thereto.
  • a resin film 104 formed into a dry film is attached on the insulating layer 103 with a laminator (roll, vacuum).
  • the pasting temperature is room temperature to 160 ° C., and the pressure and time are arbitrary. Thus, adhesiveness is required at the time of pasting.
  • the resin film 104 formed into a dry film generally has a three-layer structure sandwiched by a carrier film and a cover film, which also serves to prevent the adhesion of dust, but is not limited thereto.
  • the storability is preferably storable at room temperature, but it is also necessary to be able to be refrigerated or frozen. As described above, it is necessary to prevent the composition of the dry film from being separated at low temperatures or to be cracked due to a decrease in flexibility.
  • the resin coating 104 (a) at least one monomer of carboxylic acid or acid anhydride having at least one polymerizable unsaturated group in the molecule, and (b) (a It may be a polymer resin obtained by polymerizing at least one monomer that can be polymerized with a monomer, or a resin composition containing this polymer resin.
  • this known technique include, for example, JP-A-7-281437, JP-A-2000-231190, and JP-A-2001-201851.
  • Examples of (a) monomers include (meth) acrylic acid, fumaric acid, cinnamic acid, crotonic acid, itaconic acid, maleic anhydride, maleic acid half ester, butyl acrylate, and the like. Or you may combine two or more types.
  • Examples of the monomer (b) are generally non-acidic and have (1) a polymerizable unsaturated group in the molecule, but are not limited thereto. It is selected so as to maintain various characteristics such as resistance in a catalyst deposition step described later and flexibility of the cured film.
  • esters of vinyl alcohol such as vinyl acetate, (meth) acrylonitrile, styrene or polymerizable styrene derivatives.
  • a monomer having a plurality of unsaturated groups can be selected as the monomer used for the polymer so that three-dimensional crosslinking can be performed.
  • reactive functional groups such as epoxy groups, hydroxyl groups, amino groups, amide groups, and vinyl groups can be introduced into the molecular skeleton.
  • the amount of the carboxyl group contained in the resin is preferably 100 to 2000, preferably 100 to 800 in terms of acid equivalent. If the acid equivalent is too low, the compatibility with the solvent or other composition is lowered and the resistance to the plating pretreatment solution is lowered. If the acid equivalent is too high, the peelability is lowered.
  • the composition ratio of the monomer (a) is preferably 5 to 70% by mass.
  • the resin composition may contain the polymer resin as an essential component as a main resin (binder resin), and may contain at least one of oligomers, monomers, fillers, and other additives.
  • the main resin is preferably a linear polymer having thermoplastic properties. In order to control fluidity and crystallinity, it may be branched by grafting.
  • the molecular weight is about 1,000 to 500,000 in terms of weight average molecular weight, and preferably 5,000 to 50,000. When the weight average molecular weight is small, the flexibility of the film and the chemical resistance (acid resistance) with the plating catalyst are lowered. On the other hand, when the molecular weight is large, the alkali peelability and the sticking property when a dry film is formed deteriorate.
  • a cross-linking point may be introduced to improve resistance to chemicals with a plating catalyst, to suppress thermal deformation during laser processing, and to control flow.
  • Any monomer or oligomer may be used as long as it is resistant to plating catalyst chemicals and can be easily removed with alkali. Further, in order to improve the sticking property of the dry film (DFR), it can be considered that it is used as a tackifier as a plasticizer. Further, it is conceivable to add a crosslinking agent in order to increase various resistances.
  • esters of vinyl alcohol such as vinyl acetate, (meth) acrylonitrile, styrene or polymerizable styrene derivatives.
  • Examples of monomers include 1,6-hexanediol di (meth) acrylate, 1,4-cyclohexanediol di (meth) acrylate, polypropylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polyoxyethylene Polyoxyalkylene glycol di (meth) acrylate such as polyoxypropylene glycol di (meth) acrylate, 2-di (p-hydroxyphenyl) propane di (meth) acrylate, glycerol tri (meth) acrylate, dipentaerythritol penta (meth) Acrylate, trimethylolpropane triglycidyl ether tri (meth) acrylate, bisphenol A diglycidyl ether tri (meth) acrylate, 2,2-bis (4-methacryloxy) Pointer ethoxyphenyl) propane, there is a polyfunctional (meth) acrylate containing urethane groups. Any
  • the filler is not particularly limited, but silica, aluminum hydroxide, magnesium hydroxide, calcium carbonate, clay, kaolin, titanium oxide, barium sulfate, alumina, zinc oxide, talc, mica, glass, potassium titanate, wollastonite, sulfuric acid Magnesium, aluminum borate, an organic filler, etc. are mentioned. Further, since the preferable thickness of the resist is as thin as 0.1 to 10 ⁇ m, it is preferable that the resist has a small filler size. Although it is preferable to use a material having a small average particle size and cut coarse particles, the coarse particles can be crushed during dispersion or removed by filtration.
  • additives include photopolymerizable resins (photopolymerization initiators), polymerization inhibitors, colorants (dyes, pigments, coloring pigments), thermal polymerization initiators, and crosslinking agents such as epoxy and urethane.
  • the resin coating 104 is subjected to laser processing or the like, and therefore it is necessary to impart a laser ablation property to the resist material (material of the resin coating 104).
  • the laser processing machine for example, a carbon dioxide laser, an excimer laser, a UV-YAG laser, or the like is selected. These laser processing machines have various intrinsic wavelengths, and productivity can be improved by selecting a material having a high UV absorption rate for these wavelengths.
  • the UV-YAG laser is suitable for fine processing, and the laser wavelength is 3rd harmonic 355 nm and 4th harmonic 266 nm. It is desirable to be high. As the UV absorption rate increases, the processing of the resin film 104 is finished finer and the productivity can be improved.
  • the present invention is not limited to this, and it may be better to select a resist material having a relatively low UV absorption rate.
  • the lower the UV absorption rate the more UV light passes through the resin coating 104, so that the UV energy can be concentrated on the processing of the insulating layer 103 therebelow.
  • the insulating layer 103 is difficult to process, etc. Particularly favorable results are obtained.
  • the plating catalyst 108x can be left only in the portion of the insulating layer 103 where the groove 105 and the communication holes 106 and 107 are formed.
  • the plating catalyst 108x deposited on the surface of the resin coating 104 other than the portion where the groove 105 is formed in the slot forming step is a resin coating. They are removed together when removing 104.
  • a method of removing or dissolving and removing the resin film 104 a method of immersing the resin film 104 in a predetermined swelling solution or solution for a predetermined time can be given. Moreover, in order to improve peelability and solubility, it is particularly preferable to perform ultrasonic irradiation during immersion. In addition, in the case of swelling peeling, you may peel off with a light force as needed.
  • the liquid that dissolves or swells the resin film 104 is such that the resin film 104 can be easily dissolved or swollen without substantially decomposing or dissolving the insulating base material 101, the insulating layer 103, and the plating catalyst 108x.
  • Any liquid can be used without particular limitation. Specifically, when a photocurable epoxy resin is used as the resist resin, a resist remover or the like in an organic solvent or an alkaline aqueous solution is used.
  • an elastomer such as a diene elastomer, an acrylic elastomer, and a polyester elastomer is used as the swellable resin
  • an alkaline aqueous solution such as a sodium hydroxide aqueous solution having a concentration of about 1 to 10% is used. It can be preferably used.
  • the resin film 104 (a) at least one monomer of carboxylic acid or acid anhydride having at least one polymerizable unsaturated group in the molecule, and (b) (a) monomer
  • a polymer resin obtained by polymerizing at least one monomer that can be polymerized, or a resin composition containing this polymer resin, or formed from the aforementioned carboxyl group-containing acrylic resin For example, an aqueous alkali solution such as an aqueous sodium hydroxide solution having a concentration of about 1 to 10% can be preferably used.
  • the resin film 104 has a swelling degree of 60% or less, preferably 40% or less under acidic conditions. It is formed from an elastomer such as a diene elastomer, an acrylic elastomer, and a polyester elastomer that has a degree of swelling of 50% or more under alkaline conditions, or (a) polymerizable in the molecule.
  • an elastomer such as a diene elastomer, an acrylic elastomer, and a polyester elastomer that has a degree of swelling of 50% or more under alkaline conditions, or (a) polymerizable in the molecule.
  • a resin film can be easily dissolved or swollen by immersing it in an alkaline aqueous solution having a pH of 11 to 14, preferably a pH of 12 to 14, such as an aqueous sodium hydroxide solution having a concentration of about 1 to 10%. Then, it is removed by dissolution or peeling.
  • the plating catalyst 108x is a catalyst that is applied in advance in order to form the electroless plating film only in a portion where it is desired to form the electroless plating film in the plating process.
  • the plating catalyst 108x can be used without particular limitation as long as it is conventionally used as a catalyst for electroless plating.
  • a plating catalyst precursor may be deposited, and the plating catalyst may be generated after the resin film 104 is removed.
  • Specific examples of the plating catalyst 108x include metal palladium (Pd), platinum (Pt), silver (Ag), and the like.
  • Examples of the method for depositing the plating catalyst 108x include a method of treating with an acidic Pd—Sn colloid solution treated under acidic conditions of pH 1 to 3 and then treating with an acid solution. More specifically, the following methods can be mentioned. First, the oil adhering to the surfaces of the groove 105 and the communication holes 106 and 107 formed in the groove hole forming step is washed with hot water using a surfactant solution (cleaner / conditioner) or the like. Next, if necessary, a soft etching treatment is performed with a sodium persulfate-sulfuric acid based soft etching agent.
  • a surfactant solution cleaning / conditioner
  • an acidic solution such as a sulfuric acid aqueous solution or a hydrochloric acid aqueous solution having a pH of 1 to 2.
  • a pre-dip solution mainly composed of a stannous chloride aqueous solution having a concentration of about 0.1% to adsorb stannous chloride, a pH of 1 to 1 containing stannous chloride and palladium chloride is obtained.
  • 3 is further immersed in an acidic catalyst metal colloid solution such as acidic Pd—Sn colloid, so that Pd and Sn are aggregated and adsorbed.
  • the acidic catalyst metal colloid solution a known acidic Pd—Sn colloid catalyst solution or the like can be used, and a commercially available plating process using an acidic catalyst metal colloid solution may be used. Such a process is systematized and sold by, for example, Rohm & Haas Electronic Materials.
  • the plating catalyst 108x is deposited on the surface of the groove 105, the communication holes 106 and 107, and the surface of the resin coating 104.
  • Electroless plating As a method of electroless plating in the plating process, the structure 1 to which the plating catalyst 108x is applied is immersed in an electroless plating solution bath, and only the portion to which the plating catalyst 108x is applied is electrolessly plated. Methods such as depositing a film can be used.
  • Examples of the metal used for electroless plating include copper (Cu), nickel (Ni), cobalt (Co), and aluminum (Al).
  • the plating which has Cu as a main component is preferable from the point which is excellent in electroconductivity.
  • Ni is included, it is preferable from the point which is excellent in corrosion resistance and adhesiveness with a solder.
  • a plating catalyst on the surface of the path connecting the connection terminal 101a of the insulating base 101 and the connection terminal 102a of the semiconductor chip 102 is obtained.
  • the electroless plating film is deposited only on the portion where 108x remains.
  • a wiring 108 is formed, and the connection terminals 102 a and 101 a are connected to each other by the wiring 108.
  • the electroless plating film is not deposited. Therefore, even if the wiring interval is narrow, an unnecessary plating film is not formed between adjacent wirings, and problems such as a short circuit are suppressed.
  • reference numeral 2 denotes a structure in which a plurality of connected portions are exposed
  • reference numeral 20 denotes a semiconductor device
  • reference numeral 200 denotes a semiconductor device sealed with a sealing resin
  • reference numeral 201 denotes an insulating base material
  • reference numeral 201a denotes an insulating base material.
  • connection terminal (connected portion), reference numeral 202 denotes a semiconductor chip, reference numeral 202a denotes a connection terminal (connected portion) of the semiconductor chip, reference numeral 203 denotes an insulating layer, reference numeral 204 denotes a resin coating, reference numeral 205 denotes a groove, reference numerals 206 and 207.
  • Is a communication hole 208 is a wiring, 208 is a wiring body, 208 b is a wiring branch, and 209 is a sealing resin.
  • connection terminals 201 a are provided on the surface of the insulating substrate 201, and a plurality of connection terminals 202 a are provided on the surface of the semiconductor chip 202. These connection terminals 201 a and 202 a are exposed on the surface of the structure 2.
  • connection terminal 201a of the insulating base material 201 protrudes from the surface of the insulating base material 201. Further, it penetrates the insulating substrate 201 and protrudes from the opposite surface.
  • an insulating layer 203 is formed on the surface of the structure 2 from which the plurality of connection terminals 201a and 202a are exposed (insulating layer forming step).
  • the surface of the insulating layer 203 has an uneven shape due to the connection terminals 201 a of the insulating base material 201 projecting from the surface of the insulating base material 201.
  • a resin film 204 is formed on the surface of the insulating layer 203 (resin film forming step).
  • a groove having a depth equal to or exceeding the thickness of the resin film 204 from the surface side of the resin film 204 (the illustrated example is a groove having the same depth as the resin film 204). ) 205 is formed so as to pass through the vicinity of the connection terminals 201a and 202a to be connected, and communication holes 206 and 207 reaching the connection terminals 202a and 201a to be connected from the vicinity passing portions are formed (groove hole formation). Process).
  • a wiring 208 having 208a and a branching portion 208b branched from the main body 208a and extending into the insulating layer 203 and reaching the connection terminals 202a and 201a to be connected is provided (wiring forming step).
  • the outline of the wiring 208, particularly the wiring main body 208a is highly accurate. Can be maintained, and occurrence of short circuit and migration is suppressed.
  • the semiconductor chip 202 is mounted on the insulating base material 201, and the semiconductor device (the wiring is provided on the surface) in which the connection terminal 201a of the insulating base material 201 and the connection terminal 202a of the semiconductor chip 202 are connected to each other by the wiring 208. 20) is obtained.
  • an insulating layer 203 is formed on the surface of the structure 2 where the connection terminals 201 a of the insulating base material 201 and the connection terminals 202 a of the semiconductor chip 202 are exposed, and the main body of the wiring 208 is formed on the surface of the insulating layer 203.
  • 208a is provided, a branching portion 208b of the wiring 208 is branched from the wiring main body portion 208a, the wiring branching portion 208b extends into the insulating layer 203, and the connection terminal 201a of the insulating base 201 and the connection of the semiconductor chip 202 are connected.
  • the terminal 202a is reached.
  • connection terminals 201a and 202a are covered with the insulating layer 203, and the main body 208a of the wiring 208 is provided on the surface of the insulating layer 203, there is another connection between the connection terminals 201a and 202a to be connected to each other. Even if the terminals 201a and 202a are present, the wiring 208 need not be detoured so as not to touch the other connection terminals 201a and 202a. The wiring 208 can pass over the other connection terminals 201a and 202a that are not to be connected and overlap each other. As a result, it is possible to prevent the wiring circuit from being densified.
  • the semiconductor device 20 is sealed with a sealing resin 209.
  • the semiconductor device 200 sealed with the sealing resin 209 is obtained.
  • the wiring 208 is formed so as to crawl the surface of the insulating layer 203. Therefore, when the structure (semiconductor device 20) having the wiring 208 provided on the surface is inserted into the mold and sealed with the sealing resin 209, the wiring 208 receives the pressure of the sealing resin 209 and receives the wiring 208. A large load can be avoided. As a result, compared to a semiconductor device wire-bonded with a gold wire or the like, the wiring 208 is prevented from being short-circuited, cut, or damaged, and the productivity and reliability of the semiconductor device are improved.
  • reference numeral 3 is a structure in which a plurality of connected parts are exposed
  • reference numeral 30 is a structure having wiring provided on the surface
  • reference numeral 300 is a structure sealed with sealing resin and having wiring provided on the surface.
  • 301 is a copper plate
  • 301a is a connection terminal (connected part)
  • 302 is a resist
  • 303 is a gold-plated film through nickel plating
  • 304 is a cavity
  • 305 is a semiconductor chip
  • 305a is a semiconductor chip
  • Reference numeral 306 is an insulating layer
  • reference numeral 307 is a resin coating
  • reference numeral 308 is a wiring
  • reference numeral 308a is a wiring body part
  • reference numeral 308b is a wiring branching part
  • reference numeral 309 is a sealing resin.
  • a resist 302 is disposed on the surface of the copper plate 301 and on the opposite surface.
  • a gold plating film 303 is formed via nickel plating on the surface of the copper plate 301 and the portion other than the resist 302 on the opposite surface.
  • a portion other than the formation of the gold plating film 303 on the surface of the copper plate 301 is half-etched to form a recess.
  • one of the recesses is a cavity 304.
  • the semiconductor chip 305 is mounted in the cavity 304.
  • an insulating layer 306 is formed on the surface of the structure 3 from which the plurality of connection terminals 301a and 305a are exposed (insulating layer forming step).
  • the surface of the insulating layer 306 has a concavo-convex shape due to the protruding connection terminal 301a.
  • a resin film 307 is formed on the surface of the insulating layer 306 (resin film forming step).
  • the surface of the insulating layer 306 is obtained by performing a groove forming step, a catalyst deposition step, a resin film removing step, and a plating treatment step in the same manner as in the first embodiment.
  • a wiring 308 having a main body 308a located at the center and a branch 308b branched from the main body 308a and extending into the insulating layer 306 and reaching the connection terminals 301a and 305a to be connected is provided (wiring forming step). ).
  • connection terminal 301a and the connection terminal 305a of the semiconductor chip 305 are connected to each other by the wiring 308, and the structure 30 provided with the wiring 308 on the surface is obtained.
  • an insulating layer 306 is formed on the surface of the structure 3 from which the plurality of connection terminals 301a and 305a are exposed, and a main body portion 308a of the wiring 308 is provided on the surface of the insulating layer 306.
  • a branch portion 308b of the wiring 308 branches from the portion 308a, and the wiring branch portion 308b extends into the insulating layer 306 and reaches the connection terminal 301a to be connected and the connection terminal 305a of the semiconductor chip 305.
  • connection terminals 301a and 305a are covered with the insulating layer 306, and the main body portion 308a of the wiring 308 is provided on the surface of the insulating layer 306, there is another connection between the connection terminals 301a and 305a to be connected to each other. Even if the terminals 301a and 305a are provided, the wiring 308 need not be detoured so as not to touch the other connection terminals 301a and 305a. The wiring 308 can pass over the other connection terminals 301a and 305a that are not to be connected and overlap each other. As a result, it is possible to prevent the wiring circuit from being densified.
  • the structure 30 is sealed with a sealing resin 309.
  • connection terminal 301a and the cavity 304 are connected by etching (reference A). Since the connection terminal 301a and the cavity 304 are connected by the insulating layer 306 and the sealing resin 309, even if the copper plate 301 is removed, it does not fall apart.
  • the structure 300 sealed with the sealing resin 309 and provided with the wiring 308 on the surface is obtained.
  • the wiring 308 is formed so as to cover the surface of the insulating layer 306. Therefore, when the structure 30 provided with the wiring 308 on the surface is inserted into the mold and sealed with the sealing resin 309, the wiring 308 receives the pressure of the sealing resin 309 and a large load is applied to the wiring 308. It can be avoided to act. As a result, compared to a structure that is wire-bonded with a gold wire or the like, short-circuiting, cutting, or damage of the wiring 308 is suppressed, and the productivity and reliability of the structure are improved.
  • the metal part constituting the cavity 304 functions as a heat sink for the semiconductor chip 305.
  • connection terminal 301a is finally composed of the copper plate 301 and the gold plating films 303 at both ends.
  • a resist 302 is disposed on the surface of a copper plate 301, and a support plate 302a is bonded to the opposite surface.
  • a gold plating film 303 is formed on the copper plate 301 via nickel plating on portions other than where the resist 302 is disposed.
  • FIGS. 5C to 5H are the same as FIGS. 4C to 4H of the third embodiment.
  • connection terminals 301a and 305a are covered with the insulating layer 306, and the main body 308a of the wiring 308 is provided on the surface of the insulating layer 306, there are other connections between the connection terminals 301a and 305a to be connected to each other. Even if the connection terminals 301a and 305a are provided, the wiring 308 need not be detoured so as not to touch the other connection terminals 301a and 305a. The wiring 308 can pass over the other connection terminals 301a and 305a that are not to be connected and overlap each other. As a result, it is possible to prevent the wiring circuit from being densified.
  • the structure 300 sealed with the sealing resin 309 and provided with the wiring 308 on the surface is obtained.
  • the wiring 308 is formed so as to cover the surface of the insulating layer 306. Therefore, when the structure 30 provided with the wiring 308 on the surface is inserted into the mold and sealed with the sealing resin 309, the wiring 308 receives the pressure of the sealing resin 309 and a large load is applied to the wiring 308. It can be avoided to act. As a result, compared to a structure that is wire-bonded with a gold wire or the like, short-circuiting, cutting, or damage of the wiring 308 is suppressed, and the productivity and reliability of the structure are improved.
  • the cost can be reduced.
  • the support plate 302a remains on the opposite surface of the copper plate 301 from the beginning to the end, so that the work is firmly supported during the operation.
  • reference numeral 400 denotes a semiconductor device sealed with a sealing resin 409
  • reference numeral 401a denotes a connection terminal (connected portion) of an insulating base
  • reference numeral 405 denotes a semiconductor chip
  • reference numeral 405a denotes a connection terminal (connected) of the semiconductor chip.
  • 406 is an insulating layer
  • 408 is a wiring
  • 409 is a sealing resin. Note that the sealing resin 409 is not drawn as being removed. Further, only a part of the wiring 408 is drawn.
  • the semiconductor device 400 according to the fifth embodiment has the same configuration according to the semiconductor devices 100 and 200 obtained in the first embodiment or the second embodiment and the structure 300 obtained in the third embodiment or the fourth embodiment. have. That is, the semiconductor device 400 according to the fifth embodiment has a structure in which the semiconductor chip 405 is mounted on the insulating base, and the connection terminals 401a provided on the insulating base and the connection terminals 405a provided on the semiconductor chip 405 are exposed.
  • An insulating layer 406 is formed on the surface of the insulating layer 406, and a main body portion of the wiring 408 is provided on the surface of the insulating layer 406.
  • a branch portion of the wiring 408 branches from the main body portion of the wiring. And reaches the connection terminal 401a of the insulating base and / or the connection terminal 405a of the semiconductor chip 405.
  • the surface of the insulating layer 406 has an uneven shape because the connection terminals 401a protrude from the surface of the insulating base material and the semiconductor chip 405 is mounted on the insulating base material.
  • connection terminals 401a and 405a are covered with the insulating layer 406 and the main body portion of the wiring 408 is provided on the surface of the insulating layer 406, the connection terminals 401a and 405a to be connected to each other or between 405a and 405a Even if there are other connection terminals 401a and 405a above, there is no need to bypass the wiring 408 so as not to touch the other connection terminals 401a and 405a.
  • the wiring 408 can pass over the other connection terminals 401a and 405a that are not to be connected and overlap each other. As a result, it is possible to prevent the wiring circuit from being densified.
  • the wiring 408 is formed so as to cover the surface of the insulating layer 406. Therefore, when the structure (semiconductor device 400) having the wiring 408 provided on the surface is inserted into the mold and sealed with the sealing resin 409, the wiring 408 receives the pressure of the sealing resin 409 and receives the wiring 408. A large load can be avoided. As a result, compared to a semiconductor device wire-bonded with a gold wire or the like, the wiring 408 is prevented from being short-circuited, cut, or damaged, and the productivity and reliability of the semiconductor device are improved.
  • the wirings 408 do not intersect with each other. However, the wirings 408 may intersect with each other depending on the situation (for example, transmission of a pulse signal).
  • reference numeral 500 denotes a semiconductor device sealed with a sealing resin
  • reference numeral 501a denotes a connection terminal (connected part) of an insulating base
  • reference numeral 505 denotes a semiconductor chip
  • reference numeral 505a denotes a connection terminal (connected part) of the semiconductor chip.
  • the semiconductor device 500 according to the sixth embodiment has the same configuration according to the semiconductor devices 100 and 200 obtained in the first embodiment or the second embodiment and the structure 300 obtained in the third embodiment or the fourth embodiment. have. That is, the semiconductor device 500 according to the sixth embodiment has a structure in which the semiconductor chip 505 is mounted on the insulating base, and the connection terminals 501a provided on the insulating base and the connection terminals 505a provided on the semiconductor chip 505 are exposed.
  • An insulating layer 506 is formed on the surface of the insulating layer 506, and a main body portion 508a of the wiring 508 is provided on the surface of the insulating layer 506.
  • a branching portion 508b of the wiring 508 is branched from the wiring main body portion 508a. It extends inside the layer 506 and reaches the connection terminal 501 a of the insulating base and / or the connection terminal 505 a of the semiconductor chip 505.
  • the surface of the insulating layer 506 has an uneven shape because the connection terminals 501a protrude from the surface of the insulating base material and the semiconductor chip 505 is mounted on the insulating base material.
  • connection terminals 501a and 505a are covered with the insulating layer 506, and the main body portion 508a of the wiring 508 is provided on the surface of the insulating layer 506, between the connection target connection terminals 501a and 505a to be connected to each other or 505a and 505a. Even if there are other connection terminals 501a and 505a in between, there is no need to make a detour so that the wiring 508 does not touch the other connection terminals 501a and 505a.
  • the wiring 508 can pass over the other connection terminals 501a and 505a that are not to be connected, and can overlap with each other. As a result, it is possible to prevent the wiring circuit from being densified.
  • the wiring 508 is formed so as to cover the surface of the insulating layer 506. Therefore, when the structure (semiconductor device 500) having the wiring 508 provided on the surface is inserted into the mold and sealed with the sealing resin, the wiring 508 receives the pressure of the sealing resin and is large in the wiring 508. It can be avoided that a load acts. As a result, compared to a semiconductor device wire-bonded with a gold wire or the like, the wiring 508 is prevented from being short-circuited, cut, or damaged, and the productivity and reliability of the semiconductor device are improved.
  • the drawing is illustrated so that the wirings 508 do not intersect with each other, the wirings 508 may intersect with each other depending on the situation (for example, transmission of a pulse signal or the like).
  • the wiring branch portion 508b does not necessarily reach the connection terminals 501a and 505a vertically from right above, and is obliquely upward depending on the surface shape of the insulating layer 506. Or you may reach
  • reference numeral 6 denotes a structure in which a plurality of connected portions are exposed
  • reference numerals 60a and 60b denote semiconductor devices
  • reference numeral 600 denotes a semiconductor device sealed with a sealing resin
  • reference numeral 601 denotes an insulating substrate
  • reference numeral 601a denotes insulation.
  • connection terminals (connected parts) of the substrate reference numeral 602 is a semiconductor chip
  • reference numeral 602a is a connection terminal (connected part) of the semiconductor chip
  • reference numerals 603 and 613 are insulating layers
  • reference numerals 604 and 614 are resin coatings
  • reference numerals 608 Reference numeral 618 denotes a wiring
  • reference numerals 608a and 618a denote wiring main body parts
  • reference numerals 608b and 618b denote wiring branch parts
  • reference numeral 609 denotes a sealing resin.
  • connection terminals 601 a are provided on the surface of the insulating base 601, and a plurality of connection terminals 602 a are provided on the surface of the semiconductor chip 602. These connection terminals 601 a and 602 a are exposed on the surface of the structure 6.
  • an insulating layer 603 is formed on the surface of the structure 6 from which the plurality of connection terminals 601a and 602a are exposed (insulating layer forming step).
  • a resin coating 604 is formed on the surface of the insulating layer 603 (resin coating forming step).
  • the surface of the insulating layer 603 is obtained by performing a groove forming step, a catalyst deposition step, a resin film removing step, and a plating treatment step in the same manner as in the first embodiment.
  • a semiconductor chip 602 is mounted on an insulating base 601, and a semiconductor device (a wiring is provided on the surface) in which a connection terminal 601 a of the insulating base 601 and a connection terminal 602 a of the semiconductor chip 602 are connected to each other by a wiring 608. Structure 60a is obtained.
  • an insulating layer 613 is further stacked on the surface of the insulating layer 603 where the main body 608a of the wiring 608 is exposed (insulating layer stacking step).
  • a resin film 614 is formed on the surface of the laminated insulating layer 613 (resin film forming step).
  • a wiring 618 having a main body 618a located on the surface and a branch 618b branched from the main body 618a and extending into the insulating layers 613 and 603 and reaching the connection terminals 601a and 602a to be connected is provided ( Additional wiring formation process).
  • the semiconductor chip 602 is mounted on the insulating base 601, and the semiconductor device in which the connection terminal 601 a of the insulating base 601 and the connection terminal 602 a of the semiconductor chip 602 are connected to each other by wirings 608 and 618 (wiring on the surface).
  • the provided structure) 60b is obtained.
  • the insulating layer 603 is formed on the surface of the structure 6 where the connection terminal 601a of the insulating base 601 and the connection terminal 602a of the semiconductor chip 602 are exposed, and the wiring 608 is formed on the surface of the insulating layer 603.
  • a main body portion 608a is provided, a branching portion 608b of the wiring 608 branches from the wiring main body portion 608a, the wiring branching portion 608b extends into the insulating layer 603, and the connection terminals 601a of the insulating base material 601 and the semiconductor chip 602 are connected.
  • the connection terminal 602a is reached.
  • a second-stage insulating layer 613 is laminated on the surface of the first-stage insulating layer 603 where the first-stage wiring body 608a is exposed, and the second-stage insulating layer 613 is laminated.
  • a main body 618a of the second-stage wiring 618 is provided on the surface, a branching section 618b of the wiring 618 is branched from the second-stage wiring main body 618a, and the second-stage wiring branching section 618b is connected to the second-stage wiring 618b.
  • the insulating layer 613 and the first insulating layer 603 extend inside and reach the connection terminal 601 a of the insulating base 601 and the connection terminal 602 a of the semiconductor chip 602.
  • connection terminals 601a and 602a are covered with the insulating layers 603 and 613, and the main body portions 608a and 618a of the wirings 608 and 618 are provided on the surfaces of the insulating layers 603 and 613, the connection terminals 601a to be connected to be connected to each other. , 602a, there is no need to bypass the wirings 608 and 618 so as not to touch the other connection terminals 601a and 602a.
  • the wirings 608 and 618 can pass over the other connection terminals 601a and 602a that are not to be connected and overlap each other. As a result, it is possible to prevent the wiring circuit from being densified.
  • the semiconductor device 60b is sealed with a sealing resin 609.
  • the semiconductor device 600 sealed with the sealing resin 609 is obtained.
  • the wiring 618 is formed so as to cover the surface of the insulating layer 613. Therefore, when a structure (semiconductor device 60 b) having a wiring 618 provided on the surface is inserted into a mold and sealed with the sealing resin 609, the wiring 618 receives the pressure of the sealing resin 609 and is connected to the wiring 618. A large load can be avoided. As a result, compared to a semiconductor device wire-bonded with a gold wire or the like, short-circuiting, cutting, or damage of the wiring 618 is suppressed, and the productivity and reliability of the semiconductor device are improved.
  • the wirings 608 and 618 can pass through each other in an overlapping manner. As a result, the wirings 608 and 618 can intersect with each other without causing a short circuit, and from this point of view, the inhibition of the density of the wiring circuit is further suppressed.
  • the insulating layer stacking step and the additional wiring forming step are repeated once (two-stage configuration), but may be twice or more (three-stage or more configuration).
  • reference numeral 700 denotes a wiring board
  • reference numeral 701 denotes a printed wiring board
  • reference numeral 701a denotes a connection terminal (connected portion) of the printed wiring board
  • reference numeral 702 denotes a semiconductor device
  • reference numeral 702a denotes a connection terminal (connected portion) of the semiconductor device.
  • Reference numeral 703 denotes an insulating layer
  • reference numeral 708 denotes a wiring
  • reference numeral 708a denotes a wiring body portion
  • reference numeral 708b denotes a wiring branch portion. Note that only a part of the wiring 708 is drawn.
  • the wiring board 700 according to the eighth embodiment includes the semiconductor devices 100 and 200 obtained in the first embodiment or the second embodiment, the structure 300 obtained in the third embodiment or the fourth embodiment, the fifth embodiment or It has the same configuration according to the semiconductor devices 400 and 500 obtained in the sixth embodiment. That is, in the wiring board 700 according to the eighth embodiment, the semiconductor device 702 is mounted on the printed wiring board 701, and the connection terminal 701a provided on the printed wiring board 701 and the connection terminal 702a provided on the semiconductor device 702 are exposed. An insulating layer 703 is formed on the surface of the structure, and a main body portion 708a of the wiring 708 is provided on the surface of the insulating layer 703.
  • a branching portion 708b of the wiring 708 branches from the wiring main body portion 708a, and this wiring branching portion 708b. Extends into the insulating layer 703 and reaches the connection terminal 701 a of the printed wiring board 701 and / or the connection terminal 702 a of the semiconductor device 702.
  • connection terminals 701a and 702a are covered with the insulating layer 703 and the main body portion 708a of the wiring 708 is provided on the surface of the insulating layer 703, another connection is made between the connection terminals 701a and 702a to be connected to each other. Even if the terminals 701a and 702a are provided, the wiring 708 need not be detoured so as not to touch the other connection terminals 701a and 702a. The wiring 708 can pass over the other connection terminals 701a and 702a that are not to be connected and overlap each other. As a result, it is possible to prevent the wiring circuit from being densified.
  • reference numeral 800 is a memory card
  • reference numeral 801 is a support
  • reference numeral 801a is a connection terminal (connected part) of the support
  • reference numeral 802 is a memory package
  • reference numeral 802a is a connection terminal (connected part) of the memory package
  • reference numeral Reference numeral 803 denotes an insulating layer
  • reference numeral 808 denotes a wiring
  • reference numeral 808a denotes a wiring main body
  • reference numeral 808b denotes a wiring branching part. Note that only a part of the wiring 808 is drawn.
  • the memory card 800 according to the ninth embodiment includes the semiconductor devices 100 and 200 obtained in the first embodiment or the second embodiment, the structure 300 obtained in the third embodiment or the fourth embodiment, the fifth embodiment or It has the same configuration according to the semiconductor devices 400 and 500 obtained in the sixth embodiment. That is, the memory card 800 according to the ninth embodiment has a structure in which the memory package 802 is attached to the support body 801 and the connection terminal 801a provided on the support body 801 and the connection terminal 802a provided on the memory package 802 are exposed.
  • An insulating layer 803 is formed on the surface of the insulating layer 803, and a main body portion 808a of the wiring 808 is provided on the surface of the insulating layer 803.
  • a branching portion 808b of the wiring 808 branches from the wiring main body portion 808a. It extends inside the layer 803 and reaches the connection terminal 801 a of the support 801 and / or the connection terminal 802 a of the memory package 802.
  • connection terminals 801a and 802a are covered with the insulating layer 803, and the main body portion 808a of the wiring 808 is provided on the surface of the insulating layer 803, there is another connection between the connection terminals 801a and 802a to be connected to each other. Even if the terminals 801a and 802a are provided, the wiring 808 need not be detoured so as not to touch the other connection terminals 801a and 802a. The wiring 808 can pass over the other connection terminals 801a and 802a that are not to be connected and overlap each other. As a result, it is possible to prevent the wiring circuit from being densified.
  • reference numeral 900 denotes an electric device
  • reference numeral 901 denotes an insulating base material
  • reference numeral 901a denotes a connecting terminal (connected part) of the insulating base material
  • reference numeral 902 denotes a passive element
  • reference numeral 902a denotes a connecting terminal (connected part) of the passive element.
  • Reference numeral 903 denotes an insulating layer
  • reference numeral 908 denotes a wiring
  • reference numeral 908a denotes a wiring body portion
  • reference numeral 908b denotes a wiring branch portion. Note that only a part of the wiring 908 is drawn.
  • the electric device 900 according to the tenth embodiment includes the semiconductor devices 100 and 200 obtained in the first embodiment or the second embodiment, the structure 300 obtained in the third embodiment or the fourth embodiment, the fifth embodiment or It has the same configuration according to the semiconductor devices 400 and 500 obtained in the sixth embodiment. That is, in the electrical device 900 according to the tenth embodiment, the passive element 902 is mounted on the insulating base material 901, and the connection terminal 901a provided on the insulating base material 901 and the connection terminal 902a provided on the passive element 902 are exposed. An insulating layer 903 is formed on the surface of the structure, and a main body portion 908a of the wiring 908 is provided on the surface of the insulating layer 903.
  • a branching portion 908b of the wiring 908 branches from the wiring main body portion 908a, and the wiring branching portion 908b. Extends into the insulating layer 903 and reaches the connection terminal 901a of the insulating base material 901 and / or the connection terminal 902a of the passive element 902.
  • connection terminals 901a and 902a are covered with the insulating layer 903, and the main body portion 908a of the wiring 908 is provided on the surface of the insulating layer 903, there is another connection between the connection terminals 901a and 902a to be connected to each other. Even if the terminals 901a and 902a are provided, the wiring 908 need not be detoured so as not to touch the other connection terminals 901a and 902a. The wiring 908 can pass over the other connection terminals 901a and 902a that are not to be connected, and can overlap with each other. As a result, it is possible to prevent the wiring circuit from being densified.
  • reference numeral 1000 is a module
  • reference numeral 1001 is a support
  • reference numeral 1001a is a connection terminal (connected part) of the support
  • reference numeral 1002 is an electric device
  • reference numeral 1002a is a connection terminal (connected part) of the electric device
  • reference numeral 1003 Is an insulating layer
  • reference numeral 1008 is a wiring
  • reference numeral 1008a is a wiring body part
  • reference numeral 1008b is a wiring branch part. Note that only a part of the wiring 1008 is drawn.
  • the module 1000 according to the eleventh embodiment includes the semiconductor devices 100 and 200 obtained in the first embodiment or the second embodiment, the structure 300 obtained in the third embodiment or the fourth embodiment, the fifth embodiment, or the fifth embodiment. It has the same configuration according to the semiconductor devices 400 and 500 obtained in the sixth embodiment. That is, the module 1000 according to the eleventh embodiment is a structure in which the electrical device 1002 is attached to the support 1001, and the connection terminal 1001a provided on the support 1001 and the connection terminal 1002a provided on the electrical device 1002 are exposed. An insulating layer 1003 is formed on the surface, and a main body portion 1008a of the wiring 1008 is provided on the surface of the insulating layer 1003.
  • a branching portion 1008b of the wiring 1008 branches from the wiring main body portion 1008a, and the wiring branching portion 1008b is an insulating layer. It extends into the interior of 1003 and reaches the connection terminal 1001a of the support 1001 and / or the connection terminal 1002a of the electric device 1002.
  • connection terminals 1001a and 1002a are covered with the insulating layer 1003 and the main body portion 1008a of the wiring 1008 is provided on the surface of the insulating layer 1003, another connection is made between the connection terminals 1001a and 1002a to be connected to each other. Even if the terminals 1001a and 1002a are provided, there is no need to bypass the wiring 1008 so as not to touch the other connection terminals 1001a and 1002a.
  • the wiring 1008 can pass over the other connection terminals 1001a and 1002a that are not to be connected, and can overlap with each other. As a result, it is possible to prevent the wiring circuit from being densified.
  • reference numeral 1100 denotes a multilayer circuit board
  • reference numeral 1101 denotes a lowermost circuit board
  • reference numeral 1101a denotes a connection terminal (connected portion) of the lowermost circuit board
  • reference numeral 1102 denotes a second or higher layer circuit board
  • reference numeral 1102a Is a connection terminal (connected portion) of the second or higher layer circuit board
  • reference numeral 1102b is an internal circuit of the second or higher layer circuit board
  • reference numeral 1103 is an insulating layer
  • reference numeral 1108 is a wiring
  • reference numeral 1108a is a wiring body part
  • Reference numeral 1108b denotes a wiring branch portion. Note that only a part of the wiring 1108 is drawn.
  • the multilayer circuit board 1100 according to the twelfth embodiment includes the semiconductor devices 100 and 200 obtained in the first embodiment or the second embodiment, the structure 300 obtained in the third embodiment or the fourth embodiment, and the fifth embodiment. Or it has the same structure according to the semiconductor device 400,500 obtained by 6th Embodiment. That is, the multilayer circuit board 1100 according to the twelfth embodiment has a structure in which a plurality of circuit boards 1101 and 1102 are combined in a stacked state and the connection terminals 1101a and 1102a provided on the circuit boards 1101 and 1102 are exposed. An insulating layer 1103 is formed on the surface of the object, and a main body portion 1108a of the wiring 1108 is provided on the surface of the insulating layer 1103.
  • a branch portion 1108b of the wiring 1108 branches from the wiring main body portion 1108a, and the wiring branch portion 1108b is It extends inside the insulating layer 1103 and reaches the connection terminals 1101a and 1102a of the circuit boards 1101 and 1102 which are different from each other.
  • the connection terminal 1102 a of the circuit board 1102 is an end portion of the internal circuit 1102 b of the circuit board 1102.
  • connection terminals 1101a and 1102a are covered with the insulating layer 1103, and the main body 1108a of the wiring 1108 is provided on the surface of the insulating layer 1103, there is another connection between the connection terminals 1101a and 1102a to be connected to each other. Even if the terminals 1101a and 1102a are provided, there is no need to bypass the wiring 1108 so as not to touch the other connection terminals 1101a and 1102a.
  • the wiring 1108 can pass over the other connection terminals 1101a and 1102a that are not to be connected and overlap each other. As a result, it is possible to prevent the wiring circuit from being densified.
  • the wiring 1108 functions as an external wiring for interlayer connection. That is, as a technique for interlayer connection in the multilayer circuit board 1100, it is conventionally known to form a via hole as an interlayer connection hole. However, since the via hole is arranged on the internal circuit of the multilayer circuit board 1100, there is a problem that the effective wiring area of the internal circuit is reduced by the arrangement amount of the via hole. In the multilayer circuit board 1100 according to the twelfth embodiment, since the wiring 1108 passing through the vertical wall on the side surface of the multilayer circuit board 1100 makes an interlayer connection of the multilayer circuit board 1100, this problem can be avoided. In addition, external wiring 1108 for interlayer connection can be easily provided on the vertical wall of the multilayer circuit board 1100.
  • the wiring 1108 that passes through the vertical wall on the side surface of the multilayer circuit board 1100 may be bypassed to connect to the internal circuit 1102 b of each layer, or may pass diagonally through the vertical wall. Alternatively, it may pass through the vertical wall so as not to be connected to an internal circuit of a predetermined layer.
  • reference numeral 1101 may be an independent board different from the multilayer circuit board.
  • reference numeral 1200 denotes a semiconductor device (stack chip package)
  • reference numeral 1201 denotes an insulating base material
  • reference numeral 1201a denotes a connection terminal (connected portion) of the insulating base material
  • reference numeral 1202 denotes a semiconductor chip
  • reference numeral 1202a denotes a connection terminal of the semiconductor chip.
  • reference numeral 1203 is an insulating layer
  • reference numeral 1208 is wiring
  • reference numeral 1208a is a wiring main body part
  • reference numeral 1208b is a wiring branching part
  • reference numeral 1209 is a sealing resin. Note that only a part of the wiring 1208 is drawn.
  • the semiconductor device (stack chip package) 1200 according to the thirteenth embodiment includes the semiconductor devices 100 and 200 obtained in the first embodiment or the second embodiment, the structure 300 obtained in the third embodiment or the fourth embodiment, It has the same configuration according to the semiconductor devices 400 and 500 obtained in the fifth embodiment or the sixth embodiment. That is, the semiconductor device 1200 according to the thirteenth embodiment is a structure in which a plurality of semiconductor chips 1202 are coupled to the insulating base 1201 in a stacked state, and the connection terminals 1202a provided on the semiconductor chip 1202 are exposed.
  • An insulating layer 1203 is formed on the surface, and a main body portion 1208a of the wiring 1208 is provided on the surface of the insulating layer 1203.
  • a branch portion 1208b of the wiring 1208 branches from the wiring main body portion 1208a, and the wiring branch portion 1208b is an insulating layer. 1203 extends inside 1203 and reaches a connection terminal 1202a of a different semiconductor chip 1202.
  • FIG. 14 further shows an example in which the wiring 1208 is also connected to the connection terminal 1201a of the insulating base 1201.
  • connection terminals 1201a and 1202a are covered with the insulating layer 1203, and the main body portion 1208a of the wiring 1208 is provided on the surface of the insulating layer 1203, there is another connection between the connection terminals 1201a and 1202a to be connected to each other. Even if the terminals 1201a and 1202a are provided, there is no need to bypass the wiring 1208 so as not to touch the other connection terminals 1201a and 1202a.
  • the wiring 1208 can pass over the other connection terminals 1201a and 1202a that are not to be connected, and can overlap with each other. As a result, it is possible to prevent the wiring circuit from being densified.
  • the wiring 1208 is formed so as to cover the surface of the insulating layer 1203. Therefore, when a structure (semiconductor device) having a wiring 1208 provided on the surface is inserted into a mold and sealed with a sealing resin 1209, the wiring 1208 receives the pressure of the sealing resin 1209 to the wiring 1208. A large load can be avoided. As a result, compared to a semiconductor device wire-bonded with a gold wire or the like, short-circuiting, cutting, or damage of the wiring 1208 is suppressed, and the productivity and reliability of the semiconductor device are improved.
  • the semiconductor device 1200 is a stack chip package that can be further compacted and densified among multi-chip modules.
  • External wiring 1208 for chip-to-chip connection is formed on the surface of the stack chip package 1200, that is, on the top surface, shelf surface (step surface), side surface (vertical wall), etc. of the insulating layer 1203.
  • the wiring 1208 functions as an external wiring for chip-to-chip connection instead of the conventional through silicon via technique or multistage wire bonding technique. That is, as a technique for inter-chip connection in the stack chip package 1200 in which a plurality of semiconductor chips 1202 are stacked in multiple stages, conventionally, a through silicon via technique and a multistage wire bonding technique are known. However, in the through silicon via, since the via is arranged on the circuit of the semiconductor chip 1202, there is a problem that the effective wiring area of the circuit in the chip 1202 is reduced by the amount of the arrangement of the via.
  • the gold wire receives the pressure of the sealing resin during resin sealing, and the productivity and reliability are lowered, and the mounting area is increased and the density cannot be increased. was there.
  • an external wiring 1208 for inter-chip connection is formed on the surface of the stack chip package 1200, that is, the surface of the insulating layer 1203. Since the plurality of chips 1202 constituting the stack chip package 1200 are connected to each other via the part 1208b, there is an advantage that these problems can be avoided.
  • a wiring method for connecting a plurality of connected portions exposed on the surface of a structure to each other by wiring, forming an insulating layer on the surface of the structure where the plurality of connected portions are exposed A wiring forming step of providing a wiring having a process, and a main body portion located on the surface of the insulating layer, and a branching portion branching from the main body portion and extending into the insulating layer and reaching a connected portion to be connected; A mode comprising the above is disclosed.
  • the wiring forming step includes a resin film forming step of forming a resin film on the surface of the insulating layer, and a groove having a depth equal to or exceeding the thickness of the resin film is connected from the surface side of the resin film.
  • An embodiment including a plating treatment step of forming a plating film only on a portion where the plating catalyst formed from the above remains is disclosed.
  • the outline of the wiring, particularly the wiring main body can be maintained with high accuracy, and the occurrence of short circuit and migration is suppressed.
  • the wiring forming step further includes an electrolytic plating step of thickening the plating film by performing electrolytic plating after the plating treatment step.
  • the time required for thickening the plating film can be shortened.
  • the resin coating contains a fluorescent substance
  • the wiring forming step uses the light emitted from the fluorescent substance after the resin coating removing step and before the plating treatment step.
  • an additional wiring forming step of providing a wiring having a branch portion branched from the main body portion and extending into the insulating layer and reaching the connected portion to be connected is disclosed one or more times.
  • the wirings can pass through each other in an overlapping manner, the wirings can be crossed without causing a short circuit, and the inhibition of increasing the density of the wiring circuit is further suppressed. Is done.
  • the structure is provided with wiring on the surface, and an insulating layer is formed on the surface of the structure where a plurality of connected portions are exposed, and a wiring main body is provided on the surface of the insulating layer.
  • a mode is disclosed in which a branch portion of the wiring branches from the main body portion, the wiring branch portion extends into the insulating layer, and reaches the connected portion to be connected.
  • an insulating layer is laminated on the surface of the insulating layer from which the wiring main body is exposed, and a wiring main body is provided on the surface of the laminated insulating layer.
  • a wiring branch part extends into the insulating layer, and reaches the connected part to be connected.
  • the wirings can pass through each other in an overlapping manner, the wirings can be crossed without causing a short circuit, and the inhibition of increasing the density of the wiring circuit is further suppressed. Is done.
  • the semiconductor chip is mounted on the insulating base, and the insulating layer is formed on the surface of the structure where the connecting terminal provided on the insulating base and the connecting terminal provided on the semiconductor chip are exposed, A main body portion of the wiring is provided on the surface of the insulating layer, a branch portion of the wiring branches from the main body portion, the wiring branch portion extends into the insulating layer, and a connection terminal and / or a semiconductor chip of the insulating base material A mode of reaching the connection terminal is disclosed.
  • a semiconductor device is mounted on a printed wiring board, and an insulating layer is formed on a surface of a structure where a connection terminal provided on the printed wiring board and a connection terminal provided on the semiconductor device are exposed,
  • a wiring main body is provided on the surface of the insulating layer, a branching portion of the wiring branches from the wiring main body, the wiring branching portion extends into the insulating layer, and is connected to a printed wiring board and / or a semiconductor device.
  • a mode of reaching the connection terminal is disclosed.
  • a memory card is attached to a support, and an insulating layer is formed on a surface of a structure on which a connection terminal provided on the support and a connection terminal provided on the memory package are exposed.
  • a wiring main body portion is provided on the surface of the layer, and a branch portion of the wiring branches from the wiring main body portion. The wiring branch portion extends into the insulating layer, and is connected to the support terminal and / or the memory package connection terminal. A mode of reaching is disclosed.
  • the passive element is mounted on the insulating base, and the insulating layer is formed on the surface of the structure where the connection terminal provided on the insulating base and the connection terminal provided on the passive element are exposed, A main body portion of the wiring is provided on the surface of the insulating layer, a branch portion of the wiring branches from the main body portion, the wiring branch portion extends into the insulating layer, and a connection terminal and / or a passive element of the insulating base material. A mode of reaching the connection terminal is disclosed.
  • an electrical device is attached to the support, and an insulating layer is formed on the surface of the structure where the connection terminal provided on the support and the connection terminal provided on the electrical device are exposed.
  • a wiring main body is provided on the surface of the wiring, a branching portion of the wiring branches off from the wiring main body, the wiring branching portion extends into the insulating layer, and serves as a connection terminal of the support and / or a connection terminal of the electric device.
  • the circuit board is a multi-layer circuit board, and a plurality of circuit boards are combined in a stacked state, and an insulating layer is formed on the surface of the structure where the connection terminals provided on the circuit board are exposed.
  • a main body part of the wiring is provided on the surface, a branch part of the wiring branches off from the main body part of the wiring, the wiring branch part extends into the insulating layer, and reaches the connection terminals of different circuit boards,
  • An embodiment in which the connection terminal of the circuit board is an end of an internal circuit of the circuit board is disclosed.
  • a plurality of semiconductor chips are stacked on the insulating base material in a stacked state, and an insulating layer is formed on the surface of the structure where the connection terminals provided on the semiconductor chip are exposed.
  • the main body of the wiring is provided on the surface of the insulating layer, the branching portion of the wiring branches off from the wiring main body, the wiring branching portion extends into the insulating layer, and reaches the connection terminals of different semiconductor chips.
  • the groove in the slot forming step, has the same depth as the thickness of the resin film, but instead, a groove having a depth exceeding the thickness of the resin film may be used. In that case, part or all of the main body portion of the wiring obtained by the plating process is embedded in the insulating layer. As a result, the adhesive strength of the wiring with respect to the structure is improved, and the dropping and deviation of the wiring are suppressed.
  • the present invention when connecting the some to-be-connected part exposed on the surface of a structure mutually by wiring, it becomes unnecessary to detour and wiring is inhibited from inhibiting the densification of a wiring circuit. Therefore, the present invention has wide industrial applicability in the field of structures in which wiring is provided on the surface of, for example, a semiconductor device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Chemically Coating (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Combinations Of Printed Boards (AREA)

Abstract

 複数の接続端子101a,102aが露出する半導体装置1の表面に絶縁層103を形成し、絶縁層103の表面に樹脂被膜104を形成し、樹脂被膜104の表面側から樹脂被膜104の厚みと同じ又は厚みを超える深さの溝105を接続対象の接続端子の近傍を通過するように形成すると共に、その近傍通過部分から接続対象の接続端子に到達する連通孔106,107を形成し、溝105及び連通孔106,107の表面にメッキ触媒又はメッキ触媒前駆体を被着させ、樹脂被膜104を溶解又は膨潤させることにより除去し、無電解メッキを行うことによりメッキ触媒又はメッキ触媒前駆体から形成されるメッキ触媒が残留する部分のみにメッキ膜を形成することにより、絶縁層103の表面に位置する本体部と、この本体部から分岐して絶縁層103の内部に延び、接続対象の接続端子101a,102aに到達する分岐部とを有する配線108を設ける配線方法が提供される。

Description

配線方法、並びに、表面に配線が設けられた構造物、半導体装置、配線基板、メモリカード、電気デバイス、モジュール及び多層回路基板
 本発明は、配線方法、より詳しくは、構造物の表面に露出する複数の被接続部を相互に配線で接続するための配線方法、並びに、この配線方法により表面に配線が設けられた構造物、半導体装置、配線基板、メモリカード、電気デバイス、モジュール及び多層回路基板に関する。
 近年、電気・電子分野における配線回路の高密度化に伴い、配線幅の細線化や配線間隔の狭化が進んでいる。しかし、配線間隔が狭くなるほど、隣接する配線間に短絡やマイグレーションが起こり易くなる。
 この問題に対処する技術として、特許文献1には、絶縁基材表面に膨潤性樹脂皮膜を形成し、この膨潤性樹脂皮膜の外表面から皮膜の厚み以上の深さの溝を形成し、この溝の表面及び膨潤性樹脂皮膜の表面に触媒金属を被着させ、膨潤性樹脂皮膜を膨潤させて絶縁基材表面から剥離した後、触媒金属が残留する部分のみに無電解メッキ膜を形成することが記載されている。
 この技術によれば、回路パターンの輪郭を高精度に維持することができ、短絡やマイグレーションの発生が抑制される。しかし、特許文献1に記載される技術を用い、構造物の表面に露出する複数の被接続部を相互に配線で接続する場合に、配線回路の高密度化が阻害されることがある。
 また、非特許文献1には、金線等でワイヤーボンディングされた半導体装置を封止樹脂で封止することが記載されている。
特開2010-50435号公報(段落0014)
2010年5月12~14日に札幌で開催された「ICEP 2010」において2010年5月12日に発表された講演「Advanced QFN Package for Low Cost and High Performance Solution/Andy Tseng, Bernd Appelt, Yi-Shao Lai, MarkLin, Bruce Hu, JW Chen, Sunny Lee」の参考配布物
 本発明は、構造物の表面に露出する複数の被接続部を相互に配線で接続する場合に、配線回路の高密度化を阻害しないようにすることを目的とする。
 また、本発明は、構造物を封止樹脂で封止する場合に、封止樹脂の圧力による配線の短絡や切断や損傷を抑制することを目的とする。
 本発明の一局面は、構造物の表面に露出する複数の被接続部を相互に配線で接続するための配線方法であって、複数の被接続部が露出する構造物の表面に絶縁層を形成する絶縁層形成工程、及び、絶縁層の表面に位置する本体部と、この本体部から分岐して絶縁層の内部に延び、接続対象の被接続部に到達する分岐部とを有する配線を設ける配線形成工程、を備えることを特徴とする配線方法である。
 本発明の他の一局面は、複数の被接続部が露出する構造物の表面に絶縁層が形成され、この絶縁層の表面に配線の本体部が設けられ、この配線本体部から配線の分岐部が分岐し、この配線分岐部が絶縁層の内部に延び、接続対象の被接続部に到達していることを特徴とする表面に配線が設けられた構造物である。
 本発明のさらに他の一局面は、絶縁基材に半導体チップが搭載され、絶縁基材に設けられた接続端子及び半導体チップに設けられた接続端子が露出する構造物の表面に絶縁層が形成され、この絶縁層の表面に配線の本体部が設けられ、この配線本体部から配線の分岐部が分岐し、この配線分岐部が絶縁層の内部に延び、絶縁基材の接続端子及び/又は半導体チップの接続端子に到達していることを特徴とする半導体装置である。
 本発明のさらに他の一局面は、プリント配線板に半導体装置が実装され、プリント配線板に設けられた接続端子及び半導体装置に設けられた接続端子が露出する構造物の表面に絶縁層が形成され、この絶縁層の表面に配線の本体部が設けられ、この配線本体部から配線の分岐部が分岐し、この配線分岐部が絶縁層の内部に延び、プリント配線板の接続端子及び/又は半導体装置の接続端子に到達していることを特徴とする配線基板である。
 本発明のさらに他の一局面は、支持体にメモリパッケージが取り付けられ、支持体に設けられた接続端子及びメモリパッケージに設けられた接続端子が露出する構造物の表面に絶縁層が形成され、この絶縁層の表面に配線の本体部が設けられ、この配線本体部から配線の分岐部が分岐し、この配線分岐部が絶縁層の内部に延び、支持体の接続端子及び/又はメモリパッケージの接続端子に到達していることを特徴とするメモリカードである。
 本発明のさらに他の一局面は、絶縁基材に受動素子が搭載され、絶縁基材に設けられた接続端子及び受動素子に設けられた接続端子が露出する構造物の表面に絶縁層が形成され、この絶縁層の表面に配線の本体部が設けられ、この配線本体部から配線の分岐部が分岐し、この配線分岐部が絶縁層の内部に延び、絶縁基材の接続端子及び/又は受動素子の接続端子に到達していることを特徴とする電気デバイスである。
 本発明のさらに他の一局面は、支持体に電気デバイスが取り付けられ、支持体に設けられた接続端子及び電気デバイスに設けられた接続端子が露出する構造物の表面に絶縁層が形成され、この絶縁層の表面に配線の本体部が設けられ、この配線本体部から配線の分岐部が分岐し、この配線分岐部が絶縁層の内部に延び、支持体の接続端子及び/又は電気デバイスの接続端子に到達していることを特徴とするモジュールである。
 本発明のさらに他の一局面は、複数の回路基板が多段に積み重ねられた状態で結合され、回路基板に設けられた接続端子が露出する構造物の表面に絶縁層が形成され、この絶縁層の表面に配線の本体部が設けられ、この配線本体部から配線の分岐部が分岐し、この配線分岐部が絶縁層の内部に延び、相互に異なる回路基板の接続端子に到達しており、前記回路基板の接続端子は、回路基板の内部回路の端部であることを特徴とする多層回路基板である。
 本発明のさらに他の一局面は、絶縁基材に複数の半導体チップが多段に積み重ねられた状態で搭載され、半導体チップに設けられた接続端子が露出する構造物の表面に絶縁層が形成され、この絶縁層の表面に配線の本体部が設けられ、この配線本体部から配線の分岐部が分岐し、この配線分岐部が絶縁層の内部に延び、相互に異なる半導体チップの接続端子に到達していることを特徴とする半導体装置である。
 前記並びにその他の本発明の目的、特徴、局面及び利点は、以下の詳細な記載と添付図面とによって、より明白となるであろう。
図1は、本発明の第1の実施形態に係る配線方法の工程説明図である。 図2は、図1の配線方法における配線形成工程のさらに詳細な工程説明図である。 図3は、本発明の第2の実施形態に係る配線方法の工程説明図である。 図4は、本発明の第3の実施形態に係る配線方法の工程説明図である。 図5は、本発明の第4の実施形態に係る配線方法の工程説明図である。 図6は、本発明の第5の実施形態に係る半導体装置の平面図である。 図7は、本発明の第6の実施形態に係る半導体装置の部分透視斜視図である。 図8は、本発明の第7の実施形態に係る配線方法の工程説明図である。 図9は、本発明の第8の実施形態に係る配線基板の縦断面図である。 図10は、本発明の第9の実施形態に係るメモリカードの縦断面図である。 図11は、本発明の第10の実施形態に係る電気デバイスの縦断面図である。 図12は、本発明の第11の実施形態に係るモジュールの縦断面図である。 図13は、本発明の第12の実施形態に係る多層回路基板の部分透視斜視図である。 図14は、本発明の第13の実施形態に係る半導体装置の縦断面図である。 図15は、従来技術の問題点の説明図である。
 特許文献1に記載される技術を用い、構造物の表面に露出する複数の被接続部を相互に配線で接続する場合に、次のような不具合が起り得る。図15において、符号aは、絶縁基材bに半導体チップcが搭載された半導体装置、符号dは、半導体チップcに設けられた接続端子、符号eは、絶縁基材bに設けられた接続端子、符号fは、半導体チップcの接続端子d同士を接続する配線又は半導体チップcの接続端子dと絶縁基材bの接続端子eとを接続する配線である。
 特許文献1に記載される技術を用いると、配線fは、絶縁基材bの表面及び半導体チップcの表面に設けられる。ところが、絶縁基材bの表面には接続端子eが露出し、半導体チップcの表面には接続端子dが露出している。そのため、相互に接続しようとする接続対象の接続端子d,d間上又はd,e間上に他の接続端子d,eがあると、符号x,yで示すように、配線fを他の接続端子d,eに触れないように迂回させなければならない。このことは、配線面積の増大をもたらし、配線回路の高密度化を阻害する。本発明は、構造物の表面に露出する複数の被接続部を相互に配線で接続する場合に、配線回路の高密度化を阻害しないようにすることを目的に完成された。
 また、金線等でワイヤーボンディングされた半導体装置を封止樹脂で封止する際には、金線は封止樹脂の圧力を受け、金線に大きな負荷が作用する。その結果、金線の短絡や切断や損傷が起き、半導体装置の生産性及び信頼性が低下する。本発明は、構造物を封止樹脂で封止する場合に、封止樹脂の圧力による配線の短絡や切断や損傷を抑制することを目的に完成された。
 本明細書で「接続端子」とは、特に断りのない限り、設けられている部材に応じて、電気接続用の電極、パッド、バンプ、ポスト、信号入力端子、信号出力端子、信号入出力端子、取り出し電極等を意味するものとする。
 以下、本発明の実施形態を説明する。ただし、本発明はこの実施形態に限定されない。
 <第1の実施形態>
 図1及び図2を参照し、本発明の第1の実施形態に係る配線方法を説明する。図中、符号1は複数の被接続部が露出する構造物、符号10は半導体装置、符号100は封止樹脂で封止された半導体装置、符号101は絶縁基材、符号101aは絶縁基材の接続端子(被接続部)、符号102は半導体チップ、符号102aは半導体チップの接続端子(被接続部)、符号103は絶縁層、符号104は樹脂被膜、符号105は溝、符号106,107は連通孔、符号108は配線、符号108aは配線本体部、符号108bは配線分岐部、符号108xはメッキ触媒、符号109は封止樹脂である。
 以下、工程の説明と材料の説明とを分けて説明する。
 [工程の説明]
 第1実施形態に係る配線方法においては、まず、図1(A)に示すように、絶縁基材101に半導体チップ102が搭載された構造物1を準備する。半導体チップ102としては、例えば、IC、LSI、VLSI、LEDチップ等である。絶縁基材101の表面には複数の接続端子101aが設けられ、半導体チップ102の表面には複数の接続端子102aが設けられている。これらの接続端子101a,102aは構造物1の表面に露出している。
 次に、図1(B)に示すように、複数の接続端子101a,102aが露出する構造物1の表面に絶縁層103を形成する(絶縁層形成工程)。
 次に、図1(C)に示すように、絶縁層103の表面に樹脂被膜104を形成する(樹脂被膜形成工程)。
 次に、図1(D)又は図2(D)に示すように、樹脂被膜104の表面側から樹脂被膜104の厚みと同じ又は厚みを超える深さの溝(図例は樹脂被膜104の厚みと同じ深さの溝)105を接続対象の接続端子101a,102aの近傍を通過するように形成すると共に、その近傍通過部分から接続対象の接続端子102a,101aに到達する連通孔106,107を形成する(溝孔形成工程)。これらの溝105及び連通孔106,107の形成は、例えばレーザー加工等により行われる。
 次に、図2(D)に示すように、溝105及び連通孔106,107の表面にメッキ触媒108x又はメッキ触媒前駆体を被着させる(触媒被着工程)。
 次に、図2(D)に示すように、樹脂被膜104を溶解又は膨潤させることにより除去する(樹脂被膜除去工程)。
 次に、図2(E)又は図1(E)に示すように、無電解メッキを行うことによりメッキ触媒108x又はメッキ触媒前駆体から形成されるメッキ触媒が残留する部分のみにメッキ膜を形成する(メッキ処理工程)。これにより、絶縁層103の表面に位置する本体部108aと、この本体部108aから分岐して絶縁層103の内部に延び、接続対象の接続端子102a,101aに到達する分岐部108bとを有する配線108が設けられる(配線形成工程)。
 このような、樹脂被膜形成工程、溝孔形成工程、触媒被着工程、樹脂被膜除去工程及びメッキ処理工程を含む配線形成工程によれば、配線108、特に配線本体部108aの輪郭を高精度に維持することができ、短絡やマイグレーションの発生が抑制される。
 ここにおいて、絶縁基材101に半導体チップ102が搭載され、絶縁基材101の接続端子101aと半導体チップ102の接続端子102aとが相互に配線108で接続された半導体装置(表面に配線が設けられた構造物)10が得られる。
 この半導体装置10においては、絶縁基材101の接続端子101a及び半導体チップ102の接続端子102aが露出する構造物1の表面に絶縁層103が形成され、この絶縁層103の表面に配線108の本体部108aが設けられ、この配線本体部108aから配線108の分岐部108bが分岐し、この配線分岐部108bが絶縁層103の内部に延び、絶縁基材101の接続端子101a及び半導体チップ102の接続端子102aに到達している。
 接続端子101a,102aが絶縁層103で被覆され、絶縁層103の表面に配線108の本体部108aが設けられるので、相互に接続しようとする接続対象の接続端子101a,102a間上に他の接続端子101a,102aがあっても、配線108を他の接続端子101a,102aに触れないように迂回させる必要がなくなる。配線108は、接続対象でない他の接続端子101a,102aの上を乗り越え、オーバーラップして通過することができる。その結果、配線回路の高密度化を阻害することが抑制される。
 次に、図1(F)に示すように、半導体装置10を封止樹脂109で封止する。ここにおいて、封止樹脂109で封止された半導体装置100が得られる。
 配線108は、絶縁層103の表面を這うように形成されている。したがって、表面に配線108が設けられた構造物(半導体装置10)を金型内にインサートし、封止樹脂109で封止する際に、配線108が封止樹脂109の圧力を受けて配線108に大きな負荷が作用することが回避できる。その結果、金線等でワイヤーボンディングされた半導体装置に比べて、配線108の短絡や切断や損傷が抑制され、半導体装置の生産性及び信頼性が向上する。
 なお、状況に応じて、メッキ処理工程の後、半導体装置10を封止樹脂109で封止する前に、電解メッキを行うことによりメッキ膜を厚膜化することが好ましい(電解メッキ工程)。メッキ膜を厚膜化するのに要する時間の短縮化が図られるという利点が得られる。具体的には、例えば、電解メッキ槽において、陽極側にメッキ処理工程で形成された無電解メッキ膜と導通させ、陰極側電極との間に電流を流すことにより、無電解メッキ膜が厚膜化される。
 メッキ膜の膜厚は、特に限定されない。具体的には、例えば、0.1~10μmが好ましく、1~5μm程度がより好ましい。
 また、状況に応じて、樹脂被膜104に蛍光性物質を含有させ、樹脂被膜除去工程の後、メッキ処理工程の前に、蛍光性物質からの発光を用いて樹脂被膜104の除去不良を検査することが好ましい(検査工程)。隣接する配線108間に、メッキ触媒108x又はメッキ触媒前駆体が被着した樹脂被膜104が残留した場合は、その残留部分にメッキ膜が形成されてしまい、短絡の原因となり得る。そこで、発光が検出された部分を除去することにより、その部分にメッキ膜が形成されることを抑制し、短絡の発生を未然に防止することができるという利点が得られる。
 樹脂被膜104に含有させ得る蛍光性物質は、所定の光源により光を照射することにより発光特性を示すものであれば、特に限定されない。具体的には、例えば、Fluoresceine、Eosine、Pyronine G等が挙げられる。
 [材料の説明]
 (絶縁基材)
 絶縁基材101としては、従来から半導体チップの実装に用いられているような各種有機基材や無機基材が特に限定なく用いられ得る。有機基材の具体例としては、エポキシ樹脂、アクリル樹脂、ポリカーボネート樹脂、ポリイミド樹脂、ポリフェニレンスルフィド樹脂、ポリフェニレンエーテル樹脂、シアネート樹脂、ベンゾオキサジン樹脂、ビスマレイミド樹脂等からなる基材が挙げられる。
 エポキシ樹脂としては、例えば回路基板の製造に用いられ得る各種有機基板を構成するエポキシ樹脂であれば、特に限定されない。具体的には、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、アラルキルエポキシ樹脂、フェノールノボラック型エポキシ樹脂、アルキルフェノールノボラック型エポキシ樹脂、ビフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、フェノール類とフェノール性水酸基を有する芳香族アルデヒドとの縮合物のエポキシ化物、トリグリシジルイソシアヌレート、脂環式エポキシ樹脂等が挙げられる。さらに、難燃性を付与するために、臭素化又はリン変性したエポキシ樹脂、窒素含有樹脂、シリコーン含有樹脂等も挙げられる。これらの樹脂は単独で用いてもよく又は2種以上を組み合わせて用いてもよい。
 これらの樹脂で絶縁基材101を構成する場合、樹脂を硬化させるために、硬化剤を用いることが一般的である。硬化剤としては特に限定されないが、具体的には、例えば、ジシアンジアミド、フェノール系硬化剤、酸無水物系硬化剤、アミノトリアジンノボラック系硬化剤、シアネート樹脂等が挙げられる。
 フェノール系硬化剤としては、例えば、ノボラック型、アラルキル型、テルペン型等が挙げられる。さらに、難燃性を付与するために、リン変性したフェノール樹脂、リン変性したシアネート樹脂等も挙げられる。これらの硬化剤は単独で用いてもよく又は2種以上を組み合わせて用いてもよい。
 絶縁基材101の表面には、溝孔形成工程において、例えばレーザー加工等により連通孔106,107が形成される(溝105の深さが樹脂被膜104の厚みを超える場合は、溝105の一部も絶縁基材101の表面に形成される)ことから、絶縁基材101の材料としては、100nm~400nmの波長領域でのレーザー光の吸収率(UV吸収率)に優れる樹脂等を用いることが好ましい。具体的には、例えば、ポリイミド樹脂等が挙げられる。
 絶縁基材101にフィラーを含有させてもよい。フィラーとしては、無機微粒子であっても、有機微粒子であってもよく、特に限定されない。フィラーを含有させることで、レーザー加工された部分にフィラーが露出し、フィラーの凹凸による絶縁基材101とメッキ膜との密着性を向上することができる。
 無機微粒子を構成する材料としては、具体的には、例えば、酸化アルミニウム(Al)、酸化マグネシウム(MgO)、窒化ホウ素(BN)、窒化アルミニウム(AlN)、シリカ(SiO)、チタン酸バリウム(BaTiO)、酸化チタン(TiO)等の高誘電率充填材;ハードフェライト等の磁性充填材;水酸化マグネシウム(Mg(OH))、水酸化アルミニウム(Al(OH))、三酸化アンチモン(Sb)、五酸化アンチモン(Sb)、グアニジン塩、ホウ酸亜鉛、モリブテン化合物、スズ酸亜鉛等の無機系難燃剤;タルク(Mg(Si10)(OH))、硫酸バリウム(BaSO)、炭酸カルシウム(CaCO)、雲母等が挙げられる。これらの無機微粒子を単独で用いてもよく又は2種以上を組み合わせて用いてもよい。
 これらの無機微粒子は、熱伝導性、比誘電率、難燃性、粒度分布、色調の自由度等が高いことから、所望の機能を選択的に発揮させる場合には、適宜配合及び粒度設計を行って、容易に高充填化を行うことができる。
 フィラーの平均粒径は特に限定されないが、例えば、0.01μm~10μmが好ましく、0.05μm~5μmがより好ましい。
 無機微粒子は、絶縁基材101中での分散性を高めるために、シランカップリング剤で表面処理してもよい。また、絶縁基材101は、無機微粒子の絶縁基材101中での分散性を高めるために、シランカップリング剤を含有してもよい。シランカップリング剤としては、特に限定されない。具体的には、例えば、エポキシシラン系、メルカプトシラン系、アミノシラン系、ビニルシラン系、スチリルシラン系、メタクリロキシシラン系、アクリロキシシラン系、チタネート系等のシランカップリング剤等が挙げられる。これらのシランカップリング剤は単独で用いてもよく又は2種以上を組み合わせて用いてもよい。
 また、絶縁基材101は、無機微粒子の絶縁基材101中での分散性を高めるために、分散剤を含有してもよい。分散剤としては特に限定されない。具体的には、例えば、アルキルエーテル系、ソルビタンエステル系、アルキルポリエーテルアミン系、高分子系等の分散剤等が挙げられる。これらの分散剤は単独で用いてもよく又は2種以上を組み合わせて用いてもよい。
 フィラーとして用い得る有機微粒子の具体例としては、例えば、ゴム微粒子等が挙げられる。
 絶縁基材101の形態としては特に限定されない。具体的には、シート、フィルム、プリプレグ、三次元形状の成形体等が挙げられる。絶縁基材101の厚みも特に限定されない。例えば、シート、フィルム、プリプレグ等の場合、10~500μmが好ましく、10~200μmがより好ましく、20~200μmがさらに好ましく、20~100μmがさらに好ましい。
 絶縁基材101は、例えば、金型及び枠型等を用いて絶縁基材となる材料を入れて、加圧し、硬化させることにより、三次元形状の成形体等に形成してもよいし、シート、フィルム、プリプレグを打ち抜き、くりぬいたものを硬化させること、もしくは、加熱加圧により硬化させることにより、三次元形状の成形体等に形成してもよい。
 (絶縁層)
 絶縁層103としては、樹脂等の絶縁性有機材料や、シリカ(SiO)等をはじめとするセラミックス等の絶縁性無機材料等が挙げられる。その他、絶縁基材101を構成する材料と同様の材料でもよい。
 絶縁層103の形成方法は、図1(B)に示したように、少なくとも、絶縁基材101の表面及び半導体チップ102の表面に絶縁層103が形成されるような方法であれば、特に限定されない。具体的には、例えば、構造物1の表面に、絶縁層103を形成し得る液状材料を塗布した後、乾燥させる方法や、予め支持基材に前記液状材料を塗布した後、乾燥することにより形成された被膜を構造物1の表面に転写する方法、あるいは貼り合せる方法等が挙げられる。なお、液状材料を塗布する方法としては、特に限定されない。具体的には、例えば、従来から知られたスピンコート法やバーコータ法、ディッピング法やスプレー法等が挙げられる。
 (樹脂被膜)
 樹脂被膜104の形成方法は、図1(C)に示したように、少なくとも、絶縁層103の表面に樹脂被膜104が形成されるような方法であれば、特に限定されない。具体的には、例えば、絶縁層103の全面に、樹脂被膜104を形成し得る液状材料を塗布した後、乾燥させる方法や、予め支持基材に前記液状材料を塗布した後、乾燥することにより形成された被膜を絶縁層103の表面に転写する方法、あるいは貼り合せる方法等が挙げられる。なお、液状材料を塗布する方法としては、特に限定されない。具体的には、例えば、従来から知られたスピンコート法やバーコータ法、ディッピング法やスプレー法等が挙げられる。
 樹脂被膜104の厚みとしては、10μm以下、さらには5μm以下であり、0.1μm以上、さらには1μm以上であることが好ましい。厚みが厚すぎる場合は、樹脂被膜104をレーザー加工することにより部分的に除去する際に寸法精度が低下する傾向がある。また、厚みが薄すぎる場合は、均一な膜厚の被膜を形成し難くなる傾向がある。
 樹脂被膜104を形成するための材料としては、樹脂被膜除去工程において溶解除去または膨潤除去し得るような樹脂材料であれば特に限定なく用いられる。具体的には、例えば、フォトレジストの分野で用いられているレジスト樹脂や、所定の液体に対する膨潤度が高く、膨潤により剥離可能な樹脂が用いられる。
 レジスト樹脂の具体例としては、例えば、光硬化性エポキシ樹脂、エッチングレジスト、ポリエステル系樹脂、ロジン系樹脂が挙げられる。
 また、膨潤性樹脂としては、所定の液体に対する膨潤度が50%以上、さらには100%以上、さらには500%以上であるような膨潤性樹脂であることが好ましい。このような樹脂の具体例としては、例えば、架橋度またはゲル化度等を調整することにより所望の膨潤度になるように調整された、スチレン-ブタジエン系共重合体等のジエン系エラストマー、アクリル酸エステル系共重合体等のアクリル系エラストマー、及びポリエステル系エラストマー等が挙げられる。
 樹脂被膜104について重ねて詳しく追加説明する。
 樹脂被膜104としては、樹脂被膜除去工程で除去可能なものであれば、特に限定されない。樹脂被膜104は、所定の液体で溶解又は膨潤することにより絶縁層103の表面から容易に溶解除去又は剥離除去が可能な樹脂被膜が好ましい。具体的には、例えば、有機溶剤やアルカリ溶液により容易に溶解し得る可溶型樹脂からなる被膜や、所定の液体(膨潤液)で膨潤し得る膨潤性樹脂からなる被膜等が挙げられる。なお、膨潤性樹脂被膜には、所定の液体に対して実質的に溶解せず、膨潤により絶縁層103の表面から容易に剥離するような樹脂被膜だけではなく、所定の液体に対して膨潤し、さらに少なくとも一部が溶解し、その膨潤や溶解により絶縁層103の表面から容易に剥離するような樹脂被膜や、所定の液体に対して溶解し、その溶解により絶縁層103の表面から容易に剥離するような樹脂被膜も含まれる。このような樹脂被膜を用いることにより、絶縁層103の表面から樹脂被膜104を容易かつ良好に除去できる。樹脂被膜104を除去するときに樹脂被膜104を崩壊させると、その樹脂被膜104に被着したメッキ触媒108xが飛散し、飛散したメッキ触媒108xが絶縁層103に再被着してその部分に不要なメッキが形成される問題がある。本実施形態では、絶縁層103の表面から樹脂被膜104を容易かつ良好に除去できるから、そのような問題が未然に防止できる。
 樹脂被膜104を形成するための材料としては、所定の液体で溶解又は膨潤することにより絶縁層103の表面から容易に溶解除去又は剥離除去が可能な樹脂であれば特に限定なく用いられ得る。好ましくは、所定の液体に対する膨潤度が50%以上、より好ましくは、100%以上、さらに好ましくは、500%以上であるような膨潤度の樹脂が用いられる。なお、膨潤度が低すぎる場合には、樹脂被膜が剥離し難くなる傾向がある。
 なお、樹脂被膜の膨潤度(SW)は、膨潤前重量m(b)及び膨潤後重量m(a)から、「膨潤度SW={(m(a)-m(b))/m(b)}×100(%)」の式により求められる。
 このような樹脂被膜104は、絶縁層103の表面にエラストマーのサスペンジョン又はエマルジョンを塗布した後、乾燥する方法や、支持基材にエラストマーのサスペンジョン又はエマルジョンを塗布した後、乾燥することにより形成される被膜を絶縁層103の表面に転写する方法等により容易に形成され得る。
 エラストマーの具体例としては、スチレン-ブタジエン系共重合体等のジエン系エラストマー、アクリル酸エステル系共重合体等のアクリル系エラストマー、及びポリエステル系エラストマー等が挙げられる。このようなエラストマーによれば、サスペンジョン又はエマルジョンとして分散されたエラストマー樹脂粒子の架橋度またはゲル化度等を調整することにより所望の膨潤度の樹脂被膜を容易に形成することができる。
 なお、このような樹脂被膜104としては、特に、膨潤度が膨潤液のpHに依存して変化するような被膜であることが好ましい。このような、被膜を用いた場合には、触媒被着工程における液性条件と、樹脂被膜除去工程における液性条件とを相異させることにより、触媒被着工程におけるpHにおいては樹脂被膜104は絶縁層103に対する高い密着力を維持しつつ、樹脂被膜除去工程におけるpHにおいては容易に樹脂被膜104を絶縁層103から剥離除去することができる。
 さらに具体的には、例えば、触媒被着工程が、例えば、pH1~3の範囲の酸性触媒金属コロイド溶液中で処理する工程を備え、樹脂被膜除去工程が、例えば、pH12~14の範囲のアルカリ性溶液中で樹脂被膜を膨潤させる工程を備える場合には、樹脂被膜104は、酸性触媒金属コロイド溶液に対する膨潤度が60%以下、より好ましくは、40%以下であり、アルカリ性溶液に対する膨潤度が50%以上、より好ましくは、100%以上、さらに好ましくは、500%以上であるような樹脂被膜であることが好ましい。
 このような樹脂被膜104の例としては、所定量のカルボキシル基を有するエラストマーから形成されるシートや、プリント配線板のパターニング用のドライフィルムレジスト(以下「DFR」と記す場合がある)等に用いられる光硬化性のアルカリ現像型のレジストを全面硬化して得られるシートや、熱硬化性やアルカリ現像型のシート等が挙げられる。
 カルボキシル基を有するエラストマーの具体例としては、カルボキシル基を有するモノマー単位を共重合成分として含有することにより、分子中にカルボキシル基を有する、スチレン-ブタジエン系共重合体等のジエン系エラストマーや、アクリル酸エステル系共重合体等のアクリル系エラストマー、あるいはポリエステル系エラストマー等が挙げられる。このようなエラストマーによれば、サスペンジョン又はエマルジョンとして分散されたエラストマーの、酸当量、架橋度又はゲル化度等を調整することにより、所望のアルカリ膨潤度を有する樹脂被膜を形成することができる。また、樹脂被膜除去工程において用いる所定の液体に対する膨潤度をより大きくでき、前記液体に対して溶解する樹脂被膜も容易に形成することができる。エラストマー中のカルボキシル基はアルカリ水溶液に対して樹脂被膜を膨潤させて、絶縁層103の表面から樹脂被膜104を剥離する作用をする。また、酸当量とは、カルボキシル基1個当たりのポリマー分子量である。
 カルボキシル基を有するモノマー単位の具体例としては、(メタ)アクリル酸、フマル酸、ケイ皮酸、クロトン酸、イタコン酸、及びマレイン酸無水物等が挙げられる。
 このようなカルボキシル基を有するエラストマー中のカルボキシル基の含有割合としては、酸当量で100~2000、好ましくは100~800であることが好ましい。酸当量が小さ過ぎる場合(カルボキシル基の数が相対的に多過ぎる場合)には、溶媒または他の組成物との相溶性が低下することにより、無電解メッキの前処理液に対する耐性が低下する傾向がある。また、酸当量が大き過ぎる場合(カルボキシル基の数が相対的に少な過ぎる場合)には、アルカリ水溶液に対する剥離性が低下する傾向がある。
 また、エラストマーの分子量としては、1万~100万、好ましくは2万~50万、より好ましくは2万~6万であることが好ましい。エラストマーの分子量が大き過ぎる場合には剥離性が低下する傾向があり、小さ過ぎる場合には粘度が低下するために樹脂被膜の厚みを均一に維持することが困難になると共に、無電解メッキの前処理液に対する耐性も低下する傾向がある。
 また、DFRとしては、例えば、所定量のカルボキシル基を含有する、アクリル系樹脂、エポキシ系樹脂、スチレン系樹脂、フェノール系樹脂、ウレタン系樹脂等を樹脂成分とし、光重合開始剤を含有する光硬化性樹脂組成物のシートが用いられ得る。このようなDFRの具体例としては、あえて例を挙げるとすれば、例えば、特開2000-231190号公報、特開2001-201851号公報、特開平11-212262号公報に開示されるような光重合性樹脂組成物のドライフィルムを全面硬化させて得られるシートや、アルカリ現像型のDFRとして市販されている、例えば、旭化成工業社製のUFGシリーズ等が挙げられる。
 さらに、その他の樹脂被膜104の例としては、カルボキシル基を含有する、ロジンを主成分とする樹脂(例えば、吉川化工社製の「NAZDAR229」)や、フェノールを主成分とする樹脂(例えば、LEKTRACHEM社製の「104F」)等が挙げられる。
 樹脂被膜104は、絶縁層103の表面に樹脂のサスペンジョン又はエマルジョンを従来から知られたスピンコート法やバーコーター法等の塗布方法を用いて塗布した後、乾燥する方法や、支持基材に形成されたDFRを真空ラミネーター等を用いて絶縁層103の表面に貼り合わせた後、全面硬化することにより容易に形成することができる。
 また、樹脂被膜104として、例えば、酸等量が100~800程度のカルボキシル基を有するアクリル系樹脂からなる樹脂(カルボキシル基含有アクリル系樹脂)を主成分とする樹脂被膜もまた好ましく用いられ得る。
 さらに、前記のものの他に、樹脂被膜104として、次のようなものもまた好適である。すなわち、樹脂被膜104を構成するレジスト材料に必要な特性としては、例えば、(1)触媒被着工程で、樹脂被膜104が形成された構造物1を浸漬させる液体(メッキ触媒付け薬液)に対する耐性が高いこと、(2)樹脂被膜除去工程、例えば、樹脂被膜104が形成された構造物1をアルカリに浸漬させる工程によって、樹脂被膜104が容易に除去できること、(3)成膜性が高いこと、(4)ドライフィルム(DFR)化が容易なこと、(5)保存性が高いこと等が挙げられる。
 メッキ触媒付け薬液としては、後述するが、例えば、酸性Pd-Snコロイドキャタリストシステムの場合、全て酸性(例えばpH1~3)水溶液である。また、アルカリ性Pdイオンキャタリストシステムの場合は、触媒付与アクチベーターが弱アルカリ(pH8~12)であり、それ以外は酸性である。以上のことから、メッキ触媒付け薬液に対する耐性としては、pH1~11、好ましくはpH1~12に耐え得ることが必要である。なお、耐え得るとは、樹脂被膜104を成膜したサンプルを薬液に浸漬した際、樹脂被膜104の膨潤や溶解が充分に抑制され、レジストとしての役割を果たすことである。また、浸漬温度は、室温~60℃、浸漬時間は、1~10分間、樹脂被膜104の膜厚は、1~10μm程度が一般的であるが、これらに限定されない。樹脂被膜除去工程に用いるアルカリ剥離の薬液としては、例えば、NaOH水溶液や炭酸ナトリウム水溶液が一般的である。そのpHは、11~14であり、好ましくはpH12から14で樹脂被膜104が簡単に除去できることが望ましい。NaOH水溶液濃度は、1~10%程度、処理温度は、室温~50℃、処理時間は、1~10分間で、浸漬やスプレー処理をすることが一般的であるが、これらに限定されない。絶縁層103上に樹脂被膜104を形成するため、成膜性も重要となる。はじき等がない均一性な膜形成が必要である。また、製造工程の簡素化や材料ロスの低減等のためにドライフィルム化される場合は、ハンドリング性を確保するためにフィルムの屈曲性が必要である。また絶縁層103上にドライフィルム化された樹脂被膜104をラミネーター(ロール、真空)で貼り付ける。貼り付けの温度は、室温~160℃、圧力や時間は任意である。このように、貼り付け時に粘着性が求められる。そのために、ドライフィルム化された樹脂被膜104はゴミの付着防止も兼ねて、キャリアフィルム、カバーフィルムでサンドイッチされた3層構造にされることが一般的であるが、これらに限定されない。保存性は、室温で保存できることが好ましいが、冷蔵、冷凍での保存ができることも必要である。このように低温時にドライフィルムの組成が分離したり、屈曲性が低下して割れたりしないようにすることが必要である。
 以上のような観点から、樹脂被膜104として、(a)分子中に重合性不飽和基を少なくとも1個有するカルボン酸又は酸無水物の少なくとも1種類以上の単量体と、(b)(a)単量体と重合しうる少なくとも1種類以上の単量体と、を重合させることで得られる重合体樹脂、又はこの重合体樹脂を含む樹脂組成物であってもよい。この公知技術として、あえて例を挙げるとすれば、例えば、特開平7-281437号公報、特開2000-231190号公報、特開2001-201851号公報等が挙げられる。
 (a)単量体の一例としては、(メタ)アクリル酸、フマル酸、ケイ皮酸、クロトン酸、イタコン酸、マレイン酸無水物、マレイン酸半エステル、アクリル酸ブチル等が挙げられ、単独、もしくは2種類以上を組み合わせても良い。(b)単量体の例としては、非酸性で分子中に重合性不飽和基を(1個)有するものが一般的であり、その限りではない。後述する触媒被着工程での耐性、硬化膜の可とう性等の種々の特性を保持するように選ばれる。具体的には、メチル(メタ)アクリレート、エチル(メタ)アクリレート、iso-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、2-ヒドロキシルエチル(メタ)アクリレート、2-ヒドロキシルプロピル(メタ)アクリレート類がある。また酢酸ビニル等のビニルアルコールのエステル類や(メタ)アクリロニトリル、スチレンまたは重合可能なスチレン誘導体等がある。また前記の重合性不飽和基を分子中に1個有するカルボン酸または酸無水物のみの重合によっても得ることが出来る。さらには、3次元架橋できるように、重合体に用いる単量体に複数の不飽和基を持つ単量体を選定することができる。また、分子骨格にエポキシ基、水酸基、アミノ基、アミド基、ビニル基等の反応性官能基を導入することができる。
 樹脂中にカルボキシル基が含まれる場合、樹脂中に含まれるカルボキシル基の量は酸当量で100~2000が良く、100~800が好ましい。酸当量が低すぎると、溶媒または他の組成物との相溶性の低下やメッキ前処理液耐性が低下する。酸当量が高すぎると剥離性が低下する。また、(a)単量体の組成比率は5~70質量%が好ましい。
 樹脂組成物は、メイン樹脂(バインダー樹脂)として前記重合体樹脂を必須成分とし、オリゴマー、モノマー、フィラーや、その他の添加剤の少なくとも1種類を添加してもよい。メイン樹脂は、熱可塑的性質を持ったリニア型のポリマーが良い。流動性、結晶性などをコントロールするためにグラフトさせて枝分かれさせることもある。分子量としては、重量平均分子量で1,000~500,000程度であり、5,000~50,000が好ましい。重量平均分子量が小さいと膜の屈曲性やメッキ触媒付け薬液耐性(耐酸性)が低下する。また分子量が大きいとアルカリ剥離性やドライフィルムにした場合の貼り付け性が悪くなる。さらに、メッキ触媒付け薬液耐性向上やレーザー加工時の熱変形抑制、流動制御のために架橋点を導入してもよい。
 モノマーやオリゴマーとしては、メッキ触媒付け薬液への耐性やアルカリで容易に除去できるようなものであれば何でも良い。またドライフィルム(DFR)の貼り付け性を向上させるために粘着性付与材として可塑剤的に用いることが考えられる。さらに各種耐性をあげるために架橋剤を添加することが考えられる。具体的には、メチル(メタ)アクリレート、エチル(メタ)アクリレート、iso-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、2-ヒドロキシルエチル(メタ)アクリレート、2-ヒドロキシルプロピル(メタ)アクリレート類がある。また酢酸ビニル等のビニルアルコールのエステル類や(メタ)アクリロニトリル、スチレンまたは重合可能なスチレン誘導体等がある。また前記の重合性不飽和基を分子中に1個有するカルボン酸または酸無水物のみの重合によっても得ることが出来る。さらに、多官能性不飽和化合物を含んでも良い。前記のモノマーもしくはモノマーを反応させたオリゴマーのいずれでも良い。前記のモノマー以外に他の光重合性モノマーを2種類以上含むことも可能である。モノマーの例としては、1,6-ヘキサンジオールジ(メタ)アクリレート、1,4-シクロヘキサンジオールジ(メタ)アクリレート、またポリプロピレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリオキシエチレンポリオキシプロピレングリコールジ(メタ)アクリレート等のポリオキシアルキレングリコールジ(メタ)アクリレート、2-ジ(p-ヒドロキシフェニル)プロパンジ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、トリメチロールプロパントリグリシジルエーテルトリ(メタ)アクリレート、ビスフェノールAジグリシジルエーテルトリ(メタ)アクリレート、2,2-ビス(4-メタクリロキシペンタエトキシフェニル)プロパン、ウレタン基を含有する多官能(メタ)アクリレート等がある。前記のモノマーもしくはモノマーを反応させたオリゴマーのいずれでも良い。
 フィラーは特に限定されないが、シリカ、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、クレー、カオリン、酸化チタン、硫酸バリウム、アルミナ、酸化亜鉛、タルク、マイカ、ガラス、チタン酸カリウム、ワラストナイト、硫酸マグネシウム、ホウ酸アルミニウム、有機フィラー等が挙げられる。また、レジストの好ましい厚みは、0.1~10μmと薄いため、フィラーサイズも小さいものが好ましい。平均粒径が小さく、粗粒をカットしたものを用いることが良いが、分散時に砕いたり、ろ過で粗粒を除去することもできる。
 その他の添加剤として、光重合性樹脂(光重合開始剤)、重合禁止剤、着色剤(染料、顔料、発色系顔料)、熱重合開始剤、エポキシやウレタンなどの架橋剤等が挙げられる。
 溝孔形成工程では、樹脂被膜104は、レーザー加工等されるため、レジスト材料(樹脂被膜104の材料)にレーザーによるアブレーション性を付与することが必要である。レーザー加工機は、例えば、炭酸ガスレーザーやエキシマレーザー、UV-YAGレーザーなどが選定される。これらのレーザー加工機は種々の固有の波長を持っており、この波長に対してUV吸収率の高い材料を選定することで、生産性を向上させることができる。そのなかでもUV-YAGレーザーは微細加工に適しており、レーザー波長は3倍高調波355nm、4倍高調波266nmであるため、レジスト材料としては、これらの波長に対して、UV吸収率が相対的に高いことが望ましい。UV吸収率が高くなるほど、樹脂被膜104の加工がきれいに仕上がり、生産性の向上が図れる。もっとも、これに限らず、UV吸収率の相対的に低いレジスト材料を選定するほうがよい場合もあり得る。UV吸収率が低くなるほど、UV光が樹脂被膜104を通過するので、その下の絶縁層103の加工にUVエネルギーを集中させることができ、例えば絶縁層103が加工し難い材料である場合等に特に好ましい結果が得られる。このように、樹脂被膜104のレーザー加工のし易さ、絶縁層103のレーザー加工のし易さ、及びこれらの関係等に応じて、レジスト材料を設計することが好ましい。
 樹脂被膜除去工程によって、図2(D2)に示したように、溝105及び連通孔106,107が形成された絶縁層103の部分のみにメッキ触媒108xを残留させることができる。一方、図2(D1)~図2(D2)に示したように、溝孔形成工程において溝105が形成された部分以外の樹脂被膜104の表面に被着されたメッキ触媒108xは、樹脂被膜104を除去する際に一緒に除去される。
 樹脂被膜104を膨潤除去または溶解除去させる方法としては、所定の膨潤液または溶解液に、樹脂被膜104を所定の時間浸漬する方法が挙げる。また、剥離性や溶解性を高めるために、浸漬中に超音波照射することが特に好ましい。なお、膨潤剥離の場合には、必要に応じて軽い力で引き剥がしてもよい。
 樹脂被膜104を溶解又は膨潤させる液体としては、絶縁基材101、絶縁層103、及びメッキ触媒108xを実質的に分解または溶解させることなく、樹脂被膜104が容易に溶解又は膨潤剥離されるような液体であれば特に限定なく用いられうる。具体的には、レジスト樹脂として光硬化性エポキシ樹脂を用いた場合には、有機溶剤又はアルカリ水溶液のレジスト除去剤等が用いられる。また、膨潤性樹脂として、例えばジエン系エラストマー、アクリル系エラストマー、及びポリエステル系エラストマーのようなエラストマーを用いた場合には、例えば、1~10%程度の濃度の水酸化ナトリウム水溶液等のアルカリ水溶液が好ましく用いられうる。
 また、樹脂皮膜104として、(a)分子中に重合性不飽和基を少なくとも1個有するカルボン酸又は酸無水物の少なくとも1種類以上の単量体と、(b)(a)単量体と重合しうる少なくとも1種類以上の単量体と、を重合させることで得られる重合体樹脂、又はこの重合体樹脂を含む樹脂組成物である場合、あるいは、前述のカルボキシル基含有アクリル系樹脂から形成されている場合には、例えば、1~10%程度の濃度の水酸化ナトリウム水溶液等のアルカリ水溶液が好ましく用いられ得る。
 なお、触媒被着工程において上述したような酸性条件で処理するメッキプロセスを用いた場合には、樹脂皮膜104が、酸性条件下においては膨潤度が60%以下、好ましくは40%以下であり、アルカリ性条件下では膨潤度が50%以上であるような、例えば、ジエン系エラストマー、アクリル系エラストマー、及びポリエステル系エラストマーのようなエラストマーから形成されていること、あるいは、(a)分子中に重合性不飽和基を少なくとも1個有するカルボン酸又は酸無水物の少なくとも1種類以上の単量体と、(b)(a)単量体と重合しうる少なくとも1種類以上の単量体と、を重合させることで得られる重合体樹脂、又はこの重合体樹脂を含む樹脂組成物から形成されていること、あるいは、前述のカルボキシル基含有アクリル系樹脂から形成されていることが好ましい。このような樹脂皮膜は、pH11~14、好ましくはpH12~14であるようなアルカリ水溶液、例えば、1~10%程度の濃度の水酸化ナトリウム水溶液等に浸漬等することにより、容易に溶解又は膨潤し、溶解除去又は剥離除去される。なお、溶解性又は剥離性を高めるために、浸漬中に超音波照射してもよい。また、必要に応じて軽い力で引き剥がすことにより除去してもよい。
 (メッキ触媒)
 メッキ触媒108xは、メッキ処理工程において無電解メッキ膜を形成したい部分のみに無電解メッキ膜を形成するために予め付与される触媒である。メッキ触媒108xとしては、無電解メッキ用の触媒として従来用いられるものであれば、特に限定なく用いられ得る。また、メッキ触媒108xに代えて、メッキ触媒前駆体を被着させ、樹脂被膜104の除去後にメッキ触媒を生成させてもよい。メッキ触媒108xの具体例としては、例えば、金属パラジウム(Pd)、白金(Pt)、銀(Ag)等が挙げられる。
 メッキ触媒108xを被着させる方法としては、例えば、pH1~3の酸性条件下で処理される酸性Pd-Snコロイド溶液で処理した後、酸溶液で処理するような方法が挙げられる。より具体的には次のような方法が挙げられる。はじめに、溝孔形成工程で形成された溝105及び連通孔106,107の表面に付着している油分等を界面活性剤の溶液(クリーナー・コンディショナー)等で湯洗する。次に、必要に応じて、過硫酸ナトリウム-硫酸系のソフトエッチング剤でソフトエッチング処理する。そして、pH1~2の硫酸水溶液や塩酸水溶液等の酸性溶液中でさらに酸洗する。次に、濃度0.1%程度の塩化第一錫水溶液等を主成分とするプリディップ液に浸漬して塩化第一錫を吸着させた後、塩化第一錫と塩化パラジウムとを含むpH1~3の酸性Pd-Snコロイド等の酸性触媒金属コロイド溶液にさらに浸漬することによりPd及びSnを凝集させて吸着させる。そして、吸着した塩化第一錫と塩化パラジウムとの間で、酸化還元反応(SnCl+PdCl→SnCl+Pd↓)を起こさせる。これによりメッキ触媒108xである金属パラジウム(Pd)が析出する。
 なお、酸性触媒金属コロイド溶液としては、公知の酸性Pd-Snコロイドキャタリスト溶液等が使用でき、酸性触媒金属コロイド溶液を用いた市販のメッキプロセスを用いてもよい。このようなプロセスは、例えば、ローム&ハース電子材料社からシステム化されて販売されている。
 このような触媒被着工程により、図2(D1)に示したように、溝105及び連通孔106,107の表面及び樹脂被膜104の表面にメッキ触媒108xが被着される。
 (無電解メッキ)
 メッキ処理工程における無電解メッキの方法としては、メッキ触媒108xが被着された構造物1を、無電解メッキ液の槽に浸漬して、メッキ触媒108xが被着された部分のみに無電解メッキ膜を析出させるような方法が用いられ得る。
 無電解メッキに用いられる金属としては、銅(Cu)、ニッケル(Ni)、コバルト(Co)、アルミニウム(Al)等が挙げられる。これらの中では、Cuを主成分とするメッキが導電性に優れている点から好ましい。また、Niを含む場合には、耐食性や、はんだとの密着性に優れる点から好ましい。
 このようなメッキ処理工程により、図2(D2)~図2(E)に示したように、絶縁基材101の接続端子101aと半導体チップ102の接続端子102aとをつなぐ経路の表面のメッキ触媒108xが残留する部分のみに無電解メッキ膜が析出する。これにより、絶縁層103の表面に位置する配線本体部108aと、この配線本体部108aから分岐して絶縁層103の内部に延び、接続対象の接続端子102a,101aに到達する配線分岐部108bとを有する配線108が形成され、この配線108により、接続端子102a,101aが相互に接続される。
 なお、溝孔形成工程において溝105が形成されなかった部分は、樹脂被膜104によりメッキ触媒108xが被着することから保護されていたために、無電解メッキ膜は析出しない。これにより、配線間隔が狭小であっても、隣接する配線間に不要なメッキ膜が形成されず、短絡等の問題が抑制される。
 この第1実施形態で用いられる以上の各材料は以下の実施形態でも用いられるので、以下の実施形態ではこれらの材料の説明は省略する。
 <第2の実施形態>
 図3を参照し、本発明の第2の実施形態に係る配線方法を説明する。図中、符号2は複数の被接続部が露出する構造物、符号20は半導体装置、符号200は封止樹脂で封止された半導体装置、符号201は絶縁基材、符号201aは絶縁基材の接続端子(被接続部)、符号202は半導体チップ、符号202aは半導体チップの接続端子(被接続部)、符号203は絶縁層、符号204は樹脂被膜、符号205は溝、符号206,207は連通孔、符号208は配線、符号208aは配線本体部、符号208bは配線分岐部、符号209は封止樹脂である。
 第2実施形態に係る配線方法においては、まず、図3(A)に示すように、絶縁基材201に半導体チップ202が搭載された構造物2を準備する。絶縁基材201の表面には複数の接続端子201aが設けられ、半導体チップ202の表面には複数の接続端子202aが設けられている。これらの接続端子201a,202aは構造物2の表面に露出している。
 なお、絶縁基材201の接続端子201aは、絶縁基材201の表面から突出している。また、絶縁基材201を貫通して反対面からも突出している。
 次に、図3(B)に示すように、複数の接続端子201a,202aが露出する構造物2の表面に絶縁層203を形成する(絶縁層形成工程)。絶縁層203の表面は、絶縁基材201の接続端子201aが絶縁基材201の表面から突出していることにより、凹凸形状を呈する。
 次に、図3(C)に示すように、絶縁層203の表面に樹脂被膜204を形成する(樹脂被膜形成工程)。
 次に、図3(D)に示すように、樹脂被膜204の表面側から樹脂被膜204の厚みと同じ又は厚みを超える深さの溝(図例は樹脂被膜204の厚みと同じ深さの溝)205を接続対象の接続端子201a,202aの近傍を通過するように形成すると共に、その近傍通過部分から接続対象の接続端子202a,201aに到達する連通孔206,207を形成する(溝孔形成工程)。
 次に、第1実施形態と同様にして、触媒被着工程、樹脂被膜除去工程、メッキ処理工程を行うことにより、図3(E)に示すように、絶縁層203の表面に位置する本体部208aと、この本体部208aから分岐して絶縁層203の内部に延び、接続対象の接続端子202a,201aに到達する分岐部208bとを有する配線208が設けられる(配線形成工程)。
 このような、樹脂被膜形成工程、溝孔形成工程、触媒被着工程、樹脂被膜除去工程及びメッキ処理工程を含む配線形成工程によれば、配線208、特に配線本体部208aの輪郭を高精度に維持することができ、短絡やマイグレーションの発生が抑制される。
 ここにおいて、絶縁基材201に半導体チップ202が搭載され、絶縁基材201の接続端子201aと半導体チップ202の接続端子202aとが相互に配線208で接続された半導体装置(表面に配線が設けられた構造物)20が得られる。
 この半導体装置20においては、絶縁基材201の接続端子201a及び半導体チップ202の接続端子202aが露出する構造物2の表面に絶縁層203が形成され、この絶縁層203の表面に配線208の本体部208aが設けられ、この配線本体部208aから配線208の分岐部208bが分岐し、この配線分岐部208bが絶縁層203の内部に延び、絶縁基材201の接続端子201a及び半導体チップ202の接続端子202aに到達している。
 接続端子201a,202aが絶縁層203で被覆され、絶縁層203の表面に配線208の本体部208aが設けられるので、相互に接続しようとする接続対象の接続端子201a,202a間上に他の接続端子201a,202aがあっても、配線208を他の接続端子201a,202aに触れないように迂回させる必要がなくなる。配線208は、接続対象でない他の接続端子201a,202aの上を乗り越え、オーバーラップして通過することができる。その結果、配線回路の高密度化を阻害することが抑制される。
 次に、図3(F)に示すように、半導体装置20を封止樹脂209で封止する。ここにおいて、封止樹脂209で封止された半導体装置200が得られる。
 配線208は、絶縁層203の表面を這うように形成されている。したがって、表面に配線208が設けられた構造物(半導体装置20)を金型内にインサートし、封止樹脂209で封止する際に、配線208が封止樹脂209の圧力を受けて配線208に大きな負荷が作用することが回避できる。その結果、金線等でワイヤーボンディングされた半導体装置に比べて、配線208の短絡や切断や損傷が抑制され、半導体装置の生産性及び信頼性が向上する。
 <第3の実施形態>
 図4を参照し、本発明の第3の実施形態に係る配線方法を説明する。図中、符号3は複数の被接続部が露出する構造物、符号30は表面に配線が設けられた構造物、符号300は封止樹脂で封止され、表面に配線が設けられた構造物、符号301は銅板、符号301aは接続端子(被接続部)、符号302はレジスト、符号303はニッケルメッキを介した金メッキ膜、符号304はキャビティ、符号305は半導体チップ、符号305aは半導体チップの接続端子(被接続部)、符号306は絶縁層、符号307は樹脂被膜、符号308は配線、符号308aは配線本体部、符号308bは配線分岐部、符号309は封止樹脂である。
 第3実施形態に係る配線方法においては、まず、図4(A)に示すように、銅板301の表面及び反対面にレジスト302を配置する。
 次に、図4(B)に示すように、銅板301の表面及び反対面のレジスト302を配置した以外の部分にニッケルメッキを介した金メッキ膜303を形成する。
 次に、図4(C)に示すように、レジスト302を除去する。
 次に、図4(D)に示すように、銅板301の表面の金メッキ膜303を形成した以外の部分をハーフエッチングして凹部を形成する。ここで、凹部の1つはキャビティ304となる。
 次に、図4(E)に示すように、キャビティ304に半導体チップ305を搭載する。
 ここにおいて、複数の接続端子301a,305aが露出する構造物3が得られる。
 次に、図4(F)に示すように、複数の接続端子301a,305aが露出する構造物3の表面に絶縁層306を形成する(絶縁層形成工程)。絶縁層306の表面は、接続端子301aが突出していることにより、凹凸形状を呈する。
 次に、同じく図4(F)に示すように、絶縁層306の表面に樹脂被膜307を形成する(樹脂被膜形成工程)。
 次に、第1実施形態と同様にして、溝孔形成工程、触媒被着工程、樹脂被膜除去工程、メッキ処理工程を行うことにより、図4(G)に示すように、絶縁層306の表面に位置する本体部308aと、この本体部308aから分岐して絶縁層306の内部に延び、接続対象の接続端子301a,305aに到達する分岐部308bとを有する配線308が設けられる(配線形成工程)。
 ここにおいて、接続端子301aと半導体チップ305の接続端子305aとが相互に配線308で接続され、表面に配線308が設けられた構造物30が得られる。
 この構造物30においては、複数の接続端子301a,305aが露出する構造物3の表面に絶縁層306が形成され、この絶縁層306の表面に配線308の本体部308aが設けられ、この配線本体部308aから配線308の分岐部308bが分岐し、この配線分岐部308bが絶縁層306の内部に延び、接続対象の接続端子301a及び半導体チップ305の接続端子305aに到達している。
 接続端子301a,305aが絶縁層306で被覆され、絶縁層306の表面に配線308の本体部308aが設けられるので、相互に接続しようとする接続対象の接続端子301a,305a間上に他の接続端子301a,305aがあっても、配線308を他の接続端子301a,305aに触れないように迂回させる必要がなくなる。配線308は、接続対象でない他の接続端子301a,305aの上を乗り越え、オーバーラップして通過することができる。その結果、配線回路の高密度化を阻害することが抑制される。
 次に、図4(H)に示すように、構造物30を封止樹脂309で封止する。
 次に、図4(I)に示すように、接続端子301a間や接続端子301aとキャビティ304間に残存していた銅板301をエッチングして除去する(符号A)。接続端子301a及びキャビティ304は、絶縁層306及び封止樹脂309でつながれているため、銅板301を除去してもバラバラにならない。
 ここにおいて、封止樹脂309で封止され、表面に配線308が設けられた構造物300が得られる。
 配線308は、絶縁層306の表面を這うように形成されている。したがって、表面に配線308が設けられた構造物30を金型内にインサートし、封止樹脂309で封止する際に、配線308が封止樹脂309の圧力を受けて配線308に大きな負荷が作用することが回避できる。その結果、金線等でワイヤーボンディングされた構造物に比べて、配線308の短絡や切断や損傷が抑制され、構造物の生産性及び信頼性が向上する。
 なお、キャビティ304を構成する金属の部分は、半導体チップ305の放熱板として機能する。
 また、接続端子301aは、最終的には、銅板301と両端部の金メッキ膜303とで構成される。
 <第4の実施形態>
 図5を参照し、本発明の第4の実施形態に係る配線方法を説明する。ただし、第3実施形態と同じ又は相当する構成要素には第3実施形態と同じ符号を用い、第3実施形態と異なる部分のみ説明する。図中、符号302aは支持板である。
 第4実施形態に係る配線方法においては、まず、図5(A)に示すように、銅板301の表面にレジスト302を配置し、反対面に支持板302aを貼り合わせる。
 次に、図5(B)に示すように、銅板301の表面のレジスト302を配置した以外の部分にニッケルメッキを介した金メッキ膜303を形成する。
 図5(C)~図5(H)は、第3実施形態の図4(C)~図4(H)と同様である。
 したがって、接続端子301a,305aが絶縁層306で被覆され、絶縁層306の表面に配線308の本体部308aが設けられるので、相互に接続しようとする接続対象の接続端子301a,305a間上に他の接続端子301a,305aがあっても、配線308を他の接続端子301a,305aに触れないように迂回させる必要がなくなる。配線308は、接続対象でない他の接続端子301a,305aの上を乗り越え、オーバーラップして通過することができる。その結果、配線回路の高密度化を阻害することが抑制される。
 次に、図5(I)に示すように、支持板302aを取り除いた後、接続端子301a及びキャビティ304間に残存していた銅板301をエッチングして除去する(符号B)。
 ここにおいて、封止樹脂309で封止され、表面に配線308が設けられた構造物300が得られる。
 配線308は、絶縁層306の表面を這うように形成されている。したがって、表面に配線308が設けられた構造物30を金型内にインサートし、封止樹脂309で封止する際に、配線308が封止樹脂309の圧力を受けて配線308に大きな負荷が作用することが回避できる。その結果、金線等でワイヤーボンディングされた構造物に比べて、配線308の短絡や切断や損傷が抑制され、構造物の生産性及び信頼性が向上する。
 第3実施形態に比べて、銅板301の反対面には金メッキ膜303を形成しないから、コストが少なくて済む。
 また、図5(A)~(H)から明らかなように、銅板301の反対面には支持板302aが終始貼り合わされた状態で残っているので、作業中ワークの支持がしっかりする。
 <第5の実施形態>
 図6を参照し、本発明の第5の実施形態に係る半導体装置を説明する。図中、符号400は封止樹脂409で封止された半導体装置、符号401aは絶縁基材の接続端子(被接続部)、符号405は半導体チップ、符号405aは半導体チップの接続端子(被接続部)、符号406は絶縁層、符号408は配線、符号409は封止樹脂である。なお、封止樹脂409は、取り除かれたものとして描かれていない。また、配線408は、一部のみが描かれている。
 第5実施形態に係る半導体装置400は、第1実施形態又は第2実施形態で得られる半導体装置100,200、第3実施形態又は第4実施形態で得られる構造物300に準じて同様の構成を有している。すなわち、第5実施形態に係る半導体装置400は、絶縁基材に半導体チップ405が搭載され、絶縁基材に設けられた接続端子401a及び半導体チップ405に設けられた接続端子405aが露出する構造物の表面に絶縁層406が形成され、この絶縁層406の表面に配線408の本体部が設けられ、この配線本体部から配線408の分岐部が分岐し、この配線分岐部が絶縁層406の内部に延び、絶縁基材の接続端子401a及び/又は半導体チップ405の接続端子405aに到達している。
 なお、絶縁層406の表面は、接続端子401aが絶縁基材の表面から突出していることにより、また絶縁基材に半導体チップ405が搭載されていることにより、凹凸形状を呈している。
 接続端子401a,405aが絶縁層406で被覆され、絶縁層406の表面に配線408の本体部が設けられるので、相互に接続しようとする接続対象の接続端子401a,405a間上又は405a,405a間上に他の接続端子401a,405aがあっても、配線408を他の接続端子401a,405aに触れないように迂回させる必要がなくなる。配線408は、接続対象でない他の接続端子401a,405aの上を乗り越え、オーバーラップして通過することができる。その結果、配線回路の高密度化を阻害することが抑制される。
 また、配線408は、絶縁層406の表面を這うように形成されている。したがって、表面に配線408が設けられた構造物(半導体装置400)を金型内にインサートし、封止樹脂409で封止する際に、配線408が封止樹脂409の圧力を受けて配線408に大きな負荷が作用することが回避できる。その結果、金線等でワイヤーボンディングされた半導体装置に比べて、配線408の短絡や切断や損傷が抑制され、半導体装置の生産性及び信頼性が向上する。
 なお、図例は、配線408同士が交差しないように描かれているが、状況に応じて、配線408同士が交差しても構わない場合がある(例えばパルス信号の伝送等)。
 <第6の実施形態>
 図7を参照し、本発明の第6の実施形態に係る半導体装置を説明する。図中、符号500は封止樹脂で封止された半導体装置、符号501aは絶縁基材の接続端子(被接続部)、符号505は半導体チップ、符号505aは半導体チップの接続端子(被接続部)、符号506は絶縁層、符号508は配線、符号508aは配線本体部、符号508bは配線分岐部である。なお、封止樹脂は、取り除かれたものとして描かれていない。また、配線508は、一部のみが描かれている。
 第6実施形態に係る半導体装置500は、第1実施形態又は第2実施形態で得られる半導体装置100,200、第3実施形態又は第4実施形態で得られる構造物300に準じて同様の構成を有している。すなわち、第6実施形態に係る半導体装置500は、絶縁基材に半導体チップ505が搭載され、絶縁基材に設けられた接続端子501a及び半導体チップ505に設けられた接続端子505aが露出する構造物の表面に絶縁層506が形成され、この絶縁層506の表面に配線508の本体部508aが設けられ、この配線本体部508aから配線508の分岐部508bが分岐し、この配線分岐部508bが絶縁層506の内部に延び、絶縁基材の接続端子501a及び/又は半導体チップ505の接続端子505aに到達している。
 なお、絶縁層506の表面は、接続端子501aが絶縁基材の表面から突出していることにより、また絶縁基材に半導体チップ505が搭載されていることにより、凹凸形状を呈している。
 接続端子501a,505aが絶縁層506で被覆され、絶縁層506の表面に配線508の本体部508aが設けられるので、相互に接続しようとする接続対象の接続端子501a,505a間上又は505a,505a間上に他の接続端子501a,505aがあっても、配線508を他の接続端子501a,505aに触れないように迂回させる必要がなくなる。配線508は、接続対象でない他の接続端子501a,505aの上を乗り越え、オーバーラップして通過することができる。その結果、配線回路の高密度化を阻害することが抑制される。
 また、配線508は、絶縁層506の表面を這うように形成されている。したがって、表面に配線508が設けられた構造物(半導体装置500)を金型内にインサートし、封止樹脂で封止する際に、配線508が封止樹脂の圧力を受けて配線508に大きな負荷が作用することが回避できる。その結果、金線等でワイヤーボンディングされた半導体装置に比べて、配線508の短絡や切断や損傷が抑制され、半導体装置の生産性及び信頼性が向上する。
 なお、図例は、配線508同士が交差しないように描かれているが、状況に応じて、配線508同士が交差しても構わない場合がある(例えばパルス信号の伝送等)。
 また、図中、符号Cで示すように、配線分岐部508bは、必ずしも接続端子501a,505aに真上から垂直に到達しなくてもよく、絶縁層506の表面形状に応じて、斜め上からあるいは横から水平に到達してもよい。
 <第7の実施形態>
 図8を参照し、本発明の第7の実施形態に係る配線方法を説明する。図中、符号6は複数の被接続部が露出する構造物、符号60a,60bは半導体装置、符号600は封止樹脂で封止された半導体装置、符号601は絶縁基材、符号601aは絶縁基材の接続端子(被接続部)、符号602は半導体チップ、符号602aは半導体チップの接続端子(被接続部)、符号603,613は絶縁層、符号604,614は樹脂被膜、符号608,618は配線、符号608a,618aは配線本体部、符号608b,618bは配線分岐部、符号609は封止樹脂である。
 第7実施形態に係る配線方法においては、まず、図8(A)に示すように、絶縁基材601に半導体チップ602が搭載された構造物6を準備する。絶縁基材601の表面には複数の接続端子601aが設けられ、半導体チップ602の表面には複数の接続端子602aが設けられている。これらの接続端子601a,602aは構造物6の表面に露出している。
 次に、図8(B)に示すように、複数の接続端子601a,602aが露出する構造物6の表面に絶縁層603を形成する(絶縁層形成工程)。
 次に、図8(C)に示すように、絶縁層603の表面に樹脂被膜604を形成する(樹脂被膜形成工程)。
 次に、第1実施形態と同様にして、溝孔形成工程、触媒被着工程、樹脂被膜除去工程、メッキ処理工程を行うことにより、図8(D)に示すように、絶縁層603の表面に位置する本体部608aと、この本体部608aから分岐して絶縁層603の内部に延び、接続対象の接続端子601a,602aに到達する分岐部608bとを有する配線608が設けられる(配線形成工程)。
 ここにおいて、絶縁基材601に半導体チップ602が搭載され、絶縁基材601の接続端子601aと半導体チップ602の接続端子602aとが相互に配線608で接続された半導体装置(表面に配線が設けられた構造物)60aが得られる。
 次に、図8(E)に示すように、配線608の本体部608aが露出する絶縁層603の表面にさらに絶縁層613を積層する(絶縁層積層工程)。
 次に、図8(F)に示すように、積層した絶縁層613の表面に樹脂被膜614を形成する(樹脂被膜形成工程)。
 次に、1段目と同様にして、溝孔形成工程、触媒被着工程、樹脂被膜除去工程、メッキ処理工程を行うことにより、図8(G)に示すように、積層した絶縁層613の表面に位置する本体部618aと、この本体部618aから分岐して絶縁層613,603の内部に延び、接続対象の接続端子601a,602aに到達する分岐部618bとを有する配線618が設けられる(追加配線形成工程)。
 ここにおいて、絶縁基材601に半導体チップ602が搭載され、絶縁基材601の接続端子601aと半導体チップ602の接続端子602aとが相互に配線608,618で接続された半導体装置(表面に配線が設けられた構造物)60bが得られる。
 この半導体装置60bにおいては、絶縁層及び配線の組が上下に2段備えられている。すなわち、1段目においては、絶縁基材601の接続端子601a及び半導体チップ602の接続端子602aが露出する構造物6の表面に絶縁層603が形成され、この絶縁層603の表面に配線608の本体部608aが設けられ、この配線本体部608aから配線608の分岐部608bが分岐し、この配線分岐部608bが絶縁層603の内部に延び、絶縁基材601の接続端子601a及び半導体チップ602の接続端子602aに到達している。2段目においては、1段目の配線本体部608aが露出する1段目の絶縁層603の表面に2段目の絶縁層613が積層され、この積層された2段目の絶縁層613の表面に2段目の配線618の本体部618aが設けられ、この2段目の配線本体部618aから配線618の分岐部618bが分岐し、この2段目の配線分岐部618bが2段目の絶縁層613及び1段目の絶縁層603の内部に延び、絶縁基材601の接続端子601a及び半導体チップ602の接続端子602aに到達している。
 接続端子601a,602aが絶縁層603,613で被覆され、絶縁層603,613の表面に配線608,618の本体部608a,618aが設けられるので、相互に接続しようとする接続対象の接続端子601a,602a間上に他の接続端子601a,602aがあっても、配線608,618を他の接続端子601a,602aに触れないように迂回させる必要がなくなる。配線608,618は、接続対象でない他の接続端子601a,602aの上を乗り越え、オーバーラップして通過することができる。その結果、配線回路の高密度化を阻害することが抑制される。
 次に、図8(H)に示すように、半導体装置60bを封止樹脂609で封止する。ここにおいて、封止樹脂609で封止された半導体装置600が得られる。
 配線618は、絶縁層613の表面を這うように形成されている。したがって、表面に配線618が設けられた構造物(半導体装置60b)を金型内にインサートし、封止樹脂609で封止する際に、配線618が封止樹脂609の圧力を受けて配線618に大きな負荷が作用することが回避できる。その結果、金線等でワイヤーボンディングされた半導体装置に比べて、配線618の短絡や切断や損傷が抑制され、半導体装置の生産性及び信頼性が向上する。
 この第7実施形態で得られる半導体装置60b,600においては、配線608,618同士が相互にオーバーラップして通過することができる。その結果、短絡を起こさずに配線608,618同士を交差させることができ、この観点から、配線回路の高密度化を阻害することがより一層抑制される。
 なお、この第7実施形態においては、絶縁層積層工程及び追加配線形成工程を繰り返す回数は1回であったが(2段構成)、2回以上でもよい(3段以上の構成)。
 <第8の実施形態>
 図9を参照し、本発明の第8の実施形態に係る配線基板を説明する。図中、符号700は配線基板、符号701はプリント配線板、符号701aはプリント配線板の接続端子(被接続部)、符号702は半導体装置、符号702aは半導体装置の接続端子(被接続部)、符号703は絶縁層、符号708は配線、符号708aは配線本体部、符号708bは配線分岐部である。なお、配線708は、一部のみが描かれている。
 第8実施形態に係る配線基板700は、第1実施形態又は第2実施形態で得られる半導体装置100,200、第3実施形態又は第4実施形態で得られる構造物300、第5実施形態又は第6実施形態で得られる半導体装置400,500に準じて同様の構成を有している。すなわち、第8実施形態に係る配線基板700は、プリント配線板701に半導体装置702が実装され、プリント配線板701に設けられた接続端子701a及び半導体装置702に設けられた接続端子702aが露出する構造物の表面に絶縁層703が形成され、この絶縁層703の表面に配線708の本体部708aが設けられ、この配線本体部708aから配線708の分岐部708bが分岐し、この配線分岐部708bが絶縁層703の内部に延び、プリント配線板701の接続端子701a及び/又は半導体装置702の接続端子702aに到達している。
 接続端子701a,702aが絶縁層703で被覆され、絶縁層703の表面に配線708の本体部708aが設けられるので、相互に接続しようとする接続対象の接続端子701a,702a間上に他の接続端子701a,702aがあっても、配線708を他の接続端子701a,702aに触れないように迂回させる必要がなくなる。配線708は、接続対象でない他の接続端子701a,702aの上を乗り越え、オーバーラップして通過することができる。その結果、配線回路の高密度化を阻害することが抑制される。
 <第9の実施形態>
 図10を参照し、本発明の第9の実施形態に係るメモリカードを説明する。図中、符号800はメモリカード、符号801は支持体、符号801aは支持体の接続端子(被接続部)、符号802はメモリパッケージ、符号802aはメモリパッケージの接続端子(被接続部)、符号803は絶縁層、符号808は配線、符号808aは配線本体部、符号808bは配線分岐部である。なお、配線808は、一部のみが描かれている。
 第9実施形態に係るメモリカード800は、第1実施形態又は第2実施形態で得られる半導体装置100,200、第3実施形態又は第4実施形態で得られる構造物300、第5実施形態又は第6実施形態で得られる半導体装置400,500に準じて同様の構成を有している。すなわち、第9実施形態に係るメモリカード800は、支持体801にメモリパッケージ802が取り付けられ、支持体801に設けられた接続端子801a及びメモリパッケージ802に設けられた接続端子802aが露出する構造物の表面に絶縁層803が形成され、この絶縁層803の表面に配線808の本体部808aが設けられ、この配線本体部808aから配線808の分岐部808bが分岐し、この配線分岐部808bが絶縁層803の内部に延び、支持体801の接続端子801a及び/又はメモリパッケージ802の接続端子802aに到達している。
 接続端子801a,802aが絶縁層803で被覆され、絶縁層803の表面に配線808の本体部808aが設けられるので、相互に接続しようとする接続対象の接続端子801a,802a間上に他の接続端子801a,802aがあっても、配線808を他の接続端子801a,802aに触れないように迂回させる必要がなくなる。配線808は、接続対象でない他の接続端子801a,802aの上を乗り越え、オーバーラップして通過することができる。その結果、配線回路の高密度化を阻害することが抑制される。
 <第10の実施形態>
 図11を参照し、本発明の第10の実施形態に係る電気デバイスを説明する。図中、符号900は電気デバイス、符号901は絶縁基材、符号901aは絶縁基材の接続端子(被接続部)、符号902は受動素子、符号902aは受動素子の接続端子(被接続部)、符号903は絶縁層、符号908は配線、符号908aは配線本体部、符号908bは配線分岐部である。なお、配線908は、一部のみが描かれている。
 第10実施形態に係る電気デバイス900は、第1実施形態又は第2実施形態で得られる半導体装置100,200、第3実施形態又は第4実施形態で得られる構造物300、第5実施形態又は第6実施形態で得られる半導体装置400,500に準じて同様の構成を有している。すなわち、第10実施形態に係る電気デバイス900は、絶縁基材901に受動素子902が搭載され、絶縁基材901に設けられた接続端子901a及び受動素子902に設けられた接続端子902aが露出する構造物の表面に絶縁層903が形成され、この絶縁層903の表面に配線908の本体部908aが設けられ、この配線本体部908aから配線908の分岐部908bが分岐し、この配線分岐部908bが絶縁層903の内部に延び、絶縁基材901の接続端子901a及び/又は受動素子902の接続端子902aに到達している。
 接続端子901a,902aが絶縁層903で被覆され、絶縁層903の表面に配線908の本体部908aが設けられるので、相互に接続しようとする接続対象の接続端子901a,902a間上に他の接続端子901a,902aがあっても、配線908を他の接続端子901a,902aに触れないように迂回させる必要がなくなる。配線908は、接続対象でない他の接続端子901a,902aの上を乗り越え、オーバーラップして通過することができる。その結果、配線回路の高密度化を阻害することが抑制される。
 <第11の実施形態>
 図12を参照し、本発明の第11の実施形態に係るモジュールを説明する。図中、符号1000はモジュール、符号1001は支持体、符号1001aは支持体の接続端子(被接続部)、符号1002は電気デバイス、符号1002aは電気デバイスの接続端子(被接続部)、符号1003は絶縁層、符号1008は配線、符号1008aは配線本体部、符号1008bは配線分岐部である。なお、配線1008は、一部のみが描かれている。
 第11実施形態に係るモジュール1000は、第1実施形態又は第2実施形態で得られる半導体装置100,200、第3実施形態又は第4実施形態で得られる構造物300、第5実施形態又は第6実施形態で得られる半導体装置400,500に準じて同様の構成を有している。すなわち、第11実施形態に係るモジュール1000は、支持体1001に電気デバイス1002が取り付けられ、支持体1001に設けられた接続端子1001a及び電気デバイス1002に設けられた接続端子1002aが露出する構造物の表面に絶縁層1003が形成され、この絶縁層1003の表面に配線1008の本体部1008aが設けられ、この配線本体部1008aから配線1008の分岐部1008bが分岐し、この配線分岐部1008bが絶縁層1003の内部に延び、支持体1001の接続端子1001a及び/又は電気デバイス1002の接続端子1002aに到達している。
 接続端子1001a,1002aが絶縁層1003で被覆され、絶縁層1003の表面に配線1008の本体部1008aが設けられるので、相互に接続しようとする接続対象の接続端子1001a,1002a間上に他の接続端子1001a,1002aがあっても、配線1008を他の接続端子1001a,1002aに触れないように迂回させる必要がなくなる。配線1008は、接続対象でない他の接続端子1001a,1002aの上を乗り越え、オーバーラップして通過することができる。その結果、配線回路の高密度化を阻害することが抑制される。
 <第12の実施形態>
 図13を参照し、本発明の第12の実施形態に係る多層回路基板を説明する。図中、符号1100は多層回路基板、符号1101は最下層の回路基板、符号1101aは最下層の回路基板の接続端子(被接続部)、符号1102は第2層目以上の回路基板、符号1102aは第2層目以上の回路基板の接続端子(被接続部)、符号1102bは第2層目以上の回路基板の内部回路、符号1103は絶縁層、符号1108は配線、符号1108aは配線本体部、符号1108bは配線分岐部である。なお、配線1108は、一部のみが描かれている。
 第12実施形態に係る多層回路基板1100は、第1実施形態又は第2実施形態で得られる半導体装置100,200、第3実施形態又は第4実施形態で得られる構造物300、第5実施形態又は第6実施形態で得られる半導体装置400,500に準じて同様の構成を有している。すなわち、第12実施形態に係る多層回路基板1100は、複数の回路基板1101,1102が多段に積み重ねられた状態で結合され、回路基板1101,1102に設けられた接続端子1101a,1102aが露出する構造物の表面に絶縁層1103が形成され、この絶縁層1103の表面に配線1108の本体部1108aが設けられ、この配線本体部1108aから配線1108の分岐部1108bが分岐し、この配線分岐部1108bが絶縁層1103の内部に延び、相互に異なる回路基板1101,1102の接続端子1101a,1102aに到達している。前記回路基板1102の接続端子1102aは、回路基板1102の内部回路1102bの端部である。
 接続端子1101a,1102aが絶縁層1103で被覆され、絶縁層1103の表面に配線1108の本体部1108aが設けられるので、相互に接続しようとする接続対象の接続端子1101a,1102a間上に他の接続端子1101a,1102aがあっても、配線1108を他の接続端子1101a,1102aに触れないように迂回させる必要がなくなる。配線1108は、接続対象でない他の接続端子1101a,1102aの上を乗り越え、オーバーラップして通過することができる。その結果、配線回路の高密度化を阻害することが抑制される。
 このような構成の多層回路基板1100によれば、配線1108は、層間接続のための外部配線として機能することになる。つまり、多層回路基板1100における層間接続の技法として、従来、層間接続用孔としてのビアホールを形成することが知られている。ところが、ビアホールを多層回路基板1100の内部回路上に配置するので、そのビアホールの配置分だけ内部回路の配線有効面積が減少するという問題があった。この第12実施形態に係る多層回路基板1100においては、多層回路基板1100の側面の縦壁を通過する配線1108が多層回路基板1100の層間接続をするので、この問題が回避できることになる。また、多層回路基板1100の縦壁に層間接続のための外部の配線1108を容易に設けることが可能となる。
 なお、図13に例示したように、多層回路基板1100の側面の縦壁を通過する配線1108は、各層の内部回路1102bと接続するために、迂回してもよいし、縦壁を斜めに通過してもよいし、所定の層の内部回路とは接続しないように縦壁を通過してもよい。
 また、符号1101は、多層回路基板とは別の独立した基板でもよい。
 <第13の実施形態>
 図14を参照し、本発明の第13の実施形態に係る半導体装置を説明する。図中、符号1200は半導体装置(スタックチップパッケージ)、符号1201は絶縁基材、符号1201aは絶縁基材の接続端子(被接続部)、符号1202は半導体チップ、符号1202aは半導体チップの接続端子(被接続部)、符号1203は絶縁層、符号1208は配線、符号1208aは配線本体部、符号1208bは配線分岐部、符号1209は封止樹脂である。なお、配線1208は、一部のみが描かれている。
 第13実施形態に係る半導体装置(スタックチップパッケージ)1200は、第1実施形態又は第2実施形態で得られる半導体装置100,200、第3実施形態又は第4実施形態で得られる構造物300、第5実施形態又は第6実施形態で得られる半導体装置400,500に準じて同様の構成を有している。すなわち、第13実施形態に係る半導体装置1200は、絶縁基材1201に複数の半導体チップ1202が多段に積み重ねられた状態で結合され、半導体チップ1202に設けられた接続端子1202aが露出する構造物の表面に絶縁層1203が形成され、この絶縁層1203の表面に配線1208の本体部1208aが設けられ、この配線本体部1208aから配線1208の分岐部1208bが分岐し、この配線分岐部1208bが絶縁層1203の内部に延び、相互に異なる半導体チップ1202の接続端子1202aに到達している。
 図14は、さらに、配線1208が絶縁基材1201の接続端子1201aにも接続している例を示している。
 接続端子1201a,1202aが絶縁層1203で被覆され、絶縁層1203の表面に配線1208の本体部1208aが設けられるので、相互に接続しようとする接続対象の接続端子1201a,1202a間上に他の接続端子1201a,1202aがあっても、配線1208を他の接続端子1201a,1202aに触れないように迂回させる必要がなくなる。配線1208は、接続対象でない他の接続端子1201a,1202aの上を乗り越え、オーバーラップして通過することができる。その結果、配線回路の高密度化を阻害することが抑制される。
 配線1208は、絶縁層1203の表面を這うように形成されている。したがって、表面に配線1208が設けられた構造物(半導体装置)を金型内にインサートし、封止樹脂1209で封止する際に、配線1208が封止樹脂1209の圧力を受けて配線1208に大きな負荷が作用することが回避できる。その結果、金線等でワイヤーボンディングされた半導体装置に比べて、配線1208の短絡や切断や損傷が抑制され、半導体装置の生産性及び信頼性が向上する。
 この第13実施形態においては、半導体装置1200は、マルチチップモジュールのうちでもさらなるコンパクト化・高密度化が図られるスタックチップパッケージである。そして、スタックチップパッケージ1200の表面、すなわち絶縁層1203の上面や棚面(段差面)や側面(縦壁)等に、チップ間接続のための外部の配線1208が形成されている。
 このような構成のスタックチップパッケージ1200によれば、配線1208は、従来のスルーシリコンビアの技法や多段ワイヤーボンディングの技法に代わる、チップ間接続のための外部配線として機能することになる。つまり、複数の半導体チップ1202が多段に積み重ねられたスタックチップパッケージ1200におけるチップ間接続の技法として、従来、スルーシリコンビアの技法や多段ワイヤーボンディングの技法が知られている。ところが、スルーシリコンビアでは、ビアを半導体チップ1202の回路上に配置するので、そのビアの配置分だけチップ1202における回路の配線有効面積が減少するという問題があった。また、多段ワイヤーボンディングでは、前述のように、樹脂封止時に金線が封止樹脂の圧力を受けて生産性及び信頼性が低下すると共に、実装面積が大きくなり高密度化が図れないという問題があった。この第13実施形態に係るスタックチップパッケージ1200においては、スタックチップパッケージ1200の表面、すなわち絶縁層1203の表面にチップ間接続のための外部の配線1208を形成し、この外部配線1208が、配線分岐部1208bを介して、スタックチップパッケージ1200を構成する複数のチップ1202同士の接続をするので、これらの問題が回避できるという利点を有する。
 以上のように、本明細書は様々な態様を開示している。本明細書が開示する態様のうち主なものを以下に纏める。
 まず、構造物の表面に露出する複数の被接続部を相互に配線で接続するための配線方法であって、複数の被接続部が露出する構造物の表面に絶縁層を形成する絶縁層形成工程、及び、絶縁層の表面に位置する本体部と、この本体部から分岐して絶縁層の内部に延び、接続対象の被接続部に到達する分岐部とを有する配線を設ける配線形成工程、を備える態様が開示されている。
 この態様によれば、構造物の表面に露出する複数の被接続部を相互に配線で接続する場合に、配線を迂回させる必要がなくなり、配線回路の高密度化を阻害することが抑制される。
 また、構造物を封止樹脂で封止する場合に、封止樹脂の圧力による配線の短絡や切断や損傷が抑制される。
 次に、前記配線方法において、配線形成工程は、絶縁層の表面に樹脂被膜を形成する樹脂被膜形成工程、樹脂被膜の表面側から樹脂被膜の厚みと同じ又は厚みを超える深さの溝を接続対象の被接続部の近傍を通過するように形成すると共に、その近傍通過部分から接続対象の被接続部に到達する連通孔を形成する溝孔形成工程、前記溝及び前記連通孔の表面にメッキ触媒又はメッキ触媒前駆体を被着させる触媒被着工程、前記樹脂被膜を溶解又は膨潤させることにより除去する樹脂被膜除去工程、及び、無電解メッキを行うことにより前記メッキ触媒又は前記メッキ触媒前駆体から形成されるメッキ触媒が残留する部分のみにメッキ膜を形成するメッキ処理工程、を含む態様が開示されている。
 この態様によれば、配線、特に配線本体部の輪郭を高精度に維持することができ、短絡やマイグレーションの発生が抑制される。
 次に、前記配線方法において、配線形成工程は、メッキ処理工程の後、電解メッキを行うことによりメッキ膜を厚膜化する電解メッキ工程をさらに含む態様が開示されている。
 この態様によれば、メッキ膜を厚膜化するのに要する時間の短縮化が図られる。
 次に、前記配線方法において、樹脂被膜は蛍光性物質を含有し、配線形成工程は、樹脂被膜除去工程の後、メッキ処理工程の前に、前記蛍光性物質からの発光を用いて樹脂被膜の除去不良を検査する検査工程をさらに含む態様が開示されている。
 この態様によれば、発光が検出された部分を除去することにより、その部分にメッキ膜が形成されることを抑制し、短絡の発生を未然に防止することができる。
 次に、前記配線方法において、配線形成工程の後、配線の本体部が露出する絶縁層の表面にさらに絶縁層を積層する絶縁層積層工程、及び、積層した絶縁層の表面に位置する本体部と、この本体部から分岐して絶縁層の内部に延び、接続対象の被接続部に到達する分岐部とを有する配線を設ける追加配線形成工程、を1回以上繰り返す態様が開示されている。
 この態様によれば、配線同士が相互にオーバーラップして通過することができるから、短絡を起こさずに配線同士を交差させることができ、配線回路の高密度化を阻害することがより一層抑制される。
 また、表面に配線が設けられた構造物であって、複数の被接続部が露出する構造物の表面に絶縁層が形成され、この絶縁層の表面に配線の本体部が設けられ、この配線本体部から配線の分岐部が分岐し、この配線分岐部が絶縁層の内部に延び、接続対象の被接続部に到達している態様が開示されている。
 この態様によれば、構造物の表面に露出する複数の被接続部を相互に配線で接続する場合に、配線を迂回させる必要がなくなり、配線回路の高密度化を阻害することが抑制される。
 また、構造物を封止樹脂で封止する場合に、封止樹脂の圧力による配線の短絡や切断や損傷が抑制される。
 次に、前記構造物において、配線本体部が露出する絶縁層の表面に絶縁層が積層され、この積層された絶縁層の表面に配線の本体部が設けられ、この配線本体部から配線の分岐部が分岐し、この配線分岐部が絶縁層の内部に延び、接続対象の被接続部に到達している構成が、1段以上備えられている態様が開示されている。
 この態様によれば、配線同士が相互にオーバーラップして通過することができるから、短絡を起こさずに配線同士を交差させることができ、配線回路の高密度化を阻害することがより一層抑制される。
 また、半導体装置であって、絶縁基材に半導体チップが搭載され、絶縁基材に設けられた接続端子及び半導体チップに設けられた接続端子が露出する構造物の表面に絶縁層が形成され、この絶縁層の表面に配線の本体部が設けられ、この配線本体部から配線の分岐部が分岐し、この配線分岐部が絶縁層の内部に延び、絶縁基材の接続端子及び/又は半導体チップの接続端子に到達している態様が開示されている。
 この態様によれば、半導体装置の表面に露出する複数の接続端子を相互に配線で接続する場合に、配線を迂回させる必要がなくなり、配線回路の高密度化を阻害することが抑制される。
 また、半導体装置を封止樹脂で封止する場合に、封止樹脂の圧力による配線の短絡や切断や損傷が抑制される。
 また、配線基板であって、プリント配線板に半導体装置が実装され、プリント配線板に設けられた接続端子及び半導体装置に設けられた接続端子が露出する構造物の表面に絶縁層が形成され、この絶縁層の表面に配線の本体部が設けられ、この配線本体部から配線の分岐部が分岐し、この配線分岐部が絶縁層の内部に延び、プリント配線板の接続端子及び/又は半導体装置の接続端子に到達している態様が開示されている。
 この態様によれば、配線基板の表面に露出する複数の接続端子を相互に配線で接続する場合に、配線を迂回させる必要がなくなり、配線回路の高密度化を阻害することが抑制される。
 また、メモリカードであって、支持体にメモリパッケージが取り付けられ、支持体に設けられた接続端子及びメモリパッケージに設けられた接続端子が露出する構造物の表面に絶縁層が形成され、この絶縁層の表面に配線の本体部が設けられ、この配線本体部から配線の分岐部が分岐し、この配線分岐部が絶縁層の内部に延び、支持体の接続端子及び/又はメモリパッケージの接続端子に到達している態様が開示されている。
 この態様によれば、メモリカードの表面に露出する複数の接続端子を相互に配線で接続する場合に、配線を迂回させる必要がなくなり、配線回路の高密度化を阻害することが抑制される。
 また、電気デバイスであって、絶縁基材に受動素子が搭載され、絶縁基材に設けられた接続端子及び受動素子に設けられた接続端子が露出する構造物の表面に絶縁層が形成され、この絶縁層の表面に配線の本体部が設けられ、この配線本体部から配線の分岐部が分岐し、この配線分岐部が絶縁層の内部に延び、絶縁基材の接続端子及び/又は受動素子の接続端子に到達している態様が開示されている。
 この態様によれば、電気デバイスの表面に露出する複数の接続端子を相互に配線で接続する場合に、配線を迂回させる必要がなくなり、配線回路の高密度化を阻害することが抑制される。
 また、モジュールであって、支持体に電気デバイスが取り付けられ、支持体に設けられた接続端子及び電気デバイスに設けられた接続端子が露出する構造物の表面に絶縁層が形成され、この絶縁層の表面に配線の本体部が設けられ、この配線本体部から配線の分岐部が分岐し、この配線分岐部が絶縁層の内部に延び、支持体の接続端子及び/又は電気デバイスの接続端子に到達している態様が開示されている。
 この態様によれば、モジュールの表面に露出する複数の接続端子を相互に配線で接続する場合に、配線を迂回させる必要がなくなり、配線回路の高密度化を阻害することが抑制される。
 また、多層回路基板であって、複数の回路基板が多段に積み重ねられた状態で結合され、回路基板に設けられた接続端子が露出する構造物の表面に絶縁層が形成され、この絶縁層の表面に配線の本体部が設けられ、この配線本体部から配線の分岐部が分岐し、この配線分岐部が絶縁層の内部に延び、相互に異なる回路基板の接続端子に到達しており、前記回路基板の接続端子は、回路基板の内部回路の端部である態様が開示されている。
 この態様によれば、多層回路基板の表面に露出する複数の接続端子を相互に配線で接続する場合に、配線を迂回させる必要がなくなり、配線回路の高密度化を阻害することが抑制される。
 また、半導体装置であって、絶縁基材に複数の半導体チップが多段に積み重ねられた状態で搭載され、半導体チップに設けられた接続端子が露出する構造物の表面に絶縁層が形成され、この絶縁層の表面に配線の本体部が設けられ、この配線本体部から配線の分岐部が分岐し、この配線分岐部が絶縁層の内部に延び、相互に異なる半導体チップの接続端子に到達している態様が開示されている。
 この態様によれば、スタックチップパッケージの表面に露出する複数の接続端子を相互に配線で接続する場合に、配線を迂回させる必要がなくなり、配線回路の高密度化を阻害することが抑制される。
 また、スタックチップパッケージを封止樹脂で封止する場合に、封止樹脂の圧力による配線の短絡や切断や損傷が抑制される。
 本実施形態のその他の作用効果については、前記第1~13実施形態において説明した。
 なお、本実施形態では、溝孔形成工程において、溝は、樹脂被膜の厚みと同じ深さであったが、これに代えて、樹脂被膜の厚みを超える深さの溝でもよい。その場合は、メッキ処理工程により得られる配線の本体部は、その一部又は全部が絶縁層に埋め込まれることとなる。その結果、構造物に対する配線の接着強度が向上し、配線の脱落やズレが抑制される。
 この出願は2010年5月19日に出願された日本国特許出願特願2010-115250号を基礎とするものであり、その内容はこの出願に含まれる。
 以上、本発明の実施形態が詳細に説明されたが、前記した説明は、全ての局面において例示であって、本発明はこれらに限定されない。例示されていない無数の変形例が、本発明の範囲から外れることなく想定され得ると解釈される。本発明を表現するために、上述において、図面を参照しながら、実施形態を通して、本発明を適切かつ十分に説明した。しかし、当業者であれば、上述の実施形態を変更及び/又は改良することは容易になし得ることであると認識すべきである。したがって、当業者が実施する変更形態又は改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態又は当該改良形態は、当該請求項の権利範囲に包括されると解釈される。
 本発明によれば、構造物の表面に露出する複数の被接続部を相互に配線で接続する場合に、配線を迂回させる必要がなくなり、配線回路の高密度化を阻害することが抑制されるので、本発明は、例えば半導体装置等の表面に配線が設けられた構造物の分野において広範な産業上の利用可能性を有する。

Claims (14)

  1.  構造物の表面に露出する複数の被接続部を相互に配線で接続するための配線方法であって、
     複数の被接続部が露出する構造物の表面に絶縁層を形成する絶縁層形成工程、及び、
     絶縁層の表面に位置する本体部と、この本体部から分岐して絶縁層の内部に延び、接続対象の被接続部に到達する分岐部とを有する配線を設ける配線形成工程、
    を備えることを特徴とする配線方法。
  2.  配線形成工程は、
     絶縁層の表面に樹脂被膜を形成する樹脂被膜形成工程、
     樹脂被膜の表面側から樹脂被膜の厚みと同じ又は厚みを超える深さの溝を接続対象の被接続部の近傍を通過するように形成すると共に、その近傍通過部分から接続対象の被接続部に到達する連通孔を形成する溝孔形成工程、
     前記溝及び前記連通孔の表面にメッキ触媒又はメッキ触媒前駆体を被着させる触媒被着工程、
     前記樹脂被膜を溶解又は膨潤させることにより除去する樹脂被膜除去工程、及び、
     無電解メッキを行うことにより前記メッキ触媒又は前記メッキ触媒前駆体から形成されるメッキ触媒が残留する部分のみにメッキ膜を形成するメッキ処理工程、
    を含むことを特徴とする請求項1に記載の配線方法。
  3.  配線形成工程は、
     メッキ処理工程の後、電解メッキを行うことによりメッキ膜を厚膜化する電解メッキ工程をさらに含むことを特徴とする請求項2に記載の配線方法。
  4.  樹脂被膜は蛍光性物質を含有し、
     配線形成工程は、
     樹脂被膜除去工程の後、メッキ処理工程の前に、前記蛍光性物質からの発光を用いて樹脂被膜の除去不良を検査する検査工程をさらに含むことを特徴とする請求項2又は3に記載の配線方法。
  5.  配線形成工程の後、
     配線の本体部が露出する絶縁層の表面にさらに絶縁層を積層する絶縁層積層工程、及び、
     積層した絶縁層の表面に位置する本体部と、この本体部から分岐して絶縁層の内部に延び、接続対象の被接続部に到達する分岐部とを有する配線を設ける追加配線形成工程、
    を1回以上繰り返すことを特徴とする請求項1から4のいずれか1項に記載の配線方法。
  6.  複数の被接続部が露出する構造物の表面に絶縁層が形成され、
     この絶縁層の表面に配線の本体部が設けられ、
     この配線本体部から配線の分岐部が分岐し、
     この配線分岐部が絶縁層の内部に延び、接続対象の被接続部に到達していることを特徴とする表面に配線が設けられた構造物。
  7.  配線本体部が露出する絶縁層の表面に絶縁層が積層され、
     この積層された絶縁層の表面に配線の本体部が設けられ、
     この配線本体部から配線の分岐部が分岐し、
     この配線分岐部が絶縁層の内部に延び、接続対象の被接続部に到達している構成が、
    1段以上備えられていることを特徴とする請求項6に記載の表面に配線が設けられた構造物。
  8.  絶縁基材に半導体チップが搭載され、絶縁基材に設けられた接続端子及び半導体チップに設けられた接続端子が露出する構造物の表面に絶縁層が形成され、
     この絶縁層の表面に配線の本体部が設けられ、
     この配線本体部から配線の分岐部が分岐し、
     この配線分岐部が絶縁層の内部に延び、絶縁基材の接続端子及び/又は半導体チップの接続端子に到達していることを特徴とする半導体装置。
  9.  プリント配線板に半導体装置が実装され、プリント配線板に設けられた接続端子及び半導体装置に設けられた接続端子が露出する構造物の表面に絶縁層が形成され、
     この絶縁層の表面に配線の本体部が設けられ、
     この配線本体部から配線の分岐部が分岐し、
     この配線分岐部が絶縁層の内部に延び、プリント配線板の接続端子及び/又は半導体装置の接続端子に到達していることを特徴とする配線基板。
  10.  支持体にメモリパッケージが取り付けられ、支持体に設けられた接続端子及びメモリパッケージに設けられた接続端子が露出する構造物の表面に絶縁層が形成され、
     この絶縁層の表面に配線の本体部が設けられ、
     この配線本体部から配線の分岐部が分岐し、
     この配線分岐部が絶縁層の内部に延び、支持体の接続端子及び/又はメモリパッケージの接続端子に到達していることを特徴とするメモリカード。
  11.  絶縁基材に受動素子が搭載され、絶縁基材に設けられた接続端子及び受動素子に設けられた接続端子が露出する構造物の表面に絶縁層が形成され、
     この絶縁層の表面に配線の本体部が設けられ、
     この配線本体部から配線の分岐部が分岐し、
     この配線分岐部が絶縁層の内部に延び、絶縁基材の接続端子及び/又は受動素子の接続端子に到達していることを特徴とする電気デバイス。
  12.  支持体に電気デバイスが取り付けられ、支持体に設けられた接続端子及び電気デバイスに設けられた接続端子が露出する構造物の表面に絶縁層が形成され、
     この絶縁層の表面に配線の本体部が設けられ、
     この配線本体部から配線の分岐部が分岐し、
     この配線分岐部が絶縁層の内部に延び、支持体の接続端子及び/又は電気デバイスの接続端子に到達していることを特徴とするモジュール。
  13.  複数の回路基板が多段に積み重ねられた状態で結合され、回路基板に設けられた接続端子が露出する構造物の表面に絶縁層が形成され、
     この絶縁層の表面に配線の本体部が設けられ、
     この配線本体部から配線の分岐部が分岐し、
     この配線分岐部が絶縁層の内部に延び、相互に異なる回路基板の接続端子に到達しており、
     前記回路基板の接続端子は、回路基板の内部回路の端部であることを特徴とする多層回路基板。
  14.  絶縁基材に複数の半導体チップが多段に積み重ねられた状態で搭載され、半導体チップに設けられた接続端子が露出する構造物の表面に絶縁層が形成され、
     この絶縁層の表面に配線の本体部が設けられ、
     この配線本体部から配線の分岐部が分岐し、
     この配線分岐部が絶縁層の内部に延び、相互に異なる半導体チップの接続端子に到達していることを特徴とする半導体装置。
PCT/JP2011/002628 2010-05-19 2011-05-11 配線方法、並びに、表面に配線が設けられた構造物、半導体装置、配線基板、メモリカード、電気デバイス、モジュール及び多層回路基板 WO2011145294A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/698,975 US9082635B2 (en) 2010-05-19 2011-05-11 Wiring method, structure having wiring provided on surface, semiconductor device, wiring board, memory card, electric device, module and multilayer circuit board
CN201180024358.2A CN102893711B (zh) 2010-05-19 2011-05-11 配线方法、以及在表面设有配线的构造物、半导体装置、配线基板、存储卡、电气器件、模块及多层电路基板
EP11783233A EP2574156A1 (en) 2010-05-19 2011-05-11 Wiring method, structure having wiring provided on surface, semiconductor device, wiring board, memory card, electric device, module, and multilayer circuit board
US14/733,308 US20150271924A1 (en) 2010-05-19 2015-06-08 Wiring method, structure having wiring provided on surface, semiconductor device, wiring board, memory card, electric device, module, and multilayer circuit board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-115250 2010-05-19
JP2010115250A JP2011243790A (ja) 2010-05-19 2010-05-19 配線方法、並びに、表面に配線が設けられた構造物、半導体装置、配線基板、メモリカード、電気デバイス、モジュール及び多層回路基板

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/698,975 A-371-Of-International US9082635B2 (en) 2010-05-19 2011-05-11 Wiring method, structure having wiring provided on surface, semiconductor device, wiring board, memory card, electric device, module and multilayer circuit board
US14/733,308 Division US20150271924A1 (en) 2010-05-19 2015-06-08 Wiring method, structure having wiring provided on surface, semiconductor device, wiring board, memory card, electric device, module, and multilayer circuit board

Publications (1)

Publication Number Publication Date
WO2011145294A1 true WO2011145294A1 (ja) 2011-11-24

Family

ID=44991416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002628 WO2011145294A1 (ja) 2010-05-19 2011-05-11 配線方法、並びに、表面に配線が設けられた構造物、半導体装置、配線基板、メモリカード、電気デバイス、モジュール及び多層回路基板

Country Status (6)

Country Link
US (2) US9082635B2 (ja)
EP (1) EP2574156A1 (ja)
JP (1) JP2011243790A (ja)
CN (1) CN102893711B (ja)
TW (1) TWI445477B (ja)
WO (1) WO2011145294A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103890560A (zh) * 2012-05-29 2014-06-25 新日铁住金株式会社 部件的破坏评价装置、部件的破坏评价方法及计算机程序

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8970046B2 (en) * 2011-07-18 2015-03-03 Samsung Electronics Co., Ltd. Semiconductor packages and methods of forming the same
TWI454202B (zh) * 2013-03-15 2014-09-21 Universal Scient Ind Shanghai 電子封裝結構以及其製造方法
JP6388202B2 (ja) * 2014-08-07 2018-09-12 パナソニックIpマネジメント株式会社 絶縁樹脂シート、並びにそれを用いた回路基板および半導体パッケージ
KR102339719B1 (ko) * 2015-02-13 2021-12-15 삼성디스플레이 주식회사 표시 장치
JP6480823B2 (ja) * 2015-07-23 2019-03-13 東芝メモリ株式会社 半導体装置の製造方法
TWI578868B (zh) * 2016-01-13 2017-04-11 摩爾創新科技股份有限公司 曲面電路基板之製造方法
JP6691504B2 (ja) * 2016-05-12 2020-04-28 信越化学工業株式会社 ウエハ加工体及びその製造方法並びにウエハ上における有機膜の被覆性確認方法
JP6329589B2 (ja) 2016-06-13 2018-05-23 上村工業株式会社 皮膜形成方法
JP2018017975A (ja) * 2016-07-29 2018-02-01 株式会社ジャパンディスプレイ 電子機器の製造方法
CN106197004A (zh) * 2016-08-30 2016-12-07 苏州康贝尔电子设备有限公司 一种自动收料的立式烤炉
JP6886992B2 (ja) 2018-03-30 2021-06-16 恵和株式会社 光拡散板積層体、バックライトユニット、及び液晶表示装置
FR3090197B1 (fr) * 2018-12-12 2023-01-06 St Microelectronics Alps Sas Dispositif électronique incluant des connexions électriques sur un bloc d’encapsulation
JP2020119929A (ja) * 2019-01-21 2020-08-06 キオクシア株式会社 半導体装置
FR3123778A1 (fr) * 2021-06-07 2022-12-09 Eyco Procédé de fabrication d’un circuit imprimé intégrant un composant électronique et module de carte à puce obtenu par ledit procédé.
CN114340159A (zh) * 2021-12-14 2022-04-12 生益电子股份有限公司 一种pcb的制备方法和pcb
CN114302578A (zh) * 2021-12-14 2022-04-08 生益电子股份有限公司 一种pcb的制备方法和pcb
CN114269074A (zh) * 2021-12-14 2022-04-01 生益电子股份有限公司 电路板及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07281437A (ja) 1994-04-14 1995-10-27 Asahi Chem Ind Co Ltd 光硬化性樹脂積層体
JPH11212262A (ja) 1998-01-23 1999-08-06 Asahi Chem Ind Co Ltd 光重合性組成物
JP2000231190A (ja) 1999-02-12 2000-08-22 Asahi Chem Ind Co Ltd 光重合性組成物
JP2001201851A (ja) 2000-01-18 2001-07-27 Asahi Kasei Corp 光重合性樹脂組成物
JP2005064446A (ja) * 2003-07-25 2005-03-10 Dainippon Printing Co Ltd 積層用モジュールの製造方法
JP2005108937A (ja) * 2003-09-29 2005-04-21 Dainippon Printing Co Ltd 電子装置およびその製造方法
JP2005332887A (ja) * 2004-05-18 2005-12-02 Shinko Electric Ind Co Ltd 多層配線の形成方法および多層配線基板の製造方法
JP2009152616A (ja) * 2001-03-02 2009-07-09 Qualcomm Inc 混合アナログおよびデジタル集積回路
JP2009158739A (ja) * 2007-12-27 2009-07-16 Toshiba Corp 半導体装置と半導体記憶装置
JP2010050435A (ja) 2008-04-30 2010-03-04 Panasonic Electric Works Co Ltd 配線基材の製造方法及び該製造方法により得られた配線基材

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4830706A (en) * 1986-10-06 1989-05-16 International Business Machines Corporation Method of making sloped vias
JPH05249609A (ja) * 1992-03-10 1993-09-28 Pioneer Electron Corp 光記録媒体
US5737192A (en) * 1993-04-30 1998-04-07 The United States Of America As Represented By The Secretary Of The Air Force Density improvement in integration modules
US5657537A (en) * 1995-05-30 1997-08-19 General Electric Company Method for fabricating a stack of two dimensional circuit modules
US5648684A (en) * 1995-07-26 1997-07-15 International Business Machines Corporation Endcap chip with conductive, monolithic L-connect for multichip stack
MY144573A (en) * 1998-09-14 2011-10-14 Ibiden Co Ltd Printed circuit board and method for its production
US6335531B1 (en) * 1999-04-06 2002-01-01 Micron Technology, Inc. Modification of resist and/or resist processing with fluorescence detection
US6242282B1 (en) * 1999-10-04 2001-06-05 General Electric Company Circuit chip package and fabrication method
US6535398B1 (en) * 2000-03-07 2003-03-18 Fujitsu Limited Multichip module substrates with buried discrete capacitors and components and methods for making
JP3879461B2 (ja) * 2001-09-05 2007-02-14 日立電線株式会社 配線基板及びその製造方法
JP2004165525A (ja) * 2002-11-15 2004-06-10 Sony Corp 半導体装置及びその製造方法
JP4489411B2 (ja) 2003-01-23 2010-06-23 新光電気工業株式会社 電子部品実装構造の製造方法
TWI260056B (en) * 2005-02-01 2006-08-11 Phoenix Prec Technology Corp Module structure having an embedded chip
JP4396618B2 (ja) * 2005-11-10 2010-01-13 パナソニック株式会社 カード型情報装置およびその製造方法
TWI304308B (en) * 2006-01-25 2008-12-11 Unimicron Technology Corp Circuit board with embeded passive component and fabricating process thereof
KR100787892B1 (ko) * 2006-10-31 2007-12-27 삼성전자주식회사 반도체 패키지 및 그의 제조 방법
US8272126B2 (en) 2008-04-30 2012-09-25 Panasonic Corporation Method of producing circuit board
US8008781B2 (en) * 2008-12-02 2011-08-30 General Electric Company Apparatus and method for reducing pitch in an integrated circuit

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07281437A (ja) 1994-04-14 1995-10-27 Asahi Chem Ind Co Ltd 光硬化性樹脂積層体
JPH11212262A (ja) 1998-01-23 1999-08-06 Asahi Chem Ind Co Ltd 光重合性組成物
JP2000231190A (ja) 1999-02-12 2000-08-22 Asahi Chem Ind Co Ltd 光重合性組成物
JP2001201851A (ja) 2000-01-18 2001-07-27 Asahi Kasei Corp 光重合性樹脂組成物
JP2009152616A (ja) * 2001-03-02 2009-07-09 Qualcomm Inc 混合アナログおよびデジタル集積回路
JP2005064446A (ja) * 2003-07-25 2005-03-10 Dainippon Printing Co Ltd 積層用モジュールの製造方法
JP2005108937A (ja) * 2003-09-29 2005-04-21 Dainippon Printing Co Ltd 電子装置およびその製造方法
JP2005332887A (ja) * 2004-05-18 2005-12-02 Shinko Electric Ind Co Ltd 多層配線の形成方法および多層配線基板の製造方法
JP2009158739A (ja) * 2007-12-27 2009-07-16 Toshiba Corp 半導体装置と半導体記憶装置
JP2010050435A (ja) 2008-04-30 2010-03-04 Panasonic Electric Works Co Ltd 配線基材の製造方法及び該製造方法により得られた配線基材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANDY TSENG; BERND APPELT; YI-SHAO LAI; MARK LIN; BRUCE HU; JW CHEN; SUNNY LEE, ADVANCED QFN PACKAGE FOR LOW COST AND HIGH PERFORMANCE SOLUTION, 12 May 2010 (2010-05-12)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103890560A (zh) * 2012-05-29 2014-06-25 新日铁住金株式会社 部件的破坏评价装置、部件的破坏评价方法及计算机程序
CN103890560B (zh) * 2012-05-29 2015-11-25 新日铁住金株式会社 部件的破坏评价装置、部件的破坏评价方法

Also Published As

Publication number Publication date
TWI445477B (zh) 2014-07-11
CN102893711B (zh) 2016-08-03
EP2574156A1 (en) 2013-03-27
JP2011243790A (ja) 2011-12-01
US20130056247A1 (en) 2013-03-07
US20150271924A1 (en) 2015-09-24
TW201221000A (en) 2012-05-16
US9082635B2 (en) 2015-07-14
CN102893711A (zh) 2013-01-23

Similar Documents

Publication Publication Date Title
WO2011145294A1 (ja) 配線方法、並びに、表面に配線が設けられた構造物、半導体装置、配線基板、メモリカード、電気デバイス、モジュール及び多層回路基板
KR101359117B1 (ko) 반도체 칩의 실장 방법, 그 방법을 이용하여 얻어진 반도체 장치 및 반도체 칩의 접속 방법, 및, 표면에 배선이 설치된 입체 구조물 및 그 제법
US8044524B2 (en) Adhesive for connection of circuit member and semiconductor device using the same
US9070393B2 (en) Three-dimensional structure in which wiring is provided on its surface
US9082438B2 (en) Three-dimensional structure for wiring formation
JP5583384B2 (ja) 回路基板の製造方法、及び前記製造方法により得られた回路基板
US20050175824A1 (en) Method for forming multilayer circuit structure and base having multilayer circuit structure
WO2011052207A1 (ja) 回路基板、及び前記回路基板の製造方法
KR101238966B1 (ko) 회로 기판의 제조 방법, 및 상기 제조 방법에 의해 얻어진 회로 기판
WO2012060091A1 (ja) 立体構造物の表面への配線方法、表面に配線が設けられた立体構造物を得るための中間構造物、及び、表面に配線が設けられた立体構造物
JP5350184B2 (ja) 多層回路基板の製造方法及び該製造方法により製造された多層回路基板
JP5411829B2 (ja) 多層回路基板の製造方法及び該製造方法により製造された多層回路基板
JP2011100798A (ja) 回路基板
WO2010064602A1 (ja) 回路基板の製造方法、及び前記製造方法により得られた回路基板
JP2017117906A (ja) 多層回路基板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180024358.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11783233

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13698975

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011783233

Country of ref document: EP