WO2011142300A1 - バチルス属微生物由来の還元剤及びその用途 - Google Patents

バチルス属微生物由来の還元剤及びその用途 Download PDF

Info

Publication number
WO2011142300A1
WO2011142300A1 PCT/JP2011/060622 JP2011060622W WO2011142300A1 WO 2011142300 A1 WO2011142300 A1 WO 2011142300A1 JP 2011060622 W JP2011060622 W JP 2011060622W WO 2011142300 A1 WO2011142300 A1 WO 2011142300A1
Authority
WO
WIPO (PCT)
Prior art keywords
bacillus
reducing agent
meat
heme
color tone
Prior art date
Application number
PCT/JP2011/060622
Other languages
English (en)
French (fr)
Inventor
啓太 奥田
庄太郎 山口
Original Assignee
天野エンザイム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天野エンザイム株式会社 filed Critical 天野エンザイム株式会社
Priority to JP2012514778A priority Critical patent/JP5814914B2/ja
Priority to EP11780557.2A priority patent/EP2570478B1/en
Priority to DK11780557.2T priority patent/DK2570478T3/en
Priority to US13/696,446 priority patent/US20130058911A1/en
Priority to CN2011800231689A priority patent/CN102892882A/zh
Publication of WO2011142300A1 publication Critical patent/WO2011142300A1/ja
Priority to US14/048,538 priority patent/US9241507B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/40Colouring or decolouring of foods
    • A23L5/41Retaining or modifying natural colour by use of additives, e.g. optical brighteners
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/40Colouring or decolouring of foods
    • A23L5/42Addition of dyes or pigments, e.g. in combination with optical brighteners
    • A23L5/46Addition of dyes or pigments, e.g. in combination with optical brighteners using dyes or pigments of microbial or algal origin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L13/00Meat products; Meat meal; Preparation or treatment thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L13/00Meat products; Meat meal; Preparation or treatment thereof
    • A23L13/40Meat products; Meat meal; Preparation or treatment thereof containing additives
    • A23L13/48Addition of, or treatment with, enzymes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/40Colouring or decolouring of foods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/08Vasodilators for multiple indications
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0051Oxidoreductases (1.) acting on a sulfur group of donors (1.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01284S-(hydroxymethyl)glutathione dehydrogenase (1.1.1.284), i.e. nitroreductase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y108/00Oxidoreductases acting on sulfur groups as donors (1.8)
    • C12Y108/01Oxidoreductases acting on sulfur groups as donors (1.8) with NAD+ or NADP+ as acceptor (1.8.1)
    • C12Y108/01004Dihydrolipoyl dehydrogenase (1.8.1.4), i.e. lipoamide-dehydrogenase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K2035/11Medicinal preparations comprising living procariotic cells

Definitions

  • the present invention relates to a reducing agent derived from a Bacillus microorganism and its use.
  • the reducing agent of the present invention is particularly useful for the purpose of improving the color tone of meat or processed meat products.
  • Meat color is an important factor when consumers evaluate meat quality. Meat color has a great influence on consumers' willingness to purchase and evaluation of meat. For example, if it is bright red, it is judged as good quality meat, and if it is brown it is considered old.
  • the color of the meat reflects the proportion of myoglobin derivatives present in the meat.
  • this myoglobin When this myoglobin is oxidized, it becomes metmyoglobin and changes its color to brown, which is a major cause of significantly reducing the commercial value of meat products.
  • nitrate and nitrite color formers are generally used in processed meat products such as ham and sausage.
  • nitrates and nitrites have acute toxicity that causes methemoglobinemia in humans, the amount used is limited to 70 ppm or less as residual nitrite.
  • nitrous acid may react with secondary amines to form nitrosamines, which are carcinogenic substances. For this reason, from the viewpoint of safety, a search has been made for a substance having a coloring effect and a coloring method instead of nitrate and nitrite coloring agents.
  • Patent Document 1 For example, a method for preventing browning by adding raffinose (see Patent Document 1), a method for preventing browning by adding an enokitake extract (see Patent Document 2), and using ingredients contained in vegetables And a method of developing the color (see Patent Document 3) has been found.
  • Patent Literature 1 and the method of Patent Literature 2 do not have sufficient coloring effects, and the method of Patent Literature 3 uses a nitrate contained in vegetables and has a safety problem.
  • Patent Document 4 a method for maintaining the color of meat by replacing iron in myoglobin with zinc to form a myoglobin zinc protoporphine IX complex (Patent Document 4), or generation of myoglobin zinc protoporphine IX complex using ferrokeratase or yeast Has also been proposed (Patent Documents 5 and 6) for maintaining the bright red color of meat.
  • Patent Documents 5 and 6 it is not possible to act on metmyoglobin once generated, and the color development or tone maintenance effect is limited.
  • An object of the present invention is to provide a reducing agent effective for improving the color tone of meat or processed meat products and its use (color tone improving method without using a color former such as nitrite).
  • the present inventors conducted screening mainly for microorganisms belonging to the genus Bacillus in order to find substances that improve the color tone of meat.
  • a microbial strain that produces a substance having a high meat coloring effect was identified.
  • the substance expected to be highly useful exhibits a reducing activity against metmyoglobin. That is, it has been found that microorganisms belonging to the genus Bacillus produce a substance that promotes color development of meat through metmyoglobin reducing activity.
  • the substance exhibits a reducing action on heme, and is not limited to the color development of meat, but can be used in other applications where reduction of heme or heme protein is effective or necessary.
  • the substance can be used for the purpose of reducing methemoglobin having a structure similar to metmyoglobin.
  • a reducing agent comprising a heme reductase derived from a Bacillus microorganism.
  • microorganism according to any one of [1] to [4], wherein the microorganism belonging to the genus Bacillus is a microorganism selected from the group consisting of Bacillus subtilis, Bacillus amyloliquefaciens, Bacillus natto, Bacillus thuringiensis, and Bacillus mycoides.
  • the reducing agent according to 1.
  • the reducing agent according to [1] wherein the heme reductase is dehydrolipoyl dehydrogenase or nitroreductase.
  • the reducing agent according to [1] including dehydrolipoyl dehydrogenase and nitroreductase as the heme reductase.
  • a color tone improving agent comprising a combination of the reducing agent according to any one of [1] to [9] and a substance exhibiting an action of substituting iron in the heme group of myoglobin with zinc.
  • the color tone improving agent according to [11] wherein the substance is ferrochelatase.
  • a color tone improving agent for meat or processed meat products comprising dehydrolipoyl dehydrogenase and / or nitroreductase.
  • a medicament comprising the reducing agent according to any one of [1] to [9].
  • the medicament according to [16] which is a preparation for oral administration.
  • a method for producing a reducing agent comprising the following steps (1) and (2): (1) culturing a Bacillus microorganism that produces heme reductase under conditions under which the enzyme is produced; (2) A step of recovering the enzyme from the culture product.
  • step (2) includes the following steps: (2-1) collecting microbial cells from the culture product; (2-2) A step of preparing a crushed bacterial cell. [21] The process according to [19] or [20], wherein the heme is metmyoglobin heme. [22] The method according to [19] or [20], wherein the heme is methemoglobin heme.
  • a crushed cell of Bacillus selected from the group consisting of Bacillus subtilis, Bacillus amyloliquefaciens, Bacillus natto, Bacillus thuringiensis and Bacillus mycoides, which is characterized in that it acts on meat or processed meat products. To improve color tone.
  • a blood circulation disorder a hypoxia or a hypoxia state, a disease accompanied by one or more of these conditions or symptoms, Or a method for preventing or treating a disease caused by one or more of these disease states or symptoms.
  • DLD dehydrolipoyl dehydrogenase
  • the R, G, and B values were 178, 104, and 102 for the negative control (left) and 210, 104, and 114 for the purified recombinant DLD (right). It is a figure which shows the result of the meat color development test using recombinant DLD.
  • the R, G and B values are 201, 117 and 123 for sample 1, 185, 121 and 105 for sample 2, 217, 97 and 93 for sample 3, 160, 108 and 83 for sample 4, and 156 for sample 5. 84 and 65. It is a figure which shows the result of the meat color development test using recombinant DLD.
  • the R, G and B values are 168, 122 and 106 for sample 1, 185, 152 and 145 for sample 2, 172, 123 and 119 for sample 3, 187, 153 and 144 for sample 4, and 173 for sample 5.
  • 148 and 123 It is a figure which shows the elution pattern and metmyoglobin reductase activity which were obtained by the phenyl chromatography in the refinement
  • Marker MDH / pET20b / BL21 (DE3pLysS) (Bacillus subtilis), yodC / pET20b / BL21 (DE3pLysS) (Bacillus subtilis), pET20b / BL21 (DE3pLysS), MDH / pET20b / BL21 (DE3pLysS) , YodC / pET20b / BL21 (DE3pLysS) (natto), marker. It is a figure which shows the result of the meat color development test using refined recombinant yodC and recombinant MDH.
  • heme refers to a complex (iron porphyrin complex) composed of an iron atom and a porphyrin.
  • Heme protein is a general term for proteins containing heme.
  • heme reductase refers to a protein that exhibits a reducing activity on iron atoms in heme. The strength (degree) of the activity is not particularly limited. Typically, heme reductase exhibits an activity of reducing a meth compound of a heme protein. When attention is paid to this activity, heme reductase can also be referred to as heme protein reductase.
  • metalmyoglobin reductase refers to a protein that exhibits an activity of reducing metmyoglobin, which is a myoglobin derivative.
  • the strength (degree) of the activity is not particularly limited. Therefore, even if the other enzyme activity is more dominant, it corresponds to “metmyoglobin reductase” in the present specification as long as it shows a reducing activity against metmyoglobin.
  • the “color tone improving agent” refers to a substance or composition used for improving the “color tone” in which the metal porphyrin complex is involved in the formation thereof.
  • the metalloporphyrin complex there are a copper porphyrin complex, a cobalt porphyrin complex, an iron porphyrin complex, and the like, but there is no particular limitation as long as the metal in the porphyrin complex can be reduced.
  • a preferred metal porphyrin complex is an iron porphyrin complex, and a composition containing the iron porphyrin complex is a heme protein.
  • meat or processed meat products can be mentioned.
  • the color tone improving agent of the present invention improves the target color tone by color development, color development promotion and / or fading prevention.
  • the color tone improving agent of the present invention can improve the color tone by reducing the metal in the metal porphyrin complex.
  • dye can be maintained by preventing the oxidation of the pigment
  • a preferred object to which the color tone improving agent of the present invention is applied is meat or processed meat products. That is, in a preferred embodiment, the color tone improving agent of the present invention is used for coloring, maintaining color tone, or preventing fading of meat or processed meat products. “Meat coloring” means that a red color characteristic of meat or processed meat is developed.
  • the first aspect of the present invention relates to a reducing agent.
  • the reducing agent of the present invention contains heme reductase produced by Bacillus as an active ingredient.
  • Bacillus subtilis As a result of large-scale screening by the present inventors, Bacillus subtilis, Bacillus amiloliquefaciens, Bacillus natto, which are microorganisms belonging to the genus Bacillus, It has been clarified that Bacillus thuringiensis and Bacillus mycoides produce polypeptides having excellent metmyoglobin reducing activity.
  • metmyoglobin reductase produced by any of these microorganisms is used.
  • These microorganisms must be obtained from, for example, public preservation institutions (NBRC (National Institute for Product Evaluation and Technology), JCM (RIKEN BioResource Center), ATCC (American Type Culture Collection), etc.) Can do.
  • Bacillus natto is commercially available and can be easily obtained. It can also be obtained from the Miyagino Natto fungus factory.
  • the reducing agent of the present invention includes active ingredients (polypeptides), excipients, buffers, suspending agents, stabilizers, pH adjusting agents, preservatives, preservatives, fragrances, thickeners, fats and oils, brighteners. , Binders, binder reinforcing agents, emulsion stabilizers, physiological saline, and the like.
  • active ingredients polypeptides
  • excipients starch, dextrin, maltose, trehalose, lactose, D-glucose, sorbitol, D-mannitol, sucrose, glycerol and the like can be used.
  • Phosphate, citrate, acetate, etc. can be used as the buffer.
  • pH adjusters include itaconic acid, succinic acid, tartaric acid, fumaric acid, citric acid, malic acid, adipic acid, gluconic acid, pyrophosphoric acid, acetic acid, lactic acid, ⁇ -ketoglutaric acid, phytic acid and other organic acids or organic acid salts
  • Inorganic acids such as carbonic acid or inorganic acid salts; acidic amino acids such as aspartic acid and glutamic acid; basic amino acids such as arginine, lysine and histidine can be used.
  • preservatives phenol, benzalkonium chloride, benzyl alcohol, chlorobutanol, methylparaben, and the like can be used.
  • preservatives ethanol, benzalkonium chloride, paraoxybenzoic acid, chlorobutanol and the like can be used.
  • Perfumes include animal perfumes such as musk, civet, castorium, ambergris; anise essential oil, angelica essential oil, ylang ylang essential oil, iris essential oil, fennel essential oil, orange essential oil, cananga essential oil, caraway essential oil, cardamom essential oil, guayakwood essential oil, cumin essential oil , Black letter essential oil, cinnamon essential oil, cinnamon essential oil, geranium essential oil, copaiba balsam essential oil, coriandel essential oil, perilla essential oil, cedarwood essential oil, citronella essential oil, jasmine essential oil, gingergrass essential oil, cedar essential oil, spearmint essential oil, western peppermint essential oil Essential Oil, Tuberose Essential Oil, Clove Essential Oil, Orange Flower Essential Oil, Winter Green Essential Oil, Truval Sam Essential Oil, Batule Essential Oil, Rose Essential Oil, Palmarosa Essential Oil, Agate Essential Oil, Hiba Essential Oil, Sandalwood Essential Oil, Petit Glen Essential Oil, Bay Essential Oil, Vetiva Essential Oil
  • natural polymers such as fucoidan and carrageenan
  • seed exudates such as guar gum
  • resin-like adhesives such as gum arabic
  • microorganism-generated adhesive substances such as xanthan gum.
  • starch-based or cellulose-based natural polymer derivative examples include starch-based starch-based starch-based or cellulose-based natural polymer derivatives such as methylcellulose.
  • oils and fats include avocado oil, linseed oil, almond oil, fennel oil, sesame oil, olive oil, orange oil, orange rafa oil, cacao oil, chamomile oil, carrot oil, cucumber oil, coconut oil, sesame oil, rice oil, Safflower oil, shea fat, liquid shea fat, soybean oil, camellia oil, corn oil, rapeseed oil, persic oil, castor oil, sunflower oil, camellia seed oil, cottonseed oil, peanut oil, turtle oil, mink oil, egg yolk oil, Palm oil, palm kernel oil, owl, coconut oil, beef tallow, lard, etc. can be used.
  • oils and fats modified by hydrogenation, fractionation, transesterification and the like can be used.
  • waxes whether plant or animal
  • waxes such as beeswax, carnauba wax, whale wax, lanolin, liquid lanolin, reduced lanolin, hard lanolin, candelilla wax, montan wax, shellac wax, rice wax, squalene, squalane, pristane, etc.
  • Mineral oils such as liquid paraffin, petrolatum, paraffin, ozokelide, ceresin, microcrystalline wax and the like can be used.
  • soybean protein, egg protein, milk protein, blood protein, casein, starch, transglutaminase and the like can be used.
  • a polymerized phosphate or the like can be used as the binder reinforcing agent.
  • emulsion stabilizer sodium caseinate or the like can be used.
  • Other additives include lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, oleic acid, linoleic acid, linolenic acid, docosahexaenoic acid, eicosapentaenoic acid, 1 2-hydroxystearic acid, undecylenic acid, tall oil, lanolin Natural fatty acids such as fatty acids; fatty acids such as synthetic fatty acids such as isononanoic acid, caproic acid, 2 ⁇ ⁇ -ethylbutanoic acid, isopentanoic acid, 2-methylpentanoic acid, 2-ethylhexanoic acid and isopentanoic acid.
  • the reducing agent of the present invention is composed of a crushed cell of a microorganism that produces the polypeptide of the present invention. That is, the reducing agent of this aspect includes a microbial cell disruption product of a predetermined microorganism.
  • the microbial cell disruption liquid (usually obtained by a series of steps consisting of microbial culture, collection and microbial cell disruption) can be used as it is as a microbial cell disruption product.
  • the cell disruption solution can be used as a cell disruption product after being subjected to further processing (purification, freezing, drying, addition of other components, etc.).
  • the active ingredients derived from Bacillus microorganisms are dehydrolipoyl dehydrogenase (DLD) and nitroreductase (yodC).
  • DLD dehydrolipoyl dehydrogenase
  • yodC nitroreductase
  • a reducing agent containing dehydrolipoyl dehydrogenase or nitroreductase derived from a Bacillus microorganism as a heme reductase In a preferred embodiment, both dehydrolipoyl dehydrogenase and nitroreductase are included.
  • the amino acid sequence of dehydrolipoyl dehydrogenase is shown in SEQ ID NO: 3.
  • the amino acid sequence of nitroreductase is shown in SEQ ID NO: 12.
  • an enzyme prepared by genetic engineering that is, a heme reductase comprising a recombinant protein is used.
  • a reducing agent comprising recombinant dehydrolipoyl dehydrogenase and / or recombinant nitroreductase as an active ingredient is provided.
  • Recombinant protein refers to a protein that is artificially produced by a genetic recombination technique.
  • the second aspect of the present invention relates to the use of the reducing agent of the present invention.
  • Applications provided by the present invention are broadly classified into color improvement and other applications.
  • the former use that is, use as a color tone improving agent is important.
  • Those in which the metal porphyrin complex is involved in the formation of the color tone are the targets of the color tone improvement according to the present invention.
  • Preferred objects include meat and processed meat products.
  • the color of the meat reflects the proportion of myoglobin derivatives present in the meat.
  • the reducing agent of the present invention contains heme reductase (preferably metmyoglobin reductase) as an active ingredient.
  • the reducing agent of the present invention when allowed to act on meat, metmyoglobin in the meat is reduced and reduced myoglobin is produced. Reduced myoglobin is converted to oxymyoglobin which exhibits a bright red color tone by oxygenation.
  • the reducing agent of the present invention is allowed to act, the amount of metmyoglobin in the meat or processed meat product is reduced, and as a result, oxymyoglobin is generated, resulting in an improvement in color tone.
  • the oxidation of reduced myoglobin or oxymyoglobin is prevented, and as a result, the effect of preventing fading of meat can be expected.
  • the reducing agent of the present invention not only color development but also color tone maintenance, that is, an effect of preventing fading can be exhibited.
  • the target of action when the anti-fading effect is exhibited is a metal porphyrin complex, and is not particularly limited as long as the metal in the complex can be oxidized.
  • a preferred metalloporphyrin complex is an iron porphyrin complex. Therefore, a preferable target when antifading effect is expected is a heme protein containing an iron porphyrin complex.
  • the most preferred subject is a reduced myoglobin or oxymyoglobin, and meat or processed meat containing either or both of these two myoglobins (reduced myoglobin, oxymyoglobin).
  • the reducing agent of the present invention is used for improving the color tone of meat or processed meat products (that is, the color tone improving method using the reducing agent of the present invention as a color tone improving agent)
  • the reducing agent of the present invention is used for processing meat or meat.
  • the goods will be processed.
  • the treatment conditions may be such that the metmyoglobin reductase constituting the reducing agent works well (preferably the optimum conditions).
  • Preferred treatment conditions can be easily specified or set by a preliminary experiment using processed meat or processed meat.
  • specific examples of the treatment method when the microbial cell disruption solution is used for improving the color tone of meat are shown.
  • a cell disruption solution of a predetermined microorganism (Bacillus genus microorganism that produces metmyoglobin reductase) is prepared, and the pH is adjusted to around 5.5. This is to reproduce the pH in the meat. Subsequently, contact with meat at 4 ° C.
  • the contact method includes a method of injecting and tumbling a suspension for block meat, and a method of mixing the suspension for minced meat. By performing a suitable contact method, the suspension penetrates the whole meat.
  • the processing temperature color development is possible even at around 40 ° C, but considering the quality of meat, it is preferable to carry out at around 4 ° C or around 4 ° C.
  • the type of meat to be processed is not limited. As described above, the color of the meat reflects the proportion of the myoglobin derivative present in the meat.
  • the reducing agent of the present invention affects the proportion of myoglobin derivative in meat and promotes color development. Therefore, the present invention can be applied to all meat or processed meat products containing myoglobin. Specifically, livestock meat such as pork, beef and chicken or processed products thereof, or fish meat such as tuna, bonito and salmon, or processed products thereof can be processed. However, it can be said that meat having a red color is a preferable processing target.
  • the processed meat food which is one of the treatment targets, is not particularly limited as long as it is a food manufactured using meat as a raw material. Examples of processed meat products include raw ham, sausage, and roast ham. There is no particular limitation on the shape of the processed meat or processed meat food. Block meat, minced meat, etc. can be selected as appropriate according to the application.
  • the reducing agent of the present invention is used in combination with a substance that exhibits an action of substituting iron in the heme group of myoglobin with zinc (hereinafter referred to as “iron / zinc substitute substance”).
  • iron / zinc substitute substance a substance that exhibits an action of substituting iron in the heme group of myoglobin with zinc
  • ferrochelatase can be used as the iron / zinc substitute substance (see JP-A-2006-61016 for details).
  • Ferrochelatase is present in animal tissues (particularly built-in), plant tissues (mushrooms, bean sprouts, peas, etc.), yeasts (bakers yeast, beer yeast, sake yeast, wine yeast, shochu yeast, etc.), bacteria and the like. Ferrochelatase extracted from these natural products can be used. In addition, since the mitochondrial fraction contains a large amount of ferrochelatase, it is particularly preferable to use the mitochondrial fraction. Saccharomyces genus yeast (beer yeast, baker's yeast, sake yeast, shochu yeast, etc.) can also be used as the iron / zinc substitute substance (see JP-A-2005-87058 for details).
  • the reducing agent of the present invention is used in combination with an iron / zinc substitute.
  • the color tone improving agent of the present invention will be provided as a compounding agent obtained by mixing the reducing agent of the present invention and an iron / zinc substitute substance.
  • the color tone improving agent of the present invention can be provided in the form of a kit comprising the reducing agent (first component) of the present invention and an agent (second component) containing an iron / zinc substitute substance.
  • the processing target is processed simultaneously or separately by the first component and the second component.
  • “Simultaneous” here does not require strict simultaneity. Therefore, it is necessary to use both elements, such as using both elements after mixing them, such as when using them after mixing them. The case of being carried out under a condition without substantial time difference is also included in the concept of “simultaneous” here.
  • the active ingredient (polypeptide) and the above additives excipient, buffer, suspending agent, stabilizer, pH adjusting agent, preservative, preservative, flavoring agent
  • seasonings spices, masking agents, softeners and the like
  • soy sauce, miso, vinegar, sake, miso, salt, bonito, kombu, etc. meat extract, vegetable extract and the like can be used.
  • Spices include pepper, laurel, thyme, clove, oregano, octagon, yam, sage, parsley, nutmeg, mustard, ginger, cinnamon, basil, paprika, rosemary, spearmint, lemongrass, tarragon, chervil, cardamom, cumin, Coriander, dill, fennel, marjoram, allspice, etc. can be used.
  • the masking agent saccharides such as sucrose and cyclodextrin; herbs such as clove, allspice, bay leaves, cinnamon, and nutmeg can be used.
  • proteases such as protease, trypsin, chymotrypsin, papain, bromelain and ficin can be used.
  • the reducing agent of the present invention can be used in fields other than meat.
  • the reducing agent of the present invention may be used for the purpose of reducing or preventing (including preventing discoloration) a composition containing a hemoprotein other than myoglobin (for example, hemoglobin).
  • the reducing agent of the present invention can be expected to be applied to the measurement of hemoglobin concentration and the treatment of hemoglobinemia. That is, the reducing agent of the present invention is also useful as an active ingredient for reagents and pharmaceuticals.
  • the cyanmethemoglobin method is frequently used as a method for measuring blood hemoglobin concentration. In this method, a mixture of potassium ferricyanide and potassium cyanide is allowed to act on methemoglobin to obtain cyan methemoglobin, which is then measured by a colorimetric method. If the reducing agent of the present invention is used, the amount of methemoglobin or the total amount of hemoglobin in blood or the like can be measured as an alternative method.
  • Methemoglobinemia develops because the methemoglobin is excessively accumulated in the body for some reason, resulting in an oxygen-deficient state in the body.
  • intravenous injection of methylene blue is most effective.
  • methylene blue cannot be used when cyan poisoning is accompanied because it promotes cyan poisoning.
  • Other treatment methods include oral administration of ascorbic acid and intravenous injection (can also be administered in combination with riboflavin), but neither method is very effective.
  • the reducing agents of the present invention can provide new therapeutic strategies that replace these conventional therapies.
  • the treatment method using the reducing agent of the present invention can also be applied to patients who cannot use methylene blue (such as those who develop cyan poisoning).
  • G6PD glucose-6-phosphate dehydrogenase
  • G6PD deficiency is one of the most common disorders worldwide. About 10% of black men in the United States are affected. There are also many affected individuals among Africans and Mediterranean residents. Therefore, a significant number of subjects are at risk for (oxidative) drug-induced methemoglobinemia. Administration of methylene blue itself to such patients is ineffective (since their G6PD deficiency causes NADPH deficiency) and even the potential for adverse effects exists.
  • the reducing agent of the present invention can be expected to have an effect on the same patient.
  • the reducing agent of the present invention can exert pharmacological and physiological effects such as reduction of the burden on the heart due to abnormal heart rate, blood pressure, and cardiac output, and increased metabolism of each tissue.
  • the medicament containing the reducing agent of the present invention can be used as a durability enhancer that enhances the durability of a living body, for example, in physiological conditions with high oxygen demand of each tissue, for example, in an environment such as intense labor or exercise. I can expect.
  • heart failure cardiomyopathy, myocarditis, myocardial infarction, pericarditis, perimyocarditis, transient ischemic attack, coronary heart disease, congenital anomalies with left-right vascular shunt ( vitia), Fallot tetralogy / pentadism, Eisenmengel syndrome, shock, peripheral ischemia, arterial occlusive disease (AOD), peripheral AOD (pAOD), carotid artery stenosis, renal artery stenosis, microcirculatory disorder in the brain (Arteriole sclerosis), intracerebral hemorrhage, cerebral venous and intracranial sinus thrombosis, vascular dysplasia, subarachnoid hemorrhage, vascular dementia, Biswanger's disease, subcortical atherosclerotic encephalopathy, embolism Multiple cortical infarction, vasculitis, diabetic retinopathy, prognosis of anemia
  • the medicament of the present invention before, during and / or after the occurrence of an ischemic event in order to supply oxygen to the ischemic tissue to prevent ischemic cell damage (and protect the tissue from reperfusion injury) can also be administered.
  • a vasoactive oxygen carrier eg, an oxygen carrier based on hemoglobin
  • a vasoactive carrier heme protein-based oxygen carrier, etc.
  • gaseous nitric oxide heme protein-based oxygen carrier, etc.
  • a vasoactive carrier may be administered to the mammal to exert the desired therapeutic effect.
  • Mammals to be treated by the methods described herein may have ischemic heart disease prior to treatment and have an acute ischemic condition (e.g., myocardial infarction, stroke, or renal ischemia).
  • an acute ischemic condition e.g., myocardial infarction, stroke, or renal ischemia.
  • vasospasm may be shown in organs (brain, heart, kidney, liver, gastrointestinal tract, etc.).
  • the medicaments of the present invention can also be used to treat hypoxic tissue in vertebrates resulting from a variety of causes, including reduced red blood cell flow through part or all of the circulatory system, anemia and stroke.
  • the medicament of the present invention may be used prophylactically.
  • the medicament of the present invention can be applied for the purpose of treating or preventing hypoxia resulting from partial arterial occlusion or partial blockage in the microcirculation.
  • hemoglobin for the administration of hemoglobin, reference is made to US patent application Ser. No. 08 / 409,337.
  • the dosage and administration period of the medicament of the present invention are not particularly limited. It can be appropriately selected depending on the dosage form, age, weight, symptoms and the like.
  • the administration target of the medicament of the present invention is not limited.
  • administration subjects include humans and non-human mammals (including pet animals, domestic animals, laboratory animals. Specifically, for example, monkeys, mice, rats, guinea pigs, hamsters, monkeys, cows, pigs, goats, sheep, horses. , Chickens, sheep, whales, dolphins, dogs, cats, etc.).
  • the subject to be treated may be normal blood volume, excessive blood volume, or excessive blood volume before, during and / or after administration of the medicament of the present invention.
  • the dosage form of the medicament of the present invention is not particularly limited. It can be administered by any oral or parenteral administration method.
  • Parenteral administration as used herein is not particularly limited, but includes, for example, intravenous, intramuscular, intraarterial, intrathecal, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, percutaneous Mention may be made of intraductal, subcutaneous, subepidermal, intra-articular, subcapsular, subarachnoid, intrathecal, and intrasternal injection and infusion. Intravenous injection is used as a preferred method of administration.
  • formulations suitable for oral administration include, for example, tablets, capsules, powders, fine granules, granules, liquids, and syrups.
  • preparations suitable for parenteral administration include injections, suppositories, inhalants, patches and the like.
  • the medicament of the present invention may be produced by adding pharmacologically and pharmaceutically acceptable additives as necessary.
  • pharmacologically and pharmaceutically acceptable additives include, for example, excipients, disintegrants or disintegration aids, binders, lubricants, coating agents, dyes, diluents, bases, and dissolution. Examples include agents or solubilizers, isotonic agents, pH adjusters, stabilizers, propellants, and pressure-sensitive adhesives.
  • Preparations suitable for oral or parenteral administration include excipients such as glucose, lactose, D-sorbitol, D-mannitol, starch, kaolin, xylitol, dextrin, corn starch, potato starch, hydroxypropyl cellulose, or crystalline cellulose Agents; disintegrating agents or disintegrating aids such as carboxymethylcellulose, starch, or carboxymethylcellulose calcium; binders such as hydroxypropylcellulose, hydroxypropylmethylcellulose, polyvinylpyrrolidone, or gelatin; light anhydrous silicic acid, synthetic aluminum silicate, stearic acid , Lubricants such as calcium stearate, magnesium stearate or talc; hydroxypropyl methylcellulose, sucrose, polyethylene glycol or titanium oxide Coating agent; Vaseline, liquid paraffin, polyethylene glycol, gelatin, kaolin, glycerin, purified water, hard fat, etc.
  • excipients such as glucose, lactos
  • base such as Freon, diethyl ether, propellant such as compressed gas, etc .
  • propellant such as compressed gas, etc .
  • Adhesives such as polyisobutylene and polybutene
  • additives for preparation such as a base cloth such as cotton cloth or plastic sheet can be added.
  • Preparations suitable for injection include aqueous solutions such as distilled water for injection, physiological saline, propylene glycol, or solubilizers or solubilizers that can constitute injectable solutions for use; glucose, sodium chloride, D-mannitol, glycerin Tonicity agents such as: organic acids (itaconic acid, succinic acid, tartaric acid, fumaric acid, citric acid, malic acid, adipic acid, gluconic acid, pyrophosphoric acid, lactic acid, ⁇ -ketoglutaric acid, phytic acid, etc.) or organic PH adjusters such as acid salts, inorganic acids (carbonic acid, etc.) or salts of these inorganic acids, acidic amino acids (aspartic acid, glutamic acid, etc.), basic amino acids (arginine, lysine, histidine, etc.); soothing agents such as lidocaine Additives such as may be added.
  • aqueous solutions such as distilled water for
  • hemoglobin One of the typical objects of action of the medicament of the present invention is hemoglobin, but the hemoglobin here is not particularly limited. Natural (unmodified) hemoglobin, genetically modified hemoglobin, intramolecular or intermolecular crosslinking, polymerization, or addition of chemical groups (e.g. polyalkylene oxide, polyethylene glycol, superoxide dismutase or other adducts) Hemoglobin modified by a chemical reaction such as
  • the medicament of the present invention can also be applied to hemoproteins other than the above hemoglobin. It can also be applied to metal porphyrin complexes whose structure is similar to that of the heme protein.
  • a further aspect of the present invention provides a method for producing the reducing agent of the present invention.
  • a step (step (1)) of culturing a Bacillus microorganism that produces heme reductase, preferably metmyoglobin reductase, under the conditions for producing the enzyme, and recovering the enzyme from the culture product Step (step (2)) is performed.
  • any microorganism selected from the group consisting of Bacillus subtilis, Bacillus amyloliquefaciens, Bacillus natto, Bacillus thuringiensis, Bacillus mycoides may be used as the microorganism belonging to the genus Bacillus in step (1).
  • the culture method and culture conditions are not particularly limited as long as the target enzyme is produced. That is, on the condition that a polypeptide exhibiting heme reduction activity is produced, a method and culture conditions suitable for the culture of the microorganism to be used can be appropriately set.
  • examples of the culture conditions include a medium, a culture temperature, and a culture time.
  • a medium capable of growing the microorganisms to be used is employed.
  • carbon sources such as arabinose, xylose, glucose, fructose, galactose, sucrose, gentiobiose, soluble starch, glycerin, dextrin, molasses, organic acids, ammonium sulfate, ammonium carbonate, ammonium phosphate, ammonium acetate, or corn gluten
  • Nitrogen sources such as meal, soy flour, casamino acid, coffee lees, cottonseed lees, peptone, yeast extract, corn steep liquor, casein hydrolyzate, bran, meat extract, and potassium, magnesium, sodium, phosphate , Manganese salts, iron salts, zinc salts and other inorganic salts can be used.
  • vitamins, amino acids and the like may be added to the medium.
  • the pH of the medium is adjusted to, for example, about 3 to 8, preferably about 5 to 7, and the culture temperature is usually about 10 to 50 ° C., preferably about 25 to 35 ° C. for 1 to 15 days, preferably 3 to Culture under aerobic conditions for about 7 days.
  • the culture method for example, stationary culture, shaking culture, and aerobic deep culture using jar fermenter can be used.
  • the target enzyme is recovered from the culture product (step (2)).
  • a crushed microbial cell is prepared (step (2-2)). Centrifugation, filter filtration, and the like can be used to collect bacterial cells.
  • a solid component other than cells such as when a solid medium is used, the solid component may be removed in advance.
  • mechanical crushing processing using a French press, dynomill, etc., ultrasonic processing, freeze crushing processing, etc. can be used.
  • the prepared microbial cell crushed material is used as the reducing agent of the present invention as it is (that is, without special treatment) or after additional treatment.
  • additional treatment here are concentration (concentration with an ultrafiltration membrane, etc.), purification (salting out, various chromatographies, etc.), addition of other components, dilution and drying. Two or more processes may be performed as the additional process.
  • the final form may be liquid or solid (including powder).
  • Meat coloring test 1 0.1 g of the lyophilized powder was dissolved in 50 ⁇ L of 0.5 M phosphate buffer (pH 5.5). Subsequently, 2 g of pork thigh meat minced was mixed with the above-mentioned powdered solution and 50 ⁇ L of 4% (w / v) myoglobin, degassed and sealed, and left at 4 ° C. for 17 hours. The red color change (degree of color development) of the meat was visually observed. As a control test, the same test was performed for the sample without adding the powder solution and the sample obtained by boiling the powder solution for 10 minutes. The results are shown in Table 2.
  • Meat coloring test 2 10 mg of the frozen powder (Bacilli subtilis crushed material) was dissolved in 100 ⁇ L of 0.5 M phosphate buffer (pH 5.5). To the lysate was added 10 mg of pork thigh minced freeze-dried powder, 30 ⁇ L of 4% (w / v) myoglobin, 30 ⁇ L of 0.2M NADH, 400 ⁇ L of sterilized water, and left at room temperature for 30 minutes. Subsequently, the reaction solution was centrifuged at 15,000 rpm for 15 minutes, and the supernatant was collected. The absorption spectrum of the obtained supernatant at a wavelength of 700 nm to 400 nm was measured using a spectrophotometer.
  • Meat coloring test 3 3. According to the method shown in 1. A meat color development test was performed using each of the freeze-dried powders prepared in (1). As a control, the same test was carried out on a sample to which no powder solution was added. The absorbance at a wavelength of 580 nm of each sample is shown in FIG. It can be seen that all samples tested developed more intensely than the control after 5 days.
  • the metmyoglobin reductase activity was measured as follows. First, 1. Each freeze-dried powder prepared in 1 was dissolved in water to 10 mg / mL to prepare an enzyme solution. Subsequently, 100 ⁇ L of 0.1% (w / v) myoglobin and 150 ⁇ L of enzyme solution were added to 200 ⁇ L of 0.1 M phosphate buffer (pH 5.5), and preincubated at 30 ° C. for 5 minutes. Then, 50 ⁇ L of 1 mM NADH was added, and the change in absorbance at a wavelength of 406 nm was measured for 5 minutes. Activity was expressed in units (U).
  • the amount of enzyme that reduces metmyoglobin equivalent to 1 ⁇ M per minute under these conditions was 1 U.
  • the enzyme activity of lyophilized powder of Pichia farinose IAM12223 was also examined.
  • the obtained ammonium sulfate salting-out sample (5 mL) was subjected to DEAE chromatography (DEAE column (HiTrap TM DEAE FF (5 mL); GE Healthcare)) under the following conditions. As a result, the protein yield was 45.4%.
  • FIG. 4 shows the elution pattern and metmyoglobin reductase activity obtained by the DEAE chromatography. The activity was confirmed to decrease A406, which is the maximum absorption of metmyoglobin.
  • DEAE Fr. No. 61-63 which had particularly high activity, was subjected to hydroxyapatite chromatography (hydroxyapatite column (1 ⁇ 5 cm) (Type I 20 ⁇ m; Bio-Rad)) under the following conditions. Was purified.
  • the protein yield of DEAE Fr. No. 61-63 by hydroxyapatite chromatography was 98.5%.
  • FIG. 5 shows the elution pattern and metmyoglobin reductase activity obtained by subjecting DEAE Fr. No. 61-63 to hydroxyapatite chromatography.
  • Hyapa Fr. No. 19 having a particularly high specific activity in FIG. 5 was dialyzed with 20 mM KPB (pH 6) and then subjected to gel filtration chromatography (Superfiltration TM 75; GE Healthcare) under the following conditions. (Gel filtration chromatography conditions) Carrier: Super dex 200 (120mL) Charge: Hiapa Fr.19 Buf A: 20mM KPB (pH6) Flow rate: 1mL / min Fraction: 5mL
  • Fig. 6 shows the elution pattern and metmyoglobin reductase activity obtained by subjecting Hyapa Fr. No. 19 to gel filtration chromatography. Furthermore, the gel filtration Fr.No.12-16 including the gel filtration Fr.No.13-15 having a particularly high specific activity in FIG. 6 was subjected to SDS-PAGE, and a band was confirmed (FIG. 7: gel filtration Fr. .No.12-16). A single band was obtained for gel filtration Fr. No. 13-15 in FIG.
  • Meat coloring test by DLD A meat coloring test was performed on purified DLD. Using purified DLD frozen powder samples, meat samples were prepared as follows (Table 3) and stored overnight at 4 ° C. for comparison (FIGS. 9 and 10).
  • FIG. 9 shows meat samples (meat samples 1 to 4) with different amounts of enzyme side by side.
  • DLD contributes to the improvement of meat color.
  • FIG. 10 compares the color of meat with and without NADH (from left to right, no frozen powder (meat sample 1), NADH (meat sample 2), no NADH (meat sample 5)). It was confirmed that the color was sufficiently developed even without NADH. This is probably because NADH is sufficiently contained in the meat.
  • Table 4 shows the Km values of other origins of Diapholase having high affinity with potassium ferricyanide.
  • Table 4 shows that DLD obtained from Bacillus subtilis has higher affinity for potassium ferricyanide than DLD derived from C. kluyveri.
  • the optimum temperature of DLD was measured as follows. Mix 0.5M citrate buffer (pH 6) 50 ⁇ L, 2mM potassium ferricyanide 50 ⁇ L, MilliQ water 100 ⁇ L and 1mM NADH 100 ⁇ L, add 200 ⁇ L of enzyme sample to each sample pre-incubated for 5 minutes, change the absorbance of A420 for 5 minutes The reaction was confirmed by measuring. The results are shown in FIG. From this, it was confirmed that the optimum temperature was 40 ° C. and it was deactivated at 50 ° C.
  • the thermal stability was measured as follows.
  • the enzyme sample was treated in advance at each temperature (30 ° C., 40 ° C., 60 ° C.) for 30 minutes and then ice-cooled to prepare a treated sample.
  • To this treated sample 30 ⁇ L, add 0.5 M citrate buffer (pH 6.0) 50 ⁇ L, 2 mM potassium ferricyanide 50 ⁇ L and MilliQ water 270 ⁇ L and incubate at 30 ° C. for 5 minutes, then add 100 ⁇ L of 1 mM NADH solution, and adjust the absorbance of A420. Changes were measured at 1 second intervals for 30 seconds. From the results in FIG. 16, it was confirmed that there was a high residual activity even at 60 ° C.
  • DLD Large-scale expression system for DLD
  • the DLD gene was obtained from Bacillus subtilis, and studies were made to construct a large-scale expression system in E. coli.
  • Genomic extraction from Bacillus subtilis strain 7417 Genome extraction from Bacillus subtilis strain 7417 was performed as follows. Bacillus subtilis 7417 strain was inoculated into a liquid medium (pH 6.5) containing 0.5% peptone, 1.0% yeast extract and 1.0% glucose, and cultured overnight at 30 ° C. and 300 rpm. Genomic DNA was extracted from the obtained culture using QIAquick TM Gel Extraction Test Kit (manufactured by QIAGEN).
  • Amplification of DLD gene by PCR DLD gene amplification by PCR was performed as follows. Mix 10 ⁇ buffer 5 ⁇ L, dTNP 4 ⁇ L, Bacillus subtilis genome 1 ⁇ L, the following 10 ⁇ M primers (2 types) 5 ⁇ L each, EX. Taq (DNA polymerase, manufactured by Takara Bio Inc.) 0.1 ⁇ L, and add purified water to this 50 ⁇ L. In addition, 2 patterns (pattern 1, pattern 2) were prepared as primer combinations. The PCR reaction was performed in two steps. First, as step 1, heat denaturation was performed at 98 ° C. for 30 seconds.
  • step 2 the following cycle (thermal denaturation: 98 ° C., 10 seconds, annealing: 46 ° C., 30 seconds, extension reaction: 72 ° C., 90 seconds) was performed 25 cycles to obtain a PCR product.
  • TA cloning of DLD gene was performed as follows. To 3 ⁇ L of the PCR product obtained by PCR, add 2 ⁇ Liation buffer 5 ⁇ L, pGEM-T easy vector 1 ⁇ L, T4 ligase 1 ⁇ L, and react overnight at 4 ° C. Then add this to competent cell DH5 ⁇ , Heat-shocked at 42 ° C. for 30 seconds and ice-cooled for 2 minutes. To this, 150 ⁇ L of SOC medium was added and incubated at 37 ° C. for 20 minutes. The entire amount was cultured on an LB / Amp medium plate to obtain colonies.
  • DLD was cloned into a vector as follows.
  • the culture obtained by TA cloning was subjected to plasmid extraction using GenElute TM plasmid Miniprep Kit (manufactured by SIGMA).
  • GenElute TM plasmid Miniprep Kit manufactured by SIGMA
  • Nde I To the obtained plasmid extract, 10 ⁇ buffer and Nde I were added and treated at 37 ° C. for 2 hours.
  • 1 ⁇ L of BamH I was added to this and treated at 37 ° C. for 1 hour as an inserted gene.
  • the pET20b vector was prepared by adding 1 ⁇ L of BamH I and treating at 37 ° C. for 1 hour.
  • samples were prepared as follows (unit: ⁇ L) and incubated at 16 ° C. for 30 minutes. Then, add the entire amount to competent cell DH5 ⁇ and dissolve on ice for 1 hour. Heat shock (42 ° C, 30 seconds), add SOC medium, incubate at 37 ° C for 20 minutes, and plate on LB / amp medium. .
  • a beads shocker MULTI-BEADS SHOCKER, manufactured by Yasui Instruments Co., Ltd.
  • FIG. 19 shows the metmyoglobin reducing activity of the transformant without His-tag and FIG. 20 with the His-tag.
  • pET20b empty vector and IPTG vector data are also shown. All showed 10 times or more metmyoglobin reducing activity compared to the empty vector. Further, as can be seen by comparing FIG. 19 and FIG. 20, it seems that the control by IPTG is not applied.
  • Meat coloring activity of recombinant DLD The recombinant DLD obtained above was crushed by beads, purified on a Ni-Sepharose column under the following conditions, and dialyzed against 20 mM KPB (pH 6). Meat coloring test 1 and meat coloring test 2 were conducted using the lyophilized product as a sample.
  • Carrier Ni Sepharose (25mL) Sample: About 20mL of crushing supernatant Bind Buf: 20 mM KPB, 0.3 M NaCl (pH 6) Elute Buf: 20 mM KPB, 0.3 M NaCl, 0.4 M imidazole (pH 6) Flow rate: Charge: 5mL / min, others: 10mL / min Fraction: 10mL Programs: (1) Bind Buf wash 6cv, (2) Elute Buf 10% wash 10cv, (3) Elute Buf 100% / 20cv gradient, (4) Elute Buf wash 10cv
  • a product without a frozen powder negative control
  • FIG. Left is negative control
  • right is meat with frozen powder. The color change was verified not only by visual observation but also by the RGB value of the image, but it can be seen that the color tone of the meat was more reddish by the recombinant DLD.
  • the color tone of the meat without heat treatment in FIG. 21 will be described below. Good red color tone was observed in the samples with DLD added (sample (1) and sample (3)). In particular, the color tone of sample (3) to which DLD and sodium nitrite were added was good. In sample (4) to which sodium nitrite and zinc gluconate were added, the color turned brown. Sample (2) to which only sodium nitrite was added showed the same color tone as sample (5) with no additive.
  • Phenyl Fr. No. 26-31 obtained by the above phenyl chromatography was subjected to hydroxyapatite chromatography under the following conditions.
  • FIG. 25 shows the elution pattern and metmyoglobin reductase activity obtained by the hydroxyapatite chromatography.
  • the highly active HiApa Fr.No.16 was dialyzed against 20 mM KPB, 0.3 M NaCl (pH 6) and applied to a Cu affinity column under the following conditions. Chromatography was performed. The elution pattern and metmyoglobin reductase activity obtained by Cu affinity chromatography are shown in FIG. Among these fractions obtained by Cu affinity chromatography, SDS-PAGE was performed on Cu.Fr.No. The results are shown in FIG. (Cu affinity chromatography conditions) Carrier: Cu2 + HP (1mL) Charge: Hi-Apa-Fr.
  • Buf A 20 mM KPB, 0.3 M NaCl (pH 6)
  • Buf B 20 mM KPB, 0.3 M NaCl, 0.4 M imidazole (pH 6)
  • Flow rate 1mL / min
  • FIG. 27 shows the results of SDS-PAGE of Hiapa Fr. No. 13-17 obtained by the above hydroxyapatite chromatography and Cu.Fr. No. 8-15 obtained by Cu affinity chromatography. .
  • N-terminal amino acid sequence analysis was performed by the method described above.
  • the protein with the larger molecular weight was found to be MGNTRKKVSVI. (SEQ ID NO: 8)
  • the smaller molecular weight protein was MTNTLDVLKA (SEQ ID NO: 9).
  • a BLAST search of the protein with the larger molecular weight based on the N-terminal amino acid sequence showed 100% homology with mdh (SEQ ID NO: 10) encoding malate dehydrogenase (MDH).
  • the protein with the smaller molecular weight showed 100% homology with yodC (SEQ ID NO: 11) encoding putative NAD (P) H nitroreductase (Putative NAD (P) H nitroreductase: yodC).
  • the amino acid sequence of yodC is shown in SEQ ID NO: 12. Cu.Fr.No.13 was presumed to be the same as Dehydrolipoyl dehydrogenase from the molecular weight.
  • Mass Expression System for Meat Chromogenic Enzymes (MDH, yodC) Genes were obtained from Bacillus subtilis and Bacillus natto, and a mass expression system for MDH and yodC was constructed. Primers were created from the gene information of Bacillus subtilis and Bacillus natto, and the corresponding genes were excised by PCR. Using pET20b as the vector and BL21 (DE3 pLysS) as the host, 6 ⁇ His-tag was added to the C-terminus of each enzyme for expression. Expression confirmation culture was performed as follows.
  • Carrier Ni Sepharose (25mL) Sample: About 20mL of crushing supernatant Bind Buf: 20 mM KPB, 0.3 M NaCl (pH 6) Elute Buf: 20 mM KPB, 0.3 M NaCl, 0.4 M imidazole (pH 6) Flow rate: Charge: 5mL / min, others: 10mL / min Fraction: 10mL Programs: (1) Bind Buf wash 6cv, (2) Elute Buf 10% wash 10cv, (3) Elute Buf 100% / 20cv gradient, (4) Elute Buf wash 10cv
  • a meat coloring test was conducted as follows.
  • Samples (3) and (5) were prepared for confirming deactivation by heat treatment (100 ° C., 30 minutes). The results are shown in FIG. Although yodC had a meat coloring effect, MDH was not observed at all.
  • the reducing agent of the present invention is particularly useful as a color improving agent for meat or processed meat products. According to the reducing agent of the present invention, it is possible to color meat without using a color former such as nitrite, and therefore it becomes possible to produce a processed meat product with high commercial value.
  • Sequence number 4 Description of artificial sequence: Primer DLD-Nde1-FW SEQ ID NO: 5: Description of artificial sequence: Primer DLD-BamH1-RV SEQ ID NO: 6: Description of artificial sequence: primer DLD-Nde1-FW Sequence number 7: Artificial sequence description: Primer DLD-BamH1-Histag-RV

Abstract

 食肉の発色に効果的な還元剤及びその用途を提供することを課題とする。バチルス属微生物由来のヘム還元酵素を含む還元剤が提供される。好ましくは、バチルス ズブチリス、バチルス アミロリケファシエンス、納豆菌、バチルス スリンギエンシス又はバチルス ミコイデスの菌体破砕物が用いられる。

Description

バチルス属微生物由来の還元剤及びその用途
 本発明はバチルス属微生物由来の還元剤及びその用途に関する。本発明の還元剤は特に、食肉又は食肉加工品の色調を改善する目的において有用である。本出願は、2010年5月12日に出願された日本国特許出願第2010-109779号に基づく優先権を主張するものであり、当該特許出願の全内容は参照により援用される。
 食肉の色は、消費者が肉質を評価するときの重要な因子である。鮮赤色であれば良質な食肉と判断され、褐色であれば古いと見なされるなど、肉色は消費者の食肉に対する購買意欲や評価に大きな影響を与える。
 そして食肉の色調は肉中に存在するミオグロビン誘導体の割合を反映している。このミオグロビンが酸化されるとメトミオグロビンになり、褐色に色調変化し、食肉製品の商品価値を著しく低下させる主因となる。
 食肉の褐色化を防止するため、ハム・ソーセージなど畜肉加工品では、硝酸塩、亜硝酸塩の発色剤が一般的に用いられている。しかし、硝酸塩、亜硝酸塩はヒトにメトヘモグロビン血症を起こす急性毒性を有するので、残存亜硝酸根として70ppm以下になるように使用量が制限されている。また、亜硝酸が第二級アミンと反応して発ガン性物質であるニトロソアミンを形成する可能性が指摘されている。そのため、安全性の観点から、硝酸塩、亜硝酸塩の発色剤に代わる、発色効果のある物質や発色方法の探索が行われてきた。例えばラフィノースを添加することにより褐色化を防止する方法(特許文献1参照)、エノキタケ抽出物を添加することにより褐色化を防止する方法(特許文献2参照)、野菜類に含まれる成分を利用して発色させる方法(特許文献3参照)が見出されている。しかしながら、特許文献1の方法や特許文献2の方法では発色効果が十分でなく、特許文献3の方法では野菜類に含まれる硝酸塩を利用しており安全性に問題がある。
 一方、ミオグロビン中の鉄を亜鉛に置換してミオグロビン亜鉛プロトポルフィンIX錯体にすることによって食肉の色調を維持する方法(特許文献4)やフェロケラターゼ又は酵母を利用してミオグロビン亜鉛プロトポルフィンIX錯体の生成を促進し、食肉の鮮赤色を保持する方法(特許文献5、6)も提案されている。これらの方法では、一旦生成してしまったメトミオグロビンに作用することはできず、発色ないし色調維持効果は限定的である。
特開2003-18976号公報 特開2008-228702号公報 特開2009-165445号公報 特開2006-56908号公報 特開2005-87058号公報 特開2006-61016号公報
 本発明は食肉又は食肉加工品の色調改善に効果的な還元剤及びその用途(亜硝酸塩などの発色剤を用いない色調改善方法など)を提供することを課題とする。
 本発明者らは食肉の色調を改善する物質を見出すべく、バチルス属の微生物を中心にスクリーニングを実施した。スクリーニングの結果、食肉発色効果の高い物質を産生する微生物株が特定された。更に検討を進めた結果、有用性が高いと期待される当該物質はメトミオグロビンに対して還元活性を示すことが明らかとなった。即ち、バチルス属の微生物がメトミオグロビン還元活性により食肉の発色を促す物質を産生することを見出した。当該物質はヘムに対して還元作用を示すものであり、食肉の発色に限らず、ヘム又はヘム蛋白質の還元が有効ないし必要な他の用途においても利用され得る。例えば、メトミオグロビンと類似した構造を有するメトヘモグロビン等を還元する目的で当該物質を利用することが可能である。
 更なる検討の結果、バチルス属微生物由来の上記物質(還元作用を示す物質)がデヒドロリポイルデヒドロゲナーゼとニトロレダクターゼであることが判明した。
 本発明は上記成果に基づいて完成されたものであり、以下の通りである。
 [1]バチルス属微生物由来のヘム還元酵素を含む還元剤。
 [2]前記ヘムがメトミオグロビンのヘムであることを特徴とする、[1]に記載の還元剤。
 [3]前記ヘムがメトヘモグロビンのヘムであることを特徴とする、[1]に記載の還元剤。
 [4]バチルス属微生物の菌体破砕物からなることを特徴とする、[1]~[3]のいずれか一項に記載の還元剤。
 [5]前記バチルス属微生物がバチルス ズブチリス、バチルス アミロリケファシエンス、納豆菌、バチルス スリンギエンシス及びバチルス ミコイデスからなる群より選択される微生物である、[1]~[4]のいずれか一項に記載の還元剤。
 [6]前記ヘム還元酵素がデヒドロリポイルデヒドロゲナーゼ又はニトロレダクターゼである、[1]に記載の還元剤。
 [7]前記ヘム還元酵素として、デヒドロリポイルデヒドロゲナーゼ及びニトロレダクターゼを含む、[1]に記載の還元剤。
 [8]前記デヒドロリポイルデヒドロゲナーゼのアミノ酸配列が配列番号3のアミノ酸配列を含み、前記ニトロレダクターゼのアミノ酸配列が配列番号12のアミノ酸配列を含む、[6]又は[7]に記載の還元剤。
 [9]前記デヒドロリポイルデヒドロゲナーゼ及び前記ニトロレダクターゼがリコンビナントタンパク質である、[6]~[8]のいずれか一項に記載の還元剤。
 [10][1]~[9]のいずれか一項に記載の還元剤からなる色調改善剤。
 [11][1]~[9]のいずれか一項に記載の還元剤と、ミオグロビンのヘム基中の鉄を亜鉛に置換する作用を示す物質を組み合わせてなる色調改善剤。
 [12]前記物質がフェロケラターゼである、[11]に記載の色調改善剤。
 [13]食肉又は食肉加工品の色調の改善用である、[10]~[12]のいずれか一項に記載の色調改善剤。
 [14]デヒドロリポイルデヒドロゲナーゼ及び/又はニトロレダクターゼを含む、食肉又は食肉加工品用の色調改善剤。
 [15]発色作用、発色促進作用及び/又は退色防止作用により色調を改善する、[10]~[14]のいずれか一項に記載の色調改善剤。
 [16][1]~[9]のいずれか一項に記載の還元剤を含むことを特徴とする医薬。
 [17]経口投与製剤である、[16]に記載の医薬。
 [18]非経口投与製剤である、[16]に記載の医薬。
 [19]以下のステップ(1)及び(2)を含む還元剤の製造法:
 (1)ヘム還元酵素を産生するバチルス属微生物を、該酵素が産生される条件下で培養するステップ;
 (2)培養産物から前記酵素を回収するステップ。
 [20]前記ステップ(2)が以下のステップからなる、[19]に記載の製造法:
 (2-1)培養産物から菌体を収集するステップ;
 (2-2)菌体破砕物を調製するステップ。
 [21]前記ヘムがメトミオグロビンのヘムであることを特徴とする、[19]又は[20]に記載の製造法。
 [22]前記ヘムがメトヘモグロビンのヘムであることを特徴とする、[19]又は[20]に記載の製造法。
 [23]前記バチルス属微生物がバチルス ズブチリス、バチルス アミロリケファシエンス、納豆菌、バチルス スリンギエンシス及びバチルス ミコイデスからなる群より選択される微生物である、[19]~[22]に記載の製造法。
 [24][10]~[15]のいずれか一項に記載の色調改善剤を食肉又は食肉加工品に作用させることを特徴とする色調改善方法。
 [25]バチルス ズブチリス、バチルス アミロリケファシエンス、納豆菌、バチルス スリンギエンシス及びバチルス ミコイデスからなる群より選択されるバチルス属微生物の菌体破砕物を食肉又は食肉加工品に作用させることを特徴とする色調改善方法。
 [26][1]~[9]のいずれか一項に記載の還元剤を用いた、血行障害、低酸素症若しくは血中酸素減少状態、これらの一つ以上の病態ないし症状を伴う疾患、又はこれらの一つ以上の病態ないし症状に起因する疾病の予防または治療方法。
バチルス属菌体破砕抽出物又はその熱処理物を豚もも肉凍結乾燥粉末に添加した溶液の吸収スペクトルを示す図である。 バチルス属菌体破砕抽出物を豚もも肉凍結乾燥粉末に添加した溶液の保存中における580nmでの吸光度(A580)の経時変化を示す図である。 バチルス属菌体破砕抽出物凍結乾燥粉末中のメトミオグロビン還元酵素活性を示す図である。 メトミオグロビン還元酵素の精製過程におけるDEAEクロマトグラフィーで得られた溶出パターン及びメトミオグロビン還元酵素活性を示す図である。 メトミオグロビン還元酵素の精製過程におけるハイドロキシアパタイトクロマトグラフィーで得られた溶出パターン及びメトミオグロビン還元酵素活性を示す図である。 メトミオグロビン還元酵素の精製過程におけるゲルろ過クロマトグラフィーで得られた溶出パターン及びメトミオグロビン還元酵素活性を示す図である。 比活性の高かったゲルろ過画分をサンプルとしたSDS-PAGEの結果を示す図である。 各精製段階で得られたサンプルの比活性を比較した図である。 精製酵素(デヒドロリポイルデヒドロゲナーゼ:DLD)を用いた食肉発色試験の結果を示す図である。酵素量の異なるサンプルについて比較した。 精製酵素(DLD)を用いた食肉発色試験の結果を示す図である。NADHの有無で比較した。 精製酵素(DLD)のレイトアッセイの結果(基質飽和曲線)を示す図である。 精製酵素(DLD)のレイトアッセイの結果([s]/v~[s]プロット)を示す図である。 精製酵素(DLD)の至適pHを示す図である。 精製酵素(DLD)のpH安定性を示す図である。 精製酵素(DLD)の至適温度を示す図である。 精製酵素(DLD)の熱安定性を示す図である。 精製酵素(DLD)のNADHとNADPHへの反応性を示す図である。 精製酵素(DLD)の活性に与える各種カチオンの影響を示す図である。 リコンビナントDLD(Hisタグなし)のメトミオグロビン還元活性を示す図である。 リコンビナントDLD(Hisタグあり)のメトミオグロビン還元活性を示す図である。 リコンビナントDLDを用いた食肉発色試験の結果を示す図である。R値、G値及びB値は、ネガティブコントロール(左)で178、104及び102、精製リコンビナントDLD(右)で210、104及び114であった。 リコンビナントDLDを用いた食肉発色試験の結果を示す図である。R値、G値及びB値は、サンプル1で201、117及び123、サンプル2で185、121及び105、サンプル3で217、97及び93、サンプル4で160、108及び83、サンプル5で156、84及び65であった。 リコンビナントDLDを用いた食肉発色試験の結果を示す図である。R値、G値及びB値は、サンプル1で168、122及び106、サンプル2で185、152及び145、サンプル3で172、123及び119、サンプル4で187、153及び144、サンプル5で173、148及び123であった。 DLD以外の食肉発色酵素についての精製過程におけるフェニルクロマトグラフィーで得られた溶出パターン及びメトミオグロビン還元酵素活性を示す図である。 DLD以外の食肉発色酵素についての精製過程におけるハイドロキシアパタイトクロマトグラフィーで得られた溶出パターン及びメトミオグロビン還元酵素活性を示す図である。 DLD以外の食肉発色酵素についての精製過程におけるCuアフィニティークロマトグラフィーで得られた溶出パターン及びメトミオグロビン還元酵素活性を示す図である。 ハイドロキシアパタイトクロマトクラフィーで得られた画分及びCuアフィニティークロマトグラフィーで得られた画分をサンプルとしたSDS-PAGEの結果を示す図である。 リコンビナントリンゴ酸デヒドロゲナーゼ(Malate dehydrogenase:MDH)とリコンビナントニトロレダクターゼ(Putative NAD(P)H nitroreductase:yodC)の活性を示す図である。左から順にyodC/pET20b/BL21(DE3pLysS)(バチルス ズブチリス)、yodC/pET20b/BL21(DE3pLysS)(納豆菌)、pET20b/BL21(DE3pLysS)(空ベクター)、MDH/pET20b/BL21(DE3pLysS)(バチルス ズブチリス)、MDH/pET20b/BL21(DE3pLysS)(納豆菌)。 リコンビナントMDHとリコンビナントyodCをサンプルとしたSDS-PAGEの結果を示す図である。左から順にマーカー、MDH/pET20b/BL21(DE3pLysS)(バチルス ズブチリス)、yodC/pET20b/BL21(DE3pLysS)(バチルス ズブチリス)、pET20b/BL21(DE3pLysS)、MDH/pET20b/BL21(DE3pLysS)(納豆菌)、yodC/pET20b/BL21(DE3pLysS)(納豆菌)、マーカー。 精製したリコンビナントyodC及びリコンビナントMDHを用いた食肉発色試験の結果を示す図である。 リコンビナントyodCの至適pH示す図である。 リコンビナントyodCのpH安定性を示す図である。 リコンビナントyodCの至適温度を示す図である。 リコンビナントyodCの熱安定性を示す図である。 リコンビナントyodCのNADPHへの反応性を示す図である。 リコンビナントyodCの活性に与える各種カチオンの影響を示す図である。 DLDとyodCのフェリシアン化カリウムに対する反応性を比較して示した図である。 DLDとyodCのミオグロビンに対する反応性を比較して示した図である。
(用語)
 本明細書において「ヘム」とは、鉄原子とポルフィリンから構成される錯体(鉄ポルフィリン錯体)をいう。「ヘム蛋白質」とはヘムを含む蛋白質の総称である。また、「ヘム還元酵素」とは、ヘム中の鉄原子に対して還元活性を示す蛋白質のことをいう。当該活性の強さ(程度)は特に限定されない。典型的には、ヘム還元酵素は、ヘム蛋白質のメト化合物を還元する活性を示す。この活性に注目した場合、ヘム還元酵素をヘム蛋白質還元酵素と呼ぶこともできる。
 本明細書において「メトミオグロビン還元酵素」とは、ミオグロビン誘導体であるメトミオグロビンを還元する活性を示すタンパク質のことをいう。当該活性の強さ(程度)は特に限定されない。従って、他の酵素活性の方が優位であっても、メトミオグロビンに対する還元活性を示す限り、本明細書における「メトミオグロビン還元酵素」に該当する。
 本明細書において「色調改善剤」とは、金属ポルフィリン錯体がその形成に関与する「色調」の改善に用いられる物質又は組成物をいう。金属ポルフィリン錯体としては銅ポルフィリン錯体、コバルトポリフィリン錯体、鉄ポリフィリン錯体等が存在するが、当該ポルフィリン錯体中の金属が還元されうる状態のものであれば特に制限されない。好ましい金属ポルフィリン錯体としては鉄ポリフィリン錯体が挙げられ、当該鉄ポリフィリン錯体を含む組成物としてはヘム蛋白質が挙げられる。ヘム蛋白質を多く含む組成物として食肉又は食肉加工品を挙げることができる。
 本発明の色調改善剤は発色作用、発色促進作用及び/又は退色防止作用により、対象の色調を改善する。例えば、本発明の色調改善剤は、金属ポルフィリン錯体中の金属を還元することで色調を改善し得る。或いは、金属ポルフィリン錯体からなる色素の酸化を防止することで当該色素の色調を維持し、もって色調を改善し得る。本発明の色調改善剤が適用される好ましい対象は食肉又は食肉加工品である。即ち、好ましい一態様では、本発明の色調改善剤は食肉又は食肉加工品の発色、色調維持、又は退色防止に利用される。尚、「食肉の発色」とは食肉又は食肉加工品に特有の赤い色調が発現することをいう。
1.バチルス(Bacillus)属由来の還元剤
 本発明の第1の局面は還元剤に関する。本発明の還元剤はバチルス属が産生するヘム還元酵素を有効成分とする。後述の実施例に示す通り、本発明者らによる大規模なスクリーニングの結果、バチルス属微生物である、バチルス ズブチリス(Bacillus subtilis)、バチルス アミロリケファシエンス(Bacillus amiloliquefaciens)、納豆菌(Bacillus natto)、バチルス スリンギエンシス(Bacillus thuringiensis)及びバチルス ミコイデス(Bacillus mycoides)が、メトミオグロビン還元活性に優れたポリペプチドを産生することが明らかとなった。この知見に基づき本発明の好ましい一態様では、これらの微生物のいずれかが産生するメトミオグロビン還元酵素が用いられる。尚、これらの微生物は例えば公共の保存機関(NBRC(独立行政法人製品評価技術基盤機構 生物遺伝資源部門)、JCM(理化学研究所バイオリソースセンター)、ATCC(American Type Culture Collection)等)から入手することができる。納豆菌については市販されており、容易に入手可能である。また宮城野納豆菌製造所から入手することも可能である。
 本発明の還元剤は、有効成分(ポリペプチド)の他、賦形剤、緩衝剤、懸濁剤、安定剤、pH調整剤、保存剤、防腐剤、香料、増粘剤、油脂、光沢剤、結着剤、結着補強剤、乳化安定剤、生理食塩水などを含有していてもよい。賦形剤としてはデンプン、デキストリン、マルトース、トレハロース、乳糖、D-グルコース、ソルビトール、D-マンニトール、白糖、グリセロール等を用いることができる。緩衝剤としてはリン酸塩、クエン酸塩、酢酸塩等を用いることができる。安定剤としてはプロピレングリコール、アスコルビン酸等を用いることができる。pH調製剤としてはイタコン酸、コハク酸、酒石酸、フマル酸、クエン酸、リンゴ酸、アジピン酸、グルコン酸、ピロリン酸、酢酸、乳酸、α-ケトグルタル酸、フィチン酸等の有機酸又は有機酸塩;炭酸等の無機酸又は無機酸塩;アスパラギン酸、グルタミン酸等の酸性アミノ酸;アルギニン、リジン、ヒスチジン等の塩基性アミノ酸等を用いることができる。保存剤としてはフェノール、塩化ベンザルコニウム、ベンジルアルコール、クロロブタノール、メチルパラベン等を用いることができる。防腐剤としてはエタノール、塩化ベンザルコニウム、パラオキシ安息香酸、クロロブタノール等を用いることができる。香料としてはジャコウ、シベット、カストリウム、アンバーグリス等の動物性香料;アニス精油、アンゲリカ精油、イランイラン精油、イリス精油、ウイキョウ精油、オレンジ精油、カナンガ精油、カラウェー精油、カルダモン精油、グアヤクウッド精油、クミン精油、黒文字精油、ケイ皮精油、シナモン精油、ゲラニウム精油、コパイババルサム精油、コリアンデル精油、シソ精油、シダーウッド精油、シトロネラ精油、ジャスミン精油、ジンジャーグラス精油、杉精油、スペアミント精油、西洋ハッカ精油、大茴香精油、チュベローズ精油、丁字精油、橙花精油、冬緑精油、トルーバルサム精油、バチュリー精油、バラ精油、パルマローザ精油、桧精油、ヒバ精油、白檀精油、プチグレン精油、ベイ精油、ベチバ精油、ベルガモット精油、ペルーバルサム精油、ボアドローズ精油、芳樟精油、マンダリン精油、ユーカリ精油、ライム精油、ラベンダー精油、リナロエ精油、レモングラス精油、レモン精油、ローズマリー精油、和種ハッカ精油等の植物性香料;その他合成香料等を用いることができる。増粘剤としては、天然高分子またはデンプン系もしくはセルロース系天然高分子誘導体等を用いることができる。天然高分子としては、例えば、フコイダン、カラギーナン等の海藻抽出物、グァーガム等の種子粘出物、アラビアガム等の樹脂様粘着物、またはキサンタンガム等の微生物産生粘着物質等を挙げることができる。デンプン系もしくはセルロース系天然高分子誘導体としては、例えば、リン酸デンプン等のデンプン系またはメチルセルロースなどのセルロース系の天然高分子誘導体が挙げられる。油脂としては、例えば、アボガド油、アマニ油、アーモンド油、ウイキョウ油、エゴマ油、オリーブ油、オレンジ油、オレンジラファー油、カカオ脂、カミツレ油、カロット油、キューカンバー油、ココナッツ油、ゴマ油、コメ油、サフラワー油、シア脂、液状シア脂、大豆油、ツバキ油、トウモロコシ油、ナタネ油、パーシック油、ヒマシ油、ヒマワリ油、葡萄種子油、綿実油、落花生油、タートル油、ミンク油、卵黄油、パーム油、パーム核油、モクロウ、ヤシ油、牛脂、豚脂等を用いることができる。また、これらの油脂に水素添加、分別、エステル交換等の処理をして改質された油脂も利用できる。光沢剤として、ミツロウ、カルナバロウ、鯨ロウ、ラノリン、液状ラノリン、還元ラノリン、硬質ラノリン、カンデリラロウ、モンタンロウ、セラックロウ、ライスワックス、スクワレン、スクワラン、プリスタン等のロウ類(植物性、動物性を問わない。);流動パラフィン、ワセリン、パラフィン、オゾケライド、セレシン、マイクロクリスタンワックス等の鉱物油を用いることができる。結着剤としては大豆蛋白質、卵蛋白質、乳蛋白質、血液蛋白質、カゼイン、デンプン、トランスグルタミナーゼ等を用いることができる。結着補強剤としては重合リン酸塩等を用いることができる。乳化安定剤としてはカゼインナトリウム等を用いることができる。その他添加物として、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘン酸、オレイン酸、リノール酸、リノレン酸、ドコサヘキサエン酸、エイコサペンタエン酸、1 2-ヒドロキシステアリン酸、ウンデシレン酸、トール油、ラノリン脂肪酸等の天然脂肪酸;イソノナン酸、カプロン酸、2 -エチルブタン酸、イソペンタン酸、2-メチルペンタン酸、2-エチルヘキサン酸、イソペンタン酸等の合成脂肪酸等の脂肪酸を含有しても良い。
 一態様において本発明の還元剤は、本発明に係るポリペプチドを産生する微生物の菌体破砕物で構成される。即ち、この態様の還元剤は所定の微生物の菌体破砕物を含むことになる。菌体破砕液(通常は微生物の培養、集菌及び菌体破砕からなる一連の工程によって得られる)をそのまま菌体破砕物として用いることができる。一方、菌体破砕液を更なる処理(精製処理、凍結処理、乾燥処理、他の成分の添加など)に供した後に菌体破砕物として用いることもできる。
 本発明者らの検討によって、バチルス属微生物由来の有効成分(還元作用を示し、特に食肉の色調改善に有効な物質)がデヒドロリポイルデヒドロゲナーゼ(DLD)とニトロレダクターゼ(yodC)であることが判明した(後述の実施例を参照)。そこで本発明の一態様として、ヘム還元酵素としてバチルス属微生物由来のデヒドロリポイルデヒドロゲナーゼ又はニトロレダクターゼを含む還元剤が提供される。好ましい一態様では、デヒドロリポイルデヒドロゲナーゼとニトロレダクターゼの両方が含まれる。尚、デヒドロリポイルデヒドロゲナーゼのアミノ酸配列を配列番号3に示す。同様にニトロレダクターゼのアミノ酸配列を配列番号12に示す。
 上記の通り、有効なヘム還元酵素が特定され、且つそのアミノ酸配列が同定されたことから、遺伝子工学的に調製した酵素を利用することが可能となった。そこで、本発明の一態様では遺伝子工学的に調製した酵素、即ちリコンビナントタンパク質からなるヘム還元酵素が用いられる。具体的には、リコンビナントデヒドロリポイルデヒドロゲナーゼ及び/又はリコンビナントニトロレダクターゼを有効成分とした還元剤が提供される。尚、リコンビナントタンパク質とは、遺伝子組み換え技術によって人工的に作製されたタンパク質のことをいう。
2.還元剤の用途
 本発明の第2の局面は本発明の還元剤の用途に関する。本発明が提供する用途は色調の改善及びその他の用途に大別される。特に前者の用途、即ち色調改善剤としての利用が重要である。その色調の形成に金属ポルフィリン錯体が関与しているものが、本発明による色調改善の対象となる。好ましい対象として食肉及び食肉加工品が挙げられる。食肉の色調は肉中に存在するミオグロビン誘導体の割合を反映する。上記の通り、本発明の還元剤はヘム還元酵素(好ましくはメトミオグロビン還元酵素)を有効成分とする。従って、本発明の還元剤を食肉に作用させると、食肉中のメトミオグロビンが還元され、還元型ミオグロビンが生成する。還元型ミオグロビンは酸素化によって鮮赤色の色調を示すオキシミオグロビンに変換される。本発明の還元剤を作用させると、食肉又は食肉加工品中のメトミオグロビン量が低減し、併せてオキシミオグロビンが生成する結果、色調が改善する。また、還元型ミオグロビンまたはオキシミオグロビンの酸化が防止され、その結果として食肉の退色を防止できるという効果も期待できる。このように、本発明の還元剤によれば、発色のみならず色調維持、つまり退色防止の効果も発揮され得る。退色防止効果が奏される際の作用対象は金属ポルフィリン錯体であり、当該錯体中の金属が酸化されうるものであれば特に制限されない。好ましい金属ポルフィリン錯体は鉄ポルフィリン錯体である。従って、退色防止効果を期待する場合の好ましい対象は、鉄ポルフィリン錯体を含有するヘム蛋白質である。最も好ましい対象は、還元型ミオグロビンまたはオキシミオグロビン、並びにこれらミオグロビン2種(還元型ミオグロビン、オキシミオグロビン)の何れか/もしくは双方を含む食肉又は食肉加工品である。
 本発明の還元剤を食肉又は食肉加工品の色調改善に利用する場合(即ち、本発明の還元剤を色調改善剤として用いた色調改善方法)には、本発明の還元剤で食肉又は食肉加工品を処理することになる。処理条件は原則、還元剤を構成するメトミオグロビン還元酵素が良好に作用する条件(好ましくは至適条件)とすればよい。好ましい処理条件は、処理対象の食肉又は食肉加工品を用いた予備実験によって容易に特定ないし設定可能である。以下、処理方法の具体例(菌体破砕液を食肉の色調改善に利用する場合)を示す。まず、所定の微生物(メトミオグロビン還元酵素を産生するバチルス属微生物)の菌体破砕液を用意し、pHを5.5付近に調整する。これは肉中のpHを再現するためである。続いて、4℃において食肉と接触させる。接触方法としては一般的に、ブロック肉では懸濁液を注射してタンブリングする、ミンチ肉では懸濁液を混合する等の方法がある。適した接触方法を行うことによって、懸濁液が食肉全体に浸透する。処理温度については、発色は40℃付近でも可能だが、食肉の品質を考慮すると4℃又は4℃付近で行うのが好ましい。
 処理対象の食肉の種類は制限されない。上記の通り、食肉の色調は肉中に存在するミオグロビン誘導体の割合を反映する。本発明の還元剤は食肉中のミオグロビン誘導体の割合に影響を与え、発色を促進する。従って、ミオグロビンを含む食肉又は食肉加工品全般に本発明を適用可能である。具体的には、豚肉、牛肉、鶏肉等の畜肉又はこれらの加工品、或いはマグロ、カツオ、シャケ等の魚肉又はこれらの加工品を処理対象にすることができる。但し、赤色を呈している食肉が好ましい処理対象といえる。処理対象の一つである食肉加工食品は、食肉を原料として製造される食品であれば特に限定されない。食肉加工品として例えば生ハム、ソーセージ、ロースハムが挙げられる。処理対象である食肉または食肉加工食品の形状についても特に制限はない。ブロック肉、ミンチ肉等、用途に合わせて適宜選択することができる。
 本発明の一態様では、本発明の還元剤と、ミオグロビンのヘム基中の鉄を亜鉛に置換する作用を示す物質(以下、「鉄・亜鉛置換物質」と呼ぶ)を併用する。このように本発明の還元剤と作用の異なる物質を併用すれば、複合的な効果により色調が一層改善される。特に、良好な色調の維持・退色防止にもつながる。鉄・亜鉛置換物質として例えばフェロケラターゼを用いることができる(詳しくは特開2006-61016号公報を参照)。フェロケラターゼは動物組織(特に内蔵)、植物組織(キノコ類、モヤシ、エンドウ豆等)、酵母(パン酵母、ビール酵母、清酒酵母、ワイン酵母、焼酎酵母等)、細菌等に存在している。これらの天然物から抽出したフェロケラターゼを用いることができる。また、ミトコンドリア画分にはフェロケラターゼが多く含まれていることから、特にミトコンドリア画分を用いるとよい。鉄・亜鉛置換物質としてサッカロミセス属酵母(ビール酵母、パン酵母、清酒酵母、焼酎酵母など)を用いることもできる(詳しくは特開2005-87058号公報を参照)。
 この態様の特徴は、本発明の還元剤と鉄・亜鉛置換物質を組み合わせて用いることである。典型的には、本発明の還元剤と鉄・亜鉛置換物質とを混合した配合剤として本発明の色調改善剤が提供されることになる。一方、例えば、本発明の還元剤(第1構成要素)と、鉄・亜鉛置換物質を含む剤(第2構成要素)とからなるキットの形態で本発明の色調改善剤を提供することもできる。この場合、処理対象(食肉又は食肉加工品)を第1構成要素及び第2構成要素で同時又は別々に処理することになる。ここでの「同時」は厳密な同時性を要求するものではない。従って、両要素を混合した後に使用する等、両要素の使用が時間差のない条件下で実施される場合は勿論のこと、片方の使用後、速やかに他方を使用する等、両要素の使用が実質的な時間差のない条件下で実施される場合もここでの「同時」の概念に含まれる。
 本発明の還元剤を色調改善剤に利用する場合、有効成分(ポリペプチド)と上記添加物(賦形剤、緩衝剤、懸濁剤、安定剤、pH調整剤、保存剤、防腐剤、香料、増粘剤、油脂、光沢剤、結着剤、結着補強剤、乳化安定剤、生理食塩水等)の他、調味料、香辛料、マスキング剤、軟化剤等を用いることにしてもよい。調味料としては、醤油、味噌、酢、酒、味醂、塩、カツオやコンブ等のだし、肉エキス、野菜エキス等を用いることができる。香辛料としては、胡椒、ローレル、タイム、クローブ、オレガノ、八角、山椒、セージ、パセリ、ナツメグ、マスタード、ジンジャー、シナモン、バジル、パプリカ、ローズマリー、スペアミント、レモングラス、タラゴン、チャービル、カルダモン、クミン、コリアンダー、ディル、フェンネル、マジョラム、オールスパイス等を用いることができる。マスキング剤としては、スクロース、サイクロデキストリン等の糖類;クローブ、オールスパイス、ローリエ、シナモン、ナツメグ等のハーブ類等を用いることができる。軟化剤としては、プロテアーゼ、トリプシン、キモトリプシン、パパイン、ブロメライン、フィシン等の蛋白質分解酵素等を用いることができる。
 本発明の還元剤は食肉以外の分野でも利用できる。ミオグロビン以外のヘムタンパク(例えばヘモグロビン)を含む組成物の還元又は酸化防止(退色防止を含む)を目的として本発明の還元剤を用いてもよい。
 本発明の還元剤にはヘモグロビン濃度の測定やヘモグロビン血症の治療への適用も期待できる。即ち、本発明の還元剤は試薬や医薬の有効成分としても有用である。現在、血中のヘモグロビン濃度の測定方法としてシアンメトヘモグロビン法が頻用されている。この方法ではメトヘモグロビンにフェリシアン化カリウムとシアン化カリウムの混合物を作用させてシアンメトヘモグロビンとした上で比色定量法により測定する。本発明の還元剤を用いれば、当該方法に代わる方法として、血中などのメトヘモグロビン量又は総ヘモグロビン量を測定可能である。
 メトヘモグロビン血症は、何らかの原因でメトヘモグロビンが体内に過剰に蓄積されることで体内が酸素欠乏状態となり発症する。メトヘモグロビン血症に対する治療方法としてはメチレンブルーの静脈注射が最も効果的とされる。但し、シアン中毒を併発している場合にはシアン中毒を促進させてしまうためメチレンブルーは使用できない。その他の治療方法としてアスコルビン酸の経口投与、静脈注射(リボフラビンと併用して投与することもできる。)があるが、いずれの方法も効果は大きくない。本発明の還元剤はこれら従来の治療法に代わる新たな治療戦略を提供し得る。本発明の還元剤を用いた治療法は、メチレンブルーを使用できない患者(シアン中毒を併発する者など)に対しても適用可能である。また、メチレンブルーはグルコース-6-リン酸脱水素酵素(G6PD)欠損者には効果がない。G6PD欠損症のようなペントースリン酸経路に異常が見られる患者は、このアプローチに応答せず、緊急の交換輸血を受けなくてはならない。
 G6PD欠損症は世界的に最も一般的な障害の1つである。米国黒人男性の実に約10%が罹患している。また、アフリカ人および地中海沿岸居住者にも多くの罹患者を認める。したがって、相当数の被験者に(酸化的)薬物誘発性メトヘモグロビン血症の危険性がある。かかる患者へのメチレンブルー自体の投与は無効であり(彼等のG6PD欠損症が、NADPH不足を引き起こすため)、逆効果の可能性でさえ存在する。本発明の還元剤には同患者への効果も期待できる。
 本発明の還元剤は心拍数、血圧、心拍出量の異常による心臓の負担の軽減および各組織の代謝の亢進等の薬理作用並びに生理作用を発揮し得る。本発明の還元剤を含む医薬には、例えば、各組織の酸素要求量の高い生理条件下、例えば激しい労働や運動等の環境において、生体の耐久力を増進する耐久力増進剤としての用途も期待できる。さらに、心不全、心筋症、心筋炎、心筋梗塞、心膜炎、心筋周膜炎(perimyocarditis)、一過性虚血発作、冠状動脈性心臓病、左-右脈路シャントをもつ先天性異常(vitia)、ファロー四徴症/五徴症、アイゼンメンゲル症候群、ショック、抹消の虚血、動脈閉塞性疾患(AOD)、抹消AOD(pAOD)、頚動脈狭窄、腎動脈狭窄、脳における微小循環器障害(細動脈硬化)、脳内出血、脳の静脈血栓および頭蓋内静脈洞血栓症、血管異形成、くも膜下出血、血管性痴呆、ビスヴァンガー(Biswanger)症、皮質下動脈硬化性脳症、塞栓症を伴う多発皮質梗塞、血管炎、糖尿病性網膜症、種々の原因による貧血(anaemia)の予後(再生不良性貧血、骨髄異形成症候群、真性赤血球増加症、巨赤芽球性貧血、鉄欠乏性貧血、腎性貧血、球状赤血球症(spHaerocytosis)、溶血性(haemolytic)貧血など)、サラセミア(thalassaemia)、異常ヘモグロビン症、グルコース-6-リン酸デヒドロゲナーゼ欠乏症、輸血罹患、アカゲザル(Rhesus)不適合性、マラリア、弁膜形成(valvuloplasty)、急性出血後貧血、脾機能亢進症候群、肺線維症、気腫、肺水腫(oedema): ARDS、IRDSまたは再発性肺気腫、熱傷、狭心症、冬眠等の虚血性疾患等、血行障害、低酸素症若しくは血中酸素減少状態の予防又は治療、又はこれらの病態ないし症状を伴うかこれらの病態ないし症状に起因する疾病の予防又は治療に本発明の医薬を適用してもよい。
 虚血組織に酸素を供給して虚血性の細胞損傷を防止する(かつ再灌流障害から組織を保護する)ために、虚血性事象の発生前、発生中、及び/又は発生後に本発明の医薬を投与することも可能である。本発明の医薬投与と併せて、血管作動性酸素運搬体(例えば、ヘモグロビンに基づく酸素運搬体)を投与することにしてもよい。例えば外科的な脈管再生(例えば、経皮冠動脈脈管再生)、移植、急性心筋梗塞、血管形成術(経皮冠動脈血管形成術等)によって引き起こされる急性虚血、並びにそれに続く再灌流およびフリーラジカル放出のために、本発明の医薬と血管作動性キャリア(ヘム蛋白質に基づく酸素運搬体等)をガス状の一酸化窒素と組み合わせ、又はガス状の一酸化窒素を適用した後に本発明の医薬と血管作動性キャリアを哺乳動物に投与し所期の治療効果を発揮させるようにしてもよい。本明細書に記載の方法によって治療される哺乳動物は治療前に虚血性心疾患を有していてもよく、急性の虚血性病態(例えば、心筋梗塞、脳卒中、もしくは腎虚血)を患っていてもよく、或いは臓器(脳、心臓、腎臓、肝臓、胃腸管など)に血管痙攣を示していてもよい。
 循環系の一部分または全体を通しての赤血球流量低下、貧血および脳卒中を含む、様々な原因の結果として生じる脊椎動物内の低酸素組織を治療するため本発明の医薬を用いることもできる。また、脊椎動物内の組織の酸素欠乏を防止することを目的として、予防的に本発明の医薬を用いても良い。さらには、部分的動脈閉塞または微小循環における部分的遮断から生じた低酸素症を治療または予防する目的で本発明の医薬を適用することも可能である。ヘモグロビンの投与に関しては米国特許出願第08/409,337号明細書が参考になる。
 本発明の医薬の投与量、投与期間は特に制限されない。投与形態、年齢、体重、症状等に応じて適宜選択できる。
 本発明の医薬の投与対象は制限されない。投与対象として、ヒトの他、ヒト以外の哺乳動物(ペット動物、家畜、実験動物を含む。具体的には例えばサル、マウス、ラット、モルモット、ハムスター、サル、ウシ、ブタ、ヤギ、ヒツジ、馬、ニワトリ、羊、鯨、イルカ、イヌ、ネコ等)を挙げることができる。治療対象は、本発明の医薬の投与前、投与中、及び/又は投与後において、正常血液量であっても、血液量過多であっても、或いは血液量過少であってよい。
 本発明の医薬の投与形態は特に制限されない。経口あるいは非経口のいずれの投与方法によっても投与することができる。本明細書で用いる「非経口」による投与は特に限定はしないが、例えば、静脈内、筋内、動脈内、髄腔内、嚢内、眼窩内、心臓内、皮内、腹腔内、経皮気管内、皮下、表皮下、関節内、被膜下、クモ膜下、髄腔内、及び胸骨内注射並びに注入を挙げることができる。好ましい投与方法として静脈内注射が用いられる。
 経口投与に適する製剤の例としては、例えば、錠剤、カプセル剤、散剤、細粒剤、顆粒剤、液剤、及びシロップ剤等を挙げることができる。非経口投与に適する製剤としては、例えば、注射剤、坐剤、吸入剤、貼付剤等を挙げることができる。本発明の医薬は、薬理学的、製剤学的に許容しうる添加物を必要により加えて製造してもよい。薬理学的、製剤学的に許容しうる添加物の例としては、例えば、賦形剤、崩壊剤ないし崩壊補助剤、結合剤、滑沢剤、コーティング剤、色素、希釈剤、基剤、溶解剤ないし溶解補助剤、等張化剤、pH調節剤、安定化剤、噴射剤、及び粘着剤等を挙げることができる。
 経口投与、あるいは非経口投与に適する製剤には、ブドウ糖、乳糖、D-ソルビトール、D-マンニトール、デンプン、カオリン、キシリトール、デキストリン、トウモロコシデンプン、バレイショデンプン、ヒドロキシプロピルセルロース、又は結晶セルロース等の賦形剤;カルボキシメチルセルロース、デンプン、又はカルボキシメチルセルロースカルシウム等の崩壊剤又は崩壊補助剤;ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ポリビニルピロリドン、又はゼラチン等の結合剤;軽質無水ケイ酸、合成ケイ酸アルミニウム、ステアリン酸、ステアリン酸カルシウム、ステアリン酸マグネシウム又はタルク等の滑沢剤;ヒドロキシプロピルメチルセルロース、白糖、ポリエチレングリコール又は酸化チタン等のコーティング剤;ワセリン、流動パラフィン、ポリエチレングリコール、ゼラチン、カオリン、グリセリン、精製水、又はハードファット等の基剤;フロン,ジエチルエーテル、又は圧縮ガス等の噴射剤;ポリアクリル酸ナトリウム、ポリビニルアルコール、メチルセルロース、ポリイソブチレン、ポリブテン等の粘着剤;木綿布又はプラスチックシート等の基布等の製剤用添加物等を添加することができる。注射用に適する製剤には、注射用蒸留水、生理食塩水、プロピレングリコール等の水性あるいは用時溶解型注射剤を構成しうる溶解剤又は溶解補助剤;ブドウ糖、塩化ナトリウム、D-マンニトール、グリセリン等の等張化剤;有機酸(イタコン酸、コハク酸、酒石酸、フマル酸、クエン酸、リンゴ酸、アジピン酸、グルコン酸、ピロリン酸、乳酸、α-ケトグルタル酸、フィチン酸等)又はこれら有機酸の塩、無機酸(炭酸等)又はこれら無機酸の塩、酸性アミノ酸(アスパラギン酸、グルタミン酸等)、塩基性アミノ酸(アルギニン、リジン、ヒスチジン等)等のpH調整剤;リドカイン等の無痛化剤等の添加物を添加してもよい。
 本発明の医薬の典型的な作用対象の一つはヘモグロビンであるが、ここでのヘモグロビンは特に限定されない。天然(非修飾)であるヘモグロビン、遺伝子操作によって修飾されたヘモグロビン、分子内もしくは分子間架橋、重合、または化学基(例えば、酸化ポリアルキレン、ポリエチレングリコール、スーパーオキシドジスムターゼもしくは他の付加物)の付加などの化学反応によって修飾されたヘモグロビンであってもよい。本発明の医薬は、上記ヘモグロビン以外のヘム蛋白質にも応用できる。また、上記ヘム蛋白質と構造が類似する金属ポルフィリン錯体にも応用できる。
3.還元剤の製造法
 本発明の更なる局面は本発明の還元剤の製造法を提供する。本発明の製造法ではヘム還元酵素、好ましくはメトミオグロビン還元酵素を産生するバチルス属微生物を、該酵素が産生される条件下で培養するステップ(ステップ(1))及び培養産物から前記酵素を回収するステップ(ステップ(2))が行われる。
 ステップ(1)のバチルス属微生物としてバチルス ズブチリス、バチルス アミロリケファシエンス、納豆菌、バチルス スリンギエンシス、バチルス ミコイデスからなる群より選択されるいずれかの微生物を用いるとよい。培養法及び培養条件は目的の酵素が産生されるものである限り特に限定されない。即ち、ヘム還元活性を示すポリペプチドが産生されることを条件として、使用する微生物の培養に適合した方法や培養条件を適宜設定できる。以下、培養条件として培地、培養温度及び培養時間を例示する。
 培地としては、使用する微生物が生育可能な培地が採用される。例えば、アラビノース、キシロース、グルコース、フルクトース、ガラクトース、シュクロース、ゲンチオビオース、可溶性デンプン、グリセリン、デキストリン、糖蜜、有機酸等の炭素源、更に硫酸アンモニウム、炭酸アンモニウム、リン酸アンモニウム、酢酸アンモニウム、あるいは、コーングルテンミール、大豆粉、カザミノ酸、コーヒー粕、綿実油粕、ペプトン、酵母エキス、コーンスティープリカー、カゼイン加水分解物、ふすま、肉エキス等の窒素源、更にカリウム塩、マグネシウム塩、ナトリウム塩、リン酸塩、マンガン塩、鉄塩、亜鉛塩等の無機塩を添加したものを用いることができる。使用する微生物の生育を促進するためにビタミン、アミノ酸などを培地に添加してもよい。培地のpHは例えば約3~8、好ましくは約5~7程度に調整し、培養温度は通常約10~50℃、好ましくは約25~35℃程度で、1~15日間、好ましくは3~7日間程度好気的条件下で培養する。培養法としては例えば静置培養、振盪培養法、ジャー・ファーメンターによる好気的深部培養法が利用できる。
 以上の条件で培養した後、培養産物から目的の酵素を回収する(ステップ(2))。典型的には、培養産物から菌体を収集する操作(ステップ(2-1))の後、菌体破砕物を調製する(ステップ(2-2))。菌体の収集には遠心処理、フィルターろ過などを利用できる。固体培地を使用した場合など、菌体以外の固体成分を含む場合には予め当該固体成分を除去しておくとよい。菌体破砕物の調製にはフレンチプレスやダイノミル等を利用した機械的破砕処理、超音波処理、凍結破砕処理などを利用できる。後に行われる凍結処理、乾燥処理、凍結乾燥処理などの際に菌体の破砕が生じる場合には、菌体破砕専用の工程を設けなくても良い。調製した菌体破砕物はそのまま(即ち、特別の処理を施すことなく)又は追加の処理を経た後、本発明の還元剤として利用される。ここでの「追加の処理」の例は濃縮(限外ろ過膜による濃縮など)、精製(塩析、各種クロマトグラフィーなど)、他の成分の添加、希釈及び乾燥である。追加の処理として、二以上の処理を行うことにしてもよい。最終的な形態は液体状であっても固体状(粉体状を含む)であってもよい。
 食肉の色調を改善する物質を見出すべく、バチルス属の微生物を中心にスクリーニングを実施した。以下では、スクリーニングの結果から有用性が高いと期待された微生物株に関する実験の結果を示す。
1.バチルス ズブチリス、バチルス アミロリケファシエンス、納豆菌、バチルス スリンゲンシス、バチルス ミコイデスの凍結乾燥粉末の調製
 表1に示す液体培地10 mLを試験管に分注し、120℃、20分間滅菌した。前培養として前記試験管にバチルス ズブチリス(Bacillus subtilis JCM1465株(=ATCC6051株、IAM12118株、IFO13719株))、バチルス アミロリケファシエンス(Bacillus amyloliquefaciens NBRC15535株(=ATCC23350株))、納豆菌(Bacillus natto)、バチルス スリンゲンシス(Bacillus thuringiensis NBRC13865株(=ATCC13366株))、バチルス ミコイデス(Bacillus mycoides IAM1190株(=IFO3039株))をそれぞれ1エーゼ接種し、30℃、300rpmで一晩振とう培養した。
Figure JPOXMLDOC01-appb-T000001
 次に、表1に示す液体培地100mLを300mL容三角フラスコに分注し、120℃、20分間滅菌し、本培養培地とした。本培養として前述の前培養液1mLを接種し、30℃、200rpmで一晩振とう培養した。本培養液を5,000rpm、5分、遠心分離し、菌体を得た。得られた菌体を30mLの20mM リン酸バッファー(pH 7.5)で1回洗浄し、30mLの20mM リン酸バッファー(pH 7.5)に懸濁した。得られた懸濁液を-40℃で24時間凍結した。続いて凍結乾燥(20℃、24時間)を行い、凍結乾燥粉末を得た(凍結乾燥処理により菌体は破砕される)。
2.食肉発色試験1
 前記凍結乾燥粉末0.1gを0.5 Mリン酸バッファー(pH 5.5)50μLで溶解した。続いて豚もも肉ミンチ2gに、前述の粉末溶解液、4%(w/v)ミオグロビン50μLを混ぜ合わせ、脱気密封し、4℃で17時間放置した。肉の赤色の変化(発色度)を視覚的に観察した。対照試験として粉末溶解液を加えないものと、粉末溶解液を10分間煮沸処理したものについても同様の試験を行った。その結果を表2に示す。尚、ピキア ファリノサ(Pichia farinose IAM12223株(=IFO0465株、JCM1634株))の凍結乾燥粉末溶解液で処理した場合の結果(未処理のデータのみ)も併せて示す。
Figure JPOXMLDOC01-appb-T000002
++:強く発色、+:発色、-:発色せず
 以上のように、供試菌株(バチルス ズブチリス、バチルス アミロリケファシエンス、納豆菌、バチルス スリンゲンシス、バチルス ミコイデス)の凍結乾燥粉末に食肉発色効果を認めた。バチルス ズブチリス及び納豆菌の効果は特に高い。尚、培養後の菌体をフレンチプレスで破砕して得たサンプルについても同様の食肉発色効果を確認した(データ示さず)。
3.食肉発色試験2
 前記凍結粉末(バチルス ズブチリスの菌体破砕物)10mgを0.5Mリン酸バッファー(pH 5.5)100μLで溶解した。その溶解液に豚もも肉ミンチ凍乾粉末10mg、4%(w/v)ミオグロビン 30μL、0.2M NADH 30μL、滅菌水400μLを添加して、室温で30分放置した。続いて反応液を15,000rpm、15分、遠心分離し、上清を回収した。得られた上清の波長700nmから400nmの吸収スペクトルを、分光光度計を用いて測定した。対照試験として粉末溶解液を10分間煮沸処理したものについても同様の試験を行った。その結果を図1に示す。結果から明らかなように、未処理サンプルは545nmと580nmに吸収極大を有し、赤色を呈していることが分かる。
4.食肉発色試験3
 3.に示した方法に従って、1.で調製した各凍結乾燥粉末用いて食肉発色試験を行った。コントロールとして粉末溶解液を加えないものについても同様の試験を行った。各サンプルの波長580nmにおける吸光度を図2に示す。試験した全てのサンプルで5日後もコントロールよりも強く発色していることが分かる。
5.メトミオグロビン還元酵素活性の測定法
 メトミオグロビン還元酵素活性は以下の通り測定した。まず、1.で調製した各凍結乾燥粉末を水で10mg/mLに溶解し、酵素溶液とした。続いて0.1Mリン酸バッファー(pH 5.5) 200μLに0.1%(w/v)ミオグロビン100μLと酵素溶液150μLを添加し、30℃、5分間プレインキュベートした。そして1mM NADH 50μLを添加して、波長406nmにおける吸光度の変化を5分間測定した。活性はユニット(U)で示した。本条件下で1分間に1μM相当のメトミオグロビンを還元させる酵素量を1Uとした。尚、比較のため、ピキア ファリノサ(Pichia farinose IAM12223株(=IFO0465株、JCM1634株))の凍結乾燥粉末についても酵素活性を調べた。
 測定結果を図3に示す。食肉発色効果を示した凍結乾燥粉末はいずれも高いメトミオグロビン還元酵素活性を示した。この結果より、供試菌株(バチルス ズブチリス、バチルス アミロリケファシエンス、納豆菌、バチルス スリンゲンシス、バチルス ミコイデス)がメトミオグロビン還元酵素を産生すること、及び発色効果が当該酵素の作用によるものであることが示唆された。
6.メトミオグロビン還元酵素の精製
 メトミオグロビン還元酵素は以下の通り精製した。1.で培養して得られたバチルス ズブチリス菌体をフレンチプレスにて破砕し遠心後、上清を硫安で塩析した。30%飽和で処理して上清をとり70%飽和で処理して遠心した後、沈殿物を回収した。これを20mM KPB(pH=6.0)溶液に溶解させ透析したものを硫安塩析サンプルとした。
 得られた硫安塩析サンプル5mLを、以下の条件のDEAEクロマトグラフィー(DEAE column (HiTrapTM DEAE FF (5mL); GE Healthcare))に供した。その結果、タンパク収率は45.4%であった。
(DEAEクロマトグラフィー条件)
 担体:DEAE HP(5mL)
 チャージ:硫安塩析サンプル(5mL)
 Buf A:20mM KPB(pH6)
 Buf B:20mM KPB(pH6),1M NaCl
 流速:5mL/分
 分画:5mL
 プログラム:(1)Buf A洗浄 8cv、(2)Buf B 10% 洗浄 8cv、(3)Buf B勾配 30%/25cv、(4)Buf B 100% 8cv
 上記DEAEクロマトグラフィーで得られた溶出パターン及びメトミオグロビン還元酵素活性を図4に示す。なお、活性はメトミオグロビンの吸収極大であるA406の減少を確認した。図4の画分のうち特に活性の高かったDEAE Fr.No.61-63を、以下の条件のハイドロキシアパタイトクロマトグラフィー(hydroxyapatite column (1×5 cm)(TypeI 20μm; Bio-Rad))にかけて各々を精製した。ハイドロキシアパタイトクロマトグラフィーによるDEAE Fr.No.61-63のタンパク収率は98.5%であった。
(ハイドロキシアパタイトクロマトグラフィー条件)
 担体:ハイドロキシアパタイト(5mL)
 チャージ:DEAE精製Fr.No.61-63
 Buf A:5mM KPB,0.3M NaCl(pH6)
 Buf B:400mM KPB,0.3M NaCl(pH6)
 流速:1mL/分
 分画:4mL
 プログラム:(1)Buf A洗浄 7cv、(2)Buf B勾配 100%/20cv、(3)Buf B 100% 10cv
 DEAE Fr.No.61-63をハイドロキシアパタイトクロマトグラフィーに供して得られた溶出パターン及びメトミオグロビン還元酵素活性を図5に示す。図5のうち特に比活性の高かったハイアパFr.No.19を20mM KPB(pH6)で透析後、以下の条件のゲルろ過クロマトグラフィー(gel filtration column (SuperdexTM75; GE Healthcare))に供した。
(ゲルろ過クロマトグラフィー条件)
 担体:Super dex 200(120mL)
 チャージ:ハイアパFr.19
 Buf A:20mM KPB(pH6)
 流速:1mL/min
 分画:5mL
 ハイアパFr.No.19をゲルろ過クロマトグラフィーに供して得られた溶出パターン及びメトミオグロビン還元酵素活性を図6に示す。さらに、図6のうち特に比活性の高かったゲルろ過Fr.No.13-15を含むゲルろ過Fr.No.12-16をSDS-PAGEに供し、バンドを確認した(図7:ゲルろ過Fr.No.12-16)。図7のゲルろ過Fr.No.13-15について、シングルバンドが得られた。
 上記精製工程(DEAEクロマトグラフィー、ハイドロキシアパタイトクロマトグラフィー、ゲルろ過クロマトグラフィー)で得られた各々の画分について、比活性を図8に示した。DEAE.Fr.No.61-63はゲルろ過までして比活性が約20.7倍まで向上した。
7.メトミオグロビン還元酵素のアミノ酸配列特定
 図7のSDS-PAGEで得られたシングルバンドについてPDVF膜に転写しポンソー試薬で染色後、切り出しを行い、N末端アミノ酸配列解析をプロテインシークエンサーにて行った。その結果、N末端アミノ酸配列がVVGDFPIETDTLVIG(配列番号1)であることが見出された。さらに、当該アミノ酸配列をもとにBLAST内のバチルス・ズブチリスデータベースから該当遺伝子を検索した。その結果、デヒドロリポイルデヒドロゲナーゼ(Dehydrolipoyl dehydrogenase、以下DLDとする。)をコードするpdhD(配列番号2)と100%の相同性を有することが見出された。尚、DLDのアミノ酸配列を配列番号3に示す。
8.DLDによる食肉発色試験
 精製したDLDについて食肉発色試験を行った。精製したDLDの凍結粉末サンプルを使用し、食肉サンプルを以下の通り調製し(表3)、4℃で一晩保存した後、比較した(図9、図10)。
Figure JPOXMLDOC01-appb-T000003
 図9には、酵素量の異なる食肉サンプル(食肉サンプル1~4)を並べて示した。このようにDLDが食肉の色調改善に寄与していることがわかる。図10はNADHの有無による食肉の色調を比較したものである(左から凍結粉末なし(食肉サンプル1)、NADH有り(食肉サンプル2)、NADH無し(食肉サンプル5))。NADHが無くとも十分に発色できていることが確認された。食肉中にNADHが十分に含まれているためであると考えられる。
9.DLDの酵素学的性質
 本酵素と高い親和性をもつフェリシアン化カリウムを基質として用い、諸性質を検討した。まずはDLDの基質反応性を確認した。酵素添加量を15μLとし基質濃度(終濃度)を0.025,0.05,0.075,0.1,0.15,0.2,0.3,0.4,0.5,0.6,0.7,0.8,1.0,1.25,1.5,1.75,2.0,2.5(mM)となるように、測定時間30秒間で、レイトアッセイ(Rate assay)を行った(pH=6.0)。フェリシアン化カリウムのモル吸光係数は1.02×103(M-1・cm-1)とし、速度(v)の単位はμM/分を用いた。結果を図11、図12に示す。図11の基質飽和曲線の立ち上がりから[s]/v~[s]プロットを作成し(図12)、速度パラメーター(Kinetic parameter)を算出した(Km=0.19(mM)、Vmax=26.2(μM/分))。比較として、フェリシアン化カリウムと親和性の高い他起源のDiapholaseのKm値を表4に示す。表4より、バチルス ズブチリスから得られたDLDは、C.kluyveri由来のDLDよりもフェリシアン化カリウムに対して親和性が高いことがわかる。
Figure JPOXMLDOC01-appb-T000004
 DLDの至適pHを次の通り測定した。0.5Mの各pHバッファー(クエン酸バッファー(pH=3.0~6.0)、リン酸カリウムバッファー(KPB)(pH=6.0~8.0)、Tris-塩酸バッファー(pH=8.0~10.0))を10倍希釈(50mM)したものを50μL、4mM フェリシアン化カリウム溶液を10倍希釈(400μM)したものを50μL、酵素サンプル50μL、MiliQ水250μLを用いて30℃で5分間インキュベートした後、1mM NADH溶液を100μL添加し、A420の吸光度の変化を確認した。結果を図13に示す。
 続いてDLDのpH安定性を次の通り検討した。酵素サンプル20μL、20mMの各pHバッファー(クエン酸バッファー(pH=3.0~6.0)、リン酸カリウムバッファー(KPB)(pH=6.0~8.0)、Tris-塩酸バッファー(pH=8.0~10.0))180μLを混合し、30分間放置し反応させたものをpH処理サンプル液とした。こうして得られたpH処理サンプル液150μL、0.5Mクエン酸バッファー(pH=6.0)100μL、MilliQ水100μLを混合し氷中にて一晩保存した。こうして得られた保存液350μLに4mMのフェリシアン化カリウム50μLを添加し30℃で5分間インキュベートした後、1mMのNADH溶液を100μL添加し、A420の吸光度の変化を1秒毎に30秒間測定した(なおpH処理していないサンプルを活性100%とした)。結果を図14に示す。低pH側での安定性は十分ではなかったものの、肉中のpHがpH5~6であるので、肉中でも活性を十分有すると思われる。
 DLDの至適温度を次の通り測定した。0.5M クエン酸バッファー(pH6) 50μL、2mM フェリシアン化カリウム 50μL、MilliQ水 100μL及び1mM NADH 100μLを混合し、各温度で5分間プレインキュベートしたものに酵素サンプル200μLを添加しA420の吸光度の変化を5分間測定することで反応を確認した。結果を図15に示す。このことから、至適温度は40℃であり、50℃で失活することが確認できた。
 さらに熱安定性について次の通り測定した。酵素サンプルを予め各温度(30℃、40℃、60℃)で30分間処理したものを氷冷し、処理サンプルを調製した。この処理サンプル30μLに0.5M クエン酸バッファー(pH6.0) 50μL、2mM フェリシアン化カリウム 50μL及びMilliQ水 270μLを加えて30℃で5分間インキュベートした後、1mMのNADH溶液を100μL添加し、A420の吸光度の変化を1秒間隔にて30秒間計測した。図16の結果より、60℃でも高い残存活性があることを確認できた。
 続いてNADHとNADPHへの反応性を比較した。0.5M KPB(pH5.5) 50μL、精製DLD 100μL及び0.1%Mb 100μLを混合した後、MilliQ水で400μLとし、30℃で5分間プレインキュベートした。その後、1mMのNaDH又はNADPHを50μL添加し、A406を5分間モニターした。NADHの相対活性を100(%)とした場合の反応性を図17に示す。DLDはNADPHに対する反応性が低いことがわかる。
 また、金属塩(金属カチオン)がDLDの活性に対して与える影響を検証した。500mM KPB(pH5.5) 100μL、0.1%(=13.4μM) Mb 200μL、精製DLD 150μL、100mM カチオン(CaCl2、MgCl2、FeCl3、SnCl2、CuSO4、FeCl2、MnSO4、CdCl2、ZnCl2、NaCl、KCl、SDS、EDTA)10μL及び1mM NADH100μLを混合し、これに1mLとなるまで精製水を加えたものを試料とし、相対活性を求めた。Ca+、Mg2+及びK+で活性の向上が見られた(図18)。
10.DLDの大量発現系
 バチルス ズブチリスよりDLD遺伝子を取得し、大腸菌にて大量発現系を構築すべく検討を行った。
10-1.バチルス ズブチリス7417株からのゲノム抽出
 バチルス ズブチリス7417株からのゲノム抽出は次の通り行った。バチルス ズブチリス7417株を0.5%ペプトン、1.0%酵母エキス、1.0%グルコースを含む液体培地(pH6.5)に接種し、30℃、300rpmにて一晩振とう培養した。得られた培養物からQIAquickTM Gel Extraction Test Kit(QIAGEN社製)を用いてゲノムDNAの抽出を行った。
10-2.PCRによるDLD遺伝子の増幅
 PCRによるDLD遺伝子増幅は次の通り行った。10×バッファー 5μL、dTNP 4μL、バチルス ズブチリスのゲノム 1μL、以下の10μMプライマー(2種)各5μL、EX. Taq(DNA polymerase, タカラバイオ社製) 0.1μLを混合し、これに精製水を加えて50μLとした。なお、プライマーの組み合わせとしては2パターン(パターン1、パターン2)用意した。PCR反応は2ステップで行った。まずステップ1として98℃で30秒間、熱変性させた。続いてステップ2として下記サイクル(熱変性:98℃,10秒間、アニーリング:46℃,30秒間、伸長反応:72℃,90秒間)を25サイクル行い、PCR産物を得た。
(プライマーの配列)
パターン1
 DLD-Nde1-FW:GGCGTAATCATATGGTAGTAGGAG(配列番号4)
 DLD-BamH1-RV:GATAGGATCCTTATTTTACGATG(配列番号5)
パターン2
 DLD-Nde1-FW:GGCGTAATCATATGGTAGTAGGAG(配列番号6)
 DLD-BamH1-Histag-RV:GATAGGATCCTTAGTGGTGGTGGTGGTGGTGTTTTACGATG(配列番号7)
10-3.DLD遺伝子のTAクローニング
 続いてDLD遺伝子のTAクローニングを次の通り行った。PCRで得られたPCR産物3μLに、2×Liationバッファー 5μL、pGEM-T easyベクター 1μL、T4 リガーゼ 1μLを添加し4℃で一晩反応させた後、これをコンピテントセルDH5αに全量添加し、42℃で30秒間ヒートショックをかけて2分間氷冷した。これにSOC培地150μLを添加し、37℃で20分間インキュベートした。そして全量をLB/Amp培地プレートで培養し、コロニーを得た。
10-4.DLDの形質転換
 続いてDLDを次の通りベクターにクローニングした。TAクローニングによって得られた培養物をGenEluteTM plasmid Miniprep Kit(SIGMA社製)を用いてプラスミド抽出を行った。得られたプラスミド抽出物に10×バッファー、Nde Iを添加し37℃で2時間処理した。さらにこれにBamH I 1μLを添加し、37℃で1時間処理したものを挿入遺伝子とした。一方、pET20bベクターについてもBamH I 1μLを添加し、37℃で1時間処理したものを準備した。His-tagの有無によるDLDの酵素活性を確認するために、それぞれ下記の通り試料を調製し(単位はμL)、16℃で30分間インキュベートした。その後、全量をコンピテントセルDH5αに添加し氷上で1時間溶解したものをヒートショックにかけ(42℃、30秒間)、SOC培地を添加し37℃で20分間インキュベートし、LB/amp培地にプレートした。
10-5.形質転換体の酵素活性測定
 上記の通り得られた形質転換体の活性測定を次の通り行った。DLD(+)Histag/pET20b/BL21の5コロニーとDLD(-)Histag/pET20b/BL21の4コロニーをとりLB/Amp培地にて30℃で一晩振とう培養した(前培養)。この前培養液60μLを3mLのLB/Amp培地に植菌し37℃で一晩振とう培養した(本培養)。OD600=0.4~0.5になったら、IPTGを終濃度0.1mMになるよう加え、30℃で4時間振とう培養した。こうして得られた菌体を集菌し、50mM Tris-HCl(pH=7.0)に懸濁させた。これをビーズショッカー(MULTI-BEADS SHOCKER、安井器械社製)にて破砕し遠心した後、上清をサンプルとした。
 酵素反応(メトミオグロビン還元反応)を次の通り行った。上記方法で得られた酵素サンプル50μLに、0.5M KPB バッファー(pH=5.5)、0.1%メトミオグロビン溶液50μLを添加し、これに対し225μLになるまで精製水を加えた。そして、1mM NADH溶液25μLを加え反応を開始し、A406の吸光度の変化を10分間確認した。同時にタンパク量についてもBradford法で定量した。結果を図19、図20に示す。
 図19はHis-tagなし、図20はHis-tagありの形質転換体のメトミオグロビン還元活性を示したものである。比較のためにpET20bの空ベクター、IPTGベクターデータについても示した。いずれも空ベクターに比べ、10倍以上のメトミオグロビン還元活性を示した。また図19と図20を比較してわかるとおり、IPTGによる制御はかかっていないものと思われる。
11.リコンビナントDLDの食肉発色活性
 上記により得られたリコンビナントDLDをビーズ破砕し、以下の条件でNi-Sepharoseカラムにて精製して、20mM KPB(pH6)で透析した。これを凍結乾燥したものをサンプルとして用い食肉発色試験1、食肉発色試験2を行った。
(クロマトグラフィー条件)
 担体:Ni Sepharose(25mL)
 サンプル:破砕上清 約20mL
 Bind Buf:20mM KPB,0.3M NaCl(pH6)
 Elute Buf:20mM KPB,0.3M NaCl,0.4Mイミダゾール(pH6)
 流速:チャージ:5mL/分,その他:10mL/分
 分画:10mL
 プログラム:(1)Bind Buf洗浄 6cv、(2)Elute Buf 10%洗浄 10cv、(3)Elute Buf 100%/20cv勾配、(4)Elute Buf洗浄 10cv
 食肉発色試験1では、豚ミンチ肉2gに40mg/mL(4%)のミオグロビン(SIGMA社製)37.5μL、0.5MのKPB(pH=5.5) 37.5μL、20mM NADH 37.5μL、凍結粉末品酵素サンプル66mgを加え、4℃で一晩反応させた。また、比較のため、凍結粉末がないもの(ネガティブコントロール)を調製した。結果を図21に示す。左がネガティブコントロール、右が凍結粉末有りの食肉である。色調の変化を目視だけでなく画像のRGB値からも検証したが、リコンビナントDLDにより食肉の色調がより赤みがかったことがわかる。
 食肉発色試験2では、豚ミンチ肉2gに0.5MのKPB(pH=5.5) 37.5μL、40mg/mL(4%)のミオグロビン(SIGMA社製)37.5μL、20mM NADH 37.5μL、サンプル((1)精製DLDのみ(60mg)、(2)食添亜硝酸Naのみ(0.4%(w/w)=8mg)、(3)精製DLD+亜硝酸Na((1)及び(2))、(4)(2)にグルコン酸Zn(15mg)を加えたもの、(5)なし)を加え、4℃で一晩反応させた(図22)。さらに、これらに65℃で85分間加熱処理したものを図23に示す。これら図22、図23のサンプルについても目視だけでなく画像のRGB値からの検証を行った。
 図21の加熱処理なしの食肉の色調について以下説明する。DLDを加えたもの(サンプル(1)とサンプル(3))に良好な赤の色調が見られた。とりわけDLDと亜硝酸ナトリウムを加えたサンプル(3)の色調が良好であった。亜硝酸ナトリウムとグルコン酸亜鉛を加えたサンプル(4)では褐色となった。亜硝酸ナトリウムのみを加えたサンプル(2)は、無添加のサンプル(5)と同様の色調が見られた。
 図22の加熱処理後の食肉の色調について以下説明する。亜硝酸ナトリウムを加えたもの(サンプル(2)、サンプル(3)、サンプル(4))に良好な赤の色調(白桃色)が見られた。とりわけDLDと亜硝酸ナトリウムを加えたサンプル(3)は、赤みが強調され良好な色調を示した。DLDのみを加えたサンプル(1)は無添加のサンプル(5)に比べれば赤みが残っているものの、サンプル(2)~サンプル(4)と比べると褐色がかなり進んでいるようであった。
12.食肉発色酵素の精製
 バチルス ズブチリス菌体由来の食肉発色酵素のうち、DLD以外の食肉発色酵素について精製を行った。精製工程はDEAEクロマト前半ピーク(図4のDEAE.Fr.No.27-35)を出発材料にして、フェニルクロマトグラフィー、ハイドロキシアパタイトクロマトグラフィー、Cuアフィニティークロマトグラフィーを行った。
 DEAE前半Fraction(図4のDEAE.Fr.No.27-35) 10mLを以下の条件のフェニルクロマトグラフィー(Phenyl column (HiTrapTM Phenyl HP (5mL); GE Healthcare))に供した。上記フェニルクロマトグラフィーで得られた溶出パターン及びメトミオグロビン還元酵素活性を図24に示す。これらフラクションのうち、特に活性の高かったフェニル.Fr.No.26-31を5mM KPB(pH6)で透析して、ハイドロキシアパタイトクロマトグラフィーに供した。
(フェニルクロマトグラフィー条件)
 担体:Phenyl HP(5mL)
 サンプル:DEAE前半Fr.( 100210) UF 10mL
 Buf A:20mM KPB,30%飽和硫安(pH6)
 Buf B:20mM KPB(pH6)
 流速:5mL/分
 分画:5mL
 プログラム:(1)Buf A洗浄 5cv、(2)Buf B勾配 100%/20cv、(3)Buf B 100% 洗浄 5cv
 上記フェニルクロマトグラフィーで得られたフェニル.Fr.No.26-31を以下の条件のハイドロキシアパタイトクロマトグラフィーに供した。上記ハイドロキシアパタイトクロマトグラフィーで得られた溶出パターン及びメトミオグロビン還元酵素活性を図25に示す。
(ハイドロキシアパタイトクロマトグラフィー条件)
 担体:ハイドロキシアパタイト(5mL)
 チャージ:フェニル精製Fr.No.26-31
 Buf A:5mM KPB,0.3M NaCl(pH6)
 Buf B:400mM KPB,0.3M NaCl(pH6)
 流速:2mL/分
 分画:5mL
 プログラム:(1)Buf A洗浄 5cv、(2)Buf B勾配 100%/25cv、(3)Buf B 100% 6cv
 上記ハイドロキシアパタイトクロマトグラフィーで得られたフラクションのうち、特に活性の高かったハイアパFr.No.16を20mM KPB,0.3M NaCl(pH6)で透析して、以下の条件のCuアフィニティカラムに供しCuアフィニティークロマトグラフィーを行った。Cuアフィニティークロマトグラフィーで得られた溶出パターン及びメトミオグロビン還元酵素活性を図26に示す。Cuアフィニティークロマトグラフィーで得られたこれらのフラクションのうち、特に活性の高かったCu.Fr.No.10,13についてSDS-PAGEを行った。結果を図27に示す。
(Cuアフィニティークロマトグラフィー条件)
 担体:Cu2+ HP(1mL)
 チャージ:ハイアパ-Fr. 16
 Buf A:20mM KPB,0.3M NaCl(pH6)
 Buf B:20mM KPB,0.3M NaCl,0.4M イミダゾール(pH6)
 流速:1mL/分
 分画:2mL
 プログラム:(1)Buf A洗浄 6cv、(2)Buf B勾配 10%/20cv、(3)Buf B洗浄 10cv
 図27は上記ハイドロキシアパタイトクロマトクラフィーで得られたハイアパFr.No.13-17、及びCuアフィニティークロマトグラフィーで得られたCu.Fr.No.8-15についてSDS-PAGEを行ったものである。このうち、Cuアフィニティークロマトグラフィーで得られたCu.Fr.No.10に2つのメインバンドを確認できたため、上述の方法によりN末端アミノ酸配列解析を行ったところ、分子量の大きいほうのタンパク質はMGNTRKKVSVI(配列番号8)、分子量の小さいほうのタンパク質はMTNTLDVLKA(配列番号9)であった。N末端アミノ酸配列をもとに分子量の大きいほうのタンパク質のBLASTサーチを行ったところ、リンゴ酸デヒドロゲナーゼ(Malate dehydrogenase:MDH)をコードするmdh(配列番号10)と100%の相同性を示した。また分子量の小さいほうのタンパク質については推定NAD(P)Hニトロレダクターゼ(Putative NAD(P)H nitroreductase:yodC)をコードするyodC(配列番号11)と100%の相同性を示した。尚、yodCのアミノ酸配列を配列番号12に示す。Cu.Fr.No.13については分子量よりDehydrolipoyl dehydrogenaseと同一であると推測した。
16.食肉発色酵素(MDH、yodC)の大量発現系構築
 バチルス ズブチリスと納豆菌から遺伝子を取得し、MDHとyodCの大量発現系を構築した。バチルス ズブチリスと納豆菌の遺伝子情報からプライマーを作成しPCRにかけて該当遺伝子の切り出しを行った。ベクターにpET20b、宿主にBL21(DE3 pLysS)を用い、各酵素のC末端に6×His-tagを付加して発現させた。発現確認培養は次の通り行った。各酵素(MDH又はyodC)(+)Histag/pET20b/BL21のコロニーをとり、30℃、300rpmで一晩振とう培養した(前培養)。この前培養液の2%当量を10mLのLB/Amp培地に植菌し、ODが約0.5~0.7になったらIPTGを終濃度0.5mMになるよう加え、37℃,300rpmで4時間振とう培養した(本培養)。こうして得られた菌体を集菌し、50mM Tris-HCl(pH=7.0)に懸濁させた。これをビーズ破砕し遠心した後、上清をサンプルとした。
 上記で得られたサンプルの活性確認を行った。酵素サンプル150μLに0.1%(w/w)メトミオグロビン50μL、0.5M KPB(pH=5.5)を加え、これに1mM NADH 25μLを加え反応を開始し、A406の吸光度の変化を10分間確認した。図28より、yodCについては活性を確認できたものの、MDHについては活性を確認できなかった。そこで発現の有無を確認するためSDS-PAGEによりバンドを確認した(図29)。MDHとyodC共に該当サイズに濃いバンドを確認できた。
17.精製した食肉発色酵素(MDH、yodC)の発色試験
 上述の方法で得られたリコンビナントyodC(バチルス ズブチリス)とMDH(バチルス ズブチリス)を下記条件でNi-Sepharoseカラムにて精製し、20mM KPB(pH6)で透析した。透析したサンプルを凍結乾燥し、リコンビナントyodCとMDHの酵素粉末を得た。
(クロマトグラフィー条件)
 担体:Ni Sepharose(25mL)
 サンプル:破砕上清 約20mL
 Bind Buf:20mM KPB,0.3M NaCl(pH6)
 Elute Buf:20mM KPB,0.3M NaCl,0.4M イミダゾール(pH6)
 流速:チャージ:5mL/分,その他:10mL/分
 分画:10mL
 プログラム:(1)Bind Buf洗浄 6cv、(2)Elute Buf 10% 洗浄 10cv、(3)Elute Buf 100%/20cv勾配、(4)Elute Buf洗浄 10cv
 得られた酵素粉末を用いて以下の通り食肉発色試験を行った。食肉発色試験では、豚ミンチ肉2gに40mg/mL(4%)のミオグロビン(SIGMA社製)37.5μL、0.5MのKPB(pH=5.5) 37.5μL、20mM NADH 37.5μL、サンプル((1)コントロール(無添加)、(2)yodC(16mg=20U)、(3)ボイルしたyodC、(4)MDH(16mg)、(5)ボイルしたMDH)を加え、4℃で一晩反応させた。なお、熱処理(100℃,30分)で失活を確認するためサンプル(3)及びサンプル(5)を用意した。結果を図30に示す。yodCには食肉発色効果が認められたものの、MDHについては全く認められなかった。
18.yodCの酵素学的性質検討
 yodCの酵素学的性質を検討した。DLDと同様に至適pH(図31)、pH安定性(図32)、至適温度(図33)、熱安定性(図34)、NADPHへの反応性(図35)、金属塩(金属カチオン)が活性に与える影響(図36)を調べた。至適pHについてはDLDと同様にpH6.0付近であるため食肉アプリケーション上支障はないものと思われる。また幅広いpH条件で安定であった。至適温度を考えても、20℃付近という低温条件下でよく作用することから食肉アプリケーション上好ましいといえる。熱安定性試験においても40℃まで活性を維持することを確認できた。補酵素特異性試験においてはNADHを用いた場合よりもNADPHを用いた場合で良好な活性が得られた。金属カチオンについてはMg、Na又はKを加えた場合に酵素活性の向上が見られた。さらに、基質反応性についても検証した。DLDと同条件で、フェリシアン化カリウムへの反応性、さらにはミオグロビンへの反応性について調べた。DLDの結果を併せて各々図37、図38に示す。DLDと比べ、フェリシアン化カリウムに対しては約2.6倍、ミオグロビンに対しては約22倍の反応性を示した。
 本発明の還元剤は特に、食肉又は食肉加工品の色調改善剤として有用である。本発明の還元剤によれば、亜硝酸塩等の発色剤を使用することなく食肉を発色させることができることから、商品価値の高い食肉加工食品を製造することが可能となる。
 この発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。
 本明細書の中で明示した論文、公開特許公報、及び特許公報などの内容は、その全ての内容を援用によって引用することとする。
配列番号4:人工配列の説明:プライマーDLD-Nde1-FW
配列番号5:人工配列の説明:プライマーDLD-BamH1-RV
配列番号6:人工配列の説明:プライマーDLD-Nde1-FW
配列番号7:人工配列の説明:プライマーDLD-BamH1-Histag-RV

Claims (26)

  1.  バチルス属微生物由来のヘム還元酵素を含む還元剤。
  2.  前記ヘムがメトミオグロビンのヘムであることを特徴とする、請求項1に記載の還元剤。
  3.  前記ヘムがメトヘモグロビンのヘムであることを特徴とする、請求項1に記載の還元剤。
  4.  バチルス属微生物の菌体破砕物からなることを特徴とする、請求項1~3のいずれか一項に記載の還元剤。
  5.  前記バチルス属微生物がバチルス ズブチリス、バチルス アミロリケファシエンス、納豆菌、バチルス スリンギエンシス及びバチルス ミコイデスからなる群より選択される微生物である、請求項1~4のいずれか一項に記載の還元剤。
  6.  前記ヘム還元酵素がデヒドロリポイルデヒドロゲナーゼ又はニトロレダクターゼである、請求項1に記載の還元剤。
  7.  前記ヘム還元酵素として、デヒドロリポイルデヒドロゲナーゼ及びニトロレダクターゼを含む、請求項1に記載の還元剤。
  8.  前記デヒドロリポイルデヒドロゲナーゼのアミノ酸配列が配列番号3のアミノ酸配列を含み、前記ニトロレダクターゼのアミノ酸配列が配列番号12のアミノ酸配列を含む、請求項6又は7に記載の還元剤。
  9.  前記デヒドロリポイルデヒドロゲナーゼ及び前記ニトロレダクターゼがリコンビナントタンパク質である、請求項6~8のいずれか一項に記載の還元剤。
  10.  請求項1~9のいずれか一項に記載の還元剤からなる色調改善剤。
  11.  請求項1~9のいずれか一項に記載の還元剤と、ミオグロビンのヘム基中の鉄を亜鉛に置換する作用を示す物質を組み合わせてなる色調改善剤。
  12.  前記物質がフェロケラターゼである、請求項11に記載の色調改善剤。
  13.  食肉又は食肉加工品の色調の改善用である、請求項10~12のいずれか一項に記載の色調改善剤。
  14.  デヒドロリポイルデヒドロゲナーゼ及び/又はニトロレダクターゼを含む、食肉又は食肉加工品用の色調改善剤。
  15.  発色作用、発色促進作用及び/又は退色防止作用により色調を改善する、請求項10~14のいずれか一項に記載の色調改善剤。
  16.  請求項1~9のいずれか一項に記載の還元剤を含むことを特徴とする医薬。
  17.  経口投与製剤である、請求項16に記載の医薬。
  18.  非経口投与製剤である、請求項16に記載の医薬。
  19.  以下のステップ(1)及び(2)を含む還元剤の製造法:
     (1)ヘム還元酵素を産生するバチルス属微生物を、該酵素が産生される条件下で培養するステップ;
     (2)培養産物から前記酵素を回収するステップ。
  20.  前記ステップ(2)が以下のステップからなる、請求項19に記載の製造法:
     (2-1)培養産物から菌体を収集するステップ;
     (2-2)菌体破砕物を調製するステップ。
  21.  前記ヘムがメトミオグロビンのヘムであることを特徴とする、請求項19又は20に記載の製造法。
  22.  前記ヘムがメトヘモグロビンのヘムであることを特徴とする、請求項19又は20に記載の製造法。
  23.  前記バチルス属微生物がバチルス ズブチリス、バチルス アミロリケファシエンス、納豆菌、バチルス スリンギエンシス及びバチルス ミコイデスからなる群より選択される微生物である、請求項19~22のいずれか一項に記載の製造法。
  24.  請求項10~15のいずれか一項に記載の色調改善剤を食肉又は食肉加工品に作用させることを特徴とする色調改善方法。
  25.  バチルス ズブチリス、バチルス アミロリケファシエンス、納豆菌、バチルス スリンギエンシス及びバチルス ミコイデスからなる群より選択されるバチルス属微生物の菌体破砕物を食肉又は食肉加工品に作用させることを特徴とする色調改善方法。
  26.  請求項1~9のいずれか一項に記載の還元剤を用いた、血行障害、低酸素症若しくは血中酸素減少状態、これらの一つ以上の病態ないし症状を伴う疾患、又はこれらの一つ以上の病態ないし症状に起因する疾病の予防または治療方法。
PCT/JP2011/060622 2010-05-12 2011-05-09 バチルス属微生物由来の還元剤及びその用途 WO2011142300A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2012514778A JP5814914B2 (ja) 2010-05-12 2011-05-09 バチルス属微生物由来の還元剤及びその用途
EP11780557.2A EP2570478B1 (en) 2010-05-12 2011-05-09 Reducing agent from microorganism belonging to genus bacillus and application for same
DK11780557.2T DK2570478T3 (en) 2010-05-12 2011-05-09 REDUCTION AGENT OF MICROORGANISM RELATED TO BACILLUS GENES AND USE OF SAME
US13/696,446 US20130058911A1 (en) 2010-05-12 2011-05-09 Reducing agent from microorganism belonging to genus bacillus and application for same
CN2011800231689A CN102892882A (zh) 2010-05-12 2011-05-09 源自杆菌属微生物的还原剂及其用途
US14/048,538 US9241507B2 (en) 2010-05-12 2013-10-08 Reducing agent from microorganism belonging to genus Bacillus and application for same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010109779 2010-05-12
JP2010-109779 2010-05-12

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US13/696,446 A-371-Of-International US20130058911A1 (en) 2010-05-12 2011-05-09 Reducing agent from microorganism belonging to genus bacillus and application for same
US201213696446A Continuation 2010-05-12 2012-11-06
US14/048,538 Division US9241507B2 (en) 2010-05-12 2013-10-08 Reducing agent from microorganism belonging to genus Bacillus and application for same

Publications (1)

Publication Number Publication Date
WO2011142300A1 true WO2011142300A1 (ja) 2011-11-17

Family

ID=44914356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060622 WO2011142300A1 (ja) 2010-05-12 2011-05-09 バチルス属微生物由来の還元剤及びその用途

Country Status (6)

Country Link
US (2) US20130058911A1 (ja)
EP (1) EP2570478B1 (ja)
JP (1) JP5814914B2 (ja)
CN (2) CN107259310A (ja)
DK (1) DK2570478T3 (ja)
WO (1) WO2011142300A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014013795A1 (ja) * 2012-07-18 2014-01-23 天野エンザイム株式会社 食肉の色調改善方法
WO2015045664A1 (ja) * 2013-09-24 2015-04-02 マルハニチロ株式会社 ミオグロビン含有生食用赤身魚肉の加工食品及びその製造方法
CN106854629A (zh) * 2015-12-08 2017-06-16 上海泓宝绿色水产股份有限公司 一种高浓度复合芽孢杆菌及其制备和使用方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101780348B1 (ko) * 2016-07-22 2017-09-22 매그나칩반도체 유한회사 Cmos 트랜지스터 형성 방법
CN111117920B (zh) * 2020-01-07 2021-04-02 山东农业大学 一种产蛋白酶、产铁载体的蕈状芽孢杆菌及其应用
CN112608871B (zh) * 2021-01-12 2022-11-01 江南大学 一种苏云金芽孢杆菌高密度发酵生产益生活性物质的方法
WO2023096255A1 (ko) * 2021-11-25 2023-06-01 주식회사 헤모랩 미생물 헴단백 추출물을 포함하는, 정장 및 비만 개선용 조성물
WO2023204055A1 (en) * 2022-04-18 2023-10-26 Sumitomo Chemical Company, Limited Genes and host modifications for the production of jasmonic acid

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002536015A (ja) * 1999-02-10 2002-10-29 マイクロバイオロジカル リサーチ オーソリティ ニトロレダクターゼ酵素
JP2003018976A (ja) 2001-07-10 2003-01-21 Katsuhiro Yamamoto 食肉・食肉加工品退色防止方法
JP2005508614A (ja) * 2001-07-06 2005-04-07 インサイト・ゲノミックス・インコーポレイテッド 薬物代謝酵素
JP2005087058A (ja) 2003-09-16 2005-04-07 Itoham Foods Inc 食肉製品発色方法
JP2006056908A (ja) 2002-02-01 2006-03-02 Itoham Foods Inc 天然赤色色素及び当該色素を含む食品並びに食品素材
JP2006061016A (ja) 2004-08-24 2006-03-09 Itoham Foods Inc 食肉製品発色方法
JP2006166815A (ja) * 2004-12-16 2006-06-29 Shonan Pure:Kk 食品の製造方法及び該製造方法によって得られた食品
JP2008228702A (ja) 2007-03-23 2008-10-02 Toshiaki Oshima エノキタケ抽出物含有食肉品変色防止剤
JP2009165445A (ja) 2008-01-21 2009-07-30 Takahiro Hodate 食品添加物を使用しない食肉加工品の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040014191A1 (en) * 1999-02-10 2004-01-22 Nigel Minton Nitroreductase enzymes
NZ550224A (en) * 2004-04-02 2010-08-27 Curwood Inc A film that uses an oxide of nitrogen to create nitroxymyoglobin and maintain the red colour of fresh meat
EP1676489A3 (en) * 2004-12-16 2006-07-12 Shonan Pure Co. Ltd. Method of producing food and food produced by the method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002536015A (ja) * 1999-02-10 2002-10-29 マイクロバイオロジカル リサーチ オーソリティ ニトロレダクターゼ酵素
JP2005508614A (ja) * 2001-07-06 2005-04-07 インサイト・ゲノミックス・インコーポレイテッド 薬物代謝酵素
JP2003018976A (ja) 2001-07-10 2003-01-21 Katsuhiro Yamamoto 食肉・食肉加工品退色防止方法
JP2006056908A (ja) 2002-02-01 2006-03-02 Itoham Foods Inc 天然赤色色素及び当該色素を含む食品並びに食品素材
JP2005087058A (ja) 2003-09-16 2005-04-07 Itoham Foods Inc 食肉製品発色方法
JP2006061016A (ja) 2004-08-24 2006-03-09 Itoham Foods Inc 食肉製品発色方法
JP2006166815A (ja) * 2004-12-16 2006-06-29 Shonan Pure:Kk 食品の製造方法及び該製造方法によって得られた食品
JP2008228702A (ja) 2007-03-23 2008-10-02 Toshiaki Oshima エノキタケ抽出物含有食肉品変色防止剤
JP2009165445A (ja) 2008-01-21 2009-07-30 Takahiro Hodate 食品添加物を使用しない食肉加工品の製造方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
ARIHARA, K. ET AL.: "Conversion of Metmyoglobin to Bright Red Myoglobin Derivatives by Chromobacterium violaceum, Kurthia sp., and Lactobacillus fermentum JCM1173", JOURNAL OF FOOD SCIENCE, vol. 58, no. 1, 1993, pages 38 - 42, XP055100924 *
DATABASE PROTEIN [online] 10 April 2010 (2010-04-10), MORITA, H. ET AL.: "dihydrolipoamide dehydrogenase [Lactobacillus fermentum IFO 3956].", XP008167260, Database accession no. YP_001843953 *
DATABASE PROTEIN [online] 31 March 2010 (2010-03-31), BARBE, V. ET AL.: "Definition: dihydrolipoamide dehydrogenase [Bacillus subtilis subsp. subtilis str. 168].", XP008167258, Database accession no. NP_389344 *
DATABASE PROTEIN [online] 9 December 2009 (2009-12-09), GOFFEAU, A. ET AL.: "Lpd1p [Saccharomyces cerevisiae S288c]", XP008167261, Database accession no. NP_116635 *
HEMILA, H. ET AL.: "Secretory S Complex of Bacillus subtilis: Sequence Analysis and Identity to Pyruvate Dehydrogenase", JOURNAL OF BACTERIOLOGY, vol. 172, no. 9, 1990, pages 5052 - 5063, XP000918765 *
KAZUTOMO IMAHORI ET AL.: "Dihydrolipoamide Dehydrogenase", SEIKAGAKU JITEN, 2002, pages 663, XP008165000 *
KEIZO ARIHARA ET AL.: "Nyusankin no Nikushoku Seigyo Kino - Lactobacillus-zoku Oyobi Enterococcus-zoku Nyusankin ni yoru Sensekishoku Myoglobin Yudotai no Keisei", SHOKUNIKU NO KAGAKU, vol. 35, no. 1, 1994, pages 159 - 162, XP008169346 *
See also references of EP2570478A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014013795A1 (ja) * 2012-07-18 2014-01-23 天野エンザイム株式会社 食肉の色調改善方法
WO2015045664A1 (ja) * 2013-09-24 2015-04-02 マルハニチロ株式会社 ミオグロビン含有生食用赤身魚肉の加工食品及びその製造方法
JP2015062345A (ja) * 2013-09-24 2015-04-09 マルハニチロ株式会社 ミオグロビン含有生食用赤身魚肉の加工食品及びその製造方法
CN106854629A (zh) * 2015-12-08 2017-06-16 上海泓宝绿色水产股份有限公司 一种高浓度复合芽孢杆菌及其制备和使用方法

Also Published As

Publication number Publication date
DK2570478T3 (en) 2018-08-06
EP2570478A1 (en) 2013-03-20
EP2570478A4 (en) 2015-12-16
US20130058911A1 (en) 2013-03-07
JP5814914B2 (ja) 2015-11-17
JPWO2011142300A1 (ja) 2013-07-22
CN107259310A (zh) 2017-10-20
EP2570478B1 (en) 2018-06-27
US9241507B2 (en) 2016-01-26
CN102892882A (zh) 2013-01-23
US20140037791A1 (en) 2014-02-06

Similar Documents

Publication Publication Date Title
JP5814914B2 (ja) バチルス属微生物由来の還元剤及びその用途
Udenigwe et al. Kinetics of the inhibition of renin and angiotensin I-converting enzyme by flaxseed protein hydrolysate fractions
Tacias-Pascacio et al. Bioactive peptides from fisheries residues: A review of use of papain in proteolysis reactions
JP3881494B2 (ja) 納豆菌培養エキス
JP5127194B2 (ja) コラーゲンペプチド粉末、その製造方法およびポリフェノール含有製品
Chun et al. Construction of a Human Cytochrome P450 1A1: Rat NADPH–Cytochrome P450 Reductase Fusion Protein cDNA and Expression inEscherichia coli, Purification, and Catalytic Properties of the Enzyme in Bacterial Cells and after Purification
US20110213142A1 (en) Method for Producing Biological Heme Iron, and Iron Supplementing Composition Containing the Heme Iron Produced By Same
JP5580056B2 (ja) 安定型トランスグルタミナーゼ及びその製造法
KR20200047508A (ko) 비형광성 최종당화산물 억제용 조성물 및 이의 용도
JP6096179B2 (ja) ラクターゼ活性を有するタンパク質、該タンパク質をコードする遺伝子、該遺伝子を含有する組み換えベクター、形質転換体、及びその製造方法並びに用途
JP2020092690A (ja) エクオール誘導体の産生のための組成物
Huang et al. Angiotensin‐converting enzyme (ACE) inhibitory peptides from fermented sausages inoculated with Lactobacillus plantarum CD101 and Staphylococcus simulans NJ201
Lin et al. Chemical modification of oxalate decarboxylase to improve adsorption capacity
US20210308031A1 (en) Fusion proteins for hydroxylating amino acids and products
WO2005061529A1 (ja) アンジオテンシン変換酵素阻害ペプチド
WO2013047082A1 (ja) 外因性オピオイドペプチド分解酵素剤
JP2008222701A (ja) 肥満予防及び治療用発酵物、糖尿病予防用発酵物、肥満予防及び治療用発酵食品および糖尿病予防用食品
KR102059885B1 (ko) 하이드록시메틸푸르푸랄 유도체
JP3683010B2 (ja) 抗酸化性物質の製造法およびその用途
JP2009284798A (ja) ジペプチジルペプチダーゼiv阻害剤の製造方法
Jasso-Chávez et al. The bacterial-like lactate shuttle components from heterotrophic Euglena gracilis
TW201219045A (en) Preparation and use of fish skin fermentation product
WO2014013795A1 (ja) 食肉の色調改善方法
JP2008072968A (ja) 熱中症予防飲料
JP5534297B2 (ja) シトクロム由来のヘム鉄を含む鉄補給又は鉄強化用製剤

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180023168.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11780557

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012514778

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13696446

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011780557

Country of ref document: EP