WO2011138934A1 - 絶縁電線、電気機器及び絶縁電線の製造方法 - Google Patents

絶縁電線、電気機器及び絶縁電線の製造方法 Download PDF

Info

Publication number
WO2011138934A1
WO2011138934A1 PCT/JP2011/060482 JP2011060482W WO2011138934A1 WO 2011138934 A1 WO2011138934 A1 WO 2011138934A1 JP 2011060482 W JP2011060482 W JP 2011060482W WO 2011138934 A1 WO2011138934 A1 WO 2011138934A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
insulated wire
resin varnish
insulating film
thermoplastic resin
Prior art date
Application number
PCT/JP2011/060482
Other languages
English (en)
French (fr)
Inventor
真 大矢
武藤 大介
陽介 小久保
田中 彰
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to KR1020127019069A priority Critical patent/KR101477875B1/ko
Priority to EP11777453.9A priority patent/EP2568476B1/en
Priority to CN201180018507.4A priority patent/CN102844822B/zh
Publication of WO2011138934A1 publication Critical patent/WO2011138934A1/ja
Priority to US13/551,073 priority patent/US20120279752A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/306Polyimides or polyesterimides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/305Polyamides or polyesteramides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0233Cables with a predominant gas dielectric

Definitions

  • the present invention relates to an insulated wire used for various electric devices.
  • the present invention also relates to an electric device such as an electric motor or a transformer using an insulated wire. Furthermore, this invention relates to the manufacturing method of an insulated wire.
  • an insulated wire in which a conductor is covered with an insulating film has been used in electric coils for various electric devices such as motors and transformers.
  • the insulating film of the insulated wire forming this electric coil is required to have adhesion to a conductor, electrical insulation and heat resistance.
  • space electrical devices, aircraft electrical devices, nuclear electrical devices, energy electrical devices, and automotive electrical devices have been required to have higher performance as well as to be smaller and lighter.
  • rotating electrical machines such as motors and transformers are required to have higher output than ever before.
  • a rotating electrical machine is manufactured by pushing an insulated wire wound around a core into a slot.
  • Insulated wires are usually produced by applying and baking a resin varnish on a conductor many times.
  • the number of times of passing through the baking furnace in the manufacturing process is increased, so that the film thickness of copper oxide on the copper surface, which is the conductor, grows.
  • the adhesive strength of is reduced.
  • a resin having a low dielectric constant for the insulating film it is conceivable to use a resin having a low dielectric constant for the insulating film.
  • the insulated wire which improved the corona discharge resistance by mix
  • grains with an insulating film is proposed.
  • an insulating film containing particles such as alumina, silica and chromium oxide (see Patent Documents 1 and 2), or an insulating film containing particles such as nitrogen carbide and silicon nitride (Patent Documents) 3) has been proposed.
  • These insulated wires reduce erosion deterioration due to corona discharge by an insulating film containing particles.
  • an insulated wire having an insulating film containing these particles often reduces the flexibility of the film and makes the surface of the film rough. Due to the rough surface of the film, the insulated wire is difficult to push into the slot. For this reason, in some cases, the insulated wire is inferior in wear resistance, and the insulating film is easily damaged.
  • the present inventors diligently studied to solve the above problems. Instead of including particles in the insulating film described in each of the above-mentioned patent documents, the present inventors do not include the particles in the insulating film on the outer periphery of the conductor in the present invention.
  • the method of decreasing the dielectric constant and increasing the partial discharge starting voltage by incorporating pores in the metal was investigated. It was found that when the insulating film was foamed by adding a foaming agent to the resin varnish, the cell diameter became too large and the dielectric breakdown voltage decreased. Therefore, further investigation was made, and the inventors of the present invention have an insulating layer formed by applying a resin varnish containing a thermosetting resin and a thermoplastic resin onto a conductor, and then baking the resin varnish. It has been found that an insulated wire having various pores can increase the partial discharge start voltage without lowering the dielectric breakdown voltage and is excellent in wear resistance. The present invention has been made based on this finding.
  • the following means are provided: ⁇ 1> An insulated wire in which the outer periphery of a conductor is coated with an insulating film, the insulating film is formed of a cured product of a thermosetting resin composition containing a thermoplastic resin, and the insulating film has fine pores.
  • An insulated wire characterized by having, ⁇ 2> The insulated wire according to ⁇ 1>, wherein an average diameter of the pores is 1 ⁇ m or less, ⁇ 3> where A / B is 10/90 to 90/10, where A is the mass of the resin component of the thermosetting resin and B is the mass of the thermoplastic resin ⁇ 1> or ⁇ 2> the insulated wire according to ⁇ 4>
  • the amorphous resin is at least one selected from the group consisting of polyetherimide, thermoplastic polyimide, polycarbonate, polyethersulfone, polyphenylsulfone, polysulfone, and polyarylate.
  • thermosetting resin is at least one selected from the group consisting of polyester, polyimide, and polyamideimide
  • thermosetting resin is at least one selected from the group consisting of polyester, polyimide, and polyamideimide
  • An electric device comprising the insulated wire according to any one of ⁇ 1> to ⁇ 6>, and ⁇ 8> a resin varnish containing a thermosetting resin and a thermoplastic resin.
  • the present invention can provide an insulated wire having a high partial discharge start voltage and a dielectric breakdown voltage and excellent wear resistance. Moreover, this invention can provide the electric equipment excellent in the lifetime characteristic which uses this insulated wire. Furthermore, this invention can provide the manufacturing method of an insulated wire.
  • FIG. 1 is a cross-sectional view showing an embodiment of the insulated wire of the present invention, and (a) and (b) show different aspects of the cross-sectional shape.
  • FIG. 2 is a cross-sectional view showing still another embodiment of the insulated wire of the present invention.
  • FIG. 1 is a schematic cross-sectional view showing a preferred embodiment of the insulated wire of the present invention.
  • the outer periphery of the conductor 1 is covered with the insulating film 2.
  • the insulating film 2 has at least one insulating layer formed by applying a resin varnish containing a thermosetting resin and a thermoplastic resin directly or indirectly to the outer periphery of the conductor and then baking it.
  • the insulating film 2 has fine pores 3 in the insulating layer.
  • the conductor may have a round cross section as shown in FIG.
  • Examples of the conductor 1 include those conventionally used as conductors for insulated wires, such as copper, copper alloys, aluminum, aluminum alloys, or combinations thereof.
  • Thermosetting resin The insulating film of the present invention is formed by directly or indirectly applying a resin varnish containing a thermosetting resin and a thermoplastic resin to the outer periphery of a conductor and then baking it. Thereby, the insulating film is formed with the hardened
  • the thermosetting resin contained in the resin varnish becomes a cured product after being applied and baked to form an insulating film.
  • the insulating film may be formed on the outer periphery of the conductor via another layer.
  • thermosetting resin various resins can be used as long as the gist of the present invention is not impaired.
  • polyimide, polyamideimide, polyesterimide, polyetherimide, polyimide hydantoin modified polyester, polyamide, formal, polyurethane, polyester, polyvinyl formal, epoxy, polyhydantoin, melamine resin, phenol resin, urea resin, polybenzimidazole, etc. can do.
  • resins such as polyester, polyimide, and polyamideimide are preferable from the viewpoint of heat resistance and flexibility. Moreover, these may be used individually by 1 type, and may mix and use 2 or more types.
  • polyester resin those obtained by adding a phenol resin or the like to an aromatic polyester can be used.
  • a polyester resin having a heat resistance class H can be used.
  • examples of commercially available H-type polyester resins include Isonel 200 (trade name, manufactured by Schenectady International).
  • polyimide resin for example, a commercially available product (trade name # 3000 manufactured by Toray DuPont Co., Ltd.) or a conventional method is used as a thermosetting polyimide, or an aromatic tetracarboxylic dianhydride and an aromatic diamine.
  • a polyamic acid solution obtained by reacting a compound in a polar solvent and thermally cured by imidization by a heat treatment during baking at the time of forming a coating can be used.
  • polyamide-imide resin As the polyamide-imide resin, a commercially available product (for example, HI406 (trade name, manufactured by Hitachi Chemical Co., Ltd.)) is used, or a tricarboxylic acid anhydride and a diisocyanate are directly reacted, for example, in a polar solvent by a conventional method. Or a product obtained by first reacting a diamine with a tricarboxylic acid anhydride in a polar solvent, first introducing an imide bond, and then amidating with a diisocyanate.
  • HI406 trade name, manufactured by Hitachi Chemical Co., Ltd.
  • Thermoplastic resin The insulating film of the insulated wire of the present invention is formed by applying a resin varnish containing a thermosetting resin and a thermoplastic resin directly or indirectly to the outer periphery of the conductor and then baking it.
  • a resin varnish containing a thermosetting resin and a thermoplastic resin directly or indirectly to the outer periphery of the conductor and then baking it.
  • the following thermoplastic resin is put in a solvent, and preferably mixed by heating to dissolve the thermoplastic resin in the solvent. Thereafter, preferably, a thermosetting resin dissolved in a solvent is added to the solvent in which the thermoplastic resin is dissolved and mixed by heating to obtain a resin varnish containing the thermosetting resin and the thermoplastic resin. .
  • thermoplastic resin dissolved in the resin varnish can finely disperse the thermoplastic resin particles in the network structure of the thermosetting resin.
  • the pores are formed in the finely dispersed thermoplastic resin particles.
  • fine pores can be formed in the insulating film of the insulated wire.
  • thermoplastic resin a heat-resistant thermoplastic resin is preferable.
  • thermoplastic polyamide resin polyether ether ketone, polycarbonate, polyether sulfone, polyether imide, polyether sulfone, polyphenyl sulfone, Polysulfone, polyarylate, thermoplastic polyimide and the like can be used.
  • thermoplastic polyimide for example, Aurum (trade name) manufactured by Mitsui Chemicals, Inc. can be used.
  • amorphous thermoplastic resins are preferable.
  • thermoplastic resin for example, acrylic resin, norbornene resin, cycloolefin resin, polystyrene, polycarbonate, polyethersulfone, polyetherimide, polyethersulfone, polyphenylsulfone, polysulfone Polyarylate, thermoplastic polyimide, and the like can be used.
  • amorphous thermoplastic resins polyetherimide, polycarbonate, polyethersulfone, polyphenylsulfone, polysulfone, polyarylate, and the like are particularly preferable.
  • an amorphous thermoplastic resin it can be easily dissolved in a solvent.
  • these resins can be finely dispersed in the network structure of the thermosetting resin, and fine pores can be formed.
  • these may be used individually by 1 type, and may mix and use 2 or more types.
  • a / B is 10/90 to 90/10, where A is the mass of the resin component not containing the solvent of the thermosetting resin, and B is the mass of the thermoplastic resin. More preferably, A / B is 30/70 to 70/30, and particularly preferably, A / B is 40/60 to 60/40.
  • a / B is 30/70 to 70/30, and particularly preferably, A / B is 40/60 to 60/40.
  • thermosetting resin and thermoplastic resin may be used alone or in combination of two or more.
  • a crystallization nucleating agent, a crystallization accelerator, a bubbling nucleating agent, an antioxidant, an antistatic agent, an anti-ultraviolet agent, a light stabilizer, a fluorescent whitening, and the like within the scope of the present invention.
  • Various additives such as additives, pigments, dyes, compatibilizers, lubricants, reinforcing agents, flame retardants, crosslinking agents, crosslinking aids, plasticizers, thickeners, thickeners, fillers (inorganic particles, etc.), and elastomers An agent may be blended.
  • the insulated wire of the present invention preferably has an insulating layer 2 having fine pores and a layer 4 having no pores (hereinafter also referred to as “skin layer”).
  • the skin layer may be formed outside the insulating layer having fine pores.
  • the skin layer may be formed inside the insulating layer, or may be formed both inside and outside the insulating layer (not shown).
  • the total thickness of the skin layers is preferably 70% or less, more preferably, so as not to hinder the effect of reducing the dielectric constant, 30% or less.
  • the smoothness of the surface is improved, so that the insulating property is improved. Furthermore, mechanical strength such as wear resistance and tensile strength can be ensured.
  • a resin film may be laminated on the insulating layer having pores, or a paint containing the aforementioned additives may be coated.
  • the pore magnification is preferably 1.1 times or more, and more preferably 1.5 times or more. Thereby, it is possible to secure a relative dielectric constant necessary for obtaining the effect of improving the partial discharge generation voltage. If the pore magnification is too high, the resin becomes soft and wear resistance cannot be maintained. If the porosity is too low, the effect of suppressing partial discharge is reduced.
  • the pore magnification in the present invention is the density ( ⁇ f) of the insulating film before the pores formed by applying and baking a resin varnish containing a thermosetting resin and a thermoplastic resin, and the pores are formed in the insulating film. The later density ( ⁇ s) is measured by an underwater substitution method, and the value calculated by ( ⁇ f / ⁇ s) is used.
  • the method for forming fine pores in the insulating film of the insulated wire of the present invention is not particularly limited.
  • the average diameter of the pores is preferably 1 ⁇ m or less. Thereby, the dielectric breakdown voltage can be maintained at a high value.
  • the average diameter of the pores is more preferably 0.8 ⁇ m or less. Usually, the average diameter of the pores is 0.1 to 1 ⁇ m. If the pore diameter is too large, the dielectric breakdown voltage decreases.
  • the average diameter of the pore diameter can be measured by observing a film portion having bubbles with a scanning electron microscope (SEM).
  • Examples of the method for forming fine pores in the insulating film of the insulated wire of the present invention include the following methods. After applying and baking the above-mentioned resin varnish on the outer periphery of the conductor, fine pores can be formed by impregnating the insulating film with gas and then heating. More specifically, a step in which an inert gas is contained in a layer baked with a resin varnish by holding a conductor coated and baked with a resin varnish in a pressurized inert gas atmosphere; An insulated wire having fine pores in the insulating film can be produced by a method comprising a step of forming pores by heating the layer on which the resin varnish is baked.
  • the insulated wire of the present invention can be manufactured, for example, as follows. That is, the above-described resin varnish applied to the outer periphery of the conductor and baked is overlapped with the separator and wound around the bobbin. Thereafter, the bobbin is held in a pressurized inert gas atmosphere to contain the inert gas. Thereafter, pores are generated in the insulating film by heating at normal pressure or higher than the softening temperature of the thermoplastic resin used in the resin varnish.
  • the separator used at this time is not particularly limited as long as the resin varnish coating / baking layer can be impregnated with an inert gas. For example, a polyethylene terephthalate sheet or film can be used. The size of the separator can be appropriately adjusted according to the width of the bobbin.
  • an insulated wire can also be manufactured.
  • the inert gas include helium, nitrogen, carbon dioxide, or argon.
  • the infiltration time of the inert gas until the pores are saturated and the infiltration amount of the inert gas are determined by the type of thermoplastic resin in which the pores are formed, the type of inert gas, the osmotic pressure, and the thickness of the pore insulating layer. It can be selected as appropriate. Carbon dioxide is preferred because of its high gas permeability rate to the thermoplastic resin and high gas solubility.
  • the insulated wire of the present invention has a high dielectric breakdown voltage and a partial discharge start voltage, and is excellent in wear resistance. Therefore, it can be used for various electric devices such as motors and transformers.
  • thermosetting resin varnish containing thermoplastic resin and thermosetting resin 1600 g of NMP (2-methylpyrrolidone) was put into a 2 L separable flask, and 400 g of a polyetherimide resin (PEI) pellet which is a thermoplastic resin was added little by little. This was heated to 110 ° C. and stirred for 5 hours to obtain a yellow transparent 20% by mass thermoplastic resin varnish.
  • a resin varnish containing a thermoplastic resin and a thermosetting resin was prepared by adding 139 g of a thermosetting resin varnish to the thermoplastic resin varnish.
  • HI406 polyamideimide (PAI) solution having a resin component of 32% by mass
  • thermosetting resin varnish containing thermoplastic resin and thermosetting resin 1600 g of NMP (2-methylpyrrolidone) was placed in a 2 L separable flask, and 400 g of polyimide (PI) pellets, which are thermoplastic resins, were added in small portions. This was heated to 110 ° C. and stirred for 5 hours to obtain a yellow transparent 20% by mass thermoplastic resin varnish. 1250 g of a thermosetting resin varnish was added to this thermoplastic resin varnish to prepare a resin varnish containing a thermoplastic resin and a thermosetting resin. However, as the thermosetting resin varnish, HI406 (32 mass% PAI solution of resin component) (trade name, manufactured by Hitachi Chemical Co., Ltd.) was used.
  • HI406 32 mass% PAI solution of resin component
  • thermosetting resin varnish containing thermoplastic resin and thermosetting resin 1600 g of NMP (2-methylpyrrolidone) was placed in a 2 L separable flask, and 400 g of polyetherimide (PEI) resin pellets, which are thermoplastic resins, were added in small portions. This was heated to 110 ° C. and stirred for 5 hours to obtain a yellow transparent 20% by mass thermoplastic resin varnish. 1250 g of a thermosetting resin varnish was added to this thermoplastic resin varnish to prepare a resin varnish containing a thermoplastic resin and a thermosetting resin.
  • PEI polyetherimide
  • thermosetting resin varnish a polyamic acid solution obtained by reacting an aromatic tetracarboxylic dianhydride and an aromatic diamine in a polar solvent by a conventional method is used to form a coating. What was thermoset by making it imidize by the heat processing at the time of baking was used (PI solution of resin component 32 mass%).
  • PI solution of resin component 32 mass%) PI solution of resin component 32 mass%.
  • thermosetting resin varnish containing thermoplastic resin and thermosetting resin 1600 g of NMP (2-methylpyrrolidone) was placed in a 2 L separable flask, and 400 g of polyetherimide (PEI) resin pellets, which are thermoplastic resins, were added in small portions. This was heated to 110 ° C. and stirred for 5 hours to obtain a yellow transparent 20% by mass thermoplastic resin varnish. 1250 g of a thermosetting resin varnish was added to this thermoplastic resin varnish to prepare a resin varnish containing a thermoplastic resin and a thermosetting resin.
  • PEI polyetherimide
  • thermosetting resin varnish Isonel 200 (polyester solution having a resin component of 32% by mass) (manufactured by Schenectady International) was used.
  • ⁇ Production of insulated wires> An insulating film was formed in the same manner as in Example 1 except that the above resin varnish was used, using a resin varnish with a thermosetting polyester / PEI mixing ratio of polyester: PEI 50: 50, FIG. The insulated wire of Example 6 shown to (a) was obtained.
  • thermosetting resin varnish containing thermoplastic resin and thermosetting resin 1600 g of NMP (2-methylpyrrolidone) was put into a 2 L separable flask, and 400 g of polycarbonate resin (PC) pellets which are thermoplastic resins were added little by little. This was heated to 110 ° C. and stirred for 5 hours to obtain a yellow transparent 20% by mass thermoplastic resin varnish. 1250 g of a thermosetting resin varnish was added to this thermoplastic resin varnish to prepare a resin varnish containing a thermoplastic resin and a thermosetting resin. However, as the thermosetting resin varnish, HI406 (32 mass% PAI solution of resin component) (trade name, manufactured by Hitachi Chemical Co., Ltd.) was used.
  • HI406 32 mass% PAI solution of resin component
  • thermosetting resin varnish containing thermoplastic resin and thermosetting resin 1600 g of NMP (2-methylpyrrolidone) was put into a 2 L separable flask, and 400 g of polyethersulfone resin (PES) pellets which are thermoplastic resins were added little by little. This was heated to 110 ° C. and stirred for 5 hours to obtain a yellow transparent 20% by mass thermoplastic resin varnish. 1250 g of a thermosetting resin varnish was added to this thermoplastic resin varnish to prepare a resin varnish containing a thermoplastic resin and a thermosetting resin.
  • NMP 2-methylpyrrolidone
  • thermosetting resin varnish HI406 (32 mass% PAI solution of resin component) (trade name, manufactured by Hitachi Chemical Co., Ltd.) was used.
  • thermosetting resin varnish HI406 (32 mass% PAI solution of resin component) (trade name, manufactured by Hitachi Chemical Co., Ltd.) was used.
  • HI406 32 mass% PAI solution of resin component
  • thermosetting resin varnish containing thermoplastic resin and thermosetting resin 1600 g of NMP (2-methylpyrrolidone) was placed in a 2 L separable flask, and 400 g of polyphenylsulfone resin (PPSU) pellets, which are thermoplastic resins, were added in small portions. This was heated to 110 ° C. and stirred for 5 hours to obtain a yellow transparent 20% by mass thermoplastic resin varnish. 1250 g of a thermosetting resin varnish was added to this thermoplastic resin varnish to prepare a resin varnish containing a thermoplastic resin and a thermosetting resin.
  • NMP 2-methylpyrrolidone
  • PPSU polyphenylsulfone resin
  • thermosetting resin varnish HI406 (32 mass% PAI solution of resin component) (trade name, manufactured by Hitachi Chemical Co., Ltd.) was used.
  • HI406 32 mass% PAI solution of resin component
  • thermosetting resin varnish containing thermoplastic resin and thermosetting resin 1600 g of NMP (2-methylpyrrolidone) was put into a 2 L separable flask, and 400 g of polysulfone resin (PSU) pellets which are thermoplastic resins were added little by little. This was heated to 110 ° C. and stirred for 5 hours to obtain a yellow transparent 20% by mass thermoplastic resin varnish. 1250 g of a thermosetting resin varnish was added to this thermoplastic resin varnish to prepare a resin varnish containing a thermoplastic resin and a thermosetting resin. However, as the thermosetting resin varnish, HI406 (32 mass% PAI solution of resin component) (trade name, manufactured by Hitachi Chemical Co., Ltd.) was used.
  • HI406 32 mass% PAI solution of resin component
  • thermosetting resin varnish containing thermoplastic resin and thermosetting resin 1600 g of NMP (2-methylpyrrolidone) was placed in a 2 L separable flask, and 400 g of polyarylate resin (PAR) pellets, which are thermoplastic resins, were added in small portions. This was heated to 110 ° C. and stirred for 5 hours to obtain a yellow transparent 20% by mass thermoplastic resin varnish. 1250 g of a thermosetting resin varnish was added to this thermoplastic resin varnish to prepare a resin varnish containing a thermoplastic resin and a thermosetting resin. However, as the thermosetting resin varnish, HI406 (32 mass% PAI solution of resin component) (trade name, manufactured by Hitachi Chemical Co., Ltd.) was used.
  • HI406 32 mass% PAI solution of resin component
  • thermoplastic resin varnish containing thermoplastic resin 1600 g of NMP (2-methylpyrrolidone) was placed in a 2 L separable flask, and 400 g of polyetherimide resin (PEI) pellets, which are thermoplastic resins, were added in small portions. This was heated to 110 ° C. and stirred for 5 hours to obtain a yellow transparent 25% by mass thermoplastic resin varnish.
  • PEI polyetherimide resin
  • thermosetting resin varnish containing thermoplastic resin and thermosetting resin 1600 g of NMP (2-methylpyrrolidone) was placed in a 2 L separable flask, and 400 g of polyetherimide resin (PEI) pellets, which are thermoplastic resins, were added in small portions. This was heated to 110 ° C. and stirred for 5 hours to obtain a yellow transparent 20% by mass thermoplastic resin varnish. 66 g of a thermosetting resin varnish was added to this thermoplastic resin varnish to prepare a resin varnish containing a thermoplastic resin and a thermosetting resin.
  • PEI polyetherimide resin
  • thermosetting resin varnish HI406 (32 mass% PAI solution of resin component) (trade name, manufactured by Hitachi Chemical Co., Ltd.) was used.
  • HI406 32 mass% PAI solution of resin component
  • PAI PAI
  • PEI 5: 95 ratio of PAI: PEI was formed in the same manner as in Example 1 except that the above resin varnish was used. I got an electric wire.
  • thermosetting resin varnish containing thermoplastic resin and thermosetting resin 160 g of NMP (2-methylpyrrolidone) was placed in a 2 L separable flask, and 40 g of polyetherimide resin (PEI) pellets, which are thermoplastic resins, were added in small portions. This was heated to 110 ° C. and stirred for 5 hours to obtain a yellow transparent 20% by mass thermoplastic resin varnish. 2375 g of a thermosetting resin varnish was added to this thermoplastic resin varnish to prepare a resin varnish containing a thermoplastic resin and a thermosetting resin.
  • PEI polyetherimide resin
  • thermosetting resin varnish HI406 (32 mass% PAI solution of resin component) (trade name, manufactured by Hitachi Chemical Co., Ltd.) was used.
  • HI406 32 mass% PAI solution of resin component
  • PAI PAI
  • PEI 95: 5 blending ratio of PAI and PEI was formed in the same manner as in Example 1 except that the above resin varnish was used. I got an electric wire.
  • the thickness of the insulating layer having pores and the average cell diameter were determined from a scanning electron microscope (SEM) photograph of the cross section of the insulated wire.
  • the pore magnification was calculated from ( ⁇ f / ⁇ s) by measuring the density ( ⁇ f) of the insulating film of the insulated wire and the density ( ⁇ s) before forming the pores.
  • the reciprocating wear tester is a tester that applies a constant load and scratches the surface of the insulated wire with a needle to measure the number of times that the conductor is exposed on the surface of the film, thereby measuring the film strength. Wear resistance was evaluated based on whether the load was 300 g and the number of reciprocating wear reached 200 times. In Tables 1 to 3, a sample having a reciprocating wear number of 200 or more was marked with a circle, and was deemed acceptable. A case where the number of reciprocal wears was less than 200 was indicated as x and was rejected.
  • the dielectric breakdown voltage of the insulated wire was evaluated by the aluminum foil method shown below. An insulated wire is cut to a length of about 200 mm, an aluminum foil having a width of 10 mm is wound around the center, an AC voltage with a sine wave of 50 Hz is applied between the aluminum foil and the conductor, and a voltage that causes dielectric breakdown while continuously boosting ( (Effective value) was measured, and the value was taken as the dielectric breakdown voltage. The measurement temperature was room temperature. A dielectric breakdown voltage of 10 kV or more was accepted and less than 10 kV was rejected.
  • a test piece is prepared by twisting two insulated wires of each of the examples and comparative examples in a twisted manner, and an AC voltage of a sine wave of 50 Hz is applied between the conductors to continuously increase the discharge charge amount.
  • the voltage (effective value) at 10 pC was measured.
  • the measurement temperature was room temperature.
  • a partial discharge tester KPD2050 (trade name) manufactured by Kikusui Electronics Co., Ltd.) was used to measure the partial discharge start voltage.
  • the partial discharge start voltage passed 900Vp or more, and less than 900Vp was rejected.
  • an insulating film in which a resin varnish containing a thermosetting resin and a thermoplastic resin is applied to the outer periphery of a conductor and then baked and an insulating film having fine pores is formed.
  • the electric wire had a high partial discharge starting voltage of 930 Vp, and the wear resistance was acceptable.
  • the partial electric discharge start voltage became low in the insulated wire produced by applying and baking only the PAI resin varnish which is a thermosetting resin (Comparative Example 1).
  • an insulated wire produced by applying and baking only a resin varnish containing no thermosetting resin had a low partial discharge starting voltage and inferior wear resistance (Comparative Example 2).

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)

Abstract

 導体の外周が絶縁皮膜で被覆された絶縁電線であって、該絶縁皮膜が熱可塑性樹脂を含有する熱硬化性樹脂組成物の硬化物で形成され、該絶縁皮膜が微細な気孔を有する絶縁電線。

Description

絶縁電線、電気機器及び絶縁電線の製造方法
 本発明は、各種電気機器に使用される絶縁電線に関する。また本発明は、絶縁電線が使用された電気モーターや変圧器など電気機器に関する。さらに本発明は、絶縁電線の製造方法に関する。
 従来から、導体を絶縁皮膜で被覆した絶縁電線は、モーターや変圧器などの各種電気機器用の電気コイルに使用されている。この電気コイルを形成する絶縁電線の絶縁皮膜には、導体への密着性、電気絶縁性及び耐熱性が必要とされている。特に近年は、宇宙用電気機器、航空機用電気機器、原子力用電気機器、エネルギー用電気機器、自動車用電気機器については、小型化や軽量化とともに、高性能化が求められている。例えば、モーター等の回転電機や変圧器には、従来にも増して高出力化が必要とされている。
 ところで回転電機は、コアに巻回した絶縁電線をスロットへ押し込んで製造されている。このスロット中に可能な限り多くの絶縁電線を押し込めるために、絶縁電線の絶縁皮膜の薄膜化への要求が高まっている。そこで絶縁電線の絶縁破壊電圧の向上が必要とされている。また薄膜の絶縁皮膜を有する絶縁電線をスロットに押し込む際に、該絶縁皮膜の損傷が低減可能な絶縁電線が必要となっている。
 さらに、回転電機稼働時に高電圧が印加されると、絶縁電線とスロットとの間や絶縁電線同士の間でコロナ放電が発生することがある。印加電圧がさほど高くない場合は、絶縁電線には耐コロナ放電性への要求は高くなかった。しかし、高出力の回転電機では高電圧が印加されるため、耐コロナ放電性に優れた部分放電開始電圧の高い絶縁電線が必要となっている。
 絶縁電線の部分放電開始電圧を向上させるには、絶縁皮膜を厚くすることが考えられる。しかし絶縁電線の薄膜化の要求から、絶縁皮膜を厚くすることは困難である。また絶縁電線は、通常、樹脂ワニスを導体に何回にもわたり塗布焼付を行って製造される。絶縁皮膜を厚くするためには、製造工程において、焼付炉を通す回数が多くなるため、導体である銅表面の酸化銅からなる皮膜厚さが成長し、これに起因して導体と絶縁皮膜との密着力が低下する。
 また絶縁電線の部分放電開始電圧を向上させる他の方法としては、誘電率の低い樹脂を絶縁皮膜に使用することが考えられる。しかし誘電率の低い樹脂は、通常、表面自由エネルギーが低く、導体との密着性に劣るため使用することは困難である。
 さらに、絶縁皮膜に粒子を配合することにより、耐コロナ放電性を向上させた絶縁電線が提案されている。例えば、絶縁皮膜中にアルミナ、シリカ、酸化クロム等の粒子を含有させたもの(特許文献1、2参照)や、絶縁皮膜中に炭化窒素や窒化珪素等の粒子を含有させたもの(特許文献3参照)が提案されている。これらの絶縁電線は、粒子を含有する絶縁皮膜により、コロナ放電による侵食劣化を低減するものである。しかしこれらの粒子を含有した絶縁皮膜を有する絶縁電線は、皮膜の可撓性が低下し、皮膜表面がざらつくことが多い。この皮膜表面のざらつきにより、絶縁電線はスロットに押し込みにくい。このため、場合によっては、絶縁電線は耐磨耗性に劣り、絶縁皮膜に損傷が生じやすい。
特開昭57-2361号公報 特開平2-106812号公報 特開平11-130993号公報
 本発明の1つの課題は、高い部分放電開始電圧と絶縁破壊電圧を有し、耐摩耗性に優れた絶縁電線を提供することにある。また本発明の別の課題は、絶縁電線を用いてなる寿命特性に優れた電気機器を提供することにある。さらに本発明の別の課題は、絶縁電線の製造方法を提供することにある。
 本発明者らは、上記課題を解決するために鋭意検討した。本発明者らは、前記各特許文献に記載された絶縁皮膜に粒子を含有させることに代えて、本発明における導体外周の絶縁皮膜に該粒子を含有させることがなくとも、絶縁電線の絶縁皮膜に気孔を含有させることにより誘電率を低下させ、部分放電開始電圧を増加させる方法について検討した。樹脂ワニスに発泡剤を含有させることで絶縁皮膜を発泡させたところ、気泡径が大きくなりすぎて絶縁破壊電圧が低下することが判明した。そこでさらに検討を行い、本発明者らは、熱硬化性樹脂と熱可塑性樹脂を含有する樹脂ワニスを導体上に塗布し、その後焼き付けて形成した絶縁層を有し、かつ該絶縁皮膜中に微細な気孔を有する絶縁電線が、絶縁破壊電圧を低下させることなく、部分放電開始電圧を増加させることができ、耐摩耗性に優れることを見出した。本発明はこの知見に基づきなされたものである。
 本発明によれば、以下の手段が提供される:
<1>導体の外周が絶縁皮膜で被覆された絶縁電線であって、該絶縁皮膜が熱可塑性樹脂を含有する熱硬化性樹脂組成物の硬化物で形成され、該絶縁皮膜が微細な気孔を有することを特徴とする絶縁電線、
<2>前記気孔の平均直径が1μm以下であることを特徴とする<1>記載の絶縁電線、
<3>前記熱硬化性樹脂の樹脂成分の質量をA、前記熱可塑性樹脂の質量をBとしたとき、A/Bが10/90~90/10であることを特徴とする<1>又は<2>記載の絶縁電線、
<4>前記熱可塑性樹脂が、非晶性樹脂であることを特徴とする<1>~<3>のいずれか1項記載の絶縁電線、
<5>前記非晶性樹脂が、ポリエーテルイミド、熱可塑性ポリイミド、ポリカーボネート、ポリエーテルサルフォン、ポリフェニルサルフォン、ポリサルフォン、及びポリアリレートの群から選ばれた少なくとも1種であることを特徴とする<1>~<4>のいずれか1項記載の絶縁電線、
<6>前記熱硬化性樹脂が、ポリエステル、ポリイミド、及びポリアミドイミドの群から選ばれた少なくとも1種であることを特徴とする<1>~<5>のいずれか1項記載の絶縁電線、
<7><1>~<6>のいずれか1項記載の絶縁電線を用いてなることを特徴とする電気機器、及び
<8>熱硬化性樹脂と熱可塑性樹脂を含有する樹脂ワニスを直接又は間接に導体の外周に塗布し焼き付けて絶縁皮膜を形成する工程と、その後加圧不活性ガス雰囲気中に保持することにより、不活性ガスを樹脂ワニスが焼き付けられた層に含有させる工程と、常圧下で該樹脂ワニスが焼きつけられた層を加熱することにより気孔を形成させる工程とを有することを特徴とする絶縁電線の製造方法。
 本発明は、高い部分放電開始電圧と絶縁破壊電圧を有し、耐摩耗性に優れた絶縁電線を提供することができる。また本発明は、該絶縁電線を用いてなる寿命特性に優れた電気機器を提供することができる。さらに本発明は、絶縁電線の製造方法を提供することができる。
 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
図1は、本発明の絶縁電線の一実施態様を示す断面図であり、(a)と(b)に断面形状の異なる態様を示す。 図2は、本発明の絶縁電線のさらに他の一実施態様を示す断面図である。
 図面を参照して本発明の好ましい絶縁電線について説明する。
 図1は本発明の絶縁電線の好ましい一実施形態を示す概略断面図である。図1(a)及び(b)からわかるように、本発明の絶縁電線10は、導体1の外周に絶縁皮膜2が被覆されている。絶縁皮膜2は熱硬化性樹脂と熱可塑性樹脂を含有する樹脂ワニスを直接又は間接に導体外周に塗布し、その後焼き付けて形成した絶縁層を少なくとも1層有している。絶縁皮膜2は、該絶縁層中に微細な気孔3を有している。導体の形状は図1(a)に示されるように、断面丸形状でよく、図1(b)に示されるように、断面が矩形で角が丸くなったものでもよい。
 導体1は、例えば、銅、銅合金、アルミニウム、アルミニウム合金又はそれらの組み合わせなど、従来から絶縁電線の導体として使用されているものが挙げられる。
1.熱硬化性樹脂
 本発明の絶縁皮膜は、熱硬化性樹脂と熱可塑性樹脂を含有する樹脂ワニスを直接又は間接に導体外周に塗布し、その後焼き付けて形成される。これにより、絶縁皮膜は熱可塑性樹脂を含有する熱硬化性樹脂組成物の硬化物で形成されている。本発明においては、樹脂ワニス中に含有される熱硬化性樹脂は、塗布・焼付けがされた後に、硬化物となり、絶縁皮膜を形成する。該絶縁皮膜は、他の層を介して、導体外周に形成されていてもよい。例えば、インバータ関連機器、高速スイッチング素子、インバータで駆動される回転電機モーター、変圧器等の電気機器コイルや宇宙用電気機器、航空機用電気機器、原子力用電気機器、エネルギー用電気機器、自動車用電気機器用のマグネットワイヤ等に用いることができる。
 熱硬化性樹脂としては、本発明の趣旨を損なわない範囲内で種々のものを使用することができる。例えば、ポリイミド、ポリアミドイミド、ポリエステルイミド、ポリエーテルイミド、ポリイミドヒダントイン変性ポリエステル、ポリアミド、ホルマール、ポリウレタン、ポリエステル、ポリビニルホルマール、エポキシ、ポリヒダントイン、メラミン樹脂、フェノール樹脂、ウレア樹脂、ポリベンゾイミダゾールなどを使用することができる。その中でもポリエステル、ポリイミド、ポリアミドイミドなどの樹脂が耐熱性と可とう性の点から、好ましい。また、これらは1種を単独で使用してもよく、また、2種以上を混合して使用するようにしてもよい。
 ポリエステル樹脂としては、芳香族ポリエステルにフェノール樹脂などを添加することによって変性したものを使用することができる。例えば、耐熱クラスがH種のポリエステル樹脂を使用することができる。市販のH種ポリエステル樹脂としては、Isonel200(スケネクタディインターナショナル社製、商品名)等を挙げることができる。
 ポリイミド樹脂としては、熱硬化性のポリイミドとして、例えば、市販品(東レ・デュポン社製、商品名#3000など)を用いるか、従来の方法により、芳香族テトラカルボン酸二無水物と芳香族ジアミン類を極性溶媒中で反応させて得られるポリアミド酸溶液を用い、被覆を形成する際の焼き付け時の加熱処理によってイミド化させることによって熱硬化させるものを用いることができる。
 ポリアミドイミド樹脂としては、市販品(例えば、HI406(日立化成(株)社製の商品名など))を用いるか、従来の方法により、例えば極性溶媒中でトリカルボン酸無水物とジイソシアネート類を直接反応させて得たもの、あるいは、極性溶媒中でトリカルボン酸無水物にジアミン類を先に反応させて、まずイミド結合を導入し、ついでジイソシアネート類でアミド化して得たものを用いることができる。
2.熱可塑性樹脂
 本発明の絶縁電線の絶縁皮膜は、熱硬化性樹脂と熱可塑性樹脂を含有する樹脂ワニスを直接又は間接に導体外周に塗布し、その後焼き付けて形成される。この樹脂ワニスの製造方法について特に制限はない。例えば、以下の熱可塑性樹脂を溶剤に入れ、好ましくは加熱混合することにより、熱可塑性樹脂を溶剤中で溶解させる。その後、好ましくは、溶剤に溶解させた熱硬化性樹脂を、熱可塑性樹脂が溶解した溶剤に加えて加熱混合することにより、熱硬化性樹脂と熱可塑性樹脂を含有する樹脂ワニスを得ることができる。
 樹脂ワニスを導体外周に塗布し、その後焼き付けることにより、樹脂ワニス中に溶解した熱可塑性樹脂は、熱硬化性樹脂の網目構造の中に熱可塑性樹脂の粒子が微分散することができる。気孔は、微分散した熱可塑性樹脂粒子中に形成される。この際、気孔を熱可塑性樹脂粒子の部分に発生させることで、微細な気孔を絶縁電線の絶縁皮膜に形成することができる。
 熱可塑性樹脂としては、耐熱性の熱可塑性樹脂が好ましい。例えば、ポリフェニレンサルファイド、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、液晶ポリマー、熱可塑性ポリアミド樹脂、ポリエーテルエーテルケトン、ポリカーボネート、ポリエーテルサルフォン、ポリエーテルイミド、ポリエーテルサルフォン、ポリフェニルサルフォン、ポリサルフォン、ポリアリレート、熱可塑性ポリイミド等を使用することができる。熱可塑性ポリイミドとしては、例えば、三井化学社製のオーラム(商品名)を使用することができる。
 熱可塑性樹脂の中でも、非晶性の熱可塑性樹脂が好ましい。本発明においては、非晶性熱可塑性樹脂として、例えば、アクリル樹脂、ノルボルネン樹脂、シクロオレフィン系樹脂、ポリスチレン、ポリカーボネート、ポリエーテルサルフォン、ポリエーテルイミド、ポリエーテルサルフォン、ポリフェニルサルフォン、ポリサルフォン、ポリアリレート、熱可塑性ポリイミド等を使用することができる。非晶性熱可塑性樹脂の中でも、特に、ポリエーテルイミド、ポリカーボネート、ポリエーテルサルフォン、ポリフェニルサルフォン、ポリサルフォン、ポリアリレートなどが好ましい。非晶性熱可塑性樹脂を用いることで溶剤に溶解させることが容易となる。またこれらの樹脂は熱硬化性樹脂の網目構造中で、微分散することができ、微細な気孔を形成することができる。また、これらは1種を単独で使用してもよく、また、2種以上を混合して使用するようにしてもよい。
 熱硬化性樹脂の溶剤を含まない樹脂成分の質量をA、前記熱可塑性樹脂の質量をBとしたとき、A/Bが10/90~90/10とすることが好ましい。さらに好ましくは、A/Bが30/70~70/30、特に好ましくは、A/Bが40/60~60/40とすることが好ましい。熱硬化性樹脂の樹脂成分の質量が多すぎて、熱可塑性樹脂の質量が少なすぎる場合には、気孔が形成される部分が少なくなり、誘電率を低下させる効果を十分に発揮することができないので、部分放電開始電圧が低下する。逆に、熱硬化性樹脂の樹脂成分の質量が少なすぎて、熱可塑性樹脂の質量が多すぎる場合には、耐摩耗性が不十分となる。
 上記の熱硬化性樹脂や熱可塑性樹脂は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。本発明においては、本発明の趣旨を損なわない範囲内で、結晶化核剤、結晶化促進剤、気泡化核剤、酸化防止剤、帯電防止剤、紫外線防止剤、光安定剤、蛍光増白剤、顔料、染料、相溶化剤、滑剤、強化剤、難燃剤、架橋剤、架橋助剤、可塑剤、増粘剤、減粘剤、充填材(無機粒子等)、およびエラストマーなどの各種添加剤を配合してもよい。
3.気孔
 本発明の絶縁電線は、図2に示されるように、微細な気孔を有する絶縁層2と気孔を有しない層4(以下、「スキン層」ともいう。)を有することが好ましい。スキン層は、図2に示されるように、微細な気孔を有する絶縁層の外側に形成されていてもよい。またスキン層は絶縁層の内側に形成されていても、絶縁層の内側と外側の両方に形成されていてもよい(図示せず)。スキン層を設ける場合には、誘電率を低下させる効果を妨げないように、スキン層合計の厚さが、絶縁皮膜全体の厚さに対して70%以下であることが好ましく、さらに好ましくは、30%以下である。外側スキン層を有することにより、表面の平滑性が良くなるため絶縁性が良好になる。さらに、耐摩耗性および引張強度等の機械的強度を確保することができる。
 外側スキン層を形成するには、気孔を有する絶縁層に樹脂フィルムを積層してもよいし、前述の添加剤を含有する塗料をコーティングしてもよい。
 気孔倍率は、1.1倍以上が好ましく、1.5倍以上がより好ましい。これにより、部分放電発生電圧の向上効果を得るために必要な比誘電率を確保することができる。気孔倍率が高すぎると、樹脂が柔らかくなるため耐摩耗性を維持できなくなる。気孔倍率が低すぎると、部分放電を抑制する効果が小さくなる。
 本発明における気孔倍率は、熱硬化性樹脂と熱可塑性樹脂を含有する樹脂ワニスを塗布・焼き付けて形成した気孔が形成される前の絶縁膜の密度(ρf)および該絶縁膜に気孔を形成した後の密度(ρs)を水中置換法により測定し、(ρf/ρs)により算出した値をいうものとする。
 本発明の絶縁電線の絶縁皮膜に微細な気孔を形成する方法は特に制限されない。気孔の平均直径は1μm以下であることが好ましい。これにより、絶縁破壊電圧を高い値に維持することができる。気孔の平均直径は、さらに好ましくは、0.8μm以下である。通常、気孔の平均直径は、0.1~1μmである。気孔径が大きすぎると、絶縁破壊電圧が低下する。気孔径の平均直径は気泡を有する皮膜部分を走査型電子顕微鏡(SEM)で観察することにより、測定することができる。
 本発明の絶縁電線の絶縁皮膜に微細な気孔を形成する方法としては、例えば、以下の方法を挙げることができる。導体外周に前述の樹脂ワニスを塗布し焼き付けた後に、絶縁皮膜にガスを含浸させ、その後加熱することにより、微細な気孔を形成することができる。さらに詳しく説明すると、樹脂ワニスが塗布・焼き付けされた導体を、加圧不活性ガス雰囲気中に保持することにより、不活性ガスを樹脂ワニスが焼付けられた層に含有させる工程と、常圧下で該樹脂ワニスが焼きつけられた層を加熱することにより気孔を形成させる工程とからなる方法で、絶縁皮膜に微細な気孔を有する絶縁電線を製造することができる。
 本発明の絶縁電線は、例えば、以下のように製造することができる。すなわち、導体外周に前述の樹脂ワニスを塗布し焼き付けたものを、セパレータと交互になるように重ねてボビンに巻きつける。その後、ボビンごと、加圧不活性ガス雰囲気中に保持することにより不活性ガスを含有させる。その後、常圧下で、樹脂ワニスに使用された熱可塑性樹脂の軟化温度以上で加熱することにより、絶縁皮膜に気孔を発生させる。このとき使用するセパレータは、樹脂ワニスの塗布・焼付け層に、不活性ガスを含浸させることができるものであれば特に限定するものではない。例えば、ポリエチレンテレフタレートのシートまたはフィルムを用いることができる。セパレータの大きさはボビンの幅に合わせて、適宜調整することができる。
 また、樹脂ワニスの塗布・焼付け層に不活性ガスを含有させた後、常圧下で熱可塑性樹脂の軟化温度以上に加熱する熱風炉に通すことで、連続的に絶縁皮膜に気孔を形成し、絶縁電線を製造することもできる。
 不活性ガスとしては、ヘリウム、窒素、二酸化炭素、またはアルゴンなどが挙げられる。気孔が飽和状態になるまでの不活性ガスの浸透時間や、不活性ガスの浸透量は、気孔が形成される熱可塑性樹脂の種類、不活性ガスの種類、浸透圧力、および気孔絶縁層の厚さによって適宜選定することができる。熱可塑性樹脂へのガス浸透性速度が大きく、ガス溶解度が高いという点から、二酸化炭素が好ましい。
 本発明の絶縁電線は、高い絶縁破壊電圧と部分放電開始電圧を有し、耐摩耗性に優れるため、モーターや変圧器などの各種電気機器に使用することができる。
 以下、本発明を実施例に基づきさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。
1.絶縁電線の作製
[実施例1]
<熱可塑性樹脂及び熱硬化性樹脂を含有する樹脂ワニスの調製>
 2LセパラブルフラスコにNMP(2-メチルピロリドン)1600gを入れ、熱可塑性樹脂であるポリエーテルイミド樹脂(PEI)のペレット400gを少量ずつ加えた。これを110℃に加熱し5時間攪拌を行なうことで、黄色透明の20質量%の熱可塑性樹脂ワニスを得た。この熱可塑性樹脂ワニスに139gの熱硬化性樹脂ワニスを加えて、熱可塑性樹脂及び熱硬化性樹脂を含有する樹脂ワニスを調製した。ただし、熱硬化性樹脂ワニスとしては、HI406(樹脂成分32質量%のポリアミドイミド(PAI)溶液)(商品名、日立化成(株)社製)を用いた。
<絶縁電線の作製>
 直径1mmの銅線の外周に、上記の熱可塑性樹脂及び熱硬化性樹脂を含有する樹脂ワニス(PAI:PEI=10:90)を塗布し、520℃で焼付けを行うことで、導体外周に、厚さ40μmの皮膜を有する電線を得た。この電線を圧力容器に入れ、炭酸ガス雰囲気で、35℃、5.8MPa、24時間、加圧処理することにより、炭酸ガスを飽和するまでこの電線に浸透させた。次に、この電線を圧力容器から取り出し、190℃に設定した熱風循環式発泡炉に1分間、投入することにより絶縁皮膜に気孔を形成させ、図2(a)に示す実施例1の絶縁電線を得た。
[実施例2]
 実施例1において、熱硬化性樹脂ワニスを加えた量を1250gとした以外は、実施例1と同様にして、樹脂ワニスを調製した。得られた樹脂ワニス(PAIとPEIの配合比がPAI:PEI=50:50)を用いて、実施例1と同様に、図2(a)に示す実施例2の絶縁電線を得た。
[実施例3]
 実施例1において、熱硬化性樹脂ワニスを加えた量を11250gとした以外は、実施例1と同様にして、樹脂ワニスを調製した。得られた樹脂ワニス(PAIとPEIの配合比がPAI:PEI=90:10)を用いて、実施例1と同様に、図2(a)に示す実施例3の絶縁電線を得た。
[実施例4]
<熱可塑性樹脂及び熱硬化性樹脂を含有する樹脂ワニスの調製>
 2LセパラブルフラスコにNMP(2-メチルピロリドン)1600gを入れ、熱可塑性樹脂であるポリイミド(PI)ペレット400gを少量ずつ加えた。これを110℃に加熱し5時間攪拌を行なうことで、黄色透明の20質量%の熱可塑性樹脂ワニスを得た。この熱可塑性樹脂ワニスに1250gの熱硬化性樹脂ワニスを加えて、熱可塑性樹脂及び熱硬化性樹脂を含有する樹脂ワニスを調製した。ただし、熱硬化性樹脂ワニスとしては、HI406(樹脂成分32質量%のPAI溶液)(商品名、日立化成(株)社製)を用いた。
<絶縁電線の作製>
 上記の樹脂ワニスを用いた以外は、実施例1と同様にして、PAIとPIの配合比がPAI:PI=50:50の樹脂ワニスを用いた絶縁皮膜が形成された、図2(a)に示す実施例4の絶縁電線を得た。
[実施例5]
<熱可塑性樹脂及び熱硬化性樹脂を含有する樹脂ワニスの調製>
 2LセパラブルフラスコにNMP(2-メチルピロリドン)1600gを入れ、熱可塑性樹脂であるポリエーテルイミド(PEI)樹脂ペレット400gを少量ずつ加えた。これを110℃に加熱し5時間攪拌を行なうことで、黄色透明の20質量%の熱可塑性樹脂ワニスを得た。この熱可塑性樹脂ワニスに1250gの熱硬化性樹脂ワニスを加えて、熱可塑性樹脂及び熱硬化性樹脂を含有する樹脂ワニスを調製した。ただし、熱硬化性樹脂ワニスとしては、従来の方法により、芳香族テトラカルボン酸二無水物と芳香族ジアミン類を極性溶媒中で反応させて得られるポリアミド酸溶液を用い、被覆を形成する際の焼き付け時の加熱処理によってイミド化させることによって熱硬化させたものを用いた(樹脂成分32質量%のPI溶液)。
<絶縁電線の作製>
 上記の樹脂ワニスを用いた以外は、実施例1と同様にして、PIとPEIの配合比がPI:PEI=50:50の樹脂ワニスを用いた絶縁皮膜が形成された、図2(a)に示す実施例5の絶縁電線を得た。
[実施例6]
 <熱可塑性樹脂及び熱硬化性樹脂を含有する樹脂ワニスの調製>
 2LセパラブルフラスコにNMP(2-メチルピロリドン)1600gを入れ、熱可塑性樹脂であるポリエーテルイミド(PEI)樹脂ペレット400gを少量ずつ加えた。これを110℃に加熱し5時間攪拌を行なうことで、黄色透明の20質量%の熱可塑性樹脂ワニスを得た。この熱可塑性樹脂ワニスに1250gの熱硬化性樹脂ワニスを加えて、熱可塑性樹脂及び熱硬化性樹脂を含有する樹脂ワニスを調製した。ただし、熱硬化性樹脂ワニスとしては、Isonel200(樹脂成分32質量%のポリエステル溶液)(スケネクタディインターナショナル社製)を用いた。
<絶縁電線の作製>
 上記の樹脂ワニスを用いた以外は、実施例1と同様にして、熱硬化性ポリエステルとPEIの配合比がポリエステル:PEI=50:50の樹脂ワニスを用いた絶縁皮膜が形成された、図2(a)に示す実施例6の絶縁電線を得た。
[実施例7]
<熱可塑性樹脂及び熱硬化性樹脂を含有する樹脂ワニスの調製>
 2LセパラブルフラスコにNMP(2-メチルピロリドン)1600gを入れ、熱可塑性樹脂であるポリカーボネート樹脂(PC)ペレット400gを少量ずつ加えた。これを110℃に加熱し5時間攪拌を行なうことで、黄色透明の20質量%の熱可塑性樹脂ワニスを得た。この熱可塑性樹脂ワニスに1250gの熱硬化性樹脂ワニスを加えて、熱可塑性樹脂及び熱硬化性樹脂を含有する樹脂ワニスを調製した。ただし、熱硬化性樹脂ワニスとしては、HI406(樹脂成分32質量%のPAI溶液)(商品名、日立化成(株)社製)を用いた。
<絶縁電線の作製>
 上記の樹脂ワニスを用いた以外は、実施例1と同様にして、PAIとPCの配合比がPAI:PC=50:50の樹脂ワニスを用いた絶縁皮膜が形成された、図2(a)に示す実施例7の絶縁電線を得た。
[実施例8]
<熱可塑性樹脂及び熱硬化性樹脂を含有する樹脂ワニスの調製>
 2LセパラブルフラスコにNMP(2-メチルピロリドン)1600gを入れ、熱可塑性樹脂であるポリエーテルサルフォン樹脂(PES)ペレット400gを少量ずつ加えた。これを110℃に加熱し5時間攪拌を行なうことで、黄色透明の20質量%の熱可塑性樹脂ワニスを得た。この熱可塑性樹脂ワニスに1250gの熱硬化性樹脂ワニスを加えて、熱可塑性樹脂及び熱硬化性樹脂を含有する樹脂ワニスを調製した。ただし、熱硬化性樹脂ワニスとしては、HI406(樹脂成分32質量%のPAI溶液)(商品名、日立化成(株)社製)を用いた。
<絶縁電線の作製>
 上記の樹脂ワニスを用いた以外は、実施例1と同様にして、PAIとPESの配合比がPAI:PES=50:50の樹脂ワニスを用いた絶縁皮膜が形成された、図2(a)に示す実施例8の絶縁電線を得た。
[実施例9]
<熱可塑性樹脂及び熱硬化性樹脂を含有する樹脂ワニスの調製>
 2LセパラブルフラスコにNMP(2-メチルピロリドン)1600gを入れ、熱可塑性樹脂であるポリフェニルサルフォン樹脂(PPSU)ペレット400gを少量ずつ加えた。これを110℃に加熱し5時間攪拌を行なうことで、黄色透明の20質量%の熱可塑性樹脂ワニスを得た。この熱可塑性樹脂ワニスに1250gの熱硬化性樹脂ワニスを加えて、熱可塑性樹脂及び熱硬化性樹脂を含有する樹脂ワニスを調製した。ただし、熱硬化性樹脂ワニスとしては、HI406(樹脂成分32質量%のPAI溶液)(商品名、日立化成(株)社製)を用いた。
<絶縁電線の作製>
 上記の樹脂ワニスを用いた以外は、実施例1と同様にして、PAIとPPSUの配合比がPAI:PPSU=50:50の樹脂ワニスを用いた絶縁皮膜が形成された、図2(a)に示す実施例9の絶縁電線を得た。
[実施例10]
<熱可塑性樹脂及び熱硬化性樹脂を含有する樹脂ワニスの調製>
 2LセパラブルフラスコにNMP(2-メチルピロリドン)1600gを入れ、熱可塑性樹脂であるポリサルフォン樹脂(PSU)ペレット400gを少量ずつ加えた。これを110℃に加熱し5時間攪拌を行なうことで、黄色透明の20質量%の熱可塑性樹脂ワニスを得た。この熱可塑性樹脂ワニスに1250gの熱硬化性樹脂ワニスを加えて、熱可塑性樹脂及び熱硬化性樹脂を含有する樹脂ワニスを調製した。ただし、熱硬化性樹脂ワニスとしては、HI406(樹脂成分32質量%のPAI溶液)(商品名、日立化成(株)社製)を用いた。
<絶縁電線の作製>
 上記の樹脂ワニスを用いた以外は、実施例1と同様にして、PAIとPSUの配合比がPAI:PSU=50:50の樹脂ワニスを用いた絶縁皮膜が形成された、図2(a)に示す実施例10の絶縁電線を得た。
[実施例11]
<熱可塑性樹脂及び熱硬化性樹脂を含有する樹脂ワニスの調製>
 2LセパラブルフラスコにNMP(2-メチルピロリドン)1600gを入れ、熱可塑性樹脂であるポリアリレート樹脂(PAR)ペレット400gを少量ずつ加えた。これを110℃に加熱し5時間攪拌を行なうことで、黄色透明の20質量%の熱可塑性樹脂ワニスを得た。この熱可塑性樹脂ワニスに1250gの熱硬化性樹脂ワニスを加えて、熱可塑性樹脂及び熱硬化性樹脂を含有する樹脂ワニスを調製した。ただし、熱硬化性樹脂ワニスとしては、HI406(樹脂成分32質量%のPAI溶液)(商品名、日立化成(株)社製)を用いた。
<絶縁電線の作製>
 上記の樹脂ワニスを用いた以外は、実施例1と同様にして、PAIとPARの配合比がPAI:PAR=50:50の樹脂ワニスを用いた絶縁皮膜が形成された、図2(a)に示す実施例11の絶縁電線を得た。
[比較例1]
<熱硬化性樹脂を含有する樹脂ワニスの調製と、それを用いた絶縁電線の作製>
 実施例1で使用したPAIの樹脂ワニスのみを用いて、直径1mmの銅線の外周に、この樹脂ワニスを塗布し、520℃で焼付けを行うことで、導体外周に、厚さ40μmの皮膜を有する比較例1の絶縁電線を得た。なお、その後、気孔を形成する処理は行わなかった。
[比較例2]
<熱可塑性樹脂を含有する樹脂ワニスの調製>
 2LセパラブルフラスコにNMP(2-メチルピロリドン)1600gを入れ、熱可塑性樹脂であるポリエーテルイミド樹脂(PEI)ペレット400gを少量ずつ加えた。これを110℃に加熱し5時間攪拌を行なうことで、黄色透明の25質量%の熱可塑性樹脂ワニスを得た。
<絶縁電線の作製>
 上記の熱可塑性樹脂のみを含有する樹脂ワニスを用いた以外は比較例1と同様の方法で、PEIの絶縁皮膜が形成された、比較例2の絶縁電線を得た。比較例2の絶縁電線の場合も、気孔を形成する処理は行わなかった。
[比較例3]
<熱可塑性樹脂及び熱硬化性樹脂を含有する樹脂ワニスの調製>
 2LセパラブルフラスコにNMP(2-メチルピロリドン)1600gを入れ、熱可塑性樹脂であるポリエーテルイミド樹脂(PEI)ペレット400gを少量ずつ加えた。これを110℃に加熱し5時間攪拌を行なうことで、黄色透明の20質量%の熱可塑性樹脂ワニスを得た。この熱可塑性樹脂ワニスに66gの熱硬化性樹脂ワニスを加えて、熱可塑性樹脂及び熱硬化性樹脂を含有する樹脂ワニスを調製した。ただし、熱硬化性樹脂ワニスとしては、HI406(樹脂成分32質量%のPAI溶液)(商品名、日立化成(株)社製)を用いた。
<絶縁電線の作製>
 上記の樹脂ワニスを用いた以外は、実施例1と同様にして、PAIとPEIの配合比がPAI:PEI=5:95の樹脂ワニスを用いた絶縁皮膜が形成された、比較例3の絶縁電線を得た。
[比較例4]
<熱可塑性樹脂及び熱硬化性樹脂を含有する樹脂ワニスの調製>
 2LセパラブルフラスコにNMP(2-メチルピロリドン)160gを入れ、熱可塑性樹脂であるポリエーテルイミド樹脂(PEI)ペレット40gを少量ずつ加えた。これを110℃に加熱し5時間攪拌を行なうことで、黄色透明の20質量%の熱可塑性樹脂ワニスを得た。この熱可塑性樹脂ワニスに2375gの熱硬化性樹脂ワニスを加えて、熱可塑性樹脂及び熱硬化性樹脂を含有する樹脂ワニスを調製した。ただし、熱硬化性樹脂ワニスとしては、HI406(樹脂成分32質量%のPAI溶液)(商品名、日立化成(株)社製)を用いた。
<絶縁電線の作製>
 上記の樹脂ワニスを用いた以外は、実施例1と同様にして、PAIとPEIの配合比がPAI:PEI=95:5の樹脂ワニスを用いた絶縁皮膜が形成された、比較例4の絶縁電線を得た。
2.絶縁電線についての試験及び評価
 実施例1~11及び比較例1~4の絶縁電線に対して、絶縁破壊電圧、実効比誘電率、および部分放電発生電圧(PDIV:Partial Discharge Inception Voltage)、耐摩耗性を測定し、その性能について評価した。
[気孔を有する絶縁層の厚さおよび平均気泡径]
 気孔を有する絶縁層の厚さおよび平均気泡径は、絶縁電線の断面の走査電子顕微鏡(SEM)写真から求めた。
[気孔倍率]
 気孔倍率は、絶縁電線の絶縁皮膜の密度(ρf)と、気孔形成前の密度(ρs)を測定し、(ρf/ρs)により算出した。
[耐摩耗性]
 耐摩耗性は往復摩耗試験機を用いた。往復摩耗試験機は、一定荷重を加えて絶縁電線の表面を針で引っかき、皮膜表面に導体露出が発生する回数を測定する試験機で、これにより、皮膜強度を測定できる。荷重を300gとし、往復摩耗回数が200回に達するかで耐摩耗性を評価した。表1~3において、往復磨耗回数が200回以上のものを○と表示し、合格とした。往復磨耗回数が200回に満たなかったものを×と表示し、不合格とした。
[絶縁破壊電圧]
 以下に示すアルミ箔法で、絶縁電線の絶縁破壊電圧を評価した。
 200mm程度の長さに絶縁電線を切り出し、中央付近に10mm幅のアルミ箔を巻き付け、アルミ箔と導体間に正弦波50Hzの交流電圧を印加して、連続的に昇圧させながら絶縁破壊する電圧(実効値)を測定し、その値を絶縁破壊電圧とした。測定温度は室温とした。絶縁破壊電圧が10kV以上を合格、10kV未満を不合格とした。
[部分放電開始電圧]
 各実施例及び比較例の2本の絶縁電線をツイスト状に撚り合わせた試験片を作製し、各々の導体間に正弦波50Hzの交流電圧を印加して、連続的に昇圧させながら放電電荷量が10pCのときの電圧(実効値)を測定した。測定温度は室温とした。部分放電開始電圧の測定には部分放電試験機(菊水電子工業製 KPD2050(商品名))を用いた。部分放電開始電圧が900Vp以上を合格、900Vp未満を不合格とした。
 実施例1~11および比較例1~4で得られた絶縁電線の評価結果を、表1~3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 実施例1~11に示されるように、導体の外周に熱硬化性樹脂と熱可塑性樹脂を含有する樹脂ワニスを塗布し、その後焼き付けて形成するとともに微細な気孔を有する絶縁皮膜が形成された絶縁電線は、部分放電開始電圧が930Vpと高い値を示し、耐摩耗性は合格であった。
 これに対して、熱硬化性樹脂であるPAI樹脂ワニスのみを塗布・焼き付けて作製した絶縁電線は部分放電開始電圧が低くなった(比較例1)。また熱硬化性樹脂を含有しない樹脂ワニスのみを塗布・焼き付けて作製した絶縁電線は、部分放電開始電圧が低く、かつ、耐摩耗性に劣る結果となった(比較例2)。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2010年5月6日に日本国で特許出願された特願2010-106766に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。
 1 導体
 2 気孔を有する絶縁皮膜
 3 微細な気孔
 4 気孔を有しない絶縁層
 10 絶縁電線

Claims (8)

  1.  導体の外周が絶縁皮膜で被覆された絶縁電線であって、該絶縁皮膜が熱可塑性樹脂を含有する熱硬化性樹脂組成物の硬化物で形成され、該絶縁皮膜が微細な気孔を有することを特徴とする絶縁電線。
  2.  前記気孔の平均直径が1μm以下であることを特徴とする請求項1記載の絶縁電線。
  3.  前記熱硬化性樹脂の樹脂成分の質量をA、前記熱可塑性樹脂の質量をBとしたとき、A/Bが10/90~90/10であることを特徴とする請求項1又は2記載の絶縁電線。
  4.  前記熱可塑性樹脂が、非晶性樹脂であることを特徴とする請求項1~3のいずれか1項記載の絶縁電線。
  5.  前記非晶性樹脂が、ポリエーテルイミド、ポリカーボネート、ポリエーテルサルフォン、ポリフェニルサルフォン、ポリサルフォン、熱可塑性ポリイミド、及びポリアリレートの群から選ばれた少なくとも1種であることを特徴とする請求項1~4のいずれか1項記載の絶縁電線。
  6.  前記熱硬化性樹脂が、ポリエステル、ポリイミド、及びポリアミドイミドの群から選ばれた少なくとも1種であることを特徴とする請求項1~5のいずれか1項記載の絶縁電線。
  7.  請求項1~6のいずれか1項記載の絶縁電線を用いてなることを特徴とする電気機器。
  8.  熱硬化性樹脂と熱可塑性樹脂を含有する樹脂ワニスを直接又は間接に導体の外周に塗布し焼き付けて絶縁皮膜を形成する工程と、その後加圧不活性ガス雰囲気中に保持することにより、不活性ガスを樹脂ワニスが焼き付けられた層に含有させる工程と、常圧下で該樹脂ワニスが焼きつけられた層を加熱することにより気孔を形成させる工程とを有することを特徴とする絶縁電線の製造方法。
PCT/JP2011/060482 2010-05-06 2011-04-28 絶縁電線、電気機器及び絶縁電線の製造方法 WO2011138934A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020127019069A KR101477875B1 (ko) 2010-05-06 2011-04-28 절연전선, 전기기기 및 절연전선의 제조방법
EP11777453.9A EP2568476B1 (en) 2010-05-06 2011-04-28 Insulated electric wire, electric device, and process for production of insulated electric wire
CN201180018507.4A CN102844822B (zh) 2010-05-06 2011-04-28 绝缘电线、电气设备和绝缘电线的制造方法
US13/551,073 US20120279752A1 (en) 2010-05-06 2012-07-17 Insulated wire, electrical equipment, and method of producing an insulated wire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010106766A JP5449012B2 (ja) 2010-05-06 2010-05-06 絶縁電線、電気機器及び絶縁電線の製造方法
JP2010-106766 2010-05-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/551,073 Continuation US20120279752A1 (en) 2010-05-06 2012-07-17 Insulated wire, electrical equipment, and method of producing an insulated wire

Publications (1)

Publication Number Publication Date
WO2011138934A1 true WO2011138934A1 (ja) 2011-11-10

Family

ID=44903786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060482 WO2011138934A1 (ja) 2010-05-06 2011-04-28 絶縁電線、電気機器及び絶縁電線の製造方法

Country Status (7)

Country Link
US (1) US20120279752A1 (ja)
EP (1) EP2568476B1 (ja)
JP (1) JP5449012B2 (ja)
KR (1) KR101477875B1 (ja)
CN (1) CN102844822B (ja)
TW (1) TWI446370B (ja)
WO (1) WO2011138934A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013133334A1 (ja) * 2012-03-07 2013-09-12 古河電気工業株式会社 絶縁ワイヤ、電気機器及び絶縁ワイヤの製造方法
WO2013133333A1 (ja) * 2012-03-07 2013-09-12 古河電気工業株式会社 気泡層入り絶縁電線、電気機器及び気泡層入り絶縁電線の製造方法
EP2787513A1 (en) * 2012-03-29 2014-10-08 Nitto Denko Corporation Electrically insulating resin sheet
US20150325333A1 (en) * 2013-02-07 2015-11-12 Furukawa Magnet Wire Co., Ltd. Enamel resin-insulating laminate, insulated wire using the same and electric/electronic equipment
WO2019176254A1 (ja) * 2018-03-12 2019-09-19 古河電気工業株式会社 集合導線、集合導線の製造方法およびセグメントコイル

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI455153B (zh) * 2012-09-27 2014-10-01 Wistron Corp 電線組件
EP2940697B1 (en) 2012-12-28 2021-10-13 Essex Furukawa Magnet Wire Japan Co., Ltd. Insulated wire, electrical device, and method for producing insulated wire
JP5972375B2 (ja) * 2013-02-07 2016-08-17 古河電気工業株式会社 絶縁電線及びモータ
JP6452444B2 (ja) * 2013-04-26 2019-01-16 古河電気工業株式会社 絶縁電線ならびにそれを用いた電気・電子機器、モーターおよびトランス
CN103440978B (zh) * 2013-08-14 2015-10-28 宁夏银利电器制造有限公司 一种大截面空心导线绝缘涂覆方法
JP6325549B2 (ja) * 2013-09-06 2018-05-16 古河電気工業株式会社 平角電線およびその製造方法並びに電気機器
KR101477622B1 (ko) * 2013-09-12 2014-12-30 송암시스콤 주식회사 인버터 변압기
CN106104707B (zh) * 2013-12-26 2019-05-10 古河电气工业株式会社 绝缘电线、马达线圈、电气/电子设备和绝缘电线的制造方法
WO2015105095A1 (ja) * 2014-01-10 2015-07-16 古河電気工業株式会社 絶縁電線、コイルおよび電気・電子機器ならびに絶縁電線の割れ防止方法
JP5931097B2 (ja) 2014-01-22 2016-06-08 古河電気工業株式会社 絶縁電線およびその製造方法、ならびに回転電機およびその製造方法
JP6614758B2 (ja) * 2014-03-14 2019-12-04 古河電気工業株式会社 絶縁電線、絶縁電線の製造方法、回転電機用ステータの製造方法および回転電機
CN104103351A (zh) * 2014-07-14 2014-10-15 亳州联滔电子有限公司 扁平线缆
JP6412740B2 (ja) * 2014-08-26 2018-10-24 三菱マテリアル株式会社 電着塗装体の製造方法
DE112016005010T5 (de) * 2015-10-28 2018-09-06 Sumitomo Electric Industries, Ltd. Isolierter elektrischer Draht und Lack für ein Ausbilden einer isolierenden Schicht
WO2017094789A1 (ja) * 2015-12-04 2017-06-08 古河電気工業株式会社 自己融着性絶縁電線、コイル及び電気・電子機器
US20180322980A1 (en) * 2017-05-05 2018-11-08 Essex Group, Inc. Surface Treating Magnet Wire Enamel Layers To Promote Layer Adhesion
JP2020064800A (ja) * 2018-10-18 2020-04-23 本田技研工業株式会社 ステータ
JP2020119844A (ja) 2019-01-28 2020-08-06 トヨタ自動車株式会社 巻線用被覆電線
KR20210140769A (ko) * 2019-03-29 2021-11-23 에섹스 후루카와 마그넷 와이어 유에스에이 엘엘씨 열가소성 절연체를 갖는 자석 와이어
KR20240096871A (ko) 2019-08-23 2024-06-26 제우스 컴퍼니 엘엘씨 중합체-코팅된 와이어
CN114709011B (zh) * 2022-04-24 2023-06-30 住井科技(深圳)有限公司 绝缘电线

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572361A (en) 1980-05-02 1982-01-07 Gen Electric Corona resistant resin composition and use
JPH02106812A (ja) 1988-08-30 1990-04-18 Asea Brown Boveri Ab 取り巻く絶縁体を有する導電体
JPH11130993A (ja) 1997-10-27 1999-05-18 Optec Dai Ichi Denko Co Ltd 絶縁塗料及び絶縁電線とこれを用いた電気機器
JP2006031980A (ja) * 2004-07-13 2006-02-02 Sumitomo Electric Wintec Inc 耐熱絶縁電線及びそれを用いるヒュージング方法
JP2010198845A (ja) * 2009-02-24 2010-09-09 Hitachi Cable Ltd 多孔質体を用いた絶縁電線及びその製造方法
JP2011003375A (ja) * 2009-06-18 2011-01-06 Hitachi Cable Ltd 絶縁電線

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4000362A (en) * 1972-03-06 1976-12-28 Sumitomo Electric Industries, Ltd. Insulated wire with a silicone releasing layer
US4258155A (en) * 1979-12-03 1981-03-24 General Electric Company Blends of polyetherimides and polyamideimides
US5210377A (en) * 1992-01-29 1993-05-11 W. L. Gore & Associates, Inc. Coaxial electric signal cable having a composite porous insulation
US5731086A (en) * 1995-06-07 1998-03-24 Gebhardt; William F. Debossable films
US6288342B1 (en) * 1998-12-15 2001-09-11 Sumitomo Electric Industries, Ltd. Insulated wire
WO2001094439A1 (en) * 2000-06-06 2001-12-13 Akzo Nobel N.V. Hot melt coating composition
JP4057230B2 (ja) * 2000-10-03 2008-03-05 古河電気工業株式会社 絶縁被覆電気導体
JP4184178B2 (ja) * 2002-07-09 2008-11-19 株式会社クラレ 熱可塑性重合体組成物
FR2854900B1 (fr) * 2003-05-16 2007-07-27 Nexans Composition pour couche adherente, conducteur electrique revetu d'une telle couche adherente et procede de fabrication d'un tel conducteur electrique
DE602005024250D1 (de) * 2004-04-28 2010-12-02 Furukawa Electric Co Ltd Mehrschichtige isolierte leitung und transformator damit
US20060134416A1 (en) * 2004-12-17 2006-06-22 Hiroshi Kubo Flame retardant electrical wire
KR20080016274A (ko) * 2006-08-18 2008-02-21 주식회사 코오롱 나노크기의 기공이 형성된 폴리이미드층을 갖는 플렉시블동박 폴리이미드 적층판 및 그의 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572361A (en) 1980-05-02 1982-01-07 Gen Electric Corona resistant resin composition and use
JPH02106812A (ja) 1988-08-30 1990-04-18 Asea Brown Boveri Ab 取り巻く絶縁体を有する導電体
JPH11130993A (ja) 1997-10-27 1999-05-18 Optec Dai Ichi Denko Co Ltd 絶縁塗料及び絶縁電線とこれを用いた電気機器
JP2006031980A (ja) * 2004-07-13 2006-02-02 Sumitomo Electric Wintec Inc 耐熱絶縁電線及びそれを用いるヒュージング方法
JP2010198845A (ja) * 2009-02-24 2010-09-09 Hitachi Cable Ltd 多孔質体を用いた絶縁電線及びその製造方法
JP2011003375A (ja) * 2009-06-18 2011-01-06 Hitachi Cable Ltd 絶縁電線

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2824673A4 (en) * 2012-03-07 2015-10-21 Furukawa Electric Co Ltd INSULATED WIRE, ELECTRICAL EQUIPMENT AND METHOD FOR MANUFACTURING INSULATED WIRE
US9443643B2 (en) 2012-03-07 2016-09-13 Furukawa Electric Co., Ltd. Insulated wire, electrical equipment, and method of producing an insulated wire
CN103650066A (zh) * 2012-03-07 2014-03-19 古河电气工业株式会社 绝缘线、电气设备及绝缘线的制造方法
JP5521121B2 (ja) * 2012-03-07 2014-06-11 古河電気工業株式会社 絶縁ワイヤ、電気機器及び絶縁ワイヤの製造方法
EP2824674A4 (en) * 2012-03-07 2015-10-21 Furukawa Electric Co Ltd INSULATED ELECTRIC WIRE HAVING A BUBBLE LAYER IN ITS BREAST, ELECTRICAL DEVICE, AND METHOD FOR MANUFACTURING INSULATED ELECTRIC WIRE HAVING A BUBBLE LAYER IN ITS BREAST
US9196401B2 (en) 2012-03-07 2015-11-24 Furukawa Electric Co., Ltd. Insulated wire having a layer containing bubbles, electrical equipment, and method of producing insulated wire having a layer containing bubbles
WO2013133333A1 (ja) * 2012-03-07 2013-09-12 古河電気工業株式会社 気泡層入り絶縁電線、電気機器及び気泡層入り絶縁電線の製造方法
WO2013133334A1 (ja) * 2012-03-07 2013-09-12 古河電気工業株式会社 絶縁ワイヤ、電気機器及び絶縁ワイヤの製造方法
EP2787513A1 (en) * 2012-03-29 2014-10-08 Nitto Denko Corporation Electrically insulating resin sheet
EP2787513A4 (en) * 2012-03-29 2014-11-19 Nitto Denko Corp ELECTRICALLY INSULATING RESIN FOIL
US20150325333A1 (en) * 2013-02-07 2015-11-12 Furukawa Magnet Wire Co., Ltd. Enamel resin-insulating laminate, insulated wire using the same and electric/electronic equipment
US10418151B2 (en) * 2013-02-07 2019-09-17 Furukawa Electric Co., Ltd. Enamel resin-insulating laminate, inverter surge-resistant insulated wire using the same and electric/electronic equipment
WO2019176254A1 (ja) * 2018-03-12 2019-09-19 古河電気工業株式会社 集合導線、集合導線の製造方法およびセグメントコイル
US11145436B2 (en) 2018-03-12 2021-10-12 Essex Furukawa Magnet Wire Japan Col, Ltd. Assembled wire, method of manufacturing assembled wire and segment coil

Also Published As

Publication number Publication date
KR20120127585A (ko) 2012-11-22
KR101477875B1 (ko) 2014-12-30
EP2568476A4 (en) 2015-12-23
TWI446370B (zh) 2014-07-21
EP2568476B1 (en) 2018-09-26
JP2011238384A (ja) 2011-11-24
CN102844822B (zh) 2016-11-09
EP2568476A1 (en) 2013-03-13
JP5449012B2 (ja) 2014-03-19
TW201212049A (en) 2012-03-16
US20120279752A1 (en) 2012-11-08
CN102844822A (zh) 2012-12-26

Similar Documents

Publication Publication Date Title
JP5449012B2 (ja) 絶縁電線、電気機器及び絶縁電線の製造方法
JP5391365B1 (ja) 気泡層入り絶縁電線、電気機器及び気泡層入り絶縁電線の製造方法
EP3154067B1 (en) Insulated wire and method for manufacturing same
US20150262732A1 (en) Insulated wire and motor
CN107077922B (zh) 绝缘电线和旋转电机
EP3514803B1 (en) Insulated wire, coil, and electrical or electronic equipment
KR102661175B1 (ko) 도체와 절연 피막의 적층체, 코일, 회전 전기, 절연 도료, 및 절연 필름
TW201539491A (zh) 平角絕緣電線、線圈及電氣、電子機器
JPWO2015098639A1 (ja) 多層絶縁電線、コイルおよび電気・電子機器
JP2010193673A (ja) ドライマイカテープ、それを用いた電気絶縁線輪,固定子コイル及び回転電機
EP2579275A2 (en) Insulated electric wire
US11437167B2 (en) Insulated wire
JP2008278664A (ja) 巻線及び電機子
Kim et al. Polyetherimide for Magnet Wire Applications
CN114709011A (zh) 绝缘电线
KR20190084719A (ko) 경화성 에폭시수지와 고내열성 고분자를 이용한 코일용 셀프본딩성 탑코팅제 소재 및 이의 제조방법
CN114974661A (zh) 一种强化绝缘和减少皮膜熔融残留的绝缘电线及方法
JP2007287399A (ja) 樹脂ワニス、絶縁電線及び電気コイル
JP2018160546A (ja) リアクトル及びリアクトルの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180018507.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11777453

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011777453

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127019069

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE