WO2011136327A1 - 透明基板の製造方法 - Google Patents

透明基板の製造方法 Download PDF

Info

Publication number
WO2011136327A1
WO2011136327A1 PCT/JP2011/060367 JP2011060367W WO2011136327A1 WO 2011136327 A1 WO2011136327 A1 WO 2011136327A1 JP 2011060367 W JP2011060367 W JP 2011060367W WO 2011136327 A1 WO2011136327 A1 WO 2011136327A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
transparent substrate
solvent
coating layer
heat treatment
Prior art date
Application number
PCT/JP2011/060367
Other languages
English (en)
French (fr)
Inventor
大輔 服部
毅 村重
亀山 忠幸
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to US13/640,444 priority Critical patent/US9254627B2/en
Priority to EP11775108.1A priority patent/EP2565170A4/en
Priority to KR1020137032933A priority patent/KR20140005376A/ko
Priority to CN201180021854.2A priority patent/CN102869632B/zh
Priority to KR1020127028339A priority patent/KR101381087B1/ko
Publication of WO2011136327A1 publication Critical patent/WO2011136327A1/ja
Priority to US14/542,138 priority patent/US20150072155A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4805Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
    • B29C65/481Non-reactive adhesives, e.g. physically hardening adhesives
    • B29C65/482Drying adhesives, e.g. solvent based adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/52Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the way of applying the adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/45Joining of substantially the whole surface of the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7311Thermal properties
    • B29C66/73117Tg, i.e. glass transition temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7318Permeability to gases or liquids
    • B29C66/73181Permeability to gases or liquids permeable
    • B29C66/73183Permeability to gases or liquids permeable to liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/733General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence
    • B29C66/7336General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence at least one of the parts to be joined being opaque, transparent or translucent to visible light
    • B29C66/73365General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence at least one of the parts to be joined being opaque, transparent or translucent to visible light at least one of the parts to be joined being transparent or translucent to visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/735General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the extensive physical properties of the parts to be joined
    • B29C66/7352Thickness, e.g. very thin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/746Joining plastics material to non-plastics material to inorganic materials not provided for in groups B29C66/742 - B29C66/744
    • B29C66/7465Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/834General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools moving with the parts to be joined
    • B29C66/8341Roller, cylinder or drum types; Band or belt types; Ball types
    • B29C66/83421Roller, cylinder or drum types; Band or belt types; Ball types band or belt types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/834General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools moving with the parts to be joined
    • B29C66/8341Roller, cylinder or drum types; Band or belt types; Ball types
    • B29C66/83421Roller, cylinder or drum types; Band or belt types; Ball types band or belt types
    • B29C66/83423Roller, cylinder or drum types; Band or belt types; Ball types band or belt types cooperating bands or belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91431Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature the temperature being kept constant over time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9161Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
    • B29C66/91641Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux the heat or the thermal flux being non-constant over time
    • B29C66/91643Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux the heat or the thermal flux being non-constant over time following a heat-time profile
    • B29C66/91645Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux the heat or the thermal flux being non-constant over time following a heat-time profile by steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91921Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/94Measuring or controlling the joining process by measuring or controlling the time
    • B29C66/944Measuring or controlling the joining process by measuring or controlling the time by controlling or regulating the time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/94Measuring or controlling the joining process by measuring or controlling the time
    • B29C66/949Measuring or controlling the joining process by measuring or controlling the time characterised by specific time values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0036Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/10Removing layers, or parts of layers, mechanically or chemically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/16Drying; Softening; Cleaning
    • B32B38/164Drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4805Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
    • B29C65/483Reactive adhesives, e.g. chemically curing adhesives
    • B29C65/4835Heat curing adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4805Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
    • B29C65/483Reactive adhesives, e.g. chemically curing adhesives
    • B29C65/485Multi-component adhesives, i.e. chemically curing as a result of the mixing of said multi-components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7311Thermal properties
    • B29C66/73111Thermal expansion coefficient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7315Mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7316Surface properties
    • B29C66/73161Roughness or rugosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/733General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence
    • B29C66/7334General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence at least one of the parts to be joined being glossy or matt, reflective or refractive
    • B29C66/73341General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence at least one of the parts to be joined being glossy or matt, reflective or refractive at least one of the parts to be joined being glossy or reflective
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0072Roughness, e.g. anti-slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0089Impact strength or toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • B29L2007/002Panels; Plates; Sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products
    • B29L2009/005Layered products coated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3475Displays, monitors, TV-sets, computer screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/16Drying; Softening; Cleaning
    • B32B38/164Drying
    • B32B2038/168Removing solvent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/538Roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/72Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/02Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/08Dimensions, e.g. volume
    • B32B2309/10Dimensions, e.g. volume linear, e.g. length, distance, width
    • B32B2309/105Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2315/00Other materials containing non-metallic inorganic compounds not provided for in groups B32B2311/00 - B32B2313/04
    • B32B2315/08Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2367/00Polyesters, e.g. PET, i.e. polyethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2398/00Unspecified macromolecular compounds
    • B32B2398/20Thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/0007Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding involving treatment or provisions in order to avoid deformation or air inclusion, e.g. to improve surface quality
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives

Definitions

  • the present invention relates to a method for producing a transparent substrate.
  • display devices such as flat panel displays (FPDs: for example, liquid crystal display devices and organic EL display devices) and solar cells have become lighter and thinner due to the development of video communication technology.
  • FPDs flat panel displays
  • glass substrates are often used as substrates used in display devices and solar cells.
  • the glass substrate is excellent in transparency, solvent resistance, gas barrier properties, and heat resistance.
  • the glass constituting the glass substrate is reduced in thickness, the weight is reduced and the flexibility is excellent, but the impact resistance becomes insufficient and the handling becomes difficult.
  • a flexible substrate obtained by applying and drying a resin solution on the glass surface for example, see Patent Documents 1 and 2), or a resin film can be attached to the glass surface.
  • a flexible substrate see, for example, Patent Document 3
  • Patent Document 3 has been proposed.
  • a flexible substrate satisfying sufficient impact resistance has not been obtained in a manufacturing process of a display device that requires high reliability under high temperature and high humidity.
  • the flexible substrate obtained by applying and drying the resin solution on the glass surface has a problem that the resin solution is foamed during the application process and the drying process, resulting in poor appearance.
  • a flexible substrate with a resin film affixed to the glass surface has a problem that sufficient stress resistance cannot be obtained because the stress necessary to increase the impact resistance of the glass is not sufficiently applied to the glass.
  • the film is likely to be wrinkled.
  • the wrinkle of the film causes a problem that the film is broken when a treatment is performed so as not to generate the wrinkle.
  • the present invention has been made to solve the above-described conventional problems, and an object of the present invention is to provide a method for producing a transparent substrate excellent in flexibility, flexibility, impact resistance and appearance. .
  • the method for producing a transparent substrate of the present invention comprises a step A of applying a thermoplastic resin (A) composition solution on a support substrate having solvent permeability to form a coating layer, and at least one surface of an inorganic glass. And the coating layer are bonded together via an adhesive composition to form a laminate, and the laminate is subjected to a first heat treatment, and the amount of residual solvent in the coating layer is reduced to a predetermined amount.
  • the amount of solvent in the coating layer when forming the coating layer is 7% by weight or more.
  • the amount of residual solvent in the coating layer is reduced to 15% by weight or less by the first heat treatment.
  • the contraction stress of the said application layer at the time of peeling the said support base material is 10 Mpa or less.
  • the stress applied to the inorganic glass after the second heat treatment is 10 MPa to 30 MPa.
  • the temperature of the first heat treatment is (bp A ⁇ 60) ° C. to (bp) with respect to the boiling point (bp A ) of the solvent most contained in the thermoplastic resin (A) composition solution. bp A +40) ° C.
  • the temperature of the second heat treatment is (bp A ⁇ 20) ° C. to 250 ° C.
  • the said adhesive composition contains a solvent and the boiling point of the solvent in this adhesive bond layer is more than the boiling point of the solvent contained in the said thermoplastic resin (A) composition solution.
  • the said adhesive composition contains a solvent and the solvent in this adhesive bond layer shows solubility with respect to the thermoplastic resin (A) contained in a thermoplastic resin (A) composition solution.
  • the said adhesive composition contains the component which is compatible with the thermoplastic resin (A) contained in a thermoplastic resin (A) composition solution.
  • the adhesive composition includes a solvent, a thermoplastic resin (B) that is compatible with the thermoplastic resin (A) composition solution, a thermosetting monomer, and a curing reaction catalyst.
  • the said thermoplastic resin (B) has a reactive group at the terminal.
  • the storage elastic modulus in 90 degreeC of the said support base material is 1.0 * 10 ⁇ 7 > Pa or more.
  • the inorganic glass has a thickness of 100 ⁇ m or less.
  • a coating layer containing a solvent formed on a support substrate having solvent permeability (that is, a semi-dried coating layer) and an inorganic glass are bonded together via an adhesive composition.
  • FIG. 1 is a schematic view schematically showing a method for producing a transparent substrate according to a preferred embodiment of the present invention.
  • the thermoplastic resin (A) composition solution is applied on the support substrate 10 to form the coating layer 20, and at least one surface of the inorganic glass 30 (in the illustrated example, inorganic).
  • the coating layer 20 are bonded to each other via the adhesive composition 40 to form a laminated body, and the laminated body is subjected to a first heat treatment to remain in the coated layer.
  • Step C for reducing the solvent to a predetermined amount
  • Step D for peeling the support substrate 10 from the laminate, performing a second heat treatment, drying the coating layer 20, and forming the thermoplastic resin layer 21. including.
  • the coating layer 20 is in a semi-dried state containing a solvent in the steps A to C, and in the subsequent step D, the drying of the solvent is completed with the support substrate 10 peeled off.
  • the thermoplastic resin layer 21 is formed.
  • a transparent substrate having the resin layer 21 can be obtained.
  • FIG. 2 is a schematic view schematically showing a method for producing a transparent substrate according to another preferred embodiment of the present invention.
  • FIG. 2 shows an embodiment in which one side of the inorganic glass 30 and the coating layer 20 are bonded together via an adhesive composition 40.
  • Process A Step A is a step of forming a coating layer by applying a thermoplastic resin (A) composition solution on a supporting substrate.
  • the support substrate preferably has solvent resistance to the solvent of the thermoplastic resin (A) composition solution and the solvent contained in the adhesive composition described below.
  • the material constituting such a support base include polyethylene terephthalate (PET) and polyethylene naphthalate (PEN).
  • the support substrate has solvent permeability.
  • the said support base material has solvent permeability with respect to the solvent of the said thermoplastic resin (A) composition solution. More preferably, it has solvent permeability with respect to the solvent of the said thermoplastic resin (A) composition solution and the solvent contained in the below-mentioned adhesive composition. If such a support base material is used, when the first heat treatment is performed in the subsequent step (step C) and the solvent is volatilized, the solvent permeates the support base material, so that the coating layer foams during the first heat treatment. Can prevent.
  • a material constituting such a support substrate for example, polyethylene terephthalate (PET) that is not subjected to surface treatment such as silicon treatment can be given.
  • PET polyethylene terephthalate
  • the presence / absence of “solvent permeability” can be determined, for example, as follows. That is, the inside of a glass bottle (diameter 3.5 cm ⁇ height 7.5 cm) containing 10 g of solvent was replaced with nitrogen, and the mouth of the glass bottle was sealed with a supporting substrate, and then the glass bottle with the solvent ((the boiling point of the solvent )-(35 to 45)) When the glass substrate and / or the support substrate does not form dew condensation when heated on a hot plate at 2 ° C. for 2 hours, the support will be “solvent permeable” to the solvent. It is judged to have “sex”.
  • the storage elastic modulus at 90 ° C. of the support substrate is preferably 1.0 ⁇ 10 7 Pa or more, and more preferably 1.0 ⁇ 10 7 Pa to 1.0 ⁇ 10 10 Pa. If it is such a range, the said coating layer can be hold
  • the thickness of the support substrate is preferably 25 ⁇ m to 120 ⁇ m, more preferably 50 ⁇ m to 100 ⁇ m. If it is such a range, the said coating layer can be hold
  • thermoplastic resin (A) composition solution contains a thermoplastic resin (A) and a solvent.
  • thermoplastic resin (A) examples include polyether sulfone resins, polycarbonate resins, epoxy resins, acrylic resins, polyester resins such as polyethylene terephthalate and polyethylene naphthalate; polyolefin resins, norbornene resins, etc. Cycloolefin resin; polyimide resin, polyamide resin, polyimide amide resin, polyarylate resin, polysulfone resin, polyetherimide resin, and the like.
  • the glass transition temperature of the thermoplastic resin (A) is preferably 150 ° C. to 350 ° C., more preferably 170 ° C. to 330 ° C., and particularly preferably 190 ° C. to 300 ° C.
  • any suitable solvent can be adopted as the solvent contained in the thermoplastic resin (A) composition solution as long as the thermoplastic resin (A) can be dissolved.
  • the solvent include aromatic solvents such as toluene and xylene; ketone solvents such as cyclopentanone and methyl isobutyl ketone; ether solvents such as tetrahydrofuran and propylene glycol methyl ether; halogen solvents such as dichloromethane and trichloroethane. Is mentioned. These solvents may be used alone or in combination of two or more.
  • thermoplastic resin (A) concentration of the thermoplastic resin (A) composition solution can be set to any appropriate concentration as long as the coating operation can be performed satisfactorily.
  • thermoplastic resin (A) composition solution examples include air doctor coating, blade coating, knife coating, reverse coating, transfer roll coating, gravure roll coating, kiss coating, and cast coating.
  • Coating methods such as spray coating, slot orifice coating, calendar coating, electrodeposition coating, dip coating, and die coating; relief printing methods such as flexographic printing; intaglio printing methods such as direct gravure printing methods and offset gravure printing methods; offset printing And printing methods such as lithographic printing methods such as stencil printing and stencil printing methods such as screen printing.
  • the thickness of the coating layer in step A is preferably 15 ⁇ m to 40 ⁇ m, more preferably 20 ⁇ m to 30 ⁇ m.
  • the amount of solvent in the coating layer at the time of forming the coating layer (that is, the amount of solvent in the coating layer in step A) is preferably 7% by weight or more, more preferably 7% by weight to 50% by weight, The amount is preferably 8% to 40% by weight, and most preferably 11% to 30% by weight.
  • the amount of solvent in the coating layer in step A is less than 7% by weight, solvent cracks occur in the coating layer due to contact with the solvent in the adhesive composition during the first heat treatment in the subsequent step (step C). There is a risk.
  • the amount of solvent in the coating layer in step A can be adjusted by controlling, for example, the type and amount of solvent in the thermoplastic resin (A) composition solution. Moreover, after apply
  • the support base material coated with the thermoplastic resin (A) composition solution having a solvent amount of 70% by weight or more is placed at an environmental temperature of 20 ° C. to 100 ° C. for 30 seconds to 10 minutes, A coating layer having a solvent amount of 7% by weight or more can be formed.
  • Process B Step B is a step of forming a laminate by bonding at least one surface of the inorganic glass and the coating layer via an adhesive composition.
  • any appropriate inorganic glass can be adopted as long as it is plate-shaped.
  • the inorganic glass may be long or a single sheet.
  • examples of the inorganic glass include soda-lime glass, borate glass, aluminosilicate glass, and quartz glass according to the classification according to the composition.
  • category by an alkali component an alkali free glass and a low alkali glass are mentioned.
  • the content of alkali metal components (for example, Na 2 O, K 2 O, Li 2 O) in the inorganic glass is preferably 15% by weight or less, and more preferably 10% by weight or less.
  • the thickness of the inorganic glass is preferably 100 ⁇ m or less, more preferably 20 ⁇ m to 90 ⁇ m, and particularly preferably 30 ⁇ m to 80 ⁇ m.
  • the thickness of the inorganic glass can be reduced by forming a thermoplastic resin layer on one side or both sides of the inorganic glass.
  • the transmittance of the inorganic glass at a wavelength of 550 nm is preferably 85% or more.
  • the refractive index ng of the inorganic glass at a wavelength of 550 nm is preferably 1.4 to 1.65.
  • the density of the inorganic glass is preferably 2.3 g / cm 3 to 3.0 g / cm 3 , more preferably 2.3 g / cm 3 to 2.7 g / cm 3 . If it is the inorganic glass of the said range, a lightweight transparent substrate will be obtained.
  • the inorganic glass is a mixture of a main raw material such as silica or alumina, an antifoaming agent such as sodium nitrate or antimony oxide, and a reducing agent such as carbon at a temperature of 1400 ° C to 1600 ° C. Then, after forming into a thin plate shape, it is produced by cooling.
  • the method for forming the inorganic glass sheet include a slot down draw method, a fusion method, and a float method.
  • the inorganic glass formed into a plate shape by these methods may be chemically polished with a solvent such as hydrofluoric acid, if necessary, in order to reduce the thickness or improve the smoothness.
  • the inorganic glass a commercially available one may be used as it is, or a commercially available inorganic glass may be polished to have a desired thickness.
  • examples of commercially available inorganic glasses include “7059”, “1737” or “EAGLE 2000” manufactured by Corning, “AN100” manufactured by Asahi Glass, “NA-35” manufactured by NH Techno Glass, and “OA-” manufactured by Nippon Electric Glass. 10 ”,“ D263 ”or“ AF45 ”manufactured by Schott Corporation.
  • the above-mentioned inorganic glass is preferably subjected to coupling treatment on one side or both sides in advance. If the inorganic glass is subjected to a coupling treatment, a transparent substrate having excellent adhesion between the inorganic glass and the adhesive layer can be obtained.
  • the coupling agent used for the coupling treatment include an epoxy terminal coupling agent, an amino group-containing coupling agent, a methacrylic group-containing coupling agent, and a thiol group-containing coupling agent.
  • the adhesive composition preferably includes a component that is compatible with the thermoplastic resin (A). If such an adhesive composition is used, a transparent substrate having excellent adhesion between the adhesive layer and the thermoplastic resin layer can be obtained.
  • the adhesive composition preferably contains a thermoplastic resin (B) that is compatible with the thermoplastic resin (A).
  • the thermoplastic resin (B) include polyether resin, polycarbonate resin, epoxy resin, acrylic resin, polyester resin such as polyethylene terephthalate and polyethylene naphthalate; polyolefin resin, norbornene resin Examples thereof include resins such as polyimide resins, polyamide resins, polyimide amide resins, polyarylate resins, polysulfone resins, and polyetherimide resins.
  • resin different from the said thermoplastic resin (A) is used as said thermoplastic resin (B).
  • the thermoplastic resin (B) preferably has a highly reactive functional group at the terminal.
  • a highly reactive functional group examples thereof include a hydroxyl group, a phenolic hydroxyl group, an acrylic group, a methacryl group, an allyl group, a vinyl group, a thiol group, an alkoxysilyl group, an isocyanate group, an amino group, and a carboxylic acid group.
  • a phenolic hydroxyl group is preferable.
  • the content of the thermoplastic resin (B) can be set to any appropriate value depending on the desired viscosity of the adhesive composition.
  • the viscosity at 25 ° C. of the adhesive composition is preferably 0.1 mPa ⁇ s to 1000000 mPa ⁇ s, more preferably 0.2 mPa ⁇ s to 500000 mPa ⁇ s, and particularly preferably 0.3 mPa ⁇ s to 300,000 mPa ⁇ s. If it is such a range, it will be excellent in the workability
  • the adhesive composition preferably includes a thermosetting monomer and a curing reaction catalyst. If a thermosetting monomer and a curing reaction catalyst are included, a transparent substrate excellent in adhesion between the inorganic glass and the adhesive layer and between the adhesive layer and the thermoplastic resin layer can be obtained.
  • thermosetting monomer examples include epoxy monomers, oxetane monomers, acrylic monomers, and silicone monomers. These thermosetting monomers may be used alone or in combination of two or more. Among these, an epoxy monomer or an oxetane monomer is preferable. With such a thermosetting monomer, for example, when the thermoplastic resin (B) has a phenolic hydroxyl group, it is possible to form a strong interaction with the thermoplastic resin (B). A transparent substrate excellent in adhesion between the inorganic glass and the adhesive layer and between the adhesive layer and the thermoplastic resin layer can be obtained.
  • the content of the thermosetting monomer is preferably 10% by weight to 50% by weight, more preferably 12% by weight to 40% by weight, and particularly preferably 15% by weight with respect to the thermoplastic resin (B). % By weight to 35% by weight. Within such a range, it is possible to obtain a transparent substrate that is excellent in the adhesion between the inorganic glass and the adhesive layer, and between the adhesive layer and the thermoplastic resin layer, and that is less colored.
  • the curing reaction catalyst is preferably an imidazole catalyst, a tin catalyst or a titanium catalyst. These catalysts may be used alone or in combination of two or more.
  • the imidazole catalyst examples include 2-methylimidazole, 1,3-dimethylimidazole, 2-ethyl 4-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenylimidazole, and 2-phenyl.
  • Examples include -4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl 4-methylimidazole, and the like.
  • tin-based catalyst examples include dibutyltin dilaurate, dibutyltin diacetate, dioctyltin dilaurate, and bis (acetoxydibutyltin) oxide.
  • titanium-based catalyst examples include “TA-25” and “TC-750” manufactured by Matsumoto Fine Chemical Co., Ltd.
  • the content of the curing reaction catalyst is preferably 1% by weight to 10% by weight, more preferably 2% by weight to 8% by weight, and particularly preferably 3% by weight to 5% by weight with respect to the thermoplastic resin (B). % By weight. Within such a range, it is possible to obtain a transparent substrate that is excellent in the adhesion between the inorganic glass and the adhesive layer, and between the adhesive layer and the thermoplastic resin layer, and that is less colored.
  • the above adhesive composition preferably contains a solvent.
  • the solvent contained in the adhesive composition preferably exhibits solubility in the thermoplastic resin (A). If the adhesive composition contains such a solvent, the adhesive composition can easily penetrate into the coating layer, and a transparent substrate having excellent adhesion between the adhesive layer and the thermoplastic resin layer can be obtained. .
  • a solvent similar to the solvent contained in the thermoplastic resin (A) composition solution can be preferably used.
  • the boiling point of the solvent contained in the adhesive composition is preferably equal to or higher than the boiling point of the solvent contained in the thermoplastic resin (A) composition solution. If the boiling point of the solvent contained in the adhesive composition is equal to or higher than the boiling point of the solvent contained in the thermoplastic resin (A) composition solution, the first heat treatment and the second heat treatment in the subsequent steps (steps C and D) In the heat treatment, the volatilization of the solvent contained in the adhesive composition is difficult to be hindered by the solvent contained in the thermoplastic resin (A) composition solution. Can be obtained.
  • any appropriate method can be adopted as a method of bonding the inorganic glass and the coating layer through an adhesive composition.
  • the method of laminating for example, while supplying an adhesive composition between a supporting substrate and an inorganic glass formed with a coating layer between two rolls provided with a certain gap, The method of making it pass is mentioned.
  • the adhesive composition to be supplied may be in a solution state or a sheet state.
  • Process C Step C is a step of applying a first heat treatment to the laminate obtained in Step B.
  • the first heat treatment By the first heat treatment, the residual solvent in the coating layer can be reduced to a predetermined amount. At the same time, the solvent in the adhesive composition is reduced.
  • the adhesive composition contains a thermosetting monomer, the curing reaction of the thermosetting monomer proceeds.
  • the first heat treatment method includes a heat treatment using an air circulating thermostatic oven, a heater using microwaves or far infrared rays, a roll heated for temperature adjustment, a heat pipe roll, a metal belt, or the like.
  • the temperature of the first heat treatment is preferably (bp A ⁇ 60) ° C. to (bp A +40) with respect to the boiling point (bp A ) of the solvent most contained in the thermoplastic resin (A) composition solution. More preferably (bp A ⁇ 60) ° C. to (bp A +20) ° C., particularly preferably (bp A ⁇ 50) ° C. to (bp A +20) ° C., and most preferably (bp A ⁇ 45). ) ° C. to (bp A ) ° C. If it is such a temperature range, it can prevent that the said coating layer and adhesive composition foam during the 1st heat processing. Note that in the first heat treatment, the temperature may be increased stepwise.
  • the time of the first heat treatment is preferably 1 minute to 30 minutes, more preferably 5 minutes to 20 minutes.
  • the amount of residual solvent in the coating layer is reduced to 15% by weight or less by the first heat treatment. More preferably, it is reduced to 3 to 15% by weight, particularly preferably 4 to 14% by weight, and most preferably 5 to 13% by weight.
  • the amount of residual solvent in the coating layer after the first heat treatment is more than 15% by weight, the stacked body is unable to withstand the tension applied to the stacked body in the post-process (step D). There is a risk of breaking.
  • Process D Step D is a step of performing a second heat treatment after peeling off the support substrate from the laminate.
  • the coating layer can be dried to form a thermoplastic resin layer.
  • drying and / or curing of the adhesive composition can be completed to form an adhesive layer.
  • the shrinkage stress is applied to the coating layer in the laminate by volatilization of the solvent in the coating layer by the first heat treatment in the step C.
  • the shrinkage stress of the coating layer when peeling the support substrate is preferably 10 MPa or less, and more preferably 8 MPa or less. If it is such a range, it can prevent that a wrinkle generate
  • the same method as the first heat treatment can be adopted as the second heat treatment method.
  • the temperature of the second heat treatment is preferably (bp A ⁇ 20) ° C. to 250 ° C. with respect to the boiling point (bp A ) of the solvent most contained in the thermoplastic resin (A) composition solution, More preferably, it is (bp A ⁇ 10) ° C. to 200 ° C., and particularly preferably (bp A ) ° C. to 180 ° C.
  • the time of the second heat treatment can be set to the same time as the time of the first heat treatment.
  • the shrinkage stress of the thermoplastic resin layer obtained by drying the coating layer can be applied to the inorganic glass by performing the second heat treatment.
  • a transparent substrate having an inorganic glass to which stress is applied in this way is excellent in flexibility, flexibility and impact resistance.
  • the stress applied to the inorganic glass after the second heat treatment is preferably 10 MPa to 30 MPa, more preferably 12 MPa to 30 MPa, particularly preferably 15 MPa to 30 MPa. Within such a range, it is possible to obtain a transparent substrate in which the inorganic glass and the adhesive layer are sufficiently adhered, and which is excellent in flexibility, flexibility and impact resistance.
  • the breakage of the inorganic glass is caused by the concentration of tensile stress in the crack when the inorganic glass receives an external force in the tensile direction, but the inorganic glass of the transparent substrate obtained by the production method of the present invention is Since the stress due to the shrinkage of the coating layer and the adhesive layer is added, the tensile stress that the cracks receive is reduced. As a result, it is possible to prevent the inorganic glass from progressing and breaking even with a greater external force in the tensile direction, and to obtain a transparent substrate having excellent flexibility, flexibility, and impact resistance.
  • FIG. 3 is a schematic cross-sectional view of a transparent substrate obtained by the production method of the present invention.
  • the transparent substrate 200 includes an inorganic glass 30 and a thermoplastic resin layer 21 disposed on one side or both sides of the inorganic glass 30 (preferably both sides as in the illustrated example), and the inorganic glass 30 and the thermoplastic resin layer 21.
  • the adhesive layer 41 is further provided between the two.
  • the transparent substrate of the present invention can be provided with any appropriate other layer on the opposite side of the thermoplastic resin layer from the inorganic glass, if necessary.
  • the other layers include a transparent conductive layer and a hard coat layer.
  • the total thickness of the transparent substrate is preferably 150 ⁇ m or less, more preferably 140 ⁇ m or less, and particularly preferably 80 ⁇ m to 130 ⁇ m.
  • the fracture diameter when the transparent substrate is cracked and bent is preferably 40 mm or less, and more preferably 30 mm or less.
  • the light transmittance of the transparent substrate at a wavelength of 550 nm is preferably 80% or more, and more preferably 85% or more.
  • the transparent substrate has a reduction rate of light transmittance of 5% or less after heat treatment at 180 ° C. for 2 hours. This is because with such a reduction rate, a practically acceptable light transmittance can be ensured even if the heat treatment necessary in the FPD manufacturing process is performed.
  • the surface roughness Ra of the transparent substrate (substantially, the surface roughness Ra of the thermoplastic resin layer or the other layer) is preferably 50 nm or less, more preferably 30 nm or less, particularly preferably 10 nm or less. It is.
  • the waviness of the transparent substrate is preferably 0.5 ⁇ m or less, and more preferably 0.1 ⁇ m or less.
  • the transparent substrate has a linear expansion coefficient of preferably 15 ppm / ° C. or less, more preferably 10 ppm / ° C. or less, and particularly preferably 1 ppm / ° C. to 10 ppm / ° C.
  • the said transparent substrate shows the outstanding dimensional stability (For example, the linear expansion coefficient of the above ranges) by providing the said inorganic glass. More specifically, in addition to the fact that the inorganic glass itself is rigid, the thermoplastic resin layer is restrained by the inorganic glass, whereby the dimensional variation of the thermoplastic resin layer can be suppressed. As a result, the transparent substrate as a whole exhibits excellent dimensional stability.
  • the light transmittance of the thermoplastic resin layer at a wavelength of 550 nm is preferably 80% or more.
  • the refractive index (n r ) at a wavelength of 550 nm of the thermoplastic resin layer is preferably 1.3 to 1.7.
  • the thickness of the thermoplastic resin layer is preferably 5 ⁇ m to 80 ⁇ m, more preferably 8 ⁇ m to 60 ⁇ m, and particularly preferably 10 ⁇ m to 50 ⁇ m. If it is such a range, a thermoplastic resin layer can fully reinforce inorganic glass.
  • the elastic modulus of the thermoplastic resin layer is preferably 1.5 GPa to 10 GPa, more preferably 1.8 GPa to 9 GPa, and particularly preferably 2 GPa to 8 GPa.
  • the fracture toughness value of the thermoplastic resin layer is preferably 1.5 MPa ⁇ m 1/2 to 10 MPa ⁇ m 1/2 , more preferably 2 MPa ⁇ m 1/2 to 6 MPa ⁇ m 1/2 , and particularly preferably 2.5MPa ⁇ m 1/2 ⁇ 8MPa ⁇ m 1/2.
  • a thermoplastic resin layer having sufficient tenacity is formed, and the thermoplastic resin layer prevents the progress and breakage of cracks in the inorganic glass, thereby obtaining a transparent substrate having good flexibility. Can do.
  • thermoplastic resin layer containing such a thermoplastic resin (A) is formed on both surfaces of the inorganic glass, even if the inorganic glass breaks inside the transparent substrate, the thermoplastic resin layer is difficult to break, Since the thermoplastic resin layer prevents the inorganic glass from scattering and the shape of the transparent substrate is maintained, contamination of facilities in the manufacturing process of the display element and the solar cell can be prevented, and the yield can be improved.
  • the thickness of the adhesive layer is preferably 0.001 ⁇ m to 20 ⁇ m, more preferably 0.001 ⁇ m to 15 ⁇ m, and particularly preferably 0.01 ⁇ m to 10 ⁇ m. If it is such a range, there will be little influence with respect to the transparency of a transparent substrate, and sufficient adhesive force can be expressed also under a high temperature, high humidity condition.
  • the transparent conductive layer can function as an electrode or an electromagnetic wave shield when the transparent substrate is used as a substrate for a lighting element, a display element or a solar cell.
  • Examples of materials that can be used for the transparent conductive layer include metals such as copper and silver; metal oxides such as indium tin oxide (ITO) and indium zinc oxide (IZO); and conductive materials such as polythiophene and polyaniline.
  • Examples of the polymer include a composition containing carbon nanotubes.
  • the hard coat layer has a function of imparting chemical resistance, scratch resistance and surface smoothness to the transparent substrate.
  • any appropriate material can be adopted as the material constituting the hard coat layer.
  • the material constituting the hard coat layer include an epoxy resin, an acrylic resin, a silicone resin, and a mixture thereof. Among these, an epoxy resin excellent in heat resistance is preferable.
  • the hard coat layer can be obtained by curing these resins with heat or active energy rays.
  • the thickness was measured using an Anritsu digital micrometer “KC-351C type”.
  • the solvent permeability of the PET base material used as the supporting base material in Examples and Comparative Examples was determined as follows.
  • Example 1 10 g of polyether sulfone modified with terminal hydroxyl group (Sumika Excel 5003P: manufactured by Sumitomo Chemical Co., Ltd.) was heated and dissolved in 90 g of cyclopentanone to obtain a 10 wt% solution.
  • the surface of one side of inorganic glass was washed with methyl ethyl ketone, then subjected to corona treatment, and an epoxy coupling agent (KBM403: manufactured by Shin-Etsu Chemical Co., Ltd.) 2% aqueous solution was applied. Dry at 10 ° C. for 10 minutes. The same treatment was performed on the other surface of the inorganic glass.
  • an epoxy coupling agent KBM403: manufactured by Shin-Etsu Chemical Co., Ltd.
  • thermoplastic resin (A) solution obtained by dissolving 10 g of the polymer obtained in Production Example 1 in 90 g of cyclopentanone was used as a solvent-permeable PET (Lumilar: Toray Industries, Inc., thickness 75 ⁇ m) group. It apply
  • the inorganic glass and the coating layer were bonded together while supplying the adhesive composition between the inorganic glass and the coating layer formed on the PET substrate.
  • Such an operation was performed on both sides of the inorganic glass to obtain a laminate (PET substrate / coating layer / adhesive composition / inorganic glass / adhesive composition / coating layer / PET substrate).
  • the obtained laminate was heat-treated at 90 ° C. for 4 minutes, 130 ° C. for 4 minutes, and 150 ° C. for 4 minutes.
  • the amount of residual solvent in the coating layer after the heat treatment was 6% by weight.
  • the PET substrates on both sides are peeled off, and further subjected to a heat treatment at 150 ° C. for 12 minutes.
  • a transparent substrate (thermoplastic resin layer (30 ⁇ m) / adhesive layer (2.5 ⁇ m) / inorganic glass (total thickness 115 ⁇ m)) 50 ⁇ m) / adhesive layer (2.5 ⁇ m) / thermoplastic resin layer (30 ⁇ m)).
  • the inorganic glass was exposed from the width direction edge part (length 10 cm x width 1 cm) of the transparent substrate.
  • Example 2 A transparent substrate was obtained in the same manner as in Example 1 except that 0.05 g of dibutyltin dilaurate was further added to the adhesive composition.
  • Example 1 A transparent substrate was obtained in the same manner as in Example 1 except that the amount of the solvent in the coating layer when forming the coating layer was 6 wt% (the concentration of the thermoplastic resin layer (A) was 94 wt%).
  • Comparative Example 2 instead of a PET substrate having solvent permeability (Lumirror: manufactured by Toray Industries, Inc., thickness 75 ⁇ m), a silicon-treated non-solvent PET substrate (MRF: manufactured by Mitsubishi Plastics, Inc., thickness 38 ⁇ m) is used. A transparent substrate was obtained in the same manner as in Example 1 except that it was used.
  • MRF silicon-treated non-solvent PET substrate
  • Example 3 A transparent substrate was obtained in the same manner as in Example 1 except that the PET base material was peeled off immediately after forming the laminate (that is, before the heat treatment).
  • the polyarylate film was coated with 8 g of 3,4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexenecarboxylate (Celoxide 2021P: manufactured by Daicel Chemical Industries), 3-ethyl-3 ⁇ Adhesive containing 2 g of [(3-ethyloxetane-3-yl) methoxy] methyl ⁇ oxetane (Aron oxetane OXT-221: manufactured by Toagosei Co., Ltd.) and 0.4 g of a photopolymerization initiator (SP-170: manufactured by Adeka) After laminating using the composition, the adhesive composition was cured by UV irradiation to obtain a transparent substrate (polyarylate film layer / adhesive layer / inorganic glass / adhesive layer / polyarylate film layer). .
  • SP-170 photopolymerization initiator
  • a leveling agent BYK307, manufactured by BYK Chemie
  • 3.81 g of 3,4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexenecarboxylate Celoxide 2021P: manufactured by Daicel Chemical Industries
  • -Ethyl-3 ⁇ [(3-ethyloxetane-3-yl) methoxy] methyl ⁇ oxetane Aronoxetane OXT-221: manufactured by Toagosei Co., Ltd.
  • 1.09 g of 2-methylimidazole, epoxy-terminated coupling agent KBM403: manufactured by Shin-Etsu Chemical Co., Ltd. 9.05 g was added to obtain a first casting solution.
  • one surface of inorganic glass is washed with methyl ethyl ketone, then subjected to corona treatment, and a casting solution to which a coupling agent or the like is added is applied, and then at 100 ° C. for 10 minutes, further 170 Drying was performed at a temperature of 20 ° C. for 20 minutes to form a first thermoplastic resin layer having a thickness of 1 ⁇ m. The same treatment was performed on the other surface of the inorganic glass.
  • a second casting solution prepared by dissolving 90 g of the polymer obtained in Production Example 1 in 600 g of cyclopentanone was applied onto the first thermoplastic resin layer and dried at 90 ° C. for 15 minutes. Further, the second casting solution is applied to the back surface of the first thermoplastic resin layer and dried at 85 ° C. for 10 minutes, and then both surfaces are dried at 130 ° C. for 10 minutes and further at 170 ° C. for 20 minutes.
  • a second thermoplastic resin having a thickness of 36.5 ⁇ m was obtained, and a transparent substrate having a total thickness of 125 ⁇ m (second thermoplastic resin layer / first thermoplastic resin layer / inorganic glass / first thermoplastic resin layer) / Second thermoplastic resin layer).
  • the inorganic glass was exposed from the width direction edge part (length 10 cm x width 1 cm) of the transparent substrate.
  • the transparent substrate obtained above was evaluated by the following method. The results are shown in Table 1.
  • (1) Adhesion test It evaluated by the cross-cut peel test of JISK5400. In other words, the transparent substrate and the laminate obtained were cut on the surface of the outermost layer on one side in 10 mm squares with a 1 mm interval, and 100 grids were made. Then, the adhesion was evaluated by the number of grids of the resin layer peeled from the inorganic glass.
  • Appearance The appearance of the obtained transparent substrate was visually confirmed. When foaming, cracks, and wrinkles were not confirmed on the transparent substrate, it was determined to be acceptable (indicated by ⁇ in Table 1).
  • the transparent substrates of Examples 1 and 2 were subjected to the first heat treatment on the laminate having the supporting base, the adhesive composition, and the coating layer containing a predetermined amount of solvent. After that, the support base material was peeled off and the second heat treatment was performed, whereby the adhesion was excellent, the shrinkage stress of the resin layer was large, and the fracture diameter was small. These show that the transparent substrate obtained by the production method of the present invention is excellent in flexibility, flexibility and impact resistance. On the other hand, in the transparent substrate of Comparative Example 4, the shrinkage stress of the resin layer (polyarylate film layer) was small. Such a transparent substrate is inferior in flexibility and impact resistance because sufficient stress is not applied to the inorganic glass.
  • the transparent substrate obtained by the production method of the present invention can be used for a display element, a solar cell, or a lighting element.
  • the display element include a liquid crystal display, a plasma display, an organic EL display, and electronic paper.
  • an illumination element an organic EL element etc. are mentioned, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Theoretical Computer Science (AREA)
  • Laminated Bodies (AREA)
  • Liquid Crystal (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

 屈曲性、可撓性、耐衝撃性および外観に優れる透明基板の製造方法を提供すること。 本発明の透明基板の製造方法は、溶剤透過性を有する支持基材上に熱可塑性樹脂(A)組成物溶液を塗布して、塗布層を形成する工程Aと、無機ガラスの少なくとも一方の面と該塗布層とを、接着剤組成物を介して貼り合わせて、積層体を形成する工程Bと、該積層体に第1の熱処理を施し、該塗布層中の残存溶剤量を所定量まで減少させる工程Cと、該積層体から該支持基材を剥離した後、第2の熱処理を行い、該塗布層を乾燥して、熱可塑性樹脂層を形成する工程Dとを含む。

Description

透明基板の製造方法
 本発明は、透明基板の製造方法に関する。
 近年、映像通信技術の発展により、フラットパネルディスプレイ(FPD:例えば、液晶表示装置、有機EL表示装置)のような表示装置および太陽電池は、軽量・薄型化が進んでいる。従来、表示装置および太陽電池に用いられる基板には、多くの場合ガラス基板が用いられている。ガラス基板は、透明性や耐溶剤性、ガスバリア性、耐熱性に優れる。しかし、ガラス基板を構成するガラスの薄型化を図ると、軽量化されると同時に可撓性に優れるものの、耐衝撃性が不十分となり、ハンドリングが困難となる問題が生じる。
 薄型ガラス基板のハンドリング性を向上させるため、ガラス表面に樹脂溶液を塗布、乾燥して得られる可撓性基板(例えば、特許文献1、2参照)、ガラス表面に樹脂フィルムが貼り付けられた可撓性基板(例えば、特許文献3参照)が提案されている。しかし、これらの技術を用いてもなお、高温高湿下での高い信頼性が求められる表示装置の製造工程において、十分な耐衝撃性を満足する可撓性基板は得られていない。
 また、ガラス表面に樹脂溶液を塗布、乾燥して得られる可撓性基板は、樹脂溶液が塗布工程および乾燥工程の際に発泡し、外観が悪くなるという問題がある。一方、ガラス表面に樹脂フィルムが貼り付けられた可撓性基板は、ガラスの耐衝撃性を高めるために必要な応力がガラスに十分に付加されないため、十分な耐衝撃性が得られないという問題がある。さらに、樹脂フィルムを貼り付けるために、接着剤として樹脂溶液または溶剤を用いた場合、フィルムにシワが発生しやすい。フィルムのシワは可撓性基板の外観上の問題となるほか、このシワを発生させないような処置を施すと、フィルムが破断するという問題が生じる。
特開平11-329715号公報 特開2008-107510号公報 特開2007-010834号公報
 本発明は上記従来の課題を解決するためになされたものであり、その目的とするところは、屈曲性、可撓性、耐衝撃性および外観に優れる透明基板の製造方法を提供することにある。
 本発明の透明基板の製造方法は、溶剤透過性を有する支持基材上に熱可塑性樹脂(A)組成物溶液を塗布して、塗布層を形成する工程Aと、無機ガラスの少なくとも一方の面と該塗布層とを、接着剤組成物を介して貼り合わせて、積層体を形成する工程Bと、該積層体に第1の熱処理を施し、該塗布層中の残存溶剤量を所定量まで減少させる工程Cと、該積層体から該支持基材を剥離した後、第2の熱処理を行い、該塗布層を乾燥して、熱可塑性樹脂層を形成する工程Dとを含む。
 好ましい実施形態においては、上記塗布層形成時における該塗布層中の溶剤量が、7重量%以上である。
 好ましい実施形態においては、上記第1の熱処理により、上記塗布層中の残存溶剤量を15重量%以下まで減少させる。
 好ましい実施形態においては、上記支持基材を剥離する際の上記塗布層の収縮応力が、10MPa以下である。
 好ましい実施形態においては、上記第2の熱処理後に無機ガラスに付加される応力が、10MPa~30MPaである。
 好ましい実施形態においては、上記第1の熱処理の温度が、上記熱可塑性樹脂(A)組成物溶液に最も多く含まれる溶剤の沸点(bp)に対して、(bp-60)℃~(bp+40)℃である。
 好ましい実施形態においては、上記第2の熱処理の温度が、上記熱可塑性樹脂(A)組成物溶液に最も多く含まれる溶剤の沸点(bp)に対して、(bp-20)℃~250℃である。
 好ましい実施形態においては、上記接着剤組成物が溶剤を含み、該接着剤層中の溶剤の沸点が、上記熱可塑性樹脂(A)組成物溶液に含まれる溶剤の沸点以上である。
 好ましい実施形態においては、上記接着剤組成物が溶剤を含み、該接着剤層中の溶剤が、熱可塑性樹脂(A)組成物溶液に含まれる熱可塑性樹脂(A)に対して溶解性を示す。
 好ましい実施形態においては、上記接着剤組成物が、熱可塑性樹脂(A)組成物溶液に含まれる熱可塑性樹脂(A)と相溶性を示す成分を含む。
 好ましい実施形態においては、上記接着剤組成物が、溶剤、上記熱可塑性樹脂(A)組成物溶液と相溶性を示す熱可塑性樹脂(B)、熱硬化性モノマーおよび硬化反応触媒を含む。
 好ましい実施形態においては、上記熱可塑性樹脂(B)が、末端に反応基を有する。
 好ましい実施形態においては、上記支持基材の90℃における貯蔵弾性率が、1.0×10Pa以上である。
 好ましい実施形態においては、上記無機ガラスの厚みが、100μm以下である。
 本発明によれば、溶剤透過性を有する支持基材上に形成させた溶剤を含む塗布層(すなわち、半乾燥状態の塗布層)と無機ガラスとを接着剤組成物を介して貼り合わせて得られた積層体に熱処理を施し、塗布層中の残存溶剤量を所定量まで減少させて、その後、当該積層体から支持基材を剥離して、再度、熱処理を行い塗布層を乾燥させることにより、応力が十分に付加された無機ガラスおよび発泡が抑制された熱可塑性樹脂層を有し、屈曲性、可撓性、耐衝撃性および外観に優れる透明基板を得ることができる。
本発明の好ましい実施形態による透明基板の製造方法を模式的に示す概略図である。 本発明の別の好ましい実施形態による透明基板の製造方法を模式的に示す概略図である。 本発明の製造方法により得られる透明基板の概略断面図である。
 図1は、本発明の好ましい実施形態による透明基板の製造方法を模式的に示す概略図である。本発明の製造方法は、支持基材10上に熱可塑性樹脂(A)組成物溶液を塗布して、塗布層20を形成する工程Aと、無機ガラス30の少なくとも一方の面(図示例では無機ガラス30の両面)と塗布層20とを、接着剤組成物40を介して貼り合わせて、積層体を形成する工程Bと、当該積層体に第1の熱処理を施し、上記塗布層中の残存溶剤を所定量まで減少させる工程Cと、当該積層体から支持基材10を剥離した後、第2の熱処理を行い、塗布層20を乾燥して、熱可塑性樹脂層21を形成する工程Dとを含む。本発明の製造方法においては、塗布層20は工程A~工程Cでは溶剤を含む半乾燥状態であり、その後の工程Dでは、支持基材10が剥離された状態で、溶剤の乾燥が完了して熱可塑性樹脂層21が形成される。本発明の製造方法によれば、無機ガラス30と、接着剤組成物40を乾燥して得られる接着剤層41と、熱可塑性樹脂(A)を含む塗布層20を乾燥して得られる熱可塑性樹脂層21とを有する透明基板を得ることができる。
 図2は、本発明の別の好ましい実施形態による透明基板の製造方法を模式的に示す概略図である。図2は、無機ガラス30の片面と塗布層20とを接着剤組成物40を介して貼り合わせる場合の実施形態を示す。
A.工程A
 工程Aは、支持基材上に熱可塑性樹脂(A)組成物溶液を塗布して、塗布層を形成する工程である。
 上記支持基材は、好ましくは、上記熱可塑性樹脂(A)組成物溶液の溶剤および後述の接着剤組成物に含まれる溶剤に対して耐溶剤性を有する。このような支持基材を構成する材料としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等が挙げられる。
 上記支持基材は、溶剤透過性を有する。好ましくは、上記支持基材は、上記熱可塑性樹脂(A)組成物溶液の溶剤に対して溶剤透過性を有する。さらに好ましくは、上記熱可塑性樹脂(A)組成物溶液の溶剤および後述の接着剤組成物に含まれる溶剤に対して溶剤透過性を有する。このような支持基材を用いれば、後工程(工程C)において第1の熱処理を行い溶剤を揮発させる際、溶剤が支持基材を透過するので、第1の熱処理時に塗布層が発泡することを防ぎ得る。このような支持基材を構成する材料としては、例えば、シリコン処理等の表面処理がされていないポリエチレンテレフタレート(PET)が挙げられる。なお、本明細書において、「溶剤透過性」の有無は、例えば、以下のように判断することができる。すなわち、溶剤10gを入れたガラス瓶(直径3.5cm×高さ7.5cm)内を窒素置換し、当該ガラス瓶の口を支持基材で封をした後、当該溶剤入りガラス瓶を((溶剤の沸点)-(35~45))℃のホットプレート上で2時間加熱した際に、当該ガラス瓶および/または支持基材の内側に結露が生じない場合、当該支持体は当該溶剤に対して「溶剤透過性」を有すると判断される。
 上記支持基材の90℃における貯蔵弾性率は、好ましくは1.0×10Pa以上であり、さらに好ましくは1.0×10Pa~1.0×1010Paである。このような範囲であれば、上記塗布層を良好に保持することができ、外観上のムラのない透明基板を得ることができる。
 上記支持基材の厚みは、好ましくは25μm~120μmであり、さらに好ましくは50μm~100μmである。このような範囲であれば、上記塗布層を良好に保持することができ、外観上のムラのない透明基板を得ることができる。
 上記熱可塑性樹脂(A)組成物溶液は、熱可塑性樹脂(A)および溶剤を含む。
 上記熱可塑性樹脂(A)としては、ポリエーテルサルホン系樹脂、ポリカーボネート系樹脂、エポキシ系樹脂、アクリル系樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂;ポリオレフィン系樹脂、ノルボルネン系樹脂等のシクロオレフィン系樹脂;ポリイミド系樹脂、ポリアミド系樹脂、ポリイミドアミド系樹脂、ポリアリレート系樹脂、ポリサルホン系樹脂、ポリエーテルイミド系樹脂等が挙げられる。
 上記熱可塑性樹脂(A)のガラス転移温度は、好ましくは150℃~350℃であり、さらに好ましくは170℃~330℃であり、特に好ましくは190℃~300℃である。
 上記熱可塑性樹脂(A)組成物溶液に含まれる溶剤は、熱可塑性樹脂(A)を溶解し得る限り任意の適切な溶剤が採用され得る。当該溶剤としては、例えば、トルエン、キシレン等の芳香族系溶剤;シクロペンタノン、メチルイソブチルケトン等のケトン系溶剤;テトラヒドロフラン、プロピレングリコールメチルエーテル等のエーテル系溶剤;ジクロロメタン、トリクロロエタン等のハロゲン系溶剤が挙げられる。これらの溶剤は、単独で、または2種以上組み合わせて用いてもよい。
 上記熱可塑性樹脂(A)組成物溶液の熱可塑性樹脂(A)濃度は、塗布作業が良好に行える限りにおいて、任意の適切な濃度に設定され得る。
 上記支持基材上に熱可塑性樹脂(A)組成物溶液を塗布する方法としては、例えば、エアドクターコーティング、ブレードコーティング、ナイフコーティング、リバースコーティング、トランスファロールコーティング、グラビアロールコーティング、キスコーティング、キャストコーティング、スプレーコーティング、スロットオリフィスコーティング、カレンダーコーティング、電着コーティング、ディップコーティング、ダイコーティング等のコーティング法;フレキソ印刷等の凸版印刷法、ダイレクトグラビア印刷法、オフセットグラビア印刷法等の凹版印刷法、オフセット印刷法等の平版印刷法、スクリーン印刷法等の孔版印刷法等の印刷法等が挙げられる。
 工程Aにおける塗布層の厚みは、好ましくは15μm~40μmであり、さらに好ましくは20μm~30μmである。
 上記塗布層形成時の塗布層中の溶剤量(すなわち、工程Aにおける塗布層中の溶剤量)は、好ましくは7重量%以上であり、さらに好ましくは7重量%~50重量%であり、特に好ましくは8重量%~40重量%であり、最も好ましくは11重量%~30重量%である。工程Aにおける塗布層中の溶剤量が7重量%より少ない場合、後工程(工程C)の第1の熱処理時に、接着剤組成物中の溶剤が接触することにより、塗布層にソルベントクラックの発生するおそれがある。また、50重量%より多い場合、塗布層の流動性が高くなり、後工程(工程B)において塗布層と無機ガラスとを貼り合わせる際の作業性が悪くなるおそれがある。
 工程Aにおける塗布層中の溶剤量は、例えば、熱可塑性樹脂(A)組成物溶液中の溶剤の種類および溶剤量を制御して調整することができる。また、必要に応じて、熱可塑性樹脂(A)組成物溶液を塗布した後、所定量の溶剤を揮発させて塗布層中の溶剤量を調整してもよい。1つの実施形態においては、溶剤量が70重量%以上の熱可塑性樹脂(A)組成物溶液を塗布した支持基材を、20℃~100℃の環境温度下に30秒間~10分間置いて、溶剤量が7重量%以上の塗布層を形成することができる。
B.工程B
 工程Bは、無機ガラスの少なくとも一方の面と上記塗布層とを、接着剤組成物を介して貼り合わせて、積層体を形成する工程である。
 上記無機ガラスは、板状のものであれば、任意の適切なものが採用され得る。上記無機ガラスは、長尺であってもよく、枚葉であってもよい。上記無機ガラスは、組成による分類によれば、例えば、ソーダ石灰ガラス、ホウ酸ガラス、アルミノ珪酸ガラス、石英ガラス等が挙げられる。また、アルカリ成分による分類によれば、無アルカリガラス、低アルカリガラスが挙げられる。上記無機ガラスのアルカリ金属成分(例えば、NaO、KO、LiO)の含有量は、好ましくは15重量%以下であり、さらに好ましくは10重量%以下である。
 上記無機ガラスの厚みは、好ましくは100μm以下であり、さらに好ましくは20μm~90μmであり、特に好ましくは30μm~80μmである。本発明においては、無機ガラスの片側または両側に熱可塑性樹脂層を形成させることにより、無機ガラスの厚みを薄くすることができる。
 上記無機ガラスの波長550nmにおける透過率は、好ましくは85%以上である。上記無機ガラスの波長550nmにおける屈折率nは、好ましくは1.4~1.65である。
 上記無機ガラスの密度は、好ましくは2.3g/cm~3.0g/cmであり、さらに好ましくは2.3g/cm~2.7g/cmである。上記範囲の無機ガラスであれば、軽量の透明基板が得られる。
 上記無機ガラスの成形方法は、任意の適切な方法が採用され得る。代表的には、上記無機ガラスは、シリカやアルミナ等の主原料と、芒硝や酸化アンチモン等の消泡剤と、カーボン等の還元剤とを含む混合物を、1400℃~1600℃の温度で溶融し、薄板状に成形した後、冷却して作製される。上記無機ガラスの薄板成形方法としては、例えば、スロットダウンドロー法、フュージョン法、フロート法等が挙げられる。これらの方法によって板状に成形された無機ガラスは、薄板化したり、平滑性を高めたりするために、必要に応じて、フッ酸等の溶剤により化学研磨されてもよい。
 上記無機ガラスは、市販のものをそのまま用いてもよく、あるいは、市販の無機ガラスを所望の厚みになるように研磨して用いてもよい。市販の無機ガラスとしては、例えば、コーニング社製「7059」、「1737」または「EAGLE2000」、旭硝子社製「AN100」、NHテクノグラス社製「NA-35」、日本電気硝子社製「OA-10」、ショット社製「D263」または「AF45」等が挙げられる。
 上記無機ガラスは、好ましくは、あらかじめ、片面または両面にカップリング処理が施される。無機ガラスがカップリング処理されていれば、無機ガラスと接着剤層との密着性に優れた透明基板を得ることができる。カップリング処理に用いられるカップリング剤としては、エポキシ末端カップリング剤、アミノ基含有カップリング剤、メタクリル基含有カップリング剤、チオール基含有カップリング剤などが挙げられる。
 上記接着剤組成物は、好ましくは、上記熱可塑性樹脂(A)と相溶性を示す成分を含む。このような接着剤組成物を用いれば、接着剤層と熱可塑性樹脂層との密着性に優れる透明基板を得ることができる。
 上記接着剤組成物は、好ましくは、熱可塑性樹脂(A)と相溶性を示す熱可塑性樹脂(B)を含む。熱可塑性樹脂(B)の具体例としては、ポリエーテルサルホン系樹脂、ポリカーボネート系樹脂、エポキシ系樹脂、アクリル系樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂;ポリオレフィン系樹脂、ノルボルネン系樹脂等のシクロオレフィン系樹脂;ポリイミド系樹脂、ポリアミド系樹脂、ポリイミドアミド系樹脂、ポリアリレート系樹脂、ポリサルホン系樹脂、ポリエーテルイミド系樹脂等の樹脂が挙げられる。なお、上記熱可塑性樹脂(B)としては、好ましくは、上記熱可塑性樹脂(A)と異なる樹脂が用いられる。
 上記熱可塑性樹脂(B)は、好ましくは、末端に反応性の高い官能基を有する。例えば、水酸基、フェノール性水酸基、アクリル基、メタクリル基、アリル基、ビニル基、チオール基、アルコキシシリル基、イソシアネート基、アミノ基、カルボン酸基等が挙げられる。なかでも好ましくは、フェノール性水酸基である。
 上記熱可塑性樹脂(B)の含有量は、所望とする接着剤組成物の粘度に応じて、任意の適切な値に設定され得る。上記接着剤組成物の25℃における粘度は、好ましくは0.1mPa・s~1000000mPa・sであり、さらに好ましくは0.2mPa・s~500000mPa・sであり、特に好ましくは0.3mPa・s~300000mPa・sである。このような範囲であれば、無機ガラスと上記塗布層とを、接着剤組成物を介して貼り合わせる際の作業性に優れる。
 上記接着剤組成物は、好ましくは、熱硬化性モノマーおよび硬化反応触媒を含む。熱硬化性モノマーおよび硬化反応触媒を含んでいれば、無機ガラスと接着剤層、および接着剤層と熱可塑性樹脂層との密着性により優れた透明基板を得ることができる。
 上記熱硬化性モノマーとしては、例えば、エポキシ系モノマー、オキセタン系モノマー、アクリル系モノマー、シリコーン系モノマーなどが挙げられる。これらの熱硬化性モノマーは、単独で、または2種以上組み合わせて用いてもよい。なかでも好ましくは、エポキシ系モノマーまたはオキセタン系モノマーである。このような熱硬化性モノマーであれば、例えば、上記熱可塑性樹脂(B)が、フェノール性水酸基を有する場合、当該熱可塑性樹脂(B)との強固な相互作用を形成することが可能であり、無機ガラスと接着剤層、および接着剤層と熱可塑性樹脂層との密着性により優れた透明基板を得ることができる。
 上記熱硬化性モノマーの含有割合は、上記熱可塑性樹脂(B)に対して、好ましくは10重量%~50重量%であり、さらに好ましくは12重量%~40重量%であり、特に好ましくは15重量%~35重量%である。このような範囲であれば、無機ガラスと接着剤層、および接着剤層と熱可塑性樹脂層との密着性により優れ、かつ、着色の少ない透明基板を得ることができる。
 上記硬化反応触媒は、好ましくは、イミダゾール系触媒、錫系触媒またはチタン系触媒である。これらの触媒は、単独で、または2種以上組み合わせて用いてもよい。
 上記イミダゾール系触媒の具体例としては、2-メチルイミダゾール、1,3-ジメチルイミダゾール、2-エチル4-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル4-メチルイミダゾール等が挙げられる。
 上記錫系触媒の具体例としては、ジブチル錫ジラウレート、ジブチル錫ジアセテート、ジオクチル錫ジラウレート、ビス(アセトキシジブチル錫)オキサイド等が挙げられる。
 上記チタン系触媒の具体例としては、松本ファインケミカル社製「TA-25」、「TC-750」等が挙げられる。
 上記硬化反応触媒の含有割合は、熱可塑性樹脂(B)に対して、好ましくは1重量%~10重量%であり、さらに好ましくは2重量%~8重量%、特に好ましくは3重量%~5重量%である。このような範囲であれば、無機ガラスと接着剤層、および接着剤層と熱可塑性樹脂層との密着性により優れ、かつ、着色の少ない透明基板を得ることができる。
 上記接着剤組成物は、好ましくは、溶剤を含む。接着剤組成物に含まれる溶剤は、好ましくは、上記熱可塑性樹脂(A)に対しても溶解性を示す。接着剤組成物がこのような溶剤を含んでいれば、接着剤組成物が上記塗布層に浸透しやすくなり、接着剤層と熱可塑性樹脂層との密着性に優れる透明基板を得ることができる。接着剤組成物に含まれる溶剤としては、好ましくは、上記熱可塑性樹脂(A)組成物溶液に含まれる溶剤と同様の溶剤が用いられ得る。
 上記接着剤組成物に含まれる溶剤の沸点は、好ましくは、上記熱可塑性樹脂(A)組成物溶液に含まれる溶剤の沸点と同等以上である。接着剤組成物に含まれる溶剤の沸点が上記熱可塑性樹脂(A)組成物溶液に含まれる溶剤の沸点と同等以上であれば、後工程(工程CおよびD)の第1の熱処理および第2の熱処理の際に、接着剤組成物に含まれる溶剤の揮発が熱可塑性樹脂(A)組成物溶液に含まれる溶剤により妨げられ難いので、接着剤組成物の発泡を防ぎ、外観に優れる透明基板を得ることができる。
 上記無機ガラスと上記塗布層とを、接着剤組成物を介して貼り合わせる方法としては、任意の適切な方法が採用され得る。当該貼り合わせる方法としては、例えば、一定のギャップで設けられた2つのロール間に、塗布層を形成させた支持基材と無機ガラスとを、これらの間に接着剤組成物を供給しながら、通過させる方法が挙げられる。供給する接着剤組成物は、溶液状態であってもよく、シート状態であってもよい。
C.工程C
 工程Cは、工程Bで得られた積層体に第1の熱処理を施す工程である。第1の熱処理により、上記塗布層中の残存溶剤を所定量まで減少させることができる。また、同時に、接着剤組成物中の溶剤も減少する。さらに、接着剤組成物が熱硬化性モノマーを含む場合、当該熱硬化性モノマーの硬化反応が進む。
 上記第1の熱処理の方法としては、任意の適切な方法が採用され得る。第1の熱処理は、例えば、空気循環式恒温オーブン、マイクロ波または遠赤外線等を利用したヒーター、温度調節用に加熱されたロール、ヒートパイプロールまたは金属ベルト等を用いた熱処理が挙げられる。
 上記第1の熱処理の温度は、上記熱可塑性樹脂(A)組成物溶液に最も多く含まれる溶剤の沸点(bp)に対して、好ましくは(bp-60)℃~(bp+40)℃であり、さらに好ましくは(bp-60)℃~(bp+20)℃であり、特に好ましくは(bp-50)℃~(bp+20)℃、最も好ましくは(bp-45)℃~(bp)℃である。このような温度範囲であれば、第1の熱処理時に、上記塗布層および接着剤組成物が発泡することを防ぎ得る。なお、第1の熱処理においては、段階的に温度を上げてもよい。
 上記第1の熱処理の時間は、好ましくは1分~30分であり、さらに好ましくは5分~20分である。
 好ましくは、上記第1の熱処理により、上記塗布層中の残存溶剤量を、15重量%以下まで減少させる。さらに好ましくは3重量%~15重量%まで減少させ、特に好ましくは4重量%~14重量%まで減少させ、最も好ましくは5重量%~13重量%まで減少させる。第1の熱処理後の塗布層中の残存溶剤量が15重量%より多い場合、上記積層体が後工程(工程D)において、搬送中の積層体が、当該積層体にかかるテンションに耐えられなくなり、破断するおそれがある。
D.工程D
 工程Dは上記積層体から、上記支持基材を剥離した後、第2の熱処理を行う工程である。第2の熱処理により、塗布層を乾燥して、熱可塑性樹脂層を形成させることができる。また、同時に、接着剤組成物の乾燥および/または硬化が完了して、接着剤層を形成させることができる。
 上記積層体における上記塗布層には、上記工程Cにおける第1の熱処理により塗布層中の溶剤が揮発することにより、収縮応力がかかる。上記支持基材を剥離する際の上記塗布層の収縮応力は、好ましくは10MPa以下であり、さらに好ましくは8MPa以下である。このような範囲であれば、基材にシワが発生することを防ぐことができる。なお、基材にシワが発生した場合、シワが塗布層に転写され、外観上好ましくない透明基板が得られるおそれがある。
 上記第2の熱処理の方法は、上記第1の熱処理と同様の方法が採用され得る。
 上記第2の熱処理の温度は、上記熱可塑性樹脂(A)組成物溶液に最も多く含まれる溶剤の沸点(bp)に対して、好ましくは(bp-20)℃~250℃であり、さらに好ましくは(bp-10)℃~200℃であり、特に好ましくは(bp)℃~180℃である。上記第2の熱処理の時間は、上記第1の熱処理の時間と同様の時間に設定され得る。
 上記第2の熱処理を行うことにより、塗布層を乾燥して得られる熱可塑性樹脂層の収縮応力を無機ガラスに付加することができる。このように応力が付加された無機ガラスを有する透明基板は、屈曲性、可撓性および耐衝撃性に優れる。
 上記第2の熱処理後に無機ガラスに付加される応力(すなわち、本発明の製造方法により得られる透明基板の無機ガラスに付加される応力)は、好ましくは10MPa~30MPaであり、さらに好ましくは12MPa~30MPaであり、特に好ましくは15MPa~30MPaである。このような範囲であれば、無機ガラスと接着剤層とが十分に密着し、かつ、屈曲性、可撓性および耐衝撃性に優れる透明基板を得ることができる。より詳細には、無機ガラスの破断は、無機ガラスが引っ張り方向の外力を受けた場合に、クラックに引っ張り応力が集中することにより生じるが、本発明の製造方法により得られる透明基板の無機ガラスは、塗布層および接着剤層の収縮による応力が付加されているので、クラックが受ける引っ張り応力が低減される。その結果、より大きな引っ張り方向の外力に対しても無機ガラスのクラックの進展および破断を防ぐことができ、屈曲性、可撓性および耐衝撃性に優れる透明基板を得ることができる。
E.透明基板
 図3は、本発明の製造方法により得られる透明基板の概略断面図である。この透明基板200は、無機ガラス30と、無機ガラス30の片側または両側(好ましくは図示例のように両側)に配置された熱可塑性樹脂層21とを備え、無機ガラス30と熱可塑性樹脂層21との間に接着剤層41をさらに備える。
 本発明の透明基板は、必要に応じて、上記熱可塑性樹脂層の無機ガラスとは反対側に任意の適切なその他の層を備え得る。上記その他の層としては、例えば、透明導電性層、ハードコート層等が挙げられる。
 上記透明基板の総厚は、好ましくは150μm以下であり、さらに好ましくは140μm以下であり、特に好ましくは80μm~130μmである。
 上記透明基板にクラックを入れ屈曲させた際の破断直径は、好ましくは40mm以下であり、さらに好ましくは30mm以下である。
 上記透明基板の波長550nmにおける光透過率は、好ましくは80%以上であり、さらに好ましくは85%以上である。好ましくは、上記透明基板は、180℃で2時間の加熱処理を施した後の光透過率の減少率が5%以内である。このような減少率であれば、FPDの製造プロセスにおいて必要な加熱処理を施しても、実用上許容可能な光透過率を確保できるからである。
 上記透明基板の表面粗度Ra(実質的には、上記熱可塑性樹脂層または上記その他の層の表面粗度Ra)は、好ましくは50nm以下であり、さらに好ましくは30nm以下、特に好ましくは10nm以下である。上記透明基板のうねりは、好ましくは0.5μm以下であり、さらに好ましくは0.1μm以下である。
 上記透明基板は、その線膨張係数が、好ましくは15ppm/℃以下であり、さらに好ましくは10ppm/℃以下であり、特に好ましくは1ppm/℃~10ppm/℃である。上記透明基板は、上記無機ガラスを備えることにより、優れた寸法安定性(例えば、上記のような範囲の線膨張係数)を示す。より具体的には、上記無機ガラス自体が剛直であることに加えて、上記熱可塑性樹脂層が該無機ガラスに拘束されることにより熱可塑性樹脂層の寸法変動も抑制することができる。その結果、上記透明基板は全体として優れた寸法安定性を示す。
 上記熱可塑性樹脂層の波長550nmにおける光透過率は、好ましくは80%以上である。上記熱可塑性樹脂層の波長550nmにおける屈折率(n)は、好ましくは1.3~1.7である。
 上記熱可塑性樹脂層の厚みは、好ましくは5μm~80μmであり、さらに好ましくは8μm~60μmであり、とくに好ましくは10μm~50μmである。このような範囲であれば、熱可塑性樹脂層が無機ガラスを十分に補強することができる。
 上記熱可塑性樹脂層の弾性率は、好ましくは1.5GPa~10GPa以上であり、さらに好ましくは1.8GPa~9GPaであり、特に好ましくは2GPa~8GPaである。
 上記熱可塑性樹脂層の破壊靱性値は、好ましくは1.5MPa・m1/2~10MPa・m1/2であり、さらに好ましくは2MPa・m1/2~6MPa・m1/2であり、特に好ましくは2.5MPa・m1/2~8MPa・m1/2である。このような範囲であれば、十分な粘り強さを有する熱可塑性樹脂層が形成され、当該熱可塑性樹脂層により無機ガラスのクラックの進展や破断を防ぎ、良好な屈曲性を有する透明基板を得ることができる。また、このような熱可塑性樹脂(A)を含む熱可塑性樹脂層を無機ガラス両面に形成した場合、仮に無機ガラスが透明基板内部で破断した場合においても、熱可塑性樹脂層は破断し難いので、熱可塑性樹脂層により無機ガラスの飛散が防止され、かつ透明基板の形状が保たれるため、表示素子および太陽電池の製造工程における施設の汚染を防止し得、歩留まりを向上させることができる。
 上記接着剤層の厚みは、好ましくは0.001μm~20μmであり、さらに好ましくは0.001μm~15μmであり、特に好ましくは0.01μm~10μmである。このような範囲であれば、透明基板の透明性に対する影響が少なく、かつ、高温高湿状況下でも、十分な接着力を発現することができる。
 上記透明導電性層は、上記透明基板を照明素子、表示素子または太陽電池の基板として用いる場合に、電極または電磁波シールドなどとして機能し得る。
 上記透明導電性層に用いられ得る材料としては、例えば、銅、銀等の金属;インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)等の金属酸化物;ポリチオフェン、ポリアニリン等の導電性高分子;カーボンナノチューブを含む組成物等が挙げられる。
 上記ハードコート層は、上記透明基板に耐薬品性、耐擦傷性および表面平滑性を付与させる機能を有する。
 上記ハードコート層を構成する材料としては、任意の適切なものを採用し得る。上記ハードコート層を構成する材料としては、例えば、エポキシ系樹脂、アクリル系樹脂、シリコーン系樹脂およびこれらの混合物が挙げられる。なかでも好ましくは、耐熱性に優れるエポキシ系樹脂である。上記ハードコート層はこれらの樹脂を熱または活性エネルギー線により硬化させて得ることができる。
 以下、実施例により本発明を具体的に説明するが、本発明はこれら実施例になんら限定されるものではない。なお、厚みはアンリツ製デジタルマイクロメーター「KC-351C型」を使用して測定した。また、実施例および比較例において支持基材として用いたPET基材の溶剤透過性は、以下のようにして判断した。
(PET基材の溶剤透過性)
 スクリュー管瓶(アズワン社製、型番「No.7L」、品番「5-098011」、直径3.5cm×高さ7.5cm)にシクロペンタノン10gを入れた。その後、当該スクリュー管瓶内を窒素置換し、当該スクリュー管瓶を5cm角のPET基材で封をした。このとき、スクリュー管瓶とPET基材とは、接着剤(セメダイン社製、品番「AX-083」)で接着させた。次いで、当該スクリュー管瓶を90℃に加熱したホットプレート上に置き、2時間加熱した。加熱終了後、PET基材およびスクリュー管瓶の内側の状態を目視観察した。
 目視観察の結果、PET基材および/またはスクリュー管瓶の内側に溶剤の結露が生じていた場合は、当該PET基材は溶剤透過性がないと判断した。一方、結露が生じなかった場合は、当該PET基材は溶剤透過性があると判断した。
[製造例1]
 攪拌装置を備えた反応容器中、4,4’-(1,3-ジメチルブチリデン)ビスフェノール7.65g(0.028mol)、4,4’-(1-フェニルエチリデン)ビスフェノール12.35g(0.043mol)、ベンジルトリエチルアンモニウムクロライド0.444g、p-ターシャリーブチルフェノール0.022gを1M水酸化ナトリウム溶液185gに溶解させた。この溶液に、テレフタル酸クロライド14.4g(0.071mol)をクロロホルム246gに溶解させた溶液を攪拌しながら一度に加え、室温で120分間攪拌した。その後、重合溶液を静置分離してポリマーを含んだクロロホルム溶液を分離し、ついで酢酸水で洗浄し、イオン交換水で洗浄した後、メタノールに投入してポリマーを析出させた。析出したポリマーを濾過し、減圧下で乾燥することで、白色のポリマー27gを得た。
[実施例1]
 末端水酸基変性されたポリエーテルサルホン(スミカエクセル 5003P:住友化学社製)10gをシクロペンタノン90gに加熱して溶かし、10重量%の溶液を得た。得られた溶液に、3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン(アロンオキセタン OXT-221:東亞合成社製)0.6g、1、2-ジメチルイミダゾール0.4g、およびエポキシ末端カップリング剤(KBM403:信越化学工業社製)2.5g添加し、接着剤組成物を得た。
 別途、無機ガラス(厚み50μm、長さ10cm×幅4cm)の片面表面をメチルエチルケトンで洗浄後、コロナ処理を行い、エポキシカップリング剤(KBM403:信越化学工業社製)2%水溶液を塗布し、100℃で10分間乾燥させた。同様の処理を無機ガラスのもう一方の面についても行った。
 その後、製造例1で得られたポリマー10gをシクロペンタノン90gに溶かした10重量%の熱可塑性樹脂(A)溶液を、溶剤透過性を有するPET(ルミラー:東レ株式会社製、厚み75μm)基材上に塗布し、90℃で8分間溶剤を揮発させて塗布層を形成させた。塗布層中の溶剤量は、23重量%(熱可塑性樹脂(A)の濃度:77重量%)であった。
 上記無機ガラスと上記PET基材上に形成された塗布層との間に上記接着剤組成物を供給しながら、無機ガラスと塗布層とを貼り合わせた。このような操作を無機ガラスの両面に行って、積層体(PET基材/塗布層/接着剤組成物/無機ガラス/接着剤組成物/塗布層/PET基材)を得た。
 得られた積層体に、90℃で4分間、130℃で4分間、150℃で4分間の熱処理を行った。当該熱処理後の塗布層中の残存溶剤量は6重量%であった。
 その後、両面のPET基材を剥離して、さらに150℃で12分間の熱処理を行い、総厚み115μmの透明基板(熱可塑性樹脂層(30μm)/接着剤層(2.5μm)/無機ガラス(50μm)/接着剤層(2.5μm)/熱可塑性樹脂層(30μm))を得た。なお、上記透明基板の幅方向端部(長さ10cm×幅1cm)は無機ガラスを露出させた。
[実施例2]
 接着剤組成物にジブチル錫ジラウレート0.05gをさらに加えた以外は、実施例1と同様にして透明基板を得た。
[比較例1]
 塗布層形成時における、塗布層中の溶剤量を、6重量%(熱可塑性樹脂層(A)の濃度94重量%)とした以外は、実施例1と同様にして透明基板を得た。
[比較例2]
 溶剤透過性を有するPET(ルミラー:東レ株式会社製、厚み75μm)基材に代えて、シリコン処理された溶剤透過性を有さないPET(MRF:三菱樹脂株式会社製、厚み38μm)基材を用いた以外は、実施例1と同様にして透明基板を得た。
[比較例3]
 積層体形成直後に(すなわち、熱処理前に)、PET基材を剥離した以外は、実施例1と同様にして透明基板を得た。
[比較例4]
 製造例1で得られたポリマー90gをシクロペンタノン600gに溶かしたキャスティング溶液を、PET(ルミラー:東レ株式会社製、厚み75μm)基材上に塗布し、さらに残存溶剤量が5%以下になるまで乾燥した後、基材を剥離して、ポリアリレートフィルムを得た。
 別途、無機ガラス(厚み50μm、長さ10cm×幅4cm)の片面表面をメチルエチルケトンで洗浄後、コロナ処理を行い、エポキシカップリング剤(KBM403:信越化学工業社製)で処理した。同様の処理を無機ガラスのもう一方の面についても行った。
 上記無機ガラスの両面に、上記ポリアリレートフィルムを、3,4-エポキシシクロヘキセニルメチル-3´,4´-エポキシシクロヘキセンカルボキシレート(セロキサイド2021P:ダイセル化学工業社製)8g、3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン(アロンオキセタン OXT-221:東亞合成社製)2g、光重合開始剤(SP-170:アデカ社製)0.4gを含む接着剤組成物を用いて貼り合わせた後、UV照射して接着剤組成物を硬化させて、透明基板(ポリアリレートフィルム層/接着剤層/無機ガラス/接着剤層/ポリアリレートフィルム層)を得た。なお、上記透明基板の幅方向端部(長さ10cm×幅1cm)は無機ガラスを露出させた。
[比較例5]
 末端水酸基変性されたポリエーテルサルホン(スミカエクセル 5003P:住友化学社製)36.2gをシクロペンタノン172gおよびN,N-ジメチルホルムアミド10.8gの混合溶剤に溶かし、ポリエーテルサルホンが16.5重量%の溶液を得た。さらに該溶液にレベリング剤(BYK307 ビックケミー社製)0.027g、3,4-エポキシシクロヘキセニルメチル-3´,4´-エポキシシクロヘキセンカルボキシレート(セロキサイド2021P:ダイセル化学工業社製)1.81g、3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン(アロンオキセタン OXT-221:東亞合成社製)1.45g、2-メチルイミダゾール1.09g、エポキシ末端カップリング剤(KBM403:信越化学工業社製)9.05g添加し、第1のキャスティング溶液を得た。
 別途、無機ガラス(厚み50μm、長さ10cm×幅4cm)の片面表面をメチルエチルケトンで洗浄後、コロナ処理を行い、カップリング剤等を添加したキャスティング溶液を塗布し、100℃で10分間、さらに170℃で20分間乾燥させ、厚みが1μmの第1の熱可塑性樹脂層を形成した。同様の処理を無機ガラスのもう一方の面についても行った。
 その後、製造例1で得られたポリマー90gをシクロペンタノン600gに溶かした第2のキャスティング溶液を、第1の熱可塑性樹脂層上に塗布し、90℃で15分間乾燥させた。さらに裏面にも第2のキャスティング溶液を第1の熱可塑性樹脂層上に塗布し、85℃で10分間乾燥させ、その後、両面を130℃で10分間、さらに170℃で20分間乾燥させ、片側の厚みが36.5μmの第2の熱可塑性樹脂を得て、総厚み125μmの透明基板(第2の熱可塑性樹脂層/第1の熱可塑性樹脂層/無機ガラス/第1の熱可塑性樹脂層/第2の熱可塑性樹脂層)を得た。なお、上記透明基板の幅方向端部(長さ10cm×幅1cm)は無機ガラスを露出させた。
〈評価〉
 上記で得られた透明基板を下記の方法で評価した。結果を表1に示す。
(1)密着性試験
 JIS K 5400の碁盤目剥離試験により評価した。すなわち、得られた透明基板および積層体の片面最外層の表面上10mm角中に1mm間隔にカッターで切れ目を入れ、100個の碁盤目を作り、粘着テープをその上に貼り付けた後、剥離し、無機ガラスから剥離した樹脂層の碁盤目の数により密着性を評価した。
(2)外観
 得られた透明基板の外観を目視にて確認した。透明基板に、発泡、クラック、シワが確認されない場合は合格(表1中、○で示す)とした。
(3)破断直径
 (a)実施例および比較例で得られた透明基板を評価用試料として準備した。
 (b)薄板ガラス露出部分の長辺中央に5mm以下のクラックを入れた。
 (c)評価用試料の長辺を屈曲させ、クラックの進展を観察し、ガラスが破断した際の、屈曲した辺(長辺)を円周とする円の直径を破断直径とした。
(4)収縮応力
 幅30mm×長さ125mmの短冊状無機ガラス(厚み100μm)の片面に、実施例および比較例と同様の方法で樹脂層を形成させ、カールしたサンプルの曲率半径Rを測定した。
 補正項を導入したStonryの下記式(C.A.Klien,J.Appl.Phys., 88 5487 (2000))に、曲率半径R;薄板ガラスのヤング率(70GPa)、ポアソン比(0.2)および厚み(100μm);樹脂のヤング率、ポアソン比および厚みを代入して、樹脂層の収縮応力(すなわち、無機ガラスに付加される応力)を求めた。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-T000002
 表1から明らかなように、実施例1および2の透明基板は、支持基材と、接着剤組成物と、所定量の溶剤を含んだ塗布層とを有した積層体に第1の熱処理を行い、その後、支持基材を剥離して、第2の熱処理を行うことにより、密着性に優れ、樹脂層の収縮応力が大きく、破断直径が小さかった。これらは、本発明の製造方法により得られる透明基板が、屈曲性、可撓性および耐衝撃性に優れることを示している。一方、比較例4の透明基板は、樹脂層(ポリアリレートフィルム層)の収縮応力が小さかった。このような透明基板は、無機ガラスに十分な応力が付加されず、屈曲性、耐衝撃性に劣る。
 また、実施例1および2の製造方法によれば、外観に優れる透明基板が得られた。一方、塗布層中の溶剤量が少ない状態で第1の熱処理を行った透明基板(比較例1)はクラックが発生した。また、積層体形成直後に(すなわち、熱処理前に)、PET基材を剥離した場合は、工程中破断して透明基板を作製することができなかった(比較例3)。さらに、支持基材として溶剤透過性を有さないPET基材を用いた場合(比較例2)、および支持基材を用いず従来方法の直接塗布により熱可塑性樹脂層を形成した場合、発泡が確認された(比較例5)。
 本発明の製造方法により得られる透明基板は、表示素子、太陽電池または照明素子に用いられ得る。表示素子としては、例えば、液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイ、電子ペーパー等が挙げられる。照明素子としては、例えば、有機EL素子等が挙げられる。
 10       支持基材
 20       塗布層
 30       無機ガラス
 40       接着剤組成物
 21       熱可塑性樹脂層
 41       接着剤層
 100、100´ オーブン
 200      透明基板

Claims (14)

  1.  溶剤透過性を有する支持基材上に熱可塑性樹脂(A)組成物溶液を塗布して、塗布層を形成する工程Aと、
     無機ガラスの少なくとも一方の面と該塗布層とを、接着剤組成物を介して貼り合わせて、積層体を形成する工程Bと、
     該積層体に第1の熱処理を施し、該塗布層中の残存溶剤量を所定量まで減少させる工程Cと、
     該積層体から該支持基材を剥離した後、第2の熱処理を行い、該塗布層を乾燥して、熱可塑性樹脂層を形成する工程Dとを含む、
     透明基板の製造方法。
  2.  前記塗布層形成時における該塗布層中の溶剤量が、7重量%以上である、請求項1に記載の透明基板の製造方法。
  3.  前記第1の熱処理により、前記塗布層中の残存溶剤量を15重量%以下まで減少させる、請求項1または2に記載の透明基板の製造方法。
  4.  前記支持基材を剥離する際の前記塗布層の収縮応力が、10MPa以下である、請求項1から3のいずれかに記載の透明基板の製造方法。
  5.  前記第2の熱処理後に無機ガラスに付加される応力が、10MPa~30MPaである、請求項1から4のいずれかに記載の透明基板の製造方法。
  6.  前記第1の熱処理の温度が、前記熱可塑性樹脂(A)組成物溶液に最も多く含まれる溶剤の沸点(bp)に対して、(bp-60)℃~(bp+40)℃である、請求項1から5のいずれかに記載の透明基板の製造方法。
  7.  前記第2の熱処理の温度が、前記熱可塑性樹脂(A)組成物溶液に最も多く含まれる溶剤の沸点(bp)に対して、(bp-20)℃~250℃である、請求項1から6のいずれかに記載の透明基板の製造方法。
  8.  前記接着剤組成物が溶剤を含み、該接着剤層中の溶剤の沸点が、前記熱可塑性樹脂(A)組成物溶液に含まれる溶剤の沸点以上である、請求項1から7のいずれかに記載の透明基板の製造方法。
  9.  前記接着剤組成物が溶剤を含み、該接着剤層中の溶剤が、前記熱可塑性樹脂(A)組成物溶液に含まれる熱可塑性樹脂(A)に対して溶解性を示す、請求項1から8のいずれかに記載の透明基板の製造方法。
  10.  前記接着剤組成物が、前記熱可塑性樹脂(A)組成物溶液に含まれる熱可塑性樹脂(A)と相溶性を示す成分を含む、請求項1から9のいずれかに記載の透明基板の製造方法。
  11.  前記接着剤組成物が、溶剤、前記熱可塑性樹脂(A)組成物溶液と相溶性を示す熱可塑性樹脂(B)、熱硬化性モノマーおよび硬化反応触媒を含む、請求項1から10のいずれかに記載の透明基板の製造方法。
  12.  前記熱可塑性樹脂(B)が、末端に反応基を有する、請求項11に記載の透明基板の製造方法。
  13.  前記支持基材の90℃における貯蔵弾性率が、1.0×10Pa以上である、請求項1から12のいずれかに記載の透明基板の製造方法。
  14.  前記無機ガラスの厚みが、100μm以下である、請求項1から13のいずれかに記載の透明基板の製造方法。
     
PCT/JP2011/060367 2010-04-30 2011-04-28 透明基板の製造方法 WO2011136327A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/640,444 US9254627B2 (en) 2010-04-30 2011-04-28 Manufacturing method for transparent substrate
EP11775108.1A EP2565170A4 (en) 2010-04-30 2011-04-28 PROCESS FOR PRODUCING TRANSPARENT SUBSTRATE
KR1020137032933A KR20140005376A (ko) 2010-04-30 2011-04-28 투명 기판의 제조 방법
CN201180021854.2A CN102869632B (zh) 2010-04-30 2011-04-28 透明基板的制造方法
KR1020127028339A KR101381087B1 (ko) 2010-04-30 2011-04-28 투명 기판의 제조 방법
US14/542,138 US20150072155A1 (en) 2010-04-30 2014-11-14 Manufacturing method for transparent substrate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010105140 2010-04-30
JP2010-105140 2010-04-30
JP2010252704A JP5615134B2 (ja) 2010-04-30 2010-11-11 透明基板の製造方法
JP2010-252704 2010-11-11

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/640,444 A-371-Of-International US9254627B2 (en) 2010-04-30 2011-04-28 Manufacturing method for transparent substrate
US14/542,138 Division US20150072155A1 (en) 2010-04-30 2014-11-14 Manufacturing method for transparent substrate

Publications (1)

Publication Number Publication Date
WO2011136327A1 true WO2011136327A1 (ja) 2011-11-03

Family

ID=44861621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060367 WO2011136327A1 (ja) 2010-04-30 2011-04-28 透明基板の製造方法

Country Status (7)

Country Link
US (2) US9254627B2 (ja)
EP (2) EP2565170A4 (ja)
JP (1) JP5615134B2 (ja)
KR (2) KR20140005376A (ja)
CN (2) CN104589736A (ja)
TW (2) TW201442859A (ja)
WO (1) WO2011136327A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014228615A (ja) * 2013-05-21 2014-12-08 大日本印刷株式会社 保護板用基板、電極付き表示装置用前面保護板、及び表示装置
US20150072125A1 (en) * 2012-04-02 2015-03-12 Nitto Denko Corporation Transparent sheet and method for manufacturing same
US20150140343A1 (en) * 2012-05-29 2015-05-21 Nitto Denko Corporation Adhesive, and transparent substrate using same
US20150175858A1 (en) * 2012-05-29 2015-06-25 Nitto Denko Corporation Adhesive, and transparent substrate using same
WO2021199985A1 (ja) * 2020-03-30 2021-10-07 日東電工株式会社 複層構造体

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6170288B2 (ja) * 2012-09-11 2017-07-26 富士フイルム株式会社 転写材料、静電容量型入力装置の製造方法および静電容量型入力装置、並びに、これを備えた画像表示装置
KR102147509B1 (ko) 2013-03-14 2020-08-25 코닝 인코포레이티드 연성 유리 및 고분자 복합 구조의 제조 및 절단을 위한 방법 및 장치
DE102013214422A1 (de) * 2013-07-24 2015-01-29 Schott Ag Verbundelement und dessen Verwendung
KR102355043B1 (ko) * 2014-03-28 2022-01-25 엘지디스플레이 주식회사 디스플레이 장치 및 이를 제조하는 벤딩 장치
JP2016105183A (ja) * 2016-01-07 2016-06-09 大日本印刷株式会社 薄膜素子用基板、薄膜素子、有機エレクトロルミネッセンス表示装置、および電子ペーパー
JP6170224B1 (ja) * 2016-05-10 2017-07-26 住友化学株式会社 透明樹脂フィルムの製造方法、及び透明樹脂フィルムを有する積層体の製造方法
JP7268445B2 (ja) * 2019-03-29 2023-05-08 大日本印刷株式会社 フロストガラス調有機ガラスの製造方法。
EP4000750A4 (en) * 2019-07-19 2023-07-19 Tokuyama Corporation COATING PROCESS

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329715A (ja) 1998-04-02 1999-11-30 Cambridge Display Technol Ltd 有機デバイスのための可撓性基体、有機デバイスおよびその製造方法
JP2004273594A (ja) * 2003-03-06 2004-09-30 Nippon Zeon Co Ltd 電気絶縁層の形成方法及びその利用
JP2007010834A (ja) 2005-06-29 2007-01-18 Sumitomo Chemical Co Ltd ディスプレイ用基板及びそれを用いたディスプレイ素子
JP2008107510A (ja) 2006-10-25 2008-05-08 Nitto Denko Corp 表示素子用基板およびその製造方法
JP2009282509A (ja) * 2008-04-24 2009-12-03 Nitto Denko Corp 表示素子用基板およびその製造方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60157856A (ja) * 1984-01-27 1985-08-19 旭硝子株式会社 積層安全ガラス
JPS61252161A (ja) 1985-05-01 1986-11-10 三菱化学株式会社 溝付樹脂基板の製造方法
US5629052A (en) 1995-02-15 1997-05-13 The Procter & Gamble Company Method of applying a curable resin to a substrate for use in papermaking
JPH10230578A (ja) * 1997-02-18 1998-09-02 Nippon Denshi Seiki Kk 積層物の製作方法
JPH10279329A (ja) 1997-03-31 1998-10-20 Nissan Motor Co Ltd 赤外線遮蔽ガラス
DE69933570T2 (de) 1998-05-14 2007-06-28 E.I. Dupont De Nemours And Co., Wilmington Verbundglasscheibe für sicherheitsfenstersystem
WO2000042635A1 (de) 1999-01-11 2000-07-20 Schott Glas Flächenstrahler
KR20010109278A (ko) 1999-01-11 2001-12-08 추후기재 폴리머 코딩된 유리 박막 기판
EP1048628A1 (de) 1999-04-30 2000-11-02 Schott Glas Polymerbeschichtete Dünnglasfoliensubstrate
GB0031603D0 (en) * 2000-12-23 2001-02-07 Pilkington Plc Automotive glazing
CN1543399B (zh) 2001-03-26 2011-02-23 艾考斯公司 含碳纳米管的涂层
EP1486935A4 (en) * 2002-02-25 2007-04-04 Matsushita Electric Ind Co Ltd SHOCK RESISTANT FILM FOR FLAT SCREENS AND FLAT SCREEN THEREFOR
JP4409301B2 (ja) * 2003-01-31 2010-02-03 旭硝子株式会社 低反射ガラス板の製造方法
TW200613370A (en) 2004-06-22 2006-05-01 Nitto Denko Corp Heat-resistant resin, method for manufacturing the same and dust-removing substrate of substrate processing equipment by using the resin thereof
CN1946776B (zh) 2004-11-15 2011-08-03 Lg化学株式会社 基于聚降冰片烯的双轴光学膜及其制备方法,具有该膜的复合光学补偿偏振片及其制备方法,以及包括该膜和/或该偏振片的液晶显示面板
WO2006091875A2 (en) 2005-02-24 2006-08-31 University Of Virginia Patent Foundation Amorphous steel composites with enhanced strengths, elastic properties and ductilities
US20070057400A1 (en) 2005-09-09 2007-03-15 General Electric Company Polycarbonate useful in making solvent cast films
JP4565507B2 (ja) 2006-01-30 2010-10-20 日東電工株式会社 位相差板の製造方法、位相差板、位相差板付偏光板、液晶パネル、および液晶表示装置
CN101157524B (zh) * 2006-09-29 2012-07-25 横滨橡胶株式会社 玻璃与热熔组合物的复合体及其制备方法
TW200920769A (en) 2007-11-15 2009-05-16 Nat Univ Tsing Hua Flexible substrate, its preparation and light emitting device containing the same
WO2009104695A1 (ja) 2008-02-22 2009-08-27 住友化学株式会社 透明導電性基板の製造方法
US20090253834A1 (en) 2008-04-08 2009-10-08 E. I. Du Pont De Nemours And Company Adhesive compositions useful in flexible circuit substrate applications and methods relating thereto
KR20110007134A (ko) 2008-04-17 2011-01-21 아사히 가라스 가부시키가이샤 유리 적층체, 지지체를 부착한 표시 장치용 패널 및 이들의 제조 방법
JP5238594B2 (ja) 2008-04-24 2013-07-17 日東電工株式会社 表示素子用基板およびその製造方法
CN102016962A (zh) * 2008-04-24 2011-04-13 日东电工株式会社 透明基板
KR101246509B1 (ko) 2008-11-07 2013-03-25 닛토덴코 가부시키가이샤 투명 기판 및 그 제조 방법
CN101579959A (zh) * 2009-07-03 2009-11-18 徐林波 一种玻塑复合板材及其制造方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329715A (ja) 1998-04-02 1999-11-30 Cambridge Display Technol Ltd 有機デバイスのための可撓性基体、有機デバイスおよびその製造方法
JP2004273594A (ja) * 2003-03-06 2004-09-30 Nippon Zeon Co Ltd 電気絶縁層の形成方法及びその利用
JP2007010834A (ja) 2005-06-29 2007-01-18 Sumitomo Chemical Co Ltd ディスプレイ用基板及びそれを用いたディスプレイ素子
JP2008107510A (ja) 2006-10-25 2008-05-08 Nitto Denko Corp 表示素子用基板およびその製造方法
JP2009282509A (ja) * 2008-04-24 2009-12-03 Nitto Denko Corp 表示素子用基板およびその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
C.A. KLIEN, J. APPL. PHYS., vol. 88, 2000, pages 5487
See also references of EP2565170A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150072125A1 (en) * 2012-04-02 2015-03-12 Nitto Denko Corporation Transparent sheet and method for manufacturing same
US20150140343A1 (en) * 2012-05-29 2015-05-21 Nitto Denko Corporation Adhesive, and transparent substrate using same
US20150175858A1 (en) * 2012-05-29 2015-06-25 Nitto Denko Corporation Adhesive, and transparent substrate using same
JP2014228615A (ja) * 2013-05-21 2014-12-08 大日本印刷株式会社 保護板用基板、電極付き表示装置用前面保護板、及び表示装置
WO2021199985A1 (ja) * 2020-03-30 2021-10-07 日東電工株式会社 複層構造体
EP4129650A4 (en) * 2020-03-30 2023-09-06 Nitto Denko Corporation MULTI-LAYER STRUCTURE

Also Published As

Publication number Publication date
US9254627B2 (en) 2016-02-09
EP2565170A1 (en) 2013-03-06
JP2011245843A (ja) 2011-12-08
KR101381087B1 (ko) 2014-04-02
US20130032277A1 (en) 2013-02-07
KR20140005376A (ko) 2014-01-14
TW201218147A (en) 2012-05-01
TW201442859A (zh) 2014-11-16
EP2565170A4 (en) 2014-06-18
KR20130024902A (ko) 2013-03-08
EP2899169A1 (en) 2015-07-29
US20150072155A1 (en) 2015-03-12
JP5615134B2 (ja) 2014-10-29
CN104589736A (zh) 2015-05-06
TWI496124B (zh) 2015-08-11
CN102869632B (zh) 2015-05-06
CN102869632A (zh) 2013-01-09

Similar Documents

Publication Publication Date Title
JP5615134B2 (ja) 透明基板の製造方法
US20200198302A1 (en) Transparent sheet and method for manufacturing same
US10221090B2 (en) Transparent substrate
JP5325005B2 (ja) 透明基板
TWI436886B (zh) Transparent substrate
EP2857474A1 (en) Adhesive, and transparent substrate using same
JP5439019B2 (ja) 表示素子用基板およびその製造方法
JP5567314B2 (ja) 透明基板およびその製造方法
JP5883085B2 (ja) 透明基板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180021854.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11775108

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13640444

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2011775108

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011775108

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127028339

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE