WO2011135953A1 - 電極活物質およびそれを備えた非水電解質二次電池 - Google Patents

電極活物質およびそれを備えた非水電解質二次電池 Download PDF

Info

Publication number
WO2011135953A1
WO2011135953A1 PCT/JP2011/057276 JP2011057276W WO2011135953A1 WO 2011135953 A1 WO2011135953 A1 WO 2011135953A1 JP 2011057276 W JP2011057276 W JP 2011057276W WO 2011135953 A1 WO2011135953 A1 WO 2011135953A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
electrode active
secondary battery
electrolyte secondary
transition metal
Prior art date
Application number
PCT/JP2011/057276
Other languages
English (en)
French (fr)
Inventor
弥生 勝
Original Assignee
株式会社 村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 村田製作所 filed Critical 株式会社 村田製作所
Publication of WO2011135953A1 publication Critical patent/WO2011135953A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates generally to an electrode active material and a non-aqueous electrolyte secondary battery including the same, and more specifically, a hexagonal system that contains at least nickel as a transition metal and belongs to the space group R-3m
  • the present invention relates to an electrode active material composed of a lithium transition metal composite oxide having a layered rock salt type crystal structure and a non-aqueous electrolyte secondary battery including the same.
  • secondary batteries with high energy density and long life are expected as cordless power sources for these electronic devices.
  • secondary batteries have been developed that use an alkali metal ion such as lithium ion as a charge carrier and use an electrochemical reaction associated with charge exchange.
  • lithium ion secondary batteries having a large energy density are widely used.
  • a cobalt compound such as lithium cobaltate is used as an electrode material (mainly as a positive electrode active material).
  • cobalt compounds have safety problems and are expensive.
  • a nickel compound such as lithium nickelate having the same structure as the cobalt compound is safer and less expensive than the cobalt compound, but is difficult to synthesize and requires attention during storage.
  • nickel compounds have problems such as unstable crystal structure.
  • Patent Document 1 describes a general formula Li [Li x Co y A 1-xy ] O 2 (where A is [ M n z Ni 1-z ] X represents a number in the range of about 0.00 to about 0.16, y represents a number in the range of about 0.1 to about 0.30, and z represents about 0.40 to about 0.65.
  • a cathode material represented by a numerical value in the range, wherein Li x is included in the transition metal layer of the above structure has been proposed.
  • an object of the present invention is to provide an electrode active material capable of improving cycle characteristics in a high-voltage charge / discharge test of a non-aqueous electrolyte secondary battery, and a non-aqueous electrolyte secondary battery including the same. It is.
  • the present inventor has found that at least nickel as a transition metal and a hexagonal layered rock salt type crystal structure belonging to the space group R-3m
  • an electrode active material composed of a lithium transition metal composite oxide having a C / a axial ratio as the electrode material
  • the difference in c-axis length between discharging and charging is considered to increase.
  • the present inventor considered that the expansion and contraction of the lattice becomes conspicuous and the crystallinity is expected to deteriorate as the difference between the c-axis lengths during discharging and during charging increases.
  • the present inventor has found that the expansion / contraction of the lattice during charging / discharging can be suppressed by limiting the c / a axial ratio within a predetermined range. Based on this knowledge, the electrode active material according to the present invention has the following characteristics.
  • the electrode active material of the present invention comprises a lithium transition metal composite oxide containing at least nickel as a transition metal and having a hexagonal layered rock salt type crystal structure belonging to the space group R-3m, In the structure, the ratio of the c-axis lattice constant to the a-axis lattice constant (c / a-axis ratio) is 4.958 or less.
  • the lattice constant of the a axis is preferably 2.874 angstroms or more.
  • the c-axis lattice constant is preferably 14.26 angstroms or more.
  • the electrode active material of the present invention preferably further contains manganese and cobalt as transition metals.
  • the nonaqueous electrolyte secondary battery of the present invention includes an electrode containing the above electrode active material.
  • the upper limit potential is preferably 4.5 V (Li / Li + ) or more.
  • the non-aqueous electrolyte secondary battery of the present invention includes a positive electrode including the above electrode active material and a negative electrode including a lithium titanium composite oxide.
  • an electrode active material comprising a lithium transition metal composite oxide containing at least nickel as a transition metal and having a hexagonal layered rock salt crystal structure belonging to the space group R-3m, An electrode active material capable of improving cycle characteristics in a charge / discharge test under a high voltage of a water electrolyte secondary battery can be obtained.
  • the electrode active material of the present invention comprises a lithium transition metal composite oxide containing at least nickel as a transition metal and having a hexagonal layered rock salt type crystal structure belonging to the space group R-3m,
  • the ratio of the c-axis lattice constant to the a-axis lattice constant (c / a-axis ratio) is 4.958 or less.
  • the c / a axial ratio is 4.958 or less, excellent cycle characteristics are exhibited at a higher voltage in the charge / discharge test of the nonaqueous electrolyte secondary battery including the electrode containing the electrode active material.
  • the c / a axial ratio exceeds 4.958, the cycle characteristics deteriorate.
  • the nonaqueous electrolyte secondary battery including the electrode containing the electrode active material of the present invention can exhibit excellent cycle characteristics at a high voltage having an upper limit potential of 4.5 V (Li / Li + ) or higher.
  • the a-axis lattice constant is preferably 2.874 angstroms or more.
  • the lattice constant of the a axis is less than 2.874 angstroms, the stability of the crystal is low, so that the cycle characteristics are deteriorated under high voltage charge / discharge.
  • the c-axis lattice constant is preferably 14.26 angstroms or more. When the c-axis lattice constant is less than 14.26 angstroms, the stability of the crystal is low, so that the cycle characteristics deteriorate under high voltage charge / discharge.
  • the a-axis lattice constant is 2.874 angstroms or more and the c-axis lattice constant is 14.26 angstroms or more, a part of the 3b-site Li ions and the 3a-site Ni ions cause site exchange. For this reason, even if a large amount of Li ions escape due to overcharge, Ni ions present in the Li layer suppress the expansion and contraction of the lattice. Thereby, the stability of the crystal is improved, and excellent cycle characteristics can be exhibited.
  • the electrode active material of the present invention preferably contains manganese and cobalt as transition metals.
  • the method for producing an electrode active material of the present invention includes at least a mixing step of mixing a lithium-containing raw material and a transition metal-containing raw material to obtain a mixture, and a baking step of baking the mixture.
  • the mixture is preferably fired at a temperature of 800 ° C. or higher.
  • examples of the lithium-containing raw material include lithium oxides, carbonates, inorganic acid salts, organic acid salts, and chlorides. Specifically, it is preferable to use at least one selected from lithium carbonate and lithium hydroxide as the lithium-containing raw material.
  • nickel-containing raw materials include nickel oxides, carbonates, inorganic acid salts, organic acid salts, and chlorides. Specifically, it is preferable to use at least one selected from metallic nickel, nickel oxide and nickel hydroxide as the nickel-containing raw material.
  • transition metal elements other than nickel examples include manganese and cobalt.
  • manganese-containing raw materials include manganese oxides, carbonates, inorganic acid salts, organic acid salts, and chlorides. Specifically, it is preferable to use at least one selected from manganese dioxide, trimanganese tetraoxide, and manganese carbonate as the manganese-containing raw material.
  • examples of the cobalt-containing raw material include cobalt oxides, carbonates, inorganic acid salts, organic acid salts, and chlorides. Specifically, it is preferable to use at least one selected from cobalt hydroxide and cobalt tetroxide as the cobalt-containing raw material.
  • the mixing method and mixing conditions in the mixing step and the baking method and baking conditions in the baking step can be arbitrarily set in consideration of required characteristics, productivity, and the like of the nonaqueous electrolyte secondary battery.
  • the lithium-containing raw material and the transition metal-containing raw material are mixed and dispersed in a solvent such as water, and the obtained slurry is spray-dried and then fired.
  • a positive electrode is formed.
  • a positive electrode active material is mixed with a conductive agent and a binder, an organic solvent or water is added to form a positive electrode active material slurry, and this positive electrode active material slurry is applied onto the electrode current collector by an arbitrary coating method, A positive electrode is formed by drying.
  • a negative electrode is formed.
  • a negative electrode active material is mixed with a conductive agent and a binder, an organic solvent or water is added to form a negative electrode active material slurry, and this negative electrode active material slurry is applied onto the electrode current collector by an arbitrary coating method, A negative electrode is formed by drying.
  • the negative electrode active material is not particularly limited, and lithium titanium composite oxide (for example, lithium titanate (Li 4 Ti 5 O 12 ) having a spinel structure) can be used. Even when a lithium-titanium composite oxide having a high reference potential is used as the negative electrode active material, the above-described effects of the present invention can be obtained.
  • lithium titanium composite oxide for example, lithium titanate (Li 4 Ti 5 O 12 ) having a spinel structure
  • the binder is not particularly limited, and various resins such as polyethylene, polyvinylidene fluoride, polyhexafluoropropylene, polytetrafluoroethylene, polyethylene oxide, carboxymethylcellulose and the like can be used.
  • the organic solvent is not particularly limited, and examples thereof include basic solvents such as dimethyl sulfoxide, dimethylformamide, N-methylpyrrolidone, propylene carbonate, diethyl carbonate, dimethyl carbonate, and ⁇ -butyrolactone, acetonitrile, tetrahydrofuran, Nonaqueous solvents such as nitrobenzene and acetone, and protic solvents such as methanol and ethanol can be used.
  • the kind of organic solvent, the compounding ratio of the organic compound and the organic solvent, the kind of additive and the addition amount thereof can be arbitrarily set in consideration of the required characteristics and productivity of the secondary battery.
  • the positive electrode 14 obtained above is impregnated into the electrolyte, so that the positive electrode 14 is infiltrated with the electrolyte, and then the positive electrode current collector at the center of the bottom of the case 11 that also serves as the positive electrode terminal.
  • the positive electrode 14 is placed on the top.
  • the separator 16 impregnated with the electrolyte is laminated on the positive electrode 14, the negative electrode 15 and the current collector plate 17 are sequentially laminated, and the electrolyte is injected into the internal space.
  • a metal spring member 18 is placed on the current collector plate 17, and a gasket 13 is arranged on the periphery, and a sealing plate 12 that also serves as a negative electrode terminal is fixed to the case 11 with a caulking machine or the like to seal the exterior.
  • a sealing plate 12 that also serves as a negative electrode terminal is fixed to the case 11 with a caulking machine or the like to seal the exterior.
  • the electrolyte is interposed between the positive electrode 14 and the negative electrode 15 which is a counter electrode, and transports charge carriers between the two electrodes.
  • an electrolyte one having an ionic conductivity of 10 ⁇ 5 to 10 ⁇ 1 S / cm at room temperature can be used.
  • an electrolytic solution in which an electrolyte salt is dissolved in an organic solvent can be used.
  • the electrolyte salt include LiPF 6 , LiClO 4 , LiBF 4 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, Li (C 2 F 5 SO 2 ) 2 N, Li (CF 3 SO 2 ) 3 C, Li (C 2 F 5 SO 2 ) 3 C, or the like can be used.
  • organic solvent ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, ⁇ -butyrolactone, tetrahydrofuran, dioxolane, sulfolane, dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, etc. are used. be able to.
  • a solid electrolyte for electrolyte.
  • the polymer compound used for the solid electrolyte include polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-ethylene copolymer, vinylidene fluoride-monofluoroethylene copolymer, and fluoride.
  • Vinylidene fluoride polymers such as vinylidene-trifluoroethylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene terpolymer, and acrylonitrile-methyl methacrylate copolymer Polymer, acrylonitrile-methyl acrylate copolymer, acrylonitrile-ethyl methacrylate copolymer, acrylonitrile-ethyl acrylate copolymer, acrylonitrile-methacrylic acid copolymer, acrylonitrile-a Acrylic nitrile polymers such as lauric acid copolymer and acrylonitrile-vinyl acetate copolymer, polyethylene oxide, ethylene oxide-propylene oxide copolymer, and polymers of these acrylates and methacrylates.
  • electrolyte solution contains electrolyte solution and made it gelatinous as electrolyte.
  • electrolyte salt may be used as an electrolyte as it is.
  • an inorganic solid electrolyte such as sulfide glass represented by Li 2 S—P 2 S 5 system, Li 2 S—B 2 S 3 system, and Li 2 S—SiS 2 system may be used.
  • the coin-type secondary battery has been described, but it is needless to say that the battery shape is not particularly limited, and can be applied to a cylindrical type, a square type, a sheet type, and the like. Also, the exterior method is not particularly limited, and a metal case, mold resin, aluminum laminate film, or the like may be used.
  • the electrode active material of the present invention is used for the positive electrode, but it can also be applied to the negative electrode.
  • the electrode active material is used for a non-aqueous electrolyte secondary battery has been described, but it can also be used for a primary battery.
  • Example shown below is an example and this invention is not limited to the following Example.
  • a lithium transition metal composite oxide which is applied to the electrode active material of the present invention, contains at least nickel as a transition metal and has a hexagonal layered rock salt type crystal structure belonging to the space group R-3m.
  • the above lithium transition metal composite oxide was synthesized by the following method.
  • the obtained dry powder was fired at a temperature of 950 ° C. for 20 hours in an oxygen gas atmosphere to synthesize the lithium transition metal composite oxide.
  • the powder thus obtained was subjected to powder X-ray diffraction measurement using an X-ray diffractometer (RINT2500) under the conditions of 50 kV, 250 mA, a scanning speed of 10 ° / min, and a 0.02 ° step.
  • a coin-type nonaqueous electrolyte secondary battery 1 includes a case 11 that also serves as a positive electrode terminal, a sealing plate 12 that also serves as a negative electrode terminal, and a gasket 13 that insulates the case 11 and the sealing plate 12.
  • the lithium transition metal composite oxide prepared above, acetylene black, and polyvinylidene fluoride were mixed at a weight ratio of 85: 7.5: 7.5 to prepare a positive electrode mixture.
  • This positive electrode mixture was dispersed in a solvent (N-methyl-2-pyrrolidone) to prepare a positive electrode slurry.
  • the positive electrode slurry was applied on the surface of an aluminum foil having a thickness of 20 ⁇ m at a coating amount of 10 mg / cm 2 , dried at a temperature of 140 ° C., and then pressed at a pressure of 1 ton / cm 2 to obtain a positive electrode sheet.
  • the positive electrode 14 was produced by punching this positive electrode sheet into a disc having a diameter of 12 mm.
  • the negative electrode 15 As the negative electrode 15 as a counter electrode, a disk made of a metal lithium foil having a diameter of 15.5 mm was used. A current collector plate 17 was bonded to the negative electrode 15. As the separator 16, a disk-like polyethylene porous film having a diameter of 16 mm was used.
  • the electrolytic solution an organic electrolytic solution in which 1 mol of lithium hexafluorophosphate (LiPF 6 ) was dissolved per liter of the solvent in a solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 3: 7 was used. In this way, a coin-type non-aqueous electrolyte secondary battery 1 having a diameter of 20 mm and a thickness of 3.2 mm was produced.
  • the charge / discharge characteristics were evaluated using the coin-type non-aqueous electrolyte secondary battery 1 produced as described above. After charging and discharging for 3 cycles in a constant temperature bath of 25 ° C. with a current value of 200 ⁇ A and a voltage range of 3.0 to 4.3 V (first time), a current value of 200 ⁇ A and a current value of 3.0 to 4.9 V The battery was charged and discharged for 10 cycles in the voltage range. Thereafter, the battery was charged and discharged for 3 cycles at a current value of 200 ⁇ A and a voltage range of 3.0 to 4.3 V (second time).
  • a coin-type nonaqueous electrolyte secondary battery 1 was produced in the same manner as in Example 1.
  • the charge / discharge characteristics were evaluated in the same manner as in Example 1 using the produced coin-type non-aqueous electrolyte secondary battery 1.
  • a coin-type nonaqueous electrolyte secondary battery 1 was produced in the same manner as in Example 1.
  • the charge / discharge characteristics were evaluated in the same manner as in Example 1 using the produced coin-type non-aqueous electrolyte secondary battery 1.
  • a coin-type nonaqueous electrolyte secondary battery 1 was produced in the same manner as in Example 1.
  • the charge / discharge characteristics were evaluated in the same manner as in Example 1 using the produced coin-type non-aqueous electrolyte secondary battery 1.
  • a coin-type nonaqueous electrolyte secondary battery 1 was produced in the same manner as in Example 1.
  • the charge / discharge characteristics were evaluated in the same manner as in Example 1 using the produced coin-type non-aqueous electrolyte secondary battery 1.
  • the non-aqueous electrolyte secondary batteries of Examples 1 and 2 using the electrode active material of the present invention for the positive electrode have a higher cycle than the non-aqueous electrolyte secondary batteries of Comparative Examples 1 to 3. It can be seen that the discharge capacity maintenance rate and the recovery capacity maintenance rate are shown.
  • Example 1 Using the lithium transition metal composite oxide synthesized in Example 1, a positive electrode sheet was produced in the same manner as in Example 1.
  • a counter electrode negative electrode
  • lithium titanate Li 4 Ti 5 O 12
  • acetylene black acetylene black
  • polyvinylidene fluoride As a counter electrode (negative electrode), lithium titanate (Li 4 Ti 5 O 12 ), acetylene black, and polyvinylidene fluoride were mixed at a weight ratio of 88: 6: 6 to prepare a negative electrode mixture.
  • This negative electrode mixture was dispersed in a solvent (N-methyl-2-pyrrolidone) to prepare a negative electrode slurry.
  • the negative electrode slurry was applied on the surface of an aluminum foil having a thickness of 20 ⁇ m at a coating amount of 40 mg / cm 2 and dried at a temperature of 140 ° C., and then pressed at a pressure of 1 ton / cm 2 to form a negative electrode sheet.
  • the positive electrode sheet and the negative electrode sheet were punched into discs having a diameter of 12 mm and a diameter of 14 mm, respectively, thereby preparing the positive electrode 14 and the negative electrode 15.
  • a current collecting plate 17 was bonded to the negative electrode 15.
  • the separator 16 a disk-like polyethylene porous film having a diameter of 16 mm was used.
  • the electrolytic solution an organic electrolytic solution in which 1 mol of lithium hexafluorophosphate (LiPF 6 ) was dissolved per liter of the solvent in a solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 3: 7 was used. In this way, a coin-type non-aqueous electrolyte secondary battery 1 having a diameter of 20 mm and a thickness of 3.2 mm was produced.
  • the charge / discharge characteristics were evaluated using the coin-type non-aqueous electrolyte secondary battery 1 produced as described above.
  • the battery was charged and discharged for 10 cycles in a constant temperature bath at 25 ° C. with a current value of 200 ⁇ A and a voltage range of 1.5 to 2.8 V. Thereafter, the battery was charged and discharged for 10 cycles with a current value of 200 ⁇ A and a voltage range of 1.5 to 3.4 V (second time).
  • Table 2 shows the cycle discharge capacity retention rate at the voltage range of 1.5 to 2.8 V and the cycle discharge capacity retention rate at the voltage range of 1.5 to 3.4 V in Example 3.
  • the electrode active material of the present invention comprises a lithium transition metal composite oxide containing at least nickel as a transition metal and having a hexagonal layered rock salt type crystal structure belonging to the space group R-3m. Since it is an electrode active material capable of improving cycle characteristics in a charge / discharge test at a high voltage of a secondary battery, it is useful for the production of a non-aqueous electrolyte secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 非水電解質二次電池の高電圧での充放電試験におけるサイクル特性を向上させることが可能な電極活物質およびそれを備えた非水電解質二次電池を提供する。電極活物質は、遷移金属として少なくともニッケルを含み、かつ、空間群R-3mに帰属する六方晶系の層状岩塩型の結晶構造を有するリチウム遷移金属複合酸化物からなり、上記の結晶構造においてa軸の格子定数に対するc軸の格子定数の比率(c/a軸比)が4.958以下である。

Description

電極活物質およびそれを備えた非水電解質二次電池
 本発明は、一般的には電極活物質およびそれを備えた非水電解質二次電池に関し、特定的には、遷移金属として少なくともニッケルを含み、かつ、空間群R-3mに帰属する六方晶系の層状岩塩型の結晶構造を有するリチウム遷移金属複合酸化物からなる電極活物質およびそれを備えた非水電解質二次電池に関する。
 携帯電話、ノートパソコン、デジタルカメラ等の携帯用電子機器の市場拡大に伴い、これらの電子機器のコードレス電源としてエネルギー密度が大きく長寿命の二次電池が待望されている。そして、このような要求に応えるべく、リチウムイオン等のアルカリ金属イオンを荷電担体とし、その電荷授受に伴う電気化学反応を利用した二次電池が開発されている。その中でも、エネルギー密度の大きなリチウムイオン二次電池は広く普及している。
 上記のリチウムイオン二次電池では、電極材料として(主に正極活物質として)コバルト酸リチウムなどのコバルト化合物が用いられている。しかし、コバルト化合物は、安全性に問題があり、高コストである。一方、コバルト化合物と同じ構造を有するニッケル酸リチウムなどのニッケル化合物は、コバルト化合物よりも安全であり、低コストであるが、合成が困難であるとともに、保管時に注意を払う必要がある。また、ニッケル化合物は、その結晶構造が不安定であるなどの問題がある。
 このような問題を解決するため、コバルト化合物と同じ構造を有し、遷移金属として少なくともニッケルを含むリチウム遷移金属複合酸化物を電極材料に用いるための研究が近年盛んに行われている。
 一方、電子機器の小型化と軽量化が急速に進む中で、非水電解質二次電池におけるエネルギー密度をさらに向上させることが求められている。このため、より高い作動電圧を示す電極材料が望まれている。
 そこで、たとえば、特開2002-110167号公報(特許文献1)には、一般式、Li[LixCoy1-x-y]O2(式中、Aは[MnzNi1-z]を表し、xは約0.00~約0.16の範囲の数値を表し、yは約0.1~約0.30の範囲の数値を表し、zは約0.40~約0.65の範囲の数値を表し、Lixは上記構造体の遷移金属層に含まれる。)で表されるカソード材料が提案されている。
特開2002-110167号公報
 しかしながら、上記カソード材料の結晶構造では、a軸の格子定数に対するc軸の格子定数の比率(c/a軸比)が大きいため、より高い作動電圧での充放電サイクルにおいて、材料の結晶構造が変化しやすく、サイクル特性が悪いという問題がある。
 そこで、この発明の目的は、非水電解質二次電池の高電圧での充放電試験におけるサイクル特性を向上させることが可能な電極活物質およびそれを備えた非水電解質二次電池を提供することである。
 本発明者は、従来技術の問題点を解決するために鋭意研究を重ねた結果、遷移金属として少なくともニッケルを含み、かつ、空間群R-3mに帰属する六方晶系の層状岩塩型の結晶構造を有するリチウム遷移金属複合酸化物からなる電極活物質を電極材料に用いると、c/a軸比が大きい場合、放電時と充電時におけるc軸長の差が大きくなることが考えられることに着目した。そして、本発明者は、放電時と充電時におけるc軸長の差が大きくなることにより、格子の膨張収縮が顕著になり、結晶性が悪くなることが予想されると考えた。このような検討に基づいて、本発明者は、c/a軸比を所定の範囲内に限定することにより、充放電時における格子の膨張収縮を抑えることができることを見出した。この知見に基づいて、本発明に従った電極活物質は、次のような特徴を備えている。
 本発明の電極活物質は、遷移金属として少なくともニッケルを含み、かつ、空間群R-3mに帰属する六方晶系の層状岩塩型の結晶構造を有するリチウム遷移金属複合酸化物からなり、上記の結晶構造においてa軸の格子定数に対するc軸の格子定数の比率(c/a軸比)が4.958以下である。
 本発明の電極活物質において、a軸の格子定数が2.874オングストローム以上であることが好ましい。
 また、本発明の電極活物質において、c軸の格子定数が14.26オングストローム以上であることが好ましい。
 さらに、本発明の電極活物質は、遷移金属としてさらにマンガンおよびコバルトを含むことが好ましい。
 さらにまた、本発明の電極活物質において、リチウム遷移金属複合酸化物が、一般式Li1+α[NixMnyCoz]O2(式中、αはα≧0、x、yおよびzはx+y+z=1、0<x<0.5、0≦z≦0.15を満たす)で表わされることが好ましい。
 本発明の非水電解質二次電池は、上記の電極活物質を含む電極を備えたものである。
 本発明の非水電解質二次電池において、上限電位が4.5V(Li/Li+)以上であることが好ましい。
 本発明の非水電解質二次電池は、上記の電極活物質を含む正極と、リチウムチタン複合酸化物を含む負極とを備えたものである。
 本発明によれば、遷移金属として少なくともニッケルを含み、かつ、空間群R-3mに帰属する六方晶系の層状岩塩型の結晶構造を有するリチウム遷移金属複合酸化物からなる電極活物質において、非水電解質二次電池の高電圧下での充放電試験におけるサイクル特性を向上させることが可能な電極活物質を得ることができる。
本発明の一つの実施の形態としてのコイン型非水電解質二次電池、ならびに本発明の実施例および比較例で作製されたコイン型非水電解質二次電池を示す図である。
 本発明の電極活物質は、遷移金属として少なくともニッケルを含み、かつ、空間群R-3mに帰属する六方晶系の層状岩塩型の結晶構造を有するリチウム遷移金属複合酸化物からなり、上記の結晶構造においてa軸の格子定数に対するc軸の格子定数の比率(c/a軸比)が4.958以下である。c/a軸比が4.958以下であれば、上記の電極活物質を含む電極を備えた非水電解質二次電池の充放電試験において、より高い電圧で優れたサイクル特性を示す。c/a軸比が4.958を超えると、サイクル特性が悪くなる。本発明の電極活物質を含む電極を備えた非水電解質二次電池では、上限電位が4.5V(Li/Li+)以上である高い電圧で優れたサイクル特性を示すことができる。
 なお、本発明の電極活物質において、a軸の格子定数が2.874オングストローム以上であることが好ましい。a軸の格子定数が2.874オングストローム未満の場合、結晶の安定性が低いため、高電圧充放電下においてサイクル特性が悪くなる。また、本発明の電極活物質において、c軸の格子定数が14.26オングストローム以上であることが好ましい。c軸の格子定数が14.26オングストローム未満の場合、結晶の安定性が低いため、高電圧充放電下においてサイクル特性が悪くなる。a軸の格子定数が2.874オングストローム以上、c軸の格子定数が14.26オングストローム以上の場合、3bサイトのLiイオンと3aサイトのNiイオンの一部がサイト交換を起こす。このため、過充電によってLiイオンが大量に抜けても、Li層に存在するNiイオンが格子の膨張収縮を抑制する。これにより、結晶の安定性が良くなり、優れたサイクル特性を示すことができる。
 さらに、本発明の電極活物質は、遷移金属としてマンガンおよびコバルトを含むことが好ましい。
 さらにまた、本発明の電極活物質において、リチウム遷移金属複合酸化物が、一般式Li1+α[NixMnyCoz]O2(式中、αはα≧0、x、yおよびzはx+y+z=1、0<x<0.5、0≦z≦0.15を満たす)で表わされることが好ましい。この場合、xが0.5よりも小さいので、結晶構造の安定性が良好な電極活物質を得ることができる。
 本発明の電極活物質の製造方法は、少なくとも、リチウム含有原料と遷移金属含有原料とを混合して混合物を得る混合工程と、上記の混合物を焼成する焼成工程とを備える。上記の焼成工程において、混合物を800℃以上の温度で焼成することが好ましい。焼成温度を800℃以上にすることによって、焼成時に生成する異相を低減することができるので、本発明の電極活物質を含む電極を備えた非水電解質二次電池の充放電容量を向上させることができる。
 本発明の一実施の形態として、上記のリチウム含有原料としては、リチウムの酸化物、炭酸塩、無機酸塩、有機酸塩、塩化物などが挙げられる。具体的には、リチウム含有原料としては、炭酸リチウムおよび水酸化リチウムから選ばれた少なくとも一種を使用することが好ましい。
 また、上記の遷移金属含有原料のうち、ニッケル含有原料としては、ニッケルの酸化物、炭酸塩、無機酸塩、有機酸塩、塩化物などが挙げられる。具体的には、ニッケル含有原料としては、金属ニッケル、酸化ニッケルおよび水酸化ニッケルから選ばれた少なくとも一種を使用することが好ましい。
 ニッケル以外の他の遷移金属元素の例として、マンガン、コバルトなどが挙げられる。
 マンガン含有原料としては、マンガンの酸化物、炭酸塩、無機酸塩、有機酸塩、塩化物などが挙げられる。具体的には、マンガン含有原料としては、二酸化マンガン、四三酸化マンガンおよび炭酸マンガンから選ばれた少なくとも一種を使用することが好ましい。
 また、コバルト含有原料としては、コバルトの酸化物、炭酸塩、無機酸塩、有機酸塩、塩化物などが挙げられる。具体的には、コバルト含有原料としては、水酸化コバルトおよび四三酸化コバルトから選ばれた少なくとも一種を使用することが好ましい。
 上記の混合工程における混合方法と混合条件、および、上記の焼成工程における焼成方法と焼成条件は、非水電解質二次電池の要求特性、生産性等を考慮して任意に設定することができる。たとえば、電極活物質を製造する際、リチウム含有原料と遷移金属含有原料を水などの溶媒に混合して分散させることにより、得られたスラリーを噴霧乾燥した後、焼成することが好ましい。
 次に、本発明の電極活物質を正極活物質に用いた場合の非水電解質二次電池の製造方法の一例を以下で詳細に説明する。
 まず、正極を形成する。たとえば、正極活物質を導電剤および結合剤とともに混合し、有機溶剤または水を加えて正極活物質スラリーとし、この正極活物質スラリーを電極集電体上に任意の塗工方法で塗工し、乾燥することにより正極を形成する。
 次に、負極を形成する。たとえば、負極活物質を導電剤および結合剤とともに混合し、有機溶剤または水を加えて負極活物質スラリーとし、この負極活物質スラリーを電極集電体上に任意の塗工方法で塗工し、乾燥することにより負極を形成する。
 本発明において、負極活物質は特に限定されるものではないが、リチウムチタン複合酸化物(たとえば、スピネル型構造のチタン酸リチウム(Li4Ti512))などを使用することができる。基準電位の高いリチウムチタン複合酸化物を負極活物質に用いても、上記の本発明の効果を得ることができる。
 本発明において結合剤は特に限定されるものではなく、ポリエチレン、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレン、ポリテトラフルオロエチレン、ポリエチレンオキサイド、カルボキシメチルセルロース等の各種樹脂を使用することができる。
 また、有機溶剤についても、特に限定されるものではなく、たとえば、ジメチルスルホキシド、ジメチルホルムアミド、N-メチルピロリドン、プロピレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、γ-ブチロラクトン等の塩基性溶媒、アセトニトリル、テトラヒドロフラン、ニトロベンゼン、アセトン等の非水溶媒、メタノール、エタノール等のプロトン性溶媒等を使用することができる。また、有機溶剤の種類、有機化合物と有機溶剤との配合比、添加剤の種類とその添加量等は、二次電池の要求特性や生産性等を考慮し、任意に設定することができる。
 次いで、図1に示すように、上記で得られた正極14を電解質に含浸させることにより、この正極14に電解質を染み込ませた後、正極端子を兼ねたケース11の底部中央の正極集電体上に正極14を載置する。その後、電解質を含浸させたセパレータ16を正極14上に積層し、さらに負極15と集電板17を順次積層し、内部空間に電解質を注入する。そして、集電板17上に金属製のばね部材18を載置すると共に、ガスケット13を周縁に配し、かしめ機等で負極端子を兼ねた封口板12をケース11に固着して外装封止することによってコイン型非水電解質二次電池1が作製される。
 なお、電解質は、正極14と対向電極である負極15との間に介在して両電極間の荷電担体輸送を行う。このような電解質としては、室温で10-5~10-1S/cmのイオン伝導度を有するものを使用することができる。たとえば、電解質塩を有機溶剤に溶解させた電解液を使用することができる。ここで、電解質塩としては、たとえば、LiPF6、LiClO4、LiBF4、LiCF3SO3、Li(CF3SO22N、Li(C25SO22N、Li(CF3SO23C、Li(C25SO23C等を使用することができる。
 上記の有機溶剤としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ‐ブチロラクトン、テトラヒドロフラン、ジオキソラン、スルホラン、ジメチルホルムアミド、ジメチルアセトアミド、N-メチル-2-ピロリドン等を使用することができる。
 また、電解質には、固体電解質を使用してもよい。固体電解質に用いられる高分子化合物としては、たとえば、ポリフッ化ビニリデン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-エチレン共重合体、フッ化ビニリデン-モノフルオロエチレン共重合体、フッ化ビニリデン-トリフルオロエチレン共重合体、フッ化ビニリデン-テトラフルオロエチレン共重合体、フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン三元共重合体等のフッ化ビニリデン系重合体、アクリロニトリル-メチルメタクリレート共重合体、アクリロニトリル-メチルアクリレート共重合体、アクリロニトリル-エチルメタクリレート共重合体、アクリロニトリル-エチルアクリレート共重合体、アクリロニトリル-メタクリル酸共重合体、アクリロニトリル-アクリル酸共重合体、アクリロニトリル-ビニルアセテート共重合体等のアクリルニトリル系重合体、さらにはポリエチレンオキサイド、エチレンオキサイド-プロピレンオキサイド共重合体、及びこれらのアクリレート体やメタクリレート体の重合体等を挙げることができる。また、これらの高分子化合物に電解液を含ませてゲル状にしたものを電解質として使用してもよい。あるいは電解質塩を含有させた高分子化合物のみをそのまま電解質に使用してもよい。なお、電解質として、Li2S-P25系、Li2S-B23系、Li2S-SiS2系に代表される硫化物ガラスなどの無機固体電解質を用いてもよい。
 上記の実施の形態では、コイン型二次電池について説明したが、電池形状は特に限定されるものでないのはいうまでもなく、円筒型、角型、シート型等にも適用できる。また、外装方法も特に限定されず、金属ケースや、モールド樹脂、アルミニウムラミネートフィルム等を使用してもよい。
 また、上記の実施の形態では、本発明の電極活物質を正極に使用したが、負極にも適用可能である。
 さらに、上記の実施の形態では、電極活物質を非水電解質二次電池に使用した場合について述べたが、一次電池にも使用することが可能である。
 次に、本発明の実施例を具体的に説明する。なお、以下に示す実施例は一例であり、本発明は下記の実施例に限定されるものではない。
 以下、本発明の電極活物質に適用される、遷移金属として少なくともニッケルを含み、かつ、空間群R-3mに帰属する六方晶系の層状岩塩型の結晶構造を有するリチウム遷移金属複合酸化物の一例として、一般式Li1+α[NixMnyCoz]O2(式中、αはα≧0、x、yおよびzはx+y+z=1、0<x<0.5、0≦z≦0.15を満たす)で表わされるリチウム遷移金属複合酸化物を作製し、それを用いたコイン型非水電解質二次電池の実施例1~3と比較例1~3について説明する。
 (実施例1)
 上記のリチウム遷移金属複合酸化物の合成を以下の方法で行った。
 ニッケル(Ni)含有原料として平均粒径が0.5μmのニッケル金属粉、マンガン含有原料として四三酸化マンガン(Mn34)、コバルト含有原料として四三酸化コバルト(Co34)、リチウム含有原料として炭酸リチウム(Li2CO3)を準備した。これらの原料を、モル比でLi/Me=1.15(Me=Ni+Mn+Co)、Ni:Mn:Co=0.45:0.45:0.10となるように秤量した。秤量した原料を、溶媒に水を用いてボールミルにより混合してスラリーを作製した。得られたスラリーを噴霧乾燥し、乾燥粉を得た。得られた乾燥粉を、酸素ガス雰囲気中で950℃の温度にて20時間焼成することにより、上記のリチウム遷移金属複合酸化物を合成した。このようにして得られた焼成粉末について、X線回折装置(RINT2500)を用いて、50kV、250mA、走査スピード10°/min、0.02°ステップの条件で粉末X線回折測定を行った。
 得られたリチウム遷移金属複合酸化物を正極活物質として用いて、図1に示すようなコイン型非水電解質二次電池を作製した。
 図1に示すように、コイン型非水電解質二次電池1は、正極端子を兼ねたケース11と、負極端子を兼ねた封口板12と、ケース11と封口板12とを絶縁するガスケット13と、正極14と、負極15と、正極14と負極15との間に介在したセパレータ16と、負極15の上に配置された集電板17と、集電板17と封口板12との間に配置されたばね部材18とから構成され、ケース11の内部には電解液が充填されている。
 具体的には、上記で作製されたリチウム遷移金属複合酸化物とアセチレンブラックとポリフッ化ビニリデンとを85:7.5:7.5の重量比率で混合して正極合材を作製した。この正極合材を溶媒(N-メチル-2-ピロリドン)中に分散させて正極スラリーを作製した。この正極スラリーを厚みが20μmのアルミニウム箔の表面上に10mg/cm2の塗布量で塗布して140℃の温度で乾燥させた後、1トン/cm2の圧力でプレスすることにより正極シートを作製した。この正極シートを直径12mmの円板に打ち抜くことにより、正極14を作製した。対極としての負極15には、直径が15.5mmの金属リチウム箔からなる円板を用いた。この負極15に集電板17を張り合わせた。セパレータ16には、直径が16mmの円板状のポリエチレン多孔膜を用いた。電解液としては、エチレンカーボネートとジエチルカーボネートを体積比3:7で混合した溶媒に、溶媒1リットル当たり1モルの六フッ化リン酸リチウム(LiPF6)を溶解した有機電解液を用いた。このようにして、直径が20mm、厚みが3.2mmのコイン型非水電解質二次電池1を作製した。
 以上のようにして作製されたコイン型非水電解質二次電池1を用いて充放電特性を評価した。25℃の恒温槽内にて、200μAの電流値、3.0~4.3Vの電圧範囲(1回目)で3サイクル充放電させた後、200μAの電流値、3.0~4.9Vの電圧範囲で10サイクル充放電させた。その後、200μAの電流値、3.0~4.3Vの電圧範囲(2回目)で3サイクル充放電させた。
 (実施例2)
 実施例1と同様の方法でリチウム遷移金属複合酸化物を作製した。ただし、モル比でLi/Me=1.15(Me:Ni+Mn+Co)、Ni:Mn:Co=0.44:0.46:0.10となるように原料を秤量した。
 得られたリチウム遷移金属複合酸化物を正極活物質として用いて、実施例1と同様の方法でコイン型非水電解質二次電池1を作製した。作製されたコイン型非水電解質二次電池1を用いて実施例1と同様の方法で充放電特性を評価した。
 (比較例1)
 実施例1と同様の方法でリチウム遷移金属複合酸化物を作製した。ただし、モル比でLi/Me=1.15(Me:Ni+Mn+Co)、Ni:Mn:Co=0.40:0.40:0.20となるように原料を秤量した。
 得られたリチウム遷移金属複合酸化物を正極活物質として用いて、実施例1と同様の方法でコイン型非水電解質二次電池1を作製した。作製されたコイン型非水電解質二次電池1を用いて実施例1と同様の方法で充放電特性を評価した。
 (比較例2)
 実施例1と同様の方法でリチウム遷移金属複合酸化物を作製した。ただし、モル比でLi/Me=1.15(Me:Ni+Mn+Co)、Ni:Mn:Co=0.35:0.35:0.30となるように原料を秤量した。
 得られたリチウム遷移金属複合酸化物を正極活物質として用いて、実施例1と同様の方法でコイン型非水電解質二次電池1を作製した。作製されたコイン型非水電解質二次電池1を用いて実施例1と同様の方法で充放電特性を評価した。
 (比較例3)
 実施例1と同様の方法でリチウム遷移金属複合酸化物を作製した。ただし、モル比でLi/Me=1.15(Me:Ni+Mn+Co)、Ni:Mn:Co=0.45:0.35:0.20となるように原料を秤量した。
 得られたリチウム遷移金属複合酸化物を正極活物質として用いて、実施例1と同様の方法でコイン型非水電解質二次電池1を作製した。作製されたコイン型非水電解質二次電池1を用いて実施例1と同様の方法で充放電特性を評価した。
 上記の実施例1~2、比較例1~3で作製されたリチウム遷移金属複合酸化物の粉末X線回折測定の結果から求めたc/a軸比、a軸長(Å:オングストローム)、および、c軸長(Å:オングストローム)と、仕込み組成のx、y、z値(Li1+α[NixMnyCoz]O2)と、電池特性の評価結果を表1に示す。
 なお、表1に示す電池特性の評価結果において「サイクル放電容量維持率」と「回復容量維持率」を以下の式で算出した。
 (サイクル放電容量維持率)=(電圧範囲3.0~4.9V時の10サイクル目の放電容量)/(電圧範囲3.0~4.9V時の1サイクル目の放電容量)×100
 (回復容量維持率)=(電圧範囲3.0~4.3V時(2回目)における1サイクル目の放電容量)/(電圧範囲3.0~4.3V時(1回目)における3サイクル目の放電容量)×100
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果から、本発明の電極活物質を正極に用いた実施例1~2の非水電解質二次電池は、比較例1~3の非水電解質二次電池に比べて、高いサイクル放電容量維持率と回復容量維持率を示すことがわかる。
 (実施例3)
 実施例1にて合成したリチウム遷移金属複合酸化物を用いて、実施例1と同様の方法で正極シートを作製した。
 対極(負極)として、チタン酸リチウム(Li4Ti512)とアセチレンブラックとポリフッ化ビニリデンとを88:6:6の重量比率で混合して負極合材を作製した。この負極合材を溶媒(N-メチル-2-ピロリドン)中に分散させて負極スラリーを作製した。この負極スラリーを厚みが20μmのアルミニウム箔の表面上に40mg/cm2の塗布量で塗布して140℃の温度で乾燥させた後、1トン/cm2の圧力でプレスすることにより負極シートを作製した。
 正極シートと負極シートを、それぞれ、直径12mmと直径14mmの円板に打ち抜くことにより、正極14と負極15を作製した。負極15に集電板17を張り合わせた。セパレータ16には、直径が16mmの円板状のポリエチレン多孔膜を用いた。電解液としては、エチレンカーボネートとジエチルカーボネートを体積比3:7で混合した溶媒に、溶媒1リットル当たり1モルの六フッ化リン酸リチウム(LiPF6)を溶解した有機電解液を用いた。このようにして、直径が20mm、厚みが3.2mmのコイン型非水電解質二次電池1を作製した。
 以上のようにして作製されたコイン型非水電解質二次電池1を用いて充放電特性を評価した。25℃の恒温槽内にて、200μAの電流値、1.5~2.8Vの電圧範囲で10サイクル充放電させた。その後、200μAの電流値、1.5~3.4Vの電圧範囲(2回目)で10サイクル充放電させた。
 実施例3の電圧範囲1.5~2.8V時のサイクル放電容量維持率と電圧範囲1.5~3.4V時のサイクル放電容量維持率を表2に示す。
 なお、「サイクル放電容量維持率」を以下の式で算出した。
 (サイクル放電容量維持率)=(電圧範囲1.5~2.8V時または1.5~3.4V時の10サイクル目の放電容量)/(電圧範囲1.5~2.8V時または1.5~3.4V時の1サイクル目の放電容量)×100
Figure JPOXMLDOC01-appb-T000002
 表2に示す結果から、本発明の電極活物質を正極に用いた実施例3の非水電解質二次電池では、電圧範囲1.5~3.4Vの高電圧充放電時においても、電圧範囲1.5~2.8Vの充放電時と同等のサイクル放電容量維持率が得られており、高電圧充放電においてサイクル特性に優れていることがわかる。また、本発明の電極活物質を正極に用い、基準電位の高いリチウムチタン複合酸化物を負極に用いても、本発明の効果を得ることができることがわかる。
 今回開示された実施の形態と実施例はすべての点で例示であって制限的なものではないと考慮されるべきである。本発明の範囲は以上の実施の形態と実施例ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての修正と変形を含むものであることが意図される。
 本発明の電極活物質は、遷移金属として少なくともニッケルを含み、かつ、空間群R-3mに帰属する六方晶系の層状岩塩型の結晶構造を有するリチウム遷移金属複合酸化物からなり、非水電解質二次電池の高電圧での充放電試験におけるサイクル特性を向上させることが可能な電極活物質であるので、非水電解質二次電池の製造に有用である。
 1:コイン型非水電解質二次電池、11:ケース、12:封口板、13:ガスケット、14:正極、15:負極、16:セパレータ、17:集電板、18:ばね部材。

                                                                                

Claims (8)

  1.  遷移金属として少なくともニッケルを含み、かつ、空間群R-3mに帰属する六方晶系の層状岩塩型の結晶構造を有するリチウム遷移金属複合酸化物からなる電極活物質であって、
     前記結晶構造においてa軸の格子定数に対するc軸の格子定数の比率(c/a軸比)が4.958以下である、電極活物質。
  2.  前記a軸の格子定数が2.874オングストローム以上である、請求項1に記載の電極活物質。
  3.  前記c軸の格子定数が14.26オングストローム以上である、請求項1または請求項2に記載の電極活物質。
  4.  前記遷移金属としてさらにマンガンおよびコバルトを含む、請求項1から請求項3までのいずれか1項に記載の電極活物質。
  5.  前記リチウム遷移金属複合酸化物が、一般式Li1+α[NixMnyCoz]O2(式中、αはα≧0、x、yおよびzはx+y+z=1、0<x<0.5、0≦z≦0.15を満たす)で表わされる、請求項1から請求項4までのいずれか1項に記載の電極活物質。
  6.  請求項1から請求項5までのいずれか1項に記載の電極活物質を含む電極を備えた、非水電解質二次電池。
  7.  上限電位が4.5V(Li/Li+)以上である、請求項6に記載の非水電解質二次電池。
  8.  請求項1から請求項5までのいずれか1項に記載の電極活物質を含む正極と、リチウムチタン複合酸化物を含む負極とを備えた、非水電解質二次電池。

                                                                                    
PCT/JP2011/057276 2010-04-30 2011-03-25 電極活物質およびそれを備えた非水電解質二次電池 WO2011135953A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-104969 2010-04-30
JP2010104969 2010-04-30

Publications (1)

Publication Number Publication Date
WO2011135953A1 true WO2011135953A1 (ja) 2011-11-03

Family

ID=44861274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057276 WO2011135953A1 (ja) 2010-04-30 2011-03-25 電極活物質およびそれを備えた非水電解質二次電池

Country Status (1)

Country Link
WO (1) WO2011135953A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111837265A (zh) * 2018-03-07 2020-10-27 日立金属株式会社 锂离子二次电池用正极活性物质和锂离子二次电池
KR20220035220A (ko) 2020-05-28 2022-03-21 아사히 가세이 가부시키가이샤 비수계 이차 전지 및 비수계 전해액

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002145623A (ja) * 2000-11-06 2002-05-22 Seimi Chem Co Ltd リチウム含有遷移金属複合酸化物およびその製造方法
JP2003068298A (ja) * 2001-08-24 2003-03-07 Seimi Chem Co Ltd リチウム含有遷移金属複合酸化物およびその製造方法
JP2004281158A (ja) * 2003-03-14 2004-10-07 Sanyo Electric Co Ltd 非水電解質二次電池
JP2008270201A (ja) * 2007-03-27 2008-11-06 Univ Kanagawa リチウムイオン電池用正極材料
JP2009110886A (ja) * 2007-10-31 2009-05-21 Sanyo Electric Co Ltd 非水電解質二次電池の製造方法
JP2009199793A (ja) * 2008-02-20 2009-09-03 Hitachi Maxell Ltd リチウム二次電池
JP2009245955A (ja) * 2005-02-08 2009-10-22 Mitsubishi Chemicals Corp リチウム二次電池正極材料用リチウムニッケルマンガン系複合酸化物粉体及びその製造方法、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002145623A (ja) * 2000-11-06 2002-05-22 Seimi Chem Co Ltd リチウム含有遷移金属複合酸化物およびその製造方法
JP2003068298A (ja) * 2001-08-24 2003-03-07 Seimi Chem Co Ltd リチウム含有遷移金属複合酸化物およびその製造方法
JP2004281158A (ja) * 2003-03-14 2004-10-07 Sanyo Electric Co Ltd 非水電解質二次電池
JP2009245955A (ja) * 2005-02-08 2009-10-22 Mitsubishi Chemicals Corp リチウム二次電池正極材料用リチウムニッケルマンガン系複合酸化物粉体及びその製造方法、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
JP2008270201A (ja) * 2007-03-27 2008-11-06 Univ Kanagawa リチウムイオン電池用正極材料
JP2009110886A (ja) * 2007-10-31 2009-05-21 Sanyo Electric Co Ltd 非水電解質二次電池の製造方法
JP2009199793A (ja) * 2008-02-20 2009-09-03 Hitachi Maxell Ltd リチウム二次電池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111837265A (zh) * 2018-03-07 2020-10-27 日立金属株式会社 锂离子二次电池用正极活性物质和锂离子二次电池
US11949100B2 (en) 2018-03-07 2024-04-02 Proterial, Ltd. Cathode active material used for lithium ion secondary battery and lithium ion secondary battery
KR20220035220A (ko) 2020-05-28 2022-03-21 아사히 가세이 가부시키가이샤 비수계 이차 전지 및 비수계 전해액

Similar Documents

Publication Publication Date Title
JP5565465B2 (ja) 非水電解質二次電池
JP5477472B2 (ja) 電極活物質およびそれを備えた非水電解質二次電池
JP4853608B2 (ja) リチウム二次電池
JP2000077071A (ja) 非水電解液二次電池
JP2012033400A (ja) 二次電池用正極活物質及びそれを使用した二次電池
US9337479B2 (en) Nonaqueous electrolyte secondary battery
WO2012002365A1 (ja) 電極活物質およびその製造方法、ならびにそれを備えた非水電解質二次電池
JP2013004234A (ja) 非水電解質二次電池の製造方法
JP5644083B2 (ja) リチウム二次電池用負極活物質、それを用いたリチウム二次電池及びリチウム二次電池用負極活物質の製造方法
WO2012002364A1 (ja) 電極活物質およびその製造方法、ならびにそれを備えた非水電解質二次電池
JP4530822B2 (ja) 非水電解質二次電池及びその充電方法
JP5440225B2 (ja) 非水電解質二次電池用電極活物質およびそれを用いた非水電解質二次電池
WO2011135953A1 (ja) 電極活物質およびそれを備えた非水電解質二次電池
KR101609244B1 (ko) 리튬 이차전지용 양극 활물질, 이들의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2012127919A1 (ja) 二次電池用電極活物質およびそれを備えた二次電池
JP5685817B2 (ja) 非水電解質二次電池用電極活物質およびそれを用いた非水電解質二次電池
WO2012127920A1 (ja) 二次電池用電極活物質およびその製造方法ならびにそれを備えた二次電池
JP5553110B2 (ja) 電極活物質およびその製造方法、ならびにそれを備えた非水電解質二次電池
WO2011024353A1 (ja) 電極活物質およびその製造方法、ならびにそれを備えた非水電解質二次電池
JP2012059387A (ja) 電極活物質およびその製造方法、ならびにそれを備えた非水電解質二次電池
JP5147890B2 (ja) 非水電解質二次電池及びその充電方法
WO2011162175A1 (ja) 電極活物質およびその製造方法、ならびにそれを備えた非水電解質二次電池
WO2011162176A1 (ja) 電極活物質およびその製造方法、ならびにそれを備えた非水電解質二次電池
JP2002216763A (ja) リチウムイオン二次電池用正極活物質
JP2013178916A (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11774737

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11774737

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP