WO2011135667A1 - 半導体発光素子基板の製造方法 - Google Patents

半導体発光素子基板の製造方法 Download PDF

Info

Publication number
WO2011135667A1
WO2011135667A1 PCT/JP2010/057435 JP2010057435W WO2011135667A1 WO 2011135667 A1 WO2011135667 A1 WO 2011135667A1 JP 2010057435 W JP2010057435 W JP 2010057435W WO 2011135667 A1 WO2011135667 A1 WO 2011135667A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
cooling
vacuum chamber
reflective layer
semiconductor light
Prior art date
Application number
PCT/JP2010/057435
Other languages
English (en)
French (fr)
Inventor
繁治 松本
孝彦 橘
Original Assignee
株式会社シンクロン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社シンクロン filed Critical 株式会社シンクロン
Priority to PCT/JP2010/057435 priority Critical patent/WO2011135667A1/ja
Priority to JP2010535564A priority patent/JP4684372B1/ja
Priority to CN201080002384.0A priority patent/CN102439195B/zh
Priority to KR1020117003108A priority patent/KR101087821B1/ko
Priority to TW099115220A priority patent/TW201138139A/zh
Publication of WO2011135667A1 publication Critical patent/WO2011135667A1/ja
Priority to HK12109087.1A priority patent/HK1168392A1/xx

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0816Multilayer mirrors, i.e. having two or more reflecting layers
    • G02B5/085Multilayer mirrors, i.e. having two or more reflecting layers at least one of the reflecting layers comprising metal
    • G02B5/0858Multilayer mirrors, i.e. having two or more reflecting layers at least one of the reflecting layers comprising metal the reflecting layers comprising a single metallic layer with one or more dielectric layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • C23C14/505Substrate holders for rotation of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0025Processes relating to coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector

Definitions

  • the present invention relates to a method for manufacturing a semiconductor light emitting element substrate, and more particularly, to a method for manufacturing a high performance semiconductor light emitting element substrate with reduced manufacturing time.
  • LEDs Semiconductor light-emitting elements
  • GaN-based compound semiconductors such as GaN, GaAlN, and InGaN have been widely used for visible light emitting devices, high-temperature operating electronic devices, and the like.
  • a sapphire substrate is generally used as a crystal substrate in order to grow a semiconductor film on the substrate surface. Since the sapphire substrate is insulative, an electrode cannot be provided on the surface on the back side of the sapphire substrate with respect to the substrate surface on which the light emitting layer made of a GaN-based compound is provided. An electrode is provided.
  • a buffer layer, an n-type GaN-based compound layer, a GaN-based light emitting layer, and a p-type GaN-based compound layer are sequentially stacked on a sapphire substrate, and a p-electrode is provided thereon.
  • an n-type electrode is provided by partially exposing an n-type GaN-based compound layer by etching.
  • an n-type GaN-based compound layer, a GaN-based light-emitting layer, and a p-type GaN-based compound layer are sequentially stacked on a sapphire substrate, and a p-electrode and an n-electrode are provided on the same surface as these layers, so that semiconductor light emission An element is formed.
  • Face-up mounting is a method of arranging a substrate on the device side with the surface on which the electrode is formed facing upward, and is a configuration for extracting light from the electrode side.
  • face-down mounting is a method in which an electrode is disposed on the device side with the surface on which the electrode is formed facing downward, and is a configuration in which light is extracted from the substrate side.
  • the light extraction efficiency can be improved by forming a reflective layer on the surface of the semiconductor light emitting device opposite to the surface on which the layers and electrodes are formed on the sapphire substrate.
  • a reflective layer As the material used for the reflective layer, aluminum (Al), silver (Ag), or the like having high reflectivity in the emission wavelength range (about 450 to 470 nm) of the blue LED is used. It is known that the reflection efficiency in the emission wavelength range of the blue LED is about 92% for Al and about 95% for Ag.
  • a higher reflectance can be obtained by providing a plurality of dielectric layers serving as an additional reflection layer between the sapphire substrate and the reflective layer made of the metal.
  • This dielectric layer is composed of a dielectric layer (H) made of a material having a high refractive index and a dielectric layer (L) made of a material having a low refractive index, each having an optical film of ( ⁇ ) / 4 with respect to a wavelength of 460 nm. It is formed by alternately laminating so as to be thick.
  • the structure of the semiconductor light emitting element substrate including the dielectric layers having different refractive indexes is simply expressed as the following Expression 1 or Expression 2.
  • Sapphire substrate / aL (HL) b / Al (or Ag) (Formula 1)
  • a, b, c, and d are integers.
  • the material of the high refractive index dielectric layer (H) is a low refractive index such as TiO 2 , Ta 2 O 5 , Nb 2 O 5 or the like.
  • As the material of the dielectric constant layer (L), SiO 2 or the like is used.
  • the high refractive index dielectric layer (H) and the low refractive index dielectric layer (L) are preferable because the higher the b and d, the higher the reflectance.
  • 2 ⁇ b ⁇ 4 is suitable.
  • a vacuum deposition method is generally used.
  • the vacuum evaporation method when the dielectric material is evaporated toward the substrate surface in the vacuum chamber, the evaporation method is performed by irradiating ions to the evaporation layer deposited on the substrate, that is, ion assist. Vapor deposition methods are known.
  • a relatively low energy ion beam gas ions
  • electrons are irradiated to the substrate by a neutralizer called a neutralizer.
  • the evaporation source becomes a high temperature of about 2000 ° C. when the dielectric layer is formed.
  • the ion source itself becomes high temperature, and the substrate is heated along with the ion irradiation.
  • the substrate temperature at this time depends on the material of the dielectric layer, the thickness of the deposited film, the number of layers, and the like, but the substrate temperature is heated to about 100 ° C. or higher.
  • the substrate is heated by radiant heat using an evaporation source or an ion source as a heat source, and the substrate temperature is high after the formation of the dielectric layer.
  • a reflective layer made of Al, Ag, or the like is formed on the dielectric layer, it is necessary to form the film by cooling the substrate temperature to 50 ° C. or lower in order to obtain good optical characteristics. Therefore, in manufacturing a semiconductor light emitting device substrate, in order to form a plurality of dielectric layers and a reflective layer such as Al on the back surface of the sapphire substrate, it is necessary to provide a cooling time for cooling the substrate. There was a problem that it took a long time.
  • Patent Document 2 proposes a technique in which a cooling surface for cooling the substrate is provided in the vacuum chamber. According to this technique, since the substrate is cooled by the cooling surface provided on the side opposite to the evaporation source with respect to the substrate, an increase in the substrate temperature can be prevented.
  • Patent Document 2 is a technique for forming a film by a vacuum deposition method on a substrate made of a material having a low thermal deformation temperature such as plastic, and a technique for manufacturing a semiconductor optical element. More specifically, it does not describe a technique for forming a high-performance reflective layer. Therefore, there has been a demand for a method for manufacturing a high-performance semiconductor light-emitting element substrate using the technique disclosed in Patent Document 2 with a high reflectance of the reflective layer.
  • a method for manufacturing a semiconductor light emitting device substrate comprising: a substrate holding step for holding the substrate by a substrate holding means disposed in a vacuum chamber; a vacuum exhausting step for exhausting the inside of the vacuum chamber; and the vacuum exhaust A substrate heating step for heating the substrate; a substrate cleaning step for irradiating the substrate with ions to clean the substrate; and a dielectric for depositing the dielectric layer on the substrate.
  • the substrate and the substrate are held by a body layer forming step, a substrate heating stop step for stopping the heating of the substrate, and a cooling means disposed in a position near the substrate and not in contact with the substrate. From means It is solved by comprising in this order a cooling step for absorbing radiation heat and starting cooling the substrate and the substrate holding means, and a reflective layer forming step for depositing the reflective layer on the dielectric layer.
  • the substrate is disposed in a vacuum, it is insulated from the vacuum, and as a result, it takes a long time to cool the substrate. Further, in the dielectric layer forming step, the evaporation source and the ion source are heated, and the substrate receives the radiant heat, so that the cooling efficiency is very low. With respect to such a problem, according to the method for manufacturing a semiconductor light emitting device substrate of the present invention, it is possible to effectively cool the substrate by absorbing the radiant heat from the substrate by the cooling means. Therefore, even if the substrate temperature rises after forming a plurality of dielectric layers, the cooling time for absorbing the radiant heat of the substrate in the vacuum chamber is provided, so that the substrate cooling time can be shortened. Manufacturing time can be shortened.
  • the above-described problem is that a dielectric layer composed of at least two layers having different refractive indexes on a substrate and a reflective layer are provided on one surface.
  • a method of manufacturing a semiconductor light emitting device substrate sequentially provided above, a substrate holding step of holding the substrate in a substrate holding means disposed in a vacuum chamber, a vacuum exhausting step of exhausting the inside of the vacuum chamber, The substrate and the substrate are performed substantially simultaneously with the evacuation step by a substrate heating step for heating the substrate, and cooling means disposed in the vicinity of the substrate and in a non-contact position with the substrate.
  • a cooling step of absorbing radiant heat from the holding means to start cooling the substrate and the substrate holding means, a substrate cleaning step of irradiating the substrate with ions to clean the substrate, and on the substrate, Said invitation A dielectric layer forming step for depositing a body layer, a substrate heating stopping step for stopping heating of the substrate, and a reflecting layer forming step for depositing the reflective layer on the dielectric layer in this order. It is solved by.
  • a step of absorbing the radiant heat from the substrate and the substrate holding means by the cooling means and cooling the substrate and the substrate holding means is provided prior to the dielectric layer forming step and further the substrate cleaning step. ing. Therefore, the substrate temperature does not rise excessively during the substrate cleaning and the dielectric layer formation, the cooling time until the reflective layer formation step is started can be further shortened, and the manufacturing efficiency can be further improved. . In addition, since the substrate is cooled in the process of forming a plurality of dielectric layers, a dielectric layer having good film quality can be formed.
  • the vacuum chamber further comprises a first determination step of determining whether or not more than 1 ⁇ 10 -3 Pa, the vacuum chamber at 1 ⁇ 10 -3 Pa or less In some cases, it is preferable to perform the substrate cleaning step.
  • the first determination step is provided before the substrate cleaning step, the substrate cleaning step is performed when the inside of the vacuum chamber is 1 ⁇ 10 ⁇ 3 Pa or less, and the dielectric layer formation is performed following the substrate cleaning step.
  • the film is started, a dielectric layer having a good film quality can be formed. As a result, a high reflectance can be obtained by combining with a reflective layer.
  • the substrate further comprises a second determining step of determining whether the temperature of the substrate is 50 ° C. or lower and the inside of the vacuum chamber is 3 ⁇ 10 ⁇ 4 Pa or lower.
  • the second determination step is provided before the reflective layer forming step, and the reflective layer is formed only when the temperature of the substrate is 50 ° C. or lower and the inside of the vacuum chamber is 3 ⁇ 10 ⁇ 4 Pa or lower.
  • the substrate temperature is higher than 50 ° C. or when the pressure in the vacuum chamber at the time of forming the reflective layer is higher than 3 ⁇ 10 ⁇ 4 Pa, the reflectivity of the reflective layer is lowered, which is favorable. It is difficult to obtain a reflective layer.
  • the reflective layer is preferably formed by vapor deposition of aluminum.
  • High reflectivity can be obtained by using aluminum having high reflectivity as the material of the reflective layer. Moreover, it can be set as the reflection layer provided with high adhesiveness with respect to each dielectric material layer.
  • the dielectric layer is preferably formed by alternately combining layers having a high refractive index and layers having a low refractive index.
  • a high refractive index dielectric and a low refractive index dielectric are used, and these are alternately deposited, whereby a higher reflectance can be obtained when combined with the reflective layer.
  • the second determination step includes a vacuum pump connected to the vacuum chamber via a vacuum valve, a pressure control means connected to the vacuum valve, a thermometer installed in the vicinity of the substrate, and the cooling Temperature control means connected to the control means, and the reflection layer forming step is a control in which the pressure control means and the shutter control means connected to the temperature control means open the shutter disposed on the evaporation source. It is suitable to be performed by performing.
  • the pressure control means monitors the pressure in the vacuum chamber and automatically opens and closes the vacuum valve to control the pressure in the vacuum chamber, the workability is improved and the manufacturing is improved. Efficiency can be improved.
  • the substrate temperature is monitored by the temperature control means and the cooling means is controlled by the cooling means, the workability is improved and the manufacturing efficiency can be improved.
  • the pressure in the vacuum chamber and the substrate temperature are monitored by each control means, and when each is below a predetermined condition, the shutter is opened by the shutter control means connected to the pressure and temperature control means, Work efficiency can be further improved.
  • the semiconductor light-emitting element substrate can be manufactured under uniform conditions without the operator misidentifying each condition and forming each layer.
  • the manufacturing efficiency can be improved. Further, by providing a pressure condition and a temperature condition suitable for forming the reflective layer and the dielectric layer, a semiconductor light emitting element substrate having a high reflectance can be provided. According to the method for manufacturing a semiconductor light-emitting element substrate according to claim 2, since the substrate is cooled even when the substrate is washed or when the dielectric layer is formed, the time for cooling the substrate before starting the formation of the reflective layer is started. Is further shortened.
  • a semiconductor light emitting element substrate having a high reflectance can be provided.
  • the method for manufacturing a semiconductor light emitting element substrate according to claim 3 it is possible to form a dielectric layer having a good film quality.
  • the method for manufacturing a semiconductor light emitting element substrate according to the fourth aspect it is possible to form a reflective layer having a good film quality.
  • the method for manufacturing a semiconductor light emitting element substrate according to the fifth aspect by using aluminum as the material for forming the reflective layer, it is possible to form a reflective layer having a higher reflectance.
  • the reflectance can be further improved by alternately combining the high refractive index layer and the low refractive index layer in each dielectric layer.
  • the operator does not need to monitor and control the pressure in the vacuum chamber and monitor and control the substrate temperature, so that the working efficiency is improved.
  • the operator does not mistake the pressure in the vacuum chamber and the substrate temperature to start forming each layer, a semiconductor light emitting device substrate having a reflective layer and a dielectric layer of uniform quality is manufactured. Can do.
  • FIG. 1 is a schematic cross-sectional view of a semiconductor light emitting element substrate according to an embodiment of the present invention. It is a flowchart figure of the manufacturing process of the semiconductor light-emitting device substrate which concerns on one Embodiment of this invention. It is a flowchart figure of the manufacturing process of the semiconductor light-emitting device substrate which concerns on other embodiment of this invention. It is a graph which shows the relationship between the manufacture time of the semiconductor light-emitting device substrate which concerns on the Example of this invention, and substrate temperature. It is a graph which shows the relationship between the wavelength of a reflection layer which laminated
  • Ion assisted vapor deposition equipment (thin film forming equipment) 2 Vacuum chamber 3 Substrate holder (substrate holding means) 3a Through-hole 3b Mounting member 4 Substrate holder rotating shaft 5 Substrate holder rotating motor 6 Evaporation source 7 Ion source 8 Heating means 11 Refrigerator (cooling means) 12 Refrigerant pipe (cooling means) 13 Cooling plate (cooling means) 13a Proximity cooling surfaces 17, 18 Mounting jig 20 Compressor 21 Cooling solenoid valve 22 Water cooling condenser 23 Thaw solenoid valve 24 Temperature control means 25 Thermometer 26 Heat exchanger 31 Vacuum valve 32 Pressure gauge 33 Vacuum pump 34 Pressure control means 43 Upper part Cooling plate (cooling means) 43a Proximity cooling surface 44 Bottom cooling plate (cooling means) 44a Evaporation source side cooling surface 44b Opening (evaporation source through opening) 44c Opening (Ion source through opening) 45 Side cooling plate (cooling means / protection plate) 45a Side wall cooling surface
  • FIG. 1 is an explanatory view of an ion-assisted vapor deposition apparatus 1 which is a kind of thin film forming apparatus, and shows a part of the apparatus as a cross section.
  • an ion-assisted vapor deposition apparatus 1 includes a vacuum chamber 2, a substrate holder 3, a substrate holder rotating shaft 4, a substrate holder rotating motor 5, an evaporation source 6, an ion source 7, and heating means. 8, a refrigerator 11, a refrigerant pipe 12, and a cooling plate 13 are provided as main components.
  • the vacuum chamber 2 is a container for forming a film inside.
  • the vacuum chamber 2 of this embodiment is a hollow body having a substantially cylindrical shape, and a thin film can be formed by arranging the substrate S.
  • a vacuum pump 33 is connected to the vacuum chamber 2, and the vacuum pump 33 exhausts the inside of the vacuum chamber 2 so that the inside of the vacuum chamber 2 is about 1 ⁇ 10 ⁇ 2 to 1 ⁇ 10 ⁇ 5 Pa.
  • the vacuum state can be achieved.
  • the vacuum chamber 2 is formed with a gas introduction pipe (not shown) for introducing a gas therein.
  • Examples of the material of the vacuum chamber 2 include metal materials such as aluminum and stainless steel.
  • SUS304 which is a kind of stainless steel is used.
  • the substrate holder 3 is a member for holding the substrate S provided in the vacuum chamber 2.
  • the substrate holder 3 of the present embodiment is configured by a flat plate-like member, but may be configured by a dome-shaped member having a predetermined curvature.
  • the substrate holder 3 corresponds to the substrate holding means of the present invention.
  • the substrate holder 3 is formed with a through hole 3a penetrating from one plate surface to the other plate surface.
  • substrate S is attached to the board
  • the mounting member 3b of the present embodiment has a disk shape larger in diameter than the through hole 3a of the substrate holder 3, and a part of the disk surface is recessed downward. An opening is formed in the recessed portion.
  • the substrate S is attached to the substrate holder 3 by first placing the attachment member 3b in the through hole 3a of the substrate holder 3, and then placing the substrate S in the concave portion of the attachment member 3b with the film formation surface facing down. Put.
  • the substrate S can be easily set by simply placing the mounting member 3b and the substrate S on the substrate holder 3.
  • the substrate S may be fixed to the attachment member 3b so that the substrate S does not move when the substrate holder 3 rotates.
  • one end side of a rod-shaped substrate holder rotating shaft 4 is connected in a direction perpendicular to the plate surface of the substrate holder 3.
  • the other end side of the substrate holder rotating shaft 4 extends through the wall surface of the vacuum chamber 2 to the outside of the vacuum chamber 2 and is connected to the output shaft of the substrate holder rotating motor 5.
  • the substrate holder rotation motor 5 is a device for rotating the substrate holder 3.
  • the substrate holder rotation motor 5 is provided outside the vacuum chamber 2.
  • the output shaft of the substrate holder rotation motor 5 coincides with the axis of the substrate holder rotation shaft 4, and the rotation output of the substrate holder rotation motor 5 is transmitted to the substrate holder 3 via the substrate holder rotation shaft 4 to be transmitted to the substrate holder 3. Rotates.
  • the output shaft of the substrate holder rotating motor 5 is vacuum sealed by means such as a magnetic seal bearing (not shown).
  • the substrate S is a member serving as a basis on which each layer is formed on the surface.
  • a flat plate is used as the shape of the substrate S.
  • the present invention is not limited to this, and a substrate having an appropriate shape can be used as a substrate on which the semiconductor light emitting element substrate is formed.
  • the evaporation source 6 is an evaporation unit that is disposed on the lower side inside the vacuum chamber 2 and emits a deposition material P, that is, a high refractive index material, a low refractive index material, and a metal (Al, Ag, etc.) toward the substrate S. is there.
  • the evaporation source 6 includes an evaporation boat having an indentation for placing the deposition material P thereon, and an electron gun that irradiates the deposition material P with an electron beam to evaporate it.
  • a shutter (not shown) provided rotatably is provided at a position where the vapor deposition material P heading from the evaporation boat toward the substrate S is blocked. The shutter is appropriately opened and closed by a shutter control means (not shown).
  • a general device used in a vapor deposition apparatus is employed as the evaporation source 6. That is, a plurality of cylindrical hearth liners are provided as evaporation boats, and these hearth liners are arranged in concentric depressions of the disk-shaped hearth.
  • the disk-shaped hearth is formed of a metal having high thermal conductivity such as copper and is directly or indirectly cooled by a water cooling device (not shown).
  • Each hearth liner contains the vapor deposition material P. When the vapor deposition material P of one hearth liner runs out, the disk-shaped hearth rotates to evaporate the vapor deposition material P of the next hearth liner. Since the disk-shaped hearth itself is water-cooled, it is difficult to serve as a heat source.
  • the vapor deposition material P remaining on the hearth liner is usually an oxide, its thermal conductivity is low and it is difficult to be cooled. For this reason, the vapor deposition material P on the hearth liner becomes a heat source for heating the substrate S by radiant heat.
  • a vapor deposition material P which is a thin film material
  • an electron beam of about 1 to 3 kW is generated and irradiated onto the vapor deposition material P, the vapor deposition material P is heated and evaporates.
  • a shutter (not shown) is opened in this state, the vapor deposition material P evaporated from the evaporation boat moves inside the vacuum chamber 2 toward the substrate S and adheres to the surface of the substrate S.
  • the temperature of the evaporation source 6 rises to 1500 to 2500 ° C.
  • the evaporation source 6 is preheated even when the shutter is closed other than during film formation because the vapor deposition material P is dissolved, the temperature of the shutter and its surroundings also rises.
  • the evaporation source 6 is not limited to an apparatus that is evaporated by such an electron gun, and may be an apparatus that evaporates the vapor deposition material P by resistance heating, for example.
  • the semiconductor optical element formed in this embodiment is formed by alternately stacking a high refractive index material and a low refractive index material and further stacking a reflective layer R thereon (see FIG. 3). ), Depending on the type and number of the vapor deposition material P, the number and arrangement of the evaporation sources 6 can be appropriately changed.
  • the ion source 7 is a device for irradiating positive ions toward the substrate S, and ions (O 2 + , Ar + ) charged from plasma of a reactive gas (for example, O 2 ) or a rare gas (for example, Ar) are used. Extracted and accelerated by acceleration voltage.
  • a reactive gas for example, O 2
  • a rare gas for example, Ar
  • the vapor deposition material P moving from the evaporation source 6 toward the substrate S adheres to the surface of the substrate S with high density and strength due to the collision energy of positive ions irradiated from the ion source 7. At this time, the substrate S is positively charged by positive ions contained in the ion beam. If necessary, a neutralizer that neutralizes charges by irradiating a positively charged substrate S or substrate holder 3 with an electron beam may be provided.
  • the surface of the substrate S is previously ion-cleaned by ions emitted from the ion source 7, and then each layer is formed.
  • the heating means 8 is provided below the substrate holder 3.
  • the heating means 8 is a heating source for heating the substrate S by radiant heat.
  • well-known things such as a halogen lamp and an infrared heater, are used.
  • the heat generation amount of the heating unit 8 may be controlled by the temperature control unit 24 based on a temperature measured by a thermometer 25 described later.
  • the pressure inside the vacuum chamber 2 is measured and displayed by the pressure gauge 32, and the desired pressure can be controlled by the pressure control means 34. That is, the internal pressure measured by the pressure gauge 32 is monitored by the pressure control means 34 connected to the pressure gauge 32, and the vacuum valve 31 connected to the pressure control means 34 is closed when the pressure becomes lower than a predetermined pressure. As a result, exhaust by the vacuum pump 33 is not performed. Moreover, it is good also as a structure provided with MV (miniature valve) not shown in the vacuum chamber 2 side.
  • MV miniature valve
  • the vacuum valve 31 connected to the pressure control means 34 is opened, and the vacuum pump 33 performs evacuation.
  • the internal pressure of the vacuum chamber 2 is monitored by the pressure control means 34, and the pressure in the vacuum chamber 2 can be controlled to a predetermined value.
  • the portion where the pressure gauge 32 is disposed is vacuum-sealed.
  • a well-known thing can be used for the pressure gauge 32, the vacuum valve 31, and the vacuum pump 33, respectively.
  • the cooling means is means for cooling the substrate S and maintaining the temperature at an appropriate temperature.
  • the cooling means includes the refrigerator 11, the refrigerant pipe 12, and the cooling plate 13 as main components.
  • a cooling plate 13 is disposed inside the vacuum chamber 2.
  • the cooling plate 13 has a disk shape and is disposed along the upper surface of the substrate holder 3. That is, the cooling plate 13 is disposed on the opposite side of the substrate holder 3 from the side where the evaporation source 6 is provided.
  • the cooling plate 13 is made of a metal material having high thermal conductivity such as copper or aluminum.
  • the cooling plate 13 may not be a complete plate shape, but may be a plate shape having a hole or a strip shape in view of the temperature of the substrate holder 3 and the substrate S, the performance of the refrigerator 11 and the like.
  • the surface of the cooling plate 13 on the center side of the vacuum chamber 2, that is, the side on which the substrate S is disposed constitutes the proximity cooling surface 13a of the present invention. Further, the refrigerant pipe 12 is in contact with the surface opposite to the proximity cooling surface 13a. Therefore, the surface of the cooling plate 13 that contacts the refrigerant tube 12 is cooled by the refrigerant flowing through the refrigerant tube 12, and the adjacent cooling surface 13a formed on the opposite surface is also cooled.
  • the cooling plate 13 is fixed in the vacuum chamber 2 using a mounting jig 17. There is a gap between the cooling plate 13 and the substrate holder rotating shaft 4 so that the substrate holder rotating shaft 4 can rotate smoothly. In order to prevent heat from flowing in from the substrate holder rotating shaft 4 due to heat conduction, a material having a low thermal conductivity is sandwiched in the middle of the substrate holder rotating shaft 4 or the substrate holder rotating shaft 4 is cooled. A cooling plate may be arranged.
  • a bearing or the like is provided between the wall surface of the cooling plate 13 and the outer peripheral surface of the substrate holder rotating shaft 4 to smoothly rotate the substrate holder rotating shaft 4, and heat is moved along the substrate holder rotating shaft 4. You may make it difficult.
  • the refrigerant pipe 12 is configured by a hollow tubular member, and has a role as a cryocoil for cooling a cooling plate 13 described later.
  • One end of the refrigerant pipe 12 is connected to the discharge port of the refrigerator 11 and the other end is connected to the inflow port, and is introduced into the vacuum chamber 2. And it is comprised so that a refrigerant
  • coolant may be circulated through the refrigerator 11 by making the refrigerant
  • the refrigerant pipe 12 is spirally wound so that the refrigerant inflow side is on the outside and the delivery side is on the inside, and is fixed in contact with the outer flat surface of the disc-shaped cooling plate 13.
  • tube 12 it is not limited to such a spiral form, Spiral form, meandering form, etc. may be sufficient.
  • the refrigerator 11 is a device for cooling the refrigerant and supplying the refrigerant to the refrigerant pipe 12 for circulation.
  • the refrigerator 11 of the present embodiment uses a known refrigeration apparatus in which the refrigerant pipe 12 is a cryocoil.
  • the refrigerator 11 includes a compressor 20 that compresses a refrigerant (gas refrigerant), a water-cooled condenser 22 that cools the refrigerant from the compressor 20 by heat exchange with cooling water, and a refrigerant that is cooled with compressed water. And a cooling solenoid valve 21 and a thawing solenoid valve 23 provided on the discharge port side of the refrigerator 11. An expansion valve (not shown) is provided inside the heat exchanger 26.
  • the refrigerant tube 12 as a cryocoil is cooled by flowing the refrigerant cooled by the refrigerator 11 through the refrigerant tube 12.
  • the refrigerant in the refrigerant pipe 12 rises in temperature in the vacuum chamber 2 and partially evaporates, and circulates to the refrigerator 11 as a high-temperature gas refrigerant.
  • the gas refrigerant is compressed by the compressor 20, cooled again by the water-cooled condenser 22 and the heat exchanger 26, becomes a low-temperature refrigerant, and is sent out again from the discharge port to the refrigerant pipe 12.
  • the refrigerator 11 is provided with an inflow port through which the gas refrigerant circulated through the refrigerant pipe 12 flows.
  • the high-temperature gas refrigerant flowing in from the inlet is cooled again in the refrigerator 11. Further, by closing the cooling solenoid valve 21 and opening the thawing solenoid valve 23, the gas refrigerant compressed by the compressor 20 (hereinafter referred to as “heating gas”) does not pass through the water-cooled condenser 22.
  • the temperature of the cryocoil can be rapidly increased to about room temperature.
  • a cooling solenoid valve 21 and a thawing solenoid valve 23 are provided on the discharge port side of the refrigerator 11.
  • Each solenoid valve 21, 23 is a valve that includes two valves and can be switched by electromagnetic control.
  • the cooling solenoid valve 21 is provided in the middle of a line for supplying the refrigerant from the heat exchanger 26 to the refrigerant pipe 12.
  • the thawing solenoid valve 23 is provided in the middle of a branch line that branches from the above line and is connected to the output side line of the compressor 20.
  • the refrigerator 11 can take three modes. That is, both the solenoid valves 21 and 23 are closed so that neither the refrigerant nor the heated gas is supplied to the refrigerant pipe 12, and only the cooling solenoid valve 21 is opened and the refrigerant is supplied to the refrigerant pipe 12.
  • “Mode” is a “thaw mode” in which only the thawing solenoid valve 23 is opened and the heated gas is supplied to the refrigerant pipe 12.
  • the mode of the refrigerator 11 is set to “standby mode”, and both the cooling solenoid valve 21 and the thawing solenoid valve 23 are closed.
  • the cooling plate 13 is cooled by the refrigerator 11
  • the mode of the refrigerator 11 is set to “cooling mode”
  • the cooling solenoid valve 21 is opened, and the thawing solenoid valve 23 is kept closed.
  • the refrigerant cooled to ⁇ 100 ° C. or lower flows into the refrigerant pipe 12, and the cooling plate 13 is cooled to ⁇ 100 ° C. or lower.
  • the temperature of the cooling plate 13 needs to be about room temperature of 0 ° C. or higher. Therefore, the mode of the refrigerator 11 is set to “thawing mode”, and the cooling solenoid valve 21 is turned on. Close and open the thawing solenoid valve 23. Thereby, heated gas is supplied to the refrigerant pipe 12 and the temperature of the cooling plate 13 rises.
  • thermometer 25 for measuring the temperature of the substrate S is disposed close to the substrate S.
  • the thermometer 25 can use a known temperature measuring means such as a thermocouple.
  • the thermometer 25 is connected to the temperature control means 24.
  • the temperature control means 24 is also connected to an electromagnetic valve for controlling the opening and closing of the cooling solenoid valve 21 and the thawing solenoid valve 23 of the refrigerator 11, and appropriately changing the opening / closing state of each of the substrates S by the cooling plate 13.
  • the cooling temperature is adjusted. With this configuration, the temperature can be kept constant by changing the supply power according to the film formation conditions during film formation.
  • the refrigerator 11 can perform any one of a “standby mode”, a “cooling mode”, and a “thawing mode” according to the operation state of the apparatus.
  • the temperature of the cooling plate 13 can be measured by detecting the temperature of the refrigerant returning to the refrigerator 11 with a thermometer (not shown) provided in the refrigerator 11. Based on the preset cooling plate temperature, the operating state of the refrigerator in the “cooling mode” can be controlled, and the temperature of the cooling plate 13 can be controlled.
  • the proximity cooling surface 13a is provided at a position close to the substrate S, the radiant heat from the substrate S and the substrate holder 3 is absorbed and cooled. That is, the amount of heat radiated from the high temperature substrate S and the substrate holder 3 is larger than the amount of heat radiated from the low temperature proximity cooling surface 13a, so that heat is transferred from the substrate S or the substrate holder 3 to the proximity cooling surface 13a. As a result, radiation cooling occurs, and the substrate S and the substrate holder 3 are cooled.
  • the cooling plate 13 can cool the substrate S from above the substrate holder 3. For this reason, the temperature rise of the substrate S can be suppressed, and a desired substrate temperature can be maintained during film formation. Furthermore, even when the substrate temperature rises during film formation, the cooling time can be effectively shortened because the substrate S is cooled.
  • the substrate S is mounted on the attachment member 3b and attached to the substrate holder 3, the upper and lower surfaces of the substrate S are exposed to the outside, and the space between the exposed surface of the substrate S and the adjacent cooling surface 13a is shielded. There is nothing. For this reason, the radiant heat smoothly moves from the substrate S to the adjacent cooling surface 13a, and the substrate S can be efficiently cooled. Furthermore, in order to cool the substrate S uniformly, the entire surface of the substrate S may be covered with a covering member formed of substantially the same material as the substrate holder 3. In this case, it is preferable that the covering member and the substrate holder 3 have substantially the same heat emissivity, and the total heat capacity obtained by adding the respective heat capacities of the substrate S and the covering member is substantially the same as the heat capacity of the substrate holder 3.
  • the evaporation source 6 is a heat source of 1 to 3 kW and the ion source 7 is a heat source of 0.5 to 1.5 kW, if the cooling effect is insufficient only with the cooling plate 13 (upper cooling plate 43 in FIG. 2), By installing the bottom cooling plate 44 and the side cooling plate 45 as in the other embodiments shown, the temperature of the substrate S can be more effectively lowered.
  • FIG. 2 is an explanatory diagram of a thin film forming apparatus 1 according to another embodiment of the present invention.
  • the thin film forming apparatus (ion-assisted vapor deposition apparatus) 1 of this embodiment includes a bottom cooling plate 44 and a side cooling plate 45 in addition to a cooling plate (upper cooling plate 43) provided on the upper surface side of the substrate holder 3.
  • the feature is that the entire periphery of the substrate holder 3 is surrounded by a cooling plate.
  • the upper cooling plate 43 has the same configuration as that of the cooling plate 13 according to the first embodiment, and thus the description thereof is omitted. That is, the upper cooling plate 43 constitutes a part of the cooling means of the present invention, and the surface on the substrate holder 3 side constitutes the proximity cooling surface 43a.
  • the bottom cooling plate 44 constitutes a part of the cooling means of the present invention, and the surface on the substrate holder 3 side constitutes the evaporation source side cooling surface 44a. Further, the side cooling plate 45 constitutes a part of the cooling means of the present invention, and the surface on the substrate holder 3 side constitutes the side wall cooling surface 45a. Furthermore, the refrigerator 11 and the refrigerant pipe 12 correspond to the cooling means of the present invention.
  • an opening 44b evaporation source through opening
  • an opening 44c ion source through opening
  • the evaporation source 6 is positioned in the region surrounded by the cooling plate 13 through the opening 44b and the ion source 7 through the opening 44c.
  • the bottom cooling plate 44 is provided with the openings 44b and 44c so that the vapor deposition material P and the ion beam supplied from the evaporation source 6 and the ion source 7 to the substrate S are not obstructed.
  • the side cooling plate 45 is detachably attached to the side inner wall surface of the vacuum chamber 2.
  • the side cooling plate 45 also functions as an adhesion preventing plate. That is, the side cooling plate 45 has a function as a member that prevents the vapor deposition material P from the evaporation source 6 from adhering to the side inner wall surface of the vacuum chamber 2.
  • the side cooling plate 45 is removed from the vacuum chamber 2 and the surface is polished by sandblasting etc. P can be removed. Thereby, the inside of the vacuum chamber 2 can be made into a clean state.
  • the bottom cooling plate 44 is also detachable and has a function as an adhesion preventing plate.
  • the refrigerant pipe 46 is in contact with the vacuum chamber 2 wall surface side of the upper cooling plate 43, the bottom cooling plate 44 and the side cooling plate 45.
  • the refrigerant pipe 46 is a tubular member capable of allowing a refrigerant to flow inside, similarly to the refrigerant pipe 12 of the first embodiment.
  • the refrigerant tube 46 is spirally wound on the upper plane of the upper cooling plate 43, then spirally wound around the outer peripheral surface of the side cooling plate 45, and spirally wound on the lower plane of the bottom cooling plate 44. ing.
  • the discharge port side of the refrigerator 11 is connected to one end of the upper cooling plate 43, and the inlet side is fixed to one end of the bottom cooling plate 44. For this reason, the refrigerant supplied from the refrigerator 11 sequentially circulates through the upper cooling plate 43, the side cooling plate 45, and the bottom cooling plate 44, and returns to the refrigerator 11 again.
  • the upper cooling plate 43, the bottom cooling plate 44, and the side cooling plate 45 surround the entire periphery of the substrate holder 3. That is, the bottom cooling plate 44 and the side cooling plate 45 absorb the heat of the evaporation source 6 and the ion source 7 and further absorb the radiant heat from the substrate holder 3, so that the cooling plate 13 is placed only above the substrate S. Compared to the above-described embodiment, the substrate S can be cooled more reliably.
  • Both the bottom cooling plate 44 and the side cooling plate 45 are optional components of the present invention. These bottom cooling plate 44 and side cooling plate 45 do not use a special refrigerant depending on the heat-resistant temperature of the substrate S and the film forming conditions (input power conditions to the electron gun and ion source 7, film forming time, etc.) You may make it just cool by circulating water and cooling with water. Further, when the substrate S can be sufficiently cooled only by the upper cooling plate 43, the cooling by the bottom cooling plate 44 and the side cooling plate 45 may not be performed.
  • the refrigerator 11 that cools the upper cooling plate 43, the bottom cooling plate 44, and the side cooling plate 45 is a common device, but individual refrigeration for cooling the cooling plates 43 to 45 is used.
  • a machine may be provided.
  • FIG. 3 is a schematic cross-sectional view of a semiconductor light emitting device substrate according to an embodiment of the present invention.
  • a buffer layer 100, an n-type GaN layer 110, a light emitting layer 120, and a p-type GaN layer 130 are sequentially stacked on a substrate S made of sapphire or the like.
  • a part of the n-type GaN layer 110 is removed stepwise by etching, and an n-electrode 210 is formed in the removed part.
  • the p electrode 230 is formed on the p-type GaN layer 130.
  • the dielectric layers H and L corresponding to the increased reflection layer and the reflection layer R are provided on the surface opposite to the surface on which the layers including the light emitting layer 120 are provided.
  • the reflective layer R side in the substrate S of the semiconductor light emitting element substrate according to the embodiment of the present invention will be described.
  • FIG. 3 shows a configuration in which a total of four dielectric layers H and L are stacked in order from the high refractive index dielectric layer H on the substrate S.
  • any number of layers may be provided. Any structure may be used as long as a film composed of a substance having a relatively high refractive index and a substance having a low refractive index are alternately combined.
  • Examples of substances that form the high refractive index dielectric layer H include titanium oxide (TiO 2 , refractive index 2.52), zirconium oxide (ZrO 2 , refractive index 2.4), tantalum oxide (Ta 2 O 5 , the refractive index is 2.16), and niobium oxide (Nb 2 O 5 , the refractive index is 2.33).
  • Examples of the material for forming the low refractive index dielectric layer L include aluminum oxide (Al 2 O 3 , refractive index 1.76), silicon oxide (SiO 2 , refractive index 1.45), fluorine, and the like.
  • the reflective layer R is formed of a metal having high reflectivity, and for example, aluminum (Al), silver (Ag), or the like is used.
  • Al aluminum
  • Ag silver
  • the substrate temperature during film formation and the pressure in the vacuum chamber 2 are largely related to the reflectance.
  • the dielectric layers H and L and the reflective layer R are formed by depositing various materials using the thin film forming apparatus 1 described above. Each film thickness is appropriately designed according to the desired reflectance. Further, when forming the dielectric layers H and L, the pressure in the vacuum chamber 2 is set to 1 ⁇ 10 ⁇ 3 Pa or less, more preferably about 1 ⁇ 10 ⁇ 4 to 1 ⁇ 10 ⁇ 3 Pa. Dielectric layers H and L are formed. When forming the dielectric layers H and L, if the films are formed under a pressure higher than 1 ⁇ 10 ⁇ 3 Pa, it is difficult to obtain the dielectric layers H and L having good film quality. At this time, it is preferable that the temperature of the substrate S is 100 to 120 ° C., preferably about 110 ° C., because the packing density of the dielectric layers H and L is increased.
  • the substrate temperature is 50 ° C. or lower and the pressure in the vacuum chamber 2 is 3 ⁇ 10 ⁇ 4 Pa or lower.
  • the reflective layer R is formed using Al
  • the temperature of the substrate S is about room temperature (25 ° C.) to 70 ° C., more preferably 25 ° C. to 50 ° C.
  • the reflective layer having good reflectivity. R can be obtained.
  • the pressure in the vacuum chamber 2 in which the substrate S is disposed is about 1 ⁇ 10 ⁇ 4 Pa to 3 ⁇ 10 ⁇ 4 Pa, the reflective layer R having good reflectivity is used. Can be obtained.
  • the substrate temperature is higher than 70 ° C. or when the internal pressure is higher than 3 ⁇ 10 ⁇ 4 Pa, it is difficult to obtain a reflective layer R having a good reflectance.
  • FIG. 3 shows an example in which the buffer layer 100, the n-type GaN layer 110, the light emitting layer 120, and the p-type GaN layer 130 are sequentially stacked on the substrate S, and the reflective layer R is formed on the side opposite to these semiconductor layers.
  • the structure of the semiconductor layer is not limited to this.
  • a semiconductor layer made of other materials may be provided in a configuration different from that shown in FIG. 3 as long as it functions as a semiconductor light emitting element.
  • FIG. 4 is a flowchart of a manufacturing process of a semiconductor light emitting device substrate according to an embodiment of the present invention.
  • the substrate S (see FIG. 3) is set on the substrate holder 3 with the surface on which the reflective layer R is formed facing down, and the door of the vacuum chamber 2 is closed (substrate holding step S1).
  • the vacuum valve 31 is opened, and the vacuum chamber 2 is evacuated (evacuation step S2). This operation may be performed by the pressure control means 34.
  • the substrate S is set on the substrate holder 3 with the surface on which the reflective layer R is formed facing the evaporation source 6 side. More specifically, the substrate S (see FIG. 3) on which the buffer layer 100, the n-type GaN layer 110, the light emitting layer 120, and the p-type GaN layer 130 are sequentially stacked and the electrodes 210 and 230 are formed is connected to each semiconductor layer. Is set in the substrate holder 3 with the surface on which no is formed facing downward.
  • each semiconductor layer a step of forming each semiconductor layer on one surface of the substrate S is provided before the substrate holding step S1, or each semiconductor layer is formed after the reflective layer forming step S10.
  • a process may be provided.
  • each dielectric layer is formed on the back surface of each semiconductor layer. It is preferable to perform the step of forming H, L and the reflective layer R.
  • heating by the heating unit 8 is started so that the substrate S reaches a set temperature (110 ° C. in this embodiment), and the temperature control unit 24 sets the temperature of the substrate S to the set temperature. It adjusts so that it may become (substrate heating process S3).
  • the heating means 8 is also connected to the temperature control means 24. Further, it is only necessary that the temperature of the substrate S is controlled to be the set temperature before the dielectric layer forming step S7 is started. As described above, it is preferable to perform film formation in a state where the substrate S is heated and held at a constant temperature because a filling density of the film formed on the substrate S is increased.
  • first determination step S4 when the pressure in the vacuum chamber 2 does not reach 1 ⁇ 10 ⁇ 3 Pa or lower (first determination step S4: No), the vacuum valve 31 is continuously held open. The evacuation is continued by the vacuum pump 33.
  • first determination step S4: Yes when the pressure in the vacuum chamber 2 reaches 1 ⁇ 10 ⁇ 3 Pa or less (first determination step S4: Yes), the vacuum valve 31 is appropriately opened and closed by the pressure control means 34, and the vacuum pump 33 exhausts the air. The amount is controlled, and the inside of the vacuum chamber 2 is maintained at 1 ⁇ 10 ⁇ 3 Pa or less. Even when the inside of the vacuum chamber 2 reaches a predetermined pressure (first determination step S4: Yes), the vacuum valve 31 and an unillustrated MV (miniature valve) are maintained open, It is preferable that the exhaust is continued.
  • the substrate holder (substrate holding means) 3 holding the substrate S rotates (substrate holding means rotating step S5), and the ion source with respect to the substrate S 7 is irradiated with an ion beam.
  • substrate holding means rotation step S5 is not necessarily performed in this order, and is appropriately provided before and after other steps.
  • the dielectric layers H and L having the above-described configuration are formed by vapor deposition (dielectric layer forming step S7).
  • a shutter in the vicinity of the evaporation source 6 that emits a high refractive index substance (for example, Ta 2 O 5 , TiO 2 or the like) or a low refractive index substance (for example, SiO 2 or the like)).
  • a high refractive index substance for example, Ta 2 O 5 , TiO 2 or the like
  • a low refractive index substance for example, SiO 2 or the like
  • the surfaces of the dielectric layers H and L attached to the substrate S are smoothed by colliding ions (for example, O 2 + and Ar + ) with the substrate S from the ion source 7. And densify. By repeating this operation a predetermined number of times, a multilayer film is formed.
  • the bias of the substrate S is caused by the irradiation of the ion beam.
  • the bias of the charge is preferably neutralized by irradiating electrons from the neutralizer (not shown) toward the substrate S. .
  • the heating of the substrate S is finished, and the operation is started with the refrigerator 11 that has been operated in the standby mode in advance as the cooling mode, and the cooling is started (cooling step S9).
  • the substrate S reaches a high temperature of 100 ° C. or higher.
  • the substrate heating stop process S8 and the cooling process S9 for stopping the heating of the substrate S are provided, and the substrate S is cooled by using the cooling means 11, 12, and 13, so that it is suitable for the subsequent formation of the reflective layer R. It can be quickly cooled down to the substrate temperature.
  • the order of the substrate heating stop step S8 and the cooling step S9 may be first, but the substrate heating stop step S8 is preferably performed first in order to reduce power consumption.
  • the substrate S is cooled until the reflection layer forming step S11 is completed. As described above, it is preferable to form the reflective layer R while cooling because the reflective layer R having a higher reflectance can be formed.
  • substrate S is measured with the thermometer 25, and it is judged by the temperature control means 24 whether the board
  • a predetermined temperature (50 ° C. in the present embodiment) is input in advance to the temperature control means 24 and it is determined whether or not the temperature has become equal to or lower than the predetermined temperature.
  • predetermined pressures (1 ⁇ 10 ⁇ 3 Pa and 3 ⁇ 10 ⁇ 4 Pa in the present embodiment) are input to the pressure control unit 34 in advance, and it is determined whether or not the pressures are below the predetermined pressure in each of the determination steps S4 and S10. It is preferable that the configuration is determined.
  • second determination step S10 No
  • the cooling of the substrate S is continued, and the determination in step S10 is repeated.
  • the inside of the vacuum chamber 2 does not reach 3 ⁇ 10 ⁇ 4 Pa or less
  • second determination step S10: No it is difficult to obtain a good reflectance in the reflective layer R. Therefore, if the vacuum valve 31 and the MV (not shown) are opened during the reflective layer forming step S11, the vacuum evacuation is continued and the pressure in the vacuum chamber 2 is maintained at 3 ⁇ 10 ⁇ 4 Pa or less. A reflective layer R with good film quality is formed.
  • the reflective layer R is formed on the dielectric layers H and L only when both the substrate temperature and the internal pressure condition are satisfied (reflective layer forming step S11).
  • the temperature control means 24 and the pressure control means 34 and the shutter control means for controlling the open / closed state of a shutter (not shown) installed on the evaporation source 6 are connected to each other and the above two conditions are satisfied.
  • the shutter may be automatically opened and the reflective layer R may be formed.
  • a shutter (not shown) is closed, and the substrate S is appropriately cooled by a cooling mechanism, and the film forming operation is completed.
  • a step of further forming a protective film may be provided after the formation of the reflective layer R made of aluminum or the like.
  • the refrigerator 11 When the film forming operation is completed through the above steps, the refrigerator 11 is operated in the thawing mode, and the temperature of the cooling plate 13 is raised to room temperature. Thereafter, a leak valve (not shown) is opened to introduce an inert gas or the like, and the inside of the vacuum chamber 2 is set to atmospheric pressure (leak process S12). Then, the substrate S is taken out from the substrate holder 3. In the leakage step S12, the gas refrigerant flowing through the cooling means 11, 12, and 13 is not passed through the heat exchanger 26 but directly from the compressor 20 to the cooling plate 13 (the respective cooling plates 43 to 45). It is possible to return the cooling plate to room temperature.
  • the dielectric layers H and L and the reflective layer R of the semiconductor light emitting element substrate of the present invention are formed.
  • omitted the board
  • FIG. 5 is a flowchart of a manufacturing process of a semiconductor light emitting device substrate according to another embodiment of the present invention. Since the substrate holding step S1 to the first determining step S4 in FIG. 4 and the substrate holding step S101 to the substrate heating step S103 shown in FIG. 5 have the same configuration, description thereof is omitted.
  • a cooling step S104 for starting cooling of the substrate S is performed after the substrate heating step S103 for starting heating of the substrate S.
  • the operation of the refrigerator 11 at this time is the same as that in the cooling step S9 in FIG.
  • the power consumption is increased by providing the cooling step S104 at an early stage, but the cooling means 11, 12, 13 (and 43, 44) can be operated stably, and since the cooling means 11, 12, 13 (and 43, 44) are operating in advance, the cooling time of the substrate S can be shortened. Can do.
  • first determination step S105 After the cooling of the substrate S is started in the cooling step S104, it is determined in the first determination step S105 whether the inside of the vacuum chamber 2 is 1 ⁇ 10 ⁇ 3 Pa or less (first determination step S105). In the first determination step S105, after it is determined that the inside of the vacuum chamber 2 is 1 ⁇ 10 ⁇ 3 Pa or less, the dielectric layers H and L are formed in this embodiment. In the first determination step S105, it is also determined whether or not the temperature of the substrate S is maintained at a set temperature (about 110 ° C. in the present embodiment), and the substrate temperature is maintained at a predetermined temperature. After the determination, it is preferable to proceed to the next step.
  • a set temperature about 110 ° C. in the present embodiment
  • the substrate holder (substrate holding means 3) holding the substrate S is rotated (substrate holding means rotating step S106), and the ion beam is irradiated from the ion source 7 to the substrate S (substrate cleaning step S107).
  • substrate holding means rotating step S106 is not necessarily performed in this order, and is appropriately provided before and after other steps.
  • the substrate S is cooled during the substrate cleaning step S107, the substrate S is heated and maintained at approximately 110 ° C. Therefore, in the next dielectric layer forming step S108, the dielectric layers H, L can form a layer having good film quality. Since the substrate S is also cooled during the dielectric layer forming step S108, the temperature of the substrate S does not rise excessively even during the formation of the dielectric layers H and L, and the dielectric layers H and L The cooling time during film formation is greatly reduced.
  • each of the dielectric layers H and L can obtain a high reflectance in the reflective layer R when the number of layers is large, but the substrate temperature inevitably increases when the number of layers is large. It's easy to do. Therefore, as shown in FIG. 5, a cooling step S104 for starting the cooling of the substrate S is performed before the dielectric layer forming step S108 for forming the dielectric layers H and L, whereby each dielectric layer H , L can be prevented from increasing even if the number of L is relatively large.
  • the cooling may be performed until the substrate S is formed, or may be performed until the formation of the reflective layer R is completed. By continuing cooling until the formation of the reflective layer R is completed, it is possible to form the reflective layer R with good film quality.
  • the dielectric layers H and L can be obtained in a short time.
  • the reflective layer R can be formed into a film.
  • the process proceeds to the substrate heating stop step S109 in which the heating of the substrate S is stopped.
  • the substrate heating stop step S109 is preferably performed by the temperature control means 24. After stopping the substrate heating, the substrate holding means rotating step S5 and the substrate cleaning step S6 may be performed. It progresses to 2nd judgment process S110.
  • FIG. 6 is a graph showing the relationship between the manufacturing time of the semiconductor light emitting device substrate and the substrate temperature according to the example of the present invention.
  • the structures of the dielectric layers H and L and the reflective layer R of the semiconductor light emitting element substrate of this example are the structures shown in FIG.
  • the dielectric layers H and L and the reflective layer R of the semiconductor light emitting element substrate of the present embodiment are manufactured using the thin film forming apparatus 1 described with reference to FIG. 1 and the manufacturing process described with reference to FIG. After that, a film was formed.
  • the dielectric layers H and L were formed under the following conditions.
  • Substrate sapphire substrate high refractive index dielectric material: TiO 2 (refractive index: 2.52), Low refractive index dielectric material: SiO 2 (refractive index: 1.45)
  • TiO 2 deposition rate 0.5 nm / sec SiO 2 deposition rate: 1.0 nm / sec Ion source conditions during evaporation of TiO 2 / SiO 2 Gas introduced: oxygen 60 sccm Ion acceleration voltage: 1200V Ion current: 1200 mA Ion beam energy density: 100 mW / cm 2 Neutralizer conditions Neutralizer current: 2000 mA Discharge gas: Argon 10 sccm
  • the horizontal axis indicates when the substrate S is heated by the heating means 8 in FIG. This is the manufacturing time with step S3) set to zero.
  • the vertical axis indicates the substrate temperature measured by the thermometer 25. A rapid temperature increase is observed immediately after the start of manufacture, and the substrate temperature is kept constant until about 18 minutes have passed since the start.
  • the substrate S was heated by the substrate heating step S3 in FIG. 4 during the lapse of 18 minutes from the start of production. Further, the temperature of the substrate S in the substrate heating step S3 was set to 110 ° C. in order to increase the packing density of the dielectric layers H and L. Further, before the heating of the substrate S is started, the evacuation step S2 of FIG. 4 is performed.
  • the vacuum chamber 4 is determined to be 1 ⁇ 10 ⁇ 3 Pa or less, and then the substrate holding means rotating step S5 and the substrate cleaning step S6 in FIG. 4 are performed before the dielectric layer forming step S7 is performed. Yes.
  • the substrate temperature is repeatedly raised and lowered until reaching the line B in FIG. 6, which is formed by sequentially forming the dielectric layers H and L in the dielectric layer forming step S7 of FIG.
  • the first and second layers of the high-refractive index dielectric layer H and the first and second layers of the low-refractive index dielectric layer H are sequentially formed on the substrate S for 20 to 27 minutes. It shows that the film is formed alternately.
  • cooling is started by the cooling step S9 in FIG.
  • the substrate heating stop step S8 is also performed almost simultaneously.
  • a gentle decrease in the substrate temperature observed between line B and line C in FIG. 6 indicates that cooling is being performed. More specifically, it shows that cooling is performed from about 27 minutes after the start of manufacture to about 57 minutes (30 minutes, the time indicated by the arrow in FIG. 6).
  • Ion cleaning conditions using an ion beam were performed under the following conditions. Ion cleaning conditions Introduction gas: Oxygen 60sccm Ion acceleration voltage: 500V Ion current: 500 mA Neutralizer condition Neutralizer current: 1000mA Discharge gas: Argon 10 sccm
  • the inside of the vacuum chamber 2 was decompressed while cooling the substrate S until the inside of the vacuum chamber 2 was in an appropriate pressure range for forming the reflective layer R.
  • the pressure in the vacuum chamber 2 is 3 ⁇ 10 ⁇ 4 Pa or less in the second determination step S10 of FIG. It was confirmed that the temperature was 50 ° C. or lower.
  • the inside of the vacuum chamber 2 was 2.0 ⁇ 10 ⁇ 4 Pa, and the radiation thermometer was 30 ° C.
  • the pressure in the vacuum chamber 2 is set to 2.0 to 3.0 ⁇ 10 ⁇ 4 Pa, and the substrate An Al film was deposited on S to form a reflective layer R (reflective layer forming step S11).
  • a large temperature rise was not observed, and the substrate S was almost constant.
  • the substrate S was further cooled until the temperature of the substrate S became around room temperature, and the vacuum chamber 2 was leaked (leak process S12).
  • the time for cooling the substrate until the start of the formation of the reflective layer R (line E in FIG. 6) is 28 For minutes.
  • the substrate temperature is cooled to 50 ° C. or less, and the cooling time is about 2 to 3 hours.
  • the substrate temperature could be cooled to a lower room temperature, and the cooling time could be as short as 28 minutes.
  • the reflective layer R was formed under the following conditions. Reflective layer material: Al Al film formation rate: 2.5 nm / sec
  • the reflectance at 450 to 470 nm (the emission wavelength range of blue LEDs) of the reflective layer R formed in this example was 98%. Therefore, according to the present invention, the reflective layer R of the semiconductor light emitting element substrate has a good reflectance, and the manufacturing time can be effectively shortened.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Physical Vapour Deposition (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

【課題】製造時間を短縮すると共に、高性能な半導体発光素子基板の製造方法を提供する。 【解決手段】基板を加熱する基板加熱工程S3と、基板Sを洗浄する基板洗浄工程S6と、基板S上に、誘電体層H,Lを蒸着させる誘電体層形成工程S7と、基板の加熱を停止する基板加熱停止工程S8と、冷却手段11,12,13によって、輻射熱を吸収して基板S及び基板保持手段3を冷却する冷却工程S9と、誘電体層H,L上に反射層Rを蒸着させる反射層形成工程S11と、を備えてなることを特徴とする半導体発光素子基板の製造方法。

Description

半導体発光素子基板の製造方法
 本発明は、半導体発光素子基板の製造方法に係り、特に、製造時間を短縮し、高性能な半導体発光素子基板の製造方法に関する。
 半導体発光素子(LED)は、消費電力が低く長寿命であり、さらに発光効率が高いため、光源としての実用化が進んでいる。そして半導体発光素子の分野において、GaN,GaAlN,InGaN等のGaN系化合物半導体は可視光発光デバイスや高温動作電子デバイス用等に広く用いられるようになってきた。
 GaN系化合物半導体の製造では、基板表面において半導体膜を成長させるために、一般にサファイア基板が結晶基板として用いられている。サファイア基板は絶縁性であるため、GaN系化合物からなる発光層が設けられる基板面に対し、サファイア基板の裏側の面に電極を設けることができず、発光層と同じ面上にp電極及びn電極が設けられる。
 より詳細には、サファイア基板上にバッファー層、n型GaN系化合物層、GaN系発光層、p型GaN系化合物層の順に積層され、その上にp電極が設けられる。また、エッチングにより一部n型GaN系化合物層を露出させ、n型電極が設けられるのが一般的である。
 したがって、サファイア基板上にn型GaN系化合物層、GaN系発光層、p型GaN系化合物層が順に積層し、これらの各層と同じ面上にp電極及びn電極が設けられることにより、半導体発光素子が形成される。
 上記構成の半導体発光素子を各種デバイスに実装する際、実装方法としてはフェースアップ実装、フェースダウン実装の二種に大別される。フェースアップ実装とは、電極が形成された面を上方にして、基板をデバイス側に配設する方法であり、電極側から光を取り出す構成である。一方、フェースダウン実装とは、電極が形成された面を下方にして、電極をデバイス側に配設する方法であり、基板側から光を取り出す構成である。
 フェースアップ実装の場合、半導体発光素子において、サファイア基板上の各層及び電極を形成した面とは反対側の面に反射層を形成することにより、光の取り出し効率を向上させることができる。反射層に用いる材料としては、青色LEDの発光波長範囲(約450~470nm)における反射率が高いアルミニウム(Al)、銀(Ag)等が用いられる。なお、青色LEDの発光波長範囲における反射効率は、Alでは約92%、Agでは約95%であることが知られている。
 そして、サファイア基板と上記金属からなる反射層の間に、さらに増反射層となる誘電体層を複数設けることにより、より高い反射率を得ることができる。この誘電体層は、屈折率が高い物質からなる誘電体層(H)と、屈折率が低い物質からなる誘電体層(L)を、それぞれ波長460nmに対し、(λ)/4の光学膜厚となるように交互に積層させて形成される。
 このような屈折率の異なる誘電体層を備えた半導体発光素子基板の構成は、以下の式1または式2のように簡略的に表される。
   サファイア基板/aL(HL)/Al(またはAg)・・・(式1)
   サファイア基板/cH(LH)L/Al(またはAg)・・・(式2)
 なお、このときa,b,c,dは整数である。
 そして、上記の式1または式2で表された構成の半導体発光素子基板において、高屈折率誘電体層(H)の材料としてはTiO,Ta,Nb等、低屈折率誘電体層(L)の材料としてはSiO等が用いられる。
 高屈折率誘電体層(H)の材料としてTiO、低屈折率誘電体層(L)の材料としてSiOを用いた時、光学特性の計算結果は図7のようになる。図7から示されるように、高屈折率誘電体層(H)と低屈折率誘電体層(L)は、b,dが多いほど高い反射率を得ることができ好適である。しかし、b、dが多いとプロセス時間が長くなり、また、発光層の発熱に対し、熱伝導が悪くなるため、2<b<4が適している。
 上記誘電体層をサファイア基板上に成膜する際、真空蒸着法が一般的に用いられている。そして、真空蒸着法において、真空チャンバ内で基板表面に向けて誘電体材料を蒸発させる際に、基板上に堆積した蒸着層にイオンを照射することによって緻密化を行う蒸着方法、すなわち、イオンアシスト蒸着法が知られている。
 この蒸着法においては、イオン源により比較的低エネルギーのイオンビーム(ガスイオン)が基板に照射されると共に、ニュートラライザと呼ばれる中和器によって基板に電子が照射される。この構成により、イオンビームによる基板上に蓄積した電荷を中和しつつ、イオンビームの運動エネルギーによって緻密な光学薄膜を作製することが可能となっている(例えば、特許文献1)。また、成膜した誘電体層の結晶化も防止することができ、光学特性に優れ、さらに耐環境特性に優れた薄膜を形成することができる。
 しかし、特許文献1に記載の技術では、誘電体層の形成時、蒸発源が約2000℃の高温になる。さらに、イオンビームを照射するためのイオン源を用いる場合には、イオン源自体が高温になると共に、イオンの照射に伴い、基板が加熱される。このときの基板温度は、誘電体層の材料、成膜する厚さ、層数等に依存するが、基板温度は約100℃以上に加熱される。
 その結果、蒸発源やイオン源を熱源とする輻射熱により基板が加熱され、誘電体層の成膜後は基板温度が高温になっている。しかし、誘電体層の上にAlやAg等からなる反射層を形成する際、良好な光学特性を得るために、基板温度を50℃以下に冷却して成膜する必要がある。したがって、半導体発光素子基板の製造において、サファイア基板の裏面に複数の誘電体層及びAl等の反射層を形成するためには、基板を冷却するために冷却時間を設ける必要があり、製造には長時間を要するという問題点があった。
 このような基板温度の上昇を防止する技術として、特許文献2では、基板を冷却するための冷却面を真空チャンバ内に設ける技術が提案されている。この技術によれば、基板に対して蒸発源とは反対の側に設けられた冷却面によって基板が冷却されるため、基板温度の上昇を防ぐことができる。
特開2007-248828号公報 特開2008-184628号公報
 しかし、特許文献2に開示された技術はプラスチック等の熱変形温度が低い材料からなる基板に対して真空蒸着法により成膜を行うことを目的とした技術であり、半導体光学素子を製造する技術、より詳細には、高性能の反射層を形成する技術に関しては記載されていない。
 したがって、特許文献2に開示された技術を用いて、反射層の反射率が高く、高性能な半導体発光素子基板の製造方法が望まれていた。
 本発明の目的は、半導体発光素子基板の製造方法において、製造時間を短縮すると共に、高性能な半導体発光素子基板の製造方法を提供することにある。
 また、本発明の他の目的は、半導体発光素子基板の製造コストの低減を図り、製造コストが低廉な半導体発光素子基板の製造方法を提供することにある。
 前記課題は本発明の半導体発光素子基板の製造方法によれば、基板上に少なくとも屈折率の異なる2層以上の層から構成される誘電体層と、反射層と、を一方の面上に順に備えた半導体発光素子基板の製造方法であって、真空チャンバ内に配設された基板保持手段に前記基板を保持させる基板保持工程と、前記真空チャンバ内を排気する真空排気工程と、該真空排気工程と略同時に行われ、前記基板を加熱する基板加熱工程と、前記基板に対してイオンを照射して前記基板を洗浄する基板洗浄工程と、前記基板上に、前記誘電体層を蒸着させる誘電体層形成工程と、前記基板の加熱を停止する基板加熱停止工程と、前記基板の近傍であって前記基板とは非接触となる位置に配設された冷却手段によって、前記基板及び前記基板保持手段からの輻射熱を吸収して前記基板及び前記基板保持手段の冷却を開始する冷却工程と、前記誘電体層上に前記反射層を蒸着させる反射層形成工程と、をこの順に備えてなること、により解決される。
 従来の方法では、基板は真空中に配設されるため真空断熱されており、その結果、基板の冷却に長時間を要していた。さらに誘電体層形成工程において、蒸発源及びイオン源が加熱されており、その輻射熱を基板が受けるために、冷却効率が非常に低いものであった。
 このような問題点に対し、本発明の半導体発光素子基板の製造方法によれば、基板からの輻射熱を冷却手段によって吸収することにより、効果的に冷却することができる。したがって、複数の誘電体層を成膜した後、基板温度が上昇しても、真空チャンバ内で基板の輻射熱を吸収する冷却工程を備えていることにより、基板の冷却時間を短縮することができ、製造時間を短縮することができる。
 また、前記課題は、本発明の半導体発光素子基板の製造方法によれば、基板上に少なくとも屈折率の異なる2層以上の層から構成される誘電体層と、反射層と、を一方の面上に順に備えた半導体発光素子基板の製造方法であって、真空チャンバ内に配設された基板保持手段に前記基板を保持させる基板保持工程と、前記真空チャンバ内を排気する真空排気工程と、該真空排気工程と略同時に行われ、前記基板を加熱する基板加熱工程と、前記基板の近傍であって前記基板とは非接触となる位置に配設された冷却手段によって、前記基板及び前記基板保持手段からの輻射熱を吸収して前記基板及び前記基板保持手段の冷却を開始する冷却工程と、前記基板に対してイオンを照射して前記基板を洗浄する基板洗浄工程と、前記基板上に、前記誘電体層を蒸着させる誘電体層形成工程と、前記基板の加熱を停止する基板加熱停止工程と、前記誘電体層上に前記反射層を蒸着させる反射層形成工程と、をこの順に備えてなること、により解決される。
 このように本発明では、誘電体層形成工程、さらには基板洗浄工程よりも先に、基板及び基板保持手段からの輻射熱を冷却手段によって吸収し、基板及び基板保持手段を冷却する工程が設けられている。したがって、基板洗浄中、誘電体層形成中に基板温度が上昇しすぎることがなく、反射層形成工程を開始するまでの冷却時間をさらに短縮することができ、製造効率をさらに向上させることができる。
 また、複数の誘電体層を成膜していく工程においても基板が冷却されているため、良好な膜質の誘電体層を成膜することができる。
 このとき、前記基板洗浄工程の前に、前記真空チャンバ内が1×10-3Pa以下であるか判断する第一の判断工程を更に備え、前記真空チャンバ内が1×10-3Pa以下である場合、前記基板洗浄工程を行うと好ましい。
 このように、基板洗浄工程の前に第一の判断工程を設け、真空チャンバ内が1×10-3Pa以下である時に基板洗浄工程を行い、さらに基板洗浄工程に引き続いて誘電体層の成膜を開始する構成とすると、良好な膜質の誘電体層を形成することができ、その結果、反射層と組み合わせることにより高い反射率を得ることができる。一方、誘電体層を成膜する時の真空チャンバ内の圧力が1×10-3Paよりも高い場合には、良好な膜質の誘電体層を得ることが難しく、反射層と組み合わせた際に、高い反射率を得ることが難しくなる。
 さらに、前記反射層形成工程の前に、前記基板の温度が50℃以下であると共に前記真空チャンバ内が3×10-4Pa以下であるか判断する第二の判断工程を更に備え、前記基板の温度が50℃以下であると共に前記真空チャンバ内が3×10-4Pa以下である場合、前記反射層形成工程を行うと好適である。
 このように、反射層形成工程の前に第二の判断工程を設け、基板の温度が50℃以下で、且つ真空チャンバ内が3×10-4Pa以下である時にのみ反射層を成膜する工程が行われる構成とすることにより、高い反射率を備えた反射層を形成することができる。一方、基板温度が50℃よりも高い場合や、また、反射層成膜時の真空チャンバ内の圧力が3×10-4Paよりも高い場合は、反射層の反射率が低くなり、良好な反射層を得ることが難しい。
 また、前記反射層は、アルミニウムを蒸着させて形成されてなると好ましい。
 反射層の材料として、高い反射率を備えたアルミニウムを用いることにより、高い反射率を得ることができる。また、各誘電体層に対して高い密着性を備えた反射層とすることができる。
 さらにまた、前記誘電体層は、屈折率の高い層と、屈折率の低い層を交互に組み合わせて形成されてなると好ましい。
 誘電体層の材料として、高屈折率誘電体と低屈折率誘電体とを用い、これらを交互に蒸着させることにより、反射層と組み合わせた際、より高い反射率を得ることができる。
 また、前記第二の判断工程は、前記真空チャンバに真空バルブを介して接続された真空ポンプ及び前記真空バルブに接続された圧力制御手段と、前記基板の近傍に設置された温度計及び前記冷却手段に接続された温度制御手段と、によって行われ、前記反射層形成工程は、前記圧力制御手段及び前記温度制御手段に接続されたシャッター制御手段が蒸発源上に配設されたシャッターを開く制御を行うことによって行われると好適である。
 このように、圧力制御手段によって真空チャンバ内の圧力が監視されると共に、自動的に真空バルブの開閉が行われ、真空チャンバ内の圧力が制御される構成とすると、作業性が良くなり、製造効率を向上させることができる。
 さらに、温度制御手段によって基板温度が監視されると共に、冷却手段において冷却力の強弱が制御される構成とすると、作業性が良くなり、製造効率を向上させることができる。
 そして、真空チャンバ内の圧力と基板温度が各制御手段によって監視され、それぞれが所定条件以下となった場合に、圧力及び温度制御手段に接続されたシャッター制御手段によってシャッターが開かれる構成とすると、作業効率をさらに向上させることができる。また、各条件を作業者が誤認して各層を成膜することがなく、均一な条件で半導体発光素子基板を製造することができる。
 請求項1に係る半導体発光素子基板の製造方法によれば、反射層の成膜を開始する前に、基板を冷却する時間が短縮されるため、製造効率を向上させることができる。また、反射層及び誘電体層の成膜に適した圧力条件、温度条件を設けることにより、高い反射率を備えた半導体発光素子基板を提供することができる。
 請求項2に係る半導体発光素子基板の製造方法によれば、基板洗浄時や、誘電体層形成時においても基板の冷却を行うため、反射層の成膜を開始する前に基板を冷却する時間がさらに短縮される。また、反射層及び誘電体層の成膜に適した圧力条件、温度条件を設けることにより、高い反射率を備えた半導体発光素子基板を提供することができる。
 請求項3に係る半導体発光素子基板の製造方法によれば、良好な膜質の誘電体層を形成することができる。
 請求項4に係る半導体発光素子基板の製造方法によれば、良好な膜質の反射層を形成することができる。
 請求項5に係る半導体発光素子基板の製造方法によれば、反射層を形成する材料をアルミニウムとすることにより、より高い反射率の反射層を形成することができる。
 請求項6に係る半導体発光素子基板の製造方法によれば、誘電体層の各層において、屈折率の高い層及び低い層を交互に組み合わせることにより、より反射率を向上させることができる。
 請求項7に係る半導体発光素子基板の製造方法によれば、真空チャンバ内の圧力の監視、制御及び基板温度の監視、制御を作業者が行う必要がないため、作業効率が向上する。また、真空チャンバ内の圧力及び基板温度を作業者が誤認して各層の成膜を開始することがないため、均一な品質の反射層及び誘電体層を備えた半導体発光素子基板を製造することができる。
本発明の一実施形態に係る薄膜形成装置を示す説明図である。 本発明の他の実施形態に係る薄膜形成装置を示す説明図である。 本発明の一実施形態に係る半導体発光素子基板の概略断面図である。 本発明の一実施形態に係る半導体発光素子基板の製造工程のフローチャート図である。 本発明の他の実施形態に係る半導体発光素子基板の製造工程のフローチャート図である。 本発明の実施例に係る半導体発光素子基板の製造時間と基板温度との関係を示すグラフ図である。 屈折率の異なる誘電体を積層した反射層の波長と反射率との関係を示すグラフ図である。
1  イオンアシスト蒸着装置(薄膜形成装置)
2  真空チャンバ
3  基板ホルダ(基板保持手段)
3a  貫通孔
3b  取付部材
4  基板ホルダ回転軸
5  基板ホルダ回転モータ
6  蒸発源
7  イオン源
8  加熱手段
11  冷凍機(冷却手段)
12  冷媒管(冷却手段)
13  冷却板(冷却手段)
13a  近接冷却面
17,18  取付治具
20  圧縮機
21  冷却ソレノイドバルブ
22  水冷コンデンサ
23  解凍ソレノイドバルブ
24  温度制御手段
25  温度計
26  熱交換器
31  真空バルブ
32  圧力計
33  真空ポンプ
34  圧力制御手段
43  上部冷却板(冷却手段)
43a  近接冷却面
44  底部冷却板(冷却手段)
44a  蒸発源側冷却面
44b  開口(蒸発源貫通開口)
44c  開口(イオン源貫通開口)
45  側部冷却板(冷却手段・防着板)
45a  側壁側冷却面
46  冷媒管
100  バッファー層
110  n型GaN層
120  発光層
130  p型GaN層
210  n電極
230  p電極
S  基板
P  蒸着物質
R  反射層
H  高屈折率誘電体層
L  低屈折率誘電体層
 以下に、本発明の一実施形態について図面を参照して説明する。なお、以下に説明する部材、配置等は、本発明を限定するものではなく、本発明の趣旨に沿って各種改変することができることは勿論である。
 図1は、薄膜形成装置の一種であるイオンアシスト蒸着装置1の説明図であり、装置の一部を断面として示している。
 この図に示すように、イオンアシスト蒸着装置1は、真空チャンバ2と、基板ホルダ3と、基板ホルダ回転軸4と、基板ホルダ回転モータ5と、蒸発源6と、イオン源7と、加熱手段8と、冷凍機11と、冷媒管12と、冷却板13と、を主要な構成要素として備えている。
 真空チャンバ2は、内部で成膜を行うための容器である。本実施形態の真空チャンバ2は、ほぼ円筒形状をした中空体であり、基板Sを配置して薄膜形成を行うことが可能となっている。真空チャンバ2には、真空ポンプ33が接続されており、この真空ポンプ33が真空チャンバ2の内部を排気することで、真空チャンバ2の内部は1×10-2~1×10-5Pa程度の真空状態とすることができる。
 また、真空チャンバ2には、内部にガスを導入するためのガス導入管(不図示)が形成されている。
 真空チャンバ2の材料としては、アルミニウムやステンレス等の金属材料等を挙げることができる。本実施形態では、ステンレス鋼の一種であるSUS304を用いている。
 基板ホルダ3は、真空チャンバ2の内部に設けられ、基板Sを保持するための部材である。本実施形態の基板ホルダ3は、平板状の部材で構成されているが、所定の曲率を有するドーム状の部材で構成されてもよい。なお、基板ホルダ3は、本発明の基板保持手段に相当する。
 基板ホルダ3には、一方の板面から他方の板面まで貫通する貫通孔3aが形成されている。基板Sは、この貫通孔3aを塞ぐように、取付部材3bを用いて基板ホルダ3に取り付けられている。
 本実施形態の取付部材3bは、基板ホルダ3の貫通孔3aよりも大径の円盤状をなしており、円盤面の一部が下向きに凹んだ形状をしている。この凹んだ部分には開口が形成されている。基板ホルダ3への基板Sの取付けは、まず基板ホルダ3の貫通孔3aに取付部材3bを載置し、次に取付部材3bの凹部に基板Sを、成膜面を下にした状態で載置する。このように、本実施形態では、基板ホルダ3に取付部材3bと基板Sをただ載せるだけで、簡単に基板Sをセットすることができる。なお、基板ホルダ3の回転時に基板Sが動かないように、基板Sを取付部材3bに固定するようにしてもよい。
 基板ホルダ3の中心には、基板ホルダ3の板面に対して垂直な方向に棒状の基板ホルダ回転軸4の一端側が接続されている。基板ホルダ回転軸4の他端側は、真空チャンバ2の壁面を貫通して真空チャンバ2の外部へ延出しており、基板ホルダ回転モータ5の出力軸と接続されている。
 基板ホルダ回転モータ5は基板ホルダ3を回転させるための装置である。基板ホルダ回転モータ5は、真空チャンバ2の外部に設けられている。基板ホルダ回転モータ5の出力軸は基板ホルダ回転軸4の軸心と一致しており、基板ホルダ回転モータ5の回転出力が基板ホルダ回転軸4を介して基板ホルダ3に伝達されて基板ホルダ3が回転する。
 なお、基板ホルダ回転モータ5の出力軸は、図示しない磁気シールベアリングなどの手段により真空シールされている。
 基板Sは、表面に各層が形成される基礎となる部材である。本発明では、半導体発光素子基板の基板Sとして汎用性が高いサファイア基板を用いるのが好ましいが、その他、半導体発光素子基板の素材として適した材料を用いることができる。
 また、本実施形態では基板Sの形状として平板状のものを用いているが、これに限定されず、半導体発光素子基板が形成される基板として適当な形状のものを用いることができる。
 蒸発源6は、真空チャンバ2の内部下側に配設され、基板Sにむけて蒸着物質P、すなわち高屈折率物質、低屈折率物質及び金属(Al,Ag等)を放出する蒸発手段である。蒸発源6は、蒸着物質Pを載せるためのくぼみを上部に備えた蒸発ボートと、蒸着物質Pに電子線を照射して蒸発させる電子銃と、を備えている。さらに、本実施形態では、蒸発ボートから基板Sに向かう蒸着物質Pを遮断する位置に回転自在に設けられた図示しないシャッターを備えている。そしてこのシャッターは不図示のシャッター制御手段によって適宜開閉制御される。
 本実施形態では、蒸発源6として、蒸着装置で用いられる一般的な装置を採用している。すなわち、蒸発ボートとして円筒形のハースライナーが複数個設けられ、これらハースライナーが円盤状ハースの同心円状の窪みに配設されている。円盤状ハースは、銅などの熱伝導性の高い金属で形成され、図示しない水冷装置により直接的または間接的に冷却されている。各ハースライナーには、蒸着物質Pが収容されており、一つのハースライナーの蒸着物質Pがなくなると、円盤状ハースが回転し、次のハースライナーの蒸着物質Pを蒸発させる。
 円盤状ハース自体は水冷されているので熱源とはなりにくいが、ハースライナーに残った蒸着物質Pは通常酸化物であるため熱伝導率が低く、冷却されにくい。このため、ハースライナー上の蒸着物質Pは、基板Sを輻射熱により加熱する熱源となる。
 蒸発ボートに薄膜の原料となる蒸着物質Pを載せた状態で、1~3kW程度の電子線を発生させ、これを蒸着物質Pに照射すると、蒸着物質Pが加熱されて蒸発する。この状態で図示されていないシャッターを開くと、蒸発ボートから蒸発する蒸着物質Pは基板Sに向けて真空チャンバ2の内部を移動して、基板Sの表面に付着する。成膜中は、蒸発源6の温度は1500~2500℃にまで上昇する。
 また、蒸発源6は、蒸着物質Pの溶かし込みのために成膜時以外のシャッターが閉じた状態でも予備加熱されているため、シャッターやその周囲の温度も上昇する。
 なお、蒸発源6としては、このような電子銃により蒸発される装置に限定されず、例えば抵抗加熱により蒸着物質Pを蒸発させる装置でもよい。
 本実施形態において形成される半導体光学素子は、高屈折率物質と低屈折率物質とを交互に積層させ、さらにその上に反射層Rを積層させて成膜しているが(図3を参照)、蒸着物質Pの種類や数に依存して、蒸発源6の数や配置を適宜変更可能である。
 イオン源7は正のイオンを基板Sに向けて照射するための装置であり、反応ガス(例えばO)や希ガス(例えばAr)のプラズマから帯電したイオン(O ,Ar)を引き出し、加速電圧により加速して射出する。イオン源7としては、真空蒸着装置において一般的に用いられる公知のものを用いることができる。
 蒸発源6から基板Sに向けて移動する蒸着物質Pは、イオン源7から照射される正イオンの衝突エネルギーにより、基板Sの表面に高い緻密性でかつ強固に付着する。このとき、基板Sはイオンビームに含まれる正イオンにより正に帯電する。
 なお、必要に応じて、正に帯電した基板Sや基板ホルダ3に電子ビームを照射して電荷の中和を行うニュートラライザを設けるようにしてもよい。
 また、本実施形態では、イオン源7から放出されるイオンにより、基板Sの表面を予めイオンクリーニングしてから、各層を形成する。
 本実施形態では、基板ホルダ3の下方に加熱手段8が設けられている。加熱手段8は、輻射熱により基板Sを加熱するための加熱源である。なお、このような加熱手段8としては、ハロゲンランプ、赤外線ヒータ等の公知のものが用いられる。また、後述する温度計25で測定された温度に基づいて、温度制御手段24により、加熱手段8の発熱量を制御してもよい。
 真空チャンバ2の内部の圧力は圧力計32によって計測、表示され、所望の圧力を圧力制御手段34によって制御することができる。すなわち、圧力計32によって計測された内部圧力が、圧力計32に接続された圧力制御手段34によって監視され、所定の圧力よりも減圧になると圧力制御手段34に接続された真空バルブ31が閉じられることにより、真空ポンプ33による排気が行われなくなる。また、真空チャンバ2側に、不図示のMV(ミニチュアバルブ)を備えた構成としても良い。
 一方、所望の圧力まで減圧されていない状態では、圧力制御手段34に接続された真空バルブ31が開かれ、真空ポンプ33による排気が行われる。このように、圧力制御手段34によって真空チャンバ2の内部圧力が監視され、真空チャンバ2内の圧力を所定の値に制御することができる。
 なお、真空チャンバ2において、圧力計32が配設される部分は真空シールされた構成となっている。また、圧力計32、真空バルブ31、真空ポンプ33はそれぞれ公知のものを用いることができる。
 次に、本実施形態の冷却手段について説明する。
 冷却手段は、基板Sを冷却してその温度を適当な温度で維持するための手段である。冷却手段は、冷凍機11と冷媒管12と冷却板13とを主要な構成要素としている。
 真空チャンバ2の内部には、冷却板13が配設されている。冷却板13は、円盤状をしており、基板ホルダ3の上面に沿って配置されている。すなわち、基板ホルダ3を挟んで蒸発源6が設けられる側とは反対側に冷却板13が配設されている。冷却板13は、銅やアルミニウムといった熱伝導性の高い金属材料などで形成されている。
 なお、冷却板13は、基板ホルダ3や基板Sの温度、冷凍機11の性能などを鑑みて、完全な板状ではなく、穴の開いた板状あるいは短冊状であってもよい。
 冷却板13のうち真空チャンバ2の中心側、すなわち基板Sが配設される側の面は、本発明の近接冷却面13aを構成する。また、近接冷却面13aと反対側の面には、冷媒管12が当接している。このため、冷媒管12を流れる冷媒により、冷却板13のうち冷媒管12に当接する面が冷却され、これと反対側の面に形成された近接冷却面13aも冷却される。
 冷却板13は、取付治具17を用いて真空チャンバ2内に固定されている。冷却板13と基板ホルダ回転軸4との間には隙間が空いており、基板ホルダ回転軸4がスムーズに回転できるようになっている。なお、基板ホルダ回転軸4から熱伝導で熱が流入するのを防ぐために、基板ホルダ回転軸4の途中に熱伝導率の低い物質を挟んで熱絶縁したり、基板ホルダ回転軸4の冷却用の冷却板を配置したりしてもよい。
 また、冷却板13の壁面と基板ホルダ回転軸4の外周面との間にベアリングなどを設けて基板ホルダ回転軸4をスムーズに回転させるとともに、基板ホルダ回転軸4に沿って熱の移動が生じにくくするようにしてもよい。
 冷媒管12は、内部が中空の管状部材により構成されており、後述する冷却板13を冷却するクライオコイルとしての役割を有している。冷媒管12は、一端が冷凍機11の吐出口に、他端が流入口に接続されており、真空チャンバ2の内部に導入されている。そして、冷凍機11から吐出される冷媒を一端側から他端側へ流すことで、冷媒を冷凍機11に循環させるよう構成されている。
 冷媒管12は、冷媒流入側が外側、送出側が内側となるように渦巻状に巻回しており、円盤状の冷却板13の外側平面に当接して固定されている。なお、冷媒管12を固定する形態としては、このような渦巻状に限定されず、螺旋状、蛇行状などであってもよい。
 冷凍機11は、冷媒を冷却するとともにこれを冷媒管12に供給して循環させるための装置である。本実施形態の冷凍機11は、冷媒管12をクライオコイルとする公知の冷凍装置を用いている。
 具体的に説明すると、冷凍機11は、冷媒(ガス冷媒)を圧縮する圧縮機20と、圧縮機20からの冷媒を冷却水との熱交換により冷却する水冷コンデンサ22と、圧縮水冷された冷媒を膨張させて冷却する熱交換器26と、冷凍機11の吐出口側に設けられた冷却ソレノイドバルブ21及び解凍ソレノイドバルブ23とを備えている。熱交換器26の内部には、図示しない膨張弁が設けられている。
 そして、冷凍機11により冷却された冷媒を冷媒管12に流すことで、クライオコイルとしての冷媒管12が冷却される。冷媒管12内の冷媒は、真空チャンバ2内で温度上昇して一部蒸発し、温度の高いガス冷媒として冷凍機11に環流する。ガス冷媒は、圧縮機20で圧縮され、水冷コンデンサ22と熱交換器26で再び冷却されることで低温の冷媒となり、吐出口から冷媒管12に再度送出される。
 冷凍機11には、冷媒管12を循環したガス冷媒を流入させる流入口が設けられている。流入口から流入した高温のガス冷媒は、冷凍機11内で再度冷却される。
 さらに、冷却ソレノイドバルブ21を閉じ、解凍ソレノイドバルブ23を開くことで、圧縮機20で圧縮され比較的温度が高いガス冷媒(以下、「加熱ガス」という。)を、水冷コンデンサ22を通さないで直接冷媒管12に流すことで、クライオコイルの温度を室温程度まで急速に高めることができる。
 冷凍機11の吐出口側には、冷却ソレノイドバルブ21と解凍ソレノイドバルブ23とが設けられている。各ソレノイドバルブ21,23は、いずれも2つの弁を備え、電磁制御によりこれを切り替えることができる弁である。
 冷却ソレノイドバルブ21は、熱交換器26から冷媒管12へ冷媒を供給するラインの途中に設けられている。また、解凍ソレノイドバルブ23は、上記ラインから分岐して圧縮機20の出力側のラインに接続される分岐ラインの途中に設けられている。
 冷凍機11は、3つのモードを取り得る。すなわち、ソレノイドバルブ21,23がいずれも閉じて冷媒管12に冷媒及び加熱ガスのいずれも供給されない「スタンバイモード」と、冷却ソレノイドバルブ21のみが開いて冷媒管12へ冷媒が供給される「冷却モード」と、解凍ソレノイドバルブ23のみが開いて冷媒管12へ加熱ガスが供給される「解凍モード」である。
 冷却開始前は、冷凍機11のモードは「スタンバイモード」とされ、冷却ソレノイドバルブ21、解凍ソレノイドバルブ23のいずれも閉じた状態となっている。
 冷凍機11により冷却板13を冷却する場合、冷凍機11のモードは「冷却モード」とし、冷却ソレノイドバルブ21を開くとともに、解凍ソレノイドバルブ23を閉じたままとする。これにより、例えば-100℃以下に冷却された冷媒が冷媒管12に流れ、冷却板13が-100℃以下に冷却される。
 一方、イオンアシスト蒸着装置1を大気に開放する場合、冷却板13の温度を0℃以上の室温程度にする必要があるため、冷凍機11のモードを「解凍モード」とし、冷却ソレノイドバルブ21を閉じるとともに、解凍ソレノイドバルブ23を開く。これにより、加熱ガスが冷媒管12に供給され、冷却板13の温度が上昇する。
 基板Sの温度を測定するための温度計25が基板Sに近接して配置されている。温度計25は、熱電対などの公知の温度測定手段を用いることができる。
 そして、温度計25は温度制御手段24と接続されている。温度制御手段24は、冷凍機11の冷却ソレノイドバルブ21や解凍ソレノイドバルブ23を開閉制御するための電磁弁とも接続されており、それぞれの開閉状態を適宜変更することにより冷却板13による基板Sの冷却温度を調整している。
 この構成により、成膜時、成膜条件に応じて供給電力を変化させて温度を一定に保つことができる。
 冷凍機11は、装置の運転状態に応じて「スタンバイモード」、「冷却モード」及び「解凍モード」のいずれかのモードを実施可能となっている。冷却板13の温度は、冷凍機11に戻ってくる冷媒の温度を冷凍機11内に設けた温度計(不図示)で検出することで測定できる。予め設定された冷却板温度に基づいて、「冷却モード」における冷凍機の運転状態を制御し、冷却板13の温度を制御することができる。
 近接冷却面13aは基板Sに近い位置に設けられているため、基板S及び基板ホルダ3からの輻射熱を吸収してこれを冷却する。すなわち、温度の高い基板Sや基板ホルダ3から輻射される熱量は、温度の低い近接冷却面13aから輻射される熱量よりも大きいため、基板Sや基板ホルダ3から近接冷却面13aに熱が移動することで放射冷却が起こり、基板Sと基板ホルダ3が冷却される。
 このような構成を備えることで、冷却板13は、基板ホルダ3の上側から基板Sを冷却することが可能となっている。このため、基板Sの温度上昇を抑制し、成膜時、所望の基板温度を保つことが可能となる。さらに、成膜時に基板温度が上昇しても、基板Sが冷却されているため、冷却時間を効果的に短縮することができる。
 また、基板Sは取付部材3bに載置されて基板ホルダ3に取り付けられているため、基板Sの上下面が外部に露出し、基板Sの露出面と近接冷却面13aとの間を遮蔽するものが何もない状態となっている。このため、基板Sから近接冷却面13aへ輻射熱がスムーズに移動し、基板Sを効率的に冷却することが可能となっている。
 さらに、基板Sを均一に冷却するために、基板Sの表面全体を基板ホルダ3とほぼ同じ材料で形成された被覆部材で覆ってもよい。この場合、被覆部材と基板ホルダ3がほぼ同じ熱輻射率で、かつ、基板Sと被覆部材のそれぞれの熱容量を足し合わせた合計の熱容量が基板ホルダ3の熱容量とほぼ同じであることが好ましい。
 次に、図1の真空チャンバ2内での熱の移動について説明する。
 冷却板13と基板ホルダ3は近接して設置されているので、実質的に平行平板と考えてよい。平行平板の単位面積あたりの輻射熱による熱伝達は、以下の式3で表される。
  Q=εsσT -εcσT   ・・・(式3)
 ここで、Qは熱量、εsは基板Sの熱輻射率、εcは冷却板13の熱輻射率、σはステファン・ボルツマン定数、Tsは基板Sの絶対温度〔K〕、Tcは冷却板13の絶対温度〔K〕である。
 εsとεcは同じオーダなので、Tsに比べてTcが十分低ければ、熱は基板Sから冷却板13に一方的に流れる。この効果は、例えばTsが100℃の場合は、冷却板13の片面1mあたり1kW前後の冷却効果であり、冷却板13がある場合はない場合と比較して基板Sの温度を30℃以上低くすることができる。冷却板13は、上下両面で熱を吸収するため、冷却板13の冷却能力としては2kW程度あればよいことになる。
 蒸発源6は1~3kW、イオン源7は0.5~1.5kWの熱源となるので、冷却板13(図2の上部冷却板43)のみで冷却効果が不足する場合は、図2に示す他の実施形態のように底部冷却板44や側部冷却板45を設置することで、基板Sの温度を一層効果的に低下させることができる。
 次に、図2を参照して本発明の他の実施形態に係る薄膜形成装置について説明する。図2は、本発明の他の実施形態に係る薄膜形成装置1の説明図である。
 本実施形態の薄膜形成装置(イオンアシスト蒸着装置)1は、基板ホルダ3の上面側に設けられた冷却板(上部冷却板43)の他に、底部冷却板44と側部冷却板45を備え、基板ホルダ3の周囲全体を冷却板で取り囲んでいる点を特徴としている。
 真空チャンバ2の内部には、基板ホルダ3を挟んで蒸発源6の反対側に配置され基板ホルダ3に近接して配置される上部冷却板43と、真空チャンバ2の底部に配置された底部冷却板44と、真空チャンバ2の内側面に沿って配置された側部冷却板45と、を主要な構成要素としている。
 このうち、上部冷却板43は、第1の実施形態に係る冷却板13と同様の構成であるため、説明を省略する。すなわち、上部冷却板43は、本発明の冷却手段の一部を構成し、基板ホルダ3側の面が近接冷却面43aを構成する。
 底部冷却板44は、本発明の冷却手段の一部を構成し、基板ホルダ3側の面が蒸発源側冷却面44aを構成している。また、側部冷却板45は、本発明の冷却手段の一部を構成し、基板ホルダ3側の面が側壁側冷却面45aを構成している。さらに、冷凍機11、冷媒管12は、本発明の冷却手段に相当する。
 底部冷却板44には、蒸発源6を貫通させるための開口44b(蒸発源貫通開口)と、イオン源7を貫通させるための開口44c(イオン源貫通開口)とが形成されている。蒸発源6は開口44bを、イオン源7は開口44cを通じて、それぞれの上部側が冷却板13により囲まれた領域内に位置している。このように、底部冷却板44は、開口44b、44cを備えることで、蒸発源6やイオン源7から基板Sへ供給される蒸着物質Pやイオンビームを妨げない形状となっている。
 側部冷却板45は、真空チャンバ2の側部内壁面に着脱自在に取り付けられている。側部冷却板45は、防着板としての機能を兼ねている。すなわち、側部冷却板45は、蒸発源6からの蒸着物質Pが真空チャンバ2の側部内壁面に付着することを防止する部材としての機能を有している。
 そして、側部冷却板45に蒸着物質Pが付着して真空チャンバ2内が汚染される状況になると、側部冷却板45を真空チャンバ2から取り外し、サンドブラスト等により表面を研磨することで蒸着物質Pを除去することが可能となる。これにより、真空チャンバ2内をクリーンな状態とすることができる。
 なお、底部冷却板44も、側部冷却板45と同様に、着脱自在で防着板としての機能を兼ね備えている。
 上部冷却板43、底部冷却板44、側部冷却板45の真空チャンバ2壁面側には、冷媒管46が当接している。冷媒管46は、第1の実施形態の冷媒管12と同様に、内部に冷媒を流すことが可能な管状部材である。
 冷媒管46は、上部冷却板43の上側平面で渦巻状に巻回し、次に側部冷却板45の外周面を螺旋状に周回し、底部冷却板44の下側平面で渦巻状に巻回している。冷凍機11の吐出口側は上部冷却板43の一端に接続され、流入口側は底部冷却板44の一端に固定されている。このため、冷凍機11から供給される冷媒は、上部冷却板43、側部冷却板45、底部冷却板44を順次循環し、再び冷凍機11に還流する。
 本実施形態では、上部冷却板43、底部冷却板44、側部冷却板45が基板ホルダ3の周囲全体を取り囲む構成となっている。すなわち、底部冷却板44及び側部冷却板45により蒸発源6やイオン源7の熱が吸収され、更には基板ホルダ3からの輻射熱も吸収されるため、基板Sの上方のみに冷却板13を設けた上記実施形態と比較して、一層確実に基板Sを冷却することができる。
 底部冷却板44と側部冷却板45は、いずれも本発明の任意的構成要素である。これら底部冷却板44、側部冷却板45は、基板Sの耐熱温度や成膜条件(電子銃やイオン源7への入力パワー条件、成膜時間など)により、特別な冷媒を用いずに、単に水を循環させて水冷により冷却するようにしてもよい。また、上部冷却板43のみで基板Sを十分に冷却できる場合は、これらの底部冷却板44、側部冷却板45による冷却を行わなくてもよい。
 さらに、本実施形態では、上部冷却板43、底部冷却板44、側部冷却板45を冷却する冷凍機11は共通の装置であるが、各冷却板43~45を冷却するための個別の冷凍機を設けるようにしてもよい。
 次に、図3を用いて本発明の一実施形態に係る半導体発光素子基板の構成を説明する。図3は、本発明の一実施形態に係る半導体発光素子基板の概略断面図である。
 一般的に半導体発光素子は、図3のように、サファイア等によって構成される基板S上に、バッファー層100、n型GaN層110、発光層120、p型GaN層130が順に積層される。そして、n型GaN層110の一部はエッチングによって階段状に除去され、この除去された部分にn電極210が形成されている。また、p電極230はp型GaN層130上に形成される。
 一方、基板Sにおいて、発光層120を含む各層が設けられた面とは反対側の面上に、増反射層に相当する各誘電体層H,L及び反射層Rが設けられる。
 以下、本発明の実施形態に係る半導体発光素子基板の基板Sにおいて、反射層R側に関して説明する。
 各誘電体層H,Lは、基板S上に、高屈折率誘電体層Hと低屈折率誘電体層Lが交互に積層される。図3では、基板S上に高屈折率誘電体層Hから順に、各誘電体層H,Lが計4層積層された構成を図示しているが、各層は何層設けられていてもよく、屈折率が相対的に高い物質、低い物質からなる膜を交互に組み合わせた構成であればよい。
 高屈折率誘電体層Hを形成する物質として、例えば、チタン酸化物(TiO、屈折率は2.52),ジルコニウム酸化物(ZrO、屈折率は2.4),タンタル酸化物(Ta、屈折率は2.16),ニオブ酸化物(Nb、屈折率は2.33)が挙げられる。また、低屈折率誘電体層Lを形成する物質として、例えば、アルミニウム酸化物(Al、屈折率は1.76),ケイ素酸化物(SiO、屈折率は1.45),フッ化マグネシウム(MgF、屈折率は1.37)が挙げられる。
 上記構成の各誘電体層H,Lが形成された後、反射層Rが形成される。反射層Rは、反射率の高い金属によって形成され、例えば、アルミニウム(Al),銀(Ag)等が用いられる。この反射層Rの材料としてAlを用いる際には、成膜時の基板温度、真空チャンバ2内の圧力が大きく反射率に関係する。
 そして、これら各誘電体層H,L及び反射層Rは、上記の薄膜形成装置1を用いて、各種材料を蒸着させることにより形成される。なお、各膜厚は所望の反射率に応じて適宜設計される。また、各誘電体層H,Lを形成する際には、真空チャンバ2内の圧力を1×10-3Pa以下、より好ましくは1×10-4~1×10-3Pa程度としてから各誘電体層H,Lを成膜する。各誘電体層H,Lを成膜する時、1×10-3Paよりも高い圧力下で成膜すると、良好な膜質の各誘電体層H,Lを得ることが難しい。またこのとき、基板Sの温度は100~120℃、好ましくは110℃程度とすると、各誘電体層H,Lの充填密度が高くなるため、好ましい。
 各誘電体層H,L上に、Alを用いて反射層Rを形成する際には、基板温度が50℃以下、且つ真空チャンバ2内の圧力を3×10-4Pa以下にして成膜する。このように、Alを用いて反射層Rを成膜する時、基板Sの温度が室温(25℃)程度から70℃、より好ましくは25℃~50℃とすると、良好な反射率の反射層Rを得ることができる。また、反射層Rを成膜する時、基板Sが配設される真空チャンバ2内の圧力が1×10-4Pa~3×10-4Pa程度とすると、良好な反射率の反射層Rを得ることができる。
 一方、基板温度が70℃よりも高い場合や、内圧が3×10-4Paよりも高い場合には、良好な反射率の反射層Rを得ることが難しい。
 なお、図3では基板S上に、バッファー層100,n型GaN層110,発光層120,p型GaN層130が順に積層され、これら半導体層と反対側に反射層Rを形成した例を示したが、半導体層の構成はこれに限定されない。半導体発光素子として機能する構成であれば、その他の材料からなる半導体層が、図3とは異なる構成で設けられていても良いのは勿論である。
 次に、本実施形態の薄膜形成装置1を用いて上記構成の各誘電体層H,L及び反射層Rを成膜する成膜プロセスについて、図4及び図5を用いて説明する。なお、図4及び図5では各工程の順序が異なる部分があるが、各誘電体層H,Lの材料、膜厚等に依存して適宜選択される。
 まず、図4を参照して本発明の一実施形態に係る半導体発光素子基板の製造工程について説明する。図4は、本発明の一実施形態に係る半導体発光素子基板の製造工程のフローチャート図である。
 本製造工程では、まず、基板S(図3参照)を、反射層Rが形成される面を下に向けて基板ホルダ3にセットし、真空チャンバ2の扉を閉じる(基板保持工程S1)。次に、真空バルブ31を開き、真空チャンバ2の真空排気を行う(真空排気工程S2)。なお、この操作は圧力制御手段34によって行われても良い。
 基板保持工程S1では、基板Sを、反射層Rが成膜される面を蒸発源6側に向けて基板ホルダ3にセットする。より詳細には、バッファー層100,n型GaN層110,発光層120,p型GaN層130が順に積層され、各電極210,230が形成された基板S(図3参照)を、各半導体層が形成されていない面を下に向けて基板ホルダ3にセットする。
 なお、各半導体層の成膜に関し、基板保持工程S1の前に各半導体層を基板Sの一方の面上に形成する工程を備えるか、または反射層形成工程S10の後に各半導体層を形成する工程を備えていても良い。ただし、一般に、GaN系化合物によって構成される各半導体層の成膜は過酷な条件を必要とするため、予め基板S上に各半導体層を形成した後、各半導体層の裏面に各誘電体層H,L及び反射層Rを形成する工程を行うのが好ましい。
 真空チャンバ2内を減圧状態にした後、基板Sが設定温度(本実施形態では110℃)となるように加熱手段8による加熱が開始され、温度制御手段24によって基板Sの温度が設定温度になるように調整される(基板加熱工程S3)。このとき、加熱手段8もまた、温度制御手段24に接続されていると好ましい。また、誘電体層形成工程S7が開始されるまでに、基板Sの温度が設定温度となるように制御されていればよい。
 このように、基板Sを加熱して一定温度に保持した状態で成膜を行うと、基板S上に形成される膜に関し、充填密度が高くなるので好ましい。
 その後、真空チャンバ2内の圧力が圧力計32によって計測、表示され、圧力制御手段34において1×10-3Pa以下となったか判断される(第一の判断工程S4)。
 第一の判断工程S4において、真空チャンバ2内の圧力が1×10-3Pa以下に達していない場合(第一の判断工程S4:No)は、真空バルブ31は引き続き開いた状態に保持され、真空ポンプ33によって排気が継続される。
 一方、真空チャンバ2内の圧力が1×10-3Pa以下に達した場合(第一の判断工程S4:Yes)は、圧力制御手段34によって真空バルブ31が適宜開閉され、真空ポンプ33による排気量が制御され、真空チャンバ2内が1×10-3Pa以下に維持される。なお、真空チャンバ2内が所定の圧力に達した場合(第一の判断工程S4:Yes)であっても、真空バルブ31及び不図示のMV(ミニチュアバルブ)が開いた状態に維持され、真空排気が継続されていると好ましい。
 真空チャンバ2内が1×10-3Pa以下に維持された後、基板Sを保持した基板ホルダ(基板保持手段)3が回転し(基板保持手段回転工程S5)、基板Sに対してイオン源7からイオンビームが照射される。基板Sにイオンビームを照射することにより、基板Sの表面に付着した汚染物質、特に炭化水素系の重合物等を効果的に除去することができる(基板洗浄工程S6)。なお、基板保持手段回転工程S5は必ずしもこの順に行われる必要はなく、適宜他の工程の前後に設けられる。
 基板Sの表面を洗浄した後、上記構成の各誘電体層H,Lを蒸着により成膜する(誘電体層形成工程S7)。誘電体層形成工程S7では、高屈折率物質(例えば、Ta,TiO等)や低屈折率物質(例えば、SiO等)を放出する蒸発源6の近傍に設けられたシャッター(不図示)の開閉を制御して、高屈折率物質と低屈折率物質を交互に基板Sに向かって放出する。
 これらの蒸着物質Pを放出する間、イオン源7からイオン(例えば、O やAr)を基板Sに衝突させることによって、基板Sに付着した各誘電体層H,Lの表面を平滑化すると共に緻密化する。この操作を所定回数繰り返すことにより多層膜を形成する。
 このとき、イオンビームの照射により基板Sに電荷の偏りが生じるが、この電荷の偏りは、不図示のニュートラライザから基板Sに向けて電子を照射することで中和する構成とすると好適である。
 その後、基板Sの加熱を終了すると共に、予めスタンバイモードで運転されていた冷凍機11を冷却モードとして運転を開始し、冷却を開始する(冷却工程S9)。イオンクリーニング(基板洗浄工程S6)及び各誘電体層H,Lの成膜(誘電体層形成工程S7)の後は、基板Sが100℃以上の高温になる。したがって、基板Sの加熱を停止する基板加熱停止工程S8及び冷却工程S9を設け、冷却手段11,12,13を用いて基板Sの冷却を行うことにより、次に行う反射層Rの形成に適した基板温度まで素早く冷却することができる。なお図4では、基板加熱停止工程S8及び冷却工程S9の順は何れが先であってもよいが、電力消費を抑えるため、基板加熱停止工程S8が先に行われると好ましい。
 なお、基板Sの冷却は、反射層形成工程S11が終了するまで行う。このように、冷却を行いながら反射層Rを形成した方が、より高い反射率を備えた反射層Rを形成することができ、好適である。
 そして、基板Sの温度が温度計25によって計測され、温度制御手段24によって基板温度が50℃以下となったか判断される(第二の判断工程S10)。また、基板温度が50℃以下となった場合であっても、真空チャンバ2内の圧力が3×10-4Pa以下となったか否かが圧力制御手段34において判断され(第二の判断工程S10)、基板温度及び内圧条件の両方を満足した場合にのみ、次の工程に進む(第二の判断工程S10:Yes)。
 このとき、温度制御手段24には予め所定温度(本実施形態では50℃)が入力され、所定温度以下となったか否かを判断する構成とすると好ましい。また、圧力制御手段34には予め所定圧力(本実施形態では1×10-3Pa及び3×10-4Pa)が入力され、各判断工程S4,S10において所定圧力以下となったか否かを判断する構成であると好適である。
 基板温度が50℃以下に達していない時(第二の判断工程S10:No)は、反射層Rにおいて良好な反射率を得ることが難しい。したがって、基板Sの冷却が継続され、工程S10の判断が繰り返される。また、真空チャンバ2内が3×10-4Pa以下に達していない場合(第二の判断工程S10:No)も、反射層Rにおいて良好な反射率を得ることが難しい。したがって、反射層形成工程S11の間も、真空バルブ31や不図示のMVが開いた状態とすると、真空排気が続行され、真空チャンバ2内の圧力は3×10-4Pa以下に維持され、良好な膜質の反射層Rが形成される。
 第二の判断工程S10において、基板温度及び内圧条件の両方を満足した場合にのみ、各誘電体層H,Lの上に、反射層Rが成膜される(反射層形成工程S11)。このとき、温度制御手段24及び圧力制御手段34と、蒸発源6上に設置される不図示のシャッターの開閉状態を制御するシャッター制御手段とが互いに接続され、上記二つの条件を満足した際に自動的にシャッターが開かれ、反射層Rが成膜される構成とされていても良い。そして、反射層Rが所定の膜厚に達した後、不図示のシャッターが閉じられ、さらに基板Sは冷却機構によって適宜冷却され、成膜作業が終了する。なお、アルミニウム等によって形成された反射層Rの成膜後、さらに保護膜を形成する工程を設けても良い。
 上記工程を経て成膜作業が終了すると、冷凍機11を解凍モードで運転し、冷却板13の温度を室温まで上昇させる。その後、不図示のリークバルブを開いて不活性ガス等を導入し、真空チャンバ2の内部を大気圧とする(リーク工程S12)。そして、基板ホルダ3から基板Sを取り出す。なお、リーク工程S12において、冷却手段11,12,13に流通しているガス冷媒を熱交換機26に通さず、圧縮機20から直接冷却板13(各冷却板43~45)に流すことにより、冷却板を室温に戻すことが可能である。
 以上の工程により、本発明の半導体発光素子基板の各誘電体層H,L及び反射層Rが成膜される。なお、上記工程において基板Sに蒸着させる物質、すなわち、各誘電体層H,L及び反射層Rの材料物質を配設する工程の説明は省略したが、基板Sを基板ホルダ3に載置する前後等で適宜行われる。
 また、イオンクリーニングを行う基板洗浄工程S6の前に、蒸発源6及びイオン源7の予備加熱工程を適宜設けると好適である。
 次に、図5を参照して本発明の他の実施形態に係る半導体発光素子基板の製造工程について説明する。図5は、本発明の他の実施形態に係る半導体発光素子基板の製造工程のフローチャート図である。図4における基板保持工程S1から第一の判断工程S4と、図5に示す基板保持工程S101から基板加熱工程S103までは同じ構成であるため、その説明を省略する。
 図5に示す半導体発光素子基板の製造工程は、基板Sの加熱を開始する基板加熱工程S103の後、基板Sの冷却を開始する冷却工程S104が行われる。このときの冷凍機11の動作は図4の冷却工程S9と同様である。
 このように、図4に示した半導体発光素子基板の製造工程とは異なり、冷却工程S104を早い段階で設けることにより、消費電力は多くなるが、予め冷却手段11,12,13(及び43,44)を動作させておくことで安定して動作させることができ、また、予め冷却手段11,12,13(及び43,44)が稼働しているため、基板Sの冷却時間を短くすることができる。
 冷却工程S104において基板Sの冷却が開始された後、第一の判断工程S105において、真空チャンバ2内が1×10-3Pa以下であるか判断される(第一の判断工程S105)。この第一の判断工程S105において、真空チャンバ2内が1×10-3Pa以下であると判定された後、本実施形態では各誘電体層H,Lを成膜する。なお第一の判断工程S105において、基板Sの温度が設定温度(本実施形態では110℃程度)に維持されているか否かの判断も合わせて行い、基板温度が所定温度に維持されていると判断された後、次の工程に進むと好ましい。
 その後、基板Sを保持した基板ホルダ(基板保持手段3)が回転し(基板保持手段回転工程S106)、基板Sに対してイオン源7からイオンビームが照射される(基板洗浄工程S107)。このように、基板Sのイオンクリーニング時も冷凍機11によって基板Sが冷却されていると、基板Sの温度が上昇しすぎることがなく、冷却時間を短縮することができるので好適である。なお、基板保持手段回転工程S106は必ずしもこの順に行われる必要はなく、適宜他の工程の前後に設けられる。
 そして、基板洗浄工程S107の間も基板Sが冷却されているものの、基板Sは加熱されて略110℃に維持されているため、次の誘電体層形成工程S108において、各誘電体層H,Lは良好な膜質の層を形成することができる。そして、誘電体層形成工程S108の間も基板Sが冷却されるため、各誘電体層H,Lの成膜時も基板Sの温度が上昇しすぎることがなく、各誘電体層H,Lを成膜する間の冷却時間が極めて短縮される。
 また、図7から示されるように、各誘電体層H,Lは層数が多い方が反射層Rにおいて高反射率を得ることができるが、層数が多いと必然的に基板温度が上昇しやすい。したがって、図5のように、各誘電体層H,Lを成膜する誘電体層形成工程S108の前に、基板Sの冷却を開始する冷却工程S104が行われることにより、各誘電体層H,Lの数が比較的多い場合であっても、基板温度の上昇を防止することができる。
 なお、冷却工程S104に関し、冷却は反射層Rの成膜を開始するまで基板Sを冷却しても良いし、また、反射層Rの成膜終了まで冷却を行っても良い。反射層Rの成膜が終了するまで冷却を継続することにより、膜質の良い反射層Rを成膜することができる。
 したがって、本発明の半導体発光素子基板の製造方法によって、各誘電体層H,Lの数を多くすることによって反射率を向上させた場合であっても、短時間で各誘電体層H,L及び反射層Rを成膜することができる。
 このように、誘電体層形成工程S108において各誘電体層H,Lが形成された後、基板Sの加熱を停止する基板加熱停止工程S109に進む。基板加熱停止工程S109は、温度制御手段24によって行われると好ましい。基板加熱を停止した後、基板保持手段回転工程S5及び基板洗浄工程S6が行われていても良い。第二の判断工程S110に進む。図5に示す第二の判断工程S110以降の工程と、図4における第二の判断工程S10以降の工程は同じ構成であるため、その説明を省略する。
 次に、図6を参照して本発明の実施例を説明する。図6は、本発明の実施例に係る半導体発光素子基板の製造時間と基板温度との関係を示すグラフ図である。なお、本実施例の半導体発光素子基板の各誘電体層H,L及び反射層Rの構成は、上記図3で示した構成である。また、本実施例の半導体発光素子基板の各誘電体層H,L及び反射層Rは、上記図1を参照して説明した薄膜形成装置1を用い、図4を用いて説明した製造工程を経て成膜した。
 本実施例において、各誘電体層H,Lを以下の条件で成膜した。
基板:サファイア基板
高屈折率誘電体材料: TiO(屈折率:2.52),
低屈折率誘電体材料: SiO(屈折率:1.45)
TiOの成膜速度: 0.5nm/sec
SiOの成膜速度: 1.0nm/sec
TiO/SiO蒸発時のイオン源条件
     導入ガス:酸素60sccm
     イオン加速電圧:1200V
     イオン電流:1200mA
     イオンビームエネルギー密度:100mW/cm
ニュートラライザの条件
     ニュートラライザ電流:2000mA
     放電ガス:アルゴン10sccm
 図6において、横軸は基板Sを基板ホルダ3に載置した(すなわち、図4の基板保持工程S1)後、図2では加熱手段8によって基板Sを加熱し始めた時(すなわち、基板加熱工程S3)を0とした製造時間である。また、縦軸は温度計25によって計測された基板温度を示している。なお、製造開始直後から急激な温度上昇が観測され、その後開始から約18分が経過するまで基板温度が一定になっている。
 これは、製造開始0分から18分が経過する間に図4の基板加熱工程S3によって基板Sの加熱が行われたことを示すものである。また、基板加熱工程S3による基板Sの温度は、各誘電体層H,Lの充填密度を高くするため、110℃とした。また、基板Sの加熱を開始する前に、図4の真空排気工程S2が行われている。
 そして、開始から約18分経過後(図6の線A)に、真空チャンバ2内の圧力が1×10-3Pa程度となったことが確認されたため、第一の判断工程S4において真空チャンバ2内の圧力が1×10-3Pa以下であると判定され、その後、誘電体層形成工程S7が行われる前に、図4の基板保持手段回転工程S5及び基板洗浄工程S6が行われている。
 図6において、約19分のときに基板温度の上昇が観測されているが、これはイオンクリーニングにより基板洗浄工程S6を行ったためである。そして、イオンクリーニング終了後は、基板温度の下降が観測されている。
 その後、図6中の線Bに至るまで基板温度の上昇、下降を繰り返しているが、これは、図4の誘電体層形成工程S7により、各誘電体層H,Lを順に成膜していることを示す。なお、図6中の20~27分の間はそれぞれ順に、基板S上に高屈折率誘電体層Hの一層目、二層目及び低屈折率誘電体層Lの一層目、二層目を交互に成膜していることを示す。
 全ての誘電体層が成膜された後(すなわち、図6中の線B)、図4の冷却工程S9によって冷却が開始される。またこの時、基板加熱停止工程S8もほぼ同時に行われる。図6中の線Bから線Cの間に観測されている基板温度のなだらかな下降は、冷却が行われていることを示すものである。より詳細には、製造開始から27分後から約57分まで(30分間、図6中の矢印で示された時間)冷却を行っていることを示すものである。
 その後、製造開始から約45分のあたり(図6中の線C)で基板温度の上昇がわずかに観測されるが、これは、反射層Rを蒸着するためのAl坩堝を1分間、電子ビームで予備加熱したためである。このとき、真空チャンバ2内の圧力は5.0×10-4Pa以下であった。
 さらにその後、反射層Rが積層される膜に対してイオンビームによるイオンクリーニングを1分間行った。なお、イオンクリーニング時の真空チャンバ2内の圧力は2.1×10-2Pa程度であった。
 イオンビームによるイオンクリーニング条件は以下の条件で行った。
イオンクリーニング条件
     導入ガス:酸素60sccm
     イオン加速電圧:500V
     イオン電流:500mA
ニュートラライザの条件
     ニュートラライザ電流:1000mA
     放電ガス:アルゴン10sccm
 その後(図6中の線D以降)、反射層Rを成膜するために真空チャンバ2内が適切な圧力範囲となるまで、基板Sの冷却を行いながら真空チャンバ2内を減圧した。そして、製造開始から55分が経過した時(図6中の線E)、図4の第二の判断工程S10で真空チャンバ2内の圧力が3×10-4Pa以下であること、及び基板温度が50℃以下であることが確認された。
 なおこのとき、真空チャンバ2内は2.0×10-4Pa、放射温度計は30℃を示していた。
 製造開始から55分~57分の間(図6中の線Eと線Fの間)、真空チャンバ2内の圧力が2.0~3.0×10-4Paとなるようにして、基板Sに対してAl膜を蒸着し、反射層Rを形成した(反射層形成工程S11)。
 なおこの時、基板Sは冷却されているため、大きな温度上昇は観測されず、ほぼ一定となっていた。
 その後、基板Sの温度が室温付近となるまでさらに冷却し、真空チャンバ2をリークした(リーク工程S12)。
 したがって本実施例において、誘電体層を成膜した後(図6中の線B)、反射層Rの成膜を開始するまで(図6中の線E)に基板を冷却する時間は、28分間であった。従来の方法では、反射層Rを成膜するために基板温度を50℃以下まで冷却し、その冷却時間として約2~3時間を要していた。これに対し、本実施例では、基板温度をさらに低い室温付近まで冷却することができ、且つその冷却時間は28分間と極めて短くすることが可能であった。
 なお、反射層Rは以下の条件で成膜した。
反射層材料: Al
Alの成膜速度: 2.5nm/sec
 本実施例で成膜した反射層Rの450~470nm(青色LEDの発光波長範囲)における反射率は、98%であった。したがって本発明により、半導体発光素子基板の反射層Rは良好な反射率を備え、且つその製造時間を効果的に短縮することができる。

Claims (7)

  1.  基板上に少なくとも屈折率の異なる2層以上の層から構成される誘電体層と、反射層と、を一方の面上に順に備えた半導体発光素子基板の製造方法であって、
     真空チャンバ内に配設された基板保持手段に前記基板を保持させる基板保持工程と、
     前記真空チャンバ内を排気する真空排気工程と、
     該真空排気工程と略同時に行われ、前記基板を加熱する基板加熱工程と、
     前記基板に対してイオンを照射して前記基板を洗浄する基板洗浄工程と、
     前記基板上に、前記誘電体層を蒸着させる誘電体層形成工程と、
     前記基板の加熱を停止する基板加熱停止工程と、
     前記基板の近傍であって前記基板とは非接触となる位置に配設された冷却手段によって、前記基板及び前記基板保持手段からの輻射熱を吸収して前記基板及び前記基板保持手段の冷却を開始する冷却工程と、
     前記誘電体層上に前記反射層を蒸着させる反射層形成工程と、をこの順に備えてなることを特徴とする半導体発光素子基板の製造方法。
  2.  基板上に少なくとも屈折率の異なる2層以上の層から構成される誘電体層と、反射層と、を一方の面上に順に備えた半導体発光素子基板の製造方法であって、
     真空チャンバ内に配設された基板保持手段に前記基板を保持させる基板保持工程と、
     前記真空チャンバ内を排気する真空排気工程と、
     該真空排気工程と略同時に行われ、前記基板を加熱する基板加熱工程と、
     前記基板の近傍であって前記基板とは非接触となる位置に配設された冷却手段によって、前記基板及び前記基板保持手段からの輻射熱を吸収して前記基板及び前記基板保持手段の冷却を開始する冷却工程と、
     前記基板に対してイオンを照射して前記基板を洗浄する基板洗浄工程と、
     前記基板上に、前記誘電体層を蒸着させる誘電体層形成工程と、
     前記基板の加熱を停止する基板加熱停止工程と、
     前記誘電体層上に前記反射層を蒸着させる反射層形成工程と、をこの順に備えてなることを特徴とする半導体発光素子基板の製造方法。
  3.  前記基板洗浄工程の前に、前記真空チャンバ内が1×10-3Pa以下であるか判断する第一の判断工程を更に備え、
     前記真空チャンバ内が1×10-3Pa以下である場合、前記基板洗浄工程を行うことを特徴とする請求項1又は2に記載の半導体発光素子基板の製造方法。
  4.  前記反射層形成工程の前に、前記基板の温度が50℃以下であると共に前記真空チャンバ内が3×10-4Pa以下であるか判断する第二の判断工程を更に備え、
     前記基板の温度が50℃以下であると共に前記真空チャンバ内が3×10-4Pa以下である場合、前記反射層形成工程を行うことを特徴とする請求項3に記載の半導体発光素子基板の製造方法。
  5.  前記反射層は、アルミニウムを蒸着させて形成されてなることを特徴とする請求項4に記載の半導体発光素子基板の製造方法。
  6.  前記誘電体層は、屈折率の高い層と、屈折率の低い層を交互に組み合わせて形成されてなることを特徴とする請求項5に記載の半導体発光素子基板の製造方法。
  7.  前記第二の判断工程は、前記真空チャンバに真空バルブを介して接続された真空ポンプ及び前記真空バルブに接続された圧力制御手段と、前記基板の近傍に設置された温度計及び前記冷却手段に接続された温度制御手段と、によって行われ、
     前記反射層形成工程は、前記圧力制御手段及び前記温度制御手段に接続されたシャッター制御手段が蒸発源上に配設されたシャッターを開く制御を行うことによって行われることを特徴とする請求項4に記載の半導体発光素子基板の製造方法。
PCT/JP2010/057435 2010-04-27 2010-04-27 半導体発光素子基板の製造方法 WO2011135667A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2010/057435 WO2011135667A1 (ja) 2010-04-27 2010-04-27 半導体発光素子基板の製造方法
JP2010535564A JP4684372B1 (ja) 2010-04-27 2010-04-27 半導体発光素子基板の製造方法
CN201080002384.0A CN102439195B (zh) 2010-04-27 2010-04-27 半导体发光元件基板的制造方法
KR1020117003108A KR101087821B1 (ko) 2010-04-27 2010-04-27 반도체 발광소자 기판의 제조방법
TW099115220A TW201138139A (en) 2010-04-27 2010-05-13 Process for production of semiconductor light-emitting element substrate
HK12109087.1A HK1168392A1 (en) 2010-04-27 2012-09-17 Process for production of semiconductor light-emitting element substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/057435 WO2011135667A1 (ja) 2010-04-27 2010-04-27 半導体発光素子基板の製造方法

Publications (1)

Publication Number Publication Date
WO2011135667A1 true WO2011135667A1 (ja) 2011-11-03

Family

ID=44193868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057435 WO2011135667A1 (ja) 2010-04-27 2010-04-27 半導体発光素子基板の製造方法

Country Status (6)

Country Link
JP (1) JP4684372B1 (ja)
KR (1) KR101087821B1 (ja)
CN (1) CN102439195B (ja)
HK (1) HK1168392A1 (ja)
TW (1) TW201138139A (ja)
WO (1) WO2011135667A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073096A1 (ja) * 2011-11-15 2013-05-23 パナソニック株式会社 真空装置、真空中の熱源を冷却する方法及び薄膜製造方法
WO2013099064A1 (ja) * 2011-12-28 2013-07-04 キヤノンアネルバ株式会社 真空処理装置
WO2017070488A1 (en) * 2015-10-22 2017-04-27 Richard Devito Deposition system with integrated cooling on a rotating drum
JP2017520126A (ja) * 2014-04-25 2017-07-20 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 希土類酸化物のイオンアシスト蒸着トップコート
US10090441B2 (en) 2015-12-22 2018-10-02 Nichia Corporation Light emitting device
JP2020007587A (ja) * 2018-07-04 2020-01-16 株式会社アルバック 蒸着装置、および、蒸着方法
JP2021031694A (ja) * 2019-08-19 2021-03-01 株式会社オプトラン 真空プロセス装置および真空プロセス装置におけるプロセス対象物の冷却方法
WO2021188754A1 (en) * 2020-03-18 2021-09-23 Richard Devito Deposition system with integrated cooling on a rotating drum

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6588418B2 (ja) * 2016-12-07 2019-10-09 株式会社神戸製鋼所 成膜装置およびそれを用いた成膜物の製造方法、ならびに冷却パネル

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06347620A (ja) * 1993-06-11 1994-12-22 Canon Inc レプリカミラーの製造方法および製造用型
JPH10310862A (ja) * 1997-05-13 1998-11-24 Canon Inc 堆積膜製造方法及び光起電力素子の製造方法
JPH11149005A (ja) * 1997-11-14 1999-06-02 Canon Inc 内面反射ミラーおよびその製造方法
JP2006028583A (ja) * 2004-07-15 2006-02-02 Semiconductor Energy Lab Co Ltd 製造装置
JP2006260939A (ja) * 2005-03-17 2006-09-28 Ulvac Japan Ltd 有機el素子製造方法及び有機el素子製造装置
JP2009013435A (ja) * 2007-06-29 2009-01-22 Fujifilm Corp 基板ホルダ及び真空成膜装置
JP2009076818A (ja) * 2007-09-25 2009-04-09 Mitsubishi Electric Corp 半導体デバイスの成膜用ホルダ及び成膜用装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4873455B2 (ja) * 2006-03-16 2012-02-08 株式会社シンクロン 光学薄膜形成方法および装置
JP4597149B2 (ja) * 2007-01-26 2010-12-15 株式会社シンクロン 薄膜形成装置及び薄膜形成方法
CN101197417B (zh) * 2008-01-07 2010-09-15 普光科技(广州)有限公司 氮化镓基发光二极管芯片及其制作方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06347620A (ja) * 1993-06-11 1994-12-22 Canon Inc レプリカミラーの製造方法および製造用型
JPH10310862A (ja) * 1997-05-13 1998-11-24 Canon Inc 堆積膜製造方法及び光起電力素子の製造方法
JPH11149005A (ja) * 1997-11-14 1999-06-02 Canon Inc 内面反射ミラーおよびその製造方法
JP2006028583A (ja) * 2004-07-15 2006-02-02 Semiconductor Energy Lab Co Ltd 製造装置
JP2006260939A (ja) * 2005-03-17 2006-09-28 Ulvac Japan Ltd 有機el素子製造方法及び有機el素子製造装置
JP2009013435A (ja) * 2007-06-29 2009-01-22 Fujifilm Corp 基板ホルダ及び真空成膜装置
JP2009076818A (ja) * 2007-09-25 2009-04-09 Mitsubishi Electric Corp 半導体デバイスの成膜用ホルダ及び成膜用装置

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073096A1 (ja) * 2011-11-15 2013-05-23 パナソニック株式会社 真空装置、真空中の熱源を冷却する方法及び薄膜製造方法
WO2013099064A1 (ja) * 2011-12-28 2013-07-04 キヤノンアネルバ株式会社 真空処理装置
US10563297B2 (en) 2014-04-25 2020-02-18 Applied Materials, Inc. Ion assisted deposition top coat of rare-earth oxide
JP2017520126A (ja) * 2014-04-25 2017-07-20 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 希土類酸化物のイオンアシスト蒸着トップコート
US10544500B2 (en) 2014-04-25 2020-01-28 Applied Materials, Inc. Ion assisted deposition top coat of rare-earth oxide
US10262838B2 (en) 2015-10-22 2019-04-16 Vaeco Inc. Deposition system with integrated cooling on a rotating drum
WO2017070488A1 (en) * 2015-10-22 2017-04-27 Richard Devito Deposition system with integrated cooling on a rotating drum
US10090441B2 (en) 2015-12-22 2018-10-02 Nichia Corporation Light emitting device
US10553763B2 (en) 2015-12-22 2020-02-04 Nichia Corporation Light emitting device
US11139418B2 (en) 2015-12-22 2021-10-05 Nichia Corporation Light emitting device
US11631789B2 (en) 2015-12-22 2023-04-18 Nichia Corporation Light emitting device
JP2020007587A (ja) * 2018-07-04 2020-01-16 株式会社アルバック 蒸着装置、および、蒸着方法
JP2021031694A (ja) * 2019-08-19 2021-03-01 株式会社オプトラン 真空プロセス装置および真空プロセス装置におけるプロセス対象物の冷却方法
JP7316877B2 (ja) 2019-08-19 2023-07-28 株式会社オプトラン 真空プロセス装置および真空プロセス装置におけるプロセス対象物の冷却方法
WO2021188754A1 (en) * 2020-03-18 2021-09-23 Richard Devito Deposition system with integrated cooling on a rotating drum

Also Published As

Publication number Publication date
JP4684372B1 (ja) 2011-05-18
JPWO2011135667A1 (ja) 2013-07-18
CN102439195A (zh) 2012-05-02
KR101087821B1 (ko) 2011-11-30
HK1168392A1 (en) 2012-12-28
TW201138139A (en) 2011-11-01
KR20110125629A (ko) 2011-11-21
CN102439195B (zh) 2014-09-03
TWI355093B (ja) 2011-12-21

Similar Documents

Publication Publication Date Title
JP4684372B1 (ja) 半導体発光素子基板の製造方法
US8123862B2 (en) Deposition apparatus and manufacturing apparatus
TW201220426A (en) Substrate processing apparatus and method of manufacturing a semiconductor device
CN114908326B (zh) 半导体工艺设备及形成叠层薄膜结构的方法
JP4597149B2 (ja) 薄膜形成装置及び薄膜形成方法
JP2012207238A (ja) 蒸着方法および蒸着装置
JP5670262B2 (ja) 薄膜リチウム二次電池の製造方法、及び薄膜リチウム二次電池
JP2009065148A (ja) アルミニウム相互接続部の制御された表面酸化
WO2013073096A1 (ja) 真空装置、真空中の熱源を冷却する方法及び薄膜製造方法
CN111411324A (zh) 氧化铪薄膜沉积方法
JP2014189878A (ja) 蒸着装置
CN117051367A (zh) 磁控溅射设备
CN102743894A (zh) 冷阱及真空排气装置
TW202100781A (zh) 形成金屬容納材料的方法
JP2012104703A (ja) 半導体装置の製造方法および基板処理装置
CN114561616A (zh) 一种多腔体pvd-rta混合薄膜沉积系统
JP5901571B2 (ja) 成膜方法
CN217052364U (zh) 一种多腔体pvd-rta混合薄膜沉积系统
US20140186551A1 (en) Smooth solder deposition process
KR101871899B1 (ko) 산화 알루미늄막의 성막 방법 및 형성 방법 및 스퍼터링 장치
TW201241212A (en) Cathode
WO2005017988A1 (ja) 基板処理装置および半導体デバイスの製造方法
WO2022224929A1 (ja) 積層薄膜とその製造方法
JP2008107050A (ja) 高温加熱炉
JP2013108106A (ja) 蒸着装置及び蒸着装置の運転方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080002384.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010535564

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117003108

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10850686

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10850686

Country of ref document: EP

Kind code of ref document: A1