WO2011132631A1 - 有機エレクトロルミネッセンスパネルの製造方法及びその製造方法で製造された有機エレクトロルミネッセンスパネル - Google Patents

有機エレクトロルミネッセンスパネルの製造方法及びその製造方法で製造された有機エレクトロルミネッセンスパネル Download PDF

Info

Publication number
WO2011132631A1
WO2011132631A1 PCT/JP2011/059509 JP2011059509W WO2011132631A1 WO 2011132631 A1 WO2011132631 A1 WO 2011132631A1 JP 2011059509 W JP2011059509 W JP 2011059509W WO 2011132631 A1 WO2011132631 A1 WO 2011132631A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
adhesive layer
substrate
thermosetting adhesive
preheating
Prior art date
Application number
PCT/JP2011/059509
Other languages
English (en)
French (fr)
Inventor
真昭 村山
大輔 沼倉
伸明 高橋
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to US13/640,355 priority Critical patent/US9059429B2/en
Priority to EP11771966.6A priority patent/EP2563096A4/en
Priority to JP2012511647A priority patent/JP5772819B2/ja
Publication of WO2011132631A1 publication Critical patent/WO2011132631A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants

Definitions

  • the present invention relates to a method for manufacturing an organic electroluminescence panel, and more particularly to a method for sealing an organic electroluminescence element in the manufacture of an organic electroluminescence panel.
  • organic electroluminescence devices using organic substances are promising for use as solid light-emitting thin and inexpensive large-area full-color display devices and light source arrays.
  • R & D is ongoing.
  • the organic EL element includes a first electrode (anode or cathode) formed on a substrate, an organic compound layer (single layer or multilayer) containing an organic light emitting material laminated thereon, that is, a light emitting layer, and the light emitting layer. It is a thin film type element having a second electrode (cathode or anode) laminated thereon.
  • a voltage is applied to such an organic EL element, electrons are injected from the cathode into the organic compound layer, and holes are injected from the anode. It is known that light is obtained from the light emitting layer by recombining the electrons and holes in the light emitting layer and releasing energy as light when the energy level returns from the conduction band to the valence band.
  • organic materials such as organic light-emitting substances used in organic EL elements are vulnerable to moisture, oxygen, and the like, and their performance tends to deteriorate with respect to moisture, oxygen, and the like.
  • the casing type sealing method is to seal an organic EL element by placing it in a case and blocking the outside, and filling the case with a predetermined gas or fluid for sealing together with the organic EL element. Is the method.
  • the close-contact type sealing method means that the surface of the organic EL element formed on the substrate is bonded to the surface of the sealing substrate such as a glass plate with an adhesive. It is the method of sealing with.
  • the close-contact type sealing method has various merits such as being capable of being thin and relatively easy to mass-produce, and has been studied in recent years.
  • an adhesion-type sealing method for example, an organic EL element sealed with a sealing film including a sealant layer made of a barrier layer and a thermoplastic adhesive resin is known (see, for example, Patent Document 1). .
  • thermosetting or ultraviolet curable adhesive cures the adhesive by irradiating ultraviolet rays, so the substrate irradiation surface must be transparent, and the irradiated material must be a material that is not easily damaged by ultraviolet irradiation. And the range of use was limited.
  • thermosetting adhesive Because of these problems, a method using a thermosetting adhesive has been frequently used because it is easy to handle and simple as a manufacturing apparatus.
  • thermosetting adhesive As a problem of the thermosetting adhesive, the adhesive itself has hygroscopicity, and the moisture content increases if the management and preservation method is bad, and the sealing member thermoset using the adhesive It was found that there was a problem in the subsequent sealing characteristics.
  • thermosetting adhesive can be dehydrated by a simple method. Heating can be mentioned as a simple method for dehydration. However, with this method, the adhesive itself is cured by heating and the bonding function is lost. There is recognition that this is a method to be avoided, and various other means have been studied. However, at present, no good method has been found yet.
  • an organic EL element a state where the first electrode, the organic layer, and the second electrode are formed on the substrate
  • an organic EL panel a state in which the first electrode, the organic layer, and the second electrode are tightly sealed with a sealing substrate
  • thermosetting adhesive by a simple method in the manufacturing method of the organic EL panel which sealed the organic EL element using the adhesive agent. It is to provide a method for producing an organic EL panel having excellent sealing performance and durability.
  • thermosetting adhesive layer on a substrate.
  • thermosetting adhesive layer before the preheating process is 2000 ppm or more. Production method.
  • the substrate is a strip-like flexible substrate, and the process of forming the thermosetting adhesive layer, the step of preheating the thermosetting adhesive layer, the step of bonding, and the step of heat curing are continuously performed.
  • the organic EL panel manufacturing method of the present invention can provide an organic EL panel having a simple method and excellent durability.
  • the present inventor has, on the substrate, at least a first electrode, an organic functional layer including a light emitting layer, an organic EL element having a second electrode, and a sealing substrate.
  • the manufacturing method of the organic EL panel bonded through the thermosetting adhesive layer, Forming the thermosetting adhesive layer on the sealing substrate; preheating the thermosetting adhesive layer formed on the sealing substrate; and preheating heat curing.
  • the method for producing an organic EL panel is characterized by having a step of bonding the adhesive layer and the organic electroluminescence element and a step of curing and heating the thermosetting adhesive layer in this order. It has been found that an organic EL panel manufacturing method can be realized that suppresses the deterioration of the performance of the organic functional layer and that is particularly less deteriorated over time.
  • FIG. 1A is a plan view of an organic EL element 10 formed on a sheet
  • FIG. 1B is a cross-sectional view taken along line AA ′.
  • a first electrode 2 is provided on a support 1, a hole transport layer 3 and a light emitting layer 4 are provided as organic functional layers thereon, and a second electrode 5 serving as a cathode is laminated thereon. Has been. End portions of the first electrode 2 and the second electrode 5 have terminal portions 2a and 5a, respectively.
  • FIG. 2 is a plan view (a) to (d) showing a process for continuously forming a plurality of organic EL elements on a continuous sheet, and a sectional view taken along line BB ′ (e).
  • the layer structure is the same as that of the single wafer shown in FIG.
  • FIG. 3 is a diagram showing an example of manufacturing the organic EL panel of the present invention by a single wafer process.
  • thermosetting adhesive layer 13 is formed on the sealing substrate 11 by an adhesive coating device 12, and in FIG. 3B, the thermosetting adhesive is formed by a heating device 14. In FIG. Layer 13 is heat dehydrated.
  • the degree of cure and moisture content of the adhesive layer are measured.
  • thermosetting adhesive layer In the range where the degree of cure of the thermosetting adhesive layer preferably does not exceed 50%, dehydration is performed by preheating treatment, and in FIG. 3C, the organic EL element 10 of the single wafer shown in FIG. After bonding in the direction and (d) pressure bonding, (e) the adhesive layer is thermally cured by curing and heat treatment, and the organic EL panel 40 is formed.
  • FIG. 4 is a diagram showing a production example of the organic EL panel of the present invention by a roll-to-roll (also referred to as RtoR) method.
  • RtoR roll-to-roll
  • thermosetting adhesive layer 23 is applied onto the sealing substrate 21 unwound from the roll 20 by using a coating apparatus 22, and the applied thermosetting adhesive layer 23 is heated. Preheating is performed by the device 24 and dewatered.
  • the moisture content and the degree of cure of the dehydrated thermosetting adhesive layer are measured by the moisture measuring device 25 and the infrared absorption measuring device 26.
  • the organic EL panel 40 is formed by thermosetting the thermosetting adhesive layer by further laminating by 27 and further curing and heating, and further cutting for each organic EL element.
  • thermosetting adhesive layer is formed on the sealing substrate, it is wound up as a sealing member, and then the sealing member is unwound from a roll and dehydrated by a preheating treatment. It may be bonded and bonded to the rear organic EL element substrate. It is preferable that the process of preheating and the bonding process of the organic EL element are continuous.
  • the continuous process mentioned here means that the roll is continuously conveyed without being wound up, and is a process in which different atmospheres continue even in the same space, that is, in the same atmosphere. Also good.
  • the same atmosphere refers to, for example, performing in the same chamber.
  • a sealing substrate used for this invention a glass substrate, a plastic material, a metal plate, metal foil, etc. are not specifically limited.
  • plastic materials examples include ethylene tetrafluoroethylene copolymer (ETFE), high density polyethylene (HDPE), expanded polypropylene (OPP), polystyrene (PS), polymethyl methacrylate (PMMA), Thermoplastic resin film materials such as stretched nylon (ONy), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), polyimide, and polyether styrene (PES) can be used.
  • EFE ethylene tetrafluoroethylene copolymer
  • HDPE high density polyethylene
  • OPP expanded polypropylene
  • PS polystyrene
  • PMMA polymethyl methacrylate
  • Thermoplastic resin film materials such as stretched nylon (ONy), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), polyimide, and polyether styrene (PES) can be used.
  • PET polyethylene terephthalate
  • the water vapor permeability is preferably 0.01 g / m 2 ⁇ day or less.
  • the water vapor transmission rate is a value measured mainly by the MOCON method by a method based on the JIS K7129B method (1992).
  • the oxygen permeability is preferably 0.01 ml / m 2 ⁇ day ⁇ atm or less.
  • the oxygen permeability is a value measured mainly by the MOCON method by a method based on JIS K7126B method (1987).
  • Examples of the gas barrier layer include an inorganic vapor deposition film and a metal foil.
  • Examples of inorganic vapor deposition films include thin film handbooks p879-p901 (Japan Society for the Promotion of Science), vacuum technology handbooks p502-p509, p612, p810 (Nikkan Kogyo Shimbun), vacuum handbook revised editions p132-p134 (ULVAC Japan Vacuum Technology KK). Inorganic films as described in (1).
  • a material of the metal foil for example, a metal material such as aluminum, copper, or nickel, or an alloy material such as stainless steel or aluminum alloy can be used, but aluminum is preferable in terms of workability and cost.
  • the glass substrate is not particularly limited, and examples thereof include silicate glass, alkali silicate glass, lead alkali glass, soda lime glass, potash lime glass, barium glass, borosilicate glass, and phosphate glass.
  • thermosetting resin used for the thermosetting adhesive layer examples include epoxy resins, acrylic resins, and silicone resins, but the present invention is not limited thereto. It is not something. Among these thermosetting resins, it is preferable to use an epoxy thermosetting resin because it is excellent in moisture resistance and water resistance and has little shrinkage during curing.
  • the thickness of the thermosetting adhesive layer is generally 5 ⁇ m to 100 ⁇ m, preferably 10 ⁇ m to 50 ⁇ m.
  • thermosetting adhesive layer As a method for forming the thermosetting adhesive layer, a coating method such as roll coating, spin coating, screen printing, spray coating, ink jet coating, or the like can be used depending on the material to be used.
  • a coating method such as roll coating, spin coating, screen printing, spray coating, ink jet coating, or the like can be used depending on the material to be used.
  • ⁇ About the method of the pre-heat treatment and curing heat treatment of the adhesive layer a heating method in the pre-heating treatment and the curing heat treatment of the adhesive layer, a non-contact type in which heating is performed without contacting the adhesive layer, a contact type (back side) in which heating is performed in contact with the adhesive layer, etc.
  • the non-contact type is preferable from the viewpoints of the influence on the organic functional material forming the organic EL element and the generation of foreign matter.
  • preliminary heat treatment refers to heat treatment before laminating a thermosetting adhesive layer and an organic EL element
  • curing heat treatment refers to a thermosetting adhesive layer and an organic layer. It refers to the heat treatment after bonding the EL element.
  • non-contact heating method examples include a far infrared heater, a halogen lamp heater, a laser, and a heating method such as microwave heating, but are not limited thereto.
  • lasers examples include laser beams such as neodymium lasers, YAG lasers, ruby lasers, helium-neon lasers, krypton lasers, argon lasers, H 2 lasers, N 2 lasers, and semiconductor lasers.
  • More preferable lasers include YAG: neodymium 3+ laser (laser light wavelength: 1060 nm) and semiconductor laser (laser light wavelength: 500 to 1000 nm).
  • the output of the laser beam is preferably 5 to 1000 W.
  • the laser may be a continuous wavelength or a pulse wave.
  • the heating can be adjusted, and the optimum condition can be easily obtained.
  • a far infrared heater is preferable.
  • a heat plate can be used as the contact heating method.
  • the heat plate is made of a SUS foil carrying a heating electric resistor composed of a silicon rubber heater or the like, an insulating layer, an aluminum plate thereon, and
  • the coating is made of a fluorine-based resin or the like, and generates heat by supplying power from a power source, and heats and dehydrates the adhesive layer to a desired temperature.
  • the heat roller which is another contact heating method, is a metal with good heat conductivity, which is equipped with a heat source (for example, a metal resistance heating element, a halogen lamp, etc.) capable of controlling the temperature for heating the outer peripheral portion at the center.
  • a heat source for example, a metal resistance heating element, a halogen lamp, etc.
  • the outermost part is covered with Teflon (registered trademark) or silicon rubber, and the outer circumference is heated appropriately. It is to dehydrate.
  • the heating temperature is generally 50 ° C. to 200 ° C., preferably 80 ° C. to 160 ° C., particularly preferably. 90 ° C to 140 ° C.
  • the heating time is approximately in the range of 1 second to 30 minutes, so that dehydration and curing (crosslinking reaction) proceed. Therefore, the preheating treatment is performed so that the following preferable moisture content is obtained. adjust. Preferably, heating is performed in the range of 4.0 seconds or more and 600 seconds or less.
  • the water content of the thermosetting adhesive layer before the preheating treatment is often 2000 ppm or more, and the water content of the thermosetting adhesive layer is preferably 500 ppm or less by performing the preheating treatment. Preferably it is 300 ppm or less.
  • thermosetting adhesive layer ⁇ Curing rate of thermosetting adhesive layer> The curing rate of the thermosetting adhesive layer was measured as follows.
  • the measuring device it is preferable to perform non-destructive measurement by real-time FT-IR measurement.
  • FT-IR manufactured by Bio-Rad Co. can be used.
  • the measurement wavelength can be changed.
  • the peak intensity change at 930 nm is the initial stage before the curing reaction.
  • the degree of cure is calculated with the state being set to 0 and the state where the reactive group is almost completely consumed and the peak intensity derived from the reactive group is not reduced (or becomes zero) to 100.
  • thermosetting adhesive layer it is preferable to perform heat treatment so that the curing rate of the thermosetting adhesive layer does not exceed 50% in the preheating treatment. With such a heat treatment, sufficient adhesiveness of the thermosetting adhesive layer can be secured.
  • the organic EL element usually has an anode (first electrode) side as an observation side, and the anode (first electrode) includes ITO (mixture of tin oxide and indium oxide), IZO (mixture of zinc oxide and indium oxide), ZnO, A transparent electrode such as SnO 2 or In 2 O 3 is used.
  • the ITO electrode can have a high light transmittance of 90% or more and a low sheet resistance value of 10 ⁇ / ⁇ or less, and is preferably used in the present invention.
  • the IZO electrode is preferable because it has a merit that a predetermined low resistance value can be obtained without heating the substrate at the time of formation, and the film surface is smoother than the ITO electrode.
  • Each organic functional layer is formed on the anode, and a cathode is further formed thereon to form an organic EL element.
  • Organic materials used for the hole injection / transport layer are typified by phthalocyanine derivatives, heterocyclic azoles, aromatic tertiary amines, polyvinyl carbazole, polyethylenedioxythiophene / polystyrene sulfonic acid (PEDOT: PSS), and the like.
  • a polymer material such as a conductive polymer is used.
  • carbazole-based luminescent materials such as 4,4′-dicarbazolylbiphenyl, 1,3-dicarbazolylbenzene, (di) azacarbazoles, 1,3,5-
  • carbazole-based luminescent materials such as 4,4′-dicarbazolylbiphenyl, 1,3-dicarbazolylbenzene, (di) azacarbazoles, 1,3,5-
  • low-molecular light-emitting materials typified by pyrene-based light-emitting materials such as tripyrenylbenzene, polymer light-emitting materials typified by polyphenylene vinylenes, polyfluorenes, polyvinyl carbazoles, and the like.
  • a low molecular weight light emitting material having a molecular weight of 10,000 or less is preferably used as the light emitting material.
  • the light emitting layer may contain a dopant of about 0.1 to 20% by weight as a light emitting material.
  • the dopant include known fluorescent dyes such as perylene derivatives and pyrene derivatives, and phosphorescent dyes such as, for example, Ortho-metalated iridium complexes represented by tris (2-phenylpyridine) iridium, bis (2-phenylpyridine) (acetylacetonato) iridium, bis (2,4-difluorophenylpyridine) (picolinato) iridium, etc. There are complex compounds.
  • Examples of the electron injection / transport layer material include metal complex compounds such as 8-hydroxyquinolinate lithium and bis (8-hydroxyquinolinate) zinc, and the following nitrogen-containing five-membered ring derivatives. That is, oxazole, thiazole, oxadiazole, thiadiazole or triazole derivatives are preferred.
  • a material used for these light emitting layers and each functional layer a material having a polymerization reactive group such as a vinyl group in the molecule may be used, and a crosslinked / polymerized film may be formed after film formation.
  • the conductive material used for the anode layer those having a work function larger than 4 eV are suitable, and oxidation of silver, gold, platinum, palladium, etc. and their alloys, tin oxide, indium oxide, ITO, etc.
  • Metals and organic conductive resins such as polythiophene and polypyrrole are used.
  • the conductive material used for the cathode layer those having a work function smaller than 4 eV are suitable, and magnesium / aluminum, etc. as metals and magnesium / silver, lithium / aluminum, etc. as representative examples. As mentioned.
  • the substrate material of the substrate used in the present invention is not particularly limited as long as it is a light transmissive substrate, such as a glass substrate or a plastic substrate.
  • a transparent resin film having a thickness of about 100 ⁇ m to 2 mm is used as the plastic (resin) substrate.
  • Transparent resin films include polyethylene, polyethylene naphthalate (PEN), polyethylene terephthalate (PET), ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, polymethyl methacrylate, polyether ether ketone, polyether. Examples include, but are not limited to, sulfone, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, polyester, polycarbonate, polyurethane, polyimide, polyetherimide, and the like. Polyethylene naphthalate (PEN) is preferable.
  • the substrate is polyethylene naphthalate because the amount of deformation when heated is small.
  • a gas barrier film having a high gas barrier property can also be used.
  • the gas barrier film include a metal oxide film, for example, a film having a gas barrier film having a sealing function of 50 nm or more and 50 ⁇ m or less in thickness, such as an oxynitride film, a nitride film, and a metal thin film.
  • the method for forming the organic functional layer or the like formed on the substrate is not particularly limited, and any method such as a vapor deposition method or a coating method may be used.
  • the sealing structure formed by bonding may be a sealing can type hollow structure or a close sealing structure filled with a sealing type sealing adhesive. I do not care.
  • the step of forming the thermosetting adhesive layer on the sealing substrate does not need to be continuous with the subsequent curing heat treatment step of the adhesive layer, and may be discontinuous. However, it is preferable that the adhesive layer curing heat treatment step and the organic EL element bonding step are continuously performed.
  • continuous means that the interval between the curing heat treatment step of the adhesive layer and the bonding step between the organic EL element substrate is within a few minutes to a few hours and does not substantially absorb moisture from the environmental atmosphere. Refers to things.
  • the environment of the curing heat treatment process is preferably an inert gas atmosphere.
  • the inert gas atmosphere By making the inert gas atmosphere, the oxidation reaction or thermal polymerization reaction due to heating is not accelerated in the thermosetting adhesive layer, and when there is an organic EL element in the same atmosphere, formation of the organic EL element It is more preferable because it does not damage the material.
  • the environment of the curing heat treatment process is preferably an environment having a dew point of ⁇ 30 ° C. or less, particularly preferably ⁇ 60 ° C. or less, and an atmosphere of 1000 Pa or less.
  • the heating step and the bonding step are continuous steps arranged in the same space.
  • thermosetting adhesive layer of the sealing member when the thermosetting adhesive layer of the sealing member is heated and bonded to the organic EL element substrate, the curing rate of the adhesive of the thermosetting adhesive layer is 50% in the present invention.
  • the following is preferable.
  • the curing rate of the adhesive does not exceed 50%.
  • the curing rate exceeds 50%, the subsequent organic EL element substrate and Adhesive function in the pasting becomes insufficient, and the adhesive layer cannot be plastically deformed according to the shape of the element, which may damage the element.
  • the production method of the present invention was conventionally considered to be impossible to heat when sealing and bonding using a thermosetting adhesive, but by controlling the curing rate, It has been found that the moisture content of the curable adhesive layer can be reduced and a high sealing effect can be obtained.
  • Example 1 Production of organic EL element >> In accordance with the following method, a single-wafer organic EL device having a structure similar to that shown in FIG. 1 was produced.
  • PEN polyethylene naphthalate
  • ITO indium tin oxide
  • a transparent anode substrate was prepared. This substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and further subjected to UV ozone cleaning for 5 minutes.
  • a light emitting layer composition having the following composition was applied to the center of a substrate having a width of 100 mm ⁇ 100 mm in a width of 90 mm ⁇ 90 mm using a screen printing method to form a light emitting layer having a thickness of about 25 nm.
  • the sample on which the electron transport layer is formed is transferred to a vacuum deposition apparatus, the vacuum chamber is decompressed to 4 ⁇ 10 ⁇ 4 Pa, and the electron transport is performed using a mask having a width of 90 mm ⁇ 90 mm partially having a cathode extraction part.
  • An organic EL device was fabricated by sequentially depositing a lithium fluoride film as a cathode buffer layer with a thickness of 10 nm and an aluminum film as a cathode with a thickness of 110 nm on the layer.
  • ⁇ Preparation of sealing substrate> Using an aluminum foil with a thickness of 50 ⁇ m (manufactured by Toyo Aluminum Co., Ltd.), using a polyethylene terephthalate (PET) film with a thickness of 12 ⁇ m on the mat surface, an adhesive for dry lamination (two-component reaction type urethane adhesive) And laminated (adhesive layer thickness 1.5 ⁇ m) to prepare a sealing substrate.
  • PET polyethylene terephthalate
  • thermosetting adhesive layer ⁇ Formation of thermosetting adhesive layer>
  • the sealing substrate (PET laminate aluminum foil) produced above is cut to 100 mm x 100 mm, and the thermosetting adhesive layer is formed on the polished surface (aluminum surface) using the following constituent materials using a dispenser. Then, a sealing substrate with an adhesive was obtained.
  • Thermosetting adhesive layer constituent material Bisphenol A diglycidyl ether (DGEBA) 100% by mass Dicyandiamide (DICY) 8% by mass Epoxy adduct curing accelerator 3% by mass ⁇ Preparation of organic EL panel 101>
  • DGEBA diglycidyl ether
  • DICY Dicyandiamide
  • Epoxy adduct curing accelerator 3% by mass
  • the obtained sealing substrate with adhesive was placed in close contact with the adhesive layer surface on a polyethylene naphthalate (PEN) film substrate on which an organic EL element was formed in an N 2 environment (dew point ⁇ 50 ° C.).
  • the sealing substrate was pressure-bonded (pressure 0.15 MPa, time 30 seconds) and temporarily bonded.
  • a heat plate (temperature 80 ° C., 30 minutes) is used for curing and heat treatment to cure the thermosetting adhesive layer, and organic An EL panel 101 was produced.
  • the preheating treatment was performed as follows. ⁇ Preliminary heat treatment of sealing substrate>
  • the sealing substrate having the adhesive layer obtained above was preheated under the following conditions.
  • the degree of cure and water content by preheating were measured using the following equipment.
  • Preheating treatment was performed from 100 mm on the adhesive layer side of the sealing member using a far infrared plate heater (manufactured by DENKO Corporation, BD3040, 2 kW).
  • the organic EL device was sealed by pasting the organic EL element and performing the curing heat treatment. It can be seen that the EL panel has less dark spots (DS) than the comparative example and is well dried. Moreover, when a cure degree exceeds 50%, the fall of the adhesiveness of the film board
  • Example 2 According to the following method, the roll-shaped organic EL element substrate in which the organic EL element which consists of a structure of FIG. 2 was formed continuously was produced.
  • a substrate having a transparent electrode On a polyethylene naphthalate (PEN) roll film substrate having a width of 100 mm ⁇ 10 m and a thickness of 100 ⁇ m, ITO (indium tin oxide) as an anode has a width of 80 mm ⁇ 80 mm, a thickness of 100 nm, an electrode spacing of 20 mm, and an anode extraction part is patterned.
  • PEN polyethylene naphthalate
  • a light emitting layer composition having the following composition was applied at a width of 90 mm to the center of a substrate having a width of 100 mm ⁇ 100 mm using an extrusion method to form a light emitting layer having a thickness of about 25 nm.
  • the roll-shaped sample formed up to the electron transport layer obtained above is wound up, transferred to a vacuum evaporation apparatus having a winding part, the vacuum chamber is decompressed to 4 ⁇ 10 ⁇ 4 Pa, and a part of the cathode taking-out part is removed.
  • a mask having a width of 90 mm ⁇ 90 mm a lithium fluoride film as a cathode buffer layer is deposited on the electron transport layer to a thickness of 10 nm and an aluminum film as a cathode is sequentially deposited to a thickness of 110 nm to be continuously rolled.
  • An organic EL element substrate was produced.
  • ⁇ Preparation of roll-shaped sealing substrate> Using a 50 ⁇ m thick aluminum foil (manufactured by Toyo Aluminum Co., Ltd.), a matte surface of 12 ⁇ m thick, 100 mm wide ⁇ 10 m long polyethylene terephthalate (PET) film was used as an adhesive for dry lamination (two-component reactive type) Lamination (adhesive layer thickness 1.5 ⁇ m) was made using a urethane-based adhesive to produce a roll-shaped sealing substrate.
  • PET polyethylene terephthalate
  • thermosetting adhesive layer ⁇ Formation of thermosetting adhesive layer>
  • the roll-shaped sealing substrate (PET laminate aluminum foil) produced above is unwound, and the following thermosetting adhesive layer constituent material is used for its glossy surface (aluminum surface), and the thermosetting adhesive layer is formed by an extrusion method. Was formed and wound up.
  • the organic EL element side and the adhesive layer surface are closely attached and arranged by roll conveyance, and the sealing substrate is pressure-bonded by a roll laminating method (pressure 0.3 MPa, conveyance speed 0.5 m / min). And temporarily bonded. From the substrate side and the sealing substrate side of the temporarily bonded organic EL panel, curing heat treatment is performed using a heat plate (temperature 80 ° C., 30 minutes) to cure the thermosetting adhesive layer, and then cut. Thus, an organic EL panel 201 was produced.
  • the preheating treatment was performed as follows.
  • Preliminary heat treatment From the adhesive layer side 50 mm of the sealing member, a preheating treatment was performed using a far-infrared plate heater (manufactured by DENKO Corporation, BD3040, 2 kW). The heating environment was an N 2 environment (dew point ⁇ 50 ° C.), and the organic EL element side and the adhesive layer surface were performed in the same space as the adhesion / arrangement step.
  • thermosetting adhesive layer was preheated and dehydrated, and then the organic EL element was bonded, cured and heat treated to be thermally cured and sealed. It can be seen that the organic EL panel of FIG. 2 has a smaller number of dark spots (DS) than the comparative example and is well dried. Moreover, when a cure degree exceeds 50%, the fall of adhesiveness with the film board

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 封止接着剤を用いて有機EL素子を封止、配列した有機ELパネルの製造方法において、簡易な方法で、熱硬化型接着剤を用いて接着することにより、封止性能に優れ、耐久性に優れた有機ELパネルの製造方法を提供するにあたり、基板上に、少なくとも第一電極と、発光層を含む有機機能層と、第二電極を有する有機EL素子と、封止基板とを、熱硬化性接着剤を介して貼合配置した有機ELパネルの製造方法において、該封止基板上に熱硬化性接着剤層を形成する工程と、該封止基板上に形成された熱硬化性接着剤層を予備加熱処理する工程と、該予備加熱処理された熱硬化性接着剤層と有機エレクトロルミネッセンス素子とを貼合する工程と、該熱硬化性接着剤層を加熱硬化する工程とを、この順に有することを特徴とする。

Description

有機エレクトロルミネッセンスパネルの製造方法及びその製造方法で製造された有機エレクトロルミネッセンスパネル
 本発明は有機エレクトロルミネッセンスパネルの製造方法に関し、特に有機エレクトロルミネッセンスパネルの製造において有機エレクトロルミネッセンス素子の封止方法に関するものである。
 近年、有機物質を使用した有機エレクトロルミネッセンス素子(以後、単に有機EL素子ともいう)が、固体発光型の薄型で安価な大面積フルカラー表示素子や光源アレイとしての用途が有望視されており、活発な研究開発が進められている。
 有機EL素子は、基板上に形成された第1電極(陽極又は陰極)と、その上に積層された有機発光物質を含有する有機化合物層(単層又は多層)すなわち発光層と、この発光層上に積層された第2電極(陰極又は陽極)とを有する薄膜型の素子である。この様な有機EL素子に電圧を印加すると、有機化合物層に陰極から電子が注入され、ならびに陽極から正孔が注入される。この電子と正孔が発光層において再結合し、エネルギー準位が伝導帯から価電子帯に戻る際にエネルギーを光として放出することにより発光層から発光が得られることが知られている。
 ところが、有機EL素子に用いられる有機発光物質等の有機材料は水分や酸素等に弱く、それら水分や酸素等に対して性能が劣化し易い。又、電極においても、酸化により大気中では特性が急激に劣化すため、有機EL素子の最上層に封止層を設けて、空気中の水分や酸素を遮断することにより劣化を防止する方法が用いられているのが一般的である。
 有機EL素子の封止方法としてはこれまでに多くの検討がされてきており、ケーシングタイプの封止方法と、密着タイプの封止方法との2つの方法に大別される。
 ケーシングタイプの封止方法とは有機EL素子をケース内に入れて外界と遮断し、前記のケース内に有機EL素子と共に所定の封止用の気体又は流体を充填しておくことにより封止する方法である。
 一方、密着タイプの封止方法とは、基板上に形成されている有機EL素子の素子表面を、ガラス板等の封止基材を接着剤で面接着することにより基板と封止基材とで封止する方法である。
 ケーシングタイプの封止方法の場合は、ケース内に封止用気体又は流体を充填するため薄型とすることが出来ない、工程が複雑である、大量生産には不向き等、種々の課題があるものであった。
 一方、密着タイプの封止方法は、薄型対応が可能であり、大量生産が比較的容易である等種々のメリットがあり、近年、検討が進められている。
 密着タイプの封止方法としては、例えば、バリア層と熱可塑性接着性樹脂からなるシーラント層を含む封止フィルムで封止した有機EL素子が知られている(例えば、特許文献1を参照。)。
 また、熱可塑性接着性樹脂以外に硬化型接着剤を用いる方法として、熱硬化型や紫外線硬化型の接着剤が知られている。紫外線硬化型接着剤は、紫外線を照射することにより、接着剤を硬化させることから、基材照射面が透明であり、照射されるものが紫外線照射によりダメージを受け難い材料であること等が必要であり利用範囲に限界があった。
 このような問題から、熱硬化型接着剤を用いる方法が、取り扱い性や製造装置として簡便さが有利であることから多く用いられてきている。
 しかし、熱硬化型接着剤の問題として、接着剤そのものが、吸湿性を有していること、管理保存法が悪いと含水率が上がってしまい、その接着剤を用いて熱硬化した封止部材は、その後の封止特性に問題が有ること等が分かった。
 そこで、このような問題を解決するために、封止に用いられる全ての部材を、低湿、低露点の密閉容器内に減圧下保存し、脱水処理をする方法が提案(例えば、特許文献1、2参照。)されている。
 しかしながら、この様な方法では、保存設備が膨大となり、コスト高となるものであった。
 簡便な方法で熱硬化性接着剤を脱水することが出来れば大きなメリットとなるものである。簡便な方法で脱水を行う方法として加熱を行うことが挙げられるが、この方法だと、加熱により接着剤そのものの硬化が進行してしまい、接着機能を失ってしまうことから、加熱を行う方法は回避されるべき方法であるという認識があり、他の手段が色々検討されてきている。しかしながら、未だ良い方法は見いだされていないのが現状である。
 この様な現状から、接着剤を介して貼合する封止方法で有機エレクトロルミネッセンス素子を封止した有機ELパネルの製造方法において、簡便な方法でかつ封止基板を熱硬化型接着剤で固着しても、封止性能の劣化を生じない有機ELパネルの製造方法及び有機ELパネルの開発が強く望まれている。
 尚、本発明では基板上に第一電極と有機層と第二電極まで形成した状態を、有機EL素子と言い、封止基板で密着封止した状態を有機ELパネルと言う。
特開2000-150147号公報 特開2002-373777号公報
 本発明は、上記状況に鑑みなされたものであり、その目的は、接着剤を用いて有機EL素子を封止した有機ELパネルの製造方法において、簡易な方法で、熱硬化型接着剤を用いて接着することにより、封止性能に優れ、耐久性に優れた有機ELパネルの製造方法を提供することである。
 本発明の上記目的は、下記の構成により達成された。
 1.基板上に、少なくとも第一電極と、発光層を含む有機機能層と、第二電極とを有する有機エレクトロルミネッセンス素子と、封止基板とを、熱硬化性接着剤層を介して貼合した有機エレクトロルミネッセンスパネルの製造方法において、
 該封止基板上に該熱硬化性接着剤層を形成する工程と、
該封止基板上に形成された熱硬化性接着剤層を予備加熱処理する工程と、
該予備加熱処理された熱硬化性接着剤層と該有機エレクトロルミネッセンス素子とを貼合する工程と、
該熱硬化性接着剤層を硬化加熱処理する工程とを、この順に有することを特徴とする有機エレクトロルミネッセンスパネルの製造方法。
 2.前記予備加熱処理する工程では、前記熱硬化性接着剤層の予備加熱処理後の硬化率が50%以下であることを特徴とする前記1に記載の有機エレクトロルミネッセンスパネルの製造方法。
 3.前記予備加熱処理する工程では、前記熱硬化性接着剤層の予備加熱処理後の含水率が500ppm以下であることを特徴とする前記1または2に記載の有機エレクトロルミネッセンスパネルの製造方法。
 4.前記予備加熱処理する工程では、前記熱硬化性接着剤層の予備加熱処理前の含水率が2000ppm以上であることを特徴とする前記1~3の何れか1項に記載の有機エレクトロルミネッセンスパネルの製造方法。
 5.前記予備加熱処理する工程が、不活性ガス環境で行われることを特徴とする前記1~4の何れか1項に記載の有機エレクトロルミネッセンスパネルの製造方法。
 6.前記予備加熱処理する工程が、露点-30℃以下の環境で行われることを特徴とする前記1~5の何れか1項に記載の有機エレクトロルミネッセンスパネルの製造方法。
 7.前記予備加熱処理する工程が、1000Pa以下の環境で行われることを特徴とする前記1~6の何れか1項に記載の有機エレクトロルミネッセンスパネルの製造方法。
 8.前記予備加熱処理する工程と、前記貼合する工程が、同一空間に配置され連続で行われることを特徴とする前記1~7の何れか1項に記載の有機エレクトロルミネッセンスパネルの製造方法。
 9.前記基板が帯状の可撓性基板であり、前記熱硬化性接着剤層を形成する工程、熱硬化性接着剤層を予備加熱処理する工程、貼合する工程及び加熱硬化する工程を、連続してロールツーロール方式を用いて行うことを特徴とする前記1~8の何れか1項に記載の有機エレクトロルミネッセンスパネルの製造方法。
 10.前記1~9の何れか1項に記載の有機エレクトロルミネッセンスパネルの製造方法により形成されたことを特徴とする有機エレクトロルミネッセンスパネル。
 本発明の有機ELパネルの製造方法により、簡易な方法で、かつ耐久性にすぐれた有機ELパネルを提供することができた。
枚葉に形成された有機ELパネルの平面図及び断面図である。 連続シート上に連続的に形成された複数の有機ELパネルの平面図及び断面図である。 本発明の接着封止における枚葉プロセスによる有機ELパネルの製造例を示す。 本発明の接着封止におけるロールツーロール(RtoR)プロセスによる有機ELパネルの製造例を示す。
 以下、本発明を実施するための形態について詳細に説明する。
 本発明者は、上記課題に鑑み鋭意検討を行った結果、基板上に、少なくとも第一電極と、発光層を含む有機機能層と、第二電極を有する有機EL素子と、封止基板とを、熱硬化性接着剤層を介して貼合した有機ELパネルの製造方法において、
 該封止基板上に該熱硬化性接着剤層を形成する工程と、該封止基板上に形成された熱硬化性接着剤層を予備加熱処理する工程と、該予備加熱処理された熱硬化性接着剤層と有機エレクトロルミネッセンス素子とを貼合する工程と、該熱硬化性接着剤層を硬化加熱処理する工程とを、この順に有することを特徴とする有機ELパネルの製造方法により、簡便であり、有機機能層の性能の劣化を抑制し、特に経時での劣化が少ない、有機ELパネルの製造方法を実現することができることを見出し、本発明に至った次第である。
 本発明に用いられる有機EL素子および封止部材の貼合工程について図をもって説明する。
 図1は、枚葉に形成された有機EL素子10の平面図(a)及びA-A′線断面図(b)である。
 図1中、支持体1上に第一電極2を有し、その上に有機機能層として、正孔輸送層3と発光層4を有し、その上に陰極となる第二電極5が積層されている。第一電極2及び第二電極5の端部には各々端子部2a及び5aを有する。
 図2は、連続シート上に連続的に複数の有機EL素子を形成するプロセスを示す平面図(a)~(d)とそのB-B′線断面図(e)である。層構成は図1に示した枚葉の構成と同様である。
 図3は、枚葉プロセスによる本発明の有機ELパネルの製造例を示す図である。
 図3(a)は、封止基材11上に、接着剤塗工装置12により熱硬化性接着剤層13を形成し、図3(b)では、加熱装置14により該熱硬化性接着剤層13を加熱脱水する。
 赤外線吸収測定装置15及び水分測定装置16を用いて、接着剤層の硬化度及び含水率を測定する。
 熱硬化性接着剤層の硬化度が好ましくは50%を超えない範囲で、予備加熱処理で脱水を行い、図3(c)において、図1に示した枚葉の有機EL素子10と対面する方向で貼合し、(d)圧着した後、(e)硬化加熱処理することにより接着剤層を熱硬化して、有機ELパネル40が形成される。
 図4は、ロールツーロール(RtoRとも記す。)方式による本発明の有機ELパネルの製造例を示す図である。
 図4において、ロール20から巻き出された封止基板21上に、塗工装置22を用いて熱硬化性接着剤層23が塗工され、塗工された熱硬化性接着剤層23を加熱装置24により予備加熱処理し脱水する。
 脱水された熱硬化性接着剤層の含水率および硬化度を水分測定装置25および赤外線吸収測定装置26により測定する。
 予め有機EL素子が基材上に形成されたロール31から巻き出された有機EL素子基板30と、脱水された封止部材28(封止基材21と接着剤層23)とを、ラミネートロール27により貼合し、更に硬化加熱処理することにより熱硬化性接着剤層を熱硬化し、更に、有機EL素子毎に断裁することにより有機ELパネル40が形成される。
 尚、本発明においては、封止基板上に熱硬化性接着剤層を形成した後、一度封止部材として巻き取りを行い、その後該封止部材をロールより巻き出して予備加熱処理により脱水した後有機EL素子基板と接着貼合してもよい。予備加熱処理する工程と有機EL素子との貼合工程は連続していることが好ましい。ここで言う連続工程とは、巻き取りが行われること無く、ロールが連続搬送されていることを意味し、同一空間、すなわち同一の雰囲気で行われても、異なる雰囲気が連続する工程であっても良い。同一の雰囲気とは、例えば、同じチャンバー内にて行うことを指す。
 〈封止基板〉
 本発明に用いられる封止基板としては、ガラス基板、プラスチック材料、金属板、金属箔等特に限定されない。
 本発明に使用することができるプラスチック材料としては、例えばエチレンテトラフルオロエチレン共重合体(ETFE)、高密度ポリエチレン(HDPE)、延伸ポリプロピレン(OPP)、ポリスチレン(PS)、ポリメチルメタクリレート(PMMA)、延伸ナイロン(ONy)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、ポリイミド、ポリエーテルスチレン(PES)などの熱可塑性樹脂フィルム材料を使用することが出来る。又、これら熱可塑性樹脂フィルムは、必要に応じて異種フィルムと共押出しで作った多層フィルム、貼り合せて作った多層フィルム等も当然使用出来る。更に必要とする物性を得るために使用するフィルムの密度、分子量分布を組合せて作ることも可能である。
 封止基板としてプラスチックフィルムを用いる場合は、ガスバリア層を有するものであることが好ましい。
 ガスバリア層の特性としては、水蒸気透過度は、0.01g/m・day以下であることが好ましい。水蒸気透過度はJIS K7129B法(1992年)に準拠した方法で主としてMOCON法により測定した値を示す。
 酸素透過度は、0.01ml/m・day・atm以下であることが好ましい。酸素透過度はJIS K7126B法(1987年)に準拠した方法で主としてMOCON法により測定した値である。
 ガスバリア層としては、無機蒸着膜、金属箔が挙げられる。無機蒸着膜としては薄膜ハンドブックp879~p901(日本学術振興会)、真空技術ハンドブックp502~p509、p612、p810(日刊工業新聞社)、真空ハンドブック増訂版p132~p134(ULVAC 日本真空技術K.K)に記載されている如き無機膜が挙げられる。
 例えば、In、Sn、Pb、Au、Cu、Ag、Al、Ti、Ni等の金属、MgO、SiO、SiO、Al、GeO、NiO、CaO、BaO、Fe、Y、TiO、Cr、Si(x=1、y=1.5~2.0)、Ta、ZrN、SiC、TiC、PSG、Si、SiN、単結晶Si、アモルファスSi、W、等が用いられる。
 又、金属箔の材料としては、例えばアルミニウム、銅、ニッケルなどの金属材料や、ステンレス、アルミニウム合金などの合金材料を用いることが出来るが、加工性やコストの面でアルミニウムが好ましい。
 ガラス基板としては特に限定はなく、例えば珪酸塩ガラス、珪酸アルカリガラス、鉛アルカリガラス、ソーダ石灰ガラス、カリ石灰ガラス、バリウムガラス、硼珪酸ガラス、燐酸塩ガラス等が挙げられる。
 《熱硬化性接着剤層およびその形成方法》
 本発明の有機ELパネルの製造方法において、熱硬化性接着剤層に用いられる熱硬化性樹脂としては、エポキシ系樹脂、アクリル系樹脂、シリコーン樹脂等が挙げられるが、本発明はこれらに限定されるものではない。これらの熱硬化性樹脂の中でも、耐湿性、耐水性に優れ、硬化時の収縮が少ないことから、エポキシ系熱硬化樹脂を用いることが好ましい。また、熱硬化性接着剤層の厚さは、概ね5μm~100μmであり、好ましくは10μm~50μmである。
 熱硬化性接着剤層の形成方法としては、用いる材料に応じて、ロールコート、スピンコート、スクリーン印刷法、スプレーコート、インクジェットコート等のコーティング法、印刷法等を用いることができる。
 《接着剤層の予備加熱処理及び硬化加熱処理の方法について》
 接着剤層の予備加熱処理及び硬化加熱処理における加熱方法としては、接着剤層に接触せずに加熱を行う非接触式、接着剤層に接触して加熱を行う接触式(裏面)等、特に問わないが、非接触式の方が有機EL素子を形成する有機機能材料への影響や異物の発生等の面から好ましい。
 なお、本発明において、予備加熱処理とは、熱硬化性接着剤層と有機EL素子とを貼合する前の加熱処理のことを指し、硬化加熱処理とは、熱硬化性接着剤層と有機EL素子とを貼合した後の加熱処理のことを指す。
 非接触式加熱方式としては、例えば、遠赤外線ヒータ、ハロゲンランプヒータ、レーザーや、マイクロ波加熱等の加熱方法が挙げられるが、これに限ったものではない。
 本発明に適用可能な加熱手段であるレーザーとしては、例えば、ネオジムレーザー、YAGレーザー、ルビーレーザー、ヘリウム-ネオンレーザー、クリプトンレーザー、アルゴンレーザー、Hレーザー、Nレーザー、半導体レーザー等のレーザー光を挙げることができる。より好ましいレーザーとしては、YAG:ネオジム3+レーザー(レーザー光の波長:1060nm)や半導体レーザー(レーザー光の波長:500~1000nm)を挙げることができる。レーザー光の出力は、5~1000Wであることが好ましい。
 レーザーは連続波長でも良いし、パルス波でもよい。パルス波の幅を制御すると加温の調節が可能であり、最適条件を求め易い。
 又、発塵や雰囲気の温度上昇を考慮した場合は、遠赤外線ヒータが好ましい。
 接触式加熱方式としては、例えば、ヒートプレートを使用することができるが、ヒートプレートは、シリコンラバーヒーター等からなる発熱電気抵抗体を担持したSUS箔に、絶縁層、その上にアルミ板、さらにフッ素系樹脂等が被膜されて構成され、電源からの電力供給により発熱して、所望の温度に接着剤層を加熱して脱水するというものである。
 また、他の接触式加熱方式であるヒートローラは、外周部を加熱するための温度コントロール可能な熱源(例えば、金属抵抗発熱体、ハロゲンランプなど)を中心部に装着した熱伝導性のよい金属(例えばアルミニウム,ステンレス,鉄,銅等)又はプラスチック素材(例えばベークライト等)を用いたローラで構成され、その最外周部がテフロン(登録商標)又はシリコンゴムなどによって被覆され外周が適度に加熱され脱水するというものである。
 本発明において、熱硬化性接着剤層の予備加熱処理及び硬化加熱処理の条件として、加熱温度としては概ね50℃~200℃であり、好ましくは80℃~160℃の範囲であり、特に好ましくは90℃~140℃である。
 本発明においては、加熱時間は、概ね1秒~30分の範囲で加熱することにより、脱水および硬化(架橋反応)が進むので、予備加熱処理は下記の好ましい含水率となるように処理時間を調整する。好ましくは、4.0秒以上、600秒以下の範囲で加熱することである。
<熱硬化性接着剤層の含水率について>
 塗布形成された熱硬化性接着剤層および予備加熱処理された該接着剤層の含水率は、カールフィッシャー水分測定装置(三菱アナリテック社製、CA-200)等を用いて測定することが出来る。予備加熱処理前の熱硬化性接着剤層の含水率は、2000ppm以上のものが多く、予備加熱処理を行うことで熱硬化性接着剤層の含水率、を500ppm以下とすることが好ましく、より好ましくは300ppm以下とすることである。
 <熱硬化性接着剤層の硬化率について>
 尚、熱硬化性接着剤層の硬化率の測定は以下の様にして行った。
 測定装置としては、リアルタイムFT-IRの測定により非破壊的に行うことが好ましく、例えば、バイオ・ラッド社製 FT-IR を用いることがきる。
 熱硬化性接着剤の官能基の種類によって、その測定波長を変更して行うことができるが、例えばエポキシ系熱硬化性接着剤の場合は、930nmのピーク強度の変化について、硬化反応前の初期状態を硬化度0とし、反応基がほぼ完全に消費されて反応基由来のピーク強度が減少しなくなる(或いは、ゼロになる)状態を100として硬化度を計算する。
 本発明では、好ましくは予備加熱処理では、熱硬化性接着剤層の硬化率が50%を超えないように加熱処理することが好ましい。このような加熱処理であれば、熱硬化性接着剤層の接着性を十分確保できる。
 次に、本発明の有機ELパネルとその形成方法について下記に示す。
 〈有機ELパネル〉
 本発明により封止形成された有機ELパネルの層構成の例を、下記に挙げる。
 (1)基板/陽極(第1電極)/発光層/電子輸送層/陰極(第2電極)/封止基板
 (2)基板/陽極(第1電極)/正孔輸送層/発光層/陰極(第2電極)/封止基板
 (3)基板/陽極(第1電極)/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極(第2電極)/封止基板
 (4)基板/陽極(第1電極)/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層(電子注入層)/陰極(第2電極)/封止基板
 (5)基板/陽極(第1電極)/陽極バッファー層(正孔注入層)/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層(電子注入層)/陰極(第2電極)/封止基板
 尚、上記層構成において、封止基板を除く基板上に形成された各機能層を有する有機EL素子は、本発明の封止工程前に予め作製準備されている。
 〈有機EL素子〉
 有機EL素子は、通常、陽極(第1電極)側が観察側になり、陽極(第1電極)には、ITO(酸化スズと酸化インジウム混合物)、IZO(酸化亜鉛と酸化インジウム混合物)、ZnO、SnO、In等の透明電極が用いられる。中でも、ITO電極は、90%以上の高い光透過率と、10Ω/□以下の低いシート抵抗値が可能で、本発明に好ましく用いられる。又、IZO電極は、形成時に基板を加熱せずに所定の低い抵抗値が得られ、ITO電極よりも膜表面が平滑であるという利点があり好ましい。
 陽極の上には、各有機機能層が形成され、更にその上に陰極が形成されて有機EL素子が形成されている。
 正孔注入・輸送層に用いられる有機材料としては、フタロシアニン誘導体、ヘテロ環アゾール類、芳香族三級アミン類、ポリビニルカルバゾール、ポリエチレンジオキシチオフェン/ポリスチレンスルホン酸(PEDOT:PSS)などに代表される導電性高分子等の高分子材料が用いられる。
 また、発光層に用いられる、例えば、4,4′-ジカルバゾリルビフェニル、1,3-ジカルバゾリルベンゼン等のカルバゾール系発光材料、(ジ)アザカルバゾール類、1,3,5-トリピレニルベンゼンなどのピレン系発光材料に代表される低分子発光材料、ポリフェニレンビニレン類、ポリフルオレン類、ポリビニルカルバゾール類などに代表される高分子発光材料などが挙げられる。これらのうちで、発光材料としては、分子量10000以下の低分子系発光材料が好ましく用いられる。
 また発光層には、発光材料として、0.1~20質量%程度のドーパントが含まれてもよく、ドーパントとしては、ペリレン誘導体、ピレン誘導体等公知の蛍光色素、また、りん光色素、例えば、トリス(2-フェニルピリジン)イリジウム、ビス(2-フェニルピリジン)(アセチルアセトナート)イリジウム、ビス(2,4-ジフルオロフェニルピリジン)(ピコリナート)イリジウム、などに代表されるオルトメタル化イリジウム錯体等の錯体化合物がある。
 電子注入・輸送層材料としては、8-ヒドロキシキノリナートリチウム、ビス(8-ヒドロキシキノリナート)亜鉛等の金属錯体化合物もしくは以下に挙げられる含窒素五員環誘導体がある。即ち、オキサゾール、チアゾール、オキサジアゾール、チアジアゾールもしくはトリアゾール誘導体が好ましい。具体的には、2,5-ビス(1-フェニル)-1,3,4-オキサゾール、2,5-ビス(1-フェニル)-1,3,4-チアゾール、2,5-ビス(1-フェニル)-1,3,4-オキサジアゾール、2-(4′-tert-ブチルフェニル)-5-(4″-ビフェニル)1,3,4-オキサジアゾール、2,5-ビス(1-ナフチル)-1,3,4-オキサジアゾール、1,4-ビス[2-(5-フェニルオキサジアゾリル)]ベンゼン、1,4-ビス[2-(5-フェニルオキサジアゾリル)-4-tert-ブチルベンゼン]、2-(4′-tert-ブチルフェニル)-5-(4″-ビフェニル)-1,3,4-チアジアゾール、2,5-ビス(1-ナフチル)-1,3,4-チアジアゾール、1,4-ビス[2-(5-フェニルチアジアゾリル)]ベンゼン、2-(4′-tert-ブチルフェニル)-5-(4″-ビフェニル)-1,3,4-トリアゾール、2,5-ビス(1-ナフチル)-1,3,4-トリアゾール、1,4-ビス[2-(5-フェニルトリアゾリル)]ベンゼン等が挙げられる。
 これら発光層、また各機能層に用いられる材料として、分子中にビニル基等の重合反応性基を有する材料を用い、製膜後に架橋・重合膜を形成させてもよい。
 因みに、陽極層に使用される導電性材料としては、4eVより大きな仕事関数をもつものが適しており、銀、金、白金、パラジウム等及びそれらの合金、酸化スズ、酸化インジウム、ITO等の酸化金属、さらにはポリチオフェンやポリピロール等の有機導電性樹脂が用いられる。
 また、陰極層に使用される導電性物質としては、4eVより小さな仕事関数を有するものが適しており、金属としてはマグネシウム、アルミニウム等や合金としては、マグネシウム/銀、リチウム/アルミニウム等が代表例として挙げられる。
 〈基板〉
 次に、有機EL素子に使用される基板について説明する。
 本発明に用いられる基板の基板材料としては、光透過性の基板で有れば良く、ガラス基板、プラスチック基板等特に限定されない。
 プラスチック(樹脂)基板としては、透明性樹脂フィルムがあり、厚さ100μm~2mm程度の厚みを有するものが使用される。透明性樹脂フィルムとしては、ポリエチレン、ポリエチレンナフタレート(PEN)、ポリエチレンテレフタレート(PET)、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、ポリメチルメタアクリレート、ポリエーテルエーテルケトン、ポリエーテルサルフォン、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、ポリエステル、ポリカーボネート、ポリウレタン、ポリイミド、ポリエーテルイミド等が挙げられるが、これらに限定されない。好ましくは、ポリエチレンナフタレート(PEN)である。
 基板がポリエチレンナフタレートであると、加熱した場合の変形量が小さいことから好ましい。
 また、ガスバリア性が高いガスバリアフィルムを用いることもできる。ガスバリアフィルムとしては、金属の酸化物膜、例えば、酸化窒化膜、窒化膜、金属薄膜等、厚みとして50nm以上、50μm以下の封止機能を有するガスバリア膜を有するフィルムが挙げられる。
 〈有機EL素子の形成方法〉
 該基板上に形成される有機機能層等の形成方法としては、これも特に制限はなく、蒸着法、塗布法等何れの形成方法であっても良い。
 〈貼合〉
 前記の様にして形成された有機EL素子の有機機能層等が形成された面と前記封止基材の接着剤層が形成された面を対向するようにして貼合することにより封止され有機ELパネルが形成される。
 なお、本発明においては、貼合されて形成された封止構造としては、封止缶方式の中空構造であっても、密封方式のシール接着剤が充填された密着封止構造であっても構わない。
 〈貼合工程〉
 本発明においては、封止基材上に熱硬化性接着剤層を形成する工程は、続く接着剤層の硬化加熱処理工程とは連続である必要はなく、不連続であってもよい。しかしながら、接着剤層の硬化加熱処理工程と有機EL素子との貼合工程は連続して行うことが好ましい。
 尚、本発明でいう連続とは、接着剤層の硬化加熱処理工程と有機EL素子基板との貼合工程の間隔が数分から数時間以内のものであり、実質的に環境雰囲気から吸湿しない範囲のものを指す。
 硬化加熱処理工程の環境としては、不活性ガス雰囲気であることが好ましい。不活性ガス雰囲気とすることにより、熱硬化性接着剤層において加熱による酸化反応や熱重合反応が促進されることが無く、また、同一雰囲気に有機EL素子がある場合は、有機EL素子の形成材料にダメージを与えることが無いため更に好ましい。
 さらに、硬化加熱処理工程の環境としは、露点-30℃以下の環境であることが好ましく、特に好ましくは-60℃以下であり、気圧は1000Pa以下の環境である。
 更に、加熱工程と貼合工程が、同一空間に配置された連続工程であることが最も好ましい。
 この様な環境下で、封止部材の熱硬化性接着剤層を加熱し、有機EL素子基板と貼合するとき、本発明においては熱硬化性接着剤層の接着剤の硬化率を50%以下とすることが好ましい。
 本発明においては、この接着剤層の予備加熱処理工程においては、接着剤の硬化率が50%を超えないことが好ましく、その硬化率が50%を超える場合は、その後の有機EL素子基板との貼合における接着機能が不十分となり、接着剤層が素子の形状に合わせて塑性変形することが出来ず、素子を損ねる可能性がある。
 本発明の製造方法は、従来は熱硬化型接着剤を用いて封止接着する場合、加熱することはできないものと考えられていたが、硬化率を管理することにより、簡易な方法で、熱硬化性接着剤層の含水率を低下させ、高い封止効果を得ることができることを見いだしたものである。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。
 実施例1
 《有機EL素子の作製》
 下記の方法に従って、図1に記載のものと類似の構成からなる枚葉の有機EL素子を作製した。
 (透明支持基板の作製)
 幅100mm×100mm、厚さ100μmのポリエチレンナフタレート(PEN)フィルム基板上の中心に、陽極としてITO(インジウムチンオキシド)を幅80mm×80mm、厚さ100nmで、一部陽極取り出し部がパターニングされた透明陽極基板を準備した。この基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を更に5分間行った。
 (正孔輸送層の形成)
 この透明支持基板上に、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホン酸(PEDOT/PSS Bayer社製、Baytron P Al 4083)を純水で70%に希釈した溶液を、スクリーン印刷法を用いて、陽極上に幅80mm×80mmで塗布した後、200℃で1時間乾燥し、膜厚30nmの正孔輸送層を形成した。
 (発光層の形成)
 次いで、下記組成の発光層組成物を、スクリーン印刷法を用いて、幅100mm×100mmの基材の中心に、幅90mm×90mmに塗布し、膜厚約25nmの発光層を形成した。
 〈発光層組成物〉
 溶媒:トルエン                    100質量%
 ホスト材料:H-A                    1質量%
 青色材料:Ir-A                 0.10質量%
 緑色材料:Ir(ppy)            0.004質量%
 赤色材料:Ir(piq)            0.005質量%
 (電子輸送層の形成)
 次いで、下記電子輸送層用塗布液を、スクリーン印刷法を用いて、発光層の上に幅90mm×90mmで、膜厚20nmの電子輸送層を設けた。
 〈電子輸送層用塗布液〉
 2,2,3,3-テトラフルオロ-1-プロパノール    100ml
 ET-A                        0.50g
Figure JPOXMLDOC01-appb-C000001
 (陰極バッファー層、陰極の形成)
 更に電子輸送層が形成された上記試料を真空蒸着装置に移し、真空槽を4×10-4Paまで減圧し、一部陰極取り出し部を有する幅90mm×90mmのマスクを用いて、前記電子輸送層上に陰極バッファー層としてフッ化リチウム膜を10nm及び陰極としてアルミニウム膜を110nmの厚さで順次蒸着成膜して、有機EL素子を作製した。
 〈封止基板の作製〉
 厚み50μmのアルミ箔(東洋アルミニウム株式会社製)を用い、このマット面に厚みが12μm厚のポリエチレンテレフタレート(PET)フィルムをドライラミネーション用の接着剤(2液反応型のウレタン系接着剤)を用いてラミネート(接着剤層の厚み1.5μm)して、封止基板を作製した。
 〈熱硬化性接着剤層の形成〉
 上記作製した封止基板(PETラミネートアルミ箔)を、100mm×100mmに断裁し、そのつや面(アルミ面)に、下記の構成材料を用い、ディスペンサを使用して熱硬化性接着剤層を形成し接着剤付き封止基板を得た。
 (熱硬化接着剤層構成材料)
 ビスフェノールAジグリシジルエーテル(DGEBA) 100質量%
 ジシアンジアミド(DICY)              8質量%
 エポキシアダクト系硬化促進剤              3質量%
 〈有機ELパネル101の作製〉
 得られた接着剤付き封止基板を、N環境下(露点-50℃)にて、有機EL素子を形成したポリエチレンナフタレート(PEN)フィルム基板上に接着剤層面を密着・配置して、封止基板を圧着(圧力0.15MPa、時間30秒)して、仮接着した。仮接着された有機ELパネルの基板側及び封止基板の基材側より、ヒートプレート(温度80℃、30分)を用いて硬化加熱処理し、熱硬化性接着剤層を硬化させて、有機ELパネル101を作製した。
 〈有機ELパネル102~108の作製〉
 上記有機ELパネル101の作製において、封止基板の熱硬化性接着剤層の予備加熱処理を加え、当該予備加熱処理の加熱条件(温度及び時間)、加熱環境(N環境下露点、真空度)を、表1に記載した条件に変更した以外は同様にして、有機ELパネル102~108を作製した。
 なお、予備加熱処理は以下の様に行った。
〈封止基板の予備加熱処理〉
 上記で得られた接着剤層を有する封止基板を下記の条件で予備加熱処理を行った。又、同時に予備加熱処理による硬化度および含水率の測定を下記の機器を用いて測定した。
 (予備加熱処理)
 封止部材の接着剤層側100mmから、遠赤外線プレートヒーター(株式会社デンコー製、BD3040、2kW)を用いて予備加熱処理を行った。
 (含水率の測定)
 上記で形成された封止部材の予備加熱処理前と予備加熱処理後の含水率をカールフィッシャー水分測定装置(三菱アナリテック社製、CA-200)を用いて測定した。
 (熱硬化性樹脂の硬化度の測定)
 FT-IR装置(バイオ・ラッド社製、FT5-40)を用い、930nmのピーク強度の変化について測定。硬化反応前のピーク強度の値と、完全硬化後のピーク強度の値を事前に測定しておき、各々の値を0及び100として硬化度を評価した。
 《有機ELパネルの評価》
 上記で作製した有機ELパネル101~108について、下記に記載の方法に従って、密着度及びダークスポット発生数を評価し、得られた結果を表1に示した。
 (密着度)
 作製した有機ELパネル101~108を、封止基板側が凸になるように曲げ半径50mmおよび100mmにてベントさせ、封止基板の密着度(剥れ)を目視で確認した。
 [密着状態評価ランク]
 ○:50mmで封止部材の剥れがない
 △:100mmで封止部材の剥がれはないが、50mmで剥がれが認められる
 ×:100mmで封止部材が剥れている
 (ダークスポット発生数)
 作製した有機ELパネルを、露点-80℃、温度70℃の環境に3時間放置した後、低電圧電源(株式会社エーディーシー製、直流電圧・電流源R6243)にて+5Vを印加し素子を発光させ、その時の発光状態をマイクロスコープにより観察した。直径30μm以上のダークスポット(DS)の発生数をカウントした。
 [DS発生の評価ランク]
 ◎:0個
 ○:1個以上、10個未満
 △:10個以上、20個未満
 ×:20個以上
Figure JPOXMLDOC01-appb-T000002
 表1に記載の結果より明らかな様に、熱硬化性接着剤層を予備加熱処理して脱水した後、有機EL素子を貼合し、硬化加熱処理を行うことにより封止した本発明の有機ELパネルは、比較例に比べて、ダークスポット(DS)の発生数が少なく、よく乾燥されていることが分かる。また、硬化度が50%を超える場合は、有機EL素子を形成したフィルム基板と封止基板との密着性の低下が見られる。
 実施例2
 下記の方法に従って、図2に記載の構成からなる有機EL素子が連続的に形成されたロール状の有機EL素子基板を作製した。
 (透明電極を有する基板の作製)
 幅100mm×10m、厚さ100μmのポリエチレンナフタレート(PEN)ロールフィルム基板上に、陽極としてITO(インジウムチンオキシド)が幅80mm×80mm、厚さ100nmで、電極間隔が20mm、陽極取り出し部がパターニングされた透明電極基板を準備した。
 (正孔輸送層の形成)
 この透明電極基板上に、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホン酸(PEDOT/PSS Bayer社製、Baytron P Al 4083)を純水で70%に希釈した溶液を、インクジェット印刷法を用いて、透明電極上に幅80mm×80mm、間隔20mmで塗布した後、200℃で1時間乾燥し、膜厚30nmの正孔輸送層を形成した。
 (発光層の形成)
 次いで、下記組成の発光層組成物を、エクストルージョン法を用いて、幅100mm×100mmの基材の中心に、幅90mmで塗布し、膜厚約25nmの発光層を形成した。
 〈発光層組成物〉
 溶媒:トルエン                    100質量%
 ホスト材料:H-A                    1質量%
 青色材料:Ir-A                 0.10質量%
 緑色材料:Ir(ppy)            0.004質量%
 赤色材料:Ir(piq)            0.005質量%
 (電子輸送層の形成)
 次いで、下記電子輸送層用塗布液を、エクストルージョン法を用いて、発光層の上に幅90mmで、膜厚20nmの電子輸送層を設けロール状に巻き取った。
 〈電子輸送層用塗布液〉
 2,2,3,3-テトラフルオロ-1-プロパノール    100ml
 ET-A                        0.50g
 用いた化合物は実施例1と同様である。
 (陰極バッファー層、陰極の形成)
 上記で得られた電子輸送層まで形成されたロール状試料を、巻き取り、巻きだし部を有する真空蒸着装置に移し、真空槽を4×10-4Paまで減圧し、一部陰極取り出し部を有する幅90mm×90mmのマスクを用いて、前記電子輸送層上に陰極バッファー層としてフッ化リチウム膜を10nm及び陰極としてアルミニウム膜を110nmの厚さで順次蒸着成膜して、ロール状に連続する有機EL素子基板を作製した。
 〈ロール状封止基板の作製〉
 厚み50μmのアルミ箔(東洋アルミニウム株式会社製)を用い、このマット面に厚みが12μmの、幅100mm×長さ10mのポリエチレンテレフタレート(PET)フィルムをドライラミネーション用の接着剤(2液反応型のウレタン系接着剤)を用いてラミネート(接着剤層の厚み1.5μm)して、ロール状封止基板を作製した。
 〈熱硬化性接着剤層の形成〉
 上記作製したロール状封止基板(PETラミネートアルミ箔)を巻きだし、そのつや面(アルミ面)に、下記の熱硬化性接着剤層構成材料を用い、エクストルージョン法により熱硬化性接着剤層を形成し巻き取りした。
 (熱硬化性接着剤層構成材料)
 ビスフェノールAジグリシジルエーテル(DGEBA) 100質量%
 ジシアンジアミド(DICY)              8質量%
 エポキシアダクト系硬化促進剤              3質量%
 〈有機ELパネル201の作製〉
 得られたロール状封止基板と、ロール状に有機EL素子が形成されたポリエチレンナフタレート(PEN)フィルム基板(有機EL素子基板)とを、N環境下(露点-50℃)にて、図3に示す様に、ロール搬送により、有機EL素子側と接着剤層面とを密着・配置して、封止基板をロールラミネート方式により圧着(圧力0.3MPa、搬送速度0.5m/min)して、仮接着した。仮接着された有機ELパネルの基板側及び封止基板側より、ヒートプレート(温度80℃、30分)を用いて硬化加熱処理を行い、熱硬化性接着材層を硬化させた後、断裁して有機ELパネル201を作製した。
〔有機ELパネル202~206の作製〕
 上記有機ELパネル201の作製において、封止基板の熱硬化性接着剤層の予備加熱処理を加え、当該予備加熱処理の加熱条件(温度及び時間)を、表2に記載した条件に変更した以外は同様にして、有機ELパネル202~206を作製した。
 なお、予備加熱処理は以下の様に行った。
 〈封止基板の予備加熱処理〉
 上記で得られた接着剤層を有するロール状封止基板(封止部材)を下記の条件で予備加熱処理を行った。又、同時に予備加熱処理による硬化度および含水率の測定を下記の機器を用いて測定した。
 (予備加熱処理)
 封止部材の接着剤層側50mmから、遠赤外線プレートヒーター(株式会社デンコー製、BD3040、2kW)を用いて予備加熱処理を行った。加熱環境は、N環境下(露点-50℃)とし、有機EL素子側と接着剤層面とを密着・配置工程と同一空間にて行った。
 (含水率の測定)
 上記で形成された封止部材の予備加熱処理無しと、予備加熱処理後の含水率をカールフィッシャー水分測定装置(三菱アナリテック社製、CA-200)を用いて測定した。
 (硬化度の測定)
 FT-IR装置(バイオ・ラッド社製、FT5-40)を用い、930nmのピーク強度の変化について測定。硬化反応前のピーク強度の値と、完全硬化後のピーク強度の値を事前に測定しておき、各々の値を0及び100として硬化度を評価した。
 《有機ELパネルの評価》
 上記で作製した有機ELパネル201~206について、実施例1と同様に評価した。
 得られた結果を表2に示した。
Figure JPOXMLDOC01-appb-T000003
 表2に記載の結果より明らかな様に、熱硬化性接着剤層を予備加熱処理して脱水した後、有機EL素子を貼合し、硬化加熱処理を行い熱硬化させて封止した本発明の有機ELパネルは、比較例に比べて、ダークスポット(DS)の発生数が少なく、よく乾燥されていることが分かる。また、硬化度が50%を超える場合は、有機EL素子を形成したフィルム基板と封止基板が密着との密着性の低下が見られる。
 1、11 基板
 2、12 第一電極
 2a 第一電極リード部
 3 正孔輸送層
 4 発光層
 5 第二電極
 5a 第2電極リード部
 10、30 有機EL素子
 12、22 接着剤塗工装置
 13、23 接着剤層
 14、24 予備加熱装置
 15、25 水分測定装置
 16、26 赤外線吸収測定装置
 19、29 本加熱装置
 20 封止基板ロール
 21 封止基板
 27 ラミネートロール
 28 接着剤層を形成した封止基板
 40 有機ELパネル

Claims (10)

  1.  基板上に、少なくとも第一電極と、発光層を含む有機機能層と、第二電極とを有する有機エレクトロルミネッセンス素子と、封止基板とを、熱硬化性接着剤層を介して貼合した有機エレクトロルミネッセンスパネルの製造方法において、
     該封止基板上に該熱硬化性接着剤層を形成する工程と、
    該封止基板上に形成された熱硬化性接着剤層を予備加熱処理する工程と、
    該予備加熱処理された熱硬化性接着剤層と該有機エレクトロルミネッセンス素子とを貼合する工程と、
    該熱硬化性接着剤層を硬化加熱処理する工程とを、この順に有することを特徴とする有機エレクトロルミネッセンスパネルの製造方法。
  2.  前記予備加熱処理する工程では、前記熱硬化性接着剤層の予備加熱処理後の硬化率が50%以下であることを特徴とする請求項1に記載の有機エレクトロルミネッセンスパネルの製造方法。
  3.  前記予備加熱処理する工程では、前記熱硬化性接着剤層の予備加熱処理後の含水率が500ppm以下であることを特徴とする請求項1または2に記載の有機エレクトロルミネッセンスパネルの製造方法。
  4.  前記予備加熱処理する工程では、前記熱硬化性接着剤層の予備加熱処理前の含水率が2000ppm以上であることを特徴とする請求項1~3の何れか1項に記載の有機エレクトロルミネッセンスパネルの製造方法。
  5.  前記予備加熱処理する工程が、不活性ガス環境で行われることを特徴とする請求項1~4の何れか1項に記載の有機エレクトロルミネッセンスパネルの製造方法。
  6.  前記予備加熱処理する工程が、露点-30℃以下の環境で行われることを特徴とする請求項1~5の何れか1項に記載の有機エレクトロルミネッセンスパネルの製造方法。
  7.  前記予備加熱処理する工程が、1000Pa以下の環境で行われることを特徴とする請求項1~6の何れか1項に記載の有機エレクトロルミネッセンスパネルの製造方法。
  8.  前記予備加熱処理する工程と、前記貼合する工程が、同一空間に配置され連続で行われることを特徴とする請求項1~7の何れか1項に記載の有機エレクトロルミネッセンスパネルの製造方法。
  9.  前記基板が帯状の可撓性基板であり、前記熱硬化性接着剤層を形成する工程、熱硬化性接着剤層を予備加熱処理する工程、貼合する工程及び加熱硬化する工程を、連続してロールツーロール方式を用いて行うことを特徴とする請求項1~8の何れか1項に記載の有機エレクトロルミネッセンスパネルの製造方法。
  10.  請求項1~9の何れか1項に記載の有機エレクトロルミネッセンスパネルの製造方法により形成されたことを特徴とする有機エレクトロルミネッセンスパネル。
PCT/JP2011/059509 2010-04-21 2011-04-18 有機エレクトロルミネッセンスパネルの製造方法及びその製造方法で製造された有機エレクトロルミネッセンスパネル WO2011132631A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/640,355 US9059429B2 (en) 2010-04-21 2011-04-18 Manufacturing method for organic electroluminescent panel and organic electroluminescent panel manufactured using the same
EP11771966.6A EP2563096A4 (en) 2010-04-21 2011-04-18 METHOD FOR MANUFACTURING ORGANIC ELECTROLUMINESCENT PANEL AND ORGANIC ELECTROLUMINESCENCE PANEL MADE USING THE SAME
JP2012511647A JP5772819B2 (ja) 2010-04-21 2011-04-18 有機エレクトロルミネッセンスパネルの製造方法及びその製造方法で製造された有機エレクトロルミネッセンスパネル

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010097539 2010-04-21
JP2010-097539 2010-04-21

Publications (1)

Publication Number Publication Date
WO2011132631A1 true WO2011132631A1 (ja) 2011-10-27

Family

ID=44834150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059509 WO2011132631A1 (ja) 2010-04-21 2011-04-18 有機エレクトロルミネッセンスパネルの製造方法及びその製造方法で製造された有機エレクトロルミネッセンスパネル

Country Status (4)

Country Link
US (1) US9059429B2 (ja)
EP (1) EP2563096A4 (ja)
JP (1) JP5772819B2 (ja)
WO (1) WO2011132631A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014096577A (ja) * 2012-10-12 2014-05-22 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法及び半導体装置の製造装置
WO2014098184A1 (ja) * 2012-12-21 2014-06-26 コニカミノルタ株式会社 有機エレクトロルミネッセンスパネルとその製造方法及び製造装置
WO2014098183A1 (ja) * 2012-12-21 2014-06-26 コニカミノルタ株式会社 有機エレクトロルミネッセンスパネルとその製造方法及び製造装置
JP2014123492A (ja) * 2012-12-21 2014-07-03 Konica Minolta Inc 有機エレクトロルミネッセンスパネルとその製造方法及び製造装置
CN110637505A (zh) * 2017-05-17 2019-12-31 住友化学株式会社 有机电子器件的制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000150147A (ja) 1998-11-05 2000-05-30 Toray Ind Inc 有機電界発光素子の製造方法
JP2002373777A (ja) 2001-06-18 2002-12-26 Toppan Printing Co Ltd 有機エレクトロルミネッセンス素子およびその製造方法
JP2006269247A (ja) * 2005-03-24 2006-10-05 Toppan Printing Co Ltd 有機エレクトロルミネッセンス素子及びその製造方法
JP2008065994A (ja) * 2006-09-04 2008-03-21 Seiko Epson Corp エレクトロルミネッセンス装置、エレクトロルミネッセンス装置の製造方法並びに電子機器
JP2009123532A (ja) * 2007-11-15 2009-06-04 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子及びその製造方法、保護フィルム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6692610B2 (en) 2001-07-26 2004-02-17 Osram Opto Semiconductors Gmbh Oled packaging
JP5111201B2 (ja) 2008-03-31 2013-01-09 株式会社ジャパンディスプレイイースト 有機el表示装置
JP5329147B2 (ja) 2008-08-08 2013-10-30 株式会社ジャパンディスプレイ 有機el表示装置の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000150147A (ja) 1998-11-05 2000-05-30 Toray Ind Inc 有機電界発光素子の製造方法
JP2002373777A (ja) 2001-06-18 2002-12-26 Toppan Printing Co Ltd 有機エレクトロルミネッセンス素子およびその製造方法
JP2006269247A (ja) * 2005-03-24 2006-10-05 Toppan Printing Co Ltd 有機エレクトロルミネッセンス素子及びその製造方法
JP2008065994A (ja) * 2006-09-04 2008-03-21 Seiko Epson Corp エレクトロルミネッセンス装置、エレクトロルミネッセンス装置の製造方法並びに電子機器
JP2009123532A (ja) * 2007-11-15 2009-06-04 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子及びその製造方法、保護フィルム

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Thin Film Handbook", JAPAN SOCIETY FOR PROMOTION OF SCIENCE, pages: 879 - 901
"Vacuum Handbook", ULVAC, INC., pages: 132 - 134
"Vacuum Technology Handbook", THE NIKKAN KOGYO SHIMBUN LTD., pages: 502 - 509
See also references of EP2563096A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014096577A (ja) * 2012-10-12 2014-05-22 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法及び半導体装置の製造装置
US9793410B2 (en) 2012-10-12 2017-10-17 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device and manufacturing apparatus of semiconductor device
US10153376B2 (en) 2012-10-12 2018-12-11 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device and manufacturing apparatus of semiconductor device
WO2014098184A1 (ja) * 2012-12-21 2014-06-26 コニカミノルタ株式会社 有機エレクトロルミネッセンスパネルとその製造方法及び製造装置
WO2014098183A1 (ja) * 2012-12-21 2014-06-26 コニカミノルタ株式会社 有機エレクトロルミネッセンスパネルとその製造方法及び製造装置
JP2014123492A (ja) * 2012-12-21 2014-07-03 Konica Minolta Inc 有機エレクトロルミネッセンスパネルとその製造方法及び製造装置
KR20150066564A (ko) * 2012-12-21 2015-06-16 코니카 미놀타 가부시키가이샤 유기 일렉트로루미네센스 패널과 그의 제조 방법 및 제조 장치
CN104885567A (zh) * 2012-12-21 2015-09-02 柯尼卡美能达株式会社 有机电致发光面板及其制造方法和制造装置
KR101674850B1 (ko) 2012-12-21 2016-11-09 코니카 미놀타 가부시키가이샤 유기 일렉트로루미네센스 패널의 제조 방법 및 제조 장치
JPWO2014098184A1 (ja) * 2012-12-21 2017-01-12 コニカミノルタ株式会社 有機エレクトロルミネッセンスパネルとその製造方法及び製造装置
JPWO2014098183A1 (ja) * 2012-12-21 2017-01-12 コニカミノルタ株式会社 有機エレクトロルミネッセンスパネルとその製造方法及び製造装置
CN110637505A (zh) * 2017-05-17 2019-12-31 住友化学株式会社 有机电子器件的制造方法

Also Published As

Publication number Publication date
US20130026910A1 (en) 2013-01-31
JPWO2011132631A1 (ja) 2013-07-18
JP5772819B2 (ja) 2015-09-02
US9059429B2 (en) 2015-06-16
EP2563096A1 (en) 2013-02-27
EP2563096A4 (en) 2015-04-22

Similar Documents

Publication Publication Date Title
JP5660030B2 (ja) 有機エレクトロニクスパネルおよび有機エレクトロニクスパネルの製造方法
CN104736336B (zh) 气体阻隔性膜的制造方法、气体阻隔性膜和电子设备
KR101089487B1 (ko) 자체 발광 패널의 제조 방법
WO2011114882A1 (ja) 有機エレクトロルミネッセンスパネル及び有機エレクトロルミネッセンスパネルの製造方法
US7950567B2 (en) Organic light emitting diode display device and method of fabricating the same
JP2000323273A (ja) エレクトロルミネッセンス素子
WO2010001831A1 (ja) 有機elパネルおよび有機elパネルの製造方法
JP5772819B2 (ja) 有機エレクトロルミネッセンスパネルの製造方法及びその製造方法で製造された有機エレクトロルミネッセンスパネル
WO2011070951A1 (ja) 有機エレクトロニクスパネル及びその製造方法
US20170100926A1 (en) Method of manufacturing electronic device and composite film
JP4325249B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
JP2005521209A (ja) 有機薄膜素子及びその製造方法
JPWO2008023626A1 (ja) 有機エレクトロルミネッセンス素子およびその製造方法
JP4325248B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
WO2017057241A1 (ja) 有機el素子及び有機el素子の製造方法
JP5549448B2 (ja) バリア性フィルム、バリア性フィルムの製造方法及び有機電子デバイス
JP2010170776A (ja) 有機エレクトロニクス素子およびその製造方法
JP4609135B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
JP5761005B2 (ja) 水蒸気バリアーフィルムの製造方法、水蒸気バリアーフィルム及び電子機器
JP2010067355A (ja) 有機el素子パネル及びその製造方法
US20140103309A1 (en) Organic light emitting display device and manufacturing method thereof
WO2011096308A1 (ja) 有機エレクトロルミネッセンスパネルの製造方法
JP6102986B2 (ja) 水蒸気バリアーフィルムの製造方法、水蒸気バリアーフィルム、電子機器及び有機エレクトロルミネッセンスパネル
JP4867317B2 (ja) 有機elデバイス用の導電性基板の製造方法
WO2011099362A1 (ja) 有機エレクトロルミネッセンスパネルの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11771966

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011771966

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012511647

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13640355

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE