WO2011129395A1 - ニッケル酸化鉱石の湿式精錬プラント及びその操業方法 - Google Patents

ニッケル酸化鉱石の湿式精錬プラント及びその操業方法 Download PDF

Info

Publication number
WO2011129395A1
WO2011129395A1 PCT/JP2011/059266 JP2011059266W WO2011129395A1 WO 2011129395 A1 WO2011129395 A1 WO 2011129395A1 JP 2011059266 W JP2011059266 W JP 2011059266W WO 2011129395 A1 WO2011129395 A1 WO 2011129395A1
Authority
WO
WIPO (PCT)
Prior art keywords
supply
facility
series
facilities
unit
Prior art date
Application number
PCT/JP2011/059266
Other languages
English (en)
French (fr)
Inventor
宏之 三ツ井
中井 修
徹 北崎
盛太郎 朝鳥
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to EP11768916.6A priority Critical patent/EP2559776A4/en
Priority to US13/639,788 priority patent/US20130207325A1/en
Priority to AU2011241550A priority patent/AU2011241550B2/en
Publication of WO2011129395A1 publication Critical patent/WO2011129395A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • C22B23/0415Leaching processes with acids or salt solutions except ammonium salts solutions
    • C22B23/043Sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • C22B23/0461Treatment or purification of solutions, e.g. obtained by leaching by chemical methods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/02Apparatus therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a nickel oxide ore wet refining plant and an operation method thereof. More specifically, in the present invention, a nickel oxide ore wet refining plant having a plurality of processing facilities has a trouble that requires a part of the processing facilities to be shut down (hereinafter also simply referred to as “serious trouble”). In this case, the present invention relates to a nickel oxide ore wet refining plant capable of minimizing a reduction in throughput due to this serious trouble and an operation method thereof.
  • This application claims priority on the basis of Japanese Patent Application No. 2010-094330 filed on Apr. 15, 2010 in Japan, and is incorporated into this application by reference to these applications.
  • High-pressure acid leaching using sulfuric acid has attracted attention as a wet refining method for nickel oxide ore.
  • This method does not include dry processing steps such as drying and roasting steps, and consists of a consistent wet process, which is advantageous in terms of energy and cost and improves the nickel quality to about 50 to 60% by weight.
  • a nickel-cobalt mixed sulfide can be obtained.
  • the high pressure acid leaching method for obtaining the nickel / cobalt mixed sulfide includes, for example, as shown in FIG. 3, a pretreatment step (1), a leaching step (2), a solid-liquid separation step (3), A neutralization process (4), a dezincification process (5), a sulfurization process (6), and a detoxification process (7) are included.
  • the nickel oxide ore is crushed and classified into a slurry.
  • sulfuric acid is added to the slurry obtained in the pretreatment step (1), and the mixture is stirred at 220 to 280 ° C. to perform high-temperature pressure acid leaching to obtain a leaching slurry.
  • the leaching slurry obtained in the leaching step (2) is subjected to solid-liquid separation to obtain a leachate containing nickel and cobalt (hereinafter referred to as “crude nickel sulfate aqueous solution”) and the leaching residue. obtain.
  • the neutralization step (4) the crude nickel sulfate aqueous solution obtained in the solid-liquid separation step (3) is neutralized.
  • hydrogen sulfide gas is added to the crude nickel sulfate aqueous solution neutralized in the neutralization step (4) to precipitate and remove zinc as zinc sulfide.
  • hydrogen sulfide gas is added to the dezincification final solution obtained in the dezincification step (5) to obtain a nickel / cobalt composite sulfide and a nickel poor solution.
  • the detoxification process (7) the leaching residue generated in the solid-liquid separation process (3) and the nickel poor liquid generated in the sulfidation process (6) are detoxified (see, for example, Patent Document 1).
  • the nickel oxide ore wet refining plant 100 (hereinafter simply referred to as “wet refining plant”) includes, for example, two series of processing equipment, that is, I series processing equipment and II series. And processing facilities.
  • These two systems of processing equipment include a pretreatment section (1a, 1b) that performs the pretreatment process (1), a leaching section (2a, 2b) that performs the leaching process (2), and a solid-liquid separation process (3 )
  • a pretreatment section (1a, 1b) that performs the pretreatment process (1)
  • a leaching section (2a, 2b) that performs the leaching process (2)
  • a solid-liquid separation process (3 ) To perform the solid-liquid separation unit (3a, 3b), the neutralization unit (4a, 4b) to perform the neutralization step (4), and the dezincification unit (5a, 5b) to perform the dezincification step (5) ), A sulfidizing section (6a, 6b) for executing the sulfiding step (6), and a detoxifying section (7a, 7b) for executing the detoxifying step (7).
  • the two series of processing facilities include utility supply facilities 8a and 8b including a boiler, a water facility, and a power facility as shown in FIG.
  • the two series of processing facilities include hydrogen sulfide supply facilities 10a and 10b, neutralizing agent supply facilities 12a and 12b, and flocculant supply facilities 14a and 14b, and processes for executing the respective steps. It consists of piping equipment such as liquid feed pipes that connect equipment sequentially.
  • the utility supply facilities 8a and 8b, the hydrogen sulfide supply facilities 10a and 10b, the neutralizer supply facilities 12a and 12b, and the flocculant supply facilities 14a and 14b are also simply referred to as supply facilities.
  • the steam, water and power from the utility supply facility 8a are supplied to the I series process processing equipment, and the steam, water and power from the utility supply equipment 8b are supplied to the II series process processing equipment.
  • Hydrogen sulfide obtained by the hydrogen sulfide supply facilities 10a and 10b is supplied to the dezincification parts 5a and 5b and the sulfurization parts 6a and 6b.
  • the neutralizing agent is supplied from the neutralizing agent supply facilities 12a and 12b to the neutralizing units 4a and 4b and the detoxifying units 7a and 7b.
  • the flocculant is supplied to the solid-liquid separation units 3a, 3b and the neutralization units 4a, 4b.
  • the piping facility is composed of utility supply pipes 9a and 9b, hydrogen sulfide supply pipes 11a and 11b, neutralizer supply pipes 13a and 13b, and coagulant supply pipes 15a and 15b.
  • the main intermediate product is liquid or slurry. Therefore, in the operation of the hydrometallurgical plant 100, for example, if any one of steam, water, electric power, hydrogen sulfide, flocculant, and neutralizer is not supplied due to a serious boiler trouble, the hydrometallurgical plant 100 Generally, after the entire system is stopped and a serious trouble is solved or repaired, the entire hydrometallurgical plant 100 is restarted.
  • this load fluctuates as an operation in which a certain load is applied to each process processing equipment and other equipment. Also, in the hydrometallurgical plant 100, the frequency of periodic suspension (periodic inspection) is increased or the suspension period is extended to inspect the facility and repair the facility as necessary. Sudden outbreaks are prevented.
  • the hydrometallurgical plant 100 is usually provided with an emergency storage tank so as not to reduce the throughput when the lamp is down.
  • the process load before the process in which the trouble has occurred is left as it is or the load is reduced, and excess process liquid is stored in the emergency storage tank. Further, after the trouble is solved, the process load is increased (ramped up), and the process liquid stored in the emergency storage tank together with the normal load is repeatedly processed. This makes it possible to achieve the processing target amount for each quarter or year.
  • such an emergency evacuation response is effective when the time required for the recovery of the hydrometallurgical plant 100 is usually within 8 hours, for example, although it depends on the size of the emergency storage tank. However, if the time required for the restoration of the hydrometallurgical plant 100 exceeds 8 hours, the process liquid is stored up to the limit of the emergency storage tank, and the operation must be stopped.
  • the inner surface of the drum washer's trommel on the same circumference that is perpendicular to the trommel's rotation axis, has a substantially rectangular cross-sectional shape, and satisfies the specific requirements.
  • the nickel / cobalt mixed sulfide produced in the sulfide parts 6a and 6b adheres to the inner surface of the reaction vessel and forms a scale. There is a problem that it grows and the device becomes nonfunctional or destroyed.
  • the sulfide parts 6a and 6b circulate and use as a seed crystal nickel sulfide corresponding to a nickel amount 4 to 6 times the amount of nickel in the final zinc removal solution from the dezincification parts 5a and 5b.
  • a method for preventing the growth of scale has been proposed (see Patent Document 3).
  • the above-mentioned trouble is taken as a representative example because of the process-specific reason of using hard ore particles as a slurry and generating nickel-cobalt mixed sulfide that easily adheres to the inner surface of the reaction vessel. Various troubles occur frequently. Therefore, it is general that the operation rate of the actual wet refining plant 100 is not so high.
  • the time required for lowering the temperature to normal temperature and decreasing the pressure to normal pressure and the time required for increasing and increasing the pressure to a predetermined temperature and pressure are summed up to one to two days.
  • time hereinafter referred to as “preparation time”. That is, in the leaching sections 2a and 2b, when the processing equipment is stopped, it takes a lot of preparation time to bring down the processing equipment and then start up the processing equipment again.
  • preparation time occurs once a month, and the production is reduced by about 5% in a simple calculation on the 30th operating day of the month as compared with the case where continuous operation can be performed without any trouble. Such a reduction in production is a major problem in actual operation.
  • the present invention has been proposed in view of the above-described problems of the prior art, and in a hydrometallurgy plant having two or more processing facilities, a utility supply facility, a hydrogen sulfide supply facility, and a neutralization facility for a certain processing facility.
  • the present invention provides a nickel oxide ore hydrometallurgical refining plant and a method of operating the same that can minimize a decrease in throughput even when a serious trouble occurs in at least one of the agent supply facility and the flocculant supply facility. Objective.
  • the present inventors have solved the above problems by connecting utility supply facilities, hydrogen sulfide supply facilities, and chemical supply facilities among the processing facilities of each series.
  • the present invention has been found out that it can be solved.
  • the nickel oxide ore hydrometallurgical plant according to the present invention includes a pretreatment unit, a leaching unit, a solid-liquid separation unit, a neutralization unit, a dezincing unit, a sulfurization unit, and a detoxification unit, Utility supply equipment for supplying a utility including steam, irrigation water and electric power to the processing unit, the leaching unit, the solid-liquid separation unit, the neutralization unit, the dezincification unit, the sulfurization unit, and the detoxification unit, Hydrogen sulfide supply equipment for supplying hydrogen sulfide to the dezincification section and the sulfurization section, a flocculant supply equipment for supplying a flocculant to the solid-liquid separation section and the neutralization section, the neutralization section, and the detoxification section
  • a nickel oxide ore hydrorefining plant having two or more series of processing facilities including a neutralizing agent supply facility for supplying a neutralizing agent to each other, the utility supply facilities in each series, the hydrogen sulfide supply facility
  • each of the connection facilities is characterized in that the supply facilities are connected to each other at the most upstream portion where the utility, the hydrogen sulfide, the flocculant, and the neutralizing agent are supplied.
  • the two or more series of processing facilities have the same level of processing capability. Further, the number of the series is two series. Further, the connection facility has an opening / closing mechanism.
  • the operation method of the nickel oxide ore wet refining plant according to the present invention is characterized by using the nickel oxide ore wet refining plant.
  • the operation method of the nickel oxide ore wet refining plant according to the present invention is at least one of the utility supply facility, the hydrogen sulfide supply facility, the flocculant supply facility, and the neutralizer supply facility in each series.
  • the operation is stopped, the operating degree of the processing equipment of each series is lowered.
  • each supply facility is connected by a connecting facility in a hydrometallurgical plant, even if a serious trouble occurs in at least one supply facility of a certain processing facility, the stoppage of the processing facility is minimized.
  • the reduction in the processing amount can be minimized. Therefore, in the present invention, the operation of the hydrometallurgical plant can be continued without stopping the leaching section unless a serious trouble occurs simultaneously in the same supply equipment of the treatment equipment of each series. Can be minimized.
  • FIG. 1 is a schematic view schematically showing a wet refining plant of the present invention.
  • FIG. 2 is a schematic view schematically showing the wet refining plant of the present invention.
  • FIG. 3 is a flowchart showing a schematic process of the high pressure acid leaching method.
  • FIG. 4 is a schematic view schematically showing a conventional hydrometallurgical plant.
  • FIG. 5 is a schematic view schematically showing a conventional hydrometallurgical plant.
  • the hydrometallurgical plant according to the present invention has two or more series of processing facilities for performing a pretreatment process, a leaching process, a solid-liquid separation process, a neutralization process, a dezincification process, a sulfurization process, and a detoxification process.
  • the hydrometallurgical plant has two or more series of processing facilities, for example, the processing amount of nickel oxide ore as a raw material can be increased and the production amount of nickel / cobalt mixed sulfide can be increased.
  • the hydrometallurgical plant 20 has two series of processing equipment, that is, I series processing equipment and II series processing equipment.
  • These treatment facilities include a pretreatment section (1a, 1b), a leaching section (2a, 2b), a solid-liquid separation section (3a, 3b), a neutralization section (4a, 4b), and a dezincing section ( 5a, 5b), a sulfur treatment section (6a, 6b), and a detoxification section (7a, 7b).
  • the pretreatment unit 1 the leaching unit 2, the solid-liquid separation unit 3, the neutralization unit 4, the dezincing unit 5, and the sulfidizing unit 6 except for the case where each series of processing facilities is individually described.
  • a detoxification unit 7 it is referred to as a detoxification unit 7.
  • the pretreatment unit 1 is composed of, for example, pretreatment equipment such as a pulverizer, and executes a pretreatment process in which nickel oxide ore as a raw material is crushed and classified into a slurry.
  • pretreatment equipment such as a pulverizer
  • the nickel oxide ore for example, so-called laterite ore such as limonite ore and saprolite ore is used.
  • the leaching unit 2 is a leaching step in which sulfuric acid is added to the slurry obtained in the pretreatment unit 1, stirred at 220 to 280 ° C. and acid leached at high temperature and pressure to obtain a leaching slurry composed of a leaching residue and a leachate.
  • a high-temperature pressurized container autoclave
  • leaching as a sulfate such as nickel and cobalt is leached by, for example, the leaching reaction represented by the following formulas (1) to (5) and the high-temperature thermal hydrolysis reaction. Immobilization of iron sulfate as hematite is performed.
  • the leaching slurry obtained usually contains divalent and trivalent iron ions in addition to nickel, cobalt and the like.
  • the solid-liquid separation unit 3 performs a solid-liquid separation step of solid-liquid separation of the leaching slurry obtained in the leaching unit 2 to obtain a leaching solution (crude nickel sulfate aqueous solution) containing nickel and cobalt and a leaching residue.
  • the solid-liquid separation step is effective for separating and recovering nickel or the like that adheres to the leaching residue and is discarded from the leaching slurry formed in the leaching section 2 into a crude nickel sulfate aqueous solution.
  • the solid-liquid separation unit 3 performs solid-liquid separation with a thickener that is a solid-liquid separation facility, using a flocculant supplied from the flocculant supply facilities 14a and 14b described later. .
  • the slurry is diluted with the cleaning liquid, and the leaching residue is concentrated as a thickener sediment, so that the nickel content adhering to the leaching residue can be reduced according to the degree of dilution.
  • the flocculant for example, an anionic flocculant is used.
  • the neutralization part 4 is comprised by neutralization facilities, such as a neutralization tank, for example, and performs the neutralization process which neutralizes the rough
  • a neutralizing agent is added to form a neutralized starch slurry containing trivalent iron and a nickel recovery mother liquor. Thereby, in the neutralization part 4, while neutralizing an excess acid, the trivalent iron ion which remains in a solution can be removed.
  • the neutralizing agent for example, calcium carbonate is used.
  • the pH in the neutralization step is 3.2 to 3.8. By setting the pH within such a range, it is possible to prevent the generation of nickel hydroxide from increasing.
  • the temperature in the neutralization step is preferably 50 to 80 ° C. When the temperature is lower than 50 ° C., the starch becomes fine and adversely affects the solid-liquid separation process. When the temperature is higher than 80 ° C., the corrosion resistance of the apparatus material is reduced and the energy cost for heating is increased.
  • the dezincification part 5 adds the hydrogen sulfide gas supplied from the hydrogen sulfide supply equipment 10a, 10b to the crude nickel sulfate aqueous solution neutralized by the neutralization part 4, and precipitates and removes zinc as zinc sulfide, thereby removing the dezincing solution.
  • a dezincification step is carried out to obtain
  • the sulfidation unit 6 is a sulfidation obtained by adding hydrogen sulfide gas supplied from the hydrogen sulfide supply facilities 10a and 10b to the dezincification solution obtained in the dezincification unit 5 to obtain a nickel / cobalt mixed sulfide and a nickel poor solution. Execute the process.
  • This nickel poor solution contains a small amount of nickel and cobalt, which are recovery losses, in addition to impurities such as iron, magnesium, and manganese that are contained without being sulfided.
  • the harmless part 7 is harmless that renders the leaching residue generated in the solid-liquid separation part 3 and the nickel poor liquid generated in the sulfide part 6 harmless by the neutralizer supplied from the neutralizer supply equipment 12a, 12b. Execute the conversion process. A high nickel yield can be achieved in the hydrometallurgical plant 20 by the above process processing equipment.
  • the hydrometallurgical plant 20 includes utility supply facilities 8a and 8b, hydrogen sulfide supply facilities 10a and 10b, neutralizer supply facilities 12a and 12b, and flocculant supply facilities 14a and 14b. And have.
  • these supply facilities will be referred to as a utility supply facility 8, a hydrogen sulfide supply facility 10, a neutralizing agent supply facility 12, and a flocculant supply facility 14, unless the processing facilities of each series are individually described.
  • the utility supply facility 8 includes, for example, a boiler, a water supply facility, and a power facility.
  • the boiler obtains steam for controlling the reaction temperature of each process equipment.
  • the steam obtained from the boiler is supplied to the above-described process processing equipment as necessary.
  • the water facility is a facility for supplying water used in each process treatment facility.
  • the water obtained in the water facility is supplied to the above-described process equipment as necessary.
  • the electric power equipment is equipment for supplying electric power used in each process processing equipment.
  • the electric power obtained by the power equipment is supplied to the above-described process processing equipment as necessary.
  • the utility supply equipment 8a and the I-series process processing equipment are connected by a utility supply pipe 9a. Further, the utility supply facility 8b and the II-series process processing facility are connected by a utility supply pipe 9b. Further, the utility supply pipe 9 a and the utility supply pipe 9 b are connected by a utility connection facility 16.
  • the utility connection facility 16 is configured similarly to the utility supply pipes 9a and 9b, for example.
  • the utility connection facility 16 connects the utility supply pipe 9a and the utility supply pipe 9b at the most upstream part of the utility (steam, water and electric power) supply.
  • the utility connection facility 16 connects, for example, the vicinity of the connection portion between the utility supply pipe 9a and the utility supply facility 8a, the vicinity of the connection portion between the utility supply piping 9b and the utility supply facility 8b.
  • the utility supply facility 8b can be efficiently supplied to each series of process equipment.
  • the hydrogen sulfide supply facility 10 produces hydrogen sulfide gas, and supplies the produced hydrogen sulfide gas to the dezincification section 5 and the sulfurization section 6 as necessary.
  • the hydrogen sulfide supply facility 10a, the dezincification part 5a and the sulfide part 6a are connected by a hydrogen sulfide supply pipe 11a.
  • the hydrogen sulfide supply facility 10b, the dezincification part 5b and the sulfide part 6b are connected by a hydrogen sulfide supply pipe 11b.
  • the hydrogen sulfide supply pipe 11 a and the hydrogen sulfide supply pipe 11 b are connected by a hydrogen sulfide connection facility 17.
  • the hydrogen sulfide connection facility 17 is configured in the same manner as the hydrogen sulfide supply pipe 11, for example.
  • the hydrogen sulfide connection facility 17 connects the hydrogen sulfide supply pipe 11a and the hydrogen sulfide supply pipe 11b at the most upstream part of the supply of hydrogen sulfide, so that the hydrogen sulfide can be shared between the respective process processing facilities.
  • the hydrogen sulfide connection facility 17 connects, for example, the vicinity of the connection portion between the hydrogen sulfide supply facility 10a and the hydrogen sulfide supply pipe 11a and the vicinity of the connection portion between the hydrogen sulfide supply facility 10b and the hydrogen sulfide supply pipe 11b.
  • hydrogen sulfide is supplied from the hydrogen sulfide supply facility 10b (10a) to the respective process treatment facilities via the hydrogen sulfide connection facility 17. It can be supplied efficiently.
  • the neutralizing agent supply facility 12 supplies the neutralizing agent described above to the neutralizing unit 4 and the detoxifying unit as necessary.
  • the neutralizing agent supply facility 12a, the neutralizing part 4a and the detoxifying part 7a are connected by a neutralizing agent supply pipe 13a.
  • the neutralizing agent supply equipment 12b, the neutralization part 4b, and the detoxification part 7b are connected by the neutralizing agent supply piping 13b.
  • the neutralizing agent supply pipe 13 a and the neutralizing agent supply pipe 13 b are connected by a neutralizing agent connection facility 18.
  • the neutralizing agent connection facility 18 is configured in the same manner as the neutralizing agent supply pipe 13, for example.
  • the neutralizing agent connection facility 18 connects these neutralizing agent supply piping 13a and the neutralizing agent supply piping 13b at the most upstream portion of the neutralizing agent supply, so that the neutralizing agent is used in each series of process treatment facilities. Can be shared with each other. That is, the neutralizing agent connection facility 18 is, for example, near the connection portion between the neutralizing agent supply facility 12a and the neutralizing agent supply piping 13a, and near the connection portion between the neutralizing agent supply facility 12b and the neutralizing agent supply piping 13b. And Thereby, for example, even when a serious trouble occurs in the neutralizing agent supply facility 12a, the neutralizing agent is efficiently supplied from the neutralizing agent supply facility 12b to the process treatment facility of each series via the neutralizing agent connection facility 18. Can be supplied to.
  • the flocculant supply equipment 14 supplies the above-described flocculant to the solid-liquid separation unit 3 and the neutralization unit 4 as necessary.
  • the flocculant supply equipment 14a, the solid-liquid separation unit 3a, and the neutralization unit 4a are connected by a flocculant supply pipe 15a.
  • the flocculant supply equipment 14b, the solid-liquid separation unit 3b, and the neutralization unit 4b are connected by a flocculant supply pipe 15b.
  • the coagulant supply pipe 15 a and the coagulant supply pipe 15 b are connected by the coagulant connecting equipment 19.
  • the flocculant connection facility 19 is configured in the same manner as the flocculant supply pipe 15, for example.
  • the flocculant connection facility 19 connects the flocculant supply pipe 15a and the flocculant supply pipe 15b at the most upstream portion of the flocculant supply, thereby allowing the flocculant to be shared by each series of process processing equipment. . That is, the flocculant connection facility 19 connects, for example, the vicinity of the connection portion between the flocculant supply facility 14a and the flocculant supply piping 15a and the vicinity of the connection portion between the flocculant supply facility 14a and the flocculant supply piping 15a. Thereby, for example, even when a serious trouble occurs in the flocculant supply facility 14a, the flocculant is efficiently supplied from the flocculant supply facility 14b to the process processing facilities of each series via the flocculant connection facility 19. Can do.
  • the above-described connecting equipment has an opening / closing mechanism (blocking mechanism) for blocking, adjusting, etc., the amount of the moving supply.
  • the utility connection facility 16 is preferably provided with a control valve for steam and water, and a switch for electricity.
  • Each connection facility can operate the wet refining plant 20 having two processing facilities as an independent single processing facility by operating the opening / closing mechanism and releasing the connection as necessary. .
  • the hydrometallurgical plant 20 includes a connection facility having an opening / closing mechanism, so that it is necessary to process raw materials having different compositions, or when it is necessary to change processing conditions even with raw materials having the same composition, It becomes possible to respond preferably. Also, the wet smelting plant 20 can continue operation by adjusting the amount of feed that is moved by the opening and closing mechanism, minimizing the reduction in throughput due to the occurrence of serious troubles. Can be fast.
  • the hydrometallurgical plant 20 has many items to consider, such as the number of years in which nickel oxide ore can be mined, the water supply capacity indispensable for operation, and the margin of the plant site. Preferably have similar processing capabilities. Thereby, when a serious trouble occurs in the wet refining plant 20 as will be described in detail later, it is possible to easily control the supply processing equipment of each series and the process processing equipment of each series. Moreover, since the operation / operation manual in actual operation in each individual facility can be substantially the same even if it is in another series, it is possible to reduce the education cost of workers. Furthermore, each processing facility has the same level of processing capacity, so it is possible to reduce pochamis and human errors that misunderstand the processing capacity of other series of processing facilities, and to allow workers to assemble their work structure. Can do.
  • each supply facility is connected by a connection facility, for example, even when a serious trouble occurs in at least one supply facility of a certain series of processing facilities, By supplying the supply to the other series of process processing equipment, it is possible to prevent the operation of the leaching unit 2 from being stopped. Therefore, in the hydrometallurgy plant 20, the operation can be continued without stopping the leaching unit 2 unless a serious trouble occurs simultaneously in the same supply equipment of each series, so that the reduction in the throughput in the leaching process is minimized. Can be limited.
  • one of the utility supply facility 8a and the utility supply facility 8b of the wet refining plant 20 causes the above-mentioned serious trouble (trouble that requires a part of the processing facility to be shut down), and the steam supply facility.
  • the operating capacity of the utility supply facility in which no serious trouble has occurred is increased as compared with that during normal operation.
  • the operating capacity (operation load) of the utility supply facility 8b that has been operated in one lung is greater than that during normal operation. Raise.
  • the necessary amount of steam can be stabilized in each process treatment equipment without overloading the utility supply equipment 8b. Can be supplied.
  • the total operating capacity of each series of processing equipment is set to 120%, and at least the lower limit of the operating capacity of the leaching unit 2 is set to 50%.
  • the operating rate of the leaching part 2 can be maintained at 50% of normal time. Therefore, in the hydrometallurgical plant 20, it is possible to prevent the occurrence of the above-described preparation time, which is a cause of a serious problem in actual operation, without stopping the brewing unit 2 that has been forced to stop.
  • the total operating capacity of the processing facilities of each series is 120%.
  • the normal operating capacity of a series of processing facilities of each series is 100%, the total of these operating capacities is It means 120%.
  • the operating capacities of the I-series processing equipment and the II-series processing equipment are 60% of normal times.
  • the operating capacity of the I-series processing equipment is 50%
  • the operating capacity of the II-series processing equipment is 70%
  • the operating capacity of the I-series processing equipment is 70%
  • the operating capacity may be 50%.
  • the leaching unit 2 can be prevented from being stopped unless serious troubles occur at the same time in the same supply equipment of each series.
  • the operation can be continued without stopping. Therefore, in the hydrometallurgical plant 20 according to the present embodiment, it is possible to minimize the reduction in the processing amount in the leaching process.
  • the hydrometallurgical plant 20 it is understood that there is a low possibility that a serious trouble will occur simultaneously in the same supply equipment in all series, and therefore it is possible to substantially prevent the processing equipment from being stopped due to a serious trouble.
  • the wet refining plant 20 having two series of processing facilities has been described as an example.
  • a wet refining plant having three or more series of processing facilities may be applied to the present invention.
  • the operating rate in the case of a hydrometallurgical plant having three series of processing facilities, even if only one system is operating among the supply facilities of each supply, by setting the operating rate to 33%, approximately 1 / 3 operation can be continued, and when the two systems are operating, the operating rate should be 66%. In this way, by increasing the number of series, it is possible to reduce the excess load per facility for the facility in the process area where the production must be increased.
  • the nickel oxide ore hydrometallurgical plant described above may be used in combination with an emergency storage tank (for example, a tank capable of storing utility for 8 hours).
  • an emergency storage tank for example, a tank capable of storing utility for 8 hours.
  • the utility stored in the emergency storage tank may be used in combination (100%).
  • the operating capacity of the utility supply facility 8b that has been in the above-described one-lung operation is left as it is during normal operation (100%), and the total operating capacity of a series of processing facilities in each series is 100%.
  • at least the lower limit of the operating capacity of the leaching unit 2 may be set to 50%.
  • the operating capacity of a series of processing equipment in each series may be 50%, and the utility stored in the emergency storage tank described above may be used in combination with 100% as the total.
  • the upper limit of the operating capacity of each supply facility in the above-described wet refining plant 20 may be a value larger than 120%, for example, 140%, if possible.
  • the total operating capacity of the processing facilities of each series is set to 140%, and the leaching section What is necessary is just to set so that the minimum of the operating capability of 2 may be 50%.
  • the hydrometallurgical plant 20 includes a detection unit that detects a serious trouble in each of the above-described supply facilities, and an operating capability of each supply facility and an opening / closing mechanism of a connected facility when the serious trouble is detected by the detection unit. And a control unit for controlling. That is, in the hydrometallurgical plant, the detection unit is connected to each of the supply facilities described above. Further, the control unit is connected to each of the detection units, the supply facilities, and the open / close mechanisms of the connection facilities described above.
  • the detection unit detects, for example, whether a serious trouble has occurred in the utility supply facility 8a and the steam supply facility has stopped.
  • the detection unit supplies a detection signal to that effect to the control unit.
  • the control unit performs control so that the operation capability of the utility supply facility 8b that is in the one-lung operation is increased by 120% from that during normal operation.
  • the control unit controls the operating capacity of the process processing equipment so that the operating capacities of the above-described I-series processing equipment and II-series processing equipment are 60% of the normal time, respectively. Controls the operation of the opening and closing mechanism.
  • Example 1 ⁇ Operating conditions>
  • the wet refining plant 20 of the present invention shown in FIGS. 1 and 2 was used, and the operation was performed for 7 months.
  • the hydrometallurgical plant 20 used in Example 1 includes a pretreatment unit 1, a leaching unit 2, a solid-liquid separation unit 3, a neutralization unit 4, a dezincification unit 5, a sulfurization unit 6, and a detoxification unit. 7 and 2 series of process processing equipment.
  • the wet refining plant 20 of the present invention includes a utility supply facility 8, a hydrogen sulfide supply facility 10, a neutralizer supply facility 12, and a flocculant supply facility 14.
  • hydrometallurgical plant 20 is provided with a utility connection facility 16, a hydrogen sulfide connection facility 17, a neutralizing agent connection facility 18 and a flocculant connection facility 19 at the most upstream part of the supply of each supply means, and the supply facilities of each series The operation was carried out by concatenating.
  • the operating capacity of the supply facility in which no serious trouble has occurred is increased to 120%, and a series of processes of each series is performed.
  • the total operating capacity of the facilities was set to 120%, and the lower limit was set to 50% or more.
  • Comparative Example 1 ⁇ Operating conditions>
  • a wet refining plant to which the present invention was not applied that is, a wet refining plant shown in FIGS. 4 and 5 was used, and operation was performed for 7 months. That is, in Comparative Example 1, the utility supply facility 8, the hydrogen sulfide supply facility 10, the neutralizing agent supply facility 12, and the flocculant supply facility 14 are supplied at the most upstream part of the supply as in Example 1. The operation was carried out without connecting the supply facilities of each series without connecting facilities to connect things in a shareable manner.
  • Example 1 since all the supply equipment in each series of the hydrorefining plant 20 has the above-mentioned connection equipment, even when a serious trouble occurs in the supply equipment, the same supply of other series We were able to operate the equipment. Thereby, since the operation can be continued without stopping the leaching unit 2, it was confirmed that the reduction of the processing amount in the leaching process can be minimized.
  • the present invention is not limited to a nickel oxide ore hydrometallurgical plant, but can be applied to a slurry containing hard particles and a plant accompanied by the formation of precipitates that easily adhere to the surface of the apparatus, and its industrial value is high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

 処理設備に重大トラブルが発生した場合でも、重大トラブルへの対応時に、立ち上げ、立ち下げに多大な準備時間を要する処理設備の停止を最小限にすることができるニッケル酸化鉱石の湿式精錬プラントを提供する。工程処理設備と、ユーティリティー供給設備(8a)、(8b)と、硫化水素供給設備(10a)、(10b)と、凝集剤供給設備(14a)、(14b)と、中和剤供給設備(12a)、(12b)とを含む一連の処理設備を2系列以上有するニッケル酸化鉱の湿式精錬プラント(20)において、各系列におけるユーティリティー供給設備(8a)、(8b)同士、硫化水素供給設備(10a)、(10b)同士、凝集剤供給設備(14a)、(14b)同士及び中和剤供給設備(12a)、(12b)同士は、各々ユーティリティー、硫化水素、凝集剤及び中和剤を共有可能に連結する連結設備をさらに備える。

Description

ニッケル酸化鉱石の湿式精錬プラント及びその操業方法
 本発明は、ニッケル酸化鉱石の湿式精錬プラント及びその操業方法に関する。さらに詳しくは、本発明は、複数系列の処理設備を有するニッケル酸化鉱石の湿式精錬プラントにおいて、処理設備の一部を運転停止しなければならないトラブル(以下、単に「重大トラブル」ともいう)が発生した場合でも、この重大トラブルによる処理量の減少を最小限にすることのできるニッケル酸化鉱石の湿式精錬プラント及びその操業方法に関する。
 本出願は、日本国において2010年4月15日に出願された日本特許出願番号2010-094330を基礎として優先権を主張するものであり、これらの出願を参照することにより、本出願に援用される。
 近年、ニッケル酸化鉱石の湿式精錬法として、硫酸を用いた高圧酸浸出法(High Pressure Acid Leach)が注目されている。この方法は、乾燥及び焙焼工程等の乾式処理工程を含まず、一貫した湿式工程からなるので、エネルギー的及びコスト的に有利であるとともに、ニッケル品位を50~60重量%程度まで向上させたニッケル・コバルト混合硫化物が得られる利点を有する。
 上記ニッケル・コバルト混合硫化物を得るための高圧酸浸出法は、例えば、図3に示すように、前処理工程(1)と、浸出工程(2)と、固液分離工程(3)と、中和工程(4)と、脱亜鉛工程(5)と、硫化工程(6)と、無害化工程(7)とを含む。
 図3に示す前処理工程(1)では、ニッケル酸化鉱石を解砕分級してスラリーとする。浸出工程(2)では、前処理工程(1)で得られたスラリーに硫酸を添加し、220~280℃で攪拌して高温加圧酸浸出し、浸出スラリーを得る。固液分離工程(3)では、浸出工程(2)で得られた浸出スラリーを固液分離して、ニッケル及びコバルトを含む浸出液(以下、「粗硫酸ニッケル水溶液」という。)と浸出残渣とを得る。中和工程(4)では、固液分離工程(3)で得られた粗硫酸ニッケル水溶液を中和する。脱亜鉛工程(5)では、中和工程(4)で中和した粗硫酸ニッケル水溶液に硫化水素ガスを添加して亜鉛を硫化亜鉛として沈殿除去する。硫化工程(6)では、脱亜鉛工程(5)で得られた脱亜鉛終液に硫化水素ガスを添加してニッケル・コバルト複合硫化物とニッケル貧液を得る。無害化工程(7)では、固液分離工程(3)で発生した浸出残渣と、硫化工程(6)で発生したニッケル貧液とを無害化する(例えば、特許文献1を参照)。
 図4、図5に示すように、ニッケル酸化鉱の湿式精錬プラント100(以下、単に「湿式精錬プラント」という)は、例えば、2系列の処理設備、すなわち、I系列の処理設備と、II系列の処理設備とを有する。これら2系列の処理設備は、前処理工程(1)を実行する前処理部(1a、1b)と、浸出工程(2)を実行する浸出部(2a、2b)と、固液分離工程(3)を実行する固液分離部(3a、3b)と、中和工程(4)を実行する中和部(4a、4b)と、脱亜鉛工程(5)を実行する脱亜鉛部(5a、5b)と、硫化工程(6)を実行する硫化部(6a、6b)と、無害化工程(7)を実行する無害化部(7a、7b)とを有する工程処理設備を有する。
 また、2系列の処理設備は、上述した工程処理設備以外に、図4に示すように、ボイラーと、用水設備と、電力設備とからなるユーティリティー供給設備8a、8bを備える。また、2系列の処理設備は、図5に示すように、硫化水素供給設備10a、10bと、中和剤供給設備12a、12bと、凝集剤供給設備14a、14bと、各工程を実行する処理設備を順次連結する送液パイプなどの配管設備とから構成されている。以下、ユーティリティー供給設備8a、8b、硫化水素供給設備10a、10b、中和剤供給設備12a、12b及び凝集剤供給設備14a、14bをそれぞれ単に供給設備とも言う。
 図4、図5に示すように、ユーティリティー供給設備8aからの蒸気、用水及び電力は、I系列の工程処理設備に、ユーティリティー供給設備8bからの蒸気、用水及び電力は、II系列の工程処理設備に供給される。硫化水素供給設備10a、10bで得られる硫化水素は、脱亜鉛部5a、5b及び硫化部6a、6bに供給される。中和剤供給設備12a、12bからは、中和部4a、4b及び無害化部7a、7bに中和剤が供給される。凝集剤供給設備14a、14bからは、固液分離部3a、3b及び中和部4a、4bに凝集剤が供給される。また、配管設備は、ユーティリティー供給配管9a、9bと、硫化水素供給配管11a、11bと、中和剤供給配管13a、13bと、凝集剤供給配管15a、15bとから構成される。
 このような湿式精錬プラント100の操業においては、主要な中間生成物が液体またはスラリー状である。そのため、湿式精錬プラント100の操業においては、例えば、ボイラーの重大トラブルによって蒸気、用水、電力、硫化水素、凝集剤及び中和剤のうち、何れか一つでも供給されなくなると、湿式精錬プラント100全体を停止させ、重大トラブルを解消させ或いは補修した後に、湿式精錬プラント100全体を再立上げするのが一般的である。したがって、湿式精錬プラント100において、プラント全体を連続的に、かつ高い稼働率で運転するためには、ユーティリティー供給設備8a、8bと、硫化水素供給設備10a、10bと、ケミカル供給設備(中和剤供給設備12a、12b及び凝集剤供給設備14a、14b)とを常にトラブルの無い状態で稼動させる必要がある。
 このため、実際の湿式精錬プラント100においては、できるだけ各工程処理設備やその他の設備に一定の負荷がかかるような操業として、この負荷が変動することを避けるようにしている。また、湿式精錬プラント100においては、定期休転(定期点検)の頻度を高くしたり、休転期間を延長したりして設備の点検や、必要に応じて設備の修理を行い、重大トラブルの突発的な発生を防止している。
 また、上述した湿式精錬プラント100において、工程(プロセス)のいずれかでトラブルが発生し、一時的にその工程以降の負荷を低く(ランプダウン)しなければならない事態が発生することは避けられない。そのため、湿式精錬プラント100は、ランプダウンした場合に処理量を下げないようにするために、通常、緊急用貯槽を設けている。
 このように緊急用貯槽を設けることにより、トラブルが発生した工程より前の工程の負荷をそのまま、あるいは負荷を低減し、過剰となるプロセス液を緊急用貯槽に貯液する。また、トラブルが解消された後に、工程の負荷を高く(ランプアップ)して、通常の負荷と共に緊急用貯槽に貯液したプロセス液を繰り返し処理する。これにより、四半期毎、或いは年間の処理目標量を達成することが可能となる。
 ところで、こうした緊急避難的な対応は、緊急用貯槽の大きさにもよるが、湿式精錬プラント100の復旧に必要な時間が、例えば、通常8時間以内の場合には有効である。しかし、湿式精錬プラント100の復旧に必要な時間が8時間を超えると、プロセス液が緊急用貯槽の限界まで貯液され、操業を停止せざるを得なくなる。
 図4、図5に示す実際の湿式精錬プラント100の前処理部1a、1bで発生しやすい重大なトラブルの一つとして、次のような問題がある。すなわち、ドラムとトロンメルとが連結して構成されるドラムウオッシャーで採掘されたニッケル酸化鉱石を解砕分級する際に、トロンメル内でニッケル酸化鉱石がショートパスし、そのまま系外に払い出され、所定の操業実績が得られなくなる。
 この問題に対して、ドラムウオッシャーのトロンメルの内面で、トロンメルの回転軸に対して垂直断面となる同一円周上に、円周上の断面形状が略長方形であり、特定の要件を満足する突起を、トロンメルの目開きの4倍程度の間隔で配置した突起列を形成することにより、トラブル発生を防止する方法が提案されている(特許文献2を参照)。
 また、図4、図5に示す硫化部6a、6bで発生しやすい重大なトラブルの一つとして、硫化部6a、6bで生成したニッケル・コバルト混合硫化物が、反応容器内面に付着しスケールとして成長し、装置が機能しなくなったり破壊されたりするという問題がある。
 この問題に対して、硫化部6a、6bでは、脱亜鉛部5a、5bからの脱亜鉛終液中のニッケル量の4~6倍のニッケル量に当たるニッケル硫化物を種晶として循環使用することにより、スケールの成長を防止する方法が提案されている(特許文献3を参照)。
 このように、湿式精錬プラント100では、硬い鉱石粒子をスラリーとして用いることや、反応容器内面に付着しやすいニッケル・コバルト混合硫化物を生成させるというプロセス特有の理由から、上記トラブルを代表例として、様々なトラブルが多発する。そのため、実際の湿式精錬プラント100の稼働率は、さほど高いものとなっていないのが一般的である。
 特に、図4、図5に示す浸出部2a、2bでは、上述した各供給設備に重大トラブルが発生した際に、一般的には、まず、常温まで降温、常圧まで降圧してからでなければ、湿式精錬プラント100全体を停止させることができない。また、浸出部2a、2bでは、重大トラブルが解消した後も、所定の温度および圧力に昇温、昇圧してからでなければ、湿式精錬プラント100全体の稼動を再開させることができない。
 通常、浸出部2a、2bにおいて、常温まで降温、常圧まで降圧するために要する時間と、所定の温度および圧力まで昇温、昇圧するために要する時間とを合計すると、1日から2日の時間(以下、「準備時間」という)を要するのが一般的である。すなわち、浸出部2a、2bにおいては、処理設備を停止する際に、処理設備を立ち下げ、その後処理設備を再び立ち上げるのに多大な準備時間を要する。浸出部2a、2bにおいては、準備時間が月に1回発生しただけで、不具合無く連続操業できた場合に比べて月間30日稼動日の単純計算で約5%の減産となる。このような減産は、実操業上で大きな問題である。
 また、近年、ニッケル酸化鉱の処理量を増加してニッケル・コバルト混合硫化物の生産量を増加させるという強い要請がある。この要請を満足させるために、上述した各工程の工程処理設備を複数系列とすることが行われている。
 しかしながら、上述した工程処理設備を複数系列としても、それぞれの系列で上述したトラブルが同様な頻度で起こる。したがって、例えば、上述した工程処理設備を2系列とした場合に、重大トラブルの発生により2系列としたメリットが出るどころか、処理能力が1系列のフル操業に満たない場合すらある。
特開2005-350766号公報 特開2009-173967号公報 特開2008-231470号公報
 本発明は、上記従来技術の問題点に鑑みて提案されたものであり、2系列以上の処理設備を有する湿式精錬プラントにおいて、ある系列の処理設備のユーティリティー供給設備、硫化水素供給設備、中和剤供給設備及び凝集剤供給設備のうち少なくとも1つに重大トラブルが発生した場合でも、処理量の減少を最小限にすることができるニッケル酸化鉱石の湿式精錬プラント及びその操業方法を提供することを目的とする。
 本発明者らは、上記課題を解決するために、種々の検討を行った結果、各系列の処理設備のうち、ユーティリティー供給設備、硫化水素供給設備及びケミカル供給設備を連結することにより上記課題を解決できることを見出して本発明に至った。
 すなわち、本発明に係るニッケル酸化鉱石の湿式精錬プラントは、前処理部、浸出部、固液分離部、中和部、脱亜鉛部、硫化部及び無害化部を有する工程処理設備と、前記前処理部、前記浸出部、前記固液分離部、前記中和部、前記脱亜鉛部、前記硫化部及び前記無害化部に、蒸気、用水及び電力を含むユーティリティーを供給するユーティリティー供給設備と、前記脱亜鉛部及び前記硫化部に硫化水素を供給する硫化水素供給設備と、前記固液分離部及び前記中和部に凝集剤を供給する凝集剤供給設備と、前記中和部及び前記無害化部に中和剤を供給する中和剤供給設備とを含む一連の処理設備を2系列以上有するニッケル酸化鉱の湿式精錬プラントにおいて、各系列における前記ユーティリティー供給設備同士、前記硫化水素供給設備同士、前記凝集剤供給設備同士及び前記中和剤供給設備同士は、各々前記ユーティリティー、前記硫化水素、前記凝集剤及び前記中和剤を共有可能に連結する連結設備をさらに備えることを特徴とする。
 また、前記各連結設備は、前記供給設備が前記ユーティリティー、前記硫化水素、前記凝集剤及び前記中和剤を供給する最上流部分で、該各供給設備を連結することを特徴とする。また、前記2系列以上の処理設備は、それぞれ同程度の処理能力を有することを特徴とする。さらに、前記系列の数は、2系列であることを特徴とする。また、前記連結設備は、開閉機構を有することを特徴とする。
 本発明に係るニッケル酸化鉱石の湿式精錬プラントの操業方法は、前記ニッケル酸化鉱石の湿式精錬プラントを使用することを特徴とする。
 本発明に係るニッケル酸化鉱石の湿式精錬プラントの操業方法は、各系列における前記ユーティリティー供給設備、前記硫化水素供給設備、前記凝集剤供給設備及び前記中和剤供給設備のうち、少なくともいずれか1つの運転が停止した場合には、前記各系列の処理設備の操業度を下げることを特徴とする。
 本発明では、湿式精錬プラントにおいて、各供給設備が各々連結設備により連結されているため、ある系列の処理設備の少なくとも1つの供給設備に重大トラブルが発生した場合でも、処理設備の停止を最小限にして、処理量の減少を最小限にすることができる。したがって、本発明では、各系列の処理設備の同じ供給設備に同時に重大トラブルが発生しない限り、浸出部を停止させることなく湿式精錬プラントの操業を継続することができるため、浸出工程での処理量の減少を最小限にすることができる。
図1は、本発明の湿式精錬プラントを模式的に示す概略図である。 図2は、本発明の湿式精錬プラントを模式的に示す概略図である。 図3は、高圧酸浸出法の概略工程を示すフローチャートである。 図4は、従来の湿式精錬プラントを模式的に示す概略図である。 図5は、従来の湿式精錬プラントを模式的に示す概略図である。
 以下、本発明を適用した湿式精錬プラントの具体的な実施の形態の一例について、図面を参照しながら以下の順序で説明する。
1.湿式精錬プラント
1-1.工程処理設備
1-2.供給設備
2.重大トラブルが発生した場合の湿式精錬プラントの操業(運転)方法
3.他の実施の形態
4.実施例
<1.湿式精錬プラント>
 本発明に係る湿式精錬プラントは、前処理工程、浸出工程、固液分離工程、中和工程、脱亜鉛工程、硫化工程及び無害化工程を実行する一連の処理設備を2系列以上有する。このように湿式精錬プラントが一連の処理設備を2系列以上有することにより、例えば、原料であるニッケル酸化鉱の処理量を増加してニッケル・コバルト混合硫化物の生産量を増加させることができる。
 以下、一連の処理設備を2系列有する湿式精錬プラントを例に挙げて説明する。
 図1、図2に示すように、本発明に係る湿式精錬プラント20は、2系列の処理設備、すなわち、I系列の処理設備と、II系列の処理設備とを有する。これらの処理設備は、前処理部(1a、1b)と、浸出部(2a、2b)と、固液分離部(3a、3b)と、中和部(4a、4b)と、脱亜鉛部(5a、5b)と、硫化部(6a、6b)と、無害化部(7a、7b)とを有する工程処理設備を備える。以下、工程処理設備において、各系列の処理設備を個別に説明する場合を除いて、前処理部1、浸出部2、固液分離部3、中和部4、脱亜鉛部5、硫化部6又は無害化部7という。
<1-1.工程処理設備>
 前処理部1は、例えば粉砕機等の前処理設備で構成され、原料となるニッケル酸化鉱石を解砕分級してスラリーとする前処理工程を実行する。ニッケル酸化鉱石としては、例えば、リモナイト鉱やサプロライト鉱等のいわゆるラテライト鉱が用いられる。
 浸出部2は、前処理部1で得られたスラリーに硫酸を添加し、220~280℃で攪拌して高温加圧で酸浸出し、浸出残渣と浸出液とからなる浸出スラリーを得る浸出工程を実行する。浸出部2は、例えば、浸出設備として高温加圧容器(オートクレーブ)が用いられる。具体的に、浸出部2においては、例えば、下記の式(1)~(5)で表される浸出反応と高温熱加水分解反応によって、ニッケル、コバルト等の硫酸塩としての浸出と、浸出された硫酸鉄のヘマタイトとしての固定化が行われる。しかしながら、鉄イオンの固定化は、完全には進行しないので、得られる浸出スラリーの液部分には、通常ニッケル、コバルト等のほか、2価と3価の鉄イオンが含まれる。
 「浸出反応」
MO+HSO→MSO+HO               (1)
(式中Mは、NI、Co、Fe、Zn、Cu、Mg、Cr、Mn等を表す。)
2Fe(OH)+3HSO→Fe(SO+6HO  (2)
FeO+HSO→FeSO+HO             (3)
 「高温熱加水分解反応」
2FeSO+HSO+(1/2)O→Fe(SO+HO(4)
Fe(SO+3HO→Fe+3HSO       (5)
 固液分離部3は、浸出部2で得た浸出スラリーを固液分離し、ニッケル及びコバルトを含む浸出液(粗硫酸ニッケル水溶液)と浸出残渣とを得る固液分離工程を実行する。固液分離工程は、浸出部2で形成される浸出スラリーから、浸出残渣に付着して廃棄されるニッケル等を粗硫酸ニッケル水溶液中に分離回収するため有効である。例えば、固液分離部3は、浸出スラリーを洗浄液と混合した後、後述する凝集剤供給設備14a、14bから供給される凝集剤を用いて、固液分離設備であるシックナーで固液分離を行う。これにより、スラリーが洗浄液により希釈され、浸出残渣がシックナーの沈降物として濃縮されるので、浸出残渣に付着するニッケル分をその希釈の度合に応じて減少させることができる。凝集剤としては、例えばアニオン系の凝集剤が用いられる。
 中和部4は、例えば中和槽等の中和設備で構成され、固液分離部3で得られた粗硫酸ニッケル水溶液を中和する中和工程を実行する。具体的に、中和部4では、粗硫酸ニッケル水溶液の酸化を抑制しながら、凝集剤供給設備14a、14bから供給される凝集剤と、後述する中和剤供給設備12a、12bから供給される中和剤とを添加し、3価の鉄を含む中和澱物スラリーと、ニッケル回収用母液とを形成する。これにより、中和部4では、過剰の酸の中和を行うとともに、溶液中に残留する3価の鉄イオンの除去を行うことができる。中和剤としては、例えば、炭酸カルシウムが用いられる。また、中和部4では、中和工程でのpHを3.2~3.8とするのが好ましい。このようなpHの範囲にすることにより、ニッケルの水酸化物の発生が多くなるのを防止することができる。中和部4では、中和工程での温度を50~80℃とするのが好ましい。50℃未満とすると、澱物が微細となり、固液分離工程へ悪影響を及ぼし、80℃を超えると、装置材料の耐食性の低下や加熱のためのエネルギーコストの増大を招くためである。
 脱亜鉛部5は、中和部4で中和した粗硫酸ニッケル水溶液に硫化水素供給設備10a、10bから供給される硫化水素ガスを添加して、亜鉛を硫化亜鉛として沈殿除去し、脱亜鉛溶液を得る脱亜鉛工程を実行する。
 硫化部6は、脱亜鉛部5で得られた脱亜鉛溶液に、硫化水素供給設備10a、10bから供給される硫化水素ガスを添加してニッケル・コバルト混合硫化物とニッケル貧液とを得る硫化工程を実行する。このニッケル貧液は、硫化されずに含まれる鉄、マグネシウム、マンガン等の不純物の他に、回収ロスであるニッケル及びコバルトを僅かに含む。
 無害化部7は、固液分離部3で発生した浸出残渣と、硫化部6で発生したニッケル貧液とを、中和剤供給設備12a、12bから供給される中和剤により無害化する無害化工程を実行する。以上のような工程処理設備により、湿式精錬プラント20では、高いニッケル収率を達成することができる。
<1-2.供給設備>
 湿式精錬プラント20は、図1、図2に示すように、ユーティリティー供給設備8a、8bと、硫化水素供給設備10a、10bと、中和剤供給設備12a、12bと、凝集剤供給設備14a、14bとを有する。以下、これらの供給設備は、各系列の処理設備を個別に説明する場合を除いて、ユーティリティー供給設備8、硫化水素供給設備10、中和剤供給設備12及び凝集剤供給設備14という。
 ユーティリティー供給設備8は、例えば、ボイラーと、用水設備と、電力設備とからなる。ボイラーは、各工程処理設備の反応温度制御をするための蒸気を得るものである。ボイラーから得られる蒸気は、必要に応じて上述した工程処理設備に供給される。用水設備は、各工程処理設備で用いられる用水を供給するための設備である。用水設備で得られる用水は、必要に応じて上述した工程処理設備に供給される。電力設備は、各工程処理設備で用いられる電力を供給するための設備である。電力設備で得られる電力は、必要に応じて上述した工程処理設備に供給される。
 ユーティリティー供給設備8aと、I系列の工程処理設備とは、ユーティリティー供給配管9aによって連結されている。また、ユーティリティー供給設備8bと、II系列の工程処理設備とは、ユーティリティー供給配管9bによって連結されている。さらに、ユーティリティー供給配管9aと、ユーティリティー供給配管9bとは、ユーティリティー連結設備16によって連結されている。
 ユーティリティー連結設備16は、例えば、ユーティリティー供給配管9a、9bと同様に構成される。ユーティリティー連結設備16は、ユーティリティー(蒸気、用水及び電力)の供給の最上流部分でユーティリティー供給配管9aと、ユーティリティー供給配管9bとを連結する。すなわち、ユーティリティー連結設備16は、例えば、ユーティリティー供給配管9aと、ユーティリティー供給設備8aとの接続部付近と、ユーティリティー供給配管9bと、ユーティリティー供給設備8bとの接続部付近とを連結する。このように、各系列のユーティリティー供給設備をユーティリティー連結設備16で連結して供給物を互いに共有可能とすることで、例えばユーティリティー供給設備8aに重大トラブルが発生した場合においても、ユーティリティー供給設備8bからのユーティリティーを各系列の工程処理設備に効率的に供給することができる。
 硫化水素供給設備10は、硫化水素ガスを製造し、製造した硫化水素ガスを必要に応じて脱亜鉛部5及び硫化部6に供給する。硫化水素供給設備10aと、脱亜鉛部5a及び硫化部6aとは、硫化水素供給配管11aによって連結されている。また、硫化水素供給設備10bと、脱亜鉛部5b及び硫化部6bとは、硫化水素供給配管11bによって連結されている。さらに、硫化水素供給配管11aと、硫化水素供給配管11bとは、硫化水素連結設備17によって連結されている。
 硫化水素連結設備17は、例えば硫化水素供給配管11と同様に構成されている。また、硫化水素連結設備17は、硫化水素の供給の最上流部分で硫化水素供給配管11aと、硫化水素供給配管11bとを連結することで、各系列の工程処理設備で硫化水素を互いに共有可能とする。すなわち、硫化水素連結設備17は、例えば、硫化水素供給設備10aと硫化水素供給配管11aとの接続部付近と、硫化水素供給設備10bと硫化水素供給配管11bとの接続部付近とを連結する。これにより、例えば、硫化水素供給設備10a(10b)に重大トラブルが発生した場合においても、硫化水素連結設備17を介して硫化水素供給設備10b(10a)から各系列の工程処理設備に硫化水素を効率的に供給することができる。
 中和剤供給設備12は、必要に応じて中和部4及び無害化部に上述した中和剤を供給する。中和剤供給設備12aと、中和部4a及び無害化部7aとは、中和剤供給配管13aによって連結されている。また、中和剤供給設備12bと、中和部4b及び無害化部7bとは、中和剤供給配管13bによって連結されている。さらに、中和剤供給配管13aと、中和剤供給配管13bとは、中和剤連結設備18によって連結されている。
 中和剤連結設備18は、例えば中和剤供給配管13と同様に構成されている。中和剤連結設備18は、中和剤の供給の最上流部分でこれら中和剤供給配管13aと、中和剤供給配管13bとを連結することで、各系列の工程処理設備で中和剤を互いに共有可能とする。すなわち、中和剤連結設備18は、例えば、中和剤供給設備12aと中和剤供給配管13aとの接続部付近と、中和剤供給設備12bと中和剤供給配管13bとの接続部付近とを連結する。これにより、例えば、中和剤供給設備12aに重大トラブルが発生した場合においても、中和剤連結設備18を介して中和剤供給設備12bから各系列の工程処理設備に中和剤を効率的に供給することができる。
 凝集剤供給設備14は、必要に応じて上述した凝集剤を、固液分離部3と、中和部4とに供給する。凝集剤供給設備14aと、固液分離部3a及び中和部4aとは、凝集剤供給配管15aによって連結されている。また、凝集剤供給設備14bと、固液分離部3b及び中和部4bとは、凝集剤供給配管15bによって連結されている。さらに、凝集剤供給配管15aと、凝集剤供給配管15bとは、凝集剤連結設備19によって連結されている。
 凝集剤連結設備19は、例えば凝集剤供給配管15と同様に構成されている。凝集剤連結設備19は、凝集剤の供給の最上流部分で凝集剤供給配管15aと、凝集剤供給配管15bとを連結することで、各系列の工程処理設備で凝集剤を互いに共有可能とする。すなわち、凝集剤連結設備19は、例えば、凝集剤供給設備14aと凝集剤供給配管15aとの接続部付近と、凝集剤供給設備14aと凝集剤供給配管15aとの接続部付近とを連結する。これにより、例えば、凝集剤供給設備14aに重大トラブルが発生した場合においても、凝集剤連結設備19を介して凝集剤供給設備14bから各系列の工程処理設備に凝集剤を効率的に供給することができる。
 また、上述した連結設備は、移動する供給物の量を遮断、調整等するための開閉機構(遮断機構)を有することが好ましい。例えば、ユーティリティー連結設備16には、蒸気、用水であればコントロールバルブ、電気であれば開閉器を設けることが好ましい。また、硫化水素連結設備17、中和剤連結設備18及び凝集剤連結設備19には、例えば、コントロールバルブを設けることが好ましい。
 各連結設備は、必要に応じてこの開閉機構を作動させて、連結を解除することにより、2系列の処理設備を有する湿式精錬プラント20を独立した1系列の処理設備としても稼動させることができる。
 このように、湿式精錬プラント20は、開閉機構を有する連結設備を備えることにより、組成の異なる原料を処理する必要がある場合や、同じ組成の原料でも処理条件を変更させる必要がある場合に、好ましく対応することが可能となる。また、湿式精錬プラント20は、開閉機構で移動する供給物の量を調整することにより、重大トラブル発生による処理量の減少を最小限にして操業を継続できるため、重大トラブル解消後の立ち上げも早くすることができる。
 また、湿式精錬プラント20においては、複数系列の一連の処理設備を、ほぼ同じ位置に設置するのが好ましい。これにより、ニッケル酸化鉱(原料)の運搬、ニッケル・コバルト混合硫化物(製品)搬出などを、より効率的に操業することができる。
 また、湿式精錬プラント20では、ニッケル酸化鉱の採掘可能年数、操業に欠かせない水の供給能力、プラント敷地の余裕など考慮すべき事項は多々あるものの、条件が許せば、各系列の処理設備が同程度の処理能力を有することが好ましい。これにより、後に詳述するように湿式精錬プラント20で重大トラブルが発生した場合に、各系列の供給処理設備や各系列の工程処理設備の制御を容易に行うことができる。また、各個別設備における実操業上の運転・操作マニュアルが、別系列であっても実質的に同じものとすることができるため、作業員の教育コストを低減することができる。さらに、各処理設備が同程度の処理能力を有することにより、別系列の処理設備における処理能力を勘違いするポカミス・ヒューマンエラーを低減することができ、作業員の勤務構成の組み方に余裕をもたせることができる。
 以上説明したように、湿式精錬プラント20では、各供給設備が連結設備により連結されているため、例えば、ある系列の処理設備の少なくとも1つの供給設備に重大トラブルが発生した場合でも、連結設備を介して供給物を他の系列の工程処理設備に供給することで、浸出部2の運転停止を防止することができる。したがって、湿式精錬プラント20では、各系列の同じ供給設備に同時に重大トラブルが発生しない限り、浸出部2を停止させることなく操業を継続することができるため、浸出工程での処理量の減少を最小限にすることができる。
<2.重大トラブルが発生した場合の湿式精錬プラントの操業方法>
 次に、重大トラブルが発生した場合の湿式精錬プラント20の操業方法の一例について説明する。以下の説明では、便宜的に上述した図1及び図2に示す湿式精錬プラント20を用いた場合を例にして説明する。
 例えば、湿式精錬プラント20のユーティリティー供給設備8a、ユーティリティー供給設備8bのいずれか一方で、上述した重大トラブル(処理設備の一部を運転停止しなければならないトラブル)が発生して、蒸気の供給設備が停止した場合を想定する。この場合には、湿式精錬プラント20では、重大トラブルが発生していないユーティリティー供給設備の稼働能力を通常操業時よりも上昇させる。
 例えば、湿式精錬プラント20では、ユーティリティー供給設備8aに重大トラブルが発生して蒸気の供給設備が停止したため、片肺運転となったユーティリティー供給設備8bの稼働能力(操業負荷)を通常操業時以上に上昇させる。湿式精錬プラント20では、片肺運転となったユーティリティー供給設備8bの稼働能力を通常操業時よりも120%上昇させることが好ましい。湿式精錬プラント20では、ユーティリティー供給設備8bの稼働能力を通常操業時よりも120%上昇させることにより、ユーティリティー供給設備8bに負荷をかけすぎずに、必要な量の蒸気を各工程処理設備に安定して供給することができる。
 また、湿式精錬プラント20では、各系列の一連の処理設備の稼働能力の合計を120%とし、かつ、少なくとも浸出部2の稼働能力の下限がそれぞれ50%となるように設定する。これにより、湿式精錬プラント20では、少なくとも浸出部2の稼働率を通常時の50%で維持することができる。したがって、湿式精錬プラント20では、従来であれば停止を余儀なくされていた浸出部2を停止させずに、実操業上の大きな問題の原因である上述した準備時間の発生を防止することができる。
 ここで、各系列の処理設備の稼働能力の合計が120%とは、各系列の一連の処理設備の通常時の稼働能力をそれぞれ100%としたときに、これらの稼働能力を合計した値が120%であることをいう。例えば、湿式精錬プラント20において、I系列の処理設備及びII系列の処理設備の稼働能力をそれぞれ通常時の60%とする場合が挙げられる。また、I系列の処理設備の稼働能力を50%、かつ、II系列の処理設備の稼働能力を70%としたり、I系列の処理設備の稼働能力を70%、かつ、II系列の処理設備の稼働能力を50%としてもよい。
 また、湿式精錬プラント20では、上記した蒸気以外の他の供給物である、用水、電気、硫化水素、凝集剤及び中和剤の場合も、蒸気の場合と同様にして、浸出部2における準備時間の発生を防止することができる。
 以上説明したように、本実施の形態に係る湿式精錬プラント20では、各系列の同じ供給設備に、同時に重大トラブルが発生しない限り、浸出部2の運転停止を防ぐことができるため、浸出部2を停止させることなく操業を継続することができる。したがって、本実施の形態に係る湿式精錬プラント20では、浸出工程での処理量の減少を最小限にすることができる。なお、湿式精錬プラント20において、全系列の同じ供給設備に、同時に重大トラブルが発生する可能性は低いと理解されるため、実質的に重大トラブルによる処理設備の停止を防止することができる。
<3.他の実施の形態>
 上記説明では、一連の処理設備を2系列有する湿式精錬プラント20を例にして説明したが、一連の処理設備を3系列以上有する湿式精錬プラントを本発明に適用してもよい。例えば、一連の処理設備を3系列有する湿式精錬プラントの場合には、各供給物の供給設備のうち、1系列しか稼動していなくても、稼働率を33%とすることで、約1/3の稼動を継続することが可能であり、2系列が稼動している場合は、稼働率を66%にすればよいことになる。このように、系列数を多くすることにより、増産しなければならない工程領域の設備にかかる1設備あたりの過剰負荷分を小さくすることができる。
 また、上述したニッケル酸化鉱石の湿式精錬プラントは、緊急用貯槽(例えば、ユーティリティーを8時間分は貯留できるタンク)を併用するようにしてもよい。これにより、より複雑な調整が可能となる。例えば、上述した湿式精錬プラント20において、ユーティリティー供給設備8aに重大トラブルが発生し、ユーティリティー供給設備8bの稼働能力を140%に上昇させた場合には、ユーティリティー供給設備8bの稼働能力を通常時のまま(100%)とし、緊急用貯槽に貯留されているユーティリティーを併用するようにしてもよい。
 また、湿式精錬プラント20では、上述した片肺運転となったユーティリティー供給設備8bの稼働能力を通常操業時のまま(100%)とし、各系列の一連の処理設備の稼働能力の合計を100%とし、かつ、少なくとも浸出部2の稼働能力の下限がそれぞれ50%となるように設定してもよい。例えば、各系列の一連の処理設備の稼働能力をそれぞれ50%の合計を100%とし、上述した緊急用貯槽に貯留されているユーティリティーを併用するようにしてもよい。
 さらに、上述した湿式精錬プラント20における各供給設備の稼働能力の上限は、可能であれば120%よりも大きい値、例えば140%としてもよい。例えば、ユーティリティー供給設備8aに重大トラブルが発生し、ユーティリティー供給設備8bの稼働能力を140%に上昇させた場合には、各系列の処理設備の稼働能力の合計を140%とし、かつ、浸出部2の稼働能力の下限が50%となるように設定すればよい。
 また、本発明に係る湿式精錬プラント20は、上述した各供給設備における重大トラブルを検出する検出部と、この検出部で重大トラブルを検出した場合に各供給設備の稼働能力や連結設備の開閉機構を制御する制御部とを備えてもよい。すなわち、湿式精錬プラントにおいて、検出部は、上述した各供給設備にそれぞれ接続されている。また、制御部は、上述した各検出部、各供給設備及び各連結設備の開閉機構にそれぞれ接続されている。
 このような湿式精錬プラントにおいて、検出部は、例えば、ユーティリティー供給設備8aに重大トラブルが発生して蒸気の供給設備が停止したかどうかを検出する。検出部は、蒸気の供給設備が停止したことを検出した場合には、その旨の検出信号を制御部に供給する。制御部は、検出部から供給された検出信号に応じて、片肺運転となったユーティリティー供給設備8bの稼働能力が、通常操業時よりも120%上昇するように制御する。また、制御部は、上述したI系列の処理設備及びII系列の処理設備の稼働能力が、それぞれ通常時の60%となるように、工程処理設備の稼働能力を制御するとともに、各連結設備の開閉機構の作動を制御する。これにより、ある系列の処理設備の少なくとも1つの供給設備に重大トラブルが発生した場合にも、処理設備の停止を最小限にして、処理量の減少を最小限にすることができる。
<4.実施例>
 以下、本発明の具体的な実施例について説明する。なお、下記のいずれかの実施例に本発明の範囲が限定されるものではない。
(実施例1)
<操業条件>
 実施例1では、図1、2に示す本発明の湿式精錬プラント20を使用し、7ヶ月間の操業を実施した。
 実施例1で用いた湿式精錬プラント20は、前処理部1と、浸出部2と、固液分離部3と、中和部4と、脱亜鉛部5と、硫化部6と、無害化部7とを含む2系列の工程処理設備を備える。また、本発明の湿式精錬プラント20は、ユーティリティー供給設備8と、硫化水素供給設備10と、中和剤供給設備12と、凝集剤供給設備14とを有する。また、湿式精錬プラント20は、各供給手段の供給の最上流部分にユーティリティー連結設備16、硫化水素連結設備17、中和剤連結設備18及び凝集剤連結設備19を設けて、各系列の供給設備を連結して操業を実施した。
 実施例1では、湿式精錬プラント20の供給設備において、上述した重大トラブルが発生した場合には、重大トラブルが発生していない供給設備の稼働能力を120%に上昇させ、各系列の一連の処理設備の稼働能力の合計を120%とし、かつ、下限がそれぞれ50%以上となるように設定した。
<操業結果>
 ユーティリティーについては、ユーティリティー供給設備8に合計4回のトラブルが発生した。その結果、浸出部2の停止時間は、ゼロであった。硫化水素については、硫化水素供給設備10に34回のトラブルが発生した。その結果、浸出部2の停止時間はゼロであった。中和剤については、中和剤供給設備12に1回のトラブルが発生した。その結果、浸出部2の停止時間は、ゼロであった。凝集剤については、凝集剤供給設備14にトラブルは発生しなかった。なお、いずれのトラブルでも、I系列の処理設備と、II系列の処理設備との双方に同時に重大トラブルが発生することはなかった。
(比較例1)
<操業条件>
 比較例1では、本発明を適用しない湿式精錬プラント、すなわち、図4、図5に示す湿式精錬プラントを使用し、7ヶ月間の操業を実施した。すなわち、比較例1では、ユーティリティー供給設備8と、硫化水素供給設備10と、中和剤供給設備12と、凝集剤供給設備14とについては、実施例1のように供給の最上流部分で供給物を互いに共有可能に連結する連結設備を設けず、各系列の供給設備を連結することなく操業を実施した。
<操業結果>
 ユーティリティー(蒸気、用水、電気)については、ユーティリティー供給設備8に合計3回のトラブルが発生した。その結果、浸出部2の停止時間は、235時間であった。硫化水素については、硫化水素供給設備10に30回のトラブルが発生した。その結果、浸出部2の停止時間は、98時間であった。中和剤については、中和剤供給設備12に1回のトラブルが発生した。その結果、浸出部2の停止時間は、4時間であった。凝集剤については、凝集剤供給設備14にトラブルは発生しなかった。なお、いずれのトラブルでも、I系列、II系列の双方に同時にトラブルが発生することはなかった。
 以上の結果から、実施例1では、湿式精錬プラント20の各系列における全ての供給設備が、上述した連結設備を有するため、供給設備に重大トラブルが発生した場合においても、他の系列の同じ供給設備を操業することができた。これにより、浸出部2を停止させることなく操業を継続できるため、浸出工程での処理量の減少を最小限にできることが確認できた。
 一方、比較例1では、湿式精錬プラントの各系列における全ての供給設備が、実施例1のように連結設備を有しないため、供給設備に重大トラブルが発生した場合において、浸出部2を停止させずに操業を継続することができなかった。また、浸出部2の停止時間の合計は、237時間であった。
 本発明は、ニッケル酸化鉱石の湿式精錬プラントに限定されず、硬い粒子を含むスラリーや装置表面に付着しやすい沈殿の生成を伴うプラントに対して適用可能であり、その工業的価値は高い。

Claims (7)

  1.  前処理部、浸出部、固液分離部、中和部、脱亜鉛部、硫化部及び無害化部を有する工程処理設備と、
     前記前処理部、前記浸出部、前記固液分離部、前記中和部、前記脱亜鉛部、前記硫化部及び前記無害化部に、蒸気、用水及び電力を含むユーティリティーを供給するユーティリティー供給設備と、
     前記脱亜鉛部及び前記硫化部に硫化水素を供給する硫化水素供給設備と、
     前記固液分離部及び前記中和部に凝集剤を供給する凝集剤供給設備と、
     前記中和部及び前記無害化部に中和剤を供給する中和剤供給設備と
     を含む一連の処理設備を2系列以上有するニッケル酸化鉱の湿式精錬プラントにおいて、
     各系列における前記ユーティリティー供給設備同士、前記硫化水素供給設備同士、前記凝集剤供給設備同士及び前記中和剤供給設備同士は、各々前記ユーティリティー、前記硫化水素、前記凝集剤及び前記中和剤を共有可能に連結する連結設備をさらに備えることを特徴とするニッケル酸化鉱石の湿式精錬プラント。
  2.  前記連結設備は、前記各供給設備が前記ユーティリティー、前記硫化水素、前記凝集剤及び前記中和剤を供給する最上流部分で、該各供給設備を連結することを特徴とする請求項1記載のニッケル酸化鉱石の湿式精錬プラント。
  3.  前記2系列以上の処理設備は、それぞれ同程度の処理能力を有することを特徴とする請求項1又は2記載のニッケル酸化鉱石の湿式精錬プラント。
  4.  前記系列の数は、2系列であることを特徴とする請求項1乃至3のいずれか1項記載のニッケル酸化鉱石の湿式精錬プラント。
  5.  前記連結設備は、開閉機構を有することを特徴とする請求項1乃至4のいずれか1項記載のニッケル酸化鉱石の湿式精錬プラント。
  6.  請求項1乃至5項のいずれか1項記載のニッケル酸化鉱石の湿式精錬プラントを使用することを特徴とするニッケル酸化鉱石の湿式精錬プラントの操業方法。
  7.  各系列における前記ユーティリティー供給設備、前記硫化水素供給設備、前記凝集剤供給設備及び前記中和剤供給設備のうち、少なくともいずれか1つの運転が停止した場合には、他の系列の該供給設備を通常の操業度以上で操業し、前記各系列の処理設備の操業度を下げることを特徴とする請求項6記載のニッケル酸化鉱石の湿式精錬プラントの操業方法。
PCT/JP2011/059266 2010-04-15 2011-04-14 ニッケル酸化鉱石の湿式精錬プラント及びその操業方法 WO2011129395A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11768916.6A EP2559776A4 (en) 2010-04-15 2011-04-14 APPARATUS FOR HOT-MELTING LATERITNICKELERZ AND OPERATING METHOD THEREFOR
US13/639,788 US20130207325A1 (en) 2010-04-15 2011-04-14 Wet smelting plant for nickel oxide ore and method of operating the same
AU2011241550A AU2011241550B2 (en) 2010-04-15 2011-04-14 Plant for wet smelting of laterite nickel ore and method of operating same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010094330A JP4888578B2 (ja) 2010-04-15 2010-04-15 ニッケル酸化鉱石の湿式精錬プラント及びその操業方法
JP2010-094330 2010-04-15

Publications (1)

Publication Number Publication Date
WO2011129395A1 true WO2011129395A1 (ja) 2011-10-20

Family

ID=44798764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059266 WO2011129395A1 (ja) 2010-04-15 2011-04-14 ニッケル酸化鉱石の湿式精錬プラント及びその操業方法

Country Status (5)

Country Link
US (1) US20130207325A1 (ja)
EP (1) EP2559776A4 (ja)
JP (1) JP4888578B2 (ja)
AU (1) AU2011241550B2 (ja)
WO (1) WO2011129395A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013133172A1 (ja) * 2012-03-06 2013-09-12 住友金属鉱山株式会社 脱亜鉛処理プラント及び脱亜鉛プラントの操業方法、並びにニッケル酸化鉱石の湿式製錬方法
WO2013133173A1 (ja) * 2012-03-06 2013-09-12 住友金属鉱山株式会社 中和処理方法及び中和処理プラント
JP2014074233A (ja) * 2013-12-05 2014-04-24 Sumitomo Metal Mining Co Ltd 中和処理プラント
EP2881364A4 (en) * 2012-07-31 2016-03-16 Sumitomo Metal Mining Co PRODUCTION PLANT FOR SULFUR HYDROGEN GAS AND METHOD FOR RECOVERY AND USE OF SULFUR HYDROGEN GAS
US9480956B2 (en) * 2012-01-17 2016-11-01 Sumitomo Metal Mining Co., Ltd. Hydrogen sulfide gas production plant and method for recovering and using waste hydrogen sulfide gas

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5700029B2 (ja) 2012-12-11 2015-04-15 住友金属鉱山株式会社 硫化水素を含む貧液の処理方法及び処理装置
JP5720665B2 (ja) 2012-12-11 2015-05-20 住友金属鉱山株式会社 重金属除去方法及び重金属除去装置
JP5644878B2 (ja) 2013-01-21 2014-12-24 住友金属鉱山株式会社 固液分離処理方法、並びにニッケル酸化鉱石の湿式製錬方法
JP5569611B1 (ja) 2013-03-08 2014-08-13 住友金属鉱山株式会社 ニッケル酸化鉱石の湿式製錬プラント、並びにその湿式製錬プラントの操業方法
JP5637293B1 (ja) * 2013-11-29 2014-12-10 住友金属鉱山株式会社 中和処理方法
JP5637294B1 (ja) * 2013-11-29 2014-12-10 住友金属鉱山株式会社 中和処理方法
JP5637296B1 (ja) * 2013-12-03 2014-12-10 住友金属鉱山株式会社 中和処理方法
JP5637295B1 (ja) * 2013-12-03 2014-12-10 住友金属鉱山株式会社 中和処理方法
JP5637297B1 (ja) * 2013-12-03 2014-12-10 住友金属鉱山株式会社 中和処理方法
JP5708849B2 (ja) * 2014-02-27 2015-04-30 住友金属鉱山株式会社 硫化水素ガス製造プラントシステム及び硫化水素ガスの回収利用方法
WO2018143121A1 (ja) * 2017-02-01 2018-08-09 住友金属鉱山株式会社 硫化反応設備
JP6862970B2 (ja) * 2017-03-21 2021-04-21 住友金属鉱山株式会社 硫化物の製造設備
JP2019203152A (ja) * 2018-05-21 2019-11-28 住友金属鉱山株式会社 鉱石スラリーの濃縮システム、及び鉱石スラリーの濃縮方法
JP7147452B2 (ja) * 2018-10-12 2022-10-05 住友金属鉱山株式会社 亜鉛硫化物除去用の濾過設備及びこれを用いたニッケルコバルト混合硫化物の製造方法
WO2020160611A1 (en) * 2019-02-05 2020-08-13 Newcrest Mining Limited Processing ores containing precious metals
JP7183881B2 (ja) * 2019-03-14 2022-12-06 住友金属鉱山株式会社 鉱石スラリー移送処理プラント、及びその運転方法
JP7310490B2 (ja) * 2019-09-25 2023-07-19 住友金属鉱山株式会社 中和工程における処理立上げに際しての操業方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63146110A (ja) * 1986-12-10 1988-06-18 Toshiba Corp 監視制御装置
JPH0260437A (ja) * 1988-08-23 1990-02-28 Mitsubishi Electric Corp 非常用発電機の電力系統への併入方法
JPH04311607A (ja) * 1991-04-10 1992-11-04 Toshiba Corp 複合サイクル発電設備における蒸気タービンバイパス・スプレー系統
JPH0990091A (ja) * 1995-09-26 1997-04-04 Toshiba Corp 原子力発電所の補機冷却設備
JP2005350766A (ja) * 2004-05-13 2005-12-22 Sumitomo Metal Mining Co Ltd ニッケル酸化鉱石の湿式製錬方法
JP2010031302A (ja) * 2008-07-25 2010-02-12 Sumitomo Metal Mining Co Ltd ニッケル酸化鉱石の湿式製錬方法
JP2010031341A (ja) * 2008-07-31 2010-02-12 Sumitomo Metal Mining Co Ltd ニッケル酸化鉱石の湿式製錬方法
JP2010037626A (ja) * 2008-08-07 2010-02-18 Sumitomo Metal Mining Co Ltd 亜鉛硫化物の分離方法
JP2010059489A (ja) * 2008-09-04 2010-03-18 Sumitomo Metal Mining Co Ltd オートクレーブの圧力調整方法
JP2010094330A (ja) 2008-10-17 2010-04-30 Seiko Epson Corp 遊技機及び遊技システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9106985A (pt) * 1990-11-15 1993-10-05 Sceresini Bruno Holdings Recuperacao de metais base por adsorcao de complexos ciano sobre carvao ativado
JP3203707B2 (ja) * 1991-10-09 2001-08-27 大平洋金属株式会社 酸化鉱石から有価金属を回収する方法
US6319389B1 (en) * 1999-11-24 2001-11-20 Hydromet Systems, L.L.C. Recovery of copper values from copper ores
BRPI0506140A (pt) * 2004-05-27 2006-10-24 Pacific Metals Co Ltd processo para recuperação de nìquel e cobalto
JP5348267B2 (ja) * 2012-03-06 2013-11-20 住友金属鉱山株式会社 脱亜鉛処理プラント及び脱亜鉛プラントの操業方法、並びにニッケル酸化鉱石の湿式製錬方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63146110A (ja) * 1986-12-10 1988-06-18 Toshiba Corp 監視制御装置
JPH0260437A (ja) * 1988-08-23 1990-02-28 Mitsubishi Electric Corp 非常用発電機の電力系統への併入方法
JPH04311607A (ja) * 1991-04-10 1992-11-04 Toshiba Corp 複合サイクル発電設備における蒸気タービンバイパス・スプレー系統
JPH0990091A (ja) * 1995-09-26 1997-04-04 Toshiba Corp 原子力発電所の補機冷却設備
JP2005350766A (ja) * 2004-05-13 2005-12-22 Sumitomo Metal Mining Co Ltd ニッケル酸化鉱石の湿式製錬方法
JP2010031302A (ja) * 2008-07-25 2010-02-12 Sumitomo Metal Mining Co Ltd ニッケル酸化鉱石の湿式製錬方法
JP2010031341A (ja) * 2008-07-31 2010-02-12 Sumitomo Metal Mining Co Ltd ニッケル酸化鉱石の湿式製錬方法
JP2010037626A (ja) * 2008-08-07 2010-02-18 Sumitomo Metal Mining Co Ltd 亜鉛硫化物の分離方法
JP2010059489A (ja) * 2008-09-04 2010-03-18 Sumitomo Metal Mining Co Ltd オートクレーブの圧力調整方法
JP2010094330A (ja) 2008-10-17 2010-04-30 Seiko Epson Corp 遊技機及び遊技システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2559776A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9480956B2 (en) * 2012-01-17 2016-11-01 Sumitomo Metal Mining Co., Ltd. Hydrogen sulfide gas production plant and method for recovering and using waste hydrogen sulfide gas
WO2013133172A1 (ja) * 2012-03-06 2013-09-12 住友金属鉱山株式会社 脱亜鉛処理プラント及び脱亜鉛プラントの操業方法、並びにニッケル酸化鉱石の湿式製錬方法
WO2013133173A1 (ja) * 2012-03-06 2013-09-12 住友金属鉱山株式会社 中和処理方法及び中和処理プラント
JP2013185179A (ja) * 2012-03-06 2013-09-19 Sumitomo Metal Mining Co Ltd 中和処理方法及び中和処理プラント
JP2013185178A (ja) * 2012-03-06 2013-09-19 Sumitomo Metal Mining Co Ltd 脱亜鉛処理プラント及び脱亜鉛プラントの操業方法、並びにニッケル酸化鉱石の湿式製錬方法
AU2013228542B2 (en) * 2012-03-06 2016-12-08 Sumitomo Metal Mining Co., Ltd. Neutralization method and neutralization plant
US9752211B2 (en) 2012-03-06 2017-09-05 Sumitomo Metal Mining Co., Ltd. Neutralization method and neutralization plant
US9945007B2 (en) 2012-03-06 2018-04-17 Sumitomo Metal Mining Co., Ltd. Dezincification plant, method for operating dezincification plant, and hydrometallurgical method for nickel oxide ore
EP2881364A4 (en) * 2012-07-31 2016-03-16 Sumitomo Metal Mining Co PRODUCTION PLANT FOR SULFUR HYDROGEN GAS AND METHOD FOR RECOVERY AND USE OF SULFUR HYDROGEN GAS
US9321646B2 (en) 2012-07-31 2016-04-26 Sumitomo Metal Mining Co., Ltd. Hydrogen sulfide gas production plant system and method for recovering and using hydrogen sulfide gas
JP2014074233A (ja) * 2013-12-05 2014-04-24 Sumitomo Metal Mining Co Ltd 中和処理プラント

Also Published As

Publication number Publication date
US20130207325A1 (en) 2013-08-15
EP2559776A1 (en) 2013-02-20
JP2011225908A (ja) 2011-11-10
AU2011241550A1 (en) 2012-11-01
AU2011241550B2 (en) 2015-07-02
JP4888578B2 (ja) 2012-02-29
EP2559776A4 (en) 2015-11-18

Similar Documents

Publication Publication Date Title
JP4888578B2 (ja) ニッケル酸化鉱石の湿式精錬プラント及びその操業方法
JP5880903B2 (ja) ニッケル酸化鉱石の湿式精錬プラントおよびその操業方法
JP5287010B2 (ja) ニッケル酸化鉱石の湿式製錬方法
WO2011132693A1 (ja) 貯液装置及びその圧力制御方法
JP6799160B2 (ja) 硫酸亜鉛溶液から鉄を回収する方法
AU2012376440B2 (en) Method for recovering chromite, and method for wet smelting of nickel oxide ore
EP2975142B1 (en) Hydrometallurgical plant for nickel oxide ore and method for operating said hydrometallurgical plant
JP5359989B2 (ja) 生成硫化物の付着防止方法
JP5556608B2 (ja) クロマイト回収方法、並びにニッケル酸化鉱石の湿式製錬方法
JP5125597B2 (ja) ニッケル酸化鉱石の湿式製錬方法
JP5790839B2 (ja) クロマイト回収方法
JP6953988B2 (ja) 硫化剤の除去方法
JP2016113703A (ja) ニッケル酸化鉱石の湿式製錬における中和方法
JP7183881B2 (ja) 鉱石スラリー移送処理プラント、及びその運転方法
JP2014173190A (ja) ニッケル酸化鉱石の湿式製錬プラント
JP7147452B2 (ja) 亜鉛硫化物除去用の濾過設備及びこれを用いたニッケルコバルト混合硫化物の製造方法
JP2020028858A (ja) ニッケル酸化鉱石の湿式製錬プロセスにおける最終中和方法
JP2023031095A (ja) 濾過設備の運転方法、脱亜鉛処理方法、及び、ニッケル酸化鉱石の製錬方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11768916

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12012501998

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 2011768916

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011241550

Country of ref document: AU

Date of ref document: 20110414

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13639788

Country of ref document: US