WO2011129248A1 - 給湯システム制御装置及び給湯システム制御プログラム及び給湯システム運転方法 - Google Patents

給湯システム制御装置及び給湯システム制御プログラム及び給湯システム運転方法 Download PDF

Info

Publication number
WO2011129248A1
WO2011129248A1 PCT/JP2011/058755 JP2011058755W WO2011129248A1 WO 2011129248 A1 WO2011129248 A1 WO 2011129248A1 JP 2011058755 W JP2011058755 W JP 2011058755W WO 2011129248 A1 WO2011129248 A1 WO 2011129248A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
hot water
refrigerant
radiator
tank water
Prior art date
Application number
PCT/JP2011/058755
Other languages
English (en)
French (fr)
Inventor
博 米谷
藤塚 正史
川岸 元彦
高橋 佳宏
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201180018971.3A priority Critical patent/CN102893097B/zh
Priority to EP11768769.9A priority patent/EP2559953B1/en
Priority to US13/641,165 priority patent/US9562696B2/en
Priority to JP2012510633A priority patent/JP5389257B2/ja
Publication of WO2011129248A1 publication Critical patent/WO2011129248A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/02Central heating systems using heat accumulated in storage masses using heat pumps
    • F24D11/0214Central heating systems using heat accumulated in storage masses using heat pumps water heating system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1012Arrangement or mounting of control or safety devices for water heating systems for central heating by regulating the speed of a pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1039Arrangement or mounting of control or safety devices for water heating systems for central heating the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/156Reducing the quantity of energy consumed; Increasing efficiency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/223Temperature of the water in the water storage tank
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/38Control of compressors of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/40Control of fluid heaters characterised by the type of controllers
    • F24H15/414Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based
    • F24H15/421Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/04Sensors
    • F24D2220/042Temperature sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/04Sensors
    • F24D2220/044Flow sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/254Room temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/385Control of expansion valves of heat pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a method for operating a heat pump hot water supply system in which water is heated by exchanging heat from outside air by a refrigeration cycle of a heat pump using a heat exchanger, and the heated hot water is supplied to a hot water supply facility.
  • a heat pump hot water supply system in which water is heated by exchanging heat from outside air by a refrigeration cycle of a heat pump using a heat exchanger, and the heated hot water is supplied to a hot water supply facility.
  • FIG. 17 shows a conventional indirect heating type heat pump hot water supply system.
  • a heat source device 20 having a heat pump refrigeration cycle for circulating a refrigerant is connected to a water circuit via a water heat exchanger 202 (acting as a condenser). 21 is connected.
  • FIG. 17 shows an example in which the water heat exchanger 202 is housed inside the housing of the heat source device 20, the water heat exchanger 202 may be connected to the heat source device 20 outside the housing of the heat source device 20.
  • the water circuit 21 is configured to circulate hot water or antifreeze liquid heated by the refrigerant passing through the water heat exchanger 202.
  • a circulation pump 24, a hot water storage tank 25, a radiator or fan coil unit 26, a floor heating 27, and the like are connected to the water circuit 21 by piping.
  • a direct heating method As a method of supplying heat to the hot water storage tank 25, there are a direct heating method and an indirect heating method shown in FIG. (1)
  • the direct heating method hot water used for hot water supply is directly heated by the water heat exchanger 202.
  • the indirect heating method the hot water or antifreeze liquid heated by the water heat exchanger 202 is heated and heated using the second heat exchanger 29 provided inside or outside the hot water storage tank 25 to supply hot water. Heat exchange is performed by exchanging.
  • the hot water or antifreeze liquid heated by the water heat exchanger 202 can be directly supplied to the radiator or the fan coil unit 26 or the radiant heating equipment of the floor heating 27 and used for heating. it can.
  • the path for supplying heat is switched by the three-way valve 23 as shown in FIG.
  • the water circuit 21 is switched to the path where the second heat exchanger 29 is arranged by the three-way valve 23.
  • the path switching may be performed using a plurality of two-way valves. Hot water heated by the water heat exchanger 202 by the path switching flows into the second heat exchanger 29.
  • the water temperature in the hot water storage tank 25 rises by the amount of heat exchanged with the inflowing hot water, and the measured value of the tank water temperature sensor 35 installed in the hot water storage tank 25 or on the wall surface of the hot water storage tank 25 reaches the boiling temperature set value. Then, the boiling operation is finished.
  • hot water is discharged from the upper part of the hot water storage tank 25.
  • the discharged warm water is mixed with water.
  • the mixed hot water is supplied to the user as hot water having a set temperature set by the user with a remote controller or the like.
  • water is supplied from the lower part of the hot water storage tank 25. Therefore, the inside of the hot water storage tank 25 is always full.
  • the water temperature rise rate in the hot water storage tank 25 is slower than the water temperature rise rate of the circulating hot water circulating in the second heat exchanger 29 water circuit 21.
  • the rate of water temperature rise in the hot water storage tank 25 depends on the heat transfer efficiency of the second heat exchanger 29, but the heat transfer efficiency varies depending on the state of natural convection in the hot water storage tank 25, and natural convection immediately after the start of boiling operation.
  • the heat transfer efficiency is low at the stage where is not sufficiently formed. For this reason, the amount of heat supplied from the heat source device 20 to the circulating hot water circulating through the water circuit 21 exceeds the amount of heat exchanged between the second heat exchanger 29 and the water in the hot water storage tank 25, and gradually the heat source device 20.
  • the circulating hot water temperature can be prevented from rising too quickly than the tank water temperature, and the heat exchange efficiency can be improved. Further, since the power consumption of the compressor decreases in proportion to the cube of the frequency, the COP can be improved. However, since the amount of supplied heat is reduced, there is a problem that the boiling time becomes longer and the risk of hot water outbreak increases.
  • An object of the present invention is to provide an operation method of a heat pump hot water supply system that can improve an average COP in a boiling period and prevent an increase in risk of hot water outbreak in an indirect heating type heat pump hot water supply system. .
  • the hot water supply system control device of this invention is A heat pump device having a first refrigerant circuit in which a compressor, a first radiator, an expansion mechanism, and an evaporator are sequentially connected by piping, and the first refrigerant heated by the compressor circulates;
  • the first radiator and a second radiator that exchanges heat with the hot water tank water stored in the hot water storage tank are connected, and the second radiator heated by the first refrigerant passing through the first radiator.
  • a second refrigerant circuit that heats the hot water tank water by the second radiator by circulating the refrigerant;
  • a tank water temperature detection sensor that is disposed above the second radiator and that detects a tank water temperature of the hot water tank water; and a second refrigerant temperature detection sensor that detects a second refrigerant temperature circulating in the second refrigerant circuit.
  • Targeted hot water system A change in heat transfer efficiency of the second heat exchanger is estimated based on one or both of the tank water temperature and the second refrigerant temperature, and when it is determined that the heat transfer efficiency is high, the output of the heat pump is increased to increase the heat transfer efficiency. When it is determined that the temperature is low, an operation control unit for operating the hot water supply system by reducing the output of the heat pump is provided.
  • an indirect heating type heat pump type hot water supply system it is possible to provide a heat pump type hot water supply system capable of improving the average COP during the boiling period and preventing an increase in the risk of hot water outbreak.
  • FIG. 1 is a configuration diagram of a heat pump hot water supply system 1000 according to Embodiment 1.
  • FIG. 5 is a flowchart showing a determination process of an operation switching unit 3 in the first embodiment.
  • FIG. The figure which shows the relationship between return hot water temperature and COP for every compressor frequency of the heat-source equipment in Embodiment 1.
  • FIG. 3 is a diagram showing characteristics of a boiling operation of the heat pump hot water supply system 1000 according to the first embodiment.
  • FIG. 6 is a configuration diagram of a system controller 32 in a second embodiment.
  • FIG. 6 is a configuration diagram of a system controller 32 in a third embodiment.
  • FIG. 10 is a diagram for explaining first-order lag characteristics according to Embodiment 3. The figure which shows the inclination of the return warm water temperature and tank water temperature in case the heat-transfer efficiency in Embodiment 4 is low. The figure which shows the inclination of the return warm water temperature and tank water temperature in case the heat-transfer efficiency in Embodiment 4 is high. The figure which shows typically the hot water storage tank 25 inside in Embodiment 4.
  • FIG. 10 is a diagram for explaining first-order lag characteristics according to Embodiment 3.
  • the figure which shows the inclination of the return warm water temperature and tank water temperature in case the heat-transfer efficiency in Embodiment 4 is low.
  • FIG. 20 is a diagram showing a hardware configuration of a system controller 32 in the sixth embodiment.
  • Embodiment 1 FIG. A heat pump hot water supply system 1000 according to the first embodiment will be described with reference to FIG.
  • the heat pump hot water supply system 1000 in FIG. 1 includes a heat source machine controller 31 and a system controller 32 (hot water supply system control device) in contrast to the conventional heat pump hot water supply system shown in FIG.
  • a heat source machine controller 31 and a system controller 32 (hot water supply system control device) in contrast to the conventional heat pump hot water supply system shown in FIG.
  • tank water temperature sensors 35 tank water temperature detection sensors
  • an outside air temperature sensor 30 an outgoing hot water temperature sensor 33 (second) are compared with the conventional heat pump hot water supply system shown in FIG.
  • refrigerant temperature detection sensor An example of the refrigerant temperature detection sensor), a return hot water temperature sensor 34 (an example of the second refrigerant temperature detection sensor), a sensor group such as a room temperature sensor 36, a flow rate sensor 37, and the auxiliary heat source 22 are provided.
  • the flow sensor 37 When the circulation pump is fixed at the rotation speed, the flow sensor 37 may not be provided.
  • a feature of the heat pump hot water supply system 1000 is that when the tank water is boiled, the system controller 32 emphasizes the COP described later (sometimes referred to as the first operation method), The point is to switch and execute a “second operation method” (sometimes referred to as a second operation method) that places importance on the temperature rise of water. This operation method improves the boiling period average COP and prevents an increase in the risk of running out of hot water.
  • FIG. 1 is a block diagram of a heat pump hot water supply system 1000.
  • an indirect heating type heat pump type hot water supply system 1000 will be described with reference to FIG.
  • the heat source device 20 (also called a heat pump device) will be described.
  • the heat source unit 20 constitutes a refrigeration cycle circuit.
  • a compressor 201, a water heat exchanger 202 (first radiator), an expander 203, and an air heat exchanger 204 are sequentially connected by piping.
  • the heat source unit 20 includes the case where the compressor 201, the water heat exchanger 202, the expander 203, the air heat exchanger 204, and the fan 205 are all housed in the casing 20-1, and the water heat exchanger 202 includes the casing 20-1 may be provided outside.
  • the refrigerant heated by the compressor 201 circulates in the refrigeration cycle circuit.
  • the refrigeration cycle circuit of the heat source device 20 may be referred to as a first refrigerant circuit, and the refrigerant circulating through the refrigeration cycle circuit may be referred to as a first refrigerant.
  • the water circuit 21 may be called a 2nd refrigerant circuit, and the refrigerant
  • the second refrigerant is water, but is an example. Other refrigerants may be used.
  • the water circuit 21 is connected to a water heat exchanger 202 and a second heat exchanger 29 that exchanges heat with the hot water tank water stored in the hot water storage tank 25, and the first refrigerant that passes through the water heat exchanger 202 is connected to the water circuit 21.
  • the hot water tank water is heated by the second heat exchanger 29 as the heated second refrigerant circulates.
  • the compressor 201 can change the operating frequency by an inverter.
  • the water heat exchanger 202 condenses the refrigerant (first refrigerant) by exchanging heat between the refrigerant (first refrigerant) and water (second refrigerant) (sometimes referred to as the condenser 202).
  • the expander 203 is an expansion mechanism that can adjust the refrigerant flow rate by an electric valve or the like.
  • the air heat exchanger 204 is installed outdoors or the like.
  • the air heat exchanger 204 has a variable capacity fan 205 that promotes heat exchange between air and the refrigerant, and evaporates the refrigerant (sometimes referred to as an evaporator 204).
  • the heat source device controller 31 is housed in the housing (20-1).
  • the heat source device controller 31 controls the operation of the compressor 201, the condenser 202, the expander 203, and the evaporator 204.
  • the system controller 32 is stored in the hot water storage tank unit 28 in which the hot water storage tank 25 is stored.
  • the system controller 32 starts and stops the heat source device controller 31, commands for operating the compressor, starts and stops the circulation pump 24, commands for stopping and rotating, commands for switching to the three-way valve 23, auxiliary heater (water circuit 21 The auxiliary heat source 22) and the submersible heater (auxiliary heat source 22 in the hot water storage tank 25) are started and stopped.
  • the hot water (second refrigerant) is heated through the water heat exchanger 202 that is a condenser, and the hot water circulates in the water circuit 21.
  • the auxiliary heat source 22 is further heated using, for example, an electric heater.
  • the hot water circulating in the water circuit 21 is supplied to the hot water storage tank 25 and the “radiator, fan coil unit 26, or floor heating 27” which is a heating facility depending on the operation state of the three-way valve 23 and the circulation pump 24.
  • a heat pump hot water supply system 1000 shown in FIG. 1 includes an outside air temperature sensor 30, a forward hot water temperature sensor 33, a return hot water temperature sensor 34, a tank water temperature sensor 35, a room temperature sensor 36, and a flow rate sensor 37.
  • the outside air temperature sensor 30 detects the outside air temperature around the heat source unit 20.
  • the outgoing hot water temperature sensor 33 measures the temperature of the circulating hot water sent to the hot water storage tank 25 or the heating facility.
  • the return hot water temperature sensor 34 measures the temperature of the circulating hot water that is radiated from the hot water storage tank and the heating facility and returns to the heat source unit.
  • the tank water temperature sensor 35 measures at least one water temperature in the vertical direction in the tank.
  • the room temperature sensor 36 measures the room temperature of at least one place in the room where the heating facility is installed.
  • the flow sensor 37 measures the hot water flow rate of the water circuit 21. (7) The sensor measurement value is periodically sent from each sensor to the system controller 32.
  • the user uses the operation interface of the system controller 32 provided in the tank unit 28 or the remote controller installed in a room for heating or the like to boil or heat the hot water storage tank.
  • “Operation command” for manually specifying start and stop of operation
  • Hot water tank heating and heating It is the structure which can set "temperature” required for the driving
  • the operation command, operation schedule, and set temperature set by the user are sent to the system controller 32 by wireless or wired communication.
  • the system controller 32 is an operation command that can be determined by the heat source controller 31 based on sensor measurement values of the outside air temperature sensor 30, the outgoing hot water temperature sensor 33 to the flow rate sensor 37, and user setting values via a remote controller. The value is transferred or transmitted to the heat source machine controller 31. Examples of the operation command value include start / stop, compressor operation frequency, and heat source machine hot water temperature. In addition to the operation command to the heat source unit 20, the system controller 32 supplies the operation commands for the rotation speed or start / stop of the circulation pump 24, the start / stop of the auxiliary heat source 22, and the switching of the three-way valve 23 to the actuator of each device. It can be sent.
  • system controller 32 and the heat source device controller 31 are configured separately, but may be installed in a heat source device housing or a tank unit as one system controller (computer) including both functions.
  • the operation of the heat pump hot water supply system 1000 is executed by the system controller 32 and the heat source device controller 31.
  • the operation switching manual setting unit 1 manually sets operation commands (operation switching) such as a hot water supply operation, a heating operation, and a stop by the user through an operation interface of the system controller 32 or a remote controller.
  • operation commands operation switching
  • the water temperature measurement unit 2 converts the detected values of the incoming hot water temperature sensor 33, the return hot water temperature sensor 34, and the tank water temperature sensor 35 into data that can be calculated and collects the data.
  • the operation switching unit 3 switches the operation method according to the detected tank water temperature value.
  • the operation switching unit 3 constitutes an operation control unit.
  • the compressor frequency setting unit 4 sets the compressor frequency according to the control set value set by the control set value setting unit 8 and the operation logic of the operation method selected by the operation switching unit 3.
  • the compressor frequency control unit 5 controls the compressor operating frequency based on the frequency set by the compressor frequency setting unit 4.
  • the operation switching determination value setting unit 6 sets the tank water temperature as an operation switching determination value for a plurality of operation methods.
  • the boiling completion determination sensor selection unit 7 selects a boiling completion determination target sensor.
  • the control set value setting unit 8 sets control set values for determining the compressor frequency, the circulation pump flow rate, the three-way valve operation, the auxiliary heater operation, and the like.
  • the circulation pump control unit 9 controls the start and stop of the pump and the flow rate according to the operation method selected by the operation switching unit 3.
  • the three-way valve switching unit 10 switches between hot water tank boiling and heating.
  • the auxiliary heater control unit 11 switches between starting and stopping the auxiliary heater.
  • Water temperature measuring unit 2 As shown in FIG. 1, one or a plurality of tank water temperature sensors 35 included in the water temperature measuring unit 2 are installed in the tank or on the tank wall surface to replace the tank water temperature. The voltage or current value detected by the installed temperature sensor is converted into a water temperature value. The tank water temperature is continuously collected at a constant cycle by a temperature sensor.
  • the boiling completion determination sensor selection unit 7 is provided when a plurality of tank water temperature sensors 35 are installed, and raises the temperature of which of the plurality of temperature sensors (water temperature sensors 35) installed in the vertical direction. Select whether to be a completion judgment target. For example, for a 200L hot water storage tank 25, when the top of the tank is set to 0L and temperature sensors are installed at five locations of 0L, 50L, 100L, 150L, and 200L in the bottom direction, the boiling completion determination target is set at the intermediate position. A specific temperature sensor such as 100 L is selected as a determination target. Alternatively, all five temperature sensors can be selected to reach the set temperature.
  • the operation switching determination value setting unit 6 sets a tank water temperature for determining operation switching.
  • the set value may be calculated by directly setting the tank water temperature or using the sensor detection values 33 to 37 and the set values of the operation switching determination value setting unit 6. For example, an average value of the tank water temperature detection value at the start of boiling and the set value of the boiling completion temperature may be used as the operation switching determination value.
  • the number of tank water temperatures to be set corresponds to the number of types of operation for which the operation switching unit 3 determines switching.
  • the tank water temperature to be set is a water temperature at which the operation method is switched during boiling start, boiling completion, and boiling. There may be a plurality of operation switching temperatures during boiling. Also, a plurality of combinations of boiling start, boiling completion, and operation switching temperature may be registered and set as an operation schedule in which a favorite combination can be selected depending on the day of the week or season.
  • the operation switching unit 3 compares the tank water temperature set by the operation switching determination value setting unit 6 with the tank water temperature measured by the water temperature measurement unit 2, and according to a determination standard (determination temperature) shown in FIG. 20 operations are switched.
  • the operation switching unit 3 operates in the first operation method at the start of the hot water tank heating operation, and switches the operation to the second operation method when the tank water temperature reaches an operation switching determination value lower than the boiling completion temperature.
  • the compressor frequency setting unit 4 sets the compressor frequency based on the frequency calculation logic of the operation method determined by the operation switching unit 3.
  • the compressor frequency may be expressed as a ratio to the rated or upper limit frequency in addition to the absolute value of the frequency.
  • the compressor frequency setting unit 4 sets the frequency set by the control set value setting unit 8 in the first operation method.
  • a frequency with a higher COP than the second operation method is set in the return temperature range of the first operation method.
  • the compressor frequency is set to the frequency set by the control set value setting unit 8, or the deviation becomes smaller than the deviation between the target value and the current value of the tank water temperature and the deviation. Increase or decrease the compressor frequency setting.
  • the set value of the compressor frequency and the range of increase / decrease of the set value set in the first operation method and the second operation method depend on the detected value of each sensor such as the outside air temperature, the return temperature to the heat source unit, and the tank water temperature. May be corrected.
  • the compressor frequency control unit 5 outputs a pulse command to the inverter of the compressor 201 so as to operate at the frequency set by the compressor frequency setting unit 4.
  • the compressor frequency control unit 5 is a function of the heat source controller 31.
  • the heat source controller 31 controls the solenoid valve of the expander 203 and the fan rotation speed of the fan 205 in conjunction with changes in the compressor frequency, and supplies heat while keeping the refrigeration cycle stable.
  • the heat source controller 31 reduces the compressor frequency in order to keep the refrigeration cycle stable.
  • FIG. 2 is an operation flow of the operation switching unit 3.
  • FIG. 3 is a table showing an example of the operation switching determination value (operation switching temperature). “20 ° C.” (an example of the first temperature) in FIG. 3 is the determination criterion of S16, and “40 ° C.” (an example of the second temperature) is the determination criterion of S17, and “60 ° C.” (the third temperature) (Example of temperature) is a criterion of S12.
  • the operation switching unit 3 indicates that the water temperature measurement value (also referred to as tank water temperature) of the hot water storage tank 25 is If it is higher than the boiling start temperature (for example, 20 ° C. as shown in FIG. 3) (NO in S16), the operation state is continued (S20). On the other hand, when the tank water temperature falls below the boiling start temperature in S16, the operation switching unit 3 determines that boiling is started (YES in S16), the process proceeds to S17, and boiling of the hot water storage tank 25 is started.
  • the boiling start temperature for example, 20 ° C. as shown in FIG. 3
  • the process proceeds to S17 regardless of the determination in S16.
  • the operation switching unit 3 compares the tank water temperature with the “boiling method switching temperature” that is a set value. “Boiling system switching temperature” As shown in FIG. The operation switching unit 3 When the tank water temperature ⁇ 40 degrees, the heat pump device is operated by the first operation method (S18). The operation switching unit 3 When the tank water temperature> 40 degrees, the heat pump device is operated by the second operation method (S19).
  • the operation switching unit 3 of the system controller 32 switches the three-way valve 23 to the hot water supply side, and operates the circulation pump 24 at the flow rate set in the rated or control set value setting unit 8 or the flow rate ratio or rotation speed with respect to the rating.
  • the heat source device 20 is started, and the heat source device 20 is operated by the “first operation method”.
  • the “first operating method” is an operating method in which the compressor 201 is operated at a frequency set by the control set value setting unit 8 and having a COP higher than a frequency set by a second operating method described later. is there.
  • FIG. 5 to be described later is a diagram showing the relationship between the return hot water temperature and the COP for each compressor frequency of the heat source unit 20.
  • the frequency at which the COP is high for the compressor 201 is the rated frequency as shown in FIG. Therefore, the operation is performed with less heat supply than the operation at the rated frequency.
  • the process proceeds to S18 ⁇ “END” ⁇ “START” ⁇ S11 ⁇ S12.
  • the operation switching unit 3 compares the “tank water temperature” with the “boiling completion temperature”.
  • the “boiling completion temperature” is, for example, 60 ° C. as shown in FIG.
  • the operation switching unit 3 “Tank water temperature” ⁇ 60 ° C Determines whether to continue for a predetermined period. Since the “first operation method” has just started, it does not normally continue, and the process proceeds to S14. If there is an increase in the tank temperature that is greater than or equal to a predetermined threshold in the detected tank temperature value for a predetermined period (NO in S14), the process proceeds to S17 again.
  • the continuation determination period and the temperature increase determination threshold are set by the operation switching determination value setting unit 6.
  • ⁇ S18 Second driving method>
  • the operation switching unit 3 switches to the “second operation method” (S19).
  • the “second operation method” is an operation method that accelerates boiling.
  • the compressor frequency is set by the rating, upper limit, or control set value setting unit 8. Drive up to a higher frequency than the driving method.
  • the COP of the heat source unit decreases.
  • the operation switching unit 3 determines that the capacity of the heat source unit 20 is insufficient. Then, the auxiliary heater (auxiliary heat source 22) is activated and operated until the boiling stop temperature is reached (S15).
  • FIG. 4 is a diagram illustrating the relationship between the return hot water temperature and the amount of supplied heat for each compressor frequency of the heat source device 20.
  • the upper graph has a higher compressor frequency.
  • FIG. 5 is a diagram showing the relationship between the return hot water temperature and the COP for each compressor frequency of the heat source device 20.
  • the upper graph has a lower compressor frequency.
  • FIG. 6 is a diagram illustrating the relationship between the outside air temperature and the COP for each return hot water temperature. In FIG. 6, the return temperature is higher toward the lower graph.
  • FIGS. 4 and 5 are image diagrams showing the amount of heat supplied and COP characteristics at each compressor frequency with respect to the return hot water temperature.
  • the difference in COP due to the compressor frequency is large in the region where the return hot water temperature is low, and small in the region where it is high.
  • FIG. 7 shows changes in water temperature and COP by the heat pump hot water supply system 1000 according to Embodiment 1 when the boiling time is the same as the conventional boiling time based on the characteristics of FIGS. 4 and 5. Represents.
  • the dotted line indicates the conventional one, and the solid line indicates the heat pump hot water supply system 1000.
  • the operation switching determination value is set so as to have the same boiling time when the conventional operation and the operation by the heat pump hot water supply system 1000 are compared, (1)
  • the difference in COP due to the difference in frequency is large, and the COP is greatly improved by operating at a low frequency.
  • the amount of heat supplied is small and the tank water temperature rises slowly.
  • the rise in the tank water temperature is accelerated by the “second operation method” that accelerates boiling.
  • the frequency is increased or decreased in a direction to reduce the deviation according to the deviation between the boiling target temperature and the tank water temperature or the amount of change in the deviation. While the deviation is large, the operation always increases the frequency. Therefore, the operation increases to the rated or upper limit frequency in a short time, and the boiling operation is accelerated.
  • the COP improvement of the “first operation method” exceeds the COP decrease of the “second operation method”, and the average COP during the boiling period is improved.
  • the rising speed of the tank water temperature is determined by the magnitude of natural convection due to the water temperature difference in the tank, and at the time of operation by the second operation method, the temperature increase speed immediately after the start of operation when no convection occurs Is fast.
  • the tank target temperature and the hot water temperature upper limit value are close, the operation of the conventional method takes a longer operation time for capacity suppression by the hot water temperature upper limit, but when switching from the first operation method to the second operation method Since the hot water temperature does not reach the upper limit at the time of operation switching and there is room for increasing the amount of heat supplied, the boiling time can be extended less than in the conventional operation. Therefore, COP can be improved while keeping the risk of hot water outbreak due to the use of hot water supply at the same level as before.
  • the “first operation method” has been described as being operated with the compressor frequency fixed at a high COP.
  • the tank water temperature and the return or return hot water temperature are used.
  • an operation method may be used in which the temperature difference is constant or the reciprocating temperature difference of hot water ⁇ circulation pump flow rate is kept constant.
  • the circulation pump is at a fixed speed, the reciprocating temperature difference of the hot water may be constant without using the circulation pump flow rate.
  • the amount of heat supplied from the hot water to the tank can be managed, so that the difference between the amount of heat received by the hot water from the water heat exchanger 202 and the amount of heat supplied by the hot water to the tank does not increase. An increase in temperature can be suppressed and COP can be improved.
  • the operation is performed by the first operation method that keeps the compressor frequency low and suppresses the hot water temperature rise until the tank water temperature rise rate increases. Therefore, the COP of the heat source machine is improved. Further, after switching from the first operation method to the second operation method operation, the hot water temperature is raised early due to a deviation from the tank water temperature. For this reason, the tank water temperature is also followed and the temperature rises in a short time, and it is not necessary to extend the boiling time. Therefore, the average COP during the boiling period can be improved without extending the boiling time.
  • FIG. FIG. 8 is a configuration diagram of the system controller 32 according to the second embodiment.
  • the system controller 32 of the second embodiment is further characterized in that it includes a high COP operating frequency calculation unit 12.
  • the operation switching unit 3 and the high COP operation frequency calculation unit 12 constitute an operation control unit.
  • the high COP operation frequency calculation unit 12 stores a characteristic data group as shown in FIGS. 4 to 6 for each frequency of the compressor 201. For example, when the return hot water temperature is given as an input, the high COP operation frequency calculation unit 12 calculates the operation frequency with the highest COP from the approximate expression of the characteristic data (an example of correspondence information) shown in FIGS.
  • the lower limit capacity value in the first operation method is set by the control set value setting unit 8, and the return temperature to the heat source unit 20 or the outside air temperature at the start of operation and the COP is the highest at the lower limit capacity value or more.
  • the operating frequency may be obtained from the approximate expression of the characteristic data shown in FIGS.
  • the operation switching unit 3 when the “first operation method” giving priority to COP is selected, the operation switching unit 3 operates with the highest COP calculated by the high COP operation frequency calculation unit 12 based on the return hot water temperature. Operate at frequency.
  • the operation switching unit 3 performs operation by automatically selecting the highest COP frequency calculated by the high COP operation frequency calculation unit 12 in the first operation method.
  • a high COP improvement effect by the operation method can be obtained.
  • FIG. 9 shows an operation method of the heat pump hot water supply system in the third embodiment.
  • the system controller 32 further includes a boiling time estimation unit 13 in addition to the configuration of the second embodiment.
  • the boiling time estimation unit 13 estimates the boiling time to the tank target water temperature.
  • the operation switching unit 3 and the boiling time estimation unit 13 constitute an operation control unit.
  • FIG. 10 is a diagram for explaining the first-order lag characteristics in the third embodiment. As shown in FIG. 10, the change in the tank water temperature generally shows characteristics due to dead time and first-order delay.
  • the time constant is a constant supply heat quantity operation (an example of a heating time estimation operation) that keeps the temperature difference and flow rate of hot water going back and forth in the water heat exchanger 202 constant, and continues operation for several minutes with the same supply heat quantity.
  • a constant supply heat quantity operation an example of a heating time estimation operation
  • the reached value after elapse of time constant ⁇ seconds due to the first-order lag is 63% of the target value, but reaches 95% when 3 ⁇ seconds elapses. Therefore, the time until boiling is completed with the current supply heat amount in 3 ⁇ seconds. Can be estimated.
  • the operation switching unit 3 includes the estimated boiling time T (estimated) calculated by the boiling time estimating unit 13, the target boiling time T (target) set by the operation switching determination value setting unit 6, and the boiling The driving method is switched using the time tolerance ⁇ T. If the estimated boiling time T (estimation) is longer than the time obtained by adding the value of the boiling time allowable error ⁇ T to the target boiling time T (target), That is, T (estimated)> T (target) + ⁇ T Then The operation switching unit 3 switches to the “second operation method” giving priority to the boiling time, and if the estimated boiling time is shorter than the time obtained by subtracting the boiling time allowable error ⁇ T from the target boiling time T (target). , That means T (estimated) ⁇ T (target)- ⁇ T Then The operation switching unit 3 operates with a “first operation method” that prioritizes COP.
  • the system controller 32 designates a target boiling time T (target) until the hot water tank water reaches a predetermined boiling temperature for the heat pump hot water supply system 1000, the hot water tank water is heated to the boiling temperature.
  • the estimated boiling time T indicating the time required to reach the boiling temperature by executing the boiling time estimation operation for estimating the boiling time to reach the boiling temperature at each predetermined time with respect to the heat pump hot water supply system 1000. (Estimation) (Estimated boiling time) is calculated.
  • the system controller 32 based on the calculated estimated boiling time T (estimation) and the designated target boiling time T (target), the “first operation method” that places importance on the COP of the heat source unit 20;
  • the heat pump hot water supply system 1000 is operated by any one of the “second operation method” that emphasizes the temperature rise of the hot water tank water.
  • the operation is performed while adjusting the COP priority operation and the boiling time priority operation as needed according to the estimated boiling time obtained from the temperature change characteristic. Therefore, while maintaining the boiling time, a boiling operation with a high average COP can be performed without a set value depending on know-how.
  • Embodiment 4 FIG.
  • the fourth embodiment will be described with reference to FIGS.
  • the system configuration of the fourth embodiment is the same as that of FIG. 1 of the first embodiment.
  • the return hot water to the heat source unit 20 is the circulating hot water (second refrigerant) flowing into the water heat exchanger 202 in the water circuit 21 as indicated by an arrow 41 in FIG.
  • FIG. 11A shows the return hot water temperature L1 and the tank water temperature L2 when the heat transfer efficiency of the second heat exchanger 29 is low.
  • the horizontal axis of (a) shows time and the vertical axis shows temperature.
  • “L1” indicates a graph of the return hot water temperature
  • “L2” indicates a graph of the tank water temperature L2.
  • “M1” indicates the slope of the graph of the return hot water temperature L1
  • “m2” indicates the slope of the tank water temperature L2. That is, the inclination m1 and the inclination m2 indicate temperature changes per unit time of the return hot water temperature L1 and the tank water temperature L2.
  • (B) of Drawing 11 is a figure showing return warm water temperature L1 and tank water temperature L2 after the output control of heat source machine 20 is controlled.
  • FIG. 12 (a) shows the return hot water temperature L1 and the tank water temperature L2 when the heat transfer efficiency of the second heat exchanger 29 is high.
  • (B) of FIG. 12 is a diagram showing slopes m1 and m2 between the return hot water temperature L1 and the tank water temperature L2 after the output of the heat source device 20 is increased.
  • (A) and (b) in FIG. 12 correspond to (a) and (b) in FIG.
  • the heat transfer efficiency of the second heat exchanger 29 is improved as shown in FIG. 12 (a), the amount of heat dissipated in the circulating hot water is large, so the temperature difference between the return hot water temperature and the tank water temperature. Less. That is, when the heat transfer efficiency of the second heat exchanger 29 is high, as shown in FIG. 12A, the time change amount (inclination m1) of the return hot water temperature is the time change amount (inclination m2) of the tank water temperature L2. Smaller than. That is, when the heat transfer efficiency of the second heat exchanger 29 is high, Slope m1 ⁇ slope m2 It becomes.
  • the operation switching unit 3 (operation control unit) of the system controller 32 determines the return hot water temperature as shown in (a) of FIG. 11 and (a) of FIG. 12 from the detection value of each sensor acquired by the water temperature measuring unit 2.
  • the amount of time change (inclination m1, inclination m2) in L1 and tank water temperature L2 is acquired.
  • the return warm water temperature is detected by the return warm water temperature sensor 34, and the tank water temperature is detected by the tank water temperature sensor 35.
  • the operation switching unit 3 takes, for example, a temperature deviation in a measured value every minute.
  • the operation switching unit 3 stores the measurement values of the past several points immediately after the start of operation, and applies the least square method, the moving average method, or the like to these measurement values, thereby immediately after the start of operation.
  • the time change amount may be obtained.
  • the operation switching unit 3 causes the second heat It is determined that the heat transfer efficiency of the exchanger 29 is low. In this case, the operation switching unit 3 shifts the control from (a) to (b) in FIG. 11, and operates with the output of the heat source unit 20 lowered when the heat transfer efficiency is low, as shown in (b) in FIG. 11. Thus, the inclination m1 and the inclination m2 are made closer to each other. On the other hand, as shown in FIG.
  • the operation switching unit 3 determines that the heat transfer efficiency of the heat exchanger 29 is high. And the driving
  • the heat source device 20 can be operated by the COP.
  • FIG. 13 is a diagram schematically showing the inside of the hot water storage tank 25.
  • FIG. 14 is a graph showing temporal changes in the forward hot water temperature L11, the return hot water temperature L12, and the like. In FIG. 14, “L11” and the like have the following meanings. (1) “L11” indicates “outward hot water temperature”. As shown by an arrow 42 in FIG.
  • “outward hot water” is circulating hot water (second refrigerant) flowing out from the water heat exchanger 202 in the water circuit 21.
  • “L12” indicates “return hot water temperature”.
  • the “return hot water” is circulating hot water (second refrigerant) flowing into the water heat exchanger 202 in the water circuit 21 as indicated by an arrow 41 in FIG.
  • “L21” indicates the tank water temperature.
  • the tank water temperature L21 is a tank water temperature detected by a tank water temperature sensor 35 disposed substantially at the center of the hot water storage tank 25 as shown in FIG.
  • the tank water temperature sensor 35 in FIG. 13 is installed above the second heat exchanger 29.
  • “L22” indicates the tank water temperature in the lower part of the hot water storage tank 25 (the range 43 indicated by the oblique lines in FIG. 13).
  • a range 44 in FIG. 14 indicated by a broken line indicates when hot water is used.
  • the water temperature in the lower part of the hot water storage tank 25 decreases, as in the tank water temperature L22 shown in the range 44 in FIG.
  • the tank water temperature sensor 35 is installed above the second heat exchanger 29 as in the tank water temperature sensor 35 of FIG. 13, a drop in the tank water temperature is not immediately detected. There is a time delay before we can confirm that this is happening.
  • the amount of heat transfer is increased by the cold water supplied to the lower part (range 43) of the hot water storage tank 25 by the hot water supply, so the return hot water temperature is lowered.
  • the increase in the amount of heat transfer here is due to the fact that the heat transfer efficiency increases significantly due to the effect of the increased temperature difference between the circulating hot water and the hot water tank water and the forced convection due to the water supply, and this change appears quickly.
  • the slope m1 of the circulating hot water temperature decreases. Therefore, the operation switching unit 3 operates by increasing the output of the heat source unit 20 as control from (a) to (b) in FIG. 12 in order to recover the inclination m1. Therefore, since the operation switching unit 3 operates by increasing the output of the heat source device 20 before the use of hot water supply appears as a change in the tank water temperature, an increase in the risk of running out of hot water can be avoided.
  • the slope m1 is obtained based on the temperature of the second refrigerant (return hot water) flowing into the water heat exchanger 202, the time change of the return hot water temperature (slope m1), and the tank water temperature
  • the output of the heat source unit 20 was controlled by comparing the magnitude with the time change (inclination m2).
  • the slope m1 of the forward warm water is obtained based on the temperature of the second refrigerant (outward warm water) flowing out from the water heat exchanger 202, and the time change (slope m1) of the forward warm water temperature is obtained.
  • the output of the heat source device 20 may be controlled by comparing the magnitude with the time change (inclination m2) of the tank water temperature.
  • the heat source unit 20 is controlled using the time variation (inclination m1) of the return hot water (or reciprocating hot water) and the time variation (inclination m2) of the tank water temperature.
  • 3 may control the output of the heat source unit 20 from the temperature of the second refrigerant (either the return hot water temperature or the reciprocating hot water temperature may be used) and the tank water temperature.
  • the operation switching unit 3 executes control to lower the output of the heat source device 20 when the temperature difference between the return hot water (or reciprocating hot water) and the tank water temperature widens, and when the temperature difference narrows, the heat source device. Control for increasing the output of 20 may be executed.
  • Embodiment 5 will be described with reference to FIG.
  • the system configuration of the fifth embodiment is the same as that of FIG. 1 of the first embodiment.
  • the operation switching unit 3 is connected to the compressor 201 so that the “estimated arrival time of the second refrigerant to the upper limit temperature” described later and “estimated arrival time of the tank water temperature to the target temperature” are equal. It is embodiment which controls an operating frequency.
  • FIG. 15 is a diagram illustrating control by the operation switching unit 3 in the fifth embodiment.
  • “L10” is a graph showing a temperature change of the second refrigerant (outward hot water indicated by an arrow 42 in FIG. 1).
  • (2) “L20” is a graph showing changes in tank water temperature.
  • (3) “T10” indicates the upper limit temperature (set value) of the second refrigerant.
  • (4) “T20” indicates a target temperature (set value) of the tank water temperature.
  • t1” is an estimated arrival time (time) until the temperature of the second refrigerant reaches the upper limit temperature T10 when the origin “0” is the reference time.
  • T1 is also referred to as an estimated time to reach the second refrigerant upper limit temperature.
  • t2 is an estimated arrival time (time) until the tank water temperature reaches the target temperature T20 when the origin “0” is the reference time.
  • T2 is also referred to as an estimated time to reach the hot water tank target temperature.
  • the “upper limit temperature” of the second refrigerant is a value set for the operation switching unit 3 by the operation switching determination value setting unit 6 or the operation switching manual setting unit 1 or the like, and the forward hot water (FIG. 1).
  • the set value is the upper limit temperature of the arrow 42).
  • the “estimated arrival time t1 to the upper limit temperature” is the time from the reference time (the origin time of (a), (b), (c) in FIG. 15) until the outgoing hot water reaches the upper limit temperature T10. (Period). As described above, when the “estimated arrival time t1 to the upper limit temperature” is long, the boiling time increases, and when the “estimated arrival time t1 to the upper limit temperature” is short, the COP decreases. .
  • the operation switching unit 3 determines that the second refrigerant temperature (outward hot water temperature) is “estimated time t1 to reach the upper limit temperature” and the target temperature of the tank water temperature.
  • the output of the heat source unit 20 is controlled so that the estimated arrival time t2 (origin to time t2, also simply referred to as t2) to T20 (hot water storage tank target temperature) becomes equal.
  • the target temperature of the tank water temperature that is, the “hot water storage tank target temperature T20” is a value set for the operation switching unit 3 by the operation switching determination value setting unit 6 or the operation switching manual setting unit 1 or the like. It is the target temperature of the water temperature.
  • the operation switching unit 3 changes the temperature change per unit time (inclination m1) of the second refrigerant temperature (outward hot water temperature) and the temperature change per unit time of the tank water temperature (inclination m2) by the method described in the fourth embodiment. Then, assuming the same amount of change, the “estimated arrival time t1 to the upper limit temperature” of the second refrigerant is estimated. When there is a difference between the estimated arrival times t1 and t2 between the second refrigerant temperature and the tank water temperature, the operation switching unit 3 adjusts the output of the heat source unit 20.
  • FIG. 15A shows a case where the tank water temperature reaches the set value earlier than the second refrigerant as a result of the estimation by the operation switching unit 3. That means Time t1> Time t2 This is the case.
  • the tank water temperature reaches the set value (hot water storage tank target temperature T20) earlier, as shown in the transition from (a) to (b) in FIG. Increase the output and drive.
  • FIG. 15B shows a case where the second refrigerant reaches the set value earlier than the tank water temperature as a result of the estimation by the operation switching unit 3. That means Time t2> Time t1 This is the case.
  • the operation switching unit 3 reduces the output of the heat source unit 20 as shown in the transition from (b) to (c) in FIG. Drive.
  • the operation switching unit 3 maintains the second refrigerant temperature at the upper limit temperature T10 by controlling the operation frequency of the compressor 201 when the second refrigerant temperature reaches the upper limit temperature T10.
  • the operation switching unit 3 controls the output of the heat source unit 20 or the operation switching unit 3 adjusts the output of the heat source unit 20, but more specifically, “Controlling the output of the heat source unit 20” or “adjusting the output of the heat source unit 20” means that the operation switching unit 3 controls the operation frequency of the compressor 201.
  • Embodiment 6 FIG.
  • the sixth embodiment will be described with reference to FIG.
  • the sixth embodiment relates to the hardware configuration of the system controller 32.
  • the heat source machine controller 31 has the same hardware configuration as the system controller 32.
  • the system controller 32 and the heat source machine controller 31 may be a single computer having the hardware configuration shown in FIG.
  • the system controller 32 includes a CPU 810 (Central Processing Unit) that executes a program.
  • the CPU 810 is connected to the display device 813, the operation key 814, the communication board 816, and the storage device 820 via the bus 825, and controls these hardware devices.
  • the storage device 820 includes one or more of a ROM (Read Only Memory), a RAM (Random Access Memory), a flash memory, and a magnetic disk device.
  • the communication board 816, the operation key 814, etc. are examples of an input unit and an input device.
  • the communication board 816, the display device 813, and the like are examples of an output unit and an output device.
  • the communication board 816 exchanges data with the remote controller wirelessly.
  • the storage device 820 stores an operating system 821 (OS), a program group 823, and a file group 824.
  • the programs in the program group 823 are executed by the CPU 810 and the operating system 821.
  • the program group 823 stores a program for executing the function described as “unit” in the description of the above embodiment.
  • the program is read and executed by the CPU 810.
  • the file group 824 includes, as described in the above embodiment, “determination result”, “calculation result”, “extraction result”, “generation result”, and “processing result”.
  • the described information, data, signal values, variable values, parameters, and the like are stored as items of “ ⁇ file” and “ ⁇ database”.
  • Information, data, signal values, variable values, and parameters stored in the storage device are read out to the main memory and cache memory by the CPU 810 via a read / write circuit, and extracted, searched, referenced, compared, calculated, calculated, processed, Used for CPU operations such as output, printing, and display.
  • Information, data, signal values, variable values, and parameters are temporarily stored in the main memory, cache memory, and buffer memory during the CPU operations of extraction, search, reference, comparison, operation, calculation, processing, output, printing, and display. Is remembered.
  • data and signal values are recorded on the recording medium of the storage device 820.
  • Data and signals are transmitted on-line via the bus 825, signal lines, cables, and other transmission media.
  • to part may be “to means”, “to circuit”, and “to device”, and “to step”, “to” It may be “procedure” or “processing”. That is, what has been described as “ ⁇ unit” may be realized by firmware stored in the ROM. Alternatively, it may be implemented only by software, only hardware such as elements, devices, substrates, wirings, etc., or a combination of software and hardware, and further a combination of firmware. In other words, the program causes the computer to function as the “ ⁇ unit” described above. Alternatively, it causes a computer to execute the procedures and methods of “to part” described above.
  • the system controller 32 has been described.
  • the system controller 32 can be understood as a hot water supply system control program that causes a computer to execute the operation of the system controller 32.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

 間接加熱方式によるヒートポンプ式給湯システムおいて、沸き上げ期間の平均COPを向上させつつ、湯切れ発生リスクの増大を防ぐことのできる運転方法を提供する。間接加熱方式のヒートポンプ式給湯システム1000を対象として、タンク水温と、水回路21を流れる第2冷媒温度とのいずれかまたは双方を用いて、第2の熱交換器29の伝熱効率変化を推定し、運転切替部3は、伝熱効率が高いと判断した場合には熱源機20の出力を上昇させ、伝熱効率が低いと判断した場合には熱源機20の出力を低下させる。

Description

給湯システム制御装置及び給湯システム制御プログラム及び給湯システム運転方法
 この発明は、ヒートポンプの冷凍サイクルによって外気から得た熱量を、熱交換器を用いて熱交換することによって水を加熱し、加熱された温水を給湯設備に供給する、ヒートポンプ式給湯システムの運転方法に関する。
 図17は従来の間接加熱方式のヒートポンプ式給湯システムを示す。従来のヒートポンプ式給湯システムは、図17(間接加熱方式)のように冷媒を循環させるヒートポンプ式冷凍サイクルを備えた熱源機20が、水熱交換器202(凝縮器として作用)を介して水回路21と接続する。図17では、水熱交換器202が熱源機20の筐体内部に収められている例であるが、熱源機20の筐体外部で熱源機20と接続する場合もある。水回路21は、水熱交換器202を通過する冷媒によって加熱された温水または不凍液が循環する構成である。水回路21には、循環ポンプ24や貯湯タンク25、ラジエータまたはファンコイルユニット26、床暖房27等が配管で接続されている。
 貯湯タンク25への熱供給の方式としては、直接加熱方式と、図17に示す間接加熱方式とがある。
(1)直接加熱方式は、給湯に用いられる温水が水熱交換器202によって直接加熱される。
(2)間接加熱方式は、水熱交換器202で加熱された温水または不凍液が、貯湯タンク25の内部または外部に設けられた第2の熱交換器29を介して給湯に用いられる温水と熱交換することによって熱供給が行われる。
(間接加熱方式)
 以下、図17を参照して、間接加熱方式を説明する。間接加熱方式は、図17に示すように、水熱交換器202で加熱された温水または不凍液を、ラジエータまたはファンコイルユニット26や床暖房27の輻射暖房機器に直接供給して暖房に用いることもできる。間接加熱方式の場合では、図17に示すように、三方弁23によって熱を供給する経路を切り替える。貯湯タンク25の沸き上げ運転時には、三方弁23によって水回路21を第2の熱交換器29が配置された経路に切り替える。経路切替は複数の二方弁を用いて行ってもよい。経路切替によって水熱交換器202で加熱された温水が第2の熱交換器29に流入する。この流入した温水と熱交換される熱量によって貯湯タンク25内の水温が上昇し、貯湯タンク25内または貯湯タンク25の壁面に設置されたタンク水温センサ35の計測値が沸き上げ温度設定値に達すると沸き上げ運転が終了する。ユーザの給湯利用が始まると、貯湯タンク25の上部から温水が排出される。排出された温水は、水と混ぜられる。混ぜられた温水は、リモートコントローラなどでユーザによって設定された設定温度の温水としてユーザに供給される。一方、水が貯湯タンク25の下部から供給される。よって貯湯タンク25の内部は常に満水状態となっている。
(直接加熱方式)
 従来の直接加熱方式のヒートポンプ式給湯システムによる沸き上げ運転では(例えば特許文献1)、運転初期は貯湯タンクから熱源機に供給される温水の温度に応じて算出した圧縮機周波数で運転する。そして、熱源機の運転が安定した際に、熱源機からの出湯温度と出湯温度設定値との偏差と、この偏差の変化量を算出する。そして、求めた偏差と偏差の変化量とから、圧縮機周波数の補正量を求め、求めた補正量で現在の運転周波数を補正した圧縮機周波数で運転する。従来の直接加熱方式のヒートポンプ式給湯システムでは、以上のような圧縮機周波数制御が実行される。直接加熱方式の場合、常にタンク下部の低温の水が熱源機に供給されるため、水熱交換器202での熱交換効率が安定した状態で運転を行うことができる。
特開2002-243276号公報
 一方、間接加熱方式の場合、貯湯タンク25内の水温上昇速度は、第2の熱交換器29水回路21を循環する循環温水の水温上昇速度に比べて遅い。貯湯タンク25内の水温上昇速度は、第2の熱交換器29の伝熱効率に依存するが、伝熱効率は、貯湯タンク25内の自然対流の状態によって変化し、沸き上げ運転開始直後など自然対流が十分形成されていない段階では伝熱効率が低い。このため、熱源機20から水回路21を循環する循環温水に供給される熱量が、第2の熱交換器29と貯湯タンク25内の水とで熱交換される熱量を上回り、次第に熱源機20へ戻る循環温水の戻り温度が上昇する。
 熱源機20へ戻る循環温水の戻り温度が上昇すると、水熱交換器202へ流入する循環温水と水熱交換器202内の冷媒との温度差が少なくなるため熱交換効率が低下し、供給熱量/消費電力で表されるCOP(成績係数:Coefficient Of Performance)が低下する。特許文献1の方式では、出湯温度の偏差が大きければ順次圧縮機周波数を上げていくので、短時間で熱源機の出湯温度が上昇する。熱源機の出湯温度を上昇させると、その分戻り温度の上昇も速く、COPが低下する。そのうちに冷媒と温水との温度差がほとんどなくなって出湯温度をそれ以上は上げられなくなり、圧縮機周波数を落とし、供給熱量を減らすように運転せざるを得なくなる。その結果、熱交換効率が低い運転状態が長く続き、沸き上げ期間の平均COPが低くなるという課題があった。
 一方で、出湯温度が上がりすぎないように圧縮機周波数を低く維持しながら運転を行うと、循環温水温度がタンク水温より速く上がりすぎるのを避けることができ、熱交換効率が向上する。そして、さらに周波数の三乗に比例して圧縮機消費電力が減少するので、COPの向上が可能である。しかし、供給熱量が減少するため、沸き上げ時間がより長くなり、湯切れ発生リスクが高まるという課題があった。
 この発明は、間接加熱方式のヒートポンプ式給湯システムにおいて、沸き上げ期間の平均COPが向上するとともに、湯切れ発生リスクの増大を防ぐことのできる、ヒートポンプ式給湯システムの運転方法の提供を目的とする。
 この発明の給湯システム制御装置は、
 圧縮機、第1の放熱器、膨張機構、蒸発器が順次に配管で接続され、圧縮機で加熱された第1冷媒が循環する第1冷媒回路を有するヒートポンプ装置と、
 前記第1の放熱器と、貯湯タンクに貯えられた貯湯タンク水と熱交換する第2の放熱器とが接続され、前記第1の放熱器を通過する前記第1冷媒によって加熱された第2冷媒が循環することで前記第2の放熱器によって前記貯湯タンク水を加熱する第2冷媒回路と、
 前記第2の放熱器より上方に配置され、貯湯タンク水のタンク水温を検出するタンク水温検出センサと、前記第2冷媒回路を循環する第2冷媒温度を検出する第2冷媒温度検出センサと
を備えた給湯システムを対象として、
 前記タンク水温と前記第2冷媒温度のいずれかまたは双方によって前記第2の熱交換器の伝熱効率の変化を推定し、伝熱効率が高いと判断した場合にはヒートポンプの出力を上昇させ、伝熱効率が低いと判断した場合にはヒートポンプの出力を低下させて前記給湯システムを運転する運転制御部を備えたことを特徴とする。
 この発明により、間接加熱方式のヒートポンプ式給湯システムにおいて、沸き上げ期間の平均COPが向上するとともに、湯切れ発生リスクの増大を防ぐことのできるヒートポンプ式給湯システムを提供できる。
実施の形態1におけるヒートポンプ式給湯システム1000の構成図。 実施の形態1における運転切替部3の判定処理を表すフローチャート。 実施の形態1におけるヒートポンプ式給湯システム1000の運転方式に対する運転切替判定値(運転切替温度)を示す図。 実施の形態1における熱源機の圧縮機周波数ごとの、戻り温水温度と供給熱量との関係を示す図。 実施の形態1における熱源機の圧縮機周波数ごとの、戻り温水温度とCOPとの関係を示す図。 実施の形態1における戻り温水温度ごとの、外気温度とCOPとの関係を示す図。 実施の形態1におけるヒートポンプ式給湯システム1000の沸き上げ運転の特徴を示す図。 実施の形態2におけるシステムコントローラ32の構成図。 実施の形態3におけるシステムコントローラ32の構成図。 実施の形態3における一次遅れ特性を説明する図。 実施の形態4における伝熱効率が低い場合の戻り温水温度とタンク水温との傾きを示す図。 実施の形態4における伝熱効率が高い場合の戻り温水温度とタンク水温との傾きを示す図。 実施の形態4における貯湯タンク25内部を模式的に示す図。 実施の形態4における第2冷媒の温度及び貯湯タンク25内部の水温とを示す図。 実施の形態5における推定到達時間t1、t2を示す図。 実施の形態6におけるシステムコントローラ32のハードウェア構成を示す図。 従来の間接加熱方式のヒートポンプ式給湯システムを示す図。
 実施の形態1.
 図1を用いて実施の形態1のヒートポンプ式給湯システム1000を説明する。図1のヒートポンプ式給湯システム1000は図17に示した従来のヒートポンプ式給湯システムに対して、熱源機コントローラ31、システムコントローラ32(給湯システム制御装置)を備えている。また構成要素としては、図17に示した従来のヒートポンプ式給湯システムに対して、一つあるいは複数のタンク水温センサ35(タンク水温検出センサ)、外気温度センサ30、往き温水温度センサ33(第2冷媒温度検出センサの一例)、戻り温水温度センサ34(第2冷媒温度検出センサの一例)、室温センサ36、流量センサ37などのセンサ群や、補助熱源22を備えている。循環ポンプが回転数固定の場合には流量センサ37はなくてもよい。
 ヒートポンプ式給湯システム1000の特徴は、タンク水の沸き上げの際に、システムコントローラ32が、後述するCOPを重視した「第1の運転方法」(第1の運転方式という場合もある)と、タンク水の温度上昇を重視した「第2の運転方法」(第2の運転方式という場合もある)とを切り替えて実行する点にある。この運転方式によって沸き上げ期間平均COPが向上するとともに、湯切れ発生リスクの増大を防ぐことが可能となる。
 図1は、ヒートポンプ式給湯システム1000のブロック図である。以下、図1を参照して、間接加熱方式のヒートポンプ式給湯システム1000を説明する。
(熱源機20)
 熱源機20(ヒートポンプ装置ともよばれる)を説明する。熱源機20は、冷凍サイクル回路を構成する。冷凍サイクル回路では、圧縮機201、水熱交換器202(第1の放熱器)、膨張器203、空気熱交換器204が配管で順次接続される。熱源機20は、圧縮機201、水熱交換器202、膨張器203、空気熱交換器204、ファン205の全てが筐体20-1内に収められる場合と、水熱交換器202は筐体20-1の外部に設けられる場合がある。圧縮機201で加熱された冷媒が冷凍サイクル回路を循環する。熱源機20の冷凍サイクル回路を第1冷媒回路、及び冷凍サイクル回路を循環する冷媒を第1冷媒と呼ぶ場合がある。また、水回路21を第2冷媒回路、水回路21を流れる冷媒を第2冷媒と呼ぶ場合がある。以下の実施の形態では第2冷媒は水であるが一例である。他の冷媒でも構わない。水回路21は、水熱交換器202と、貯湯タンク25に貯えられた貯湯タンク水と熱交換する第2の熱交換器29とが接続され、水熱交換器202を通過する第1冷媒によって加熱された第2冷媒が循環することで第2の熱交換器29によって貯湯タンク水を加熱する。
(1)圧縮機201は、インバータにより運転周波数を変更可能である。
(2)水熱交換器202は、冷媒(第1冷媒)と水(第2冷媒)とを熱交換させて冷媒(第1冷媒)を凝縮させる(凝縮器202という場合もある)。
(3)膨張器203は、電動弁等により冷媒流量を調整可能な膨張機構である。
(4)空気熱交換器204は、室外等に設置される。空気熱交換器204は、空気と冷媒との熱交換を促進させる能力可変のファン205を有し、冷媒を蒸発させる(蒸発器204という場合もある)。
(システムコントローラ32、熱源機コントローラ31)
(1)熱源機コントローラ31が筐体(20-1)内に収められている。熱源機コントローラ31は、圧縮機201、凝縮器202、膨張器203、蒸発器204の運転を制御する。
(2)システムコントローラ32が、貯湯タンク25の収められた貯湯タンクユニット28内に収められている。システムコントローラ32は、熱源機コントローラ31への起動、停止や、圧縮機運転周波数指令、循環ポンプ24への起動、停止や回転数指令、三方弁23への切替位置指令、補助ヒータ(水回路21に配置された補助熱源22)及び浸水ヒータ(貯湯タンク25内の補助熱源22)への起動、停止指令を出力する。
 熱源機20が冷凍サイクルによって外気から熱を取り込むと、凝縮器である水熱交換器202を介して温水(第2冷媒)を加温し、温水が水回路21内を循環する。熱源機20が故障した場合や、外気温度低下により熱供給能力が不足した場合には、補助熱源22として、例えば電気ヒータを用いて更に加熱する。
 水回路21を循環する温水は、三方弁23及び循環ポンプ24の運転状態によって、貯湯タンク25と、暖房設備である「ラジエータやファンコイルユニット26、または床暖房27」とに供給される。
(各種のセンサ)
 図1に示すヒートポンプ式給湯システム1000は、外気温度センサ30、往き温水温度センサ33、戻り温水温度センサ34、タンク水温センサ35、室温センサ36、流量センサ37を備えている。
(1)外気温度センサ30は熱源機20の周辺の外気温を検出する。
(2)往き温水温度センサ33は、貯湯タンク25または暖房設備に送られる循環温水の温度を計測する。
(3)戻り温水温度センサ34は、貯湯タンク及び暖房設備で放熱されて熱源機に戻る循環温水の温度を計測する。
(4)タンク水温センサ35は、タンク内の垂直方向に少なくとも1箇所以上の水温を計測する。
(5)室温センサ36は、暖房設備が設置された部屋の少なくとも1箇所の室温を計測する。
(6)流量センサ37は、水回路21の温水流量を計測する。
(7)各センサからは、センサ計測値が定期的にシステムコントローラ32に送られる。
(ユーザ操作)
 実施の形態1のヒートポンプ式給湯システム1000システムでは、ユーザは、タンクユニット28に備え付けられたシステムコントローラ32の操作インタフェースや、暖房を行う部屋などに設置されたリモートコントローラによって、貯湯タンク沸き上げあるいは暖房の運転開始、運転停止を手動で指定する「運転指令」や、貯湯タンク沸き上げあるいは暖房の自動運転、自動停止を許可または禁止する時刻を指定する「運転スケジュール」や、貯湯タンク沸き上げ及び暖房の運転条件判定に必要な「温度」を設定できる構成である。ユーザによって設定された運転指令、運転スケジュールや設定温度は、無線又は有線の通信によって、システムコントローラ32へ送られる。
 システムコントローラ32は、外気温度センサ30、往き温水温度センサ33~流量センサ37などのセンサ計測値や、リモートコントローラを介したユーザの設定値をもとに、熱源機コントローラ31が判断可能な運転指令値を熱源機コントローラ31に転送または送信する。運転指令値として例えば、起動停止、圧縮機運転周波数、熱源機出湯温度がある。また、システムコントローラ32は、熱源機20への運転指令の他に、循環ポンプ24の回転数または起動停止、補助熱源22の起動停止、三方弁23の切替の各運転指令を各機器のアクチュエータに送信可能である。
 図1では、システムコントローラ32と熱源機コントローラ31とは別個の構成としたが、両方の機能を含む一つのシステムコントローラ(コンピュータ)として、熱源機筐体内もしくはタンクユニット内に設置してもよい。
 ヒートポンプ式給湯システム1000の運転は、システムコントローラ32及び熱源機コントローラ31によって実行される。
 システムコントローラ32及び熱源機コントローラ31の構成要素の機能を説明する。
(1)運転切替手動設定部1は、システムコントローラ32の操作インタフェースまたはリモートコントローラによってユーザが手動で給湯運転、暖房運転、停止などの運転指令(運転切替)を設定する。
(2)水温計測部2は、往き温水温度センサ33、戻り温水温度センサ34、タンク水温センサ35の各検出値を演算可能なデータに変換して収集する。
(3)運転切替部3は、検出されるタンク水温の値に応じて運転方式を切り替える。実施の形態1のシステムコントローラ32では、運転切替部3が運転制御部を構成する。
(4)圧縮機周波数設定部4は、制御設定値設定部8によって設定された制御設定値と、運転切替部3が選択した運転方法の演算ロジックに従って圧縮機周波数を設定する。
(5)圧縮機周波数制御部5は、圧縮機の運転周波数を、圧縮機周波数設定部4が設定した周波数に基づいて圧縮機運転周波数を制御する。
(6)運転切替判定値設定部6は、複数の運転方法に対する運転切替判定値としてタンク水温を設定する。
(7)沸き上げ完了判定センサ選択部7は、沸き上げ完了判定対象のセンサを選択する。
(8)制御設定値設定部8は、圧縮機周波数、循環ポンプ流量、三方弁動作、補助ヒータ動作などを決定するための制御設定値を設定する。
(9)循環ポンプ制御部9は、運転切替部3が選択した運転方法に応じてポンプの起動停止、流量を制御する。
(10)三方弁切替部10は、貯湯タンク沸き上げか暖房かを切り替える。
(11)補助ヒータ制御部11は、補助ヒータ起動、停止を切り替える。
(水温計測部2)
 水温計測部2の有するタンク水温センサ35は、図1に示すように、鉛直方向に1つないし複数個が、タンク内もしくはタンク水温代替用にタンク壁面に設置される。設置された温度センサにより検出された電圧あるいは電流値は、水温の値に変換される。タンク水温は温度センサにより一定の周期で連続して収集される。
(沸き上げ完了判定センサ選択部7)
 沸き上げ完了判定センサ選択部7は、タンク水温センサ35が複数設置されている場合に設けられ、鉛直方向に複数個設置された温度センサ(水温センサ35)のうち、どのセンサの温度を沸き上げ完了判定対象とするかを選択する。例えば、200Lの貯湯タンク25に対し、タンク頭頂部を0Lとして、底面方向に、0L、50L、100L、150L、200Lの5箇所に温度センサを設置した場合、沸き上げ完了判定対象を中間位置の100Lとするなど特定の温度センサを判定対象に選択する。あるいは5箇所全部の温度センサが設定温度に到達するように選択することもできる。
(運転切替判定値設定部6)
 運転切替判定値設定部6は、運転切替を判定するためのタンク水温を設定する。設定値は、タンク水温を直接設定しても、あるいは33~37のセンサ検出値や運転切替判定値設定部6の設定値を用いて計算してもよい。例えば沸き上げ開始時点のタンク水温検出値と、沸き上げ完了温度の設定値の平均値を運転切替判定値として用いてもよい。
 設定するタンク水温の個数は、運転切替部3が切替を判定する運転の種類の個数に対応する。設定するタンク水温は、沸き上げ開始、沸き上げ完了及び沸き上げ中に運転方法を切り替える水温を設定する。沸き上げ中の運転切り替え温度は複数あってもよい。また、沸き上げ開始、沸き上げ完了、運転切替温度の複数の組み合わせを登録し、曜日や季節によって好きな組合せを選択できる運転スケジュールとして設定してもよい。
(運転切替部3)
 運転切替部3は、運転切替判定値設定部6で設定したタンク水温と、水温計測部2が計測したタンク水温とを比較し、後述する図3に示す判定基準(判定温度)に従って、熱源機20の運転を切替える。運転切替部3は、貯湯タンク沸き上げ運転開始時は第1の運転方法で運転し、タンク水温が沸き上げ完了温度より低い運転切替判定値に到達すると、第2の運転方法に運転を切り替える。
(圧縮機周波数設定部4)
 圧縮機周波数設定部4は、運転切替部3が判定した運転方法の周波数算出ロジックに基づいて、圧縮機周波数を設定する。圧縮機周波数は、周波数の絶対値の他、定格あるいは上限周波数に対する比率で表してもよい。圧縮機周波数設定部4は、第1の運転方法では制御設定値設定部8にて設定された周波数に設定する。ここでは、図4~6の熱源機の特性をもとに、第1の運転方法での戻り温度範囲において、第2の運転方法よりCOPの高い周波数を設定する。
 第2の運転方法では、制御設定値設定部8にて設定された周波数に圧縮機周波数を設定あるいは、タンク水温の目標値と現在値の偏差や偏差の変化量より、偏差が小さくなる方向に圧縮機周波数設定値を増減させる。
 第1の運転方法及び第2の運転方法で設定される圧縮機周波数の設定値や設定値の増減幅は、外気温度や熱源機への戻り温度、タンク水温などの各センサの検出値に応じて補正してもよい。
(圧縮機周波数制御部5)
 圧縮機周波数制御部5は、圧縮機周波数設定部4が設定した周波数で運転するように、圧縮機201のインバータへパルス指令を出力する。なお、圧縮機周波数制御部5は熱源機コントローラ31の一機能である。熱源機コントローラ31は、圧縮機周波数の変化に連動して膨張器203の電磁弁やファン205のファン回転数を制御し、冷凍サイクルを安定に保ちながら熱供給を行う。一方、圧縮機周波数設定部4の設定値によって冷媒温度が上昇し、上限値に達した場合には、熱源機コントローラ31は、冷凍サイクルを安定に保つために圧縮機周波数を低下させる。
(動作説明)
 次に、図2、図3を参照して、運転切替部3の運転切替動作を説明する。以下の動作主体は運転切替部3である。
 図2は運転切替部3の動作フローである。
 図3は運転切替判定値(運転切替温度)の一例を示す表である。図3の「20℃」(第1の温度の一例)はS16の判定基準であり、「40℃」(第2の温度の一例)はS17の判定基準であり、「60℃」(第3の温度の一例)はS12の判定基準である。
 「熱源機停止または暖房運転中」の場合、すなわち「給湯タンク沸き上げ運転中」ではない場合(S11でNO)、運転切替部3は、貯湯タンク25の水温計測値(タンク水温ともいう)が沸き上げ開始温度(図3のように、例えば20℃とする)より高ければ(S16でNO)、運転状態を継続する(S20)。一方S16においてタンク水温が沸き上げ開始温度を下回ると、運転切替部3は、沸き上げ開始と判定し(S16でYES)、処理はS17に進み、貯湯タンク25の沸き上げを開始する。一方、運転切替手動設定部1にて給湯タンク沸き上げ運転を手動設定された場合には、S16の判定に関わらずS17に処理は進む。
 S17において、運転切替部3は、タンク水温と設定値である「沸き上げ方式切り替え温度」とを比較する。「沸き上げ方式切り替え温度」図3のように、例えば40℃とする。
 運転切替部3は、
 タンク水温≦40度
の場合は、第1の運転方法でヒートポンプ装置を運転する(S18)。
 また運転切替部3は、
 タンク水温>40度
の場合、第2の運転方法でヒートポンプ装置を運転する(S19)。
<S18:第1の運転方法>
 S18の場合、システムコントローラ32の運転切替部3は、三方弁23を給湯側に切り替え、定格もしくは制御設定値設定部8に設定された流量または定格に対する流量比または回転数で循環ポンプ24の運転を開始し、流量が安定した後に熱源機20を起動し、「第1の運転方法」で熱源機20を運転する。ここで「第1の運転方法」とは、制御設定値設定部8によって設定された、後述する第2の運転方法で設定される周波数よりCOPが高い周波数で圧縮機201を運転する運転方法である。後述の図5は、熱源機20の圧縮機周波数ごとの、戻り温水温度とCOPとの関係を示す図であるが、圧縮機201にとってCOPが高い周波数は、図5に示すように、定格周波数よりも低い周波数であるため、定格周波数での運転より少ない熱量供給で運転を行うこととなる。
 「第1の運転方法」が開始されると、処理は、S18→「END」→「START」→S11→S12に進むことになる。S12では、運転切替部3は「タンク水温」と「沸き上げ完了温度」とを比較する。「沸き上げ完了温度」は図3のように、例えば60℃とする。
 この場合、運転切替部3は、
 「タンク水温」≧60℃
が、所定の期間継続するかを判定する。「第1の運転方法」が開始されたばかりでは通常継続しないので、処理はS14に進む。所定の期間のタンク温度の検出値において、所定の閾値以上のタンク温度の上昇がある場合は(S14でNO)、処理は再びS17に進む。なお、継続判定期間、温度上昇判定の閾値は運転切替判定値設定部6で設定される。
<S18:第2の運転方法>
 運転切替部3は、タンク水温が運転切替判定値(40℃)に到達すると(S17でNO)、「第2の運転方法」に切り替える(S19)。「第2の運転方法」は、沸き上げを加速する運転方法である。第1の運転方法では少ない熱量供給で運転しているため水温上昇が遅い。このため、「第2の運転方法」では、切り替え時点で沸き上げ完了温度とのタンク水温偏差が大きいので、圧縮機周波数を定格、上限、あるいは制御設定値設定部8で設定された、第1の運転方法より高い周波数まで上昇させて運転を行う。ここでは、運転周波数を上げているので、熱源機のCOPは低下する。
 このS19において「第2の運転方法」が開始されると、処理は、S19→「END」→「START」→S11→S12に進むことになる。「第2の運転方法」による運転の結果、タンク水温が沸き上げ停止温度(60℃)に到達し、所定の期間継続すれば(S12でYES)、運転切替部3は、沸き上げ完了と判断し、停止または暖房運転に移行する(S13)。この後の処理は、S13→「END」→「START」→S11→S16→S20と進む。
 一方、沸き上げ完了温度(60℃)に到達せず(S12でNO)、所定の期間にタンク温度上昇がなければ(S14でYES)、運転切替部3は熱源機20の能力不足と判定し、補助ヒータ(補助熱源22)を起動し、沸き上げ停止温度に達するまで運転する(S15)。
 図4は、熱源機20の圧縮機周波数ごとの、戻り温水温度と供給熱量との関係を示す図である。図4では、上のグラフほど、圧縮機周波数が高い。
 図5は、熱源機20の圧縮機周波数ごとの、戻り温水温度とCOPとの関係を示す図である。図5では、上のグラフほど、圧縮機周波数が低い。
 図6は、戻り温水温度ごとの、外気温度とCOPとの関係を示す図である。図6では、下のグラフに向かうほど、戻り温度が高い。
 次に、従来方式との運転性能の差について、図4と図5をもとに説明する。図4、図5は、戻り温水温度に対して各圧縮機周波数における供給熱量、COP特性を表すイメージ図である。
(1)圧縮機周波数によるCOPの差は、戻り温水温度が低い領域では差が大きく、高い領域では差が小さくなっている。
 また、図7は、図4、図5の特性をもとに、従来の沸き上げ時間と同じ沸き上げ時間としたときの、実施の形態1のヒートポンプ式給湯システム1000による水温変化とCOP変化とを表している。図7のグラフにおいて点線は従来を示し、実線はヒートポンプ式給湯システム1000を示す。
 図7に示すように、従来の運転とヒートポンプ式給湯システム1000による運転とを比較すると、同じ沸き上げ時間になるように運転切替判定値を設定した場合、
(1)COPを優先する「第1の運転方法」では、周波数の違いによるCOPの差が大きく、低い周波数に固定して運転することによりCOPが大幅に向上する。一方で、供給熱量が少なくタンク水温の上昇が遅くなっている。
(2)そのため、沸き上げを加速する「第2の運転方法」で、タンク水温の上昇を速めている。「第2の運転方法」は、沸き上げ目標温度とタンク水温の偏差や偏差の変化量により、偏差を小さくする方向に周波数を増減させる。
 偏差が大きい間は、常に周波数を上昇させる運転になるので、短時間で定格または上限周波数まで上昇し、沸き上げ運転が加速される。
 「第2の運転方法」は周波数を上げて運転しているので従来方式よりもCOPが低下するが、この温度帯での周波数の違いによるCOPの差は小さい。
 その結果、「第1の運転方法」のCOP向上分が「第2の運転方法」のCOP低下分を上回り、沸き上げ期間の平均COPが向上する。
 間接加熱方式では、タンク水温の上昇速度はタンク内の水温差による自然対流の大きさによって決まり、第2の運転方法で運転している時点では、対流の起こっていない運転開始直後より温度上昇速度が速い。タンク目標温度と出湯温度上限の値が近い場合には、従来方式の運転は温水温度上限による能力抑制での運転時間が長くなるが、第1の運転方法から第2の運転方法に切り替えた場合は運転切替の時点で温水温度も上限まで達しておらず供給熱量を増やす余力があるので、従来方式の運転と比べても沸き上げ時間の延長は少なく済む。従って、給湯利用による湯切れ発生のリスクは従来と同等に保ちつつCOPを向上させることができる。
 また、本実施の形態1では、「第1の運転方法」として、COPの高い圧縮機周波数に固定して運転する例を説明したが、別の運転方法として、タンク水温と往きまたは戻り温水温度の温度差一定あるいは、温水の往復温度差×循環ポンプ流量の値を一定に保つ運転方法を用いてもよい。循環ポンプが固定速の場合は、循環ポンプ流量を用いず温水の往復温度差を一定としてもよい。これらの方法はいずれも、温水からタンクへの供給熱量を管理することができるので、温水が水熱交換器202から受け取る熱量と、温水がタンクへ供給する熱量の差が広がらないようにして温水温度の上昇を抑え、COPの向上が可能である。
 以上の運転方法を用いることにより、間接加熱方式のヒートポンプ式給湯システムにおいて、従来と同等の沸上時間を維持しつつ、よりCOPの高い沸き上げ運転を行うことができる。
 実施の形態1のヒートポンプ式給湯システム1000によれば、沸き上げ運転開始後は、タンク水温上昇速度が上がるまで、圧縮機周波数を低めに維持して温水温度上昇を抑える第1の運転方法で運転するので熱源機のCOPが向上する。さらに、第1の運転方法から第2の運転方法運転切替後は、タンク水温との偏差によって早期に温水温度を上昇させる。このため、タンク水温も追従して短時間で温度上昇し沸き上げ時間を延長せずにすむ。よって、沸き上げ時間を延長せずに沸き上げ期間の平均COPを向上することができる。
 実施の形態2.
 図8は、実施の形態2におけるシステムコントローラ32の構成図である。実施の形態2のシステムコントローラ32は、さらに、高COP運転周波数算出部12を備えた点が特徴である。実施の形態2のシステムコントローラ32では、運転切替部3と高COP運転周波数算出部12とが運転制御部を構成する。
(高COP運転周波数算出部12)
 高COP運転周波数算出部12は、圧縮機201の各周波数に対し、図4から図6のような、特性データ群を記憶している。例えば高COP運転周波数算出部12は、戻り温水温度を入力として与えられると、図4~6に示す特性データ(対応関係情報の一例)の近似式から、COPの最も高い運転周波数を算出する。
 あるいは、制御設定値設定部8で第1の運転方法での下限能力値を設定しておき、運転開始時点の熱源機20への戻り温度や外気温度と、下限能力値以上で最もCOPの高い運転周波数を図4~6の特性データの近似式から求めてもよい。
 この運転方法においては、運転切替部3は、COPを優先する「第1の運転方法」が選択されると、戻り温水温度に基づき高COP運転周波数算出部12によって算出されたCOPの最も高い運転周波数で運転を行う。
 以上の運転方法を用いることにより、運転切替部3は、第1の運転方法では高COP運転周波数算出部12によって算出された最もCOPの高い周波数を自動で選んで運転を行うので、第1の運転方法による高いCOP向上効果が得られる。
 実施の形態3.
 図9は、実施の形態3におけるヒートポンプ式給湯システムの運転方法である。システムコントローラ32は、実施の形態2の構成に対して、さらに、沸き上げ時間推定部13を備えた。沸き上げ時間推定部13は、タンク目標水温までの沸き上げ時間を推定する。実施の形態3のシステムコントローラ32では、運転切替部3と沸き上げ時間推定部13とが運転制御部を構成する。
 図10は実施の形態3における一次遅れ特性を説明する図である。タンクの水温変化は、図10のように、概ね、むだ時間と一次遅れによる特性を示す。
 時定数は、水熱交換器202における温水往き帰りの温度差と流量とを一定に保つ供給熱量一定運転(沸き上げ時間推定運転の一例)を行い、同一供給熱量で数分間運転を継続し水温上昇特性の傾きが安定したところで、その傾きで目標温度まで上昇したと仮定したときの沸き上げ時間を計算することにより把握することができる。
 一次遅れによる時定数τ秒経過後の到達値は目標値の63%であるが、3τ秒経過すれば95%に達するため、3τ秒の時間により現在の供給熱量での沸き上げ完了までの時間を推定可能である。
 運転切替部3は、沸き上げ時間推定部13によって算出された沸上推定時間T(推定)と、運転切替判定値設定部6にて設定された目標沸上時間T(目標)と、沸上時間の許容誤差ΔTとを用いて、運転方式を切り替える。
 沸上推定時間T(推定)が、目標沸上時間T(目標)に沸上時間許容誤差ΔTの値を加えた時間より長ければ、
 すなわち、
 T(推定)>T(目標)+ΔT
ならば、
 運転切替部3は、沸き上げ時間を優先する「第2の運転方法」に切り替え、沸上推定時間が、目標沸上時間T(目標)から沸上時間許容誤差ΔTを差し引いた時間より短ければ、
 つまり、
 T(推定)<T(目標)-ΔT
ならば、
 運転切替部3は、COPを優先する「第1の運転方法」で運転する。
 すなわち、システムコントローラ32は、ヒートポンプ式給湯システム1000を対象として、貯湯タンク水が所定の沸き上げ温度に至るまでの目標沸上時間T(目標)を指定されると、貯湯タンク水が沸き上げ温度に至る沸き上げ時間を推定するための沸き上げ時間推定運転を所定のタイミングでヒートポンプ式給湯システム1000に対して都度実行することにより、沸き上げ温度に達するまでに要する時間を示す沸上推定時間T(推定)(沸き上げ時間推定値)を算出する。システムコントローラ32は、算出した沸上推定時間T(推定)と、指定された目標沸上時間T(目標)とに基づいて、熱源機20のCOPを重視した「第1の運転方式」と、貯湯タンク水の水温上昇を重視した「第2の運転方法」とのいずれかの運転方式でヒートポンプ式給湯システム1000を運転する。
 実施の形態3の運転方法を用いることにより、沸き上げ時間が目標値に近くなるように随時調整しながら、高COP運転を織り交ぜて運転することができるので、沸き上げ時間を維持しつつ、平均COPの高い沸き上げ運転を、自動運転で実現することができる。
 実施の形態3の運転方法では、温度変化特性から求めた推定沸き上げ時間に応じてCOP優先運転と沸き上げ時間優先運転を随時調整しながら運転を行う。よって、沸き上げ時間を維持しつつ、平均COPの高い沸き上げ運転をノウハウに依存する設定値がなくとも行うことができる。
 実施の形態4.
 図11~図14を参照して実施の形態4を説明する。実施の形態4のシステム構成は実施の形態1の図1と同じである。実施の形態4では、第2の熱交換器29の伝熱効率を推定する指標として、熱源機20への戻り温水温度と、タンク水温との、両者の時間あたりの温度変化量に着目する。なお、熱源機20への戻り温水とは、図1に矢印41で示すように、水回路21において水熱交換器202に流入する循環温水(第2冷媒)である。
 図11の(a)は、第2の熱交換器29の伝熱効率が低い場合の戻り温水温度L1とタンク水温L2とを示す。(a)の横軸は時間を示し、縦軸は温度を示す。「L1」は戻り温水温度のグラフを示し、「L2」はタンク水温L2のグラフを示す。また、「m1」は戻り温水温度L1のグラフの傾きを示し、「m2」はタンク水温L2のグラフの傾きを示す。即ち、傾きm1、傾きm2は、戻り温水温度L1、タンク水温L2それぞれの単位時間あたりの温度変化を示す。
 図11の(b)は、熱源機20の出力抑制後の、戻り温水温度L1とタンク水温L2とを示す図である。
 図12の(a)は、第2の熱交換器29の伝熱効率が高い場合の戻り温水温度L1とタンク水温L2とを示す。
 図12の(b)は、熱源機20の出力上昇後の、戻り温水温度L1とタンク水温L2との傾きm1、m2を示す図である。図12の(a)、(b)は、図11の(a)、(b)に対応する。
 図11の(a)に示すように、第2の熱交換器29の伝熱効率が低い場合は、循環温水の放熱量が少ないために、戻り温水温度の時間変化量(傾きm1)が、タンク水温L2の時間変化量(傾きm2)よりも大きくなる。
 すなわち、第2の熱交換器29の伝熱効率が低い場合には、
 傾きm1>傾きm2
となる。
 一方で図12の(a)のように第2の熱交換器29の伝熱効率が良くなっている場合には、循環温水の放熱量が大きいために、戻り温水温度とタンク水温との温度差が少なくなる。つまり第2の熱交換器29の伝熱効率が高い場合は、図12の(a)のように、戻り温水温度の時間変化量(傾きm1)が、タンク水温L2の時間変化量(傾きm2)よりも小さくなる。
 すなわち、第2の熱交換器29の伝熱効率が高い場合には、
 傾きm1<傾きm2
となる。
 システムコントローラ32の運転切替部3(運転制御部)は、水温計測部2の取得した各センサの検出値から、図11の(a),図12の(a)に示すような、戻り温水温度L1、タンク水温L2における時間変化量(傾きm1、傾きm2)を取得する。戻り温水温度は戻り温水温度センサ34によって検出し、タンク水温はタンク水温センサ35によって検出する。傾きm1、m2である時間変化量は、運転切替部3が、例えば1分間毎の計測値における温度偏差をとる。なお運転開始直後などは循環経路(水回路21)のたまり水の影響などで値がばらつく。このため、運転切替部3は、運転開始直後における過去数点の計測値を記憶しておき、これらの計測値に対して最小二乗法や移動平均法などを適用することで、運転開始直後における時間変化量を求めるようにしてもよい。
 図11の(a)のように、タンク水温の時間変化量(傾きm2)に対し、戻り温水温度の時間変化量(傾きm1)の方が大きければ、運転切替部3は、第2の熱交換器29の伝熱効率が低くなっていると判断する。この場合、運転切替部3は、図11の(a)から(b)のように制御を移行し、伝熱効率が低いときには熱源機20の出力を下げて運転し、図11の(b)のように傾きm1と傾きm2とを近づける。一方、図12の(a)のように、タンク水温の時間変化量(傾きm2)の方が、戻り温水温度の時間変化量(傾きm1)よりも大きければ、運転切替部3は、第2の熱交換器29の伝熱効率が高くなっていると判断する。そして、運転切替部3は、図12の(a)から(b)のように制御を移行する。すなわち、運転切替部3は、伝熱効率が高いときには、熱源機20の出力を上げて運転し、図12の(b)のように傾きm1と傾きm2とを近づける。
 以上のように、戻り温水温度とタンク水温との時間変化量の大小で熱源機20の制御を行うことで、伝熱効率が低いことによる熱源機20への戻り温水温度上昇を抑制できるので、高いCOPで熱源機20を運転することができる。
 また、伝熱効率が低く、熱源機20の出力抑制中(図11の(a)から(b)への制御の場合)に給湯が長時間行われた場合には、加熱が間に合わなくなり、一般には湯切れのリスクが高まる。しかし、上記で述べた方式によれば以下の理由により「湯切れのリスク」を回避できる。
 図13は貯湯タンク25内部を模式的に示す図である。
 図14は、往き温水温度L11、戻り温水温度L12等の時間変化を示すグラフである。図14において「L11」等は以下の意味である。
(1)「L11」は「往き温水温度」を示す。「往き温水」とは、図1に矢印42で示すように、水回路21において水熱交換器202から流出する循環温水(第2冷媒)である。
(2)「L12」は「戻り温水温度」を示す。「戻り温水」とは、図1に矢印41で示すように、水回路21において水熱交換器202へ流入する循環温水(第2冷媒)である。
(3)「L21」は、タンク水温を示す。タンク水温L21は、図13のように、貯湯タンク25のほぼ中央部に配置されたタンク水温センサ35によって検出されたタンク水温である。図13のタンク水温センサ35は、第2の熱交換器29よりも上部に設置されている。
(4)「L22」は、貯湯タンク25の下部(図13の斜線で示す範囲43)におけるタンク水温を示す。
(5)破線で示す図14の範囲44は、給湯利用時を示している。
 給湯が行われると、図14の範囲44に示すタンク水温L22のように、貯湯タンク25の下部(図13の範囲43)の水温が低下する。しかし、図13のタンク水温センサ35のように、タンク水温センサ35が、第2の熱交換器29より上方に設置されている場合には、すぐにはタンク水温の低下が検出されないため、給湯が行われていることを確認できるまでに時間遅れがある。一方で第2の熱交換器29の一部は、給湯によって貯湯タンク25の下部(範囲43)に供給される冷水によって伝熱量が増えるので、戻り温水温度が低下することになる。ここでの伝熱量の増加は、循環温水と貯湯タンク水との温度差拡大と、給水による強制対流の効果で伝熱効率が顕著に増すためであり、この変化は速やかに現れる。その結果、図14の範囲44における戻り温水温度L12とタンク水温L21との関係では、循環温水温度(戻り温水温度12)の傾きm1が減少する。このため、運転切替部3は、傾きm1を回復させるために、図12の(a)から(b)への制御として、熱源機20の出力を上昇させて運転することになる。従って、運転切替部3は、給湯利用がタンク水温変化として現れる前に熱源機20の出力を上げて運転するので、湯切れリスクの増大を回避できる。
 なお、図11及び図12の説明では、水熱交換器202へ流入する第2冷媒(戻り温水)の温度に基づき傾きm1を求め、戻り温水温度の時間変化(傾きm1)と、タンク水温の時間変化(傾きm2)との大小を比較して熱源機20の出力を制御した。この他、戻り温水の温度変化の代わりに、水熱交換器202から流出する第2冷媒(往き温水)の温度に基づき往き温水の傾きm1を求め、往き温水温度の時間変化(傾きm1)と、タンク水温の時間変化(傾きm2)との大小を比較して、熱源機20の出力を制御してもよい。
 また、実施の形態5では、戻り温水(あるいは往復き温水)の時間変化量(傾きm1)と、タンク水温の時間変化(傾きm2)とを用いて熱源機20を制御したが、運転切替部3は、第2冷媒の温度(戻り温水温度、往復き温水温度のどちらを用いてもよい)と、タンク水温とから熱源機20の出力を制御しても構わない。例えば、運転切替部3は、戻り温水(あるいは往復き温水)とタンク水温との温度差が広がる場合には熱源機20の出力を低くする制御を実行し、温度差が狭まる場合には熱源機20の出力を高くする制御を実行してもよい。
 実施の形態5.
 図15を参照して実施の形態5を説明する。実施の形態5のシステム構成は実施の形態1の図1と同じである。実施の形態5は、後述の「第2冷媒の上限温度への推定到達時間」と「タンク水温の目標温度への推定到達時間」とが等しくなるように、運転切替部3が圧縮機201の運転周波数を制御する実施形態である。
 図15は、実施の形態5における運転切替部3による制御を示す図である。
 図15の(a),(b),(c)において、
(1)「L10」は、第2冷媒(図1に矢印42で示す往き温水)の温度変化を示すグラフである。
(2)「L20」は、タンク水温の変化を示すグラフである。
(3)「T10」は、第2冷媒の上限温度(設定値)を示す。
(4)「T20」は、タンク水温の目標温度(設定値)を示す。
(5)「t1」は、原点「0」を基準時刻とした場合における、第2冷媒の温度が上限温度T10に達するまでの推定到達時間(時刻)である。「t1」を第2冷媒上限温度への推定到達時間ともいう。
(6)「t2」は、原点「0」を基準時刻とした場合における、タンク水温が目標温度T20に達するまでの推定到達時間(時刻)である。「t2」を貯湯タンク目標温度への推定到達時間ともいう。
 第2冷媒(往き温水)の上限温度への推定到達時間(原点~時刻t1、単にt1ともいう)が長い場合には、第2冷媒温度は低めに推移するので、COPは向上するが沸き上げ時間の増加につながる。一方で、第2冷媒(往き温水)の上限温度への推定到達時間が短い場合には、第2冷媒温度は高めに推移するので、沸き上げ時間は短いがCOPの低下につながる。ここで、第2冷媒の「上限温度」とは、運転切替判定値設定部6あるいは運転切替手動設定部1等によって、運転切替部3に対して設定された値であり、往き温水(図1の矢印42)の上限温度となる設定値である。また「上限温度への推定到達時間t1」とは、基準となる時刻(図15の(a),(b),(c)の原点時刻)から、往き温水が上限温度T10となるまでの時間(期間)である。前記のように、「上限温度への推定到達時間t1」が長い場合には、沸き上げ時間の増加につながり、「上限温度への推定到達時間t1」が短い場合には、COPの低下につながる。そこで、沸き上げ時間の増加とCOP低下のトレードオフを考慮し、運転切替部3は、第2冷媒温度(往き温水温度)の「上限温度への推定到達時間t1」と、タンク水温の目標温度T20(貯湯タンク目標温度)への推定到達時間t2(原点~時刻t2、単にt2ともいう)とが等しくなるように、熱源機20の出力を制御する。ここでタンク水温の目標温度、つまり「貯湯タンク目標温度T20」は、運転切替判定値設定部6あるいは運転切替手動設定部1等によって、運転切替部3に対して設定された値であり、タンク水温の目標温度である。
 運転切替部3は、第2冷媒温度(往き温水温度)の単位時間あたり温度変化(傾きm1)と、タンク水温の単位時間あたり温度変化(傾きm2)を、実施の形態4で述べた方法で求め、同様の変化量を仮定して第2冷媒の「上限温度への推定到達時間t1」を推定する。第2冷媒温度とタンク水温とでそれぞれの推定到達時間t1、t2にずれがある場合には、運転切替部3は、熱源機20の出力を調整する。
 図15の(a)は、運転切替部3による推定の結果、タンク水温のほうが、第2冷媒よりも早く設定値に到達する場合を示している。
 つまり、
 時刻t1>時刻t2
の場合である。
 このようにタンク水温のほうが早く設定値(貯湯タンク目標温度T20)に達する場合には、図15の(a)から(b)への移行に示すように、運転切替部3は熱源機20の出力を上げて運転する。
 図15の(b)は、運転切替部3による推定の結果、第2冷媒のほうが、タンク水温よりも早く設定値に到達する場合を示している。
 つまり、
 時刻t2>時刻t1
の場合である。
 第2冷媒のほうが早く設定値(上限温度T10)に達する場合には、図15の(b)から(c)への移行に示すように、運転切替部3は、熱源機20の出力を下げて運転する。
 これら図15の(a),(b)の熱源機20の運転方法により、図15の(c)のように、タンク水温及び第2冷媒温度とも、同様の時刻に設定値に到達するように制御される。このような制御により、第2冷媒温度の上限温度到達による出力抑制が不要となる。従って、沸き上げ時間の延長が少なく、高COPで熱源機20を運転することができる。なお、運転切替部3は、第2冷媒温度が上限温度T10に到達した場合には、圧縮機201の運転周波数を制御することによって第2冷媒温度を上限温度T10に維持する。
 なお、実施の形態4、5では、運転切替部3が熱源機20の出力を制御する、あるいは、運転切替部3が熱源機20の出力を調整すると説明しているが、より具体的には、「熱源機20の出力を制御する」あるいは「熱源機20の出力を調整する」とは、運転切替部3が、圧縮機201の運転周波数を制御することを意味する。
 実施の形態6.
 図16を参照して実施の形態6を説明する。実施の形態6はシステムコントローラ32のハードウェア構成に関する。熱源機コントローラ31もシステムコントローラ32と同様のハードウェア構成である。あるいはシステムコントローラ32と熱源機コントローラ31とを図16のハードウェア構成の一つのコンピュータとしてもよい。
 図16において、システムコントローラ32は、プログラムを実行するCPU810(Central Processing Unit)を備えている。CPU810は、バス825を介して表示装置813、操作キー814、通信ボード816、記憶装置820と接続され、これらのハードウェアデバイスを制御する。記憶装置820はROM(Read Only Memory)、RAM(Random Access Memory)、フラッシュメモリ、磁気ディスク装置のいずれかまたは複数によって構成される。
 通信ボード816、操作キー814などは、入力部、入力装置の一例である。また、通信ボード816、表示装置813などは、出力部、出力装置の一例である。通信ボード816は、リモートコントローラと無線でデータのやりとりを行う。
 記憶装置820には、オペレーティングシステム821(OS)、プログラム群823、ファイル群824が記憶されている。プログラム群823のプログラムは、CPU810、オペレーティングシステム821により実行される。
 上記プログラム群823には、以上の実施の形態の説明において「~部」として説明した機能を実行するプログラムが記憶されている。プログラムは、CPU810により読み出され実行される。
 ファイル群824には、以上の実施の形態の説明において、「~の判定結果」、「~の算出結果」、「~の抽出結果」、「~の生成結果」、「~の処理結果」として説明した情報や、データや信号値や変数値やパラメータなどが、「~ファイル」や「~データベース」の各項目として記憶されている。記憶装置に記憶された情報やデータや信号値や変数値やパラメータは、読み書き回路を介してCPU810によりメインメモリやキャッシュメモリに読み出され、抽出・検索・参照・比較・演算・計算・処理・出力・印刷・表示などのCPUの動作に用いられる。抽出・検索・参照・比較・演算・計算・処理・出力・印刷・表示のCPUの動作の間、情報やデータや信号値や変数値やパラメータは、メインメモリやキャッシュメモリやバッファメモリに一時的に記憶される。
 また、以上に述べた実施の形態1の説明において、データや信号値は、記憶装置820の記録媒体に記録される。また、データや信号は、バス825や信号線やケーブルその他の伝送媒体によりオンライン伝送される。
 また、以上の実施の形態の説明において、「~部」として説明したものは、「~手段」、「~回路」、「~機器」であってもよく、また、「~ステップ」、「~手順」、「~処理」であってもよい。すなわち、「~部」として説明したものは、ROMに記憶されたファームウェアで実現されていても構わない。或いは、ソフトウェアのみ、或いは、素子・デバイス・基板・配線などのハードウェアのみ、或いは、ソフトウェアとハードウェアとの組み合わせ、さらには、ファームウェアとの組み合わせで実施されても構わない。すなわち、プログラムは、以上に述べた「~部」としてコンピュータを機能させるものである。あるいは、以上に述べた「~部」の手順や方法をコンピュータに実行させるものである。
 以上の実施の形態では、システムコントローラ32を説明したが、システムコントローラ32の動作をコンピュータに実行させる給湯システム制御プログラムとして把握することも可能である。あるいは、このプログラムを記録したコンピュータ読み取り可能な記録媒体として把握することも可能である。さらに、システムコントローラ32の動作を給湯システム運転方法として把握することも可能である。
 1 運転切替手動設定部、2 水温計測部、3 運転切替部、4 圧縮機周波数設定部、5 圧縮機周波数制御部、6 運転切替判定値設定部、7 沸き上げ完了判定センサ選択部、8 制御設定値設定部、9 循環ポンプ制御部、10 三方弁切替部、11 補助ヒータ制御部、12 高COP運転周波数算出部、13 沸き上げ時間推定部、20 熱源機、20-1 筐体、21 水回路、22 補助熱源、23 三方弁、24 循環ポンプ、25 貯湯タンク、26 ラジエータ、27 床暖房、28 タンクユニット、29 第2の熱交換器、30 外気温度センサ、31 熱源機コントローラ、32 システムコントローラ、33 往き温水温度センサ、34 戻り温水温度センサ、35 タンク水温センサ、36 室温センサ、37 流量センサ、201 圧縮機、202 水熱交換器、203 膨張器、204 蒸発器、205 ファン、1000 ヒートポンプ式給湯システム。

Claims (15)

  1.  圧縮機、第1の放熱器、膨張機構、蒸発器が順次に配管で接続され、圧縮機で加熱された第1冷媒が循環する第1冷媒回路を有するヒートポンプ装置と、
     前記第1の放熱器と、貯湯タンクに貯えられた貯湯タンク水と熱交換する第2の放熱器とが接続され、前記第1の放熱器を通過する前記第1冷媒によって加熱された第2冷媒が循環することで前記第2の放熱器によって前記貯湯タンク水を加熱する第2冷媒回路と、
     前記貯湯タンク水のタンク水温を検出するタンク水温検出センサと
    を備えた給湯システムを対象として、
     前記タンク水温検出センサによって検出された貯湯タンク水のタンク水温が第1の温度以下になると、第1の温度よりも高い第2の温度になるまで前記ヒートポンプ装置の成績係数を重視した運転方式である第1の運転方式で前記給湯システムを運転し、タンク水温が前記第2の温度を超えると、タンク水温が第2の温度よりも高い第3の温度になるまで、タンク水温の上昇を重視した運転方式である第2の運転方式で前記給湯システムを運転する運転制御部
    を備えたことを特徴とする給湯システム制御装置。
  2.  前記運転制御部は、
     前記第1の運転方式として、予め設定された運転周波数で前記圧縮機を運転することを特徴とする請求項1記載の給湯システム制御装置。
  3.  前記給湯システムは、さらに、
     前記第1の放熱器から流出する第2冷媒の流出温度を検出する第2冷媒温度検出センサを備え、
     前記運転制御部は、
     前記第1の運転方式として、前記第2冷媒温度検出センサによって検出される第2冷媒の流出温度と、前記タンク水温検出センサによって検出された貯湯タンク水のタンク水温との温度差が一定になるように、前記給湯システムを運転することを特徴とする請求項1記載の給湯システム制御装置。
  4.  前記給湯システムは、さらに、
     前記第1の放熱器から流出する第2冷媒の流出温度と、前記第1の放熱器に流入する第2冷媒の流入温度とを検出する第2冷媒温度検出センサと、
     前記第2冷媒回路を流れる第2冷媒の流量を調節する循環ポンプと
    を備え、
     前記運転制御部は、
     前記第1の運転方式として、前記第2冷媒温度検出センサによって検出される第2冷媒の流出温度と流入温度との温度差に前記循環ポンプによる前記第2冷媒の流量を乗じた積が一定になるように、前記循環ポンプを含む前記給湯システムを運転することを特徴とする請求項1記載の給湯システム制御装置。
  5.  前記給湯システムは、さらに、
     前記第1の放熱器に流入する第2冷媒の流入温度を検出する第2冷媒温度検出センサを備え、
     前記給湯システム制御装置は、さらに、
     前記第1の放熱器に流入する第2冷媒の前記流入温度と、前記圧縮機の運転周波数との対応関係を示す対応関係情報を記憶する記憶部を備え、
     前記運転制御部は、
     前記第2冷媒温度検出センサによって検出された前記流入温度をキーとして、前記記憶部の対応関係情報から前記第2冷媒温度検出センサによって検出された前記流入温度に対応する圧縮機の運転周波数を特定し、特定した運転周波数で前記圧縮機を運転することを特徴とする請求項2記載の給湯システム制御装置。
  6.  圧縮機、第1の放熱器、膨張機構、蒸発器が順次に配管で接続され、圧縮機で加熱された第1冷媒が循環する第1冷媒回路を有するヒートポンプ装置と、
     前記第1の放熱器と、貯湯タンクに貯えられた貯湯タンク水と熱交換する第2の放熱器とが接続され、前記第1の放熱器を通過する前記第1冷媒によって加熱された第2冷媒が循環することで前記第2の放熱器によって前記貯湯タンク水を加熱する第2冷媒回路と、
     前記貯湯タンク水のタンク水温を検出するタンク水温検出センサと
    を備えた給湯システムを対象として、
     前記貯湯タンク水が所定の沸き上げ温度に至るまでの目標沸き上げ時間が指定されると、前記貯湯タンク水が前記沸き上げ温度に至る沸き上げ時間を推定するための沸き上げ時間推定運転を所定のタイミングで前記給湯システムに対して都度実行することにより、前記沸き上げ温度に達するまでに要する時間を示す沸き上げ時間推定値を算出し、算出した前記沸き上げ時間推定値と、指定された前記目標沸き上げ時間とに基づいて、前記ヒートポンプ装置の成績係数を重視した運転方式である第1の運転方式と、貯湯タンク水のタンク水温の上昇を重視した運転方式である第2の運転方式とのいずれかの運転方式で前記給湯システムを運転する運転制御部
    を備えたことを特徴とする給湯システム制御装置。
  7.  コンピュータを、
     圧縮機、第1の放熱器、膨張機構、蒸発器が順次に配管で接続され、圧縮機で加熱された第1冷媒が循環する第1冷媒回路を有するヒートポンプ装置と、
     前記第1の放熱器と、貯湯タンクに貯えられた貯湯タンク水と熱交換する第2の放熱器とが接続され、前記第1の放熱器を通過する前記第1冷媒によって加熱された第2冷媒が循環することで前記第2の放熱器によって前記貯湯タンク水を加熱する第2冷媒回路と、 前記貯湯タンク水のタンク水温を検出するタンク水温検出センサと
    を備えた給湯システムを対象として、
     前記タンク水温検出センサによって検出された貯湯タンク水のタンク水温が第1の温度以下になると、第1の温度よりも高い第2の温度になるまで前記ヒートポンプ装置の成績係数を重視した運転方式である第1の運転方式で前記給湯システムを運転し、タンク水温が前記第2の温度を超えると、タンク水温が第2の温度よりも高い第3の温度になるまで、タンク水温の上昇を重視した運転方式である第2の運転方式で前記給湯システムを運転する運転制御部
    として機能させることを特徴とする給湯システム制御プログラム。
  8.  圧縮機、第1の放熱器、膨張機構、蒸発器が順次に配管で接続され、圧縮機で加熱された第1冷媒が循環する第1冷媒回路を有するヒートポンプ装置と、
     前記第1の放熱器と、貯湯タンクに貯えられた貯湯タンク水と熱交換する第2の放熱器とが接続され、前記第1の放熱器を通過する前記第1冷媒によって加熱された第2冷媒が循環することで前記第2の放熱器によって前記貯湯タンク水を加熱する第2冷媒回路と、
     前記貯湯タンク水のタンク水温を検出するタンク水温検出センサと
    を備えた給湯システムを対象として、
     前記タンク水温検出センサによって検出された貯湯タンク水のタンク水温が第1の温度以下になると、第1の温度よりも高い第2の温度になるまで前記ヒートポンプ装置の成績係数を重視した運転方式である第1の運転方式で前記給湯システムを運転し、タンク水温が前記第2の温度を超えると、タンク水温が第2の温度よりも高い第3の温度になるまで、タンク水温の上昇を重視した運転方式である第2の運転方式で前記給湯システムを運転することを特徴とする給湯システム運転方法。
  9.  圧縮機、第1の放熱器、膨張機構、蒸発器が順次に配管で接続され、圧縮機で加熱された第1冷媒が循環する第1冷媒回路を有するヒートポンプ装置と、
     前記第1の放熱器と、貯湯タンクに貯えられた貯湯タンク水と熱交換する第2の放熱器とが接続され、前記第1の放熱器を通過する前記第1冷媒によって加熱された第2冷媒が循環することで前記第2の放熱器によって前記貯湯タンク水を加熱する第2冷媒回路と、
     前記貯湯タンク水のタンク水温を検出するタンク水温検出センサと、
     前記第2冷媒回路の所定の箇所を流れる前記第2冷媒の第2冷媒温度を検出する第2冷媒温度検出センサと
    を備えた給湯システムを対象として、
     前記第2冷媒温度検出センサによって検出された前記第2冷媒温度と、前記タンク水温検出センサによって検出された前記タンク水温との温度差が広がる場合には前記圧縮機の運転周波数を低くする制御を実行し、前記温度差が狭まる場合には前記圧縮機の運転周波数を高くする制御を実行する運転制御部を備えたことを特徴とする給湯システム制御装置。
  10.  前記運転制御部は、
     前記第2冷媒温度と前記タンク水温との前記温度差の代わりに、前記第2冷媒温度の単位時間当たりの温度変化量と、前記タンク水温の単位時間あたりの温度変化量とを用いることにより、前記第2冷媒温度の単位時間当たりの前記温度変化量が前記タンク水温の単位時間当たりの前記温度変化量よりも大きくなる場合には前記圧縮機の運転周波数を低くする制御を実行し、前記第2冷媒温度の単位時間当たりの前記温度変化量が前記タンク水温の単位時間当たりの前記温度変化量よりも小さくなる場合には前記圧縮機の運転周波数を高くする制御を実行することを特徴とする請求項9記載の給湯システム制御装置。
  11.  前記第2冷媒温度検出センサは、
     前記第2冷媒温度として、前記第1の放熱器から流出する前記第2冷媒の温度を検出することを特徴とする請求項9または10に記載の給湯システム制御装置。
  12.  前記第2冷媒温度検出センサは、
     前記第2冷媒温度として、前記第1の放熱器に流入する前記第2冷媒の温度を検出することを特徴とする請求項9または10に記載の給湯システム制御装置。
  13.  前記運転制御部は、
     前記第1の放熱器から流出する前記第2冷媒の前記第2冷媒温度の単位時間あたりの前記温度変化量を用いることにより、所定の基準時から前記第1の放熱器から流出する前記第2冷媒の前記第2冷媒温度に対して予め設定された温度である上限温度に到達するまでの時間を示す上限温度到達時間を推定する共に、前記タンク水温の単位時間あたりの前記温度変化量を用いることにより、前記所定の基準時から前記タンク水温に対して予め設定された温度であるタンク水温目標値に到達するまでの時間を示すタンク水温到達時間を推定し、推定された前記第2冷媒の前記上限温度到達時間が、推定された前記タンク水温到達時間よりも早い場合には前記圧縮機の運転周波数を低くする制御を実行し、遅い場合には前記圧縮機の運転周波数を高くする制御を実行することを特徴とする請求項10記載の給湯システム制御装置。
  14.  前記運転制御部は、
     前記第2冷媒温度が前記上限温度に到達した場合には、前記圧縮機の運転周波数を制御することにより、前記第2冷媒温度を前記上限温度に維持することを特徴とする請求項13記載の給湯システム制御装置。
  15.  圧縮機、第1の放熱器、膨張機構、蒸発器が順次に配管で接続され、圧縮機で加熱された第1冷媒が循環する第1冷媒回路を有するヒートポンプ装置と、
     前記第1の放熱器と、貯湯タンクに貯えられた貯湯タンク水と熱交換する第2の放熱器とが接続され、前記第1の放熱器を通過する前記第1冷媒によって加熱された第2冷媒が循環することで前記第2の放熱器によって前記貯湯タンク水を加熱する第2冷媒回路と、
     前記貯湯タンク水のタンク水温を検出するタンク水温検出センサと、
     前記第2冷媒回路の所定の箇所を流れる前記第2冷媒の第2冷媒温度を検出する第2冷媒温度検出センサと
    を備えた給湯システムを対象として、
     前記第2冷媒温度検出センサによって検出された前記第2冷媒温度と、前記タンク水温検出センサによって検出された前記タンク水温との温度差が広がる場合には前記圧縮機の運転周波数を低くする制御を実行し、前記温度差が狭まる場合には前記圧縮機の運転周波数を高くする制御を実行することを特徴とする給湯システム運転方法。
PCT/JP2011/058755 2010-04-15 2011-04-07 給湯システム制御装置及び給湯システム制御プログラム及び給湯システム運転方法 WO2011129248A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180018971.3A CN102893097B (zh) 2010-04-15 2011-04-07 热水供给系统控制装置及热水供给系统控制程序及热水供给系统运转方法
EP11768769.9A EP2559953B1 (en) 2010-04-15 2011-04-07 Hot water supply system and method for operating the system
US13/641,165 US9562696B2 (en) 2010-04-15 2011-04-07 Hot water supply system control apparatus and hot water supply system control program and hot water supply system operating method
JP2012510633A JP5389257B2 (ja) 2010-04-15 2011-04-07 給湯システム制御装置及び給湯システム制御プログラム及び給湯システム運転方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-093919 2010-04-15
JP2010093919 2010-04-15

Publications (1)

Publication Number Publication Date
WO2011129248A1 true WO2011129248A1 (ja) 2011-10-20

Family

ID=44798624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058755 WO2011129248A1 (ja) 2010-04-15 2011-04-07 給湯システム制御装置及び給湯システム制御プログラム及び給湯システム運転方法

Country Status (5)

Country Link
US (1) US9562696B2 (ja)
EP (1) EP2559953B1 (ja)
JP (1) JP5389257B2 (ja)
CN (1) CN102893097B (ja)
WO (1) WO2011129248A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103185420A (zh) * 2011-12-29 2013-07-03 三菱电机株式会社 热泵系统及热泵装置的控制方法
JP2013155991A (ja) * 2012-01-31 2013-08-15 Fujitsu General Ltd ヒートポンプサイクル装置
JP2014009900A (ja) * 2012-06-29 2014-01-20 Daikin Ind Ltd ヒートポンプ
US20140116074A1 (en) * 2012-10-25 2014-05-01 Samsung Electronics Co., Ltd. Heat pump and control method thereof
JP2015121336A (ja) * 2013-12-20 2015-07-02 三菱電機株式会社 ヒートポンプ式給湯暖房システム
JP2015140992A (ja) * 2014-01-29 2015-08-03 株式会社富士通ゼネラル ヒートポンプ式暖房給湯装置
JP2015161418A (ja) * 2014-02-26 2015-09-07 株式会社富士通ゼネラル ヒートポンプ式暖房給湯装置
CN106123108A (zh) * 2016-07-25 2016-11-16 国网北京市电力公司 供热系统的控制方法、装置和系统
EP3098521A1 (en) 2015-05-22 2016-11-30 Daikin Industries, Limited Fluid-type temperature-regulating unit
EP3098523A1 (en) 2015-05-22 2016-11-30 Daikin Industries, Limited Fluid-type temperature-regulating unit
WO2017188068A1 (ja) * 2016-04-28 2017-11-02 ダイキン工業株式会社 給湯システム
EP2629020A3 (de) * 2012-02-16 2018-03-28 ROTEX Heating Systems GmbH Heizsystem und Verfahren zu dessen Betrieb
JP2019027740A (ja) * 2017-08-02 2019-02-21 ダイキン工業株式会社 給湯システム
JP2020094803A (ja) * 2016-04-28 2020-06-18 ダイキン工業株式会社 給湯システム
JP7458011B1 (ja) 2022-10-06 2024-03-29 株式会社善都 空調システム

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5729910B2 (ja) * 2010-03-05 2015-06-03 三菱重工業株式会社 温水ヒートポンプおよびその制御方法
US10378800B2 (en) * 2011-09-23 2019-08-13 Lennox Industries Inc. Multi-staged water manifold system for a water source heat pump
CA2790907C (en) * 2011-09-26 2018-11-27 Lennox Industries Inc. A controller, method of operating a water source heat pump and a water source heat pump
CA2790732C (en) 2011-09-26 2020-03-10 Lennox Industries Inc. Multi-staged water manifold system for a water source heat pump
JP6048158B2 (ja) * 2013-01-18 2016-12-21 株式会社ノーリツ 給湯装置
CN104121700B (zh) * 2013-04-23 2016-12-28 珠海格力电器股份有限公司 变频热水机及其控制方法和装置
JP6086835B2 (ja) * 2013-07-23 2017-03-01 住友重機械工業株式会社 圧縮機および冷却システム
EP2863133B1 (en) * 2013-10-15 2017-07-19 Grundfos Holding A/S Method for adjusting the setpoint temperature of a heat transfer medium
CN103604156B (zh) * 2013-10-25 2016-03-16 四川长虹电器股份有限公司 一种地板换热设备
JP5984784B2 (ja) * 2013-11-19 2016-09-06 三菱電機株式会社 温冷水空調システム
DE102014206118A1 (de) * 2014-03-18 2015-09-24 Robert Bosch Gmbh Verfahren zum Steuern einer Heizanlage
US10197320B2 (en) * 2014-05-09 2019-02-05 Gd Midea Heating & Ventilating Equipment Co., Ltd. Method and apparatus for adjusting operating frequency of inverter compressor
JP6223279B2 (ja) 2014-05-26 2017-11-01 三菱電機株式会社 給湯装置
CN104061716B (zh) * 2014-07-09 2016-08-03 陈新波 一种带有辅助热源的多功能空调热水系统
CN104566996B (zh) * 2014-12-12 2017-06-30 广东美的暖通设备有限公司 热泵热水机的控制方法及系统
CN104634030B (zh) * 2014-12-16 2017-08-25 佛山市顺德区美的饮水机制造有限公司 制冷装置和制冷装置的冷水温度控制方法
EP3115711B1 (en) * 2015-05-12 2018-08-01 Mitsubishi Electric Corporation Heat pump equipment
CN104833102A (zh) * 2015-05-22 2015-08-12 广东美的暖通设备有限公司 变频热泵热水机压缩机的频率控制方法及系统
EP3252383A1 (en) * 2016-05-31 2017-12-06 Daikin Industries, Limited Apparatus for space heating and warm water supply
US10235724B2 (en) * 2016-06-01 2019-03-19 International Business Machines Corporation Energy efficient hot water distribution
EP3321595B1 (en) 2016-11-09 2020-06-03 Schneider Electric Controls UK Limited Zoned radiant heating system and method
EP3321596B1 (en) * 2016-11-09 2021-07-28 Schneider Electric Controls UK Limited Zoned radiant heating system and method
EP3321760B1 (en) 2016-11-09 2021-07-21 Schneider Electric Controls UK Limited User interface for a thermostat
CN106839083B (zh) * 2017-01-09 2019-11-01 华北电力大学(保定) 一种智能用热管理系统及其管理方法
EP3364116B1 (en) * 2017-02-16 2020-06-03 Mitsubishi Electric R&D Centre Europe B.V. Method for controlling a heat pump system and heat pump system
JP6801547B2 (ja) * 2017-03-24 2020-12-16 株式会社Ihi バイナリ発電システム
EP3904773A4 (en) * 2018-12-27 2021-12-15 Mitsubishi Electric Corporation HEATING SYSTEM
WO2020210866A1 (en) * 2019-04-16 2020-10-22 South East Water Corporation Hot water unit supply control systems and methods
CN110030676B (zh) * 2019-04-28 2021-01-26 广东美的暖通设备有限公司 空调控制方法、装置及计算机可读存储介质
AU2020438844B2 (en) * 2020-03-23 2023-11-02 Toshiba Carrier Corporation Heat pump heat source device and heat pump water heater
DE102022200651A1 (de) * 2022-01-20 2023-07-20 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zu einem Betrieb des Wärmepumpensystems; Wärmepumpensystem für eine derartiges Verfahren
EP4235041A1 (en) * 2022-02-24 2023-08-30 BDR Thermea Group B.V. Method for controlling the operation of a combustion appliance

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243276A (ja) 2001-02-20 2002-08-28 Toshiba Kyaria Kk ヒートポンプ給湯器
JP2006343058A (ja) * 2005-06-10 2006-12-21 Matsushita Electric Ind Co Ltd 給湯装置
JP2007278656A (ja) * 2006-04-11 2007-10-25 Matsushita Electric Ind Co Ltd ヒートポンプ給湯装置
JP2010025494A (ja) * 2008-07-23 2010-02-04 Sanden Corp ヒートポンプ式給湯装置

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3922876A (en) * 1974-11-21 1975-12-02 Energy Conservation Unlimited Energy conservation unit
JPS61107065A (ja) 1984-10-30 1986-05-24 三菱電機株式会社 冷暖房・給湯ヒ−トポンプ装置
US5241829A (en) * 1989-11-02 1993-09-07 Osaka Prefecture Government Method of operating heat pump
US5052186A (en) * 1990-09-21 1991-10-01 Electric Power Research Institute, Inc. Control of outdoor air source water heating using variable-speed heat pump
US5081846A (en) * 1990-09-21 1992-01-21 Carrier Corporation Control of space heating and water heating using variable speed heat pump
JP2922002B2 (ja) * 1991-02-20 1999-07-19 株式会社東芝 空気調和機
JP3322684B2 (ja) * 1992-03-16 2002-09-09 東芝キヤリア株式会社 空気調和機
US6430949B2 (en) * 2000-04-19 2002-08-13 Denso Corporation Heat-pump water heater
JP3737381B2 (ja) * 2000-06-05 2006-01-18 株式会社デンソー 給湯装置
US6601773B2 (en) * 2001-02-21 2003-08-05 Sanyo Electric Co., Ltd. Heat pump type hot water supply apparatus
JP4737892B2 (ja) * 2001-09-04 2011-08-03 三洋電機株式会社 ヒートポンプ式給湯装置
WO2003069236A1 (fr) 2002-02-12 2003-08-21 Matsushita Electric Industrial Co., Ltd. Chauffe-eau à pompe à chaleur
JP3925383B2 (ja) 2002-10-11 2007-06-06 ダイキン工業株式会社 給湯装置、空調給湯システム、及び給湯システム
JP2004347148A (ja) 2003-05-20 2004-12-09 Matsushita Electric Ind Co Ltd ヒートポンプ給湯装置
JP3913722B2 (ja) 2003-08-08 2007-05-09 三洋電機株式会社 ヒートポンプ給湯装置
CN2708173Y (zh) * 2004-06-24 2005-07-06 上海交通大学 容量可调的空气源热泵热水器
JP2006234314A (ja) 2005-02-25 2006-09-07 Hitachi Home & Life Solutions Inc ヒートポンプ給湯機
JP4116645B2 (ja) 2006-01-30 2008-07-09 三菱電機株式会社 ヒートポンプ式給湯機
JP2008232576A (ja) * 2007-03-22 2008-10-02 Sanden Corp 給湯装置
CN201053786Y (zh) * 2007-05-25 2008-04-30 桂海燕 高效节能热泵热水机组
US7788941B2 (en) * 2007-06-14 2010-09-07 International Business Machines Corporation Cooling system and method utilizing thermal capacitor unit(s) for enhanced thermal energy transfer efficiency
JP2008309426A (ja) * 2007-06-15 2008-12-25 Sanden Corp ヒートポンプ式給湯装置
JP2009008308A (ja) * 2007-06-27 2009-01-15 Sanden Corp 給湯装置
JP2009162458A (ja) 2008-01-10 2009-07-23 Hitachi Appliances Inc ヒートポンプ給湯装置
JPWO2009098751A1 (ja) * 2008-02-04 2011-05-26 三菱電機株式会社 空調給湯複合システム
JP5102072B2 (ja) 2008-03-05 2012-12-19 株式会社コロナ ヒートポンプ式給湯装置
EP2275757B1 (en) * 2008-03-31 2018-02-28 Mitsubishi Electric Corporation Air-conditioning and hot water complex system
KR101464758B1 (ko) * 2008-08-04 2014-11-24 엘지전자 주식회사 히트펌프 연동 온수 시스템의 제어 방법
US8037931B2 (en) * 2008-08-07 2011-10-18 Krassimire Mihaylov Penev Hybrid water heating system
JP2010121801A (ja) 2008-11-17 2010-06-03 Mitsubishi Heavy Ind Ltd 空気調和機の制御方法および空気調和機
JP5042262B2 (ja) 2009-03-31 2012-10-03 三菱電機株式会社 空調給湯複合システム
JP2010249333A (ja) 2009-04-10 2010-11-04 Mitsubishi Electric Corp 運転制御情報生成装置及び運転制御情報生成プログラム及び記録媒体及び運転制御情報生成方法
US9027359B2 (en) * 2009-08-18 2015-05-12 Triea Technologies, LLC Heat exchange system
WO2011040387A1 (ja) * 2009-09-29 2011-04-07 三菱電機株式会社 蓄熱給湯空調機
US20120222440A1 (en) * 2009-11-18 2012-09-06 Mitsubishi Electric Corporation Regrigeration cycle apparatus and information transfer method used therein
KR20110056061A (ko) * 2009-11-20 2011-05-26 엘지전자 주식회사 히트 펌프식 급탕장치
KR101175451B1 (ko) * 2010-05-28 2012-08-20 엘지전자 주식회사 히트펌프 연동 급탕장치
KR101175516B1 (ko) * 2010-05-28 2012-08-23 엘지전자 주식회사 히트펌프 연동 급탕장치
CN102549348B (zh) * 2010-07-07 2014-07-23 松下电器产业株式会社 储热水式供热水系统及其运转方法
JP5121908B2 (ja) * 2010-09-21 2013-01-16 三菱電機株式会社 冷房給湯装置
KR101212698B1 (ko) * 2010-11-01 2013-03-13 엘지전자 주식회사 히트 펌프식 급탕장치
CN103370584B (zh) * 2011-02-14 2015-11-25 三菱电机株式会社 制冷循环装置及制冷循环控制方法
US9766017B2 (en) * 2012-06-15 2017-09-19 Mitsubishi Electric Corporation Heating apparatus
US10473367B2 (en) * 2013-05-24 2019-11-12 Mitsubishi Electric Corporation Heat pump apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243276A (ja) 2001-02-20 2002-08-28 Toshiba Kyaria Kk ヒートポンプ給湯器
JP2006343058A (ja) * 2005-06-10 2006-12-21 Matsushita Electric Ind Co Ltd 給湯装置
JP2007278656A (ja) * 2006-04-11 2007-10-25 Matsushita Electric Ind Co Ltd ヒートポンプ給湯装置
JP2010025494A (ja) * 2008-07-23 2010-02-04 Sanden Corp ヒートポンプ式給湯装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2559953A4

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103185420A (zh) * 2011-12-29 2013-07-03 三菱电机株式会社 热泵系统及热泵装置的控制方法
EP2610558A3 (en) * 2011-12-29 2015-10-14 Mitsubishi Electric Corporation Heat pump apparatus and control method of heat pump system
JP2013155991A (ja) * 2012-01-31 2013-08-15 Fujitsu General Ltd ヒートポンプサイクル装置
EP2629020A3 (de) * 2012-02-16 2018-03-28 ROTEX Heating Systems GmbH Heizsystem und Verfahren zu dessen Betrieb
JP2014009900A (ja) * 2012-06-29 2014-01-20 Daikin Ind Ltd ヒートポンプ
US20140116074A1 (en) * 2012-10-25 2014-05-01 Samsung Electronics Co., Ltd. Heat pump and control method thereof
KR20140052778A (ko) * 2012-10-25 2014-05-07 삼성전자주식회사 히트펌프 및 그 제어방법
KR101985810B1 (ko) * 2012-10-25 2019-09-03 삼성전자주식회사 히트펌프 및 그 제어방법
US10184707B2 (en) * 2012-10-25 2019-01-22 Samsung Electronics Co., Ltd. Heat pump and method of controlling heat based on operating frequency of heating load of heating space thereof
JP2015121336A (ja) * 2013-12-20 2015-07-02 三菱電機株式会社 ヒートポンプ式給湯暖房システム
JP2015140992A (ja) * 2014-01-29 2015-08-03 株式会社富士通ゼネラル ヒートポンプ式暖房給湯装置
JP2015161418A (ja) * 2014-02-26 2015-09-07 株式会社富士通ゼネラル ヒートポンプ式暖房給湯装置
EP3098521A1 (en) 2015-05-22 2016-11-30 Daikin Industries, Limited Fluid-type temperature-regulating unit
EP3098523A1 (en) 2015-05-22 2016-11-30 Daikin Industries, Limited Fluid-type temperature-regulating unit
WO2017188068A1 (ja) * 2016-04-28 2017-11-02 ダイキン工業株式会社 給湯システム
JP2017198425A (ja) * 2016-04-28 2017-11-02 ダイキン工業株式会社 給湯システム
EP3450875A4 (en) * 2016-04-28 2020-01-22 Daikin Industries, Ltd. HOT WATER SUPPLY SYSTEM
JP2020094803A (ja) * 2016-04-28 2020-06-18 ダイキン工業株式会社 給湯システム
CN106123108A (zh) * 2016-07-25 2016-11-16 国网北京市电力公司 供热系统的控制方法、装置和系统
JP2019027740A (ja) * 2017-08-02 2019-02-21 ダイキン工業株式会社 給湯システム
JP7458011B1 (ja) 2022-10-06 2024-03-29 株式会社善都 空調システム

Also Published As

Publication number Publication date
EP2559953A4 (en) 2013-12-18
EP2559953A1 (en) 2013-02-20
US20130025301A1 (en) 2013-01-31
JPWO2011129248A1 (ja) 2013-07-18
CN102893097B (zh) 2015-08-05
JP5389257B2 (ja) 2014-01-15
US9562696B2 (en) 2017-02-07
CN102893097A (zh) 2013-01-23
EP2559953B1 (en) 2016-09-28

Similar Documents

Publication Publication Date Title
JP5389257B2 (ja) 給湯システム制御装置及び給湯システム制御プログラム及び給湯システム運転方法
JP5657110B2 (ja) 温度調節システム及び空気調和システム
JP5312674B2 (ja) 空気調和システム及び空気調和システムの制御方法
JP5524571B2 (ja) ヒートポンプ装置
US9797605B2 (en) Heat pump system
JP6052675B2 (ja) ヒートポンプシステム制御装置、ヒートポンプシステム、および、ヒートポンプシステム制御方法
WO2016001980A1 (ja) 暖房給湯システム
JP2011069570A (ja) ヒートポンプサイクル装置
EP2508806B1 (en) Heat pump system and heat pump unit controlling method
JP5589607B2 (ja) ヒートポンプサイクル装置
KR20120012955A (ko) 공조 장치
JP5215039B2 (ja) 温水暖房装置の制御方法
JP2007078200A (ja) ヒートポンプ給湯器
JP6574392B2 (ja) ヒートポンプ装置
JP6890727B1 (ja) 空気調和システムおよび制御方法
JP2004347171A (ja) ヒートポンプ給湯器
JP5818601B2 (ja) ヒートポンプ式熱源機
JP7149763B2 (ja) 給湯装置
JP4176696B2 (ja) 給湯装置
JP4160861B2 (ja) 冷凍サイクル装置
JP6361021B2 (ja) 温水生成装置
JP5279528B2 (ja) ヒートポンプ式給湯装置
JP2010133597A (ja) ヒートポンプ式給湯機
JP2011058702A (ja) 貯湯式給湯暖房装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180018971.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11768769

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012510633

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2011768769

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011768769

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13641165

Country of ref document: US