WO2011129140A1 - 変位センサ及び変位の検出方法 - Google Patents
変位センサ及び変位の検出方法 Download PDFInfo
- Publication number
- WO2011129140A1 WO2011129140A1 PCT/JP2011/052334 JP2011052334W WO2011129140A1 WO 2011129140 A1 WO2011129140 A1 WO 2011129140A1 JP 2011052334 W JP2011052334 W JP 2011052334W WO 2011129140 A1 WO2011129140 A1 WO 2011129140A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- displacement
- time
- output
- sensor
- past
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/244—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/14—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
- G01D5/20—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
- G01D5/2006—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils
- G01D5/2013—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils by a movable ferromagnetic element, e.g. a core
Definitions
- the present invention relates to a displacement sensor for detecting the displacement of a moving body such as a machine tool head, a workpiece, a transfer device, a transport carriage, and a displacement detection method.
- Patent Document 1 JP2003-139563A
- Patent Document 2 JP2009-2660A
- a magnetic part and a non-diamagnetic part are alternately provided on an axis of an adsorption conveyance device or the like, and one mark is formed by one magnetic part and one non-magnetic part, and the mark is arranged along the axis.
- an alternating current is applied as an input signal to a primary coil composed of four coils.
- the phase difference represents a mark reference displacement.
- Patent Document 2 there is no distinction between a primary side coil and a secondary side coil, and an alternating current is applied as a primary side signal to a coil array composed of coils connected in series, and the potential at the connection point between the coils. Is a signal on the secondary side.
- the reference displacement position of the moving body
- Patent Document 2 describes the detection of the phase difference in detail. Assuming that the waveform of the AC voltage is sin ⁇ t, the signals extracted from the coil are two sets of a ⁇ cos ⁇ ⁇ sin ⁇ t and a ⁇ sin ⁇ ⁇ sin ⁇ t, ⁇ is the phase difference, and the relative position to the mark is shown in the range of 0 to 2 ⁇ . Yes. When the phase of the signal a ⁇ sin ⁇ ⁇ sin ⁇ t is advanced 90 degrees to a ⁇ sin ⁇ ⁇ cos ⁇ t and added to a ⁇ cos ⁇ ⁇ sin ⁇ t, the signal a ⁇ sin ( ⁇ + ⁇ t) is obtained by the addition theorem.
- the counter When the input signal sin ⁇ t crosses 0, the counter is reset, and when the signal a ⁇ sin ( ⁇ + ⁇ t) crosses 0, the counter is latched to obtain ⁇ , where ⁇ represents displacement.
- the signal a ⁇ sin ( ⁇ + ⁇ t) first crosses 0, the time difference until the signal sin ⁇ t crosses 0 is obtained.
- ⁇ is obtained by 0 crossing
- the displacement can be obtained only once or twice in one cycle of the input AC signal. Even when 0 crossing is not used, since the phase difference is detected, the number of detections per cycle is limited.
- the fact that the number of times of obtaining the displacement per unit time is small is problematic in the movement of the head or workpiece of the machine tool, the transfer of the article, the control of the transfer device, the transfer carriage, and the like.
- servo systems such as head movement and transport device travel receive displacement from a displacement sensor and perform control based on a target displacement, that is, an error from a target position. For this purpose, it is necessary to obtain the displacement in a short time period. In particular, it is necessary to obtain the displacement in accordance with the control period in the servo system, rather than obtaining the displacement periodically in accordance with the convenience of the displacement sensor.
- the present invention provides a displacement sensor that detects displacement by a phase difference between an input signal waveform and an output signal waveform.
- a timer that outputs the detection time
- a storage unit for storing the detected displacement at least twice in the past together with the detection time
- a calculation unit that extrapolates and outputs at least the past two displacements to the current displacement from at least the past two displacements, the detection time, and the output obtained time when the output is obtained from the outside. It is characterized by being.
- the present invention provides a method for detecting displacement by a displacement sensor based on a phase difference between an input signal waveform and an output signal waveform.
- the timer obtains the detection time, Store the detected displacement at least twice in the past with the detection time, When an output is obtained from the outside, at least the past two displacements are extrapolated to the current displacement and output from at least the past two displacements, the detection time, and the output obtained time.
- the displacement can be detected only once per cycle of the input signal.
- the current position is required at a timing corresponding to the control cycle in the servo system, and the control cycle is generally larger than the cycle at the displacement sensor. short. Therefore, instead of shortening the detection cycle of the displacement sensor or constantly interpolating the current position within the displacement sensor, the displacement, detection time, and output for the past two times are triggered by the fact that the output has been obtained externally. The current displacement is extrapolated and output from the given time.
- displacement can be output in real time in response to a request from an external servo system. Further, it is not necessary to shorten the detection cycle in the displacement sensor, and since extrapolation to the current displacement is not always performed and output when requested, extrapolation can be performed with a simple circuit.
- the calculation unit sets Di, Di-1 as the displacement for the past two times, ti, ti-1 as the detection time for the past two times, r as the time when the output is obtained, and Dr as the current displacement.
- Dr Di + (Di ⁇ Di ⁇ 1) ⁇ (r ⁇ ti) / (ti ⁇ ti ⁇ 1)
- the calculation delay in the calculation unit is ⁇ , and the calculation unit obtains the displacement at time r + ⁇ as the current displacement. In this way, the influence of calculation delay can be substantially reduced to zero. From an external servo system or the like, a displacement is requested at time r and a displacement is received at time r + ⁇ , but data very close to the actual displacement at time r + ⁇ can be received.
- Example linear sensor and surrounding block diagram Block diagram from coil array to signal processing unit of linear sensor of embodiment Block diagram of arithmetic unit of linear sensor of embodiment
- a servo system 10 includes a head drive of a machine tool, a workpiece drive, a transfer device drive unit, a suction transfer device drive unit, and a transport control unit of a transfer carriage.
- the servo system 10 requests the current position from the linear sensor 2 at time r. Since there is a delay ⁇ , the servo system 10 receives the current position Dr at time r + ⁇ and performs position control, speed control, and the like.
- the current position is compared with the target position for each internal control cycle, and a speed command or the like is generated so as to eliminate the position error. Therefore, the time r for requesting the current position is determined by the convenience of the servo system 10 and is not determined by the convenience of the linear sensor 2.
- the magnetic mark 8 is formed by alternately arranging the non-magnetic marks 12 and the magnetic marks 13 along the longitudinal direction of the shaft 9, and is configured to detect the displacement of the shaft 9.
- the mark may be arranged along the circumference of the turntable or the like, or the mark may be arranged along the traveling rail.
- the linear sensor body 4 includes a coil array 14 and a primary side AC power source 18, and an output voltage waveform of the AC power source is expressed as sin ⁇ t. For example, four signals are extracted from the coil array 14, two of them are input to the operational amplifier 20, and the other two signals are input to the operational amplifier 21.
- the signal processing unit 22 processes the output signals from the operational amplifiers 20 and 21 to obtain the mark reference displacement.
- FIG. 2 shows the configuration of the signal processing unit 22.
- four secondary side coils 17 are arranged in parallel with the primary side coil 16, and an induced electromotive force due to a current flowing through the primary side coil 16 is modulated by the marks 12 and 13, and an operational amplifier is taken out. 20 and 21 are input.
- a signal of a ⁇ sin ⁇ ⁇ sin ⁇ t is obtained from the operational amplifier 20, and a signal of a ⁇ cos ⁇ ⁇ sin ⁇ t is obtained from the operational amplifier 21.
- the primary side coil 16 and the secondary side coil 17 are separated from each other. However, as shown in Patent Document 2, these may be shared by the same coil.
- the conversion unit 23 converts the signal a ⁇ sin ⁇ ⁇ sin ⁇ t into the signal a ⁇ sin ⁇ ⁇ cos ⁇ t.
- the conversion unit 23 is configured by a delay circuit composed of a memory, delays the signal by 1/4 period with respect to sin ⁇ t, and further inverts the sign.
- the signal from the operational amplifier 20 may be multiplied by cot ⁇ t.
- the adder 24 adds the a ⁇ cos ⁇ ⁇ sin ⁇ t signal and the a ⁇ sin ⁇ ⁇ cos ⁇ t signal, and outputs an a ⁇ sin ( ⁇ t + ⁇ ) signal according to the addition theorem.
- a ⁇ sin ( ⁇ t ⁇ ) may be used instead of a ⁇ sin ( ⁇ t + ⁇ ).
- the clock circuit 25 generates a clock signal, the counter 26 counts the clock signal, and resets the count value by a reset signal from the AC power supply 18.
- a memory 28 stores a pair of the displacement Di and the time ti at the time when the i-th ⁇ is detected.
- FIG. 3 shows the configuration of the calculation unit 6.
- Reference numeral 31 denotes a sensor interface, which is an interface with the linear sensor body 4, and 32 is a servo interface, which is an interface with the servo system.
- Reference numeral 33 denotes an arithmetic unit, and 34 denotes a memory, which stores a time r when a displacement output request is received from the servo system side.
- Reference numeral 35 denotes a memory for storing at least two past data (Di, ti) and (Di-1, ti-1) of displacement and time.
- the memory 36 stores intermediate data necessary for the calculation of the current position, and specifically stores (Di-Di-1) / (ti-ti-1).
- the memory 34 always receives the current time r from the timer of the linear sensor body, and latches the current time r with a signal from the servo interface 32.
- the sensor interface 31 receives the latest displacement and its detection time pair (Di, ti) from the memory of the linear sensor main body according to the latch signal (0 crossing signal) from the adder of the linear sensor main body, and stores it in the memory 35.
- the memory 35 is, for example, a ring memory for two sets of data, and replaces old data with new data every time 0 crossing occurs.
- the memory 36 stores intermediate data obtained by the arithmetic unit 33 from the data in the memory 35.
- the memory 34 stores r + ⁇ instead of the actual time r, obtains the displacement at the time r + ⁇ instead of the displacement Dr at the time r, and outputs it as the displacement Dr.
- the data in the memories 35 and 36 is updated at idle time after processing the displacement request from the servo system side.
- the arithmetic unit 6 can be realized by a digital signal processor, a field programmable gate array, a one-chip microprocessor, or the like.
- FIG. 4 shows the time and instruction value (output current displacement) in the embodiment.
- the displacement Di-1 is obtained at time ti-1
- the displacement Di is obtained at time ti.
- the signals at time ti-1 and time ti are extrapolated and output as displacement Dr.
- the time ⁇ corresponding to the calculation delay is substantially constant, so that the displacement at the time r + ⁇ is output instead of the current time r.
- the current displacement was obtained by extrapolating the displacement and time for the past two times.
- the displacement and time for the past three times may be stored and extrapolated to the current displacement by a quadratic curve.
- the acceleration a is set to (Di-Di-1) / (ti-ti-1)-(Di-1-Di-2) / (ti-1-ti-2).
- the correction h based on the acceleration is added to the estimated value of the current displacement extrapolated by the linear function as described above.
- a linear sensor composed of a combination of a magnetic mark and a coil has been described.
- a laser signal whose light intensity is modulated with alternating current may be used as a primary side signal, and the phase difference between the phase of the reflected light and the phase on the primary side may be detected.
- the ultrasonic signal may be modulated with a sine wave to detect the phase difference between the primary-side ultrasonic signal and the reflected-wave ultrasonic signal.
- the current displacement can be output without delay due to the input signal cycle of the displacement sensor.
- the current displacement can be obtained quickly with a small amount of calculation.
- the delay ⁇ of the calculation unit is corrected, the influence of the calculation delay can be easily corrected by replacing the time r with the time r + ⁇ .
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Control Of Linear Motors (AREA)
Abstract
Description
この発明の他の課題は、より高速に、特に演算による遅れ無しに、変位を出力できるようにすることにある。
センサが変位を検出すると、検出時刻を出力するタイマと、
検出した変位を少なくとも過去2回分、検出時刻と共に記憶する記憶部と、
外部から出力を求められると、少なくとも過去2回分の変位と検出時刻と出力を求められた時刻とから、少なくとも過去2回分の変位を現在の変位へ外挿して出力する演算部、とを備えていることを特徴とする。
センサが変位を検出すると、タイマにより検出時刻を求め、
検出した変位を少なくとも過去2回分、検出時刻と共に記憶し、
外部から出力を求められると、少なくとも過去2回分の変位と検出時刻と出力を求められた時刻とから、少なくとも過去2回分の変位を現在の変位へ外挿して出力する、ことを特徴とする。
Dr=Di+(Di-Di-1)×(r-ti)/(ti-ti-1)
により演算する。上記の演算は簡単なので高速に実行でき、かつ過去におけるより長い範囲でのデータを用いる場合に比べ、平均化による遅れがない。
特に好ましくは、演算部での演算遅れをτとして、演算部は時刻r+τでの変位を前記現在の変位として求める。このようにすると、演算遅れの影響を実質的に0にできる。外部のサーボシステム等からすると、時刻rに変位を要求し、時刻r+τに変位を受け取ることになるが、時刻r+τでの実際の変位に極めて近いデータを受け取ることができる。
Dr=Di+(Di-Di-1)(r-ti)/(ti-ti-1)により求め、変位Drをサーボインターフェース32から出力する。このようにして、サーボシステムが現在の変位を要求すると、演算ユニット33でDrを演算し、遅れ時間τで回答する。演算に必要なデータはその都度リニアセンサ本体から取得しても良いが、実施例ではメモリ35,36に予め記憶し、処理時間を短縮する。特に(Di-Di-1)/(ti-ti-1)を記憶し、処理を高速化する。
(Di-Di-1)/(ti-ti-1)-(Di-1-Di-2)/(ti-1-ti-2) とする。加速度に基づく変位の変化分hをh=a/2・(r-ti)2とする。そして前記のように1次関数で外挿した現在の変位の推定値に、加速度に基づく補正hを加算する。
(1) サーボシステムなどの外部のシステムが要求した時点で、変位センサの入力信号周期による遅れ無しに、現在の変位を出力できる。
(2) 1次の演算により現在の変位を求めると、僅かな計算量で速やかに現在の変位を求めることができる。
(3) 演算部の遅れτを補正すると、時刻rを時刻r+τで置き換えることにより、簡単に演算遅れの影響を補正できる。
8 磁気マーク 9 軸 10 サーボシステム
12 非磁性マーク 13 磁性マーク 14 コイルアレイ
16 1次側コイル 17 2次側コイル 18 交流電源
20,21 演算増幅器 22 信号処理部 23 変換部
24 加算器 25 クロック回路 26 カウンタ
27 タイマ 28 メモリ 29 補正部
31 センサインターフェース 32 サーボインターフェース
33 演算ユニット 34~36 メモリ
Claims (4)
- 入力信号波形と出力信号波形との位相差により変位を検出するセンサにおいて、
センサが変位を検出すると、検出時刻を出力するタイマと、
検出した変位を少なくとも過去2回分、検出時刻と共に記憶する記憶部と、
外部から出力を求められると、少なくとも過去2回分の変位と検出時刻と出力を求められた時刻とから、少なくとも過去2回分の変位を現在の変位へ外挿して出力する演算部、とを備えていることを特徴とする、変位センサ。 - 前記演算部は、過去2回分の変位をDi,Di-1,過去2回分の検出時刻をti,ti-1,出力を求められた時刻をr,現在の変位をDrとして、
Dr=Di+(Di-Di-1)×(r-ti)/(ti-ti-1)
により演算することを特徴とする、請求項1の変位センサ。 - 演算部での演算遅れをτとして、演算部は時刻r+τでの変位を前記現在の変位として求めることを特徴とする、請求項2の変位センサ。
- 入力信号波形と出力信号波形との位相差により、変位センサで変位を検出する方法において、
センサが変位を検出すると、タイマにより検出時刻を求め、
検出した変位を少なくとも過去2回分、検出時刻と共に記憶し、
外部から出力を求められると、少なくとも過去2回分の変位と検出時刻と出力を求められた時刻とから、少なくとも過去2回分の変位を現在の変位へ外挿して出力する、ことを特徴とする、変位検出方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012510590A JPWO2011129140A1 (ja) | 2010-04-12 | 2011-02-04 | 変位センサ及び変位の検出方法 |
EP11768661.8A EP2559970B1 (en) | 2010-04-12 | 2011-02-04 | Displacement sensor and method for detecting displacement |
US13/639,421 US20130060521A1 (en) | 2010-04-12 | 2011-02-04 | Displacement sensor and method for detecting displacement |
CN2011800162265A CN102822635A (zh) | 2010-04-12 | 2011-02-04 | 位移传感器及位移的检测方法 |
KR1020127028153A KR101340931B1 (ko) | 2010-04-12 | 2011-02-04 | 변위 센서 및 변위의 검출 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010091105 | 2010-04-12 | ||
JP2010-091105 | 2010-04-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011129140A1 true WO2011129140A1 (ja) | 2011-10-20 |
Family
ID=44798520
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/052334 WO2011129140A1 (ja) | 2010-04-12 | 2011-02-04 | 変位センサ及び変位の検出方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20130060521A1 (ja) |
EP (1) | EP2559970B1 (ja) |
JP (1) | JPWO2011129140A1 (ja) |
KR (1) | KR101340931B1 (ja) |
CN (1) | CN102822635A (ja) |
TW (1) | TWI451066B (ja) |
WO (1) | WO2011129140A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014109190A1 (ja) * | 2013-01-10 | 2014-07-17 | 村田機械株式会社 | 変位センサ及び変位の検出方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2902802B1 (de) * | 2014-01-31 | 2016-10-26 | S.M.S. Smart Microwave Sensors GmbH | Sensorvorrichtung |
EP2916107A1 (de) * | 2014-03-05 | 2015-09-09 | Siemens Aktiengesellschaft | Extrapolation der Feinlage bei einem Lagegeber mit phasenmoduliertem Rohsignal |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01237413A (ja) * | 1988-03-17 | 1989-09-21 | Mitsubishi Heavy Ind Ltd | 位置検出方法 |
JP2003139563A (ja) | 2001-11-01 | 2003-05-14 | Murata Mach Ltd | スライド位置検出装置 |
JP2004513357A (ja) * | 2000-10-31 | 2004-04-30 | ドクトル・ヨハネス・ハイデンハイン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング | 位置測定装置及び位置を測定する方法 |
JP2009002660A (ja) | 2007-06-19 | 2009-01-08 | Murata Mach Ltd | リニアスケール |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5583812A (en) * | 1978-12-20 | 1980-06-24 | Okuma Mach Works Ltd | Phase modulation position detection system |
JPH0634872A (ja) * | 1992-07-14 | 1994-02-10 | Sony Corp | サンプリング系位置検出装置 |
US5391970A (en) * | 1993-09-30 | 1995-02-21 | Allen-Bradley Company, Inc. | Motion controller with remote linking and time disturbance correction |
JP3367260B2 (ja) * | 1995-03-24 | 2003-01-14 | 三菱電機株式会社 | エンコーダ装置及びサーボモーター制御装置 |
CN1133867C (zh) * | 1996-05-24 | 2004-01-07 | 精工爱普生株式会社 | 位置检测装置、位置检测方法、计时装置及电子机器 |
JP3004924B2 (ja) * | 1996-11-01 | 2000-01-31 | 株式会社ミツトヨ | 磁気エンコーダ |
CN1184453C (zh) * | 1998-11-09 | 2005-01-12 | 三菱电机株式会社 | 位置检测装置 |
JP2003294485A (ja) * | 2002-03-29 | 2003-10-15 | Murata Mach Ltd | 位置検出装置及び搬送装置 |
JP5042551B2 (ja) | 2006-07-28 | 2012-10-03 | Ntn株式会社 | 回転検出装置および回転検出装置付き軸受 |
JP2009303358A (ja) * | 2008-06-12 | 2009-12-24 | Canon Inc | 変位検出方法、補正テーブル作成方法、モータ制御装置及び工作機械装置 |
-
2011
- 2011-02-04 US US13/639,421 patent/US20130060521A1/en not_active Abandoned
- 2011-02-04 KR KR1020127028153A patent/KR101340931B1/ko active IP Right Grant
- 2011-02-04 EP EP11768661.8A patent/EP2559970B1/en not_active Not-in-force
- 2011-02-04 CN CN2011800162265A patent/CN102822635A/zh active Pending
- 2011-02-04 WO PCT/JP2011/052334 patent/WO2011129140A1/ja active Application Filing
- 2011-02-04 JP JP2012510590A patent/JPWO2011129140A1/ja active Pending
- 2011-04-11 TW TW100112393A patent/TWI451066B/zh active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01237413A (ja) * | 1988-03-17 | 1989-09-21 | Mitsubishi Heavy Ind Ltd | 位置検出方法 |
JP2004513357A (ja) * | 2000-10-31 | 2004-04-30 | ドクトル・ヨハネス・ハイデンハイン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング | 位置測定装置及び位置を測定する方法 |
JP2003139563A (ja) | 2001-11-01 | 2003-05-14 | Murata Mach Ltd | スライド位置検出装置 |
JP2009002660A (ja) | 2007-06-19 | 2009-01-08 | Murata Mach Ltd | リニアスケール |
Non-Patent Citations (1)
Title |
---|
See also references of EP2559970A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014109190A1 (ja) * | 2013-01-10 | 2014-07-17 | 村田機械株式会社 | 変位センサ及び変位の検出方法 |
JP6015776B2 (ja) * | 2013-01-10 | 2016-11-02 | 村田機械株式会社 | 変位センサ及び変位の検出方法 |
Also Published As
Publication number | Publication date |
---|---|
US20130060521A1 (en) | 2013-03-07 |
JPWO2011129140A1 (ja) | 2013-07-11 |
CN102822635A (zh) | 2012-12-12 |
EP2559970A1 (en) | 2013-02-20 |
KR101340931B1 (ko) | 2013-12-13 |
KR20120137419A (ko) | 2012-12-20 |
EP2559970A4 (en) | 2013-08-28 |
EP2559970B1 (en) | 2015-09-16 |
TWI451066B (zh) | 2014-09-01 |
TW201144771A (en) | 2011-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5896166B2 (ja) | 磁気式の位置センサと移動体及び移動体システム | |
JP4923730B2 (ja) | レゾルバ角度検出における補償方法及びこれを用いた角度検出装置 | |
JP5007753B2 (ja) | 位置センサ | |
US7692566B2 (en) | Angle detection device | |
JP2010197373A (ja) | ストロークセンサおよび回転角センサ | |
US20200370877A1 (en) | Magnetic position sensor system, device, magnet and method | |
TW200839194A (en) | Position detector | |
JP2008107235A (ja) | 回転角度検出装置 | |
US20130328550A1 (en) | Magnetic sensor arrangement | |
WO2011129140A1 (ja) | 変位センサ及び変位の検出方法 | |
JP2009210281A (ja) | 冗長型回転角検出装置 | |
WO2008053581A1 (fr) | Capteur de rotation et palier équipé dudit capteur de rotation | |
JP6015776B2 (ja) | 変位センサ及び変位の検出方法 | |
KR20190000004A (ko) | 영구자석 이동형 엔코더리스 리니어 모터 및 그 제어방법 | |
JP2007171081A (ja) | 位置検出方法 | |
JP5783410B2 (ja) | 移動体システムと移動体の位置検出方法 | |
JP5865059B2 (ja) | 波形測定器 | |
JP2003254784A (ja) | 変位校正方法及び装置 | |
Tzschichholz et al. | Range extension of the PMD sensor with regard to applications in space | |
JP2010256169A (ja) | リニアスケール | |
JP2023041534A (ja) | 磁気式エンコーダ | |
JP2979708B2 (ja) | 精密磁束密度測定装置 | |
JPH0535306Y2 (ja) | ||
JP2017133938A (ja) | 電磁誘導式位置検出器 | |
JP2005257562A (ja) | 変位校正方法及び装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180016226.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11768661 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012510590 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13639421 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011768661 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20127028153 Country of ref document: KR Kind code of ref document: A |