WO2011126041A1 - 複合顕微鏡装置 - Google Patents

複合顕微鏡装置 Download PDF

Info

Publication number
WO2011126041A1
WO2011126041A1 PCT/JP2011/058684 JP2011058684W WO2011126041A1 WO 2011126041 A1 WO2011126041 A1 WO 2011126041A1 JP 2011058684 W JP2011058684 W JP 2011058684W WO 2011126041 A1 WO2011126041 A1 WO 2011126041A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
objective lens
microscope
sample
reflecting mirror
Prior art date
Application number
PCT/JP2011/058684
Other languages
English (en)
French (fr)
Inventor
國昭 永山
善博 新井
寛文 飯島
進 寺川
Original Assignee
大学共同利用機関法人自然科学研究機構
ナガヤマ アイピー ホールディングス エルエルシー
日本電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大学共同利用機関法人自然科学研究機構, ナガヤマ アイピー ホールディングス エルエルシー, 日本電子株式会社 filed Critical 大学共同利用機関法人自然科学研究機構
Priority to US13/638,981 priority Critical patent/US9310596B2/en
Priority to EP11765941.7A priority patent/EP2557588B1/en
Priority to JP2012509683A priority patent/JP5842308B2/ja
Publication of WO2011126041A1 publication Critical patent/WO2011126041A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/0076Optical details of the image generation arrangements using fluorescence or luminescence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical or photographic arrangements associated with the tube
    • H01J37/226Optical arrangements for illuminating the object; optical arrangements for collecting light from the object
    • H01J37/228Optical arrangements for illuminating the object; optical arrangements for collecting light from the object whereby illumination and light collection take place in the same area of the discharge
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0032Optical details of illumination, e.g. light-sources, pinholes, beam splitters, slits, fibers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/365Control or image processing arrangements for digital or video microscopes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/045Diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/2602Details
    • H01J2237/2605Details operating at elevated pressures, e.g. atmosphere
    • H01J2237/2608Details operating at elevated pressures, e.g. atmosphere with environmental specimen chamber

Definitions

  • the present invention relates to a scientific instrument using an electron beam, and more particularly to a transmission electron microscope and an electron beam analyzer.
  • FIG. 8A and 8B show a conventional composite microscope apparatus.
  • the optical microscope is placed adjacent to the electron microscope body, and the sample is horizontally moved between the optical microscope and the electron optical axis of the electron microscope, thereby switching between the optical microscope and the electron microscope for observation.
  • FIG. 8B an apparatus in which two microscopes are integrated is also known. This apparatus rotates a sample by 90 ° and observes an optical microscope image (J. Struct. Biol. 164 (2008)). 183-189).
  • an operation for searching for fluorescently stained viruses in cells is performed with a fluorescence microscope, and an operation for enlarging and fixing (photographing) the searched viruses is performed with an electron microscope. It is impossible to do.
  • the conventional apparatus is not suitable for so-called high-throughput operation for quickly detecting and fixing an object to be detected.
  • Patent Documents 2 and 3 also disclose an apparatus for observing the same sample by combining an electron microscope and an optical microscope, but these techniques are for a scanning electron microscope, and are a transmission electron microscope. There is still no technology that can simultaneously observe the same sample using a combination of an optical microscope and an optical microscope.
  • the main object of the present invention is to provide an apparatus capable of observing the same sample at the same time by combining a transmission electron microscope and an optical microscope.
  • the composite microscope apparatus of the present invention includes a transmission electron microscope and an optical microscope.
  • the electron microscope includes an electron gun that emits an electron beam toward a sample, an electromagnetic objective lens that forms an image of the electron beam, and a detection unit that receives the electron beam that has passed through the electromagnetic objective lens.
  • a reflecting mirror is disposed in the middle of the traveling path, and the optical microscope is provided with an optical objective lens disposed at a position separated from the traveling path.
  • the reflecting surface of the reflecting mirror is inclined toward the sample and the optical objective lens.
  • An installation center hole penetrating the reflecting mirror is formed at a position where the reflecting mirror intersects the traveling path.
  • the diameter of the installation center hole is preferably 0.1 to 1 mm.
  • an angle adjusting mechanism for adjusting the tilt angle of the reflecting mirror it is more desirable to provide a lens adjusting mechanism for adjusting the optical objective lens.
  • the electromagnetic objective lens one having a cylindrical coil and a yoke covering the coil can be used. A notch is formed in a part of the yoke, and the part in which the notch of the yoke is formed projects into the inside of the coil, so that a gap can be formed inside the electromagnetic objective lens.
  • an optical objective lens and a sample holder in which a sample is arranged can be arranged.
  • An optical microscope having a light source, a dichroic mirror, and an optical detection unit can be used.
  • the dichroic mirror, the optical objective lens, and the optical detection unit can be arranged on a straight line that intersects the traveling path. It is desirable to incline the reflecting surface of the dichroic mirror toward the optical objective lens and the light source.
  • a fluorescent microscope lens can be used as the optical objective lens.
  • the optical microscope can include an illumination reflector disposed on the traveling path and a light source disposed away from the traveling path. The illumination reflector is opposite to the reflector with the sample interposed therebetween. It is desirable to be located on the side.
  • the reflective surface of the illumination reflector can be inclined from the traveling path toward the sample and the light source, and an installation center hole that penetrates the illumination reflector can be formed at a position where the traveling path of the illumination reflector intersects. desirable.
  • Reflector mirror surface, reflecting mirror installation center hole inner wall surface, lighting reflector mirror surface, lighting reflecting mirror installation center hole inner wall surface, lighting reflector mirror surface, lighting reflector mirror installation A transparent conductive material film is formed on one or more of the inner wall surface of the central hole, the surface of the optical condenser lens, the inner wall surface of the central hole of the optical condenser lens, and the surface of the optical objective lens. It is desirable. It is desirable to dispose an electromagnetic objective lens inside the vacuum chamber, and to form an antireflection film in the inner space of the vacuum chamber around the light source.
  • an electron microscope image and an optical microscope image can be observed (photographed) simultaneously for the same sample.
  • FIG. 1 is a cross-sectional view schematically showing a composite microscope of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing an example of an electromagnetic objective lens.
  • FIG. 3 is a schematic cross-sectional view showing an example of an optical microscope.
  • FIG. 4 is a schematic cross-sectional view showing another example of an optical microscope.
  • FIG. 5 is a photograph showing a specific example of the composite microscope apparatus of the present invention.
  • FIG. 6 is a photographed image by the composite microscope apparatus of the present invention.
  • FIG. 7a is an image taken by a fluorescence microscope
  • FIG. 7b is an image taken by an electron microscope at a low magnification
  • FIGS. 7c, 7d, and 7e are images taken by an electron microscope at a high magnification.
  • FIG. 8A is a schematic diagram for explaining a conventional composite microscope
  • FIG. 8B is a side view for explaining a conventional composite microscope.
  • the composite microscope apparatus 1 indicates an example of the composite microscope apparatus of the present invention.
  • the composite microscope apparatus 1 includes an electron microscope 2 and an optical microscope 4.
  • the structure of the electron microscope 2 is not specifically limited, For example, it has the vacuum chamber 20, the electron gun 21, the converging lens 22, the objective lens 25, the projection lens 31, and the detection part 30.
  • a vacuum pump (not shown) is connected to the vacuum chamber 20, and a vacuum atmosphere is formed inside the vacuum chamber 20.
  • the electron gun 21 has an electron beam (electron beam) emission port directed toward the internal space of the vacuum chamber 20, and the electron beam travels inside the vacuum chamber 20 in which a vacuum atmosphere is formed.
  • a symbol C in FIG. 1 indicates a traveling path (electron optical axis) of an electron beam emitted from the electron gun 21.
  • the converging lens 22, the objective lens 25, the projection lens 31, and the detection unit 30 are arranged along the electron optical axis C in the order described from the side close to the electron gun 21.
  • the electron beam is converged by the convergence lens 22, imaged by the objective lens 25, magnified by the projection lens 31, and then incident on the detection unit 30.
  • the electron microscope 2 used in the present invention is a transmission electron microscope (TEM), and the sample to be observed is arranged on the electron optical axis C.
  • TEM transmission electron microscope
  • the arrangement of the sample and the optical microscope 4 will be described together with a specific example of the objective lens 25.
  • FIG. 2 is an enlarged sectional view of the objective lens 25.
  • the objective lens 25 is, for example, an electromagnetic lens (magnetic field lens).
  • the objective lens 25 of the electron microscope 2 is referred to as an electromagnetic objective lens 25.
  • the electromagnetic objective lens 25 includes a coil 24 and a yoke 23 that covers the coil 24.
  • the coil 24 has a cylindrical shape (ring shape), and the entire electromagnetic objective lens 25 has a cylindrical shape.
  • the electromagnetic objective lens 25 is arranged so that one end opening of the tube is directed to the electron gun 21 and the center axis of the tube is parallel to the electron optical axis C of the electron beam. Therefore, the space inside the cylinder becomes the electron beam passage 29, and the electron beam enters the electromagnetic objective lens 25 from one end (upper end) of the cylinder and is emitted downward from the other end (lower end) of the cylinder.
  • a notch 26 is formed in the yoke 23.
  • the shape and position of the notch 26 are not particularly limited, but the notch 26 can be formed on the inner side, upper end, or lower end of the cylinder (electromagnetic objective lens 25). In any case, the shape of the notch 26 is preferably a ring shape surrounding the electron beam.
  • FIG. 3 is an enlarged cross-sectional view of the portion indicated by reference A in FIG.
  • the portion of the yoke 23 in which the notch 26 is formed protrudes more inside the cylinder than the coil 24, and the diameter of the passage 29 is reduced.
  • the protruding portion (pole piece) of the yoke 23 the side closer to the electron gun 21 is distinguished as the upper pole 27, and the side far from the electron gun 21 is distinguished as the lower pole 28.
  • At least a portion constituting the upper pole 27 and the lower pole 28 is made of a high magnetic material such as iron cobalt (FeCo).
  • FeCo iron cobalt
  • Magnetic field lines formed by the energized coil 24 leak into the passage 29 from the upper pole 27 and the lower pole 28, and the electron beam is rotated and refracted by the leakage magnetic field.
  • the leakage magnetic field is controlled by adjusting the shape and / or size of the pole piece, the energization amount of the coil 24, and the like, and the imaging position of the electron beam is changed.
  • the gap 26 is formed in the pole piece portion of the electromagnetic objective lens 25 by the portion of the notch 26 protruding inward.
  • a sample holder 11 is disposed in the gap. In the sample holder 11, a portion where the sample 10 is installed protrudes from the notch 26 to the passage 29, and the electron beam passing through the passage 29 passes through the sample 10 and travels toward the detection unit 30.
  • the focal length As the distance (working distance) between the electromagnetic objective lens 25 and the sample 10 increases, the focal length also increases and the aberration increases. However, as shown in FIG. 3, the sample 10 is placed inside the electromagnetic objective lens 25 (passage 29). If it is placed in the position, the aberration becomes small and the resolution becomes high.
  • a reflecting mirror 41 is disposed in the passage 29, and a through hole (installation center hole) 42 is formed in the reflecting mirror 41.
  • the installation center hole 42 is located on the electron optical axis C and has a diameter of 0.1 to 1 mm, which is larger than the beam diameter of the electron beam. Therefore, the electron beam passes through the installation center hole 42 without being reflected by the reflecting mirror 41.
  • the reflecting mirror 41 may be arranged on either the detection unit 30 side or the electron gun 21 side of the sample 10, and an electron beam transmitted through the sample 10 or an electron beam transmitted through the sample 10 is installed. It passes through the center hole 42.
  • the reflecting mirror 41 is located between the upper pole 27 and the lower pole 28.
  • a part or all of the optical microscope 4 is disposed in the gap of the electromagnetic objective lens 25.
  • the optical microscope 4 has an objective lens 43, a light source 45, and an optical detection unit 46. At least the objective lens 43 is disposed in the gap of the electromagnetic objective lens 25, and the objective lens 43 faces the reflecting mirror 41.
  • the objective lens 43 of the optical microscope 4 is referred to as an optical objective lens.
  • the light source 45 is, for example, a mercury lamp, and the light emitted from the light source 45 is converted into parallel light parallel to the electron optical axis C by the irradiation lens 47.
  • a spectroscopic means is arranged ahead of the traveling direction of the parallel light.
  • the spectroscopic means includes, for example, a dichroic mirror 52.
  • the reflecting surface of the dichroic mirror 52 is inclined by a predetermined angle (here, 45 °) from the direction parallel to the electron optical axis C toward the optical objective lens 43 and the light source 45.
  • excitation light light having a predetermined wavelength
  • wavelength light goes straight. Accordingly, the excitation light is incident on the optical objective lens 43. It is more desirable to arrange the excitation filter 51 between the dichroic mirror 52 and the irradiation lens 47 and extract the excitation light in advance.
  • the dichroic mirror 52, the optical objective lens 43, and the reflecting mirror 41 are arranged on a straight line orthogonal to the electron optical axis C, that is, on the excitation light path, at a position between the upper pole 27 and the lower pole 28. Yes.
  • the reflecting surface of the reflecting mirror 41 is inclined from the electron optical axis C by a predetermined angle (here, 45 °) toward the sample 10 and the optical objective lens 43, and the excitation light passes through the optical objective lens 43 and is then reflected by the reflecting mirror 41. And is incident on the sample 10.
  • Specimen 10 is stained with a fluorescent material and emits light when excitation light enters.
  • the fluorescent light is reflected by the reflecting mirror 41 and enters the optical objective lens 43.
  • the optical detection unit 46 is disposed at a position opposite to the reflecting mirror 41 with the optical objective lens 43 interposed therebetween. Although there is a dichroic mirror 52 between the optical objective lens 43 and the optical detection unit 46, the fluorescent light has a wavelength different from that of the excitation light, and therefore passes without being reflected by the dichroic mirror 52.
  • An absorption filter 53 and an imaging lens 54 may be disposed between the optical detection unit 46 and the dichroic mirror 52.
  • the excitation light and scattered light are removed from the fluorescent light by the absorption filter 53, and the fluorescent light is imaged by the imaging lens 54 and enters the optical detection unit 46.
  • the optical detection unit 46 is, for example, a CCD camera or the like, and is connected to a processing device such as a computer.
  • the optical detection unit 46 performs an arithmetic process on the fluorescent light captured by the optical detection unit 46 and outputs it to the output device (image display, printing, etc.).
  • the optical microscope 4 in FIG. 3 is a so-called epi-illumination type fluorescence microscope that can separate the excitation light and the fluorescence light by the dichroic mirror 52 and observe and / or photograph the sample 10.
  • the diameter of the electron beam passing through the electromagnetic objective lens 25 is small, and the diameter of the installation center hole 42 is reduced to about 0.1 to 1.0 mm so that a sufficient amount of excitation light and fluorescent light are reflected by the reflecting mirror 41. Even so, it can pass through the installation center hole 42. Therefore, the composite microscope apparatus 1 can perform electron beam irradiation and light irradiation on the sample 10 on the same axis, and the same sample 10 can be observed and photographed by the transmission electron microscope 2. Observation and photographing with the optical microscope 4 can be performed simultaneously.
  • the optical microscope 4 used in the present invention is not limited to a fluorescence microscope.
  • Reference numeral 8 in FIG. 4 is a bright-field optical microscope, and members having the same configuration as in FIG.
  • the optical detection unit 46 and the optical objective lens 43 can have the same structure and the same arrangement as the optical microscope 4 in FIG. 3, but the arrangement of the light source 85 is different.
  • the light source 85 is disposed above the upper pole 27, for example.
  • the light source 85 is directed to the electronic optical axis C, and an illumination reflecting mirror 81 is disposed at a position facing the light source 85 on the electronic optical axis C.
  • the sample 10 can be disposed in the passage 29 inside the electromagnetic objective lens 25 as in FIG.
  • the reflecting surface of the illumination reflecting mirror 81 is inclined from the electron optical axis C by a predetermined angle (here, 45 °) toward the sample 10 and the light source 85.
  • An irradiation lens 87 is disposed between the light source 85 and the illumination reflecting mirror 81, and light from the light source 85 is condensed on the reflection surface of the illumination reflecting mirror 81 by the irradiation lens 87 and travels toward the sample 10 on the reflection surface. And reflected.
  • the illumination reflector 81 is disposed away from the upper pole 27 and has a long distance to the sample 10.
  • an optical condenser lens (condenser lens) 83 is disposed between the illumination reflecting mirror 81 and the sample 10.
  • the optical condenser lens 83 is attached to the upper pole 27, and the light is collected by the optical condenser lens 83 and then enters the sample 10.
  • a daylighting reflector 88 is disposed at a position opposite to the illumination reflector 81 with the sample 10 in between.
  • the reflecting mirror 88 for daylighting is inclined at a predetermined angle (here, 45 °) from the electron optical axis C toward the sample 10 and the optical objective lens 43. Therefore, the transmitted light that has passed through the sample 10 is reflected by the reflecting reflector 88 and enters the optical objective lens 43.
  • the optical detection unit 46 is disposed at the tip of the traveling direction of the transmitted light, as in the first example (FIG. 3), and the transmitted light is transmitted directly or after passing through the absorption filter 53 and the imaging lens 54. 46 is incident.
  • the illumination reflecting mirror 81, the optical condenser lens 83, and the daylighting reflecting mirror 88 are each arranged on the electron optical axis C of the electron beam, and a through hole (installation center hole) 82 is provided in a portion corresponding to the traveling path of the electron beam.
  • 84 and 89 are formed, respectively. Similar to the reflecting mirror 41 in FIG. 3, the diameters of the installation center holes 82, 84, and 89 are set to such an extent that they do not hinder the passage of electron beams (0.1 to 1 mm). Therefore, also in the optical microscope 8 of FIG. 4, the same sample 10 can be observed and photographed by the transmission electron microscope 2 and observed and photographed by the optical microscope 8 at the same time.
  • the light source 85 and the illumination reflecting mirror 81 may be disposed below the lower pole 28 (that is, on the detection unit 30 side).
  • the reflecting mirror 88 for daylighting is arranged on the upper pole 27 side with respect to the sample 10, and the light transmitted through the sample 10 is sampled from below.
  • a spectroscopic means (a dichroic mirror, an excitation filter, etc.) is arranged between the light source 85 and the illumination reflector 81, and the excitation light is extracted, so that it can be used as a fluorescence microscope. .
  • the fluorescent light emitted from the sample 10 to the daylighting reflector 88 side is detected.
  • the optical objective lens 43 used in the present invention is not particularly limited, and an equivalent product to a commercially available long working distance type objective lens can be used. It is desirable to use one having a working distance that allows the reflecting mirrors 41 and 88 to be installed between the sample 10 and the optical objective lens 43.
  • the lens case body holding the optical objective lens 43 is changed from brass to non-magnetic one (for example, phosphor bronze), and a small hole is provided in the lens case body so that the space of the glass lens and the surrounding vacuum part can be communicated. Is desirable.
  • the converging lens 22 and the projection lens 31 of the electron microscope 2 are not particularly limited.
  • a magnetic lens having a structure similar to that of the electromagnetic objective lens 25 can be used.
  • the surface of the optical condenser lens 83 and / or the inner wall surface of the installation center hole 84, and the surface of the optical objective lens 43 It is desirable to apply a conductive coating to prevent charging by an electron beam.
  • the material of the conductive coating is any one selected from the group consisting of materials having high light transmittance, for example, indium tin oxide (ITO), zinc oxide (IZO), and indium-gallium-zinc (IGZO).
  • ITO indium tin oxide
  • IZO zinc oxide
  • IGZO indium-gallium-zinc
  • the composite microscope apparatus 1 of the present invention emits light for optical observation into the electron beam passage, a member of the electron microscope 2 where light (excitation light, fluorescent light, reflected light, etc.) is emitted. That is, it is desirable to apply an antireflection treatment (antireflection film) to the surface of the member around the sample 10.
  • the antireflection treatment is, for example, a black treatment.
  • the black processing is performed by, for example, the sample holder 10, the pole piece portion of the electromagnetic objective lens 25, the sample contamination prevention cooling fan of the electron microscope 2, the tip of the aperture device (particularly for the electromagnetic objective lens 25) of the electron microscope 25, the electromagnetic objective lens It is effective from the viewpoint of antireflection to apply to the wall surface of the vacuum chamber 20 and the like around the portion where the 25 diaphragm is set and the electromagnetic objective lens 25.
  • the material used for the black treatment is not particularly limited as long as it is a low-reflectivity nonmagnetic material, and various materials such as titanium black can be used.
  • the angles of the reflecting mirrors 41, 81, and 88 can be finely adjusted according to the type and location of the sample 10, the type of fluorescent material, excitation light, and the like, so that various samples 10 can be observed and photographed. It can be performed.
  • the optical objective lens 43 it is desirable to connect the optical objective lens 43 to the lens adjusting mechanism 92 so that the distance from the optical objective lens 43 to the reflecting mirrors 41 and 88 can be changed by an operation from the outside of the vacuum chamber 20.
  • the focus of the optical objective lens 43 can be finely adjusted in accordance with the type of the sample 10, and various samples 10 can be observed and photographed.
  • the composite microscope apparatus 1 of the present invention When observing a biological sample in which a specific organ or cell is fluorescently labeled, in order to prevent the sample 10 from being damaged by the electron beam, the electron beam is not irradiated to the sample 10 at first, and the field of view is searched only with the optical microscopes 4 and 8. . Since the sample 10 is fluorescently labeled, it is possible to search for a visual field more efficiently than when the electron microscope 2 is used.
  • the electron beam is shifted to a position off the sample 10 by the deflection coil, and when an object to be observed with high resolution is found, the electron beam is returned to the sample 10 and high resolution by the electron microscope 2 is obtained.
  • the deflection coil is installed between the converging lens 22 and the electromagnetic objective lens 25, for example.
  • FIG. 5 is a photograph of an external appearance of an example of the composite microscope apparatus 1 of the present invention, and a portion surrounded by an ellipse is a portion in which the optical microscopes 4 and 8 are incorporated in the electromagnetic objective lens 25.
  • FIG. 6 shows an example in which inorganic Q dots, which are fluorescent agents, are simultaneously observed with the optical microscope 4 and the electron microscope 2 in the composite microscope apparatus 1.
  • FIG. 7 shows an example in which cultured cells expressing fluorescent protein-fused actin are simultaneously observed with the optical microscope 4 and the electron microscope 2 of the composite electron microscope apparatus 1. 6 and 7, it is clear that the electron microscope 2 has a higher resolution than the optical microscope 4, but in the case of FIG. 6, the optical microscope 4 is more efficient in searching the field of view for identifying the position of the Q dot. Since it can be performed well, the composite microscope apparatus 1 of the present invention having both the electron microscope 2 and the optical microscopes 4 and 8 enables high-throughput electron microscope observation.
  • a fluorescent portion is identified with a fluorescence microscope.
  • FIG. 7a if the portion is enlarged by an electron microscope at low magnification (FIG. 7b) and high magnification (FIG. 7c, FIG. 7d, FIG. 7e), only the region of the fluorescent molecule can be observed with high resolution, and It is possible to avoid damage to the sample 10 when searching for the visual field.
  • FIG. 7 the actin fibers are clearly visible in the high-magnification electron microscopic image in the presence of the fluorescent protein indicated by the fluorescence microscope together with the microtubules and ribosomes.
  • phase contrast electron microscope can be used to observe the same visual field only at a specific moment while observing a living biological sample.
  • the method can be observed with high resolution and high contrast, and the function and structure of the living body can be observed and correlated in real time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Microscoopes, Condenser (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

 本発明の複合顕微鏡装置(1)は、透過型の電子顕微鏡(2)と、光学顕微鏡(4)とを備える。電子線の電子光軸(C)上には試料(10)と反射鏡(41)とが配置され、前記反射鏡は光学対物レンズ(43)と試料に向かって前記電子光軸から傾斜している。試料から発生する蛍光光、反射光等の光は、反射鏡で反射されて光学対物レンズに入射し、光学検出部(46)で検出される。試料を透過した電子線は反射鏡の設置中心孔(42)を通過して、検出部(30)で検出される。 これにより、透過電子顕微鏡と光学顕微鏡で同一試料を同時に観察可能な複合顕微鏡装置を提供することが可能になった。

Description

複合顕微鏡装置
 本発明は電子線を利用した理科学機器に関し、特に、透過型電子顕微鏡、電子線解析装置に関する。
 従来より、走査型電子顕微鏡と光学顕微鏡を組み合わせた装置はすでに実用化されている。透過型電子顕微鏡と光学顕微鏡を組み合わせた装置としては、例えば特願昭53-161215(特開昭55-90046)に開示された装置がある。
 図8A、図8Bに、従来の複合顕微鏡装置を示す。図8Aの装置は、光学顕微鏡を電子顕微鏡本体に隣接させ、試料を光学顕微鏡と電子顕微鏡の電子光軸間で水平移動させることにより、光学顕微鏡と電子顕微鏡とで切り替えて観察する。
 図8Bのように、2つの顕微鏡の一体化した装置も知られており、この装置は、試料を90°回転させて、光学顕微鏡画像の観察を行う(J. Struct. Biol. 164(2008)183-189)。
特開昭55-90046号公報 特開2010-8406号公報 特開平5-113418号公報
Journal of Structural Biology, Volume 164, 2008年,183-189頁
 上記特許文献1、非特許文献1に記載された技術では、光学顕微鏡と透過型電子顕微鏡の一体化は実現したが、電子線と、光の電子光軸とが一致せず、試料の並進、回転等の移動により、別々に観察が行われる。従って、光学顕微鏡と電子顕微鏡で、同一試料を同時に観察することは不可能であった。
 例えば、蛍光染色ウィルスを細胞中で探索する操作は蛍光顕微鏡で行われ、探索したウィルスを拡大して固定(撮影)する操作は電子顕微鏡で行われるが、従来の装置では、探索と固定を同時に行うことは不可能である。このように、従来の装置では、検知対象物を素早く検出して固定する、いわゆるハイスループット操作には不向きであった。
 上記特許文献2、3にも、電子顕微鏡と光学顕微鏡を組み合わせて、同一試料を観察する装置は開示されているが、これらの技術は走査型電子顕微鏡用のものであって、透過型電子顕微鏡と光学顕微鏡の組み合わせで、同一試料を同時観察可能な技術は未だ提供されていない。
 そこで、本発明は、特に透過型電子顕微鏡と光学顕微鏡との組合せで、同一試料を同時に観察可能な装置を提供することを主目的とする。
 本発明の複合顕微鏡装置は、透過型の電子顕微鏡と、光学顕微鏡とを有する。電子顕微鏡は、試料に向かって電子線を放出する電子銃と、電子線を結像する電磁対物レンズと、電磁対物レンズを通過した前記電子線が入射する検出部とを有し、電子線の進行経路の途中には反射鏡を配置し、光学顕微鏡には進行経路から離間した位置に配置された光学対物レンズを具備させる。反射鏡の反射面は、試料と光学対物レンズに向かって傾斜させる。
 反射鏡の、進行経路と交差する位置には、反射鏡を貫通する設置中心孔を形成する。設置中心孔の直径は0.1~1mmにすることが望ましい。
 反射鏡の傾斜角度を調整する角度調整機構を具備させることが望ましく、また、光学対物レンズを調整するレンズ調整機構を具備させることがより望ましい。
 電磁対物レンズは、筒状のコイルと、前記コイルを覆うヨークとを具備するものを用いることができる。ヨークの一部には切り欠きを形成し、ヨークの切り欠きが形成された部分は、コイルの内側に突き出す形状とし、電磁対物レンズ内部に間隙が形成することができる。その間隙には、光学対物レンズと、試料が配置される試料ホルダとを配置できる。
 光学顕微鏡は、光源と、ダイクロイックミラーと、光学検出部とを有するものを用いることができる。ダイクロイックミラーと、光学対物レンズと、光学検出部とは、進行経路と交差する直線上に並べることができる。ダイクロイックミラーの反射面を、光学対物レンズと、光源に向かって傾斜させることが望ましい。光学対物レンズには、蛍光顕微鏡用レンズを用いることができる。
 光学顕微鏡には、進行経路上に配置された照明用反射鏡と、進行経路から離間して配置された光源とを具備させることもでき、照明用反射鏡は、試料を挟んで反射鏡と反対側に位置させることが望ましい。照明用反射鏡の反射面を、試料と光源に向かって、進行経路から傾斜させ、照明用反射鏡の進行経路が交差する位置に、照明用反射鏡を貫通する設置中心孔を形成することが望ましい。
 進行経路上の、照明用反射鏡と試料との間の位置には、光学コンデンサレンズを配置することが望ましく、光学コンデンサレンズの進行経路が交差する位置には、光学コンデンサレンズを貫通する設置中心孔を形成することが望ましい。
 反射鏡の表面と、反射鏡の設置中心孔内壁面と、照明用反射鏡の表面と、照明用反射鏡の設置中心孔内壁面と、採光用反射鏡の表面と、採光用反射鏡の設置中心孔内壁面と、光学コンデンサレンズの表面と、光学コンデンサレンズの設置中心孔内壁面と、光学対物レンズの表面のうち、いずれか一箇所以上の面には、透明導電材料の膜を形成することが望ましい。
 電磁対物レンズを真空槽内部に配置し、真空槽の内部空間のうち、光源の周囲の部分には、反射防止膜を形成することが望ましい。
 本発明によれば、同一試料について、同時に、電子顕微鏡画像と光学顕微鏡画像とを観察(撮影)することができる。
図1は本発明の複合顕微鏡を模式的に示す断面図である。 図2は電磁対物レンズの一例を示す模式的な断面図である。 図3は光学顕微鏡の一例を示す模式的な断面図である。 図4は光学顕微鏡の他の例を示す模式的な断面図である。 図5は本発明の複合顕微鏡装置の具体例を示す写真である。 図6は本発明の複合顕微鏡装置による撮影像である。 図7aは蛍光顕微鏡の撮影像であり、図7bは低倍率の電子顕微鏡撮影像であり、図7c、図7d、図7eは高倍率の電子顕微鏡撮影像である。 図8Aは従来技術の複合型顕微鏡を説明するための模式図であり、図8Bは従来技術の複合型顕微鏡を説明するための側面図である。
 以下、本発明を実施するための形態について、詳細に説明する。なお、本発明は、以下に説明する実施形態に限定されるものではない。
 図1の符号1は本発明の複合顕微鏡装置の一例を示しており、この複合顕微鏡装置1は、電子顕微鏡2と、光学顕微鏡4とを有している。電子顕微鏡2の構造は特に限定されないが、例えば、真空槽20と、電子銃21と、収束レンズ22と、対物レンズ25と、投射レンズ31と、検出部30とを有している。真空槽20には不図示の真空ポンプが接続されており、真空槽20内部には真空雰囲気が形成される。
 電子銃21は電子線(電子ビーム)の放出口が真空槽20の内部空間に向けられ、電子線は真空雰囲気が形成された真空槽20内部を進行する。図1の符号Cは電子銃21から放出される電子線の進行経路(電子光軸)を示している。収束レンズ22、対物レンズ25、投射レンズ31、及び検出部30は、電子銃21に近い側から記載した順番に電子光軸Cに沿って並べられている。電子線は収束レンズ22で収束され、対物レンズ25で結像され、投射レンズ31で拡大された後、検出部30に入射する。
 本発明に用いる電子顕微鏡2は透過型電子顕微鏡(TEM)であって、観察対象の試料は、電子光軸C上に配置される。以下に、試料と光学顕微鏡4の配置について、対物レンズ25の具体例と共に説明する。
 図2は対物レンズ25の拡大断面図である。対物レンズ25は、例えば電磁レンズ(磁界レンズ)である。後述する光学顕微鏡4の対物レンズと区別するため、電子顕微鏡2の対物レンズ25を電磁対物レンズ25と称する。電磁対物レンズ25は、コイル24と、コイル24を被覆するヨーク23とを有している。コイル24の形状は筒状(リング状)であって、電磁対物レンズ25全体の形状も筒又になっている。
 電磁対物レンズ25は、筒の一端開口が電子銃21に向けられ、筒の中心軸線が電子線の電子光軸Cと平行になるよう配置されている。従って、筒の内側の空間が電子線の通路29となり、電子線は、筒の一端(上端)から電磁対物レンズ25内部に進入し、筒の他端(下端)から下方へ放出される。
 ヨーク23には切り欠き26が形成されている。切り欠き26の形状や位置は特に限定されないが、切り欠き26は、筒(電磁対物レンズ25)の内側、上端、もしくは下端に形成することができる。いずれの場合も、切り欠き26の形状は、電子線を取り囲むリング状にすることが好ましい。
 図3は、図2の符号Aで示した部分の拡大断面図である。ヨーク23の切り欠き26が形成された部分は、コイル24よりも筒の内側に突き出され、通路29の径が絞られている。ヨーク23の突き出された部分(ポールピース)のうち、電子銃21に近い側を上極27、電子銃21から遠い側を下極28として区別する。
 ヨーク23のうち、少なくとも上極27、下極28を構成する部分は、鉄コバルト(FeCo)等の高磁率材料で構成されている。通電したコイル24により形成される磁力線は、上極27、下極28から通路29内に漏洩し、漏洩磁界により電子線が回転、屈折する。ポールピースの形状及び/又は大きさ、コイル24の通電量等の調整で、漏洩磁界を制御し、電子線の結像位置を変更させる。
 切り欠き26の部分が内側に突き出されることで、電磁対物レンズ25のポールピース部分には間隙が形成されている。その間隙には、試料ホルダ11が配置されている。試料ホルダ11は、試料10が設置される部分が切り欠き26から通路29に突き出され、通路29を通る電子線は、試料10を透過して検出部30側へ向かう。
 電磁対物レンズ25と試料10との距離(作動距離)が長くなると焦点距離も長くなるため、収差が大きくなるが、図3に示すように、試料10を電磁対物レンズ25の内側(通路29)に配置すると収差が小さくなり、分解能が高くなる。
 通路29には反射鏡41が配置され、その反射鏡41には貫通孔(設置中心孔)42が形成されている。設置中心孔42は電子光軸C上に位置し、その直径は0.1~1mmであって、電子線のビーム径よりも大きい。従って、電子線は反射鏡41で反射されずに設置中心孔42を通過する。なお、反射鏡41は試料10よりも検出部30側、又は、電子銃21側のいずれに配置してもよく、試料10を透過した電子線、又は試料10を透過する前の電子線が設置中心孔42を通過する。
 反射鏡41は、上極27と下極28との間に位置する。電磁対物レンズ25の間隙には、試料ホルダ11の他に、光学顕微鏡4の一部又は全部が配置されている。光学顕微鏡4は対物レンズ43と、光源45と、光学検出部46を有しており、少なくとも対物レンズ43は電磁対物レンズ25の間隙に配置され、対物レンズ43が反射鏡41と対面する。以下、電磁対物レンズ25と区別するため、光学顕微鏡4の対物レンズ43を光学対物レンズと称する。
 光源45は例えば水銀ランプであって、光源45から放出された光は、照射レンズ47で電子光軸Cと平行な平行光にされる。平行光の進行方向の先には、分光手段が配置されている。分光手段は、例えばダイクロイックミラー52を有する。ダイクロイックミラー52の反射面は、光学対物レンズ43と光源45に向かって、電子光軸Cと平行な方向から所定角度(ここでは45°)傾けられている。
 平行光のうち、所定波長の光(励起光)は進行方向を光学対物レンズ43側に曲げられて、電子光軸Cと交差する方向(ここでは直交方向)に進行するが、励起光外の波長の光は直進する。従って、励起光が光学対物レンズ43に入射することになる。なお、ダイクロイックミラー52と照射レンズ47の間に、励起フィルター51を配置し、予め励起光を抽出することがより望ましい。
 ダイクロイックミラー52と、光学対物レンズ43と、反射鏡41は、上極27と下極28の間の位置で、電子光軸Cと直交する直線上、すなわち、励起光の経路上に並べられている。反射鏡41の反射面は、試料10及び光学対物レンズ43に向かって電子光軸Cから所定角度(ここでは45°)傾斜しており、励起光は光学対物レンズ43を通過後、反射鏡41で反射され、試料10に入射する。
 試料10は蛍光物質で染色されており、励起光の入射により発光する。その蛍光光は反射鏡41で反射され、光学対物レンズ43に入射する。光学検出部46は、光学対物レンズ43を挟んで反射鏡41と反対側の位置に配置されている。光学対物レンズ43と光学検出部46の間にはダイクロイックミラー52があるが、蛍光光は励起光と波長が異なるので、ダイクロイックミラー52で反射されずに通過する。
 光学検出部46とダイクロイックミラー52の間に、吸収フィルター53と結像レンズ54が配置してもよい。この場合、蛍光光は、吸収フィルター53で励起光や散乱光が除去され、結像レンズ54で結像されて光学検出部46に入射する。光学検出部46は、例えば、CCDカメラ等であって、コンピュータなどの処理装置に接続され、光学検出部46で捉えた蛍光光を演算処理し、出力装置に出力(画像表示、印刷等)する。このように、図3の光学顕微鏡4は、ダイクロイックミラー52により、励起光と蛍光光とを分離し、試料10を観察及び/又は撮影可能な、いわゆる落射型蛍光顕微鏡である。
 電磁対物レンズ25を通る電子線のビーム径は小さく、十分な光量の励起光及び蛍光光が反射鏡41で反射されるように設置中心孔42の径を0.1~1.0mm程度に小さくしても、設置中心孔42を通過可能である。従って、複合顕微鏡装置1は、試料10に対し、電子線照射と、光照射とを同軸上で行うことが可能であり、同一試料10に対し、透過型の電子顕微鏡2による観察、撮影と、光学顕微鏡4による観察、撮影を同時に行うことができる。
 本発明に用いる光学顕微鏡4は蛍光顕微鏡に限定されるものではない。以下、光学顕微鏡の他の例について説明する。図4の符号8は、明視野型の光学顕微鏡であり、図3と同じ構成の部材は同じ符号を付して以下に説明する。この光学顕微鏡8では、光学検出部46及び光学対物レンズ43を、図3の光学顕微鏡4と同じ構造、同じ配置にすることができるが、光源85の配置が異なる。
 光源85は、例えば、上極27の上方に配置される。光源85は電子光軸Cに向けられ、電子光軸Cの光源85と対向する位置には照明用反射鏡81が配置されている。試料10は、図3と同様、電磁対物レンズ25内側の通路29に配置することができる。照明用反射鏡81の反射面は、試料10及び光源85に向かって、電子光軸Cから所定角度(ここでは45°)傾斜している。
 光源85と照明用反射鏡81の間には照射レンズ87が配置され、光源85からの光は、照射レンズ87で照明用反射鏡81の反射面に集光され、反射面で試料10に向かって反射される。
 照明用反射鏡81は上極27から離間して配置され、試料10までの距離が長い。このような場合は、照明用反射鏡81と試料10との間に光学コンデンサレンズ(集光レンズ)83を配置する。ここでは光学コンデンサレンズ83は上極27に取り付けられ、光は光学コンデンサレンズ83で集光されてから、試料10に入射する。
 試料10を挟んで、照明用反射鏡81と反対側の位置には、採光用反射鏡88が配置されている。採光用反射鏡88は、図3の反射鏡41と同様、反射面が、試料10及び光学対物レンズ43に向かって、電子光軸Cから所定角度(ここでは45°)傾斜している。従って、試料10を透過した透過光は、採光用反射鏡88で反射され、光学対物レンズ43に入射する。透過光の進行方向の先には、第一例(図3)と同様に光学検出部46が配置されており、透過光は直接、又は吸収フィルター53、結像レンズ54を通過後に光学検出部46に入射する。
 照明用反射鏡81と、光学コンデンサレンズ83と、採光用反射鏡88は、それぞれ電子線の電子光軸C上に並べられ、電子線の進行経路に当たる部分に貫通孔(設置中心孔)82、84、89がそれぞれ形成されている。図3の反射鏡41と同様に、これらの設置中心孔82、84、89の径も、電子線の通過を妨げない程度(0.1~1mm)にされている。従って、図4の光学顕微鏡8においても、同一試料10に対し、透過型の電子顕微鏡2による観察、撮影と、光学顕微鏡8による観察、撮影を同時に行うことができる。
 なお、光源85と、照明用反射鏡81は、下極28よりも下方(即ち検出部30側)に配置してもよい。この場合、採光用反射鏡88を試料10よりも上極27側に配置し、下方から試料10を透過した光を採光する。
 また、図4の装置において、光源85と照明用反射鏡81の間に分光手段(ダイクロイックミラー、励起フィルター等)を配置して、励起光を抽出することにより、蛍光顕微鏡として使用することもできる。この場合、試料10から採光用反射鏡88側に放出された蛍光光を検出する。
 本発明に用いる光学対物レンズ43は特に限定されず、市販の長作動距離タイプの対物レンズと同等品を用いることができる。試料10と光学対物レンズ43の間に反射鏡41、88を設置可能な程度の作動距離を有するものを使用することが望ましい。
 そのほか、光学対物レンズ43の設置場所は強磁界且つ真空中になるので、非磁性、耐真空性能が必要である。つまり、光学対物レンズ43を保持するレンズケースボディを、真鍮製から非磁性のもの(例えばリン青銅)に変え、ガラスレンズの空間と周囲真空部が通じるようにレンズケースボディに小さな孔を設けることが望ましい。
 また、電子顕微鏡2の収束レンズ22や投射レンズ31も特に限定されないが、例えば、電磁対物レンズ25と同様の構造を有する磁界レンズを用いることができる。反射鏡41、81、88の表面及び/又は設置中心孔42、82、89の内壁面、光学コンデンサレンズ83の表面及び/又はその設置中心孔84の内壁面、光学対物レンズ43の表面には、導電コーティングを施し、電子線による帯電を防止することが望ましい。導電コーティングの材料は、光透過率の高い材料、たとえば酸化インジウムスズ(ITO)と、酸化亜鉛(IZO)と、酸化インジウム-ガリウム-亜鉛(IGZO)とからなる群より選択されるいずれか1種以上の透明導電材料を使用する。
 本発明の複合顕微鏡装置1は、電子線の通路内に光学観察用の光を放出するので、電子顕微鏡2のうち、光(励起光、蛍光光、反射光等)が放出される場所の部材、すなわち、試料10の周辺の部材の表面に反射防止処理(反射防止膜)を施すことが望ましい。
 反射防止処理は、例えば、黒色処理である。黒色処理は、例えば、試料ホルダ10、電磁対物レンズ25のポールピース部分、電子顕微鏡2の試料汚染防止冷却ファン、電子顕微鏡25の絞り装置(特に電磁対物レンズ25用)の先端部、電磁対物レンズ25の絞りをセットする部分、電磁対物レンズ25周囲の真空槽20等の壁面に施すことが、反射防止の観点から有効である。黒色処理に用いる材料は、低反射性の非磁性材料であれば特に限定されず、チタンブラック等種々のものを用いることができる。
 反射鏡41、81、88を、角度調整機構91に接続し、真空槽20の外部からの操作で、反射鏡41、81、88の傾斜角度を変更可能にすることが望ましい。この場合、試料10の種類や配置場所、蛍光物質の種類や励起光等に合わせて、反射鏡41、81、88の角度を微調整することが可能であり、多様な試料10の観察・撮影を行うことができる。
 また、光学対物レンズ43にレンズ調整機構92に接続し、真空槽20の外部からの操作で、光学対物レンズ43から反射鏡41、88までの距離等を変更可能にすることが望ましい。この場合、試料10の種類等に合わせて、光学対物レンズ43のピントを微調整することができ、多様な試料10の観察・撮影を行うことができる。
 次に、本発明の複合顕微鏡装置1の使用例について説明する。
 特定の器官や細胞を蛍光標識した生体試料を観察する場合、電子線による試料10の損傷を防ぐため、最初は電子線を試料10に照射せず、光学顕微鏡4、8のみで視野探しを行う。試料10が蛍光標識されているため、電子顕微鏡2を使用する場合と比較して効率的な視野探しが可能である。
 視野探しの途中は電子線を偏向コイルで試料10から外れた位置にずらしておき、高分解能で観察したい対象が発見された際は、電子線を試料10上に戻し、電子顕微鏡2による高分解能観察を行う。偏向コイルは、例えば収束レンズ22と電磁対物レンズ25の間に設置する。このように、試料10損傷低減のためには、電子線を試料に照射する時間はなるべく短くすることが重要となる。
 図5は本発明の複合顕微鏡装置1の一例の外感を撮影した写真であり、楕円で囲んだ部分が電磁対物レンズ25に光学顕微鏡4、8を組み込んだ部分である。図6はこの複合顕微鏡装置1で、蛍光剤である無機Qドットを光学顕微鏡4と電子顕微鏡2とで同時観察した例である。
 また、図7は、蛍光蛋白質融合アクチンを発現させた培養細胞を、この複合電子顕微鏡装置1の光学顕微鏡4と電子顕微鏡2とで同時観察した例である。図6、図7からも電子顕微鏡2は光学顕微鏡4よりも分解能が高いことが明らかであるが、図6の場合、Qドットの位置を同定するための視野探しは光学顕微鏡4の方が効率よく行えるので、電子顕微鏡2と光学顕微鏡4、8とを合わせ持つ本発明の複合顕微鏡装置1は、ハイスループットの電子顕微鏡観察を可能とする。
 従来の電子顕微鏡で生体試料を観察する場合、視野探しの際に電子線による生体試料損傷が発生したが、本発明の複合顕微鏡装置1によれば、まず蛍光顕微鏡で蛍光のある部分を特定し(図7a)、そこの部分を電子顕微鏡で低倍(図7b)、高倍(図7c、図7d、図7e)と拡大していけば、蛍光分子の領域のみを高分解能で観察でき、かつ視野探しの際の試料10の損傷を避けることができる。事実、図7の場合、高倍の電子顕微鏡撮影像において微小管やリボソームと共に蛍光顕微鏡で指示された蛍光蛋白質の存在領域にアクチン繊維が明確に見えている。
 また、既に実用化されている電子顕微鏡用の雰囲気試料室、および位相差電子顕微鏡法を組合わせれば、生きた状態の生体試料を光顕観察しながら、同一視野を特定の瞬間だけ位相差電子顕微鏡法により高分解能・高コントラストで観察することができ、生体の機能と構造をリアルタイムで観察し、関連付けることが可能となる。
1    複合顕微鏡装置
2    電子顕微鏡
4、8  光学顕微鏡
10   試料
11   試料ホルダ
20   真空槽
21   電子銃
23   ヨーク
24   コイル
25   電磁対物レンズ
30   検出部
41、81、88  反射鏡
42、82、89  設置中心孔(貫通孔)
43   光学対物レンズ
45   光源
46   光学検出部
52   ダイクロイックミラー
83   光学コンデンサレンズ
91   角度調整機構
92   レンズ調整機構
C    電子光軸(進行経路)

Claims (11)

  1.  透過型の電子顕微鏡と、光学顕微鏡と、を有し、
     前記電子顕微鏡は、試料に向かって電子線を放出する電子銃と、前記電子線を結像する電磁対物レンズと、前記電磁対物レンズを通過した前記電子線が入射する検出部とを有し、
     前記電子線の進行経路の途中には反射鏡が配置され、
     前記光学顕微鏡は前記進行経路から離間した位置に配置された光学対物レンズを有し、
     前記反射鏡の反射面は、前記試料と前記光学対物レンズに向かって傾斜し、
     前記反射鏡の、前記進行経路と交差する位置には、前記反射鏡を貫通する設置中心孔が形成された複合顕微鏡装置。
  2.  前記設置中心孔の直径は0.1~1mmであることを特徴とする請求項1記載の複合顕微鏡装置。
  3.  前記反射鏡の傾斜角度を調整する角度調整機構を有する請求項1又は請求項2のいずれか1項記載の複合顕微鏡装置。
  4.  前記光学対物レンズを調整するレンズ調整機構を有する請求項1乃至請求項3のいずれか1項記載の複合顕微鏡装置。
  5.  前記電磁対物レンズは、筒状のコイルと、前記コイルを覆うヨークとを有し、
     前記ヨークの一部に切り欠きが形成され、
     前記ヨークの前記切り欠きが形成された部分は、前記コイルの内側に突き出され、前記電磁対物レンズ内部に間隙が形成され、
     前記間隙には、前記光学対物レンズと、前記試料が配置される試料ホルダとが配置された請求項1乃至請求項4のいずれか1項記載の複合顕微鏡装置。
  6.  前記光学顕微鏡は、光源と、ダイクロイックミラーと、光学検出部とを有し、
     前記ダイクロイックミラーと、前記光学対物レンズと、前記光学検出部とは、前記進行経路と交差する直線上に並べられ、
     前記ダイクロイックミラーの反射面は、前記光学対物レンズと、前記光源に向かって傾斜する請求項1乃至請求項5のいずれか1項記載の複合顕微鏡装置。
  7.  前記光学対物レンズは、蛍光顕微鏡用レンズである請求項6記載の複合顕微鏡装置。
  8.  前記光学顕微鏡は、前記進行経路上に配置された照明用反射鏡と、前記進行経路から離間して配置された光源とを有し、
     前記照明用反射鏡は、前記試料を挟んで前記反射鏡と反対側に位置し、
     前記照明用反射鏡の反射面は、前記試料と前記光源に向かって、前記進行経路から傾斜し、
     前記照明用反射鏡の、前記進行経路と交差する位置には、前記照明用反射鏡を貫通する設置中心孔が形成された請求項1乃至請求項5のいずれか1項記載の複合顕微鏡装置。
  9.  前記進行経路上の、前記照明用反射鏡と前記試料との間の位置には、光学コンデンサレンズが配置され、
     前記光学コンデンサレンズの、前記進行経路と交差する位置には、前記光学コンデンサレンズを貫通する設置中心孔が形成された請求項8記載の複合顕微鏡装置。
  10.  前記反射鏡の表面と、前記反射鏡の前記設置中心孔内壁面と、前記照明用反射鏡の表面と、前記照明用反射鏡の前記設置中心孔内壁面と、前記採光用反射鏡の表面と、前記採光用反射鏡の前記設置中心孔内壁面と、前記光学コンデンサレンズの表面と、前記光学コンデンサレンズの前記設置中心孔内壁面と、前記光学対物レンズの表面のうち、いずれか一箇所以上の面には、透明導電材料の膜が形成された請求項9記載の複合顕微鏡装置。
  11.  前記電磁対物レンズは真空槽内部に配置され、
     前記真空槽の内部空間のうち、前記光源の周囲の部分には、反射防止膜が形成された請求項1乃至請求項10のいずれか1項記載の複合顕微鏡装置。
PCT/JP2011/058684 2010-04-06 2011-04-06 複合顕微鏡装置 WO2011126041A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/638,981 US9310596B2 (en) 2010-04-06 2011-04-06 Compound microscope device
EP11765941.7A EP2557588B1 (en) 2010-04-06 2011-04-06 Combined charged particle beam and fluorescence microscope
JP2012509683A JP5842308B2 (ja) 2010-04-06 2011-04-06 複合顕微鏡装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-088201 2010-04-06
JP2010088201 2010-04-06

Publications (1)

Publication Number Publication Date
WO2011126041A1 true WO2011126041A1 (ja) 2011-10-13

Family

ID=44762975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058684 WO2011126041A1 (ja) 2010-04-06 2011-04-06 複合顕微鏡装置

Country Status (4)

Country Link
US (1) US9310596B2 (ja)
EP (1) EP2557588B1 (ja)
JP (1) JP5842308B2 (ja)
WO (1) WO2011126041A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015141899A (ja) * 2014-01-27 2015-08-03 エフ イー アイ カンパニFei Company 補正光学及び荷電粒子顕微鏡
KR101693539B1 (ko) * 2015-11-12 2017-01-06 한국표준과학연구원 고분해능 광-전자 융합현미경
KR101727196B1 (ko) * 2015-12-18 2017-04-14 한국표준과학연구원 적외선-전자 융합현미경
CN110914742A (zh) * 2017-03-17 2020-03-24 英国研究与创新组织 超分辨率显微镜检查
JP2020077529A (ja) * 2018-11-08 2020-05-21 株式会社日立ハイテク 電子線装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104091745B (zh) * 2014-07-18 2016-06-01 镇江乐华电子科技有限公司 一种集成tem荧光屏和stem探测器的一体化结构
WO2017094721A1 (ja) * 2015-12-03 2017-06-08 松定プレシジョン株式会社 荷電粒子線装置及び走査電子顕微鏡
KR102168726B1 (ko) * 2019-04-23 2020-10-22 한국표준과학연구원 시료챔버용 광학대물렌즈 정렬 마운트, 상기 마운트에 장착되는 전자 관통공 구비 광반사 거울, 및 이들을 포함하는 분광기 구비 광-전자 융합현미경
CN114324436A (zh) * 2021-12-23 2022-04-12 江苏大学 一种微纳结构的激光加工与实时原位高分辨观测装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53161215U (ja) 1977-05-26 1978-12-16
JPS5532304A (en) * 1978-08-28 1980-03-07 Internatl Precision Inc Electron microscope with optical microscope
JPS5590046A (en) 1978-12-28 1980-07-08 Internatl Precision Inc Electronic microscope equipped with optical microscope provided with x-ray shielding device
JPH05113418A (ja) 1990-12-25 1993-05-07 Shimadzu Corp 表面分析装置
JP2007292702A (ja) * 2006-04-27 2007-11-08 Jeol Ltd 試料検査装置及び試料検査方法並びに試料検査システム
JP2007322396A (ja) * 2006-06-05 2007-12-13 Univ Of Tsukuba 透過型電子顕微鏡と近接場光学顕微鏡の複合型顕微鏡
JP2010008406A (ja) 2008-05-30 2010-01-14 Shinichiro Isobe 多光源顕微鏡

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2233286A (en) * 1939-01-27 1941-02-25 Rca Corp Electronic and light microscope
DE1099659B (de) * 1958-08-30 1961-02-16 Zeiss Carl Fa Abschirmvorrichtung
JPS56121151U (ja) * 1980-02-15 1981-09-16
GB2130433B (en) * 1982-03-05 1986-02-05 Jeol Ltd Scanning electron microscope with as optical microscope
FR2596863B1 (fr) * 1986-04-07 1988-06-17 Centre Nat Rech Scient Dispositif de microscopie analytique, propre a former a la fois une sonde raman et une sonde electronique
JPH0614458B2 (ja) * 1987-05-28 1994-02-23 日本電子株式会社 磁区観察装置
JP2578519B2 (ja) * 1990-06-01 1997-02-05 株式会社日立製作所 光線による位置検出機能付き荷電粒子線露光装置
JP3040663B2 (ja) * 1994-07-15 2000-05-15 財団法人ファインセラミックスセンター 電子顕微鏡用加熱装置
JPH11250850A (ja) * 1998-03-02 1999-09-17 Hitachi Ltd 走査電子顕微鏡及び顕微方法並びに対話型入力装置
US6885445B2 (en) 1998-05-09 2005-04-26 Renishaw Plc Electron microscope and spectroscopy system
EP0995086B1 (en) 1998-05-09 2007-11-14 Renishaw plc Electron microscope and spectroscopy system
JP2003066338A (ja) * 2001-08-28 2003-03-05 Olympus Optical Co Ltd 顕微鏡
US6859313B2 (en) 2001-03-23 2005-02-22 Japan Science & Technology Corporation Super resolution microscope
EP1953791A1 (en) 2007-02-05 2008-08-06 FEI Company Apparatus for observing a sample with a particle beam and an optical microscope
DE102010011898A1 (de) * 2010-03-18 2011-09-22 Carl Zeiss Nts Gmbh Inspektionssystem

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53161215U (ja) 1977-05-26 1978-12-16
JPS5532304A (en) * 1978-08-28 1980-03-07 Internatl Precision Inc Electron microscope with optical microscope
JPS5590046A (en) 1978-12-28 1980-07-08 Internatl Precision Inc Electronic microscope equipped with optical microscope provided with x-ray shielding device
JPH05113418A (ja) 1990-12-25 1993-05-07 Shimadzu Corp 表面分析装置
JP2007292702A (ja) * 2006-04-27 2007-11-08 Jeol Ltd 試料検査装置及び試料検査方法並びに試料検査システム
JP2007322396A (ja) * 2006-06-05 2007-12-13 Univ Of Tsukuba 透過型電子顕微鏡と近接場光学顕微鏡の複合型顕微鏡
JP2010008406A (ja) 2008-05-30 2010-01-14 Shinichiro Isobe 多光源顕微鏡

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
J. STRUCT. BIOL., vol. 164, 2008, pages 183 - 189
JOURNAL OF STRUCTURAL BIOLOGY, vol. 164, 2008, pages 183 - 189
See also references of EP2557588A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015141899A (ja) * 2014-01-27 2015-08-03 エフ イー アイ カンパニFei Company 補正光学及び荷電粒子顕微鏡
KR101693539B1 (ko) * 2015-11-12 2017-01-06 한국표준과학연구원 고분해능 광-전자 융합현미경
WO2017082561A1 (ko) * 2015-11-12 2017-05-18 한국표준과학연구원 고분해능 광-전자 융합현미경
KR101727196B1 (ko) * 2015-12-18 2017-04-14 한국표준과학연구원 적외선-전자 융합현미경
CN110914742A (zh) * 2017-03-17 2020-03-24 英国研究与创新组织 超分辨率显微镜检查
JP2020514822A (ja) * 2017-03-17 2020-05-21 ユナイテッド キングダム リサーチ アンド イノベーション 超解像顕微鏡法
US11086137B2 (en) 2017-03-17 2021-08-10 United Kingdom Research And Innovation Super-resolution microscopy
JP7150743B2 (ja) 2017-03-17 2022-10-11 ユナイテッド キングダム リサーチ アンド イノベーション 超解像顕微鏡法
JP2020077529A (ja) * 2018-11-08 2020-05-21 株式会社日立ハイテク 電子線装置
JP7159011B2 (ja) 2018-11-08 2022-10-24 株式会社日立ハイテク 電子線装置
US11515121B2 (en) 2018-11-08 2022-11-29 Hitachi High-Tech Corporation Electron beam device

Also Published As

Publication number Publication date
US20130088775A1 (en) 2013-04-11
JPWO2011126041A1 (ja) 2013-07-11
EP2557588A1 (en) 2013-02-13
JP5842308B2 (ja) 2016-01-13
EP2557588B1 (en) 2017-07-12
US9310596B2 (en) 2016-04-12
EP2557588A4 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
JP5842308B2 (ja) 複合顕微鏡装置
Zonnevylle et al. Integration of a high‐NA light microscope in a scanning electron microscope
US8582203B2 (en) Optical arrangement for oblique plane microscopy
US7718979B2 (en) Particle-optical apparatus for simultaneous observing a sample with particles and photons
EP1953792B1 (en) Apparatus for observing a sample with a particle beam and an optical microscope
EP1724809A1 (en) Particle-optical apparatus for the irradiation of a sample
US9293297B2 (en) Correlative optical and charged particle microscope
JP2015141899A5 (ja)
EP1956632A1 (en) Particle-optical apparatus for simultaneous observing a sample with particles and photons
JP2023501581A (ja) 非直交配置の照明対物レンズおよび集光対物レンズを用いたオープントップ型ライトシート顕微鏡
US9966223B2 (en) Device for correlative scanning transmission electron microscopy (STEM) and light microscopy
US6600598B1 (en) Method and apparatus for producing diffracted-light contrast enhancement in microscopes
Reinhard et al. Laboratory-based correlative soft x-ray and fluorescence microscopy in an integrated setup
US20220326502A1 (en) Apparatuses, systems and methods for solid immersion meniscus lenses
US20110186754A1 (en) Device for the Optical Imaging of a Sample
CN115997113A (zh) 使用聚焦离子束对样品进行微加工的方法和设备
KR101693539B1 (ko) 고분해능 광-전자 융합현미경
US7733483B2 (en) Method for ascertaining the orientation of molecules in biological specimens
JP2008066057A (ja) 走査透過電子顕微鏡
Basha et al. Microscopy and Specimen Preparation
JP2006178199A (ja) 暗視野照明部品および顕微鏡
JPH02130456A (ja) 真空容器内の観察装置
Buxbaum et al. Microscopy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765941

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2012509683

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011765941

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011765941

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13638981

Country of ref document: US