WO2011125874A1 - 実装基板および実装基板の製造方法 - Google Patents

実装基板および実装基板の製造方法 Download PDF

Info

Publication number
WO2011125874A1
WO2011125874A1 PCT/JP2011/058284 JP2011058284W WO2011125874A1 WO 2011125874 A1 WO2011125874 A1 WO 2011125874A1 JP 2011058284 W JP2011058284 W JP 2011058284W WO 2011125874 A1 WO2011125874 A1 WO 2011125874A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
via conductor
substrate
hole
light emitting
Prior art date
Application number
PCT/JP2011/058284
Other languages
English (en)
French (fr)
Inventor
義弘 潮
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2012509589A priority Critical patent/JP5436662B2/ja
Publication of WO2011125874A1 publication Critical patent/WO2011125874A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • H05K3/4053Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques
    • H05K3/4061Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques for via connections in inorganic insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/641Heat extraction or cooling elements characterized by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3677Wire-like or pin-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3733Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon having a heterogeneous or anisotropic structure, e.g. powder or fibres in a matrix, wire mesh, porous structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0204Cooling of mounted components using means for thermal conduction connection in the thickness direction of the substrate
    • H05K1/0206Cooling of mounted components using means for thermal conduction connection in the thickness direction of the substrate by printed thermal vias
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09563Metal filled via
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10106Light emitting diode [LED]

Definitions

  • the present invention relates to a mounting substrate and a method for manufacturing the mounting substrate.
  • a mounting substrate in which a semiconductor chip or the like is mounted on one main surface side and current / voltage is supplied to the semiconductor chip from the other main surface side.
  • a mounting substrate there is a substrate provided with a via conductor provided from one main surface to the other main surface of the substrate.
  • the via conductor is formed by filling a through hole penetrating from one main surface to the other main surface of the substrate with a conductive member.
  • current is supplied to the semiconductor chip mounted on the one main surface side via the via conductor.
  • the mounting substrate described in Patent Document 1 is a laminate in which a ceramic green sheet having a through hole filled with a conductive paste serving as a via conductor material is fired to produce a mounting substrate including a via conductor. is doing.
  • the conductor paste used for the via conductor for example, 100 parts by mass of copper powder (melting point: about 1083 ° C.), and 0.5 mass of aluminum powder (melting point: about 660 ° C.) as a co-material.
  • Part 15 parts by mass of glass, 4 parts by mass of organic resin, and 10 parts by mass of ⁇ -terpineol as an organic solvent were kneaded and prepared.
  • firing is performed at a temperature of 910 ° C. for 1 hour, which is higher than the melting point of the aluminum powder and lower than the melting point of the copper powder. It has gained.
  • the conventional green sheet method has a problem that the number of processes is relatively large, and the cost for manufacturing the mounting substrate tends to increase.
  • the via conductor contains copper having a relatively high thermal expansion coefficient as a main component, and further contains aluminum having a larger thermal expansion coefficient than copper.
  • the difference in thermal expansion coefficient between the ceramic and the via conductor is relatively large.
  • a relatively large thermal stress is generated at the boundary between the ceramic substrate and the via conductor.
  • the conventional mounting board has a problem that when a mounted body such as a light emitting element or a semiconductor IC element that generates relatively large heat is mounted, the via conductor is easily peeled off from the ceramic board.
  • the present invention has been made to solve such a problem.
  • the present invention is a mounting substrate configured to include an insulating substrate having a through hole mainly composed of ceramics and a via conductor disposed in the through hole.
  • the via conductor includes a first component made of metal and a second component made of a metal oxide having a thermal expansion coefficient lower than that of the first component dispersed inside the via conductor.
  • a mounting substrate is provided.
  • a method for manufacturing a mounting substrate comprising: preparing an insulating substrate having ceramics as a main component and provided with a through hole; and forming the through hole of the insulating substrate from a metal having a melting point lower than that of the ceramic. And a particle mainly composed of a second component composed of a metal oxide having a melting point higher than that of the first component and a thermal expansion coefficient lower than that of the first component.
  • a mounting substrate manufacturing method is also provided, which includes filling a paste containing the paste and heat-treating the insulating substrate filled with the paste in the through hole.
  • the via conductor includes a first component made of a metal and a second component made of a metal oxide having a coefficient of thermal expansion lower than that of the first component dispersed inside the via conductor. Since the thermal expansion of the via conductor is suppressed by the second component, even when the mounted body generates a relatively large amount of heat, there is relatively little bonding failure between the insulating substrate and the via conductor portion caused by the thermal stress.
  • FIG. 2 is a view showing a cross section of an example of a mounting substrate of the present embodiment, where (a) is a scanning electron micrograph of a cross section of a via conductor, and (b) to (d) are EPMA analysis images relating to the cross section (a). is there.
  • FIGS. 6A to 6B are process diagrams showing a part of a procedure for manufacturing the mounting board shown in FIG. 1, and show processes following FIGS. 6A to 6E.
  • FIG. 1 is a diagram for explaining a light-emitting device 1 that is an example of a device of the present invention that includes a mounting substrate 10 that is an embodiment of the mounting substrate of the present invention.
  • FIG. 2B is a schematic sectional view of the light emitting device 1.
  • FIG. 2 is an enlarged view of a part of FIG.
  • a plurality of light emitting elements 20, which are known LED elements, are disposed on the one main surface 10 ⁇ / b> A side of the mounting substrate 10.
  • the mounting substrate 10 includes an insulating substrate 12 (hereinafter, referred to as a substrate 12) that includes ceramics as a main component and includes a through hole 12a, a via conductor 14 disposed in the through hole 12a, and the other main surface 10B. And a pattern conductor 16B formed on the substrate.
  • a substrate 12 an insulating substrate 12 (hereinafter, referred to as a substrate 12) that includes ceramics as a main component and includes a through hole 12a, a via conductor 14 disposed in the through hole 12a, and the other main surface 10B.
  • a pattern conductor 16B formed on the substrate.
  • the substrate 12 on which the light emitting element 20 is disposed is preferably made of ceramics mainly composed of alumina, for example.
  • Alumina has good reflectivity for light emission from the LED element.
  • a fine structure of several mm to 1 mm or less can be formed relatively easily by molding.
  • the pattern conductor 16B can be formed on the surface relatively easily by using a metallization technique or a printed wiring technique.
  • alumina is preferably used as a material constituting the substrate 12, but other ceramic materials can be used depending on the application, and the material of the substrate 12 is not particularly limited.
  • one light emitting element 20 is electrically connected to a combination of two via conductors 14.
  • a predetermined pattern conductor 16B is connected to the end surface of each via conductor 14 on the other main surface 10B side.
  • the via conductor 14 has one main surface 10 ⁇ / b> A side connected to the electrode 21 of the light emitting element 20 through the bonding layer 13.
  • the electrode 21 of the light emitting element 20 is disposed so as to face the end surface on the one main surface 10 ⁇ / b> A side of the via conductor 14, and the electrode 21 of the light emitting element 20 and the via conductor 14 Are bonded via the bonding layer 13 in which the Au / Ni plating layer 31 and the solder layer 32 are laminated.
  • various methods that allow the light emitting element 20 and the via conductor 14 to be electrically connected can be selected.
  • a soldering method or the like may be used as a mounting method.
  • a voltage is applied to the via conductor 14 via the pattern conductor 16 ⁇ / b> B provided on the other main surface 10 ⁇ / b> B side of the mounting substrate 10, and the light emitting element 20 joined to the one main surface 10 ⁇ / b> A side of the via conductor 14.
  • a current is supplied via the via conductor 14.
  • the light emitting element 20 emits light by this current supplied from the via conductor 14.
  • the via conductor 14 has a first component made of metal as a main component, and a second component 18 made of a metal oxide having a lower coefficient of thermal expansion than the first component is dispersed therein.
  • the second component 18 is made of tungsten oxide (WO 3 ).
  • the volume occupancy ratio of the second component 18 in the via conductor 14 is larger on the one main surface 10 ⁇ / b> A side on the side where the light emitting element 20 is mounted, out of the two main surfaces of the mounting substrate 10.
  • a low thermal expansion region containing the second component 18, silicon (Si), and oxygen (O) is dispersed in the via conductor 14. The range occupied by the low thermal expansion region is not shown because it cannot be clearly determined.
  • the first component is copper (Cu), and tungsten oxide (WO 3 ) having a smaller thermal expansion coefficient than the copper (Cu) is contained as the second component.
  • the second component 18 only needs to have a smaller coefficient of thermal expansion than the first component, and the materials of the first component and the second component 18 are not particularly limited.
  • the second component 18 may use molybdenum oxide (MoO 3 ) instead of tungsten oxide WO 3 .
  • MoO 3 molybdenum oxide
  • tungsten oxide (WO 3 ) and molybdenum oxide (MoO 3 ) may be used as the second component 18.
  • “included as a main component” means that the mass content of the component is 50% by mass or more.
  • the via conductor 14 contains more copper (Cu) as the first component (50 mass% or more) with respect to the total of the second component 18 and other components.
  • the volume occupancy of the second component 18 is larger on the one main surface 10A side of the two main surfaces of the substrate 10 means that the via conductor 14 is substantially parallel to the one main surface 10A.
  • the volume occupancy of the second component 18 in the region from the virtual plane to the one main surface 10A is It means that it is larger than the volume occupation ratio of the second component 18 in the region up to the main surface 10B.
  • the position and size of the second component 18 in the via conductor 14 can be confirmed, for example, by observing the cross section of the via conductor 14 with a scanning electron micrograph. Specifically, the area occupancy ratio of the second component 18 in an arbitrary area of the cross-sectional photograph may be replaced with the volume occupancy ratio in the arbitrary area as it is.
  • the materials and compositions of the first component and the second component can be easily confirmed using a known EPMA (Electron Probe-Micro Analyzer) apparatus or XPS (X-ray Photoelectron Spectroscopy) apparatus.
  • FIG. 3 is a view showing a cross section of an example of the mounting substrate 10 of the present embodiment.
  • 3A is a scanning electron micrograph of the cross section of the via conductor 14, and FIGS. 3B to 3D are EPMA analysis images of the cross section (a).
  • An EPMA wavelength dispersion type apparatus: JXA-8600M was used as an EPMA analyzer, and an image was taken with an analysis sampling time of 0.5 sec. (B) to (c) where the density of each image is low, (b) is a copper (Cu) element, (c) is a tungsten (W) element, (d) is a silicon (Si) element. Corresponds to the dark portion of the content. 3 (b) to 3 (d), the closer to white, the higher the content of each corresponding element.
  • the up-down direction in FIG. 3 corresponds to the up-down direction in FIG. 2, and the light emitting element 20 is mounted on the upper side in FIG.
  • FIG. 3C shows that the second component 18 mainly composed of tungsten oxide (WO 3 ) is dispersed in the via conductor 14 mainly composed of copper (Cu).
  • FIG. 3D there is a portion corresponding to the region that appears relatively whitish in FIG. 3C and the region that appears relatively whitish in FIG. (For example, a portion indicated by A in FIG. 3D).
  • a low thermal expansion region containing a second component 18 made of tungsten oxide (WO 3 ) and silicon (Si) and oxygen (O) is also dispersed in the via conductor 14.
  • the volume occupancy of the second component 18 is higher on the one main surface 10A side, which is the upper side in FIG. Specifically, when the via conductor 14 is bisected in the longitudinal direction by a virtual plane substantially parallel to the one main surface 10A, the volume occupation of the second component 18 in the region from the virtual surface to the one main surface 10A The rate is at least twice as large as the volume occupancy of the second component 18 in the region from the virtual surface to the other main surface 10B.
  • the via conductor 14 is mainly composed of copper (Cu) having a relatively small electric resistance, and the loss of electric energy supplied to the light emitting element 20 is relatively small.
  • the light emitting element 20 emits relatively large heat with light emission.
  • the via conductor 14 and the substrate 12 thermally expand as the light emitting element 20 generates heat.
  • the thermal expansion of the via conductor 14 whose main component is a metal such as copper (Cu) is larger than that of the substrate 12 whose main component is ceramic.
  • a thermal stress due to a shift in thermal expansion accompanying light emission is generated in the via conductor 14 and the substrate 12.
  • This thermal stress is particularly large when the via conductor 14 is made of only a metal such as copper (Cu), and the via conductor 14 and the inner wall of the through hole 12a of the substrate 12 are peeled off by repeated light emission of the light emitting element 20. May occur.
  • the second component 18 made of tungsten oxide (WO 3 ), which is a metal oxide having a lower thermal expansion coefficient than copper (Cu), which is the first component, is dispersed inside the via conductor 14. .
  • the second component 18 dispersed inside and having a relatively low thermal expansion coefficient serves as a buffer portion, and the degree of thermal expansion of the via conductor 14 as a whole is suppressed. Therefore, the thermal stress applied to the via conductor 14 and the substrate 12, particularly the thermal stress applied to the boundary portion between the via conductor 14 and the inner wall of the through hole 12 a of the substrate 12 is alleviated, and the light emitting element 20 is caused to emit light repeatedly.
  • the bonding between the via conductor 14 and the substrate 12 can be maintained for a long time in a relatively strong state.
  • the volume occupancy of the second component 18 in the via conductor 14 is larger on the side of the one main surface 10A on the side where the light emitting element 20 is mounted.
  • the degree of relaxation of thermal expansion is increased, the thermal stress distribution inside the via conductor 14 is relatively small, and local concentration of stress is also suppressed.
  • the hole diameter of the through hole 12a becomes larger as it approaches the one main surface 10A on the side where the light emitting element 20 is disposed.
  • the heat generated in the light emitting element 20 is transmitted to the via conductor 14 having a relatively large diameter, and the light emitting element 20 itself is cooled with relatively high efficiency.
  • the volume occupancy of the second component 18 is large in a portion closer to the light emitting element 20, and the peeling between the via conductor 14 and the through hole 12a is suppressed.
  • a low expansion region composed of the second component 18 and a glass (SiO 2 ) component is dispersed.
  • the glass (SiO 2 ) component is likely to be segregated locally at the interface between the via conductor 14 and the inner wall of the through hole 12a of the substrate 12 in a process of forming the via conductor 14 such as a baking process described later.
  • the second component 18 and the glass component (SiO 2 ) are dispersed in the via conductor 14 in the low expansion region.
  • this glass component (SiO 2 ) has an effect of mitigating the difference in the degree of thermal expansion, like the second component 18.
  • the light emitting device 1 has a plurality of light emitting elements 20 arranged at a high density on the one main surface 10A side, and can emit light with a relatively large amount of light while being compact, while generating a large amount of heat.
  • the mounting substrate 10 is suitable for the light emitting device 1.
  • the mounting substrate 10 of the present invention is not limited to the light emitting device 1 and can be suitably used for mounting power module semiconductor elements that generate a relatively large amount of heat.
  • FIG. 4 is a diagram for explaining a light emitting device 50 configured to include a mounting substrate 60 which is another embodiment of the mounting substrate of the present invention.
  • FIG. 4A is a schematic perspective view of the light emitting device 50.
  • FIG. b) is a schematic cross-sectional view of the light emitting device 50.
  • FIG. 5 is an enlarged view of a part of FIG.
  • the mounting substrate 60 includes an insulating substrate 51 (hereinafter, referred to as a substrate 51) having a through hole 51a mainly composed of ceramics, a via conductor 64 disposed in the through hole 51a, and one main surface 60A.
  • the pattern conductor 66A is formed on the other main surface 60B, and the pattern conductor 66B is formed on the other main surface 60B.
  • the light emitting device 50 is different from the mounting substrate 10 of the previous embodiment in that the pattern conductor 66A and the pattern conductor 66B are provided on the one main surface 60A side and the other main surface 60B side of the mounting substrate 60, respectively. Yes. Also in the light emitting device 50, a plurality of light emitting elements 70, which are known LED elements, are disposed on the one main surface 60 ⁇ / b> A side of the mounting substrate 60.
  • the light emitting element 70 includes a first electrode 72 on one main surface and a second electrode 74 on the other main surface.
  • one light emitting element 70 is electrically connected to one via conductor 64.
  • a predetermined pattern conductor 66B is connected to the end surface of the via conductor 64 on the other main surface 60B side, and the one main surface 60A side of the via conductor 64 is connected to the second electrode 74 of the light emitting element 20 via the bonding layer 63.
  • a pattern conductor 66 ⁇ / b> A is provided on the one main surface 60 ⁇ / b> A side of the mounting substrate 60.
  • the pattern conductor 66 ⁇ / b> A has a mounting portion 91 and a wiring portion 92.
  • the light emitting element 70 is mounted on the mounting portion 91, and the wiring portion 92 and the first electrode 72 of the light emitting element 70 connect the bonding wire 75. Connected through. Also in this embodiment, the second component 68 made of tungsten oxide (WO 3 ) is dispersed in the via conductor 64, and the volume occupancy of the second component 68 is higher on the one main surface 60A side. . The low thermal expansion region composed of the second component 68 and the glass (SiO 2 ) component is also dispersed inside the via conductor 64. Also in the light emitting device 50, the heat generated in the light emitting element 70 is efficiently exhausted through the via conductor 64.
  • tungsten oxide WO 3
  • SiO 2 glass
  • the low thermal expansion regions are dispersed in the via conductor 64, and there are relatively few joint failures between the insulating substrate 50 and the via conductor 64 that are generated due to thermal stress.
  • various elements can be mounted by changing the arrangement of the via conductors 64 and the connection structure of the elements 70 according to the structure of the elements 70 to be mounted.
  • FIGS. 6A to 6E and FIGS. 7A to 7B are cross-sectional process diagrams illustrating a part of the procedure for manufacturing the mounting substrate 60.
  • FIG. 6A to 6E and FIGS. 7A to 7B are cross-sectional process diagrams illustrating a part of the procedure for manufacturing the mounting substrate 60.
  • an insulating substrate 51 (hereinafter, referred to as a substrate 51) shown in FIG.
  • alumina powder and sintering aid powder are mixed, water is added, and wet pulverization is performed.
  • a slurry is prepared by adding and mixing polyvinyl alcohol or the like as an organic binder.
  • the slurry is spray dried to produce granules.
  • the granules are pressure-molded using a mold to form a formed body.
  • the formed body is fired at 1500 to 1700 ° C. to produce a substrate 51 mainly composed of alumina.
  • the substrate surface may be barrel-polished in order to remove burrs, and further washed and dried.
  • a through hole 51a (through hole) is formed at a position where the via conductor 64 of the substrate 51 is provided.
  • the method for forming the through hole 51a include a method using a micro drill, a method using a mechanical punch, and a method using laser ablation.
  • the inner diameter of the through hole 51a is preferably as small as possible.
  • a plurality of through holes 51a having an opening diameter of about 100 ⁇ m on the one main surface 60A side on which the light emitting element 70 is mounted are drilled.
  • the drilling by laser ablation it is possible to form the through-hole 51a having a relatively high aspect ratio and a shape in which the inner diameter becomes larger toward the one main surface.
  • the conductive paste 52 includes a powder mainly composed of a first component (Cu in this embodiment) and a powder mainly composed of a second component (WO 3 in this embodiment). It can be prepared by mixing with a binder. Furthermore, from the viewpoint of improving the adhesion between the substrate 51 and the via conductor 64, glass frit is added to the paste as an auxiliary agent.
  • the type of the organic binder is not particularly limited, and examples thereof include ethyl cellulose, polyvinyl butyral, and acrylonitrile.
  • the shape of the first and second components and each powder contained in the conductor powder is not particularly limited, and examples thereof include a spherical shape, a square shape, and a flat shape. In addition, it is preferable to use a mixture of these spherical, individual, and flat powders.
  • a powder containing Cu as a main component about 15% by mass of a substantially spherical powder containing WO 3 as a main component, about 10% by mass of glass powder, and butyl carbyl as a binder.
  • a paste containing Toll can be used.
  • the Cu powder a mixture of a powder made of substantially spherical particles having a diameter of about 1 to 5 ⁇ m and a powder made of flaky particles having an average longest diameter of about 1 to 5 ⁇ m can be used. By using powders composed of particles having different shapes, it is possible to fill the through holes 51a with a high density of powder.
  • a conductive paste for forming the via conductor 64 is filled in the through hole 51a.
  • the method of filling the conductive paste into the via hole of the sintered structure is not particularly limited as long as the filling can be sufficiently performed. A technique such as pushing in can be exemplified.
  • the layer of the conductive paste 52 is pressurized with a roll 80 to form the through-hole 51a. It is preferable to use a filling method by roll pressurization for filling the conductive paste 52.
  • the conductive paste 52 for forming a part of the pattern conductor 66B is also applied to the other main surface 60B side of the insulating substrate 51, and as shown in FIG. A conductor layer is also formed on the other main surface 60B side of 51.
  • the sintered structure in which the through-hole 51a is filled with the conductive paste 52 is heated to, for example, about 1040 ° C. in a vacuum, and the inside of the through-hole 51a and the main surface (one main surface 60A and the main surface of the substrate 51).
  • the paste 52 on the other main surface 60B) is sintered.
  • Via conductor 14 is formed by sintering conductive paste 52 in through hole 51a.
  • the structure is arranged so that the one main surface 60A side on which the light emitting element 70 is mounted is vertically downward.
  • the melting point of copper (Cu) as the first component is 1080 ° C.
  • the melting point of tungsten oxide (WO 3 ) as the second component is 1475 ° C.
  • copper (Cu) as the first component Of the second component, tungsten oxide (WO 3 ), is less melted. That is, in this firing process, the unmelted second component particles are dispersed in the melted first component.
  • the specific gravity of tungsten oxide (WO 3 ) is higher than that of copper (Cu), and tungsten oxide (WO 3 ) settles vertically downward.
  • the dispersion density and volume occupation ratio of the second component 68 in the via conductor 64 are On the other hand, it becomes higher on the main surface 60A side. Further, the end surface of the via conductor 64 is easily deformed into a concave shape due to shrinkage due to a temperature drop after firing of the via conductor 64.
  • tungsten oxide (WO 3 ) having a relatively small thermal expansion coefficient is dispersed at a high density on the side where the light emitting element 70 is mounted, and firing is performed on the end face on the side where the light emitting element 70 is bonded. The concave deformation accompanying the subsequent cooling is suppressed. As a result, bonding failure such as generation of a cavity at the joint between the light emitting element 70 and the via conductor 64 is also suppressed.
  • tungsten oxide has higher wettability with a glass component than copper (Cu).
  • This glass component contributes to the bonding between the via conductor 64 and the inner wall surface of the through hole 51a of the substrate 51, but the excess glass component that did not contribute to the bonding diffuses during firing and contains tungsten oxide (WO 3 ). Captured in the low expansion region. Thereby, it is suppressed that an excess glass component is segregated in the joining region between the via conductor 64 and the inner wall surface of the through hole 51a.
  • an etching process using a known photolithography method is performed to obtain a desired pattern conductor as shown in FIG. 66A and pattern conductor 66B are formed.
  • a known etching method such as a wet etching method or a dry etching method may be used.
  • the whole is immersed in a ferric chloride solution as an etchant (etchant) to form pattern conductors 66A and 66B according to the resist shape.
  • an Au / Ni plating layer (not shown in FIG. 7) in which a Ni plating layer and an Au layer are sequentially laminated is formed on the mounting portion 91 of the pattern conductor 66A, and then a solder layer (not shown in FIG. 7).
  • the light emitting element 70 is bonded via Thereafter, as shown in FIG. 7B, the first electrode 72 of the light emitting element 70 and the wiring portion 92 of the pattern conductor 66A are connected by the bonding wire 75.
  • the light emitting device 50 can be manufactured by such a process, for example.
  • the present invention is not limited to the above embodiment.
  • the light emitting device in which the light emitting element is mounted on the mounting substrate is described as an example of the device of the present invention.
  • the device of the present invention includes a light receiving element, a photoelectric conversion element, and the like in addition to the light emitting element. May be mounted on the mounting substrate.
  • the mounting substrate of the present invention can also be suitably used for mounting power module semiconductor elements.
  • alumina is preferable in that it reflects the light emitted from the light emitting element well, but in the case of a mounting substrate that requires higher heat dissipation, such as a semiconductor for power modules, it is insulated. It is also preferable to use, for example, silicon nitride (SiN) as the conductive substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Led Device Packages (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

【課題】 被実装体の発熱が比較低大きい場合でも、熱応力に伴って発生する絶縁基板とビア導体部との接合不良が比較的少ない実装基板を提供する。 【解決手段】 セラミックスを主成分とする、貫通孔を備えた絶縁性基板と、前記貫通孔内に配置されたビア導体と、を備えて構成された実装基板であって、前記ビア導体は、金属からなる第1成分と、前記ビア導体の内部に分散した、前記第1成分よりも熱膨張係数が低い金属酸化物からなる第2成分とを含むことを特徴とする実装基板を提供する。

Description

実装基板および実装基板の製造方法
 本発明は、実装基板および実装基板の製造方法に関する。
 従来より、一方主面の側に半導体チップ等を実装し、この半導体チップに他方主面の側から電流・電圧を供給する実装基板が用いられている。このような実装基板として、基板の一方主面から他方主面にかけて設けられたビア導体を供えているものがある。ビア導体は、基板の一方主面から他方主面にかけて貫通した貫通孔に、導電性部材が充填されて形成されている。このような実装基板では、ビア導体を介して、一方主面の側に実装された半導体チップに、電流が供給される。 
 近年、電子機器の小型化に伴い、実装基板に要求されるビア導体の配線密度が高くなるとともに、ビア導体の径も比較的小さくなっている。比較的小さい径のビア導体が、比較的高い配線密度で配置された実装基板の一例が、例えば下記特許文献1に記載されている。
 特許文献1に記載されている実装基板は、ビア導体の材料となる導体ペーストが充填された貫通孔を有するセラミックグリーンシートが積層された積層体を焼成して、ビア導体を備える実装基板を作製している。特許文献1に記載されている実装基板では、ビア導体に用いる導体ペーストとして、例えば銅粉末(融点約1083℃)100質量部に、共材としてアルミニウム粉末(融点約660℃)を0.5質量部、ガラスを15質量部加え、これに有機樹脂を4質量部、有機溶媒としてα-テルピネオール10質量部を秤量したものを混練して調製したものを用いている。そして、ビア導体が形成されたセラミックグリーンシートを複数積層した後、アルミニウム粉末の融点よりも高く、かつ銅粉末の融点よりも低い、910℃の温度で1時間の焼成を行って多層配線基板を得ている。
特開2005-136048号公報
 しかしながら、従来のグリーンシート法では、工程数も比較的多く、実装基板の製造にかかるコストが大きくなり易いといった課題がある。
 また、近年、例えば半導体チップの集積化に伴って、これら半導体チップから発する熱量も大きくなっている。また、半導体チップのみではなく、LEDなどの発光素子を実装する場合でも、発光素子からは比較的多くの熱が発生する。実装基板に配置されて、これら半導体チップや発光素子に直接接続するビア導体には、これらの発生した熱がよく伝わり、この熱によってビア導体およびセラミック基板が大きく膨張および収縮する。
 特許文献1に記載されている実装基板では、ビア導体が、熱膨張係数が比較的高い銅を主成分とし、この銅よりも熱膨張係数が大きなアルミニウムを、さらに含有している。特許文献1に記載されているような、従来のグリーンシート法を用いて作製された実装基板では、セラミックスとビア導体との熱膨張係数差が比較的大きいので、発光素子等の発光に伴う発熱によって、セラミック基板とビア導体との境界部分で比較的大きな熱応力が発生してしまう。従来の実装基板では、比較的大きな熱を発生する、発光素子や半導体IC素子などの被実装体を実装した場合、セラミック基板からビア導体が剥離し易いといった課題があった。
 本発明はかかる課題を解決するためになされたものである。
 上記課題を解決するため、本発明は、セラミックスを主成分とする、貫通孔を備えた絶縁性基板と、前記貫通孔内に配置されたビア導体と、を備えて構成された実装基板であって、前記ビア導体は、金属からなる第1成分と、前記ビア導体の内部に分散した、前記第1成分よりも熱膨張係数が低い金属酸化物からなる第2成分とを含むことを特徴とする実装基板を提供する。
 また、実装基板の製造方法であって、セラミックスを主成分とする、貫通孔が設けられた絶縁性基板を準備し、前記絶縁性基板の前記貫通孔に、前記セラミックスよりも融点が低い金属からなる第1成分を主成分とする粒子と、前記第1成分よりも融点が高く、かつ前記第1成分よりも熱膨張係数が低い金属酸化物からなる第2成分を主成分とする粒子とを含むペーストを充填し、前記ペーストが前記貫通孔の内部に充填された前記絶縁性基板を熱処理することを特徴とする実装基板の製造方法を、併せて提供する。
 本発明によれば、ビア導体は、金属からなる第1成分と、ビア導体の内部に分散した、第1成分よりも熱膨張係数が低い金属酸化物からなる第2成分とを含んでおり、第2成分によってビア導体の熱膨張が抑制されるので、被実装体の発熱が比較的大きい場合でも、熱応力に伴って発生する絶縁基板とビア導体部との接合不良が比較的少ない。
本発明の実装基板の一実施形態を備えて構成される、本発明のデバイスの一実施形態である発光装置について説明する図であり、(a)は概略斜視図、(b)は概略断面図である。 図1(b)の一部を拡大して示す図である。 本実施形態の実装基板の一例の断面を示す図であり、(a)はビア導体の断面の走査型電子顕微鏡写真であり、(b)~(d)は(a)断面に関するEPMA分析画像である。 本発明の実装基板の他の実施形態を備えて構成される発光装置について説明する図であり、(a)は概略斜視図、(b)は概略断面図である。 図4(b)の一部を拡大して示す図である。 (a)~(e)は、図に示す実装基板を製造する手順の一部を示す工程図である。 (a)~(b)は、図1に示す実装基板を製造する手順の一部を示す工程図であり、図6(a)~(e)に続く工程について示している。
 以下、本発明の実施の形態について、図面を参照して説明する。なお、図面中、同一の要素には同一の符号を付し、重複する説明を省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとし、図面中の下方向が鉛直下向きに対応するものとする。また、図面の寸法比率は、図示の比率に限定されるものではない。また、以下の実施の形態は、本発明を説明するための例示であり、本発明をその実施の形態のみに限定する趣旨ではない。さらに、本発明は、その要旨を逸脱しない限り、さまざまな変形が可能である。
 図1は、本発明の実装基板の一実施形態である実装基板10を備えて構成される、本発明のデバイスの一例である発光装置1について説明する図であり、(a)は発光装置1の概略斜視図、(b)は発光装置1の概略断面図である。また、図2は、図1(b)の一部を拡大して示す図である。
 発光装置1は、実装基板10の一方主面10A側に、例えば公知のLED素子である複数の発光素子20が配置されている。
 実装基板10は、セラミックスを主成分とする、貫通孔12aを備えた絶縁性基板12(以下、基板12とする)と、貫通孔内12a内に配置されたビア導体14と、他方主面10Bに形成されたパターン導体16Bと、を備えて構成されている。
 発光素子20が配置された基板12は、例えばアルミナを主成分とするセラミックスからなることが好ましい。アルミナは、LED素子からの発光に対して良好な反射性を有している。また、数mmから1mm以下の微細な構造も、成型によって比較的容易に形成することができる。また、メタライズ技術や印刷配線技術を用い、表面に比較的容易にパターン導体16Bを形成することもできる。これらの点でアルミナは、基板12を構成する材質として好ましく用いられるが、その他のセラミック材料なども、用途に応じて用いることができ、基板12の材質は特に限定されない。
 図1に示す実施形態では、2つのビア導体14の組合せに対して、1つの発光素子20が電気的に接続されている。各ビア導体14の、他方主面10Bの側の端面には所定のパターン導体16Bが接続されている。また、ビア導体14の、一方主面10Aの側は、接合層13を介して発光素子20の電極21と接続されている。
 図2に示す実施形態の発光装置1では、発光素子20の電極21が、ビア導体14の一方主面10A側の端面と対向するように配置され、発光素子20の電極21とビア導体14とが、Au/Niメッキ層31と半田層32とが積層した接合層13を介して接合されている。
 なお、発光素子20の実装には、発光素子20とビア導体14とが電気的に接続できる種々の方法を選択できる。例えば、実装方法として半田付け方法等を用いても構わない。
 発光装置1では、実装基板10の他方主面10Bの側に設けられたパターン導体16Bを介してビア導体14に電圧が印加されて、ビア導体14の一方主面10A側と接合した発光素子20に、ビア導体14を介して電流が供給される。発光素子20は、ビア導体14から供給されたこの電流によって発光する。
 ビア導体14は、金属からなる第1成分を主成分とし、この第1成分よりも熱膨張係数が低い金属酸化物からなる第2成分18が、内部に分散している。本実施形態において第2成分18は、酸化タングステン(WO)からなる。このビア導体14における第2成分18の体積占有率は、実装基板10の2つの主面のうち、発光素子20が実装される側の一方主面10Aの側でより大きくなっている。また、ビア導体14内には、第2成分18とケイ素(Si)と酸素(O)とを含有する低熱膨張領域が分散している。この低熱膨張領域の占める範囲については、明瞭には確定できないので図示はしていない。
 本実施形態のビア導体14では、第1成分が銅(Cu)であり、この銅(Cu)よりも熱膨張係数の小さい酸化タングステン(WO)を第2成分として含有している。第2成分18は、第1成分に比べて熱膨張係数が小さければよく、第1成分および第2成分18の材質については、特に限定されない。
 例えば、第2成分18は、酸化タングステンWOの代わりに酸化モリブデン(MoO)を用いてもよい。または、第2成分18として、酸化タングステン(WO)と酸化モリブデン(MoO)とを用いてもよい。
 なお、本発明において「主成分として」含まれるとは、その成分の質量含有率が、50質量%以上であることをいう。ビア導体14では、第2成分18およびその他の成分の合計に対し、第1成分である銅(Cu)がより多く(50質量%以上)含まれている。
 なお、第2成分18の体積占有率が、基板10の2つの主面のうち、一方主面10Aの側でより大きくなっているとは、ビア導体14を、一方主面10Aに略平行な仮想面で長さ方向(すなわち、基板12の厚さ方向)に2等分した際、この仮想面から一方主面10Aまでの領域における第2成分18の体積占有率が、この仮想面から他方主面10Bまでの領域における第2成分18の体積占有率よりも大きいことをいう。
 また、ビア導体14における第2成分18の位置および大きさは、例えばビア導体14の断面を走査型電子顕微鏡写真で観察することで確認することができる。具体的には、断面写真の任意領域における第2成分18の面積占有率を、そのままの値で、この任意領域における体積占有率に置き換えればよい。また、第1成分および第2成分の材質および組成は、公知のEPMA(Electron Probe Micro Analyzer)装置や、XPS(X-ray Photoelectron Spectroscopy)装置を用いて容易に確認することができる。
 図3は、本実施形態の実装基板10の一例の断面を示す図である。図3(a)は、ビア導体14の断面の走査型電子顕微鏡写真であり、(b)~(d)は(a)断面についてのEPMA分析画像である。EPMA分析装置として、EPMA波長分散型装置:JXA-8600Mを用い、分析サンプリングタイム0.5secで撮影した。(b)~(c)の各画像の濃度の淡い部分が、(b)は銅(Cu)元素、(c)はタングステン(W)元素、(d)はケイ素(Si)元素、のそれぞれの含有量の濃度の濃い部分に対応している。図3(b)~(d)については、白色に近いほど、対応する各元素の含有割合が比較的高い。図3における上下方向は、図2における上下方向に対応しており、発光素子20は、図3の上方に実装されている。
 図3(a)で比較的白っぽく見える領域と、図3(c)で比較的白く見える領域とで、対応している部分が確認できる。図3(a)に白っぽく見える領域は、タングステン(W)を多く含んでいる領域も多く含んでいる。なお、図3では示していないが、図3(c)で白っぽく現れている領域には、酸素(O)も比較的多く含有されていることを確認している。特に図3(c)から、銅(Cu)を主成分とするビア導体14内に、酸化タングステン(WO)を主成分とする第2成分18が分散していることがわかる。また、図3(c)と図3(d)とを比較すると、図3(c)で比較的白っぽく見える領域と、図3(d)で比較的白っぽく見える領域とで対応している部分がある(例えば図3(d)にてAで示す部分など)。ビア導体14内に、酸化タングステン(WO)からなる第2成分18と、ケイ素(Si)と酸素(O)とを含有する低熱膨張領域も分散している。
 図3(c)に表れているように、第2成分18の体積占有率は、図3中の上側である一方主面10Aの側が、より高くなっている。具体的に、ビア導体14を、一方主面10Aに略平行な仮想面で長さ方向に2等分した際に、この仮想面から一方主面10Aまでの領域における第2成分18の体積占有率が、この仮想面から他方主面10Bまでの領域における第2成分18の体積占有率に比べて、2倍以上大きくなっている。
 このように、ビア導体14は電気抵抗が比較的小さい銅(Cu)を主成分としており、発光素子20に供給される電気エネルギーの損失が比較的小さい。また、発光素子20は、発光に伴い比較的大きな熱を発する。
 発光装置1では、発光素子20の発熱に伴い、ビア導体14および基板12が熱膨張する。セラミックスを主成分とする基板12に対し、銅(Cu)等の金属を主成分とするビア導体14の熱膨張は大きい。このため、発光素子20の発光の度に、発光に伴う熱膨張のずれに起因した熱応力が、ビア導体14および基板12に発生する。この熱応力は、仮にビア導体14を銅(Cu)などの金属のみで構成した場合に特に大きく、発光素子20の発光の繰り返しによって、ビア導体14と基板12の貫通孔12aの内壁との剥離が生じる場合があった。
 本実施形態では、第1成分である銅(Cu)よりも熱膨張係数が低い金属酸化物である酸化タングステン(WO)からなる第2成分18が、ビア導体14の内部に分散している。発光装置1では、内部に分散している、熱膨張係数が相対的に低い第2成分18が緩衝部となり、ビア導体14全体の熱膨張の程度が抑制される。このため、ビア導体14と基板12にかかる熱応力、特にビア導体14と基板12の貫通孔12aの内壁との境界部分にかかる熱応力が緩和され、発光素子20を繰り返し発光させた場合であっても、ビア導体14と基板12との接合を、比較的強固な状態で長期間持続させることができる。
 また本実施形態では、このビア導体14における第2成分18の体積占有率が、発光素子20が実装される側の一方主面10Aの側で、より大きくなっており、ビア導体14のうち、より温度が高い側で、熱膨張の緩和の程度がより大きくされており、ビア導体14内部での熱応力分布も比較的少なく、応力の局所的な集中も抑制されている。
 また、貫通孔12aの孔径は、発光素子20が配置される側の一方主面10Aに近づくにつれて大きくなっている。発光素子20において発生した熱は、比較的大径のビア導体14に伝わって、発光素子20自体は比較的高い効率で冷却される。また、発光素子20により近い部分で第2成分18の体積占有率が大きく、ビア導体14と貫通孔12aとの剥離は抑制されている。
 また、ビア導体14には、第2成分18とガラス(SiO)成分とからなる低膨張領域が分散している。ガラス(SiO)成分は、例えば後述する焼成工程など、ビア導体14を形成する工程において、ビア導体14と基板12の貫通孔12aの内壁との界面などに、局所的に偏析し易い。本実施形態では、低膨張領域において、第2成分18とガラス成分(SiO)とが付着した状態で、ビア導体14内に分散している。このため、ビア導体14と貫通孔12aの内壁との境界部分に、ガラス(SiO)成分の偏析等が比較的少なく、熱膨張に起因したビア導体14の剥離が、より確実に抑制されている。また、このガラス成分(SiO)は、第2成分18と同様、熱膨張の程度の違いを緩和する効果を奏する。
 発光装置1は、複数の発光素子20が一方主面10Aの側に高密度に配置されており、コンパクトでありながら比較的大光量で発光することができる一方、大量の熱を発生する。実装基板10は、かかる発光装置1に好適である。なお、本発明の実装基板10は、発光装置1に限らず、比較的大きな熱量を発する、パワーモジュール用半導体素子の実装等にも、好適に用いることができる。
 また、図4は、本発明の実装基板の他の実施形態である実装基板60を備えて構成される発光装置50について説明する図であり、(a)は発光装置50の概略斜視図、(b)は発光装置50の概略断面図である。また、図5は、図4(b)の一部を拡大して示す図である。
 実装基板60は、セラミックスを主成分とする、貫通孔51aを備えた絶縁性基板51(以下、基板51とする)と、貫通孔内51a内に配置されたビア導体64と、一方主面60Aに形成されたパターン導体66Aと、他方主面60Bに形成されたパターン導体66Bと、を備えて構成されている。
 発光装置50は、実装基板60の一方主面60A側と他方主面60B側に、それぞれパターン導体66Aとパターン導体66Bとが設けられている点で、先の実施形態の実装基板10と異なっている。発光装置50でも、実装基板60の一方主面60A側に、例えば公知のLED素子である複数の発光素子70が配置されている。発光素子70は、一方の主面に第1電極72を備えるとともに、他方主面に第2電極74を備えている。
 この実施形態では、1つのビア導体64に対して、1つの発光素子70が電気的に接続されている。ビア導体64の、他方主面60Bの側の端面には所定のパターン導体66Bが接続し、ビア導体64の一方主面60Aの側は、接合層63を介して発光素子20の第2電極74と接続されている。また、実装基板60の一方主面60Aの側には、パターン導体66Aが設けられている。パターン導体66Aは、実装部91と配線部92とを有し、実装部91に発光素子70が実装されているとともに、配線部92と発光素子70の第1電極72とが、ボンディングワイヤ75を介して接続されている。この実施形態でも、ビア導体64内に酸化タングステン(WO)からなる第2成分68が分散されており、第2成分68の体積占有率が、一方主面60Aの側でより高くなっている。また、第2成分68とガラス(SiO)成分とからなる低熱膨張領域も、ビア導体64の内部に分散している。
この発光装置50でも、発光素子70における発熱は、ビア導体64を介して効率的に排熱される。また、ビア導体64内には、低熱膨張領域が分散しており、熱応力に伴って発生する絶縁基板50とビア導体64との接合不良は比較的少ない。このように、実装する素子70の構造に応じて、ビア導体64の配置や、素子70の接続構造を変更することで、様々な素子を実装することができる。
 次に、上述の実装基板60を例に、実装基板の製造方法の一例について説明する。図6(a)~(e)および図7(a)~(b)は、実装基板60を製造する手順の一部を示す断面工程図である。
 まず、図6(a)に示す、セラミックスを主成分とする絶縁性基板51(以降、基板51とする)を準備する。最初に、アルミナ粉末と、焼結助剤粉末とを混合し、水を添加して湿式粉砕する。粉砕後、有機結合材としてポリビニルアルコールなどを添加、混合することによりスラリーを作製する。スラリーを噴霧乾燥し、顆粒を作製する。金型を用いて顆粒を加圧成形し、生成形体をする。生成形体を1500~1700℃で焼成して、アルミナを主成分とする基板51を作製する。その後、必要に応じて、バリを除去するために基板表面をバレル研磨し、さらに洗浄、乾燥しても良い。
 図6(b)に示すように、基板51のビア導体64を設ける位置に、貫通孔51a(スルーホール)を穿設する。貫通孔51aの形成方法としては、例えば、マイクロドリルを用いる方法、メカニカルパンチを用いる方法、レーザーアブレーションによる方法等が挙げられる。例えば、複数の発光素子70を、なるべく高密度に配置したい場合は、貫通孔51aの内径は、なるべく小さいことが好ましい。このように貫通孔51aのアスペクト比(すなわち、孔径に対する孔深さの比)を大きくするには、レーザーアブレーションによる方法を用いることが好ましい。本実施形態では、例えば発光素子70が搭載される一方主面60A側の開口径が約100μmの貫通孔51aが、複数個穿孔される。レーザアブレーションによる穿孔によって、比較的アスペクト比が高く、かつ一方主面に近づくにしたがって内径がより大きくなった形状の貫通孔51aを形成することができる。
 次に、図6(c)に示すように、基板51の、発光素子70が実装される一方主面60Aの側に、ビア導体64および接合層63の一部を形成するための導電性ペースト52を塗布する。導電性ペースト52は、第1成分(本実施形態ではCu)を主成分とする粉末と、第2成分(本実施形態ではWO)を主成分とする粉末とを含み、これら粉末を、有機バインダと混合して調製することができる。さらに、基板51とビア導体64との密着性を向上させる観点から、補助剤としてガラスフリットがペーストに添加されている。有機バインダの種類としては、特に限定されず、例えば、エチルセルロース系、ポリビニルブチラール系、アクリニトリル系等が挙げられる。
 ここで、導体粉末に含まれる第1成分および第2成分、各粉末の形状は、特に制限されず、球状、角状、扁平状等が挙げられる。また、これら球状、各状、扁平状の粉末が混合されているものを用いることが好ましい。
 より具体的には、例えば、Cuを主成分とする粉末を約75質量%、WOを主成分とする略球状の粉末を約15質量%、ガラス粉末を約10質量%、バインダとしてブチルカルビトールを含むペーストを用いることができる。Cu粉末としては、直径が約1~5μmの略球状の粒子からなる粉末と、最長径の平均が約1~5μmであるフレーク状の粒子からなる粉末との混合物を用いることができる。これら形状の異なる粒子からなる粉末を用いることで、貫通孔51aの内部に、高密度に粉末を充填することができる。
 次に、図6(d)に示すように、貫通孔51aの内部に、ビア導体64を形成するための導電性ペーストを充填する。この導電性ペーストを焼結構造体のビアホール内に充填する方法は、その充填を十分に行うことができる方法であれば、特に限定されず、加圧印刷、手刷り印刷、真空吸引、スキージで押し込む等の手法を例示できる。比較的開口径の小さい貫通孔51aに導電性ペーストを十分に充填するには、例えば図6(d)に図示するような、ロール80によって導電性ペースト52の層を加圧して貫通孔51aに導電性ペースト52を充填するロール加圧による充填方法を用いることが好ましい。
 次に、絶縁性基板51の他方主面60Bの側にも、同様に、パターン導体66Bの一部を形成するための導電性ペースト52を塗布し、図6(e)に示すように、基板51の他方主面60Bの側にも導体層を形成する。
 次に、導電性ペースト52が貫通孔51aに充填された状態の焼結構造体を、真空中で例えば1040℃程度に加熱し、貫通孔51a内および基板51の主面(一方主面60Aおよび他方主面60B)のペースト52を焼結させる。貫通孔51a内の導電性ペースト52が焼結することで、ビア導体14が形成される。この焼成の際、発光素子70が搭載される側の一方主面60Aの側が鉛直下向きになるよう、構造体を配置しておく。
 第1成分である銅(Cu)の融点は1080℃、第2成分である酸化タングステン(WO)の融点は1475℃であり、1040℃での焼成過程では、第1成分である銅(Cu)の溶融の程度に比べ、第2成分である酸化タングステン(WO)の溶融の程度は低い。すなわち、この焼成過程では、溶融した第1成分内に、溶融されていない第2成分の粒子が分散した状態となる。また、銅(Cu)に比べて酸化タングステン(WO)の比重は高く、酸化タングステン(WO)は鉛直下向きに沈降してくる。発光素子70が搭載される側の一方主面60Aの側が鉛直下向きになるよう、構造体を配置しておくことで、ビア導体64内における第2成分の68の分散密度および体積占有率が、一方主面60Aの側でより高くなる。また、ビア導体64の焼成後の温度降下による収縮で、ビア導体64の端面は、凹状に変形し易い。本実施形態では、発光素子70が搭載される側に、比較的熱膨張係数の小さい酸化タングステン(WO)が高密度に分散しており、発光素子70が接合される側の端面で、焼成後の冷却に伴う凹状の変形が抑制されている。これにより、発光素子70とビア導体64との接合部における空洞の発生等の接合不良も抑制される。
 また、酸化タングステン(WO)は銅(Cu)に比べ、ガラス成分との濡れ性が高い。このガラス成分は、ビア導体64と基板51の貫通孔51aの内壁面との接合に寄与するが、接合に寄与しなかった余分なガラス成分は焼成時に拡散し、酸化タングステン(WO)を含む低膨張領域に取り込まれる。これにより、ビア導体64と貫通孔51aの内壁面との接合領域に、余分なガラス成分が偏析することが抑制される。
 次に、基板51の一方主面60Aおよび一方主面60Bの側の各導体層について、例えば公知のフォトリソグラフィー法を用いたエッチング処理を行い、図7(a)に示すような所望のパターン導体66Aおよびパターン導体66Bを形成する。エッチング手法としては、ウエットエッチング法やドライエッチング法など、公知のエッチング手法を用いればよい。例えば、レジスト等からなるエッチングマスクを選択的に塗布した後、エッチング剤(エッチャント)である塩化第2鉄溶液に全体を浸漬し、レジスト形状に応じたパターン導体66A、66Bを形成する。
 次に、このパターン導体66Aの実装部91に、Niメッキ層とAu層とを順次積層したAu/Niメッキ層(図7において図示せず)を形成した後、半田層(図7において図示せず)を介して発光素子70を接合する。その後、図7(b)に示すように、ボンディングワイヤ75によって発光素子70の第1電極72と、パターン導体66Aの配線部92とを接続する。発光装置50は、例えばこのような工程で作製することができる。
 上述したとおり、本発明は、上記実施形態に限定されるものではない。例えば、上記実施形態では、本願発明のデバイスの一例として、実装基板に発光素子が実装された発光装置について説明したが、本願発明のデバイスは、発光素子の他に、受光素子や光電変換素子等が実装基板に実装されていてもよい。また、本発明の実装基板は、パワーモジュール用半導体素子の実装等にも、好適に用いることができる。実装基板を構成する絶縁性基板の材料として、アルミナは、発光素子が発した光を良好に反射する点で好ましいが、パワーモジュール用半導体など、より高い放熱性が求められる実装基板の場合、絶縁性基板として例えば窒化珪素(SiN)等を用いることも好ましい。
 本発明は、その要旨を逸脱しない範囲内において適宜変更を加えることが可能である。
1、50 発光装置
10、60 実装基板
10A、60A 一方主面
10B、60B 他方主面
12、51 絶縁性基板
12a、51a 貫通孔
14、64 ビア導体
18、68 第2成分
20、70 発光素子

Claims (10)

  1.  セラミックスを主成分とする、貫通孔を備えた絶縁性基板と、
    前記貫通孔内に配置されたビア導体と、を備えて構成された実装基板であって、
    前記ビア導体は、金属からなる第1成分と、前記ビア導体の内部に分散した、前記第1成分よりも熱膨張係数が低い金属酸化物からなる第2成分とを含むことを特徴とする実装基板。
  2.  前記第2成分が酸化タングステン(WO)であることを特徴とする請求項1記載の実装基板。
  3.  前記第1成分が銅(Cu)であることを特徴とする請求項1または2記載の実装基板。
  4.  前記ビア導体は、前記第2成分とケイ素(Si)と酸素(O)とを含有する、前記第1成分よりも熱膨張係数が低い低熱膨張領域を有することを特徴とする請求項1~3のいずれかに記載の実装基板。
  5.  前記貫通孔は、前記絶縁性基板の2つの主面のうち一方主面に近づくに従い内径がより大きく、
    前記一方主面の側で、前記ビア導体における前記第2成分の体積占有率がより大きいことを特徴とする請求項1~4のいずれかに記載の実装基板。
  6.  請求項1~5のいずれかに記載の実装基板と、前記実装基板に実装されて前記ビア導体に電気的に接続された機能素子とを含むデバイスであって、
    前記機能素子は、前記絶縁性基板の前記一方主面に実装されていることを特徴とするデバイス。
  7.  前記機能素子は、供給される電力に応じて光を発するLED素子であることを特徴とする請求項6記載のデバイス。
  8. セラミックスを主成分とする、貫通孔が設けられた絶縁性基板を準備し、
    前記絶縁性基板の前記貫通孔に、前記セラミックスよりも融点が低い金属からなる第1成分を主成分とする粒子と、前記第1成分よりも融点が高く、かつ前記第1成分よりも熱膨張係数が低い金属酸化物からなる第2成分を主成分とする粒子とを含むペーストを充填し、
    前記ペーストが前記貫通孔の内部に充填された前記絶縁性基板を熱処理することを特徴とする実装基板の製造方法。
  9.  前記第1成分に比べて、前記第2成分の比重が大きいことを特徴とする請求項8記載の実装基板の製造方法。
  10.  前記第1成分が銅(Cu)であり、前記第2成分が酸化タングステン(WO)であることを特徴とする請求項9記載の実装基板の製造方法。
PCT/JP2011/058284 2010-03-31 2011-03-31 実装基板および実装基板の製造方法 WO2011125874A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012509589A JP5436662B2 (ja) 2010-03-31 2011-03-31 実装基板およびデバイス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010080814 2010-03-31
JP2010-080814 2010-03-31

Publications (1)

Publication Number Publication Date
WO2011125874A1 true WO2011125874A1 (ja) 2011-10-13

Family

ID=44762812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058284 WO2011125874A1 (ja) 2010-03-31 2011-03-31 実装基板および実装基板の製造方法

Country Status (2)

Country Link
JP (1) JP5436662B2 (ja)
WO (1) WO2011125874A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014157949A (ja) * 2013-02-16 2014-08-28 Kyocera Corp 配線基板および電子装置
JP2016086057A (ja) * 2014-10-24 2016-05-19 富士通株式会社 配線構造
CN110730574A (zh) * 2018-07-17 2020-01-24 株式会社日立电力解决方案 双面电路非氧化物系陶瓷基板及其制造方法
CN111052879A (zh) * 2017-08-29 2020-04-21 京瓷株式会社 电路基板及具备该电路基板的电子装置
CN111279470A (zh) * 2017-10-30 2020-06-12 阿莫善斯有限公司 双面陶瓷基板的制备方法、使用该方法制备的双面陶瓷基板以及包括其的半导体封装体

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10256687A (ja) * 1997-03-14 1998-09-25 Matsushita Electric Ind Co Ltd ビアホール充填用導体ペースト組成物とそれを用いたプリント配線基板
JP2001185857A (ja) * 1999-12-24 2001-07-06 Kyocera Corp 多層配線基板
JP2005136048A (ja) * 2003-10-29 2005-05-26 Kyocera Corp 多層配線基板の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08242049A (ja) * 1995-03-03 1996-09-17 Matsushita Electric Ind Co Ltd 多層配線基板用導電性ペースト
JP2001189558A (ja) * 1999-12-27 2001-07-10 Kyocera Corp 多層配線基板
JP2002176236A (ja) * 2000-12-07 2002-06-21 Murata Mfg Co Ltd ビアホール導体用組成物ならびに多層セラミック基板およびその製造方法
JP3906038B2 (ja) * 2001-05-28 2007-04-18 京セラ株式会社 配線基板の製造方法
JP4673086B2 (ja) * 2005-02-28 2011-04-20 京セラ株式会社 ビア導体メタライズ用の導体ペーストおよびこれを用いたセラミック配線基板の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10256687A (ja) * 1997-03-14 1998-09-25 Matsushita Electric Ind Co Ltd ビアホール充填用導体ペースト組成物とそれを用いたプリント配線基板
JP2001185857A (ja) * 1999-12-24 2001-07-06 Kyocera Corp 多層配線基板
JP2005136048A (ja) * 2003-10-29 2005-05-26 Kyocera Corp 多層配線基板の製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014157949A (ja) * 2013-02-16 2014-08-28 Kyocera Corp 配線基板および電子装置
JP2016086057A (ja) * 2014-10-24 2016-05-19 富士通株式会社 配線構造
CN111052879A (zh) * 2017-08-29 2020-04-21 京瓷株式会社 电路基板及具备该电路基板的电子装置
CN111052879B (zh) * 2017-08-29 2023-03-31 京瓷株式会社 电路基板及具备该电路基板的电子装置
CN111279470A (zh) * 2017-10-30 2020-06-12 阿莫善斯有限公司 双面陶瓷基板的制备方法、使用该方法制备的双面陶瓷基板以及包括其的半导体封装体
CN110730574A (zh) * 2018-07-17 2020-01-24 株式会社日立电力解决方案 双面电路非氧化物系陶瓷基板及其制造方法

Also Published As

Publication number Publication date
JPWO2011125874A1 (ja) 2013-08-01
JP5436662B2 (ja) 2014-03-05

Similar Documents

Publication Publication Date Title
JP5349714B2 (ja) 回路基板およびこれを備える電子装置
JP5436662B2 (ja) 実装基板およびデバイス
JP3588230B2 (ja) 配線基板の製造方法
JP6787413B2 (ja) 回路モジュールおよび回路モジュールの製造方法
JP6806237B2 (ja) 発熱素子実装モジュール
JP2008258214A (ja) 発光素子実装用多層配線基板とその製造方法
JP2005243831A (ja) セラミック配線基板及びその製造方法、並びにそれを用いた部品実装済み配線基板
JP2005093945A (ja) セラミック配線基板の製造方法
JP5960522B2 (ja) セラミック回路基板およびそれを用いた電子装置
JPH0992753A (ja) 多層セラミックス回路基板およびその製造方法
JP4535576B2 (ja) 多層配線基板の製造方法
JP2008159969A (ja) 回路基板、電子装置および回路基板の製造方法
JP4070198B2 (ja) 配線基板
JP2009238976A (ja) セラミック積層基板およびセラミック積層体の製造方法
JP5248941B2 (ja) セラミック部品及びその製造方法
JP4535801B2 (ja) セラミック配線基板
JP4071908B2 (ja) 多層配線基板およびその製造方法
JP2005093946A (ja) セラミック配線基板及びそれを用いた部品実装済み配線基板
JP2004087990A (ja) 複合体およびその製造方法、並びにセラミック基板の製造方法
CN109997220A (zh) 布线基板、电子装置以及电子模块
JP2004288662A (ja) 配線基板
JP2014168053A (ja) 回路基板およびこれを備える電子装置
JP2000114441A (ja) 多層金属板およびその製造方法
JP2004356619A (ja) 中継基板、半導体素子付き中継基板、中継基板付き基板、半導体素子と中継基板と基板とからなる構造体
JP3640238B2 (ja) 放熱用金属板およびそれを用いた電子部品用パッケージ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765774

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012509589

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11765774

Country of ref document: EP

Kind code of ref document: A1