JP2009238976A - セラミック積層基板およびセラミック積層体の製造方法 - Google Patents

セラミック積層基板およびセラミック積層体の製造方法 Download PDF

Info

Publication number
JP2009238976A
JP2009238976A JP2008082349A JP2008082349A JP2009238976A JP 2009238976 A JP2009238976 A JP 2009238976A JP 2008082349 A JP2008082349 A JP 2008082349A JP 2008082349 A JP2008082349 A JP 2008082349A JP 2009238976 A JP2009238976 A JP 2009238976A
Authority
JP
Japan
Prior art keywords
ceramic
glass
substrate
sintered body
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008082349A
Other languages
English (en)
Inventor
Toshihiko Maeda
敏彦 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2008082349A priority Critical patent/JP2009238976A/ja
Publication of JP2009238976A publication Critical patent/JP2009238976A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/4901Structure
    • H01L2224/4903Connectors having different sizes, e.g. different diameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1301Thyristor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/146Mixed devices
    • H01L2924/1461MEMS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15192Resurf arrangement of the internal vias

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

【課題】高寸法精度、低抵抗配線導体、高耐熱性、高耐薬品性を有し、大きな磁器強度を備えるセラミック多層配線基板およびその製造方法を提案する。
【解決手段】セラミック積層基板11は、ガラスセラミックス14と、ガラスセラミックス14より高温で焼結されたセラミック焼結体13とで成り、セラミック焼結体13の間にガラスセラミックス14を挟んで焼結されている。
【選択図】 図1

Description

本発明は、配線層が形成されたガラスセラミック焼結体と高温焼成されたセラミック焼結体とが積層されたセラミック多層配線基板に関するものである。
現在、アルミナセラミックスは、多層配線基板としてMPUなどの半導体デバイス、水晶振動子、SAWフィルターなどの電子部品のパッケージとして利用されている。アルミナセラミック多層配線基板は、有機多層配線基板に比べ、強度、耐熱性、耐環境性(気密封止、耐腐食)などで優れた特性を示す。
また、これら優れた特性を利用して近年、アルミナセラミックスは、微小電子機械機構(MEMS)を形成する基材としても利用されている。例えば、多層配線を形成したアルミナセラミック基板上に半導体プロセス加工を利用し、検査用端子(以下、プローブピンともいう)を形成した検査基板(以下、プローブ基板ともいう)などが開発されている。
しかし、アルミナ,窒化アルミニウムなどからなるセラミック多層配線基板(以下、高温焼成基板ともいう)は、1300〜1800℃の高温で焼成する必要があるため、配線導体にはW(タングステン),Mo(モリブデン)などの高融点金属材料を用いる必要がある。その結果、高温焼成基板は、配線導体の電気抵抗が高くなるため、良好な電気特性を有する基板としては不適な場合がある。
一方、ガラスセラミック焼結体を利用したセラミック多層配線基板はLTCC基板(Low Temperature Co-fired Ceramics、以下、低温焼成基板ともいう)として知られている。LTCC基板には、配線導体としてAg,Cuあるいはそれらの合金材料が用いられる。
LTCC基板は配線導体の電気抵抗が低く、高周波損失が小さいため、各種フィルター、パワーアンプ用基板、高周波モジュール用基板として多く用いられている。
しかし、LTCC基板は、一般的に、絶縁層にガラス成分を多く有するため、耐薬品性が高温焼成基板に比べ悪くなる。
また、LTCC基板の絶縁層を形成するガラスセラミックスは、一般的に、アルミナセラミックスなど高温焼成基板に比べて磁器強度が低い。そのため、各種金具を接合した場合、使用時の熱サイクルによって低温焼成基板にマイクロクラックが発生し、破断にいたる場合がある。
また、セラミック多層配線基板は一般に焼結過程において寸法変化(収縮)を伴う。セラミック多層配線基板の収縮率は、原料、各種プロセス条件(グリーンシート成型、積層、焼成)の影響を受けやすく、大型基板を高精度に形成することには技術的な課題があった。
これら高温焼成基板と低温焼成基板との長所を併せ持つ基板として、高温焼成基板と低温焼成基板とを一体化した複合基板も知られている(例えば、特許文献1参照)。
特開2001−267743号公報
しかしながら、焼結させたアルミナセラミック基板上に未焼成のガラスセラミックグリーンシートを熱圧着し、その後ガラスセラミックスを焼結させて一体化させた複合基板には、ガラスセラミックスが最表層に配置されているため、高温焼成基板に比べて耐薬品性に劣るという問題があった。また、最表層のガラスセラミックスに金具付けを行った場合、ガラスセラミックスに大きな応力が発生することから、磁器強度の低いガラスセラミックスにマイクロクラックが発生しやすいという問題があった。
さらに、ガラスセラミックグリーンシートを高温焼成基板の表面に多数積層した場合、高温焼成基板と距離の離れたガラスセラミックグリーンシートは平面方向に寸法変化し易く、ガラスセラミックグリーンシートの積層数には限界があった。
以上のように、寸法精度が高く、低温焼成基板のような低抵抗導体の内部配線を有し、高温焼成基板のような優れた耐薬品性および各種金具付けが可能な磁器強度を有するセラミック多層配線基板を実現するのは困難であった。
本発明は、上記諸問題に鑑みて完成されたものであり、その目的は、高寸法精度、低抵抗配線導体、高耐熱性、高耐薬品性、大きな磁器強度を有するセラミック多層配線基板およびその製造方法を提案することにある。
本発明のセラミック積層基板は、ガラスセラミックスと該ガラスセラミックスより高温で焼結されたセラミック焼結体とから成り、前記セラミック焼結体の間に前記ガラスセラミックスを挟んで焼結させたことを特徴とするものである。
本発明のセラミック積層基板は、好ましくは、前記ガラスセラミックス中のガラス成分が前記セラミック焼結体に固着することによって前記セラミック焼結体と前記ガラスセラミックスとが一体化されていることを特徴とするものである。
本発明のセラミック積層基板は、好ましくは、前記ガラスセラミックスの内部に、Cu,Ag,Auまたはこれらの合金から成る配線導体が形成される事を特徴とするものである。
本発明のセラミック積層基板は、好ましくは、前記セラミック焼結体には貫通孔が設けられていることを特徴とするものである。
本発明のセラミック積層基板は、好ましくは、前記貫通孔には導体が配置されていることを特徴とするものである。
本発明のセラミック積層基板は、好ましくは、前記セラミック焼結体は、酸化アルミニウム質焼結体,窒化アルミニウム質焼結体,窒化珪素質焼結体,ジルコニア質焼結体または炭化珪素質焼結体であることを特徴とするものである。
本発明のセラミック積層体の製造方法は、表裏両面に貫通する貫通孔が形成されたセラミック焼結体から成る基板を準備する工程と、ガラス粉末とセラミックフィラーと有機バインダーとを含むガラスセラミック生成形体を準備する工程と、前記ガラスセラミック生成形体の両面に前記セラミック焼結体基板を熱圧着する工程と、前記ガラスセラミック生成形体と前記セラミック焼結体基板とを加熱して前記ガラスセラミック生成形体を焼成する工程と、を有することを特徴とするものである。
本発明のセラミック積層体の製造方法は、好ましくは、前記ガラスセラミック生成形体は、熱圧着時に溶融する成分を含んでいることを特徴とするものである。
本発明のセラミック積層体の製造方法は、好ましくは、前記ガラスセラミック生成形体は、複数枚のガラスセラミックグリーンシートが積層されて成り、それぞれの前記ガラスセラミックグリーンシートに、所望の孔加工を施した後に金属を主成分とするペーストを注入する工程と、表面に金属を主成分とするペーストを所望のパターンに印刷する工程と、それぞれの前記ガラスセラミックグリーンシートを所望の順序に重ね合わせて熱圧着する工程とを経て準備されることを特徴とするものである。
本発明のセラミック積層体の製造方法は、好ましくは、前記セラミック焼結体の前記貫通孔に、ビア導体を埋め込む工程をさらに有することを特徴とするものである。
本発明のセラミック積層体の製造方法は、好ましくは、前記セラミック焼結体を準備する工程の後に、Ag,CuまたはAuを含み、前記ガラスセラミック生成形体の脱脂温度より高い焼結温度を有する導体ペーストを前記貫通孔に注入する工程をさらに有することを特徴とするものである。
本発明のセラミック積層体の製造方法は、好ましくは、前記ビア導体は、Cu,NiまたはAgをメッキすることにより形成されることを特徴とするものである。
本発明のセラミック積層基板によれば、セラミック焼結体の間にガラスセラミックスを挟んで焼結させたことから、寸法精度が高く、低抵抗な内部配線導体を有し、表面が高耐薬品性であるセラミック積層基板を得る事ができる。また、表面部分の磁器強度が大きく、各種金具を接合することが可能なセラミック積層基板を得る事ができる。
また、本発明のセラミック積層体の製造方法によれば、貫通孔を有するセラミック焼結体によってガラスセラミックグリーンシートを挟み焼成したことから、多層のガラスセラミック生成形体を高い寸法精度で、また残留カーボンが少なく絶縁信頼性が高いセラミック積層体の製造方法とすることができる。
以下に、添付の図面を参照して、本発明の実施の形態について説明する。
図1は、本発明セラミック積層基板の実施の形態の一例を示し、(a)は上面図、(b)は(a)のA−AAにおける断面を示す断面図である。なお、図1においては、本発明のセラミック積層基板をプローブカード基板に用いた例を示している。
図1に示されるように、セラミック積層基板11は、ガラスセラミックス14より高温で焼結されたセラミック焼結体から成る高温焼成基板13、および高温焼成基板13の間に挟んで焼結させたガラスセラミックス14とからなり、高温焼成基板13の内部にはビア配線導体13b、また、ガラスセラミックス14の内部には内層導体16aおよびビア導体16bから成る配線導体16がそれぞれ形成されている。
セラミック基板11の表面にプローブピン12が接続されたプローブカード基板10は、半導体デバイスの電気特性を検査する検査基板として用いられる。
セラミック積層基板11は高温焼成基板13と配線導体16を有するガラスセラミックス14とが一体化された基板であり、ガラスセラミックス14は、その上下両表面に高温焼成基板13に挟まれて配置されている。
セラミック積層基板11は、焼結した高温焼成基板13にガラスセラミックグリーンシートを密着させ、ガラスセラミックグリーンシートを焼結させることでガラスセラミックス中のガラス成分が高温焼成基板に固着し、高温焼成基板13と一体に形成することができる。ここで、ガラスセラミックグリーンシートとはガラスセラミックス14を形成するガラス粉末およびセラミック粉末などの原料粉末をシート状に形成したものをいう。高温焼成基板13は既に焼結されており、ガラスセラミックグリーンシートの焼結過程において収縮しないので、高温焼成基板13によってガラスセラミックグリーンシートの面方向の焼成収縮は拘束され、厚み方向の焼成収縮のみが進行する。従って、ガラスセラミックス14の焼結による寸法変化を抑制することができるため、ガラスセラミックス14内部に形成された配線導体16の寸法精度を高く保つことができる。
また、高温焼成基板13はガラスセラミックス14を挟持するように配置されていることから、ガラスセラミックグリーンシートを比較的多層に積層した場合であっても効果的にガラスセラミックス積層体14の面方向の収縮を拘束することが可能である。
ここで、高温焼成基板13はガラスセラミックス14の面に対し対称に配置することが好ましい。高温焼成基板13とガラスセラミックス14とは異種材料であるため、熱膨張係数を完全に一致させることはできない。このため、非対称に配置すると、高温焼成基板13とガラスセラミックス14との熱膨張係数の差によってセラミック積層基板11に反りが発生する場合がある。しかし、高温焼成基板13をガラスセラミックス14に対し、面対称に配置した場合、熱膨張係数の差により生ずる熱膨張差がガラスセラミックス14の両面において均衡し、このため、セラミックス積層基板11の反りを抑制することができる。特に、プローブカード基板10のようなサイズが8インチ〜12インチと大きくかつ平坦性が要求される用途には好適である。また、高温焼成基板13の表面をさらに研磨加工することでさらに平坦な基板を得ることができる。
高温焼成基板13は、焼結温度がガラスセラミックス14に対し400℃以上高いセラミック材料、例えば、アルミナ,ジルコニア,窒化アルミニウム,窒化珪素または炭化珪素などからなる。
高温焼成基板13はガラスセラミックス14に対し400℃以上高い温度で焼成されたセラミック基板であることから、ガラスセラミックス14の焼成プロセスの熱負荷によって、高温焼成基板13の磁器特性の劣化が発生したり、磁器寸法が変化したりすることがない。
また、高温焼成基板13がアルミナ質焼結体,窒化アルミニウム質焼結体,窒化珪素質焼結体またはジルコニア質焼結体からなる場合は、磁器強度が高くまた耐酸性にも優れるため、本発明のセラミック積層基板11に最適である。例えば、プローブピン12を半導体マイクロマシーニングで形成する場合、セラミック積層基板11の表面は各種エッチングガス、フッ化水素酸水溶液等のエッチング液に晒されるが、上記セラミック材料はほとんど腐食されることがない。
高温焼成基板13の材質は、これらセラミック材料の特性に応じて選択される。例えば、アルミナ質焼結体、ジルコニア質焼結体を選択した場合、高耐熱性と、酸、アルカリに対し優れた耐薬品性とを示すことから、様々なエッチング液、エッチングガスが利用可能であり、自由度が高いプロセス設計を行う事ができる。また、窒化アルミニウム質焼結体、窒化珪素質焼結体を選択した場合、耐酸性に対して非常に優れた特性を示すことから、強酸性の溶液が利用可能である。また、窒化アルミニウム質焼結体、窒化珪素質焼結体はシリコンウエハーと熱膨張係数が比較的近い事から、低温から高温の環境試験下で熱膨張係数の差に起因する熱膨張差が小さい。従って、シリコンウエハーとプローブ基板が同一温度となる場合、幅広い温度領域でプロービングが可能となる。
また、高温焼成基板13はガラスセラミックス14を挟持するよう配置されていることから、ガラス成分を多く含み、耐薬品性に劣るガラスセラミックスを腐食から保護する事ができる。
ガラスセラミックス14はガラスセラミックス14の内部にある配線導体16の支持体および絶縁層として機能する。ガラスセラミックス14は800℃〜950℃の焼成温度で焼結されるため、配線導体16に低抵抗な金属導体Ag,Cu、Auあるいはこれらの合金、例えば、AgPd、AgPtを主体とする導体を用いることができる。従ってセラミック積層基板11の電気特性を高めることができるため好適である。
ガラスセラミックス14は高温焼成基板13に対し熱膨張係数が近い事が望ましい。ガラスセラミックス14の熱膨張係数の調整はガラス材料の選択とセラミックフィラーの種類および添加量によって調整することができる。
例えば、高温焼成基板13がアルミナ質焼結体、ジルコニア質焼結体からなるとき、アルミナ、ジルコニア材料の熱膨張係数はそれぞれ7×10-6〜8×10-6/℃、10×10-6〜11×10-6/℃である。従って、ガラス材料にSiO−B−Al系ガラス(熱膨張係数=7×10-6/℃)を用いたとき、アルミナ材料に対してはアルミナフィラーの添加を、ジルコニア材料に対してはフォルステライトフィラーまたはα石英フィラー、あるいはその双方の添加を選択し、その添加量を調整することでガラスセラミックス14の熱膨張係数を高温焼成基板13に近づけることができる。
また、高温焼成基板13が窒化アルミニウム質焼結体、窒化珪素質焼結体または炭化珪素質焼結体からなるとき、その熱膨張係数は3×10-6〜4.5×10-6/℃である。従って、ガラス材料にSiO−B−Al―MgO系ガラス(熱膨張係数=4×10-6/℃)を用いたとき、熱膨張係数の小さいコーディエライトフィラー、ムライトフィラー、ウィルムナイトフィラーまたはその複数を選択し、その添加量を調整することでガラスセラミックス14の熱膨張係数を調整することができる。また、窒化アルミニウム、窒化珪素、炭化珪素は高温の大気雰囲気下では酸化化合物を形成するため、ガラスセラミックス14の焼成は不活性雰囲気下で焼成する必要がある。
ビア配線導体13bは表裏両面を貫通するように高温焼成基板13の内部に配置され、プローブピン12あるいは二次実装端子(図示せず)とガラスセラミックス14内部に形成された配線導体16とを電気的に接続する配線導体として機能する。ビア導体13bは公知のセミアディティブ法によるCu,NiまたはAgなどのメッキ導体をビア埋め込みメッキする方法によって形成することができる。
配線導体16はガラスセラミックス14の内部に配置され、公知のグリーンシート積層法を用いて形成される。グリーンシート積層法とは、即ち、セラミックグリーンシートにパンチングやレーザー加工等の公知の技術を用いて孔加工を施した後、AgやCu等からなる金属粉末をペースト状にしたものを充填する。その後、そのグリーンシートに導体層をスクリーン印刷等の公知の手法で形成し、これらのグリーンシートを複数層積層し焼成することにより多層配線構造を形成する手法である。
ガラスセラミックス14に形成された配線導体16は、グリーンシート積層法による配線導体であることから、焼結セラミック基板あるいはガラス基板に貫通導体を形成する基板に比べ、設計自由度を大幅に高める事が可能できる。
また、配線導体16はAg,Au,Cuあるいはその合金からなることから、モリブデン,タングステン等の高融点材料を配線導体に利用したアルミナ多層配線基板で形成したものに比べ、配線抵抗を低くすることができ、電気特性を高めることができる。
以上、プローブカード基板10に本発明のセラミック積層基板11を利用する場合を例にしてセラミック積層基板11について説明した。本発明のセラミック基板11は、半導体プロセスを利用して高密度なプローブピン12を形成することができる寸法精度と耐薬品性を有し、かつ設計自由度の高い低抵抗な内部配線導体を有するので、プローブカード基板10等の用途には好適である。
なお、プローブカード10において、プローブピン12は半導体素子が形成されたシリコンウエハーに形成された電極と接触し、半導体素子の電気特性を検査する検査端子として機能する。近年、半導体デバイスのトレンドとして、半導体素子を形成するシリコンウエハーの大口径化と半導体素子のデザインルールの微細化が進んでおり、プローブカード基板10に形成されるプローブピン12は多数化、高密度化が求められている。従って、高密度のプローブピン12を多数形成するために、半導体マイクロマシーニング法によってプローブピン12を形成することが検討されている。
次に、このようなプローブカード10に利用するセラミック積層基板11の製造方法について、図2(a)〜(i)に基づいて説明する。
まず、図2(a)に示すように、焼結させたアルミナセラミック基板13に直径0.1〜0.15mmの孔13aが加工されたものを少なくとも2枚準備する。直径0.1〜0.15mmのビアホール(貫通孔)13aの加工は公知のCOレーザー加工によって施すことができる。アルミナセラミック基板13の厚みは特に限定されないが、基板13の強度、ビアホール13a加工性の観点から例えば0.5mm前後とする。
次に、図2(b)に示すように、複数のガラスセラミックグリーンシート14a,14b,14cを準備する。ここで、ガラスセラミックグリーンシート14a,14b,14cとは、ガラス粉末およびセラミックフィラーと、有機バインダー,有機溶剤および可塑剤等とを添加混合してスラリーとし、そのスラリーを用いてドクターブレード法やカレンダロール法を採用してシート状に形成したものをいう。
セラミックフィラーとしては、例えばアルミナ,シリカ等が用いられる。また、ガラス粉末としては、例えばSiO−B系,SiO−B−Al系ガラス等が用いられる。例えば、セラミックフィラーとしてアルミナ粉末を30質量部、ガラス粉末としてSiO−B−Al系ガラスを70質量部で混合すると、焼結後の熱膨張係数が7.3×10-6/℃のガラスセラミックス14が得られる。
有機バインダーとしては、従来からガラスセラミックグリーンシートに使用されているものが使用可能である。例えば、アクリル系,ポリビニルブチラール系,ポリビニルアルコール系,ポリプロピレンカーボネート系,若しくはセルロース系等の単独重合体または共重合体が挙げられる。
グリーンシートを成形するためのスラリーに用いられる有機溶剤は、この有機溶剤とガラス粉末とセラミック粉末と有機バインダーとを混練することによって、グリーンシート成形に適した粘度のスラリーが得られるようにするものである。例えば、炭化水素類,エーテル類,エステル類,ケトン類,若しくはアルコール類等が用いられる。
次に、図2(c)に示すように、図2(b)で作製したガラスセラミックグリーンシート14a,14b,14cに、必要に応じて金型加工、レーザー加工、若しくはパンチング等の機械的加工により貫通孔を形成する。その後、この貫通孔に、Ag,Cu,Ag−Pt,Ag−Pd等の金属粉末およびガラス粉末に適当な有機バインダー,溶剤を添加混合した配線導体形成用導体ペースト16bbを、スクリーン印刷等公知の手法を用いて充填する。例えば、Ag粉末90質量部に対し、ガラス粉末を10質量部添加した配線導体形成用導体ペーストを充填する。
次に、図2(d)に示すように、これらガラスセラミックグリーンシート14a,14b,14cの表面にAg,Cu,Ag−Pt,Ag−Pd等の金属粉末とガラス粉末に適当な有機バインダー,溶剤を添加混合した配線導体用ペーストを、ガラスセラミックグリーンシート上にスクリーン印刷等により塗布し、配線導体16aaを形成する。例えば、Ag粉末97質量部に対し、ガラス粉末を3質量部添加した配線導体形成用導体ペーストを印刷する。
次に、図2(e)に示すように、配線導体16aaを形成したガラスセラミックグリーンシートを50〜80℃の温度下で3〜20MPaの圧力を加えて熱圧着し、ガラスセラミック生積層体14dを作製する。なお、少なくともガラスセラミック生積層体14dの上下層となるガラスセラミックグリーンシート14a,14cには熱圧着時の温度で溶融して流動する溶融成分、例えば、パラフィンなどのワックスを含有させておくのが望ましい。
次に、図2(f)に示すように、アルミナセラミック基板13とガラスセラミック生積層体14dとを50〜80℃の温度下、3〜10MPaの圧力で熱圧着する。ここで、ガラスセラミック生積層体14dの最上層および最下層に密着時の熱で溶融する溶融成分を含有している場合、アルミナセラミック基板13とガラスセラミック生積層体14dとを低圧力でかつ良好に密着させることができる。パラフィンなどワックス成分は、加熱圧着時の温度により溶融し、ガラスセラミックグリーンシート14dの変形量を増加させることができるためアルミナセラミック基板13とガラスセラミック生積層体14dとを良好に密着させることができる。
次に、図2(g)に示すように、加熱圧着されたアルミナセラミック基板13とガラスセラミック生積層体14dとを大気雰囲気中で焼成して、セラミック積層基板11を形成する。アルミナセラミック基板13は、ビアホール13a加工が施されているため、ガラスセラミック生積層体14dに含まれるバインダーの分解ガスはアルミナセラミック基板13に形成されたビアホール13aを通じて除去される。このため、ガラスセラミック生成形体14を効率的に脱脂することが可能となる。その結果、ガラスセラミック積層体14に残留するカーボン量、ボイド量を減らし、より絶縁信頼性の高いセラミック焼結体11を得ることができる。
また、焼結過程において、ガラスセラミック生積層体14dの主面方向の収縮がアルミナセラミック基板13によって抑制されるため、セラミック生積層体14dの主面方向の寸法精度を高精度に保つことができる。その結果、セラミック積層基板11の寸法精度を高精度のものとすることができる。
次に、図2(h)に示すように、アルミナセラミック基板13に形成されたビアホールにダマシンCuメッキ液によりビア配線導体13bを形成する。ここで、ダマシンCuメッキ液は析出抑制剤(PEG等)と促進剤(ジスルフォイド等)の複数の添加剤からなり、アルミナセラミック基板13上に形成されたTi,W,Cuなどの薄膜導通膜を利用してビア配線導体を形成することができる。薄膜導通膜はアルミナセラミック基板13にスパッタ加工、蒸着加工などで形成することができる。そしてメッキ後、アルミナセラミック基板13の表裏面を研磨加工をすることによって不要なCuメッキ層の除去とセラミック積層基板11の平坦化を実現する。
以上のようにしてプローブカード基板10等に用いられるセラミック積層基板11を得ることができる。
また、本発明のセラミック積層基板11の製造方法では、ビア配線導体13bをCuメッキによって形成する例を示したが、電解メッキによるものとは限らず、例えば、アルミナセラミック基板13に形成されたビアホール13aに、Agあるいはその合金からなる金属粉末90質量部にガラス粉末を10質量部添加した配線導体形成用導体ペーストを充填し、焼成してもよい。その場合、ビアホールに配線導体形成用導体ペーストを充填したアルミナセラミック基板13を準備し、これとガラスセラミック生積層体14dとを加熱圧着し、加熱圧着されたアルミナセラミック基板13とガラスセラミック生積層体14dとを大気雰囲気下で焼成することで、セラミック積層基板13とビア配線導体13bとを同時に形成してもよい。
なお、ビア配線導体13bに用いるAg粉末を10μm程度と粗粉化したり、あるいはAg合金としてAg−Pt、Ag−Pdを用いてビア配線導体13bの焼結開始温度をガラスセラミック生積層体14dの脱脂温度より若干高くしたりすることが望ましい。ビア配線導体13bの焼結開始温度をガラスセラミック生積層体14dの脱脂温度より高くすることにより、ガラスセラミック生成形体14dからのバインダーの分解ガスがビア配線導体13bペーストが充填されたアルミナセラミック基板13のビアホール13aを通して除去される。このため、ガラスセラミック積層体14に残留するカーボン量、ボイド量を減らし、より絶縁信頼性の高いセラミック焼結体11を得ることができる。
次に、本発明のセラミック積層基板23をパワーモジュール20に用いる例を示す。図3は、本発明のセラミック積層基板23を利用したパワーモジュール20を示す。図3において、(a)は上面図、(b)は、(a)の断面B−BBにおける断面図を示している。本実施形態におけるセラミック積層基板23は、上記セラミック積層基板11と同じ構成を有するが、形状や配線導体16,ビア配線導体13b等の配置が異なるものである。
パワーモジュール20(以下、PMともいう)はIGBTなどのパワー半導体素子21に駆動回路や保護機能、制御機能を有する制御用IC22を搭載し、モジュールとして機能を高めたものである。
PM20は、セラミック積層基板23とセラミック積層基板23上に形成された大電流用導体24および放熱用導体25、そしてセラミック積層基板23上に搭載されたパワー半導体素子21および制御用IC22からなる。なお、図3(a)において、分りやすくするために大電流用導体24,ビア配線導体26aにハッチングを付している。従って、これらハッチングは断面を示すものではない。
パワー半導体素子21はGTO、サイリスタ、パワーMOSFET,IGBTなどのデバイスの総称であり、電圧または周波数を機器の動作に必要なものに変換するために用いられる。これらPM20は、近年、省エネルギー化に対する需要を背景に注目されている。
制御用IC22はパワー半導体素子21を駆動、保護または制御する機能をIC化した半導体素子であり、低電圧、低電流で駆動される。パワー半導体素子21と共にセラミック積層基板23に搭載される。
セラミック積層基板23は、高温焼成基板26とガラスセラミックス27とが一体化されたセラミック基板である。すなわち、セラミック積層基板23は、焼結させた高温焼成基板26にガラスセラミックグリーンシートを密着させ、ガラスセラミックグリーンシートを焼結させることにより、高温焼成基板26と一体化したものである。
ここで、ガラスセラミックグリーンシートとはガラスセラミックス27を形成するガラス粉末およびセラミック粉末などの原料粉末をシート状に形成したものをいう。高温焼成基板26はガラスセラミックス14を挟持するように配置されているので、上述のプローブカード用基板10のセラミック積層基板11と同様に、ガラスセラミックス27の焼結時の収縮による寸法変化を抑制することができる。また、セラミックス積層基板23の反りを抑制することができる。
大電流用導体24は大電流の導通経路として機能し、例えば、0.1〜0.5mm厚のCu,Al(アルミニウム)等の金属板を800℃の真空雰囲気下で活性銀ロウ材等を用いてセラミック積層基板23と接合し、その後所望のパターン形状に加工することで形成される。
放熱用導体25はパワー半導体素子21から発生する熱を放熱する放熱板として機能する。また、放熱用導体25の厚みは大電流用導体24の熱膨張によるセラミック積層基板23に生じる反りを解消するよう設定される。また、放熱用導体25は大電流用導体24と同一の製造方法でセラミック積層基板23上に形成することができる。
大電流用導体24および放熱用導体25は0.1〜0.5mm厚のCu、Al等の金属板からなることから、大電流用導体24と高温焼成基板26との間、あるいは放熱用導体25と高温焼成基板26との間には熱膨張係数の差による熱応力が発生する。しかし、アルミナセラミックス、ジルコニアセラミックス、窒化珪素セラミックス、窒化アルミニウムセラミックス等からなる高温焼成基板26の磁器強度はガラスセラミックス27よりも高いため、接合時の熱応力、または使用時の熱サイクルによってマイクロクラックが発生しにくい。従って、PM20を絶縁信頼性の高いものとすることができる。特に窒化珪素質セラミックスは磁器強度が高くかつ靭性も高いことから高温焼成基板26の材質としては最適である。
本実施形態における配線導体28、はパワー半導体素子21と制御IC22とを接続する導通経路、ノイズを低減するためのグランド層、パワー半導体素子21の放熱経路となるサーマルビア28aとしても機能する。ガラスセラミックス27の内部に配線導体28を形成する事によってPM20の設計自由度を高め、PM20を小型化するとともに、電気特性の向上を図ることができる。
ビア配線導体26aは高温焼成基板26内部に配置されガラスセラミックス27に形成された配線導体28との電気的な経路、あるいはガラスセラミックス27に形成されたサーマルビアへ28aの放熱経路として機能する。
ビア配線導体26aは、例えば、焼結された高温焼成基板26にレーザー加工を行なって形成されたビアホールに、公知のセミアディティブ法によるCu,NiまたはAgなどのメッキ導体をビア埋め込みメッキする方法によって形成することができる。
以上のように、本発明のセラミック積層基板23を利用することで、小型で、設計自由度が高く、電気特性に優れるPM20とすることができる。
また、PM20は必ずしも個片で形成する必要がなくセラミック基板23に多数個アレイ状に形成し、形成後各PM20に分割してもよい。その場合、高温焼成基板26には個片間にダミービアホールを形成しておくとよい。このダミービアホールは、ガラスセラミックグリーンシート中に含まれるバインダーの分解ガスを除去されやすいようにする機能も果たす。
また、本実施形態の例では金具付けがされたセラミック積層基板23の例としてパワーモジュール20を例として説明したが、実施の形態はこれに限られたものではなく、本発明の要旨の範囲内であれば、種々の変形は可能である。例えば、接続される金具が各種のリード端子やピン端子であっても構わない。
本発明のセラミック積層基板の実施の形態の一例を示し、(a)は上面図、(b)は(a)の断面A−AAにおける断面図を示す。 本発明のセラミック積層体の製造方法の実施の形態の一例を示す断面図である。 本発明のセラミック積層基板の実施の形態の他の例を示し、(a)は上面図、(b)は(a)の断面B−BBにおける断面図を示す。
符号の説明
10: プローブカード基板
11: セラミック積層基板
12: プローブピン
13: 高温焼成基板(セラミック焼結体)
13b: ビア配線導体
14: ガラスセラミックス
16: 配線導体
20: パワーモジュール
21: パワー半導体
22: 制御用IC
23: セラミック積層基板
24: 大電流用導体
25: 放熱用導体
26: 高温焼成基板
26a: ビア配線導体
27: ガラスセラミックス
28: 配線導体

Claims (12)

  1. ガラスセラミックスと該ガラスセラミックスより高温で焼結されたセラミック焼結体とから成り、前記セラミック焼結体の間に前記ガラスセラミックスを挟んで焼結させたセラミック積層基板。
  2. 前記ガラスセラミックス中のガラス成分が前記セラミック焼結体に固着することによって前記セラミック焼結体と前記ガラスセラミックスとが一体化されていることを特徴とする請求項1記載のセラミック積層基板。
  3. 前記ガラスセラミックスの内部に、Cu,Ag,Auまたはこれらの合金から成る配線導体が形成される事を特徴とする請求項1または2記載のセラミック積層基板。
  4. 前記セラミック焼結体には貫通孔が設けられていることを特徴とする請求項1乃至3のいずれかに記載のセラミック積層基板。
  5. 前記貫通孔には導体が配置されていることを特徴とする請求項4記載のセラミック積層基板。
  6. 前記セラミック焼結体は、酸化アルミニウム質焼結体,窒化アルミニウム質焼結体,窒化珪素質焼結体,ジルコニア質焼結体または炭化珪素質焼結体であることを特徴とする請求項1乃至5のいずれかに記載のセラミック積層基板。
  7. 表裏両面に貫通する貫通孔が形成されたセラミック焼結体から成る基板を準備する工程と、
    ガラス粉末とセラミックフィラーと有機バインダーとを含むガラスセラミック生成形体を準備する工程と、
    前記ガラスセラミック生成形体の両面に前記セラミック焼結体基板を熱圧着する工程と、
    前記ガラスセラミック生成形体と前記セラミック焼結体基板とを加熱して前記ガラスセラミック生成形体を焼成する工程と、
    を有することを特徴としたセラミック積層体の製造方法。
  8. 前記ガラスセラミック生成形体は、熱圧着時に溶融する成分を含んでいることを特徴とする請求項7記載のセラミック積層体の製造方法。
  9. 前記ガラスセラミック生成形体は、複数枚のガラスセラミックグリーンシートが積層されて成り、それぞれの前記ガラスセラミックグリーンシートに、所望の孔加工を施した後に金属を主成分とするペーストを注入する工程と、表面に金属を主成分とするペーストを所望のパターンに印刷する工程と、それぞれの前記ガラスセラミックグリーンシートを所望の順序に重ね合わせて熱圧着する工程とを経て準備されることを特徴とする請求項7または8記載のセラミック積層体の製造方法。
  10. 前記セラミック焼結体の前記貫通孔に、ビア導体を埋め込む工程をさらに有することを特徴とした請求項7乃至9のいずれかに記載のセラミック積層体の製造方法
  11. 前記セラミック焼結体を準備する工程の後に、Ag,CuまたはAuを含み、前記ガラスセラミック生成形体の脱脂温度より高い焼結温度を有する導体ペーストを前記貫通孔に注入する工程をさらに有することを特徴とする請求項10記載のセラミック積層体の製造方法。
  12. 前記ビア導体は、Cu,NiまたはAgをメッキすることにより形成されることを特徴とする請求項10記載のセラミック積層体の製造方法。
JP2008082349A 2008-03-27 2008-03-27 セラミック積層基板およびセラミック積層体の製造方法 Pending JP2009238976A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008082349A JP2009238976A (ja) 2008-03-27 2008-03-27 セラミック積層基板およびセラミック積層体の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008082349A JP2009238976A (ja) 2008-03-27 2008-03-27 セラミック積層基板およびセラミック積層体の製造方法

Publications (1)

Publication Number Publication Date
JP2009238976A true JP2009238976A (ja) 2009-10-15

Family

ID=41252586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008082349A Pending JP2009238976A (ja) 2008-03-27 2008-03-27 セラミック積層基板およびセラミック積層体の製造方法

Country Status (1)

Country Link
JP (1) JP2009238976A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014743A1 (ja) * 2010-07-30 2012-02-02 日立オートモティブシステムズ株式会社 車載用電子機器に用いる基板構造
JPWO2018179538A1 (ja) * 2017-03-29 2019-11-07 株式会社村田製作所 パワーモジュール及びパワーモジュールの製造方法
JP2020053593A (ja) * 2018-09-27 2020-04-02 Tdk株式会社 Mosトランジスタ内蔵基板及びこれを用いたスイッチング電源装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014743A1 (ja) * 2010-07-30 2012-02-02 日立オートモティブシステムズ株式会社 車載用電子機器に用いる基板構造
JP2012033664A (ja) * 2010-07-30 2012-02-16 Hitachi Automotive Systems Ltd 車載用電子機器に用いる基板構造
JPWO2018179538A1 (ja) * 2017-03-29 2019-11-07 株式会社村田製作所 パワーモジュール及びパワーモジュールの製造方法
JP2020053593A (ja) * 2018-09-27 2020-04-02 Tdk株式会社 Mosトランジスタ内蔵基板及びこれを用いたスイッチング電源装置
JP7119842B2 (ja) 2018-09-27 2022-08-17 Tdk株式会社 Mosトランジスタ内蔵基板及びこれを用いたスイッチング電源装置

Similar Documents

Publication Publication Date Title
US7888187B2 (en) Element mounting substrate and method for manufacturing same
US9596747B2 (en) Wiring substrate and electronic device
EP1986231A1 (en) Metallized ceramic board incorporating lead and package
TW200425808A (en) Intermediate board, intermediate board with a semiconductor device, substrate board with an intermediate board, structural member including a semiconductor device, an intermediate board and a substrate board, and method of producing an intermediate board
JP2015185820A (ja) 配線基板および電子装置
JP2009158576A (ja) 電子部品検査治具用多層セラミック基板
JPWO2018179538A1 (ja) パワーモジュール及びパワーモジュールの製造方法
JP5566271B2 (ja) 配線基板およびその製造方法
JP2009238976A (ja) セラミック積層基板およびセラミック積層体の製造方法
JP5960522B2 (ja) セラミック回路基板およびそれを用いた電子装置
JP2008159969A (ja) 回路基板、電子装置および回路基板の製造方法
JP4900226B2 (ja) 多層セラミック基板及びその製造方法、電子部品
JPH11103141A (ja) 配線基板
JP5787808B2 (ja) プローブカード用配線基板およびそれを用いたプローブカード
JP2000340716A (ja) 配線基板
JP2013115123A (ja) 配線基板およびその製造方法
JP3879276B2 (ja) セラミック多層基板の製造方法
JP2000312057A (ja) 配線基板およびその製造方法
JP2006128262A (ja) 電子部品搭載用基板、電子装置および電子部品搭載用基板の製造方法
JP2008159726A (ja) 多層配線基板
JP2004014616A (ja) セラミック回路基板用外部接続端子
JP2014107390A (ja) 配線基板およびそれを用いた多層配線基板
JPH1126942A (ja) 多層配線基板
JP5573407B2 (ja) 金属ベース基板
JP4593802B2 (ja) 半導体素子収納基板