WO2011125498A1 - タンデム圧延機の動作制御方法及びこれを用いた熱延鋼板の製造方法 - Google Patents

タンデム圧延機の動作制御方法及びこれを用いた熱延鋼板の製造方法 Download PDF

Info

Publication number
WO2011125498A1
WO2011125498A1 PCT/JP2011/056926 JP2011056926W WO2011125498A1 WO 2011125498 A1 WO2011125498 A1 WO 2011125498A1 JP 2011056926 W JP2011056926 W JP 2011056926W WO 2011125498 A1 WO2011125498 A1 WO 2011125498A1
Authority
WO
WIPO (PCT)
Prior art keywords
stand
rolled
rolling
side plate
plate thickness
Prior art date
Application number
PCT/JP2011/056926
Other languages
English (en)
French (fr)
Inventor
大介 新國
福島 傑浩
鷲北 芳郎
哲雄 梶原
堀井 健治
佐藤 太郎
Original Assignee
住友金属工業株式会社
三菱日立製鉄機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属工業株式会社, 三菱日立製鉄機械株式会社 filed Critical 住友金属工業株式会社
Priority to KR1020127025295A priority Critical patent/KR101404347B1/ko
Priority to CN201180017039.9A priority patent/CN102821884B/zh
Priority to EP11765399.8A priority patent/EP2556903B1/en
Priority to BR112012024631A priority patent/BR112012024631A8/pt
Publication of WO2011125498A1 publication Critical patent/WO2011125498A1/ja
Priority to US13/625,283 priority patent/US8850860B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/72Rear end control; Front end control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/24Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/24Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
    • B21B1/26Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by hot-rolling, e.g. Steckel hot mill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2265/00Forming parameters
    • B21B2265/12Rolling load or rolling pressure; roll force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2273/00Path parameters
    • B21B2273/12End of product
    • B21B2273/14Front end or leading end
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control
    • B21B37/64Mill spring or roll spring compensation systems, e.g. control of prestressed mill stands

Definitions

  • the present invention relates to an operation control method for a tandem rolling mill and a method for producing a hot-rolled steel plate using the same.
  • the present invention is, for example, an operation control method for a tandem rolling mill in which a tightening load is applied before a tip of a material to be rolled is bitten into each stand constituting a tandem finishing rolling mill of a hot rolling line, and a method using the same.
  • the present invention relates to a method for manufacturing a hot-rolled steel sheet.
  • each stand When rolling a material to be rolled by a tandem rolling mill having a plurality of rolling mills (stands) such as a finish rolling mill in a hot rolling line, the operation of each stand depends on the thickness of the material to be rolled and the plate on the final stand exit side. The width and the like are determined so as to satisfy the target condition.
  • the operating condition of each stand is called a draft schedule (pass schedule), and greatly affects the quality and productivity of the product. Therefore, it is required to determine an appropriate draft schedule according to the product.
  • the draft schedule of the tandem finish rolling mill in the hot rolling line is generally better in the surface quality of the product by reducing the surface roughness of the work roll surface as the stand closer to the final product (downstream in the moving direction of the material to be rolled). Therefore, the rolling load is determined to be light.
  • the reduction ratio of the first stage (upstream side in the moving direction of the material to be rolled) stand and the second stage stand is set to be the same, the latter stage stand that rolls the material to be rolled with a small thickness requires a large rolling load. There are rolling characteristics. Therefore, in the normal draft schedule, the rolling reduction is smaller as the latter stage stand.
  • steel materials used for automobiles and structural materials are required to have excellent mechanical properties such as strength, workability, and toughness.
  • mechanical properties such as strength, workability, and toughness.
  • the preset opening degree is nominally negative.
  • the upper and lower work rolls are brought into contact (hereinafter, this state is referred to as “kiss roll”), and further, a load is applied by tightening with a reduction device, and the rolling mill is elastically deformed in advance. .
  • kiss roll In normal hot rolling, it is rare that kiss roll is required and the load at that time is light, so there is no problem, but in the case of the above-mentioned fine grain steel rolling, a very large kiss roll load is generated and equipment maintenance is performed. The above problem occurs.
  • the roll drive system parts are damaged by torque circulation due to a small difference in peripheral speed between the upper and lower work rolls, or if the axes of the upper and lower work rolls intersect (cross or skew) in the horizontal plane, the axis between the rolls
  • the roll bearing may be damaged by directional force (hereinafter referred to as “thrust force”). These are all due to the direct contact between the upper and lower work rolls, and if a rolled material exists between them, that is, there is no problem during rolling.
  • thrust force directional force
  • Non-Patent Document 1 discloses a method of reducing the frictional force between rolls by applying a lubricant to the rolls during kiss rolls.
  • a technique related to operation control of a rolling mill for example, in Patent Document 1, in a hot finishing rolling mill composed of a plurality of stands, a hot that expands the opening degree of at least one stand in each of the stands that are continuously provided.
  • the finish rolling method when the leading end of the conveyed rolled plate reaches the work roll of the stand for changing the opening, the first step for starting the opening change of the stand and the first step starts.
  • Non-Patent Document 1 if a lubricant is used, it becomes possible to reduce the thrust force due to the load applied at the time of kiss roll, and also due to a small difference in peripheral speed between the upper and lower work rolls. It is considered possible to reduce so-called torque circulation that leads to damage to drive system components.
  • a lubricant that does not impair hot biting properties when used, the effect of reducing the rolling load itself by greatly reducing the friction coefficient during hot rolling is small. For this reason, when trying to manufacture fine-grained steel by increasing the rolling reduction of the rear stage stand, there is a problem that the tightening load of the stationary part exceeds the tightening load upper limit at the time of the kiss roll.
  • Patent Document 1 describes a method of changing the opening degree of a rolling mill during rolling, but not the opening degree change from the kiss roll state, but the respective opening degree at the time of shifting from the kiss roll state to the steady rolling. The decision method is not stated. Therefore, it is difficult to control the operation of the tandem rolling mill from the kiss roll state using the technique disclosed in Patent Document 1, and there is a problem that the rear stage stand required for the production of the fine-grain steel plate cannot be rolled under high pressure. It was.
  • the present invention provides a method for controlling the operation of a tandem rolling mill that enables high-pressure rolling at a subsequent stage of a tandem rolling mill necessary for the production of fine-grained steel, and a method for producing a hot-rolled steel sheet using the same.
  • the issue is to provide.
  • the first aspect of the present invention has N (N is an integer of 2 or more) stands (1, 2,..., 7), and the N ⁇ m + 1 stand before biting the material to be rolled (8).
  • the rolled material (8) is rolled so as to have the outgoing side plate thickness determined in the second outgoing side plate thickness determining step, and the steady portion of the rolled material is the N ⁇ m + 1th stand ( 5) to Nth stand (7), rolled to the delivery side thickness determined in the first delivery side thickness determination step, and from the (N ⁇ m + 1) th stand (5) decided in the second delivery side thickness determination step.
  • the operation control method for a tandem rolling mill is characterized in that the exit side plate thickness up to N stand (7) is thicker than the exit side plate thickness of the same stand determined in the first exit side plate thickness determining step.
  • the “Nth stand (7)” means the final stand of the tandem rolling mill (10), that is, the downstream end in the moving direction of the material to be rolled (8) rolled by the tandem rolling mill (10). This refers to the stand (7) of the tandem rolling mill.
  • the “first stand (1)” refers to a tandem mill stand (1) disposed at the upstream end in the moving direction of the material (8) to be rolled by the tandem mill (10).
  • the front-end rolling part of a to-be-rolled material (8) means the part rolled before the rolling mill operation
  • a "steady part of a to-be-rolled material (8)” means the part rolled after finishing the rolling mill operation
  • the (N ⁇ m + 1) th stand (5) to the (N) th (7) exit side thickness determined in the second exit side thickness determination step is the same as the output of the same stand determined in the first exit side thickness determination step.
  • Thicker than the side plate thickness means that the outlet side plate thickness of each stand from the (N ⁇ m + 1) th stand (5) to the Nth stand (7) is the outgoing side plate thickness determined in the second outgoing side plate thickness determining step. This means that it is determined to be thicker than the outlet side plate thickness determined in the first outlet side plate thickness determining step.
  • the shape change of the stand (7) is predicted based on the rolling load change from the tip rolling portion to the steady portion when the material to be rolled is transferred from the tip rolling portion to the steady portion.
  • the operation of the shape control means (7x, 7y) of the stand is preferably controlled based on the predicted shape change.
  • the “stand shape control means (7x, 7y)” means, for example, an actuator (7x) capable of changing the cross angle of the work rolls (7a, 7a) or the work rolls (7a, 7a). ) Or the like, and an actuator represented by a roll bender device (7y) or the like that can change the bending force to be applied.
  • the stand (5, 6, 7) to which a tightening load is applied in advance has two or more shape control means (5x, 5y, 6x, 6y, 7x, 7y).
  • the two or more shape control means, the first shape control means (5x, 6x, 7x) and at least a second shape capable of high-speed operation at the time of transition from the tip rolling portion to the steady portion of the material to be rolled Control means (5y, 6y, 7y) are included, and the operation of the second shape control means is predicted before the transition from the tip rolling portion to the steady portion of the material to be rolled.
  • the operations of the first shape control means and the second shape control means may be set so as not to exceed the allowable operation range of the shape control means.
  • “high-speed operation is possible” means that the shape control means can be completed in a state where there is almost no time delay with respect to a change in rolling load accompanying a change in the rolling mill opening degree or the like. .
  • the stand (5, 6, 7) to which a tightening load is applied in advance can operate at high speed at least when the material to be rolled is shifted from the tip rolling portion to the steady portion.
  • the first shape control means (5z, 6z, 7z) and the second shape control means (5y, 6y, 7y) have a second shape control means when the allowable operating range of the first shape control means is exceeded. It is preferable that the operation is changed.
  • the exit side plate thickness determining step (S1) further includes a tightening load in which the tightening load of the stand when the rolling of the rear end rolling portion of the material to be rolled is finished is set in advance. It is preferable to include a third exit side plate thickness determining step (S16) for determining an exit side plate thickness from the first stand (1) to the Nth stand (7) so as to be equal to or less than the load.
  • the “rear end rolling portion of the material to be rolled” refers to the material (8) of the material to be rolled (8) located upstream of the steady portion of the material to be rolled (8) in the moving direction of the material to be rolled (8).
  • the tail end side part refers to the material (8) of the material to be rolled (8) located upstream of the steady portion of the material to be rolled (8) in the moving direction of the material to be rolled (8).
  • a steel plate (8) is rolled using a hot finish rolling mill row (20) whose operation is controlled by the operation control method for a tandem rolling mill according to the first aspect of the present invention. It is the manufacturing method of a hot-rolled steel plate characterized by having the process to do.
  • the exit side plate of each stand when rolling the steady portion of the material to be rolled so that the tightening load applied in advance to the stand is equal to or less than a preset tightening load.
  • a second outlet thickness determining step for determining the thickness, and the outlet thickness from the (N ⁇ m + 1) th stand to the Nth stand determined in the second outlet thickness determining step is determined by the first outlet thickness determination. It is thicker than the thickness of the determined outlet side of the same stand. Therefore, according to the 1st aspect of this invention, even if it is a case where high-pressure rolling is performed, the exit side plate
  • the tightening load at the time of kiss roll is controlled to be equal to or less than the tightening load determined from the equipment maintenance aspect. It becomes possible. Therefore, by applying the first aspect of the present invention to the hot finish rolling mill row (20), it is possible to provide an operation control method for a tandem rolling mill capable of producing fine grain steel. .
  • the 2nd aspect of this invention uses a hot finishing rolling mill row
  • FIG. 1 is a flowchart showing an example of an operation control method for a tandem rolling mill according to the present invention (hereinafter, also referred to as “operation control method of the present invention”).
  • the operation control method of the present invention shown in FIG. 1 includes an exit side plate thickness determining step (hereinafter, sometimes referred to as “S1”).
  • the S1 includes a first delivery side plate thickness determination step (S11), a steady portion load prediction step (S12), an opening calculation step (S13), a tightening load prediction step (S14), and a second delivery side plate thickness. It includes a determination step (S15) and a third exit side plate thickness determination step (S16). That is, in the operation control method of the present invention, the operation of the tandem rolling mill is controlled using S1 having these steps.
  • FIG. 2 is a diagram showing a form example of the tandem rolling mill 10 whose operation is controlled by the operation control method of the present invention.
  • the form of the tandem rolling mill 10 is shown in a simplified manner.
  • the tandem rolling mill 10 has seven stands, a first stand 1, a second stand 2,..., And a seventh stand 7, and the first stand 1 to the seventh stand 7.
  • the material to be rolled 8 hereinafter, sometimes referred to as “steel plate 8”
  • Each of these seven stands 1, 2,..., 7 includes a pair of work rolls and a pair of backup rolls, an actuator for changing the cross angle of the rolls, and a roll bender device for imparting bending force to the rolls.
  • the first stand 1 includes a pair of work rolls 1a and 1a, a pair of backup rolls 1b and 1b, an actuator 1x and a roll bender device 1y, and the operations of the work rolls 1a and 1a and the backup rolls 1b and 1b. Is controlled via an actuator 1x and a roll bender device 1y whose operations are controlled by the control device 1c.
  • the seventh stand 7 includes a pair of work rolls 7a and 7a, a pair of backup rolls 7b and 7b, an actuator 7x, and a roll bender device 7y, and the work rolls 7a and 7a and the backup rolls 7b and 7b
  • the operation is controlled via an actuator 7x and a roll bender device 7y whose operations are controlled by the control device 7c.
  • the control devices 1c, 2c, ..., 7c are known process computers.
  • the form of S1 is not particularly limited as long as it has at least S11 and S15 described later.
  • the steady portion of the steel plate 8 refers to a portion that is rolled after finishing the rolling mill operation for achieving S11.
  • S11 is a step of determining the exit side plate thicknesses h1 to h7 of the first stand 1 to the seventh stand 7 when rolling the steady portion of the material 8 to be rolled, that form Is not particularly limited.
  • ⁇ Second delivery thickness determination step S15> the material to be rolled is set so that the tightening load applied in advance to the stand is equal to or less than a preset tightening load. This is a step of determining the exit side plate thickness from the first stand to the N-th stand when rolling the 8 tip rolling part.
  • the pre-tightening load is set to be equal to or lower than the upper limit value.
  • ⁇ Third exit side plate thickness determining step S16> In the third delivery side plate thickness determination step (hereinafter sometimes referred to as “S16”), the tightening load of the stand when the rolling of the rear end rolling portion of the material to be rolled is finished is set in advance. This is a step of determining the outlet side plate thickness from the first stand to the Nth stand so as to be as follows. When rolling a material to be rolled, the kiss roll state can occur not only before the start of rolling but also after the end of rolling.
  • the mill constant or plastic property when it is predicted that the tightening load applied in the kiss roll state after the end of rolling exceeds the upper limit value of the tightening load set from the viewpoint of equipment maintenance, the mill constant or plastic property
  • the value of the pre-tightening load predicted in S14 is less than the upper limit value in the fifth stand 5 and the sixth stand 6, while the steel plate 8 in the case where the upper limit value is exceeded in the seventh stand 7
  • the operation of the tandem rolling mill 10 for rolling is as follows, for example. First, the delivery side plate thicknesses of the first stand 1 to the 6th stand 6 become the delivery side plate thicknesses h1 to h6 of the tip rolling portion determined in S11, and the delivery side plate thickness of the seventh stand 7 is changed in S15.
  • the control devices 1c to 7c are operated so that the thickness becomes h7 '(> h7), the tandem rolling mill 10 is set up, and rolling is started.
  • the control device 7c is operated so that the outlet side plate thickness of the seventh stand 7 becomes the outlet side plate thickness h7 of the stationary part determined in S11 at a predetermined timing after the most advanced portion is bitten into the seventh stand 7.
  • the process proceeds to rolling of the stationary part.
  • the so-called absolute value AGC for calculating the output side thickness from the rolling load and the actual value of the reduction position and operating the reduction position so that the output side thickness matches the target plate thickness can be calculated. What is necessary is just to apply to a stand and change the target board thickness from h7 'to h7.
  • the predetermined timing timing for operating the control device 7c
  • any timing can be used as long as the seventh stand 7 bites the most advanced portion of the material to be rolled. What is necessary is just to designate in advance the time until the control device 7c is actuated after being bitten by the seventh stand 7.
  • a work roll crown that is flattened under the rolling conditions of the steady part of the steel sheet is given, and the roll at the tip rolled part of the steel sheet can ensure the flatness by compensating for the rolling load difference with the steady part of the steel sheet.
  • the bending force applied to the work roll was changed using a bender device.
  • the bending force applied to the work roll bender may be expressed as “WRB”.
  • F1 to F7 in the following table correspond to the first stand 1 to the seventh stand 7, respectively.
  • ⁇ Embodiment 1> Assuming a case where a fine-grained steel is manufactured through a process of rolling a steel plate 8 having a plate thickness of 32 mm and a plate width of 1000 mm before being rolled by the first stand 1 using a tandem rolling mill 10, the steady portion is rolled.
  • the outgoing side plate thicknesses h1 to h7 were determined in S11.
  • the determined delivery side plate thickness [mm] is applied to the rolling load [MN] applied to the steady part of the material to be rolled, WRB [kN / ch] when rolling the tip, the reduction position [mm], to the stand Table 1 shows the applied tightening load [MN] and the limit load [MN] during kiss roll.
  • the reduction position means the vertical position of the tightening load applying means in which the position at the time of kiss roll of the stand to which no load is applied is zero, and the tightening load is larger than when the reduction position is zero. Then, the value of the reduction position becomes negative.
  • “/ Ch” means “per chock”. The same applies to the following.
  • the tightening load of the seventh stand 7 was 17.28MN, which exceeded the limit load of 12.74MN when the seventh stand 7 was kiss-rolled. Therefore, if a tightening load is applied to the seventh stand 7 in advance according to the draft schedule determined in S11, the seventh stand 7 may be damaged. Accordingly, in S15, the exit side plate thicknesses h1 to h6 maintain the values determined in S11, but are larger than the exit side plate thickness h7 so that the tightening load applied to the seventh stand 7 is less than the limit load.
  • the delivery side plate thickness h7 ′ was determined.
  • the delivery side plate thicknesses h1 to h7 ′ [mm] determined in S15 are the rolling load [MN] applied to the steady portion of the material to be rolled, WRB [kN / ch] when rolling the tip, and the reduction position [ mm], the tightening load [MN] applied to the stand, and the limit load [MN] during kiss roll are shown in Table 2.
  • Second Embodiment Assuming a case where a fine grain steel is manufactured through a process of rolling a steel plate 8 having a plate thickness of 38 mm and a plate width of 1500 mm before being rolled by the first stand 1 using a tandem rolling mill 10, the steady portion is rolled.
  • the outgoing side plate thicknesses h1 to h7 were determined in S11.
  • the determined delivery side plate thickness [mm] is applied to the rolling load [MN] applied to the steady part of the material to be rolled, WRB [kN / ch] when rolling the tip, the reduction position [mm], to the stand Table 3 shows the tightening load [MN] applied and the limit load [MN] during kiss roll.
  • the tightening load of the seventh stand 7 was 14.90MN, exceeding the limit load of 12.74MN when the seventh stand 7 was kiss-rolled. Therefore, if a tightening load is applied to the seventh stand 7 in advance according to the draft schedule determined in S11, the seventh stand 7 may be damaged. Accordingly, in S15, the exit side plate thicknesses h1 to h6 maintain the values determined in S11, but are larger than the exit side plate thickness h7 so that the tightening load applied to the seventh stand 7 is less than the limit load.
  • the delivery side plate thickness h7 ′ was determined.
  • the delivery side plate thicknesses h1 to h7 ′ [mm] determined in S15 are set to the rolling load [MN] applied to the steady portion of the material to be rolled, WRB [kN / ch] when rolling the tip, and the reduction position [ mm], the tightening load [MN] applied to the stand, and the limit load [MN] during kiss roll are shown in Table 4.
  • the tightening load of the seventh stand 7 is 12.72 MN which is smaller than the limit load 12.74 MN. I was able to. Therefore, like the operation control method of the present invention according to the first embodiment, according to the operation control method of the present invention according to the second embodiment, the fifth stand 5 to the seventh stand for producing fine-grained steel. Even when high-pressure rolling is performed at 7, it is possible to prevent breakage of each stand.
  • ⁇ Third Embodiment> Assuming a case where a fine-grained steel is manufactured through a process of rolling a steel plate 8 having a plate thickness of 32 mm and a plate width of 1300 mm before being rolled by the first stand 1 using a tandem rolling mill 10, the steady portion is rolled.
  • the outgoing side plate thicknesses h1 to h7 were determined in S11.
  • the determined delivery side plate thickness [mm] is applied to the rolling load [MN] applied to the steady part of the material to be rolled, WRB [kN / ch] when rolling the tip, the reduction position [mm], to the stand Table 5 shows the tightening load [MN] to be applied and the limit load [MN] at the time of kiss roll.
  • the tightening load of the sixth stand 6 is 19.49MN
  • the tightening load of the seventh stand 7 is 25.41MN.
  • the critical load of 12.74 MN at 7 and the critical load of 12.74 MN when the seventh stand 7 was kiss-rolled were exceeded. Therefore, if a tightening load is applied in advance to the sixth stand 6 and the seventh stand 7 in accordance with the draft schedule determined in S11, the sixth stand 6 and the seventh stand 7 may be damaged. Accordingly, in S15, the exit side plate thicknesses h1 to h5 maintain the values determined in S11 so that the tightening load applied to the sixth stand 6 and the seventh stand 7 is equal to or less than the limit load.
  • An exit side plate thickness h6 ′ larger than the thickness h6 and an exit side plate thickness h7 ′ larger than the exit side plate thickness h7 were determined.
  • the delivery side plate thicknesses h1 to h7 ′ [mm] determined in S15 are set to the rolling load [MN] applied to the steady portion of the material to be rolled, WRB [kN / ch] when rolling the tip, and the reduction position [ mm], the tightening load [MN] applied to the stand, and the limit load [MN] during kiss roll are shown in Table 6.
  • ⁇ Fourth embodiment> Assuming a case where a fine-grained steel is manufactured through a process of rolling a steel plate 8 having a plate thickness of 32 mm and a plate width of 1000 mm before being rolled by the first stand 1 using a tandem rolling mill 10, the steady portion is rolled.
  • the outgoing side plate thicknesses h1 to h7 were determined in S11.
  • the determined delivery side plate thickness [mm] is applied to the rolling load [MN] applied to the steady part of the material to be rolled, WRB [kN / ch] when rolling the tip, the reduction position [mm], to the stand Table 7 shows the tightening load [MN] to be applied and the limit load [MN] at the time of kiss roll.
  • the tightening load of the sixth stand 6 is 15.58MN
  • the tightening load of the seventh stand 7 is 23.18MN.
  • the limit load of 12.74 MN at the time of kiss roll of the seventh stand 7 was exceeded. Therefore, if a tightening load is applied in advance to the sixth stand 6 and the seventh stand 7 in accordance with the draft schedule determined in S11, the sixth stand 6 and the seventh stand 7 may be damaged. Accordingly, in S15, the exit side plate thicknesses h1 to h5 maintain the values determined in S11 so that the tightening load applied to the sixth stand 6 and the seventh stand 7 is equal to or less than the limit load.
  • An exit side plate thickness h6 ′ larger than the thickness h6 and an exit side plate thickness h7 ′ larger than the exit side plate thickness h7 were determined.
  • the delivery side plate thicknesses h1 to h7 ′ [mm] determined in S15 are set to the rolling load [MN] applied to the steady portion of the material to be rolled, WRB [kN / ch] when rolling the tip, and the reduction position [ mm], the tightening load [MN] applied to the stand, and the limit load [MN] during kiss roll are shown in Table 8.
  • shape control means for example, actuators 5x, 6x, 7x and bender devices 5y, 6y, 7y, etc.
  • shape control means for example, actuators 5x, 6x, 7x and bender devices 5y, 6y, 7y, etc.
  • the shape of the sensor feedback method is used in order to change the exit side plate thickness (for example, change from h7 ′ to h7) and change the tightening load within a short time after the rolling of the tip rolling portion. Control may not be in time. Therefore, in the operation control method of the present invention, it is preferable to change the operation of the shape control means while monitoring the tightening load.
  • the bender device 5y , 6y, 7y necessary control amounts are predicted in advance, and shape control means is used so that the control amounts of the bender devices 5y, 6y, 7y do not become out of range when changing from the tip rolled portion to the steady portion of the steel plate 8. It is preferable to perform the initial setting.
  • the operation speed of the shape control means such as the actuators 5x, 6x, 7x can be followed.
  • the flatness of the steel plate 8 may be ensured by changing the distribution of the control amounts of the actuators 5x, 6x, and 7x and the control amounts of the bender devices 5y, 6y, and 7y.
  • the control amounts of the bender devices 5x, 6x, and 7x are expected to exceed the range, the control amounts of the actuators 5x, 6x, and 7x are set so that the control amounts of the bender devices 5x, 6x, and 7x do not exceed the range. It is only necessary to ensure the flatness of the steel plate 8 by changing.
  • FIG. 3 is a diagram showing an example of a form of a hot-rolled steel sheet production line 100 provided with a finish rolling mill row 20 whose operation is controlled by the operation control method of the present invention.
  • the hot-rolled steel sheet production line 100 includes a rough rolling mill row 30 including rough rolling mills 30 a, 30 b,..., 30 f and a finishing rolling mill including finishing rolling mills 20 a, 20 b,. Row 20.
  • the finish rolling mill row 20 has seven stands from the first stand 20a to the seventh stand 20g, and the operation of the finish rolling mill row 20 is controlled through S1 having S11 to S16. Therefore, the finishing rolling mill row 20 has, for example, a reduction ratio of the subsequent three stands (the fifth stand 20e, the sixth stand 20f, and the seventh stand 20g) when producing a steel plate other than the ultrafine-grained steel.
  • the operation can be performed in a form higher than the rolling reduction, which makes it possible to greatly deform the austenite grains of the steel plate 8 and increase the dislocation density.
  • the operation control method of the present invention it becomes possible to produce fine-grained steel. From the above, according to the present invention, it is possible to provide an operation control method for a tandem rolling mill capable of producing fine-grained steel, and a method for producing a hot-rolled steel sheet capable of producing fine-grained steel. it can.
  • the average linear pressure of the rolling load of the rear stage stand for the production of fine-grained steel is a value obtained by dividing the steady portion rolling load shown in Table 1, Table 3, Table 5, and Table 7 by the plate width, and is 20 MN / The value exceeds m.
  • This is a higher load than the rolling load of the conventional normal draft schedule.
  • a steel plate having a plate thickness of 32 mm and a plate width of 1000 mm before being rolled by the first stand 1 was rolled by a tandem rolling mill having 7 stands.
  • the rolling conditions were Condition 1 to Condition 4 shown in Table 9 below.
  • condition 1 rolling was performed with the settings shown in Table 2 for the tip rolled portion and the settings shown in Table 1 for the stationary portion.
  • the target plate thickness could be achieved in the steady portion by lowering the opening of the seventh stand until the setting shown in Table 1.
  • the bending force applied to the work roll bender which is a shape control means capable of high-speed operation while monitoring the load of the seventh stand, is changed from 392 kN / ch shown in Table 2 to 980 kN / ch shown in Table 1.
  • the operation of the tandem rolling mill can be controlled from the kiss roll state, and fine grain steel can be manufactured.
  • condition 3 after rolling the tip rolling portion with the set value shown in Table 2, the opening degree of the rolling mill was changed to the set value shown in Table 1, but the WRB was changed to the value shown in Table 2. However, the rolling mill did not break, but the shape defect of the rolled material increased at the steady part, and the product value was lost.
  • condition 4 the opening setting shown in Table 2 was set, and WRB was set to the value shown in Table 1.
  • the coil tip was caught on the exit side of the rolling mill.
  • the coiling device installed behind the rolling mill could not be reached and the rolling mill had to be stopped.
  • the operation control method for a tandem rolling mill and the method for producing a hot-rolled steel sheet according to the present invention can be used for producing a hot-rolled steel sheet having fine crystal grains.
  • the hot-rolled steel sheet having fine crystal grains can be used as a material used for applications such as automobiles, household appliances, machine structures, and buildings.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

微細粒鋼の製造等に必要なタンデム圧延機後段スタンドでの高圧下圧延を可能とするタンデム圧延機の動作制御方法及び熱延鋼板の製造方法を提供する。 被圧延材の定常部を圧延する時の各スタンドの出側板厚を決定する第1工程、及び、事前締め込み荷重が設定値以下となるように被圧延材の先端部を圧延する時の各スタンドの出側板厚を決定する第2工程を含み、少なくとも被圧延材の最先端部が各スタンドに噛み込まれるまでは第2工程で決定した出側板厚となるように被圧延材が圧延され、被圧延材の定常部は第N-m+1スタンドから第Nスタンドによって第1工程で決定した出側板厚へと圧延され、第2工程で決定された第N-m+1スタンドから第Nスタンドまでの出側板厚が第1工程で決定された出側板厚よりも厚いタンデム圧延機の動作制御方法、及び、該方法で動作を制御される熱間仕上圧延機列を用いて鋼板を圧延する工程を有する熱延鋼板の製造方法とする。

Description

タンデム圧延機の動作制御方法及びこれを用いた熱延鋼板の製造方法
 本発明は、タンデム圧延機の動作制御方法及びこれを用いた熱延鋼板の製造方法に関する。本発明は、例えば、被圧延材の先端が熱間圧延ラインのタンデム仕上圧延機を構成する各スタンドに噛み込まれる前に締め込み荷重が付与されるタンデム圧延機の動作制御方法及びこれを用いた熱延鋼板の製造方法に関する。
 熱間圧延ラインにおける仕上圧延機等、複数の圧延機(スタンド)を備えるタンデム圧延機によって被圧延材を圧延する際、各スタンドの動作は、最終スタンド出側における被圧延材の板厚や板幅等が目標の条件を満たすように決定される。この各スタンドの動作条件は、ドラフトスケジュール(パススケジュール)と呼ばれ、製品の品質や生産性等に大きな影響を与える。そのため、製品に応じて適切なドラフトスケジュールを決定することが求められている。
 熱間圧延ラインにおけるタンデム仕上圧延機のドラフトスケジュールは、通常、最終製品に近い後段(被圧延材の移動方向下流側)のスタンドほど、ワークロール表面の肌荒れを低減して製品の表面性状を良好に保つために、圧延荷重が軽くなるように決定している。ここで、前段(被圧延材の移動方向上流側)スタンド及び後段スタンドの圧下率を同一に設定しても、板厚が薄い被圧延材を圧延する後段スタンドは、大きな圧延荷重が必要になるという圧延上の特性がある。そのため、通常のドラフトスケジュールでは、後段スタンドほど、圧下率が小さくなっている。
 一方、自動車用や構造材用等として用いられる鋼材は、強度、加工性、靭性といった機械的特性に優れることが求められ、これらの機械的特性を総合的に高めるには、熱延鋼板の結晶粒を微細化することが有効である。また、結晶粒を微細化すれば、合金元素の添加量を削減しても優れた機械的性質を具備した高強度熱延鋼板を製造することが可能になる。
 熱延鋼板の結晶粒の微細化方法としては、熱間仕上圧延の特に後段において、高圧下圧延(後段スタンドの圧下率を高めた仕上圧延)を行ってオーステナイト粒に大きな変形を与え転位密度を上昇させることにより、冷却後のフェライト粒の微細化を図る方法が知られている。この方法で微細結晶粒を有する熱延鋼板(以下において、「微細粒鋼」という。)を製造するためには、熱間圧延ラインにおけるタンデム仕上圧延機の後段スタンドの圧下率を、従来よりも高める必要がある。それゆえ、微細粒鋼を製造するためには、従来とは異なるドラフトスケジュールを決定し、タンデム仕上圧延機の動作を従来とは異なる形態で制御することが必要になる。
  また、特に圧延時の変形抵抗が大きい硬質材で高圧下圧延を行う場合には圧延荷重が著しく大きくなり、圧延機の弾性変形による上下ワークロール間のギャップ(以下において、「圧延機開度」という。)も大きくなる。その結果、狙いの出側板厚を得るために、すなわち圧延荷重負荷状態での圧延機開度を狙い板厚に合わせるために、圧延荷重負荷前の開度を予め小さく設定しておく必要が生じ、圧延荷重が大きくかつ狙い板厚が小さい場合には、事前の設定開度は名目上マイナスとなる。実際には上下ワークロールを接触させた上で(以下において、この状態を「キスロール」という。)さらに圧下装置で締め込んで荷重を付与し、圧延機を事前に弾性変形させておくことになる。通常の熱間圧延においてはキスロールを要すること自体が稀でかつその際の荷重も軽微であるため問題は生じないが、上述の微細粒鋼圧延の場合には極めて大きなキスロール荷重が生じ、設備保全上の問題が生じる。例えば上下ワークロールの微小な周速差に起因するトルク循環でロール駆動系部品が破損したり、上下ワークロールの軸を水平面内で交差(クロスあるいはスキュー)させている場合にはロール間の軸方向力(以下「スラスト力」と呼ぶ)でロール軸受が破損したりする。これらはいずれも上下のワークロールが直接接触することによるもので、間に圧延材が存在すれば、すなわち圧延中は問題にはならない。
  圧延機を保護するためにはキスロールが生じてもトルク循環やスラスト力を抑制する手段を講じるか、キスロール荷重そのものを軽減する必要がある。しかしキスロール荷重を軽減するために事前締め込みを制限すれば、狙いの板厚を得ることはできないため、特殊な圧延機の動作制御が必要になる。
 対策として、例えば非特許文献1には、キスロール時にロールに潤滑剤を塗布しロール間の摩擦力を軽減する方法が開示されている。また、圧延機の動作制御に関する技術として、例えば特許文献1には、複数のスタンドから構成される熱間仕上圧延機において、連設する各スタンドでの少なくとも1つのスタンドの開度を拡げる熱間仕上圧延方法であって、搬送される圧延板の先端部が、開度変更を行うスタンドのワークロールに到達すると、当該スタンドの開度変更を開始する第一ステップと、該第一ステップで開始された開度変更を、予め設定された開度まで経時的かつ連続的に行うことで圧延板の先端部をテーパ状に圧延する第二ステップと、該第二ステップで予め設定された開度まで変更した後に、その開度を一定に保つことで圧延板の定常部を一定の板厚で圧延する第三ステップと、を有する熱間仕上圧延方法が開示されている。
特許第4266185号公報
林寛治、外5名、「ペアクロス方式圧延機の開発(第7報)-キスロール時のスラスト力と潤滑の関係-」、昭和58年度塑性加工春季講演会講演論文集、社団法人日本塑性加工学会、昭和58年、p.313-316
 非特許文献1に開示されているように、潤滑剤を使用すれば、キスロール時に付与された荷重によるスラスト力を軽減することが可能になるほか、上下ワークロールの微小な周速差に起因し駆動系部品の破損に至る、いわゆるトルク循環を軽減することも可能になると考えられる。しかしながら、熱間噛み込み性を阻害しない潤滑剤を使用した場合、熱間圧延中の摩擦係数を大幅に下げて圧延荷重そのものを減らす効果は少ない。そのため、後段スタンドの圧下率を従来よりも高めて微細粒鋼を製造しようとすると、定常部の締め込み荷重がキスロール時の締め込み荷重上限を超えてしまう問題があった。特許文献1には、圧延中に圧延機の開度を変更する方法が述べられているが、キスロール状態からの開度変更ではなく、キスロール状態から定常圧延に移行する際のそれぞれの開度の決定方法は述べられていない。そのため特許文献1に開示されている技術を用いてキスロール状態からタンデム圧延機の動作を制御することは困難であり、微細粒鋼板の製造に必要な後段スタンドの高圧下圧延ができないという問題があった。
 そこで、本発明は、微細粒鋼の製造などに必要なタンデム圧延機後段スタンドでの高圧下圧延を可能とするタンデム圧延機の動作制御方法、及び、これを用いた熱延鋼板の製造方法を提供することを課題とする。
 以下、本発明について説明する。なお、本発明の理解を容易にするため、添付図面の参照符号を括弧書きにて付記するが、それにより本発明が図示の形態に限定されるものではない。
 本発明の第1の態様は、N個(Nは2以上の整数)のスタンド(1、2、…、7)を有し、被圧延材(8)を噛み込む前の第N-m+1スタンド(mは1以上N以下の整数)から第Nスタンド(7)までの各スタンドに事前に締め込み荷重が付与されるタンデム圧延機(10)の動作を制御する方法であって、第1スタンド(1)から第Nスタンド(7)までの各スタンドの出側板厚を決定する出側板厚決定工程(S1)を有し、該出側板厚決定工程は、被圧延材の定常部を圧延するときの第1スタンド(1)から第Nスタンド(7)までの出側板厚を決定する第1出側板厚決定工程(S11)、及び、スタンド(5、6、7)へと事前に付与される締め込み荷重が予め設定された締め込み荷重以下となるように、被圧延材の先端圧延部を圧延するときの第1スタンド(1)から第Nスタンド(7)までの出側板厚を決定する第2出側板厚決定工程(S15)、を含み、少なくとも被圧延材の最先端部が各スタンドに噛み込まれるまでは、第2出側板厚決定工程で決定した出側板厚となるように被圧延材(8)が圧延されるとともに、被圧延材の定常部は、第N-m+1スタンド(5)から第Nスタンド(7)によって、第1出側板厚決定工程で決定した出側板厚へと圧延され、第2出側板厚決定工程で決定された第N-m+1スタンド(5)から第Nスタンド(7)までの出側板厚は、第1出側板厚決定工程で決定された同じスタンドの出側板厚よりも厚いことを特徴とする、タンデム圧延機の動作制御方法である。
 ここに、「第Nスタンド(7)」とは、タンデム圧延機(10)の最終スタンド、すなわち、タンデム圧延機(10)によって圧延される被圧延材(8)の移動方向の下流端に配置されたタンデム圧延機のスタンド(7)をいう。また、「第1スタンド(1)」とは、タンデム圧延機(10)によって圧延される被圧延材(8)の移動方向の上流端に配置されたタンデム圧延機のスタンド(1)をいう。また、本発明において、「被圧延材(8)の先端圧延部」とは、第1出側板厚決定工程(S11)を達成するための圧延機動作が始まる前に圧延されている部分をいう。また、本発明において、「被圧延材(8)の定常部」とは、第1出側板厚決定工程(S11)を達成するための圧延機動作を終えた後に圧延される部分をいう。また、「第2出側板厚決定工程で決定された第N-m+1スタンド(5)から第Nスタンド(7)の出側板厚は、第1出側板厚決定工程で決定された同じスタンドの出側板厚よりも厚い」とは、第N-m+1スタンド(5)から第Nスタンド(7)までの各スタンドの出側板厚は、それぞれ、第2出側板厚決定工程で決定された出側板厚の方が第1出側板厚決定工程で決定された出側板厚よりも厚くなるように決定されることをいう。
 また、上記本発明の第1の態様において、被圧延材の先端圧延部から定常部への移行にあたって、先端圧延部から定常部への圧延荷重変化に基づいてスタンド(7)の形状変化が予測され、予測された形状変化に基づいてスタンドの形状制御手段(7x、7y)の動作が制御されることが好ましい。
 ここに、本発明において、「スタンドの形状制御手段(7x、7y)」とは、例えば、ワークロール(7a、7a)のクロス角を変更可能なアクチュエータ(7x)や、ワークロール(7a、7a)等へと付与すべき曲げ力を変更可能なロールベンダー装置(7y)等に代表されるアクチュエータをいう。
 また、上記本発明の第1の態様において、事前に締め込み荷重を付与されるスタンド(5、6、7)が、2以上の形状制御手段(5x、5y、6x、6y、7x、7y)を有し、該2以上の形状制御手段に、第1形状制御手段(5x、6x、7x)、及び、少なくとも被圧延材の先端圧延部から定常部への移行時に高速動作可能な第2形状制御手段(5y、6y、7y)、が含まれ、被圧延材の先端圧延部から定常部へと移行する前に、第2形状制御手段の動作が予測され、予測結果に基づいて、第2形状制御手段の許容動作範囲を超えないように、第1形状制御手段及び第2形状制御手段の動作を設定しても良い。
 ここに、本発明において、「高速動作可能」とは、圧延機開度の変更等に伴う圧延荷重変化に対して、時間遅れがほとんどない状態で形状制御手段を動作完了させることができることをいう。
 また、上記本発明の第1の態様において、事前に締め込み荷重を付与されるスタンド(5、6、7)が、少なくとも被圧延材の先端圧延部から定常部への移行時に高速動作可能な第1形状制御手段(5z、6z、7z)及び第2形状制御手段(5y、6y、7y)を有し、第1形状制御手段の許容動作範囲を超えた場合には、第2形状制御手段の動作が変更されることが好ましい。
 また、上記本発明の第1の態様において、出側板厚決定工程(S1)が、さらに、被圧延材の後端圧延部の圧延が終了したときのスタンドの締め込み荷重が予め設定された締め込み荷重以下となるように、第1スタンド(1)から第Nスタンド(7)までの出側板厚を決定する第3出側板厚決定工程(S16)、を含むことが好ましい。
 ここに、「被圧延材の後端圧延部」とは、被圧延材(8)の定常部よりも、被圧延材(8)の移動方向上流側に位置する、被圧延材(8)の尾端側部分をいう。
 本発明の第2の態様は、上記本発明の第1の態様にかかるタンデム圧延機の動作制御方法によって動作を制御される熱間仕上圧延機列(20)を用いて鋼板(8)を圧延する工程を有することを特徴とする、熱延鋼板の製造方法である。
 本発明の第1の態様では、スタンドへと事前に付与される締め込み荷重が予め設定された締め込み荷重以下となるように、被圧延材の定常部を圧延するときの各スタンドの出側板厚を決定する第2出側板厚決定工程を有し、該第2出側板厚決定工程で決定される第N-m+1スタンドから第Nスタンドまでの出側板厚は、第1出側板厚決定で決定した同じスタンドの出側板厚よりも厚い。そのため、本発明の第1の態様によれば、高圧下圧延が行われる場合であっても、事前に締め込み荷重が付与されるスタンドによって圧延される被圧延材の先端圧延部の出側板厚が定常部の出側板厚よりも厚くなるように、ロールギャップ(開度)を調整することによって、キスロール時の締め込み荷重が設備保全面から決定される締め込み荷重以下となるように制御することが可能になる。したがって、本発明の第1の態様を、熱間仕上圧延機列(20)へと適用することにより、微細粒鋼を製造することが可能なタンデム圧延機の動作制御方法を提供することができる。また、本発明の第2の態様は、本発明の第1の態様にかかるタンデム圧延機の動作制御方法によって動作を制御される熱間仕上圧延機列(20)を用いて鋼板(8)を圧延する工程を有している。そのため、本発明の第2の態様によれば、微細粒鋼を製造することが可能な、熱延鋼板の製造方法を提供することができる。
本発明にかかるタンデム圧延機の動作制御方法の形態例を示すフローチャートである。 本発明にかかるタンデム圧延機の動作制御方法によって動作が制御されるタンデム圧延機10の形態例を示す図である。 本発明にかかるタンデム圧延機の動作制御方法によって動作が制御される仕上圧延機列20を備えた熱延鋼板の製造ライン100の形態例を示す図である。
 以下、図面を参照しつつ、本発明の実施の形態について説明する。
 図1は、本発明にかかるタンデム圧延機の動作制御方法(以下において、「本発明の動作制御方法」ということがある。)の形態例を示すフローチャートである。図1に示す本発明の動作制御方法は、出側板厚決定工程(以下において「S1」ということがある。)を有している。該S1は、第1出側板厚決定工程(S11)と、定常部負荷予測工程(S12)と、開度計算工程(S13)と、締め込み荷重予測工程(S14)と、第2出側板厚決定工程(S15)と、第3出側板厚決定工程(S16)とを含んでいる。すなわち、本発明の動作制御方法では、これらの工程を有するS1を用いて、タンデム圧延機の動作を制御する。
 図2は、本発明の動作制御方法によって動作が制御されるタンデム圧延機10の形態例を示す図である。図2では、タンデム圧延機10の形態を簡略化して示している。図2に示すように、タンデム圧延機10は、第1スタンド1、第2スタンド2、…、及び、第7スタンド7の7つのスタンドを有しており、第1スタンド1から第7スタンド7までの7つのスタンドによって、被圧延材8(以下において、「鋼板8」ということがある。)を連続圧延可能なように構成されている。これら7つのスタンド1、2、…、7は、それぞれ、一対のワークロール及び一対のバックアップロール、並びに、ロールのクロス角を変更するアクチュエータ及びロールに曲げ力を付与するロールベンダー装置を備えており、これらの動作は制御装置によって制御されている。すなわち、例えば第1スタンド1は、一対のワークロール1a、1a及び一対のバックアップロール1b、1b、並びに、アクチュエータ1x及びロールベンダー装置1yを備え、ワークロール1a、1a及びバックアップロール1b、1bの動作は、制御装置1cによって動作を制御されるアクチュエータ1x及びロールベンダー装置1yを介して制御されている。同様に、例えば第7スタンド7は、一対のワークロール7a、7a及び一対のバックアップロール7b、7b、並びに、アクチュエータ7x及びロールベンダー装置7yを備え、ワークロール7a、7a及びバックアップロール7b、7bの動作は、制御装置7cによって動作を制御されるアクチュエータ7x及びロールベンダー装置7yを介して制御されている。タンデム圧延機10において、制御装置1c、2c、…、7cは、公知のプロセスコンピュータである。以下、図1及び図2を参照しつつ、本発明の一実施形態であるN=7及びm=3の場合について、本発明の動作制御方法を具体的に説明する。
 <出側板厚決定工程S1>
 S1は、第1スタンドから第Nスタンドまで(Nは2以上の整数)の各スタンドの出側板厚をそれぞれ決定する工程である。すなわち、N=7及びm=3である場合、S1は、第1スタンド1から第7スタンド7までの7スタンドの出側板厚をそれぞれ決定する工程である。本発明の動作制御方法において、S1は、少なくとも後述するS11及びS15を有していれば、その形態は特に限定されるものではない。
 <第1出側板厚決定工程S11>
第1出側板厚決定工程(以下において、「S11」ということがある。)は、被圧延材の定常部を圧延するときの第1スタンドから第Nスタンドの出側板厚を決定する工程である。すなわち、N=7である場合、S11は、鋼板8の定常部を圧延するときの第1スタンド1から第7スタンド7の出側板厚h1~h7を決定する工程、とすることができる。本発明の動作制御方法において、鋼板8の定常部とは、S11を達成するための圧延機動作を終えた後に圧延される部分をいう。
 本発明の動作制御方法において、S11は、被圧延材8の定常部を圧延するときの第1スタンド1から第7スタンド7の出側板厚h1~h7をそれぞれ決定する工程であれば、その形態は特に限定されるものではない。
 <定常部負荷予測工程S12>
  定常部負荷予測工程(以下において、「S12」ということがある。)は、上記S11で決定した出側板厚となるように第1スタンドから第Nスタンドを作動させた場合に、被圧延材の定常部へと付与される負荷を予測する工程である。すなわち、N=7である場合、S12は、上記S11で決定した出側板厚h1~h7となるように第1スタンド1から第7スタンド7を作動させた場合に、鋼板8の定常部へと付与される負荷を予測する工程、とすることができる。S12における予測結果は、後述する開度計算工程で使用される。
 <開度計算工程S13>
  開度計算工程(以下において、「S13」ということがある。)は、上記S12で予測された負荷に基づいて、被圧延材の定常部を圧延するときの第1スタンドから第Nスタンドまでの圧延機開度(ロールギャップ)を計算する工程である。すなわち、N=7である場合、S13は、上記S12で予測された負荷に基づいて、鋼板8の定常部を圧延するときの第1スタンド1から第7スタンド7までの圧延機開度を計算する工程、とすることができる。
 <締め込み荷重予測工程S14>
  締め込み荷重予測工程(以下において、「S14」ということがある。)は、上記S13で計算された開度と締め込み荷重との関係を考慮しながら、第N-m+1スタンドから第Nスタンドまでの各スタンドに事前に付与される締め込み荷重を予測する工程である。すなわち、N=7及びm=3である場合、S14は、上記S13で計算された開度と締め込み荷重との関係を考慮しながら、第5スタンド5から第7スタンド7までの各スタンドに事前に付与される締め込み荷重を予測する工程、とすることができる。
 <第2出側板厚決定工程S15>
  第2出側板厚決定工程(以下において、「S15」ということがある。)は、スタンドへと事前に付与される締め込み荷重が予め設定された締め込み荷重以下となるように、被圧延材8の先端圧延部を圧延するときの第1スタンドから第Nスタンドまでの出側板厚を決定する工程である。第N-m+1スタンドから第Nスタンドまでの各スタンドへ事前に(キスロール時に)付与される締め込み荷重が、設備保全面から設定される締め込み荷重の上限値を超える場合、各スタンドの圧延機開度設定値を維持したまま事前に締め込み荷重を付与すると、減速機や圧延ロール等が破損する虞がある。そこで、本発明の動作制御方法では、上記S14で予測された事前締め込み荷重が設備保全面から設定される締め込み荷重の上限値を超える場合には、ミル定数や塑性特性を考慮しながらS14における予測値が上限値を超えたスタンドの出側板厚がS11で決定された出側板厚よりも厚くなるように変更して、上限値を超えたスタンドの圧延機開度設定値を大きくすることにより、事前締め込み荷重が上限値以下になるようにする。このようにすることで、高圧下圧延を行った場合であっても、各スタンドの破損を防止して圧延を行うことが可能になる。本発明の動作制御方法において、被圧延材8の先端圧延部とは、S11を達成するための圧延機動作が始まる前に圧延されている部分をいう。
 <第3出側板厚決定工程S16>
  第3出側板厚決定工程(以下において、「S16」ということがある。)は、被圧延材の後端圧延部の圧延が終了したときのスタンドの締め込み荷重が予め設定された締め込み荷重以下となるように、第1スタンドから第Nスタンドまでの出側板厚を決定する工程である。被圧延材を圧延する場合、キスロール状態は、圧延開始前のみならず、圧延終了後にも生じ得る。そこで、S16では、圧延終了後のキスロール状態のときに付与される締め込み荷重が設備保全面から設定される締め込み荷重の上限値を超えることが予想される場合には、ミル定数や塑性特性を考慮しながら、上限値を超えたスタンドの出側板厚がS11で決定された出側板厚よりも厚くなるように、被圧延材の後端圧延部を圧延する際のスタンドの圧延機開度設定値を大きくするように設定を変更する。S16を有することにより、各スタンドの設備保全が容易になる。
 ここで、上記S14で予測された事前締め込み荷重の値が、第5スタンド5及び第6スタンド6では上限値未満である一方、第7スタンド7では上限値を超えた場合における、鋼板8を圧延するタンデム圧延機10の動作は、例えば次のようになる。まず、第1スタンド1から第6スタンド6の出側板厚がS11で決定した先端圧延部の出側板厚h1~h6となり、且つ、第7スタンド7の出側板厚がS15で変更された出側板厚h7’(>h7)となるように制御装置1c~7cを動作させてタンデム圧延機10をセットアップし、圧延を開始する。最先端部が第7スタンド7に噛み込まれた後の所定のタイミングで、第7スタンド7の出側板厚がS11で決定した定常部の出側板厚h7になるように制御装置7cを作動させ、定常部の圧延に移行する。具体的な方法としては、例えば、圧延荷重と圧下位置の実績値から出側板厚を計算して、その出側板厚が目標板厚に一致するように圧下位置を操作するいわゆる絶対値AGCを各スタンドに適用し、その目標板厚をh7’からh7に変更すればよい。所定のタイミング(制御装置7cを作動させるタイミング)としては、第7スタンド7が被圧延材の最先端部を噛み込んだ後であれば任意のタイミングが可能であるが、例えば、最先端部が第7スタンド7に噛み込まれてから制御装置7cを作動させるまでの時間を予め指定すればよい。
なお、圧延終了後の締め込み荷重が上限値を超えることが予想される場合には、被圧延材の最後端圧延部を圧延する直前に、上限値を超えることが予想されたスタンドの開度設定値を上記S16で計算した設定値に変更すればよい。被圧延材先端通板直前と同様に圧延直後においてもキスロール時の過剰な締め込み荷重による弊害を回避することができる。
 以下に、上記S11によって決定した、鋼板の定常部を圧延するときの第1スタンド1から第7スタンド7の出側板厚h1~h7の具体例、及び、上記S15で決定した、鋼板の先端圧延部を圧延するときの第1スタンド1から第7スタンド7の出側板厚h1~h7’の具体例を示す。以下に示す2つの実施形態では、第5スタンド5~第7スタンド7の3つのスタンドへ事前に締め込み荷重が付与され、キスロール時における第5スタンド5の限界荷重が15.68MN、キスロール時における第6スタンド6及び第7スタンド7の限界荷重が12.74MNであると仮定した。また、鋼板の定常部の圧延条件で平坦となるようなワークロールクラウンが付与され、鋼板の先端圧延部では、鋼板の定常部との圧延荷重差を補償して平坦を確保できるように、ロールベンダー装置を用いてワークロールへと付与される曲げ力が変更されるものと仮定した。以下において、ワークロールベンダーへと付与される曲げ力を「WRB」と表記することがある。また、下記表のF1~F7は、それぞれ、第1スタンド1から第7スタンド7と対応している。
 <実施形態1>
  第1スタンド1によって圧延される前の板厚が32mm、板幅が1000mmである鋼板8をタンデム圧延機10によって圧延する過程を経て微細粒鋼を製造する場合を想定し、定常部を圧延するときの出側板厚h1~h7をS11で決定した。決定した出側板厚[mm]を、被圧延材の定常部へと付与される圧延荷重[MN]、先端部を圧延する際のWRB[kN/ch]、圧下位置[mm]、スタンドへと付与される締め込み荷重[MN]、及び、キスロール時の限界荷重[MN]とともに、表1に示す。ここに、圧下位置とは、負荷が付与されていないスタンドのキスロール時の位置をゼロとする、締め込み荷重付与手段の垂直方向位置をいい、圧下位置がゼロの時よりも締め込み荷重を大きくすると圧下位置の値はマイナスになる。以下においても同様である。また、「/ch」は、「チョックあたり」という意味である。以下においても同様である。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、S11で決定したドラフトスケジュールでは、第7スタンド7の締め込み荷重が17.28MNとなり、第7スタンド7のキスロール時における限界荷重12.74MNを超えた。したがって、S11で決定したドラフトスケジュール通りに第7スタンド7へ事前に締め込み荷重を付与すると、第7スタンド7が破損する虞がある。そこで、第7スタンド7へと付与される締め込み荷重が限界荷重以下となるように、S15で、出側板厚h1~h6はS11で決定した値を維持する一方、出側板厚h7よりも大きい出側板厚h7’を決定した。S15で決定した出側板厚h1~h7’[mm]を、被圧延材の定常部へと付与される圧延荷重[MN]、先端部を圧延する際のWRB[kN/ch]、圧下位置[mm]、スタンドへと付与される締め込み荷重[MN]、及び、キスロール時の限界荷重[MN]とともに、表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表1及び表2に示すように、h7=2.00mmをh7’=2.125mmへと変更することにより、第7スタンド7の締め込み荷重を、限界荷重12.74MNよりも小さい12.73MNにすることができた。このように、第1実施形態にかかる本発明の動作制御方法では、第5スタンド5~第7スタンド7へと事前に付与される締め込み荷重が、限界荷重を超える場合には、限界荷重以下となるように出側板厚を変更する。そのため、微細粒鋼を製造するために第5スタンド5~第7スタンド7で高圧下圧延が行われる場合であっても、各スタンドの破損を防止することが可能になる。
 <第2実施形態>
  第1スタンド1によって圧延される前の板厚が38mm、板幅が1500mmである鋼板8をタンデム圧延機10によって圧延する過程を経て微細粒鋼を製造する場合を想定し、定常部を圧延するときの出側板厚h1~h7をS11で決定した。決定した出側板厚[mm]を、被圧延材の定常部へと付与される圧延荷重[MN]、先端部を圧延する際のWRB[kN/ch]、圧下位置[mm]、スタンドへと付与される締め込み荷重[MN]、及び、キスロール時の限界荷重[MN]とともに、表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、S11で決定したドラフトスケジュールでは、第7スタンド7の締め込み荷重が14.90MNとなり、第7スタンド7のキスロール時における限界荷重12.74MNを超えた。したがって、S11で決定したドラフトスケジュール通りに第7スタンド7へ事前に締め込み荷重を付与すると、第7スタンド7が破損する虞がある。そこで、第7スタンド7へと付与される締め込み荷重が限界荷重以下となるように、S15で、出側板厚h1~h6はS11で決定した値を維持する一方、出側板厚h7よりも大きい出側板厚h7’を決定した。S15で決定した出側板厚h1~h7’[mm]を、被圧延材の定常部へと付与される圧延荷重[MN]、先端部を圧延する際のWRB[kN/ch]、圧下位置[mm]、スタンドへと付与される締め込み荷重[MN]、及び、キスロール時の限界荷重[MN]とともに、表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表3及び表4に示すように、h7=3.20mmをh7’=3.256mmへと変更することにより、第7スタンド7の締め込み荷重を、限界荷重12.74MNよりも小さい12.72MNにすることができた。したがって、第1実施形態にかかる本発明の動作制御方法と同様に、第2実施形態にかかる本発明の動作制御方法によれば、微細粒鋼を製造するために第5スタンド5~第7スタンド7で高圧下圧延が行われる場合であっても、各スタンドの破損を防止することが可能になる。
 <第3実施形態>
  第1スタンド1によって圧延される前の板厚が32mm、板幅が1300mmである鋼板8をタンデム圧延機10によって圧延する過程を経て微細粒鋼を製造する場合を想定し、定常部を圧延するときの出側板厚h1~h7をS11で決定した。決定した出側板厚[mm]を、被圧延材の定常部へと付与される圧延荷重[MN]、先端部を圧延する際のWRB[kN/ch]、圧下位置[mm]、スタンドへと付与される締め込み荷重[MN]、及び、キスロール時の限界荷重[MN]とともに、表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、S11で決定したドラフトスケジュールでは、第6スタンド6の締め込み荷重が19.49MN、第7スタンド7の締め込み荷重が25.41MNとなり、それぞれ第6スタンド6のキスロール時における限界荷重12.74MN及び第7スタンド7のキスロール時における限界荷重12.74MNを超えた。したがって、S11で決定したドラフトスケジュール通りに第6スタンド6及び第7スタンド7へ事前に締め込み荷重を付与すると、第6スタンド6及び第7スタンド7が破損する虞がある。そこで、第6スタンド6及び第7スタンド7へと付与される締め込み荷重が限界荷重以下となるように、S15で、出側板厚h1~h5はS11で決定した値を維持する一方、出側板厚h6よりも大きい出側板厚h6’及び出側板厚h7よりも大きい出側板厚h7’を決定した。S15で決定した出側板厚h1~h7’[mm]を、被圧延材の定常部へと付与される圧延荷重[MN]、先端部を圧延する際のWRB[kN/ch]、圧下位置[mm]、スタンドへと付与される締め込み荷重[MN]、及び、キスロール時の限界荷重[MN]とともに、表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表5及び表6に示すように、h6=2.86mmをh6’=3.13mmへと変更することにより、第6スタンド6の締め込み荷重を、限界荷重12.74MNよりも小さい12.72MNにすることができた。また、h7=2.00mmをh7’=2.28mmへと変更することにより、第7スタンド7の締め込み荷重を、限界荷重12.74MNよりも小さい12.72MNにすることができた。したがって、第1、第2実施形態にかかる本発明の動作制御方法と同様に、第3実施形態にかかる本発明の動作制御方法によれば、微細粒鋼を製造するために第5スタンド5~第7スタンド7で高圧下圧延が行われる場合であっても、各スタンドの破損を防止することが可能になる。
 <第4実施形態>
  第1スタンド1によって圧延される前の板厚が32mm、板幅が1000mmである鋼板8をタンデム圧延機10によって圧延する過程を経て微細粒鋼を製造する場合を想定し、定常部を圧延するときの出側板厚h1~h7をS11で決定した。決定した出側板厚[mm]を、被圧延材の定常部へと付与される圧延荷重[MN]、先端部を圧延する際のWRB[kN/ch]、圧下位置[mm]、スタンドへと付与される締め込み荷重[MN]、及び、キスロール時の限界荷重[MN]とともに、表7に示す。
Figure JPOXMLDOC01-appb-T000007
 表7に示すように、S11で決定したドラフトスケジュールでは、第6スタンド6の締め込み荷重が15.58MN、第7スタンド7の締め込み荷重が23.18MNとなり、それぞれ第6スタンド6のキスロール時における限界荷重12.74MN、及び、第7スタンド7のキスロール時における限界荷重12.74MNを超えた。したがって、S11で決定したドラフトスケジュール通りに第6スタンド6及び第7スタンド7へ事前に締め込み荷重を付与すると、第6スタンド6及び第7スタンド7が破損する虞がある。そこで、第6スタンド6及び第7スタンド7へと付与される締め込み荷重が限界荷重以下となるように、S15で、出側板厚h1~h5はS11で決定した値を維持する一方、出側板厚h6よりも大きい出側板厚h6’、及び、出側板厚h7よりも大きい出側板厚h7’を決定した。S15で決定した出側板厚h1~h7’[mm]を、被圧延材の定常部へと付与される圧延荷重[MN]、先端部を圧延する際のWRB[kN/ch]、圧下位置[mm]、スタンドへと付与される締め込み荷重[MN]、及び、キスロール時の限界荷重[MN]とともに、表8に示す。
Figure JPOXMLDOC01-appb-T000008
 表7及び表8に示すように、h6=2.29mmをh6’=2.39mmへと変更することにより、第6スタンド6の締め込み荷重を、限界荷重12.74MNよりも小さい12.72MNにすることができた。また、h7=1.60mmをh7’=1.81mmへと変更することにより、第7スタンド7の締め込み荷重を、限界荷重12.74MNよりも小さい12.72MNにすることができた。したがって、第1~3実施形態にかかる本発明の動作制御方法と同様に、第4実施形態にかかる本発明の動作制御方法によれば、微細粒鋼を製造するために第5スタンド5~第7スタンド7で高圧下圧延が行われる場合であっても、各スタンドの破損を防止することが可能になる。
 上述のように、事前に付与される締め込み荷重が限界荷重を超えた場合には、出側板厚を大きくすることにより、締め込み荷重を限界荷重以下にすることが可能になる。しかしながら、表1~表8に記載したように、出側板厚をh6からh6’へ、あるいはh7からh7’へと変更すると、それに伴って、鋼板8へと付与される力(圧延荷重)が変化する。圧延荷重が変化すると、ワークロールの撓み量が変化し、鋼板8の形状が不安定化する虞がある。そこで、本発明の動作制御方法では、圧延荷重の変更に伴う形状変化を抑制するために、スタンドに備えられる形状制御手段(例えば、アクチュエータ5x、6x、7xやベンダー装置5y、6y、7y等。以下において同じ。)の動作を変更することが好ましい。本発明の動作制御方法では、先端圧延部の圧延終了後短時間のうちに、出側板厚を変更(例えば、h7’からh7へ変更)し締め込み荷重を変化させるため、センサーフィードバック方式の形状制御が間に合わない可能性がある。そのため、本発明の動作制御方法では、締め込み荷重をモニタリングしながら、形状制御手段の動作を変更することが好ましい。
 本発明の動作制御方法において、出側板厚変更に伴って締め込み荷重を変更する際の速度が速く、アクチュエータ5x、6x、7x等の形状制御手段の動作速度が追随しない場合は、ベンダー装置5y、6y、7yの必要制御量を事前に予測しておき、鋼板8の先端圧延部から定常部への変更時に、ベンダー装置5y、6y、7yの制御量がレンジオーバーとならないよう、形状制御手段の初期設定を行うことが好ましい。
 また、本発明の動作制御方法において、出側板厚変更に伴って締め込み荷重を変更する際の速度が遅く、アクチュエータ5x、6x、7x等の形状制御手段の動作速度が追随可能な場合は、アクチュエータ5x、6x、7xの制御量とベンダー装置5y、6y、7yの制御量との配分を変えることで、鋼板8の平坦を確保すればよい。ベンダー装置5x、6x、7xの制御量がレンジオーバーになることが予想される場合には、ベンダー装置5x、6x、7xの制御量がレンジオーバーにならないようにアクチュエータ5x、6x、7xの制御量を変更することにより、鋼板8の平坦を確保すればよい。
 図3は、本発明の動作制御方法によって動作が制御される仕上圧延機列20を備えた熱延鋼板の製造ライン100の形態例を示す図である。図3では、熱延鋼板の製造ライン100の一部のみを抽出し、仕上圧延機列20に備えられる制御装置等の記載を省略している。図3に示すように、熱延鋼板の製造ライン100は、粗圧延機30a、30b、…、30fを備える粗圧延機列30と、仕上圧延機20a、20b、…、20gを備える仕上圧延機列20と、を有している。仕上圧延機列20は、第1スタンド20aから第7スタンド20gまでの7つのスタンドを有しており、仕上圧延機列20の動作は、上記S11~S16を有するS1を経て制御される。そのため、仕上圧延機列20は、例えば、後段の3スタンド(第5スタンド20e、第6スタンド20f、及び、第7スタンド20g)の圧下率を、超微細粒鋼以外の鋼板を製造する際の圧下率よりも高めた形態で動作させることができ、これによって、鋼板8のオーステナイト粒に大きな変形を与え転位密度を上昇させることが可能になる。このように、熱延鋼板の製造ライン100における仕上圧延機列20の動作を、本発明の動作制御方法によって制御することにより、微細粒鋼を製造することが可能になる。
  以上より、本発明によれば、微細粒鋼を製造することが可能なタンデム圧延機の動作制御方法、及び、微細粒鋼を製造することが可能な熱延鋼板の製造方法を提供することができる。
 なお、微細粒鋼生産のための後段スタンドの圧延荷重の平均線圧は、表1、表3、表5、表7に記載の定常部圧延荷重を板幅で割った値であって20MN/mを超えた値となっている。これは従来の通常ドラフトスケジュールの圧延荷重に比べるとより高負荷となっている。この高負荷圧延を実現することで、第1~4実施形態に示すように、比較的板厚が薄く、比較的幅が広い仕上り材でも締め込み荷重上限範囲内で微細粒鋼を製造することが可能となる。
 第1スタンド1によって圧延される前の板厚が32mm、板幅が1000mmである鋼板を7スタンドからなるタンデム圧延機によって圧延した。圧延条件は、下記表9に示す条件1~条件4とした。
Figure JPOXMLDOC01-appb-T000009
 条件1では、先端圧延部を表2に示す設定で、定常部を表1に示す設定で圧延を行った。表2に示す設定で最先端圧延後、表1の設定まで第7スタンドの開度を下げることにより定常部では目標の板厚を達成することができた。また、第7スタンドの荷重をモニターしながら高速動作可能な形状制御手段であるワークロールベンダーへと付与される曲げ力を表2に示す392kN/chから表1に示す980kN/chまで変化させることにより、第7スタンド出側の形状を乱すことなく圧延が可能であった。すなわち、本発明によれば、キスロール状態からタンデム圧延機の動作を制御することができ、微細粒鋼を製造することができた。
 これに対し、条件2では、従来技術を用いて先端圧延部から表1に示す開度設定にて圧延したが、圧延機のモーターの駆動力を上下ワークロールに伝達するカムワルツ部でトルク循環による異常発熱が発生し、圧延を途中で止めざるを得なかった。
 また、条件3では、先端圧延部を表2に示す設定値で圧延したのち、圧延機の開度を表1に示す設定値まで変化させたが、WRBを表2に示す値のまま変化させなかったため、圧延機は破損しなかったが、定常部で圧延材の形状不良が大きくなり、製品価値を失った。
 また、条件4では、表2に示す開度設定とし、WRBを表1に示す値に設定したが、第7スタンド通板時の形状不良により、コイル先端部が圧延機の出側に引掛かり、通常圧延機の後方に設置されているコイリング装置にまで到達せず、圧延機を停止せざるを得ない状況となった。
 以上、現時点において実践的であり、かつ好ましいと思われる実施形態に関連して本発明を説明したが、本発明は本願明細書中に開示された実施形態に限定されるものではなく、請求の範囲および明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴うタンデム圧延機の動作制御方法、及び、熱延鋼板の製造方法も本発明の技術的範囲に包含されるものとして理解されなければならない。
 本発明のタンデム圧延機の動作制御方法、及び、熱延鋼板の製造方法は、微細結晶粒を有する熱延鋼板の製造に用いることができる。また、微細結晶粒を有する熱延鋼板は、自動車用、家電用、機械構造用、建築用等の用途に使用される素材として用いることができる。
 1…第1スタンド
 1x…アクチュエータ
 1y…ベンダー装置
 2…第2スタンド
 2x…アクチュエータ
 2y…ベンダー装置
 3…第3スタンド
 3x…アクチュエータ
 3y…ベンダー装置
 4…第4スタンド
 4x…アクチュエータ
 4y…ベンダー装置
 5…第5スタンド
 5x…アクチュエータ
 5y…ベンダー装置
 6…第6スタンド
 6x…アクチュエータ
 6y…ベンダー装置
 7…第7スタンド
 7x…アクチュエータ
 7y…ベンダー装置
 8…被圧延材(鋼板)
 10…タンデム圧延機
 20…仕上圧延機列
 30…粗圧延機列
 100…熱延鋼板の製造ライン

Claims (6)

  1. N個(Nは2以上の整数)のスタンドを有し、被圧延材を噛み込む前の第N-m+1スタンド(mは1以上N以下の整数)から第Nスタンドまでの各スタンドに事前に締め込み荷重が付与されるタンデム圧延機の動作を制御する方法であって、
     第1スタンドから第Nスタンドまでの各スタンドの出側板厚を決定する出側板厚決定工程を有し、該出側板厚決定工程は、前記被圧延材の定常部を圧延するときの前記第1スタンドから前記第Nスタンドまでの出側板厚を決定する第1出側板厚決定工程、及び、前記スタンドへと事前に付与される締め込み荷重が予め設定された締め込み荷重以下となるように、前記被圧延材の先端圧延部を圧延するときの前記第1スタンドから前記第Nスタンドまでの出側板厚を決定する第2出側板厚決定工程、を含み、
     少なくとも前記被圧延材の最先端部が前記各スタンドに噛み込まれるまでは、前記第2出側板厚決定工程で決定した出側板厚となるように前記被圧延材が圧延されるとともに、前記被圧延材の定常部は、前記第N-m+1スタンドから前記第Nスタンドによって、前記第1出側板厚決定工程で決定した出側板厚へと圧延され、
     前記第2出側板厚決定工程で決定された前記第N-m+1スタンドから前記第Nスタンドまでの出側板厚は、前記第1出側板厚決定工程で決定された同じスタンドの出側板厚よりも厚いことを特徴とする、タンデム圧延機の動作制御方法。
  2. 前記被圧延材の先端圧延部から定常部への移行にあたって、前記先端圧延部から前記定常部への圧延荷重変化に基づいてスタンドの形状変化が予測され、予測された形状変化に基づいて前記スタンドの形状制御手段の動作が制御されることを特徴とする、請求項1に記載のタンデム圧延機の動作制御方法。
  3. 事前に締め込み荷重を付与されるスタンドが、2以上の形状制御手段を有し、
     前記2以上の形状制御手段に、第1形状制御手段、及び、少なくとも前記被圧延材の先端圧延部から定常部への移行時に高速動作可能な第2形状制御手段、が含まれ、
     前記被圧延材の先端圧延部から定常部へと移行する前に、前記第2形状制御手段の動作が予測され、
     予測結果に基づいて、前記第2形状制御手段の許容動作範囲を超えないように、前記第1形状制御手段及び前記第2形状制御手段の動作が設定されることを特徴とする、請求項1又は2に記載のタンデム圧延機の動作制御方法。
  4. 事前に締め込み荷重を付与されるスタンドが、少なくとも前記被圧延材の先端圧延部から定常部への移行時に高速動作可能な第1形状制御手段及び第2形状制御手段を有し、前記第1形状制御手段の許容動作範囲を超えた場合には、前記第2形状制御手段の動作が変更されることを特徴とする、請求項1又は2に記載のタンデム圧延機の動作制御方法。
  5. 前記出側板厚決定工程が、さらに、前記被圧延材の後端圧延部の圧延が終了したときの前記スタンドの締め込み荷重が予め設定された締め込み荷重以下となるように、前記第1スタンドから前記第Nスタンドまでの出側板厚を決定する第3出側板厚決定工程、を含むことを特徴とする、請求項1~4のいずれか1項に記載のタンデム圧延機の動作制御方法。
  6. 請求項1~5のいずれか1項に記載のタンデム圧延機の動作制御方法によって動作を制御される熱間仕上圧延機列を用いて鋼板を圧延する工程を有することを特徴とする、熱延鋼板の製造方法。
PCT/JP2011/056926 2010-04-06 2011-03-23 タンデム圧延機の動作制御方法及びこれを用いた熱延鋼板の製造方法 WO2011125498A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020127025295A KR101404347B1 (ko) 2010-04-06 2011-03-23 텐덤 압연기의 동작 제어 방법 및 이를 이용한 열연 강판의 제조 방법
CN201180017039.9A CN102821884B (zh) 2010-04-06 2011-03-23 串列式轧制设备的动作控制方法和使用该方法的热轧钢板的制造方法
EP11765399.8A EP2556903B1 (en) 2010-04-06 2011-03-23 Operation control method of tandem rolling mill, and method for producing hot-rolled steel sheet using same
BR112012024631A BR112012024631A8 (pt) 2010-04-06 2011-03-23 Método para controlar a operação de cadeira de laminação contínua e método para produzir chapa de aço laminada a quente usando o referido método
US13/625,283 US8850860B2 (en) 2010-04-06 2012-09-24 Method of controlling operation of tandem rolling mill and method of manufacturing hot-rolled steel sheet using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010087447A JP4801782B1 (ja) 2010-04-06 2010-04-06 タンデム圧延機の動作制御方法及びこれを用いた熱延鋼板の製造方法
JP2010-087447 2010-04-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/625,283 Continuation US8850860B2 (en) 2010-04-06 2012-09-24 Method of controlling operation of tandem rolling mill and method of manufacturing hot-rolled steel sheet using the same

Publications (1)

Publication Number Publication Date
WO2011125498A1 true WO2011125498A1 (ja) 2011-10-13

Family

ID=44762452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056926 WO2011125498A1 (ja) 2010-04-06 2011-03-23 タンデム圧延機の動作制御方法及びこれを用いた熱延鋼板の製造方法

Country Status (8)

Country Link
US (1) US8850860B2 (ja)
EP (1) EP2556903B1 (ja)
JP (1) JP4801782B1 (ja)
KR (1) KR101404347B1 (ja)
CN (1) CN102821884B (ja)
BR (1) BR112012024631A8 (ja)
TW (1) TWI486218B (ja)
WO (1) WO2011125498A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2783765B1 (en) * 2013-03-25 2016-12-14 ABB Schweiz AG Method and control system for tuning flatness control in a mill
US11298733B2 (en) * 2019-10-30 2022-04-12 Toshiba Mitsubishi-Electric Industrial Systems Corporation Method for calculating plate thickness schedule for tandem rolling machine and rolling plant
IT202000000316A1 (it) * 2020-01-10 2021-07-10 Danieli Off Mecc Metodo ed apparato di produzione di prodotti metallici piani
WO2022049739A1 (ja) * 2020-09-04 2022-03-10 東芝三菱電機産業システム株式会社 タンデム冷間圧延機の制御システム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08206712A (ja) * 1995-01-31 1996-08-13 Toshiba Corp 走間板厚変更時のパススケジュール決定方法
JP2005319495A (ja) * 2004-05-11 2005-11-17 Kobe Steel Ltd 熱間仕上圧延方法および熱間仕上圧延材

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5691918A (en) * 1979-12-27 1981-07-25 Mitsubishi Electric Corp Load redistribution controller for continuous rolling mill
JPH04266185A (ja) 1991-02-21 1992-09-22 Nec Corp 文字のライン化方式
JPH05200420A (ja) * 1992-01-28 1993-08-10 Toshiba Corp マットロール圧延用板厚制御装置
US5609053A (en) * 1994-08-22 1997-03-11 Alcan Aluminum Corporation Constant reduction multi-stand hot rolling mill set-up method
JP2000167612A (ja) * 1998-12-04 2000-06-20 Toshiba Corp 圧延機の最適パススケジュール決定方法及び装置
JP2000312909A (ja) * 1999-04-27 2000-11-14 Toshiba Corp 板幅制御装置
JP3413181B2 (ja) * 2001-08-03 2003-06-03 川崎重工業株式会社 連続熱間圧延設備
EP1485216B1 (de) * 2002-03-15 2005-10-26 Siemens Aktiengesellschaft Rechnergestütztes ermittlungsverfahren für sollwerte für profil- und planheitsstellglieder
FR2887480B1 (fr) * 2005-06-23 2007-09-21 Vai Clecim Soc Par Actions Sim Procede et dispositif de regulation de l'epaisseur d'un produit lamine en sortie d'une installation de laminage en tandem
JP4834623B2 (ja) * 2007-07-26 2011-12-14 株式会社神戸製鋼所 タンデム圧延装置におけるパススケジュール決定方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08206712A (ja) * 1995-01-31 1996-08-13 Toshiba Corp 走間板厚変更時のパススケジュール決定方法
JP2005319495A (ja) * 2004-05-11 2005-11-17 Kobe Steel Ltd 熱間仕上圧延方法および熱間仕上圧延材
JP4266185B2 (ja) 2004-05-11 2009-05-20 株式会社神戸製鋼所 熱間仕上圧延方法および熱間仕上圧延材

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KANJI HAYASHI ET AL.: "Journal of the 1983 Japanese Spring Conference for the Technology of Plasticity", 1983, THE JAPAN SOCIETY FOR TECHNOLOGY OF PLASTICITY, article "Development of Pair-Cross Type Rolling mill (Seventh Report) - a relation between a thrust force during kiss roll and lubrication", pages: 313 - 316
See also references of EP2556903A4

Also Published As

Publication number Publication date
EP2556903A4 (en) 2014-09-24
US20130019646A1 (en) 2013-01-24
US8850860B2 (en) 2014-10-07
TWI486218B (zh) 2015-06-01
CN102821884B (zh) 2014-07-02
CN102821884A (zh) 2012-12-12
BR112012024631A2 (pt) 2016-06-07
KR101404347B1 (ko) 2014-06-09
KR20120130008A (ko) 2012-11-28
JP4801782B1 (ja) 2011-10-26
JP2011218377A (ja) 2011-11-04
BR112012024631A8 (pt) 2017-10-03
EP2556903B1 (en) 2016-05-11
EP2556903A1 (en) 2013-02-13
TW201206583A (en) 2012-02-16

Similar Documents

Publication Publication Date Title
CA3069981C (en) Systems and methods for controlling flatness of a metal substrate with low pressure rolling
JP4801782B1 (ja) タンデム圧延機の動作制御方法及びこれを用いた熱延鋼板の製造方法
JP3254067B2 (ja) エンドレス圧延における板クラウンの制御方法
JP2008516781A (ja) そのストリップエンドが圧延速度で流出するストリップの離脱を改善するための方法及び圧延ライン
JP2007160395A (ja) 高張力鋼の冷間タンデム圧延方法
KR101581168B1 (ko) 압연 재료를 압연하기 위한 압연 트레인의 복수의 구동부를 위한 구동 부하를 조정하는 방법, 개회로 제어 및/또는 폐회로 제어 장치, 저장 매체, 프로그램 코드 및 압연 설비
KR20010087247A (ko) 열연강판의 제조장치 및 방법과 이에 이용하는 판두께프레스 장치 및 방법
JP5440288B2 (ja) タンデム仕上圧延機及びその動作制御方法、並びに、熱延鋼板の製造装置及び熱延鋼板の製造方法
JP2008161883A (ja) 厚鋼板の反り制御方法
JP5381859B2 (ja) タンデム仕上圧延機及びその動作制御方法、並びに、熱延鋼板の製造装置及び熱延鋼板の製造方法
JP2009285695A (ja) 熱間仕上圧延における蛇行防止方法、および、それを用いた熱延金属板の製造方法
JP5565189B2 (ja) 連続式冷間圧延機における圧延形状制御方法
JP5353622B2 (ja) タンデム圧延機の動作制御方法及びこれを用いた熱延鋼板の製造方法
KR101230139B1 (ko) 스테인리스강의 연속 냉간 압연 방법
JP7200918B2 (ja) 鋼板の冷間圧延方法及び冷延鋼板の製造方法
US20230060110A1 (en) Hot-rolling stand for a hot-rolling mill and for producing a flat metal product, hot-rolling mill and method for operating a hot-rolling mill
JP2013180323A (ja) 薄鋼板の製造方法
JP5381858B2 (ja) タンデム圧延機のドラフトスケジュール決定方法及びこれを用いた熱延鋼板の製造方法
JP5761071B2 (ja) 高張力鋼板の調質圧延方法、調質圧延設備及び圧延ライン
JP2013052406A (ja) タンデム仕上圧延機及びその動作制御方法、並びに、熱延鋼板の製造装置及び熱延鋼板の製造方法
JP6669044B2 (ja) H形鋼の製造方法
JP5742680B2 (ja) 熱延鋼板の張力制御方法及び製造方法
JP5903826B2 (ja) 熱間スラブのサイジング圧延方法
JP2009131869A (ja) 熱間圧延における仕上圧延機のロールシフト方法および熱延金属帯の製造方法
JPH0124565B2 (ja)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180017039.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765399

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127025295

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 8409/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2011765399

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012024631

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012024631

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120927