WO2011122587A1 - 耐プレッシャーマーク性及び耐擦り疵性に優れたクリヤ塗装ステンレス鋼板 - Google Patents

耐プレッシャーマーク性及び耐擦り疵性に優れたクリヤ塗装ステンレス鋼板 Download PDF

Info

Publication number
WO2011122587A1
WO2011122587A1 PCT/JP2011/057712 JP2011057712W WO2011122587A1 WO 2011122587 A1 WO2011122587 A1 WO 2011122587A1 JP 2011057712 W JP2011057712 W JP 2011057712W WO 2011122587 A1 WO2011122587 A1 WO 2011122587A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
stainless steel
clear
resistance
steel sheet
Prior art date
Application number
PCT/JP2011/057712
Other languages
English (en)
French (fr)
Inventor
松山 宏之
春樹 有吉
洋一郎 安田
Original Assignee
新日鐵住金ステンレス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金ステンレス株式会社 filed Critical 新日鐵住金ステンレス株式会社
Priority to AU2011235775A priority Critical patent/AU2011235775B2/en
Priority to US13/636,532 priority patent/US8623502B2/en
Priority to KR20127025255A priority patent/KR20120138238A/ko
Priority to EP11762811.5A priority patent/EP2554369B1/en
Priority to CN201180017617.9A priority patent/CN102821948B/zh
Priority to NZ60230611A priority patent/NZ602306A/en
Publication of WO2011122587A1 publication Critical patent/WO2011122587A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/082Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/62Polymers of compounds having carbon-to-carbon double bonds
    • C08G18/6216Polymers of alpha-beta ethylenically unsaturated carboxylic acids or of derivatives thereof
    • C08G18/622Polymers of esters of alpha-beta ethylenically unsaturated carboxylic acids
    • C08G18/6225Polymers of esters of acrylic or methacrylic acid
    • C08G18/6229Polymers of hydroxy groups containing esters of acrylic or methacrylic acid with aliphatic polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • C08G18/8061Masked polyisocyanates masked with compounds having only one group containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24372Particulate matter
    • Y10T428/24405Polymer or resin [e.g., natural or synthetic rubber, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/254Polymeric or resinous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2998Coated including synthetic resin or polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31605Next to free metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31692Next to addition polymer from unsaturated monomers

Definitions

  • the present invention relates to a clear-coated stainless steel sheet excellent in pressure mark resistance and scuff resistance.
  • This application claims priority based on Japanese Patent Application No. 2010-077367 filed in Japan on March 30, 2010 and Japanese Patent Application No. 2011-029016 filed in Japan on February 14, 2011. The contents are incorporated here.
  • ⁇ Clear-coated stainless steel sheets have a high-grade appearance that takes advantage of the beautiful metallic luster that is unique to stainless steel.
  • the clear-coated stainless steel sheet is characterized by a very high surface gloss, and therefore there is a problem that pressure marks generated due to the pressure during winding of the steel sheet and scuffing on the painted surface are easily noticeable.
  • Patent Document 2 In addition, it has been reported that in the front and back double-sided coating method of the base material, the pressure-resistant mark is improved by adding resin particles to the backside coating part (Patent Document 2).
  • the back surface is often coated to suppress rust.
  • the coating on the back surface itself may be restricted.
  • it is necessary to perform special coating for the back surface it leads to an extra cost increase.
  • Patent Document 4 there is a technique that improves the design of stainless steel clear coating by the process of 1 coat and 1 bake. However, there is no mention of pressure mark resistance during production.
  • the present invention has been made in view of such circumstances, and provides a clear-coated stainless steel sheet that is economically superior in mass production conditions with a large coil weight and excellent in pressure mark resistance and scratch resistance. With the goal.
  • the inventors have obtained the knowledge that the selection of resin beads and the relationship between the thickness of the clear coating and the average particle size of the resin beads are important, leading to the present invention.
  • thermosetting resin composition (A) includes an acrylic resin (A1) and a cross-linked cured resin (A2) made of a blocked isocyanate resin and an amino resin that cross-links and cures the acrylic resin (A1).
  • the acrylic resin (A1) contains one or more crosslinkable functional groups selected from a hydroxyl group, a carboxyl group, and an alkoxysilane group, has a glass transition point of 30 to 90 ° C., and a number average molecular weight of 3000 to 50000. It is.
  • the average particle size of the resin beads (B) is set to be 0. 0 of the film thickness of the clear-coated film. It may be 20 to 3.0 times.
  • the resin beads (B) are cross-linked acrylic resin beads and cross-linked urethane resins. One kind or two or more kinds selected from beads and fluororesin beads may be used.
  • the clear-coated film contains a thermosetting resin composition and a predetermined amount of resin beads, and the thermosetting resin composition includes an acrylic resin, As the resin for crosslinking and curing, a blocked isocyanate resin and an amino resin are included. For this reason, the pressure mark resistance and scuff resistance of the clear coated stainless steel sheet can be improved. Moreover, since it is excellent in pressure mark resistance, it can be manufactured under the mass production conditions where the coil unit weight is large, and it is economically superior. Furthermore, according to the clear coated stainless steel sheet according to one aspect of the present invention, by defining the average particle diameter of the resin beads relative to the film thickness of the clear coated film, And scuff resistance can be further improved.
  • a clear coating film made of a resin composition for clear coating is applied and formed on one side or both sides of the stainless steel plate.
  • the resin composition for clear coating is 0 per 100 parts by mass of the solid content of the thermosetting resin composition (A) including the acrylic resin (A1) and the cross-linked cured resin (A2), and the thermosetting resin composition (A). 0.5 to 4.0 parts by mass of resin beads (B).
  • thermosetting resin composition (A) that is the base resin of the clear coating resin composition will be described.
  • thermosetting resin composition (A) includes one or more crosslinkable functional groups selected from a hydroxyl group, a carboxyl group, and an alkoxysilane group, has a glass transition point of 30 to 90 ° C., and has a number average molecular weight. It contains at least an acrylic resin (A1) of 3000 to 50000, and a cross-linked cured resin (A2) made of a blocked isocyanate resin and an amino resin that cross-links and cures the acrylic resin.
  • Acrylic resin (A1) The acrylic resin (A1) having one or more crosslinkable functional groups selected from a hydroxyl group, a carboxyl group, and an alkoxysilane group in the present embodiment is obtained by a known method as a coating resin.
  • the acrylic resin (A1) is obtained by reacting a non-functional monomer with one or more polymerizable monomers having a crosslinkable functional group such as a hydroxyl group, a carboxyl group, or an alkoxysilane group. be able to.
  • non-functional monomers include methyl acrylate, ethyl acrylate, isopropyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, Aliphatic or cyclic acrylates such as n-butyl methacrylate, n-hexyl methacrylate, cyclohexyl acrylate, cyclohexyl methacrylate, lauryl methacrylate; methyl vinyl ether, ethyl vinyl ether, n-propyl vinyl ether, n-butyl Ethers such as vinyl ether; styrenes such as styrene and a-methylstyrene; one or more selected from acrylamide monomers such as acrylamide, N-methylolacrylamide, and diacetoneacrylamide. That.
  • polymerizable monomers containing one or more hydroxyl groups in one molecule include hydroxyalkyl esters such as 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, hydroxypropyl acrylate, and hydroxypropyl methacrylate; Plaxel FM1 -5, FA-1-5 (manufactured by Daicel Chemical Industries) and lactone-modified hydroxyl group-containing vinyl polymerization monomers. Any of the compounds exemplified here is a polymerizable monomer having a polymerizable unsaturated double bond together with a hydroxyl group.
  • a polymer monomer having a carboxyl group is a compound containing at least one carboxyl group and one polymerizable unsaturated double bond in one molecule, such as acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid. An acid etc. are mentioned.
  • Examples of the polymer monomer having an alkoxysilane group include vinyltrimethoxysilane, vinyltriethoxysilane, methacryloxypropyltrimethoxysilane, and the like.
  • the compounds exemplified here are also compounds each containing one or more alkoxysilane groups and polymerizable unsaturated double bonds in one molecule.
  • the acrylic resin (A1) obtained from the above raw materials can have two or more crosslinkable functional groups such as a hydroxyl group, a carboxyl group, and an alkoxysilane group per molecule.
  • the number average molecular weight of the acrylic resin (A1) is preferably in the range of 3000 to 50000, more preferably in the range of 4000 to 20000.
  • the number average molecular weight is less than 3000, the reactivity with the cross-linking agent is too poor to form a coating film, which is not preferable.
  • the number average molecular weight is more than 50000, the solubility in a solvent is insufficient and the resin liquid may not be obtained, which is not preferable.
  • the glass transition point of the acrylic resin (A1) is preferably 30 to 90 ° C, and more preferably in the range of 50 to 90 ° C.
  • the glass transition point of the acrylic resin (A1) is less than 30 ° C, if the surface temperature of the steel sheet rises to 80-100 ° C due to friction and heat generated during continuous pressing, the coating film softens and is applied to the mold. Since membrane resin may adhere, it is not preferable.
  • the glass transition point is higher than 90 ° C., workability during painting such as pinholes and insufficient leveling is deteriorated, which is not preferable.
  • the cross-linked cured resin (A2) which is another component of the thermosetting resin composition (A) is a mixture of a blocked isocyanate resin and an amino resin.
  • the blocked isocyanate resin is a compound having two or more isocyanate groups in one molecule, and the polyisocyanate is a blocking agent such as phenols, oximes, active methylenes, ⁇ -caprolactams, triazoles and pyrazoles. It has been sealed.
  • An organotin catalyst such as dibutyltin dilaurate is used as a dissociation accelerator for the blocking agent.
  • polyisocyanate examples include aromatic diisocyanates such as tolylene diisocyanate, diphenylmethane diisocyanate, xylene diisocyanate and naphthalene diisocyanate; aliphatic diisocyanates such as hexamethylene diisocyanate and dimer acid diisocyanate; alicyclic diisocyanates such as isophorone diisocyanate and cyclohexane diisocyanate; Examples include isocyanate burette-type adducts and isocyanuric ring-type adducts.
  • Amino resin is a generic term for resins modified with alcohol by addition reaction of amino compounds (melamine, guanamine, urea) and formaldehyde (formalin).
  • amino resins for paint include melamine resin, benzoguanamine resin, urea resin, butylated urea resin, butylated urea melamine resin, glycoluril resin, acetoguanamine resin, and cyclohexylguanamine resin.
  • a melamine resin is preferable from the viewpoint of scratch resistance and chemical resistance due to thermosetting.
  • methylated melamine resins examples include Cymel 300, 301, 303, 350, 370, 771, 325, 327, 703, 712, 715, 701, 267, 285, 232, 235, 236, 238, 211, 254, 204, 212, Commercial products manufactured by Mitsui Cytec Co., Ltd. such as 202 and 207; commercial products manufactured by BASF Corp. such as LUWIPAL063, 066, 068, 069, 072, and 073; manufactured by DIC Corporation such as Super Becamine L-105 Commercial products manufactured by Hitachi Chemical Co., Ltd. such as Melan 522, 523, 620, 622, and 623 can be exemplified.
  • n-butylated melamine resin commercial products manufactured by Mitsui Cytec Co., Ltd. such as Mycoat 506 and 508; Uban 20SB, 20SE, 21R, 22R, 122, 125, 128, 220, 225, 228, 28-60 , 20HS, 2020, 2021, 2028, 120, etc., commercial products manufactured by Mitsui Chemicals, Inc .; PLASFAL EBS 100A, 100B, 400B, 600B, CB, etc., commercial products, manufactured by BASF Corp .; Super Becamine J-820 , L-109, L-117, L-127, L-164, and other commercial products manufactured by DIC Corporation; Melan 21A, 22, 220, 1303, 2000, 2030, 8000, etc., manufactured by Hitachi Chemical Co., Ltd.
  • Examples of the mixed alkylated melamine resin include commercial products manufactured by Mitsui Cytec Co., Ltd. such as Cymel 267, 285, 232, 235, 236, 238, 211, 254, 204, 212, 202, and 207. These may be used alone or in combination.
  • the composition ratio (content ratio) of both components of the acrylic resin (A1) and the cross-linked cured resin (A2) in the thermosetting resin composition (A) can be varied within a wide range depending on the purpose.
  • the amount of isocyanate groups in the blocked isocyanate resin is 0.1 to 1.0 mol, preferably 0.2 to 0.8 mol, relative to 1 mol of (OH + COOH) groups in the acrylic resin (A1). good.
  • the amount of the amino resin is 5 to 25 parts by mass, preferably 8 to 15 parts by mass with respect to 100 parts by mass of the acrylic resin (A1) solid content.
  • the addition amount of the cross-linked cured resin (A2) is small, the abrasion resistance is poor.
  • the addition amount of the cross-linked cured resin (A2) is increased, bending workability is inferior, so that fine cracks are formed in the coating film during processing, leading to a decrease in corrosion resistance.
  • a sulfonic acid-based or amine-based catalyst is used as an amino resin curing catalyst.
  • P-toluenesulfonic acid and dodecylbenzenesulfonic acid which are sulfonic acid catalysts are preferable. 0.1-3.0 parts by mass, preferably 0.3-1.0 parts by mass of P-toluenesulfonic acid or dodecylbenzenesulfonic acid per 100 parts by mass of the solid content of the thermosetting resin composition (A). It is desirable to contain part by mass. If the amount of the amino resin curing catalyst is 0.1 parts by mass or less, the effect cannot be obtained. When the amount of the amino resin curing catalyst is 3 parts by mass or more, not only the curing is saturated but also the workability is deteriorated.
  • Curing catalysts for blocked isocyanate resins include di-n-butyltin oxide, n-dibutyltin chloride, di-n-butyltin dilaurate, di-n-butyltin diacetate, di-n-octyltin oxide, di- Examples thereof include n-octyltin dilaurate and tetra-n-butyltin. Each may be added as necessary, and may be used alone or in combination.
  • the clear coating resin composition may further be mixed with a leveling agent, an antifoaming agent, an antioxidant, an ultraviolet absorber, a matting agent, a silane coupling agent, and the like as additives. Further, pigments or dyes may be dispersed to form a color clear coating film, or a luster material such as an aluminum paste or a pearl pigment may be mixed to provide design. Moreover, you may contain an epoxy resin, a silicon resin, a fluororesin, a polyester resin, etc. as needed.
  • the clear coating resin composition of this embodiment contains 0.5 to 4.0 parts by mass of resin beads (B) per 100 parts by mass of the thermosetting resin composition (A). If the content of the resin beads is less than 0.5 parts by mass, the effect of anti-scratch property cannot be obtained. When the resin bead content exceeds 4.0 parts by mass, the transparency of the clear coating film is deteriorated and the coating workability is also lowered.
  • the content of the resin beads is particularly preferably 1.0 to 3.0 parts by mass, and more preferably 1.0 to 2.0 parts by mass.
  • the resin beads (B) preferably have an average particle size of 0.20 to 3.0 times the required coating thickness of the clear coating film.
  • resin beads having an average particle diameter of 0.20 to 3.0 times the required coating thickness of the clear coating film it is possible to achieve the good anti-resistance characteristic of this embodiment without significantly reducing the surface gloss of the clear coating film. Pressure mark property and scuff resistance can be obtained. If the average particle diameter of the resin beads (B) is less than 0.20 times the coating required film thickness, the resin beads have too small a particle size, resulting in a decrease in function as an aggregate, pressure mark resistance, and scratch resistance. There is no effect on sex.
  • the average particle size of the resin beads (B) is preferably 0.3 to 2.0 times the required coating thickness of the clear coating film, more preferably 0.5 to 1.3 times, and 0.8 to 1.0. Double is most preferred.
  • the average particle size of the resin beads (B) is generally determined from the particle size distribution measured by a laser diffraction method.
  • the material of the resin beads (B) examples include acrylic resin, urethane resin, benzoquamine resin, styrene resin, polyethylene resin, polypropylene resin, and fluorine resin.
  • the material of the resin beads (B) is preferably an acrylic resin, a urethane resin, or a fluororesin.
  • the paint is solvent-based, solvent resistance is required, and therefore, a crosslinked resin bead is preferable.
  • Cross-linked acrylic resin beads include Art Pearl A-400, G-200, G-400, G-600, G-800, GR-200, GR-300, GR-400, GR-600, GR-800, Commercial products made by Negami Kogyo Co., Ltd.
  • Cross-linked urethane resin beads include Art Pearl C-100, C-200, C-300, C-400, C-800, CZ-400, P-400T, P-800T, HT-400BK, U-600T, Examples include commercial products made by Negami Kogyo Co., Ltd., such as CF-600T, MT-400BR, and MT-400YO.
  • Fluorine resin beads include DYNEON PTFE micro powder TF-9201, TF-9205, TF-9207, and other commercial products manufactured by Sumitomo 3M; Fluon PTFE Lubricant L-150J, L-169J, L-170J, L- Examples include commercially available products made by Asahi Glass Co., Ltd. such as 172J and L-173J. These may be added as needed, and may be used alone or in combination.
  • the slick property is improved and the scuff resistance is further improved.
  • various transparent organic pigments and inorganic pigments may be added.
  • the requirement for the design property becomes more severe, and even a minute pressure mark or rubbing so as not to cause a problem with a conventional transparent clear may cause a problem.
  • the management of the coating film thickness and the management of the resin bead particle size in a more preferable range are required.
  • a method of adding the resin beads to the resin composition by narrowing the particle size distribution of the resin beads through a dispersion step is desirable.
  • the thickness of the clear-coated film is preferably 1 to 10 ⁇ m, more preferably 2 to 6 ⁇ m, and most preferably 3 to 5 ⁇ m.
  • the film thickness of the clear coating film exceeds 10 ⁇ m, the coating workability in one coat and one bake deteriorates.
  • the bending processability of the clear coating film is reduced, and microcracks are formed during the bending process, leading to a decrease in corrosion resistance.
  • the film thickness increases, it is necessary to increase the average particle diameter of the resin beads added to ensure pressure mark resistance. However, if the average particle diameter of the resin beads increases, the design as a clear-coated stainless steel sheet Sex is reduced.
  • the thickness of the clear coating film is less than 1 ⁇ m, it is difficult to control the film thickness, and the design properties are deteriorated.
  • the stainless steel plate Before coating the clear coating film, it is preferable to subject the stainless steel plate to a chemical conversion treatment.
  • the chemical conversion treatment liquid non-chromate is preferable in consideration of environmental problems. In general, aminosilane-based and epoxysilane-based coupling agents are preferred.
  • the stainless steel plate was subjected to chemical conversion treatment so that the amount of chemical conversion solution deposited was 2 to 50 mg / m 2 (measured by the amount of SiO 2 by fluorescent X-rays), and then the surface temperature (PMT) of the stainless steel plate material was 60 It is baked and dried under a condition of about ⁇ 140 ° C.
  • N-2 (aminoethyl) 3-aminopropylmethyldimethoxysilane, N-2 (aminoethyl) 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyl A triethoxysilane is mentioned.
  • the epoxy-based silane coupling agent include silane coupling agents such as 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, and 3-glycidoxypropylmethyldiethoxysilane. Can be mentioned. These may be used alone or in combination.
  • the chemical conversion liquid can be applied by using a method such as spraying, roll coating, curtain flow coating, electrostatic coating, or the like.
  • Drying may be performed by evaporating moisture, and the temperature is suitably 60 to 140 ° C. as a temperature reached by the stainless steel plate material (PMT).
  • a known pretreatment such as alkali degreasing, acid or alkali etching may be performed as necessary.
  • the clear coating film may be applied not only to the front side of the stainless steel plate but also to the back side. Moreover, the back surface of the stainless steel plate may not be clear coating.
  • the coating film thickness on the back surface of the stainless steel plate may be about 1 to 6 ⁇ m.
  • Resins such as epoxy, acrylic, urethane, and polyester are used. If there is a coating film on the back side, the pressure mark resistance is good.
  • a clear coating film containing a blocked isocyanate resin and an amino resin as a crosslinkable curable resin for crosslinking and curing an acrylic resin, and further containing a crosslinked resin bead having a certain particle diameter is provided. Therefore, good pressure mark resistance and scuff resistance can be achieved.
  • Thermosetting resin compositions A-1 and B-2 were obtained by mixing the obtained acrylic resin with a crosslinkable curable resin shown in Table 1.
  • a crosslinkable curable resin shown in Table 1.
  • the block isocyanate of the crosslinkable curable resin Death Module VPLS 2253 (manufactured by Sumika Bayer Urethane Co., Ltd.) having an NCO group content of 10.5% was used.
  • the melamine resin Cymel 327 (Mitsui Cytec Co., Ltd.) was used.
  • the mixing ratio of the acrylic resin and the crosslinkable curable resin is as shown in Table 1.
  • the compounding ratio of Table 1 is a mass part.
  • thermosetting resin compositions A-1 to B-2 were mixed with the additive components and resin beads shown in Tables 2 to 4, thereby being used for clear coating in Examples 1 to 14 and Comparative Examples 1 to 5.
  • a resin composition was obtained.
  • the units of the blending amounts in Tables 2 to 4 are all parts by mass. However, since the thinner added at the time of mixing volatilizes during drying, the resin bead mass part per 100 mass parts of the solid content of the thermosetting resin composition is described as “resin beads / thermosetting resin composition solid content”. .
  • the obtained clear coating resin composition was coated on a stainless steel plate with a bar coater so that the coating amount was 3.0 to 4.0 g / m 2 .
  • baking was performed under the condition that the surface temperature (PMT) was 232 ° C.
  • the clear coated stainless steel sheets of Examples 1 to 7 and Comparative Examples 1 to 5 shown in Tables 2 to 3 were obtained.
  • the clear coated stainless steels of Examples 8 to 11 were adjusted so that the coating film thickness was 3, 10, and 18 ⁇ m.
  • a steel plate was obtained.
  • Table 4 in order to confirm the influence of the type of resin beads, clear coated stainless steel plates of Examples 12 to 14 were obtained.
  • the addition amount of the thermosetting resin composition represents the mass part of the solid content.
  • the addition amount of acid catalyst (P-toluenesulfonic acid) and tin catalyst (di-n-butyltin dilaurate), leveling agent and antifoaming agent (both acrylic resin) are the main components excluding solvents.
  • the mass part of the component) is shown.
  • the resin beads A to C are cross-linked acrylic resin beads manufactured by Gantz Kasei, and the average particle size is 3 ⁇ m for the resin beads A, 7 ⁇ m for B, and 10 ⁇ m for C.
  • Resin beads D are cross-linked urethane resin beads manufactured by Negami Kogyo and have an average particle size of 3 ⁇ m.
  • the resin beads E are fluorine resin beads manufactured by Asahi Glass, and the average particle diameter is 3 ⁇ m.
  • the resin beads F used in Example 14 are PE resin beads manufactured by BYK-Chemie, and the average particle diameter is 3.5 ⁇ m.
  • As the polyethylene wax CERAFLOUR 961 (BYK-Chemie (Big Chemie)) having an average particle diameter of 3.5 ⁇ m was used.
  • Examples 1 to 14 clear coating containing a thermosetting resin composition containing a blocked isocyanate resin and an amino resin as a resin for crosslinking and curing the acrylic resin, and resin beads having a predetermined amount and an average particle diameter It can be seen that a clear-coated stainless steel sheet excellent in pressure mark resistance and rust resistance can be obtained by providing the film.
  • Examples 1 to 9, 12, and 13 include the thermosetting resin compositions of A-1 to A-4 and a predetermined amount of resin beads, and the resin beads average particle diameter / coating thickness is It is 0.20 to 3.0 times. For this reason, the evaluation of either or both of pressure mark resistance and rust resistance was very good at 5.
  • Examples 10 and 11 are examples in which the coating thickness is thin and thick with respect to the average particle diameter of the resin beads. Since both contained a predetermined amount of resin beads, the pressure mark resistance and anti-scratch resistance were acceptable levels.
  • Example 14 is an example in which the type of resin beads is PE. Since a predetermined amount of resin beads was contained, the pressure mark resistance and the rust resistance were acceptable levels.
  • thermosetting resin composition of B-1 (Comparative Example 1) is important not only for pressure mark resistance and scuff resistance but also as a general characteristic of the clear coating film. The processability, hardness and chemical resistance were poor.
  • the example using the thermosetting resin composition of B-2 (Comparative Example 2) was inferior in all evaluation items.
  • the example with a small resin bead content (Comparative Example 3) was inferior in pressure mark resistance and workability of the coating film.
  • Examples with a high resin bead content (Comparative Examples 4 and 5) are excellent in pressure mark resistance and scuff resistance, but are inferior in glossiness, which is important for coating processability and design of clear-coated stainless steel sheets. It was.
  • a clear-coated stainless steel sheet that maintains the design of the stainless steel sheet and is excellent in pressure mark resistance and scuff resistance.
  • This clear-coated stainless steel sheet can be suitably applied as a housing, interior material, and exterior material for home appliances that take advantage of the beautiful metallic luster unique to stainless steel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

 このクリヤ塗装ステンレス鋼板は、ステンレス鋼板と、前記ステンレス鋼板の片面または両面に塗布されたクリヤ塗装膜を具備し、前記クリヤ塗装膜は、熱硬化性樹脂組成物(A)と、前記熱硬化性樹脂組成物(A)の固形分100質量部あたり0.5~4.0質量部の樹脂ビーズ(B)を含有し、前記熱硬化性樹脂組成物(A)は、アクリル樹脂(A1)と、前記アクリル樹脂(A1)を架橋硬化させるブロックイソシアネート樹脂及びアミノ樹脂よりなる架橋硬化樹脂(A2)を含み、前記アクリル樹脂(A1)は、水酸基、カルボキシル基、及びアルコキシシラン基から選択される1種以上の架橋性官能基を含み、ガラス転移点が30~90℃であり、数平均分子量が3000~50000である。

Description

耐プレッシャーマーク性及び耐擦り疵性に優れたクリヤ塗装ステンレス鋼板
 本発明は、耐プレッシャーマーク性及び耐擦り疵性に優れたクリヤ塗装ステンレス鋼板に関する。
 本願は、2010年3月30日に、日本に出願された特願2010-077367号及び2011年2月14日に、日本に出願された特願2011-029016号に基づき優先権を主張し、その内容をここに援用する。
 クリヤ塗装ステンレス鋼板は、ステンレス特有の美麗な金属光沢を活かした高級感のある外観が得られることから、家電製品の筐体や内装材、表装材に使われるケースが多くなってきた。しかし、クリヤ塗装ステンレス鋼板は、表面光沢が非常に高いのが特長であるため、鋼板の巻取り時の圧力により発生するプレッシャーマークや、塗装表面の擦り疵が目立ちやすいという問題がある。
 耐疵付き性及び加工性に優れたクリヤ塗装ステンレス鋼板として、2コート2ベイク(2回塗布、2回乾燥)方式で低弾性率塗膜を高膜厚で形成する下塗の工程と、高弾性率塗膜を低膜厚で形成する上塗の工程を有することを特徴とする加工性と耐疵付き性を高めたクリヤ塗装ステンレス鋼板の製造方法が報告されている(例えば、特許文献1)。しかし、2コート2ベイクという塗装工程でなければならないことや、下塗と上塗の塗料を区別するとともに、膜厚もそれぞれコントロールしなければならない必要性がある。このため、非常に煩雑な塗装管理が要求され、作業性面を考慮すると現実的でない。
 また、母材の表裏両面塗装方式において、裏面塗装部に樹脂粒子を添加することによって耐プレッシャーマークが改善されることが報告されている(特許文献2)。通常、普通鋼が用いられた塗装鋼板の場合、さびを抑制するために裏面塗装することが多い。しかし製造された塗装鋼板を使用した製品によっては、裏面への塗装自体が制限される場合がある。また、裏面用に特殊な塗装を行う必要があることから余分なコストアップに繋がる。
 さらには、2コート2ベイクでプレコート鋼板を製造する際に、上塗り塗膜に粒径を規定した樹脂ビーズを添加することによって、耐プレッシャーマークを改善する方法が報告されている(特許文献3)。しかし、プレコート鋼板は、塗膜の膜厚が厚く、またビーズ粒径が大きいため、ステンレスクリヤ塗装へ適用することは意匠性の観点から困難である。
 なお、樹脂ビーズ量を規定した先行技術として、1コート1ベイクの工程により、ステンレスクリヤ塗装の意匠性を改善した技術がある(特許文献4)。しかし、製造時の耐プレッシャーマーク性については述べられていない。
 かかる耐プレッシャーマーク性や耐擦り疵性と加工性のバランスがとれ、かつ短時間での焼付けが可能という作業性に優れた1コート1ベイク方式で製造できるクリヤ塗装ステンレス鋼板は未だ開発されていないのが現状である。
特開2003-154309号公報 特開2005-28851号公報 特開平10-193508号公報 特開2005-313630号公報
 そこで、プレッシャーマーク及び擦り疵が目立ちにくく、かつ1コート1ベイク方式で製造でき、生産性に優れたクリヤ塗装ステンレス鋼板を検討した。その結果、熱硬化性アクリル樹脂組成物の特性と所定の量のアクリル樹脂ビーズを添加することが有効であることを見出した。しかしながら、ステンレス鋼板のクリヤ塗装の意匠性を劣化させるプレッシャーマーク及び擦り疵は、ステンレス鋼板の巻取り時の圧力により発生する。このため製造コストの観点から量産製造時のコイル単重を大きくすると、プレッシャーマークを必ずしも回避できないことも見出した。
 本発明はこのような状況に鑑みなされたもので、コイル単重が大きい量産製造条件で製造できて経済的に優れ、かつ耐プレッシャーマーク性と耐疵付き性に優れたクリヤ塗装ステンレス鋼板の提供を目的とする。
 そこで更なる検討を行った結果、樹脂ビーズの選定とクリヤ塗膜の厚さと樹脂ビーズ平均粒径の関係が重要であるとの知見を得て、本発明に至った。
(1)本発明の一態様に係る耐プレッシャーマーク性及び耐擦り疵性に優れたクリヤ塗装ステンレス鋼板は、ステンレス鋼板と、前記ステンレス鋼板の2つの主面のいずれか一方又は両方に塗布されたクリヤ塗装膜と、を具備する。
 前記クリヤ塗装膜は、熱硬化性樹脂組成物(A)と、前記熱硬化性樹脂組成物(A)の固形分100質量部あたり0.5~4.0質量部の樹脂ビーズ(B)と、を含有する。
 前記熱硬化性樹脂組成物(A)は、アクリル樹脂(A1)と、前記アクリル樹脂(A1)を架橋硬化させるブロックイソシアネート樹脂及びアミノ樹脂よりなる架橋硬化樹脂(A2)と、を含む。
 前記アクリル樹脂(A1)は、水酸基、カルボキシル基、及びアルコキシシラン基から選択される1種以上の架橋性官能基を含み、ガラス転移点が30~90℃であり、数平均分子量が3000~50000である。
(2)前記(1)に記載の耐プレッシャーマーク性及び耐擦り疵性に優れたクリヤ塗装ステンレス鋼板では、前記樹脂ビーズ(B)の平均粒径が、前記クリヤ塗装膜の膜厚の0.20~3.0倍であってもよい。
(3)前記(1)又は(2)に記載の耐プレッシャーマーク性及び耐擦り疵性に優れたクリヤ塗装ステンレス鋼板では、前記樹脂ビーズ(B)が、架橋型アクリル樹脂ビーズ、架橋型ウレタン樹脂ビーズ、及びフッ素樹脂ビーズから選択される1種または2種以上であってもよい。
 本発明の一態様に係るクリヤ塗装ステンレス鋼板によれば、クリヤ塗装膜が、熱硬化性樹脂組成物と、所定量の樹脂ビーズを含有し、前記熱硬化性樹脂組成物は、アクリル樹脂と、架橋硬化させるための樹脂としてブロックイソシアネート樹脂及びアミノ樹脂を含む。このため、クリヤ塗装ステンレス鋼板の耐プレッシャーマーク性及び耐擦り疵性を高めることができる。また、耐プレッシャーマーク性に優れるため、コイル単重が大きい量産製造条件で製造でき、経済的にも優れる。
 更に、本発明の一態様に係るクリヤ塗装ステンレス鋼板によれば、樹脂ビーズの平均粒径をクリヤ塗装膜の膜厚に対する相対的な大きさで規定することによって、クリヤ塗装ステンレス鋼板の耐プレッシャーマーク性及び耐擦り疵性をより高めることができる。
 本実施形態のクリヤ塗装ステンレス鋼板では、ステンレス鋼板の片面または両面に、クリヤ塗装用樹脂組成物からなるクリヤ塗装膜が塗布、形成されている。クリヤ塗装用樹脂組成物は、アクリル樹脂(A1)及び架橋硬化樹脂(A2)を含む熱硬化性樹脂組成物(A)と、熱硬化性樹脂組成物(A)の固形分100質量部あたり0.5~4.0質量部の樹脂ビーズ(B)と、を含有する。
 まず、クリヤ塗装用樹脂組成物のベース樹脂である熱硬化性樹脂組成物(A)について説明する。
「熱硬化性樹脂組成物(A)」
 熱硬化性樹脂組成物(A)は、水酸基、カルボキシル基、及びアルコキシシラン基から選択される1種以上の架橋性官能基を含み、ガラス転移点が30~90℃であり、数平均分子量が3000~50000であるアクリル樹脂(A1)と、前記アクリル樹脂を架橋硬化させるブロックイソシアネート樹脂及びアミノ樹脂よりなる架橋硬化樹脂(A2)と、を少なくとも含有する。
「アクリル樹脂(A1)」
 本実施形態における水酸基、カルボキシル基、、及びアルコキシシラン基から選択される1種以上の架橋性官能基を有するアクリル樹脂(A1)は、塗料用樹脂として既知の方法により得られるものである。
 アクリル樹脂(A1)は、非官能性単量体を、水酸基、カルボキシル基、アルコキシシラン基等の架橋性官能基を持った重合性単量体の1種または2種以上と反応させることにより得ることができる。
 非官能性単量体としては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸2-エチルヘキシル、メタアクリル酸メチル、メタアクリル酸エチル、メタアクリル酸イソプロピル、メタアクリル酸n-ブチル、メタアクリル酸n-ヘキシル、アクリル酸シクロヘキシル、メタクリル酸シクロへキシル、メタクリル酸ラウリル等の脂肪族又は環式アクリート;メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、n-ブチルビニルエーテル等のエーテル類;スチレン、a-メチルスチレン等のスチレン類;アクリルアミド、N-メチロールアクリルアミド、ジアセトンアクリルアミド等のアクリルアミド系単量体等から選ばれる1種または2種以上が挙げられる。
 1分子中に水酸基1つ以上含有する重合性単量体としては、アクリル酸2-ヒドロキシエチル、メタクリル酸2-ヒドロキシエチル、アクリル酸ヒドキシプロピル、メタクリル酸ヒドロキシプロピル等のヒドロキシアルキルエステル;プラクセルFM1~5、FA-1~5(ダイセル化学工業製)ラクトン変性水酸基含有ビニル重合モノマーが挙げられる。ここに例示した化合物は、何れも、水酸基とともに重合性不飽和二重結合を有する重合性単量体でもある。
 カルボキシル基を有する重合体単量体は、1分子中にカルボキシル基及び重合性不飽和二重結合をそれぞれ1つ以上含有する化合物であり、例えばアクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸等が挙げられる。
 アルコキシシラン基を有する重合体単量体としては、例えばビニルトリメトキシシラン、ビニルトリエトキシシラン、メタアクリロキシプロピルトリメトキシシラン等が挙げられる。ここに例示した化合物は、1分子中にアルコキシシラン基及び重合性不飽和二重結合をそれぞれ1つ以上含有する化合物でもある。
 以上の原料により得られたアクリル樹脂(A1)は、水酸基、カルボキシル基、アルコキシシラン基等の架橋性官能基を1分子あたり、2個以上有することができる。
 アクリル樹脂(A1)の数平均分子量は、3000~50000の範囲が好ましく、特に4000~20000の範囲がより好ましい。数平均分子量が3000未満の場合、架橋剤との反応性が乏しすぎて塗膜を形成できない場合があるため好ましくない。数平均分子量が50000超の場合、溶剤に対する溶解性が不足して樹脂液にならない場合があるため好ましくない。
 アクリル樹脂(A1)のガラス転移点は30~90℃が好ましく、さらには50~90℃の範囲内がより好ましい。アクリル樹脂(A1)のガラス転移点が30℃未満の場合は、連続プレス時の摩擦、加工発熱により鋼板表面の温度が80~100℃に上昇すると、塗膜の軟化を生じ、金型に塗膜樹脂が付着する場合があるため好ましくない。また、ガラス転移点が90℃超の場合には、ピンホール、レベリング不足等の塗装時の作業性が悪くなるため好ましくない。
「架橋硬化樹脂(A2)」
 次に、熱硬化性樹脂組成物(A)のもう一つの構成成分である架橋硬化樹脂(A2)は、ブロックイソシアネート樹脂とアミノ樹脂の混合物である。
 ブロックイソシアネート樹脂は、1分子中に2個以上のイソシアネート基を有する化合物であり、ポリイソシアネートを、フェノール類、オキシム類、活性メチレン類、ε-カプロラクタム類、トリアゾール類、ピラゾール類等のブロック剤で封鎖したものである。ジブチルチンジラウリレート等の有機錫触媒がブロック剤の解離促進剤として使用される。
 ポリイソシアネートとしては、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、キシレンジイソシアネート、ナフタレンジイソシアネート等の芳香族ジイソシアネート;ヘキサメチレンジイソシアネート、ダイマー酸ジイソシアネート等の脂肪族ジイソシアネート;イソホロンジイソシアネート、シクロヘキサンジイソシアネートなどの脂環族ジイソシアネート;前記ポリイソシアネートのビューレットタイプの付加物、イソシアヌル環タイプ付加物等が挙げられる。
 ブロックイソシアネート樹脂の市販品としては、デスモジュールBL1100、BL1265MPA/X、VPLS2253/1、BL3475BS/SN、BL3272MPA、BL3370MPA、BL4265SN、デスモーサム2170、スミジュール3175などの住化バイエルウレタン(株)製の市販品;デュラネート17B-60PX、TPA-B80X、MF-B60X、MF-K60X、E-402-B80Tなどの旭化成ケミカルズ(株)製の市販品;バーノックDB-980K、D-550、B3-867、B4-887-60などのDIC(株)製の市販品;コロネート2515、2507、2513などの日本ポリウレタン工業(株)製の市販品などが挙げられ、これらを単独もしくは併用して使用してよい。
 アミノ樹脂は、アミノ化合物(メラミン、グアナミン、尿素)とホルムアルデヒド(ホルマリン)を付加反応させ、アルコールで変性した樹脂を総称している。塗料用のアミノ樹脂としては、メラミン樹脂、ベンゾグアナミン樹脂、尿素樹脂、ブチル化尿素樹脂、ブチル化尿素メラミン樹脂、グリコールウリル樹脂、アセトグアナミン樹脂、シクロヘキシルグアナミン樹脂が挙げられる。この中でも熱硬化性に起因する耐疵付き性、耐薬品性という点から、メラミン樹脂が好ましい。変性するアルコールの種類によって、メチル化メラミン樹脂、n-ブチル化メラミン樹脂、イソブチル化メラミン樹脂、混合アルキル化メラミン樹脂等に分かれる。
 メチル化メラミン樹脂としては、サイメル300、301,303、350、370、771、325、327、703、712、715、701、267、285、232、235、236、238、211、254、204、212、202、207などの三井サイテック(株)製の市販品;LUWIPAL063、066、068、069、072、073などのBASF(株)製の市販品;スーパーベッカミンL-105などのDIC(株)製の市販品;メラン522、523、620、622、623などの日立化成工業(株)製の市販品を例示できる。
 n-ブチル化メラミン樹脂としては、マイコート506、508などの三井サイテック(株)製の市販品;ユーバン20SB、20SE、21R、22R、122、125、128、220、225、228、28-60、20HS、2020、2021、2028、120などの三井化学(株)製の市販品;PLASTOPAL EBS 100A、100B、400B、600B、CBなどのBASF(株)製の市販品;スーパーベッカミンJ-820、L-109、L-117、L-127、L-164などのDIC(株)製の市販品;メラン21A、22、220、1303、2000、2030、8000などの日立化成工業(株)製の市販品;テスアジン3020、3021、3036などの日立化成ポリマー(株)製の市販品を例示できる。
 イソブチル化メラミン樹脂としては、ユーバン60R、62、62E、360、361、165、166-60、169、2061などの三井化学(株)製の市販品;スーパーベッカミンG-821、L-145、L-110、L-125などのDIC(株)製の市販品;PLASTOPAL EBS 4001、FIB、H731B、LR8824などのBASF(株)製の市販品;メラン27、28、28D、245、265、269、289などの日立化成工業(株)製の市販品を例示できる。
 混合アルキル化メラミン樹脂としては、サイメル267、285、232、235、236、238、211、254、204、212、202、207などの三井サイテック(株)製の市販品などを例示できる。
 これらは、単独もしくは併用で使用しても良い。
 熱硬化性樹脂組成物(A)におけるアクリル樹脂(A1)と架橋硬化樹脂(A2)の両成分の構成比率(含有比率)は、目的に応じて広い範囲内で変えることができる。アクリル樹脂(A1)中の(OH+COOH)基1モルに対して、ブロックイソシアネート樹脂中のイソシアネート基の量は、0.1~1.0モル、好ましくは0.2~0.8モルが良い。またアクリル樹脂(A1)固形分100質量部に対して、アミノ樹脂の量は、5~25質量部、好ましくは8~15質量部が良い。架橋硬化樹脂(A2)の添加量が少ないと、耐擦り性に劣る。架橋硬化樹脂(A2)の添加量が多くなると、曲げ加工性が劣るため、加工時に塗膜に微細クラックが入り耐食性の低下につながる。
 一般にアミノ樹脂の硬化触媒としては、スルホン酸系やアミン系の触媒が使用される。本実施形態の特長である短時間焼付けを可能とするためには、スルホン酸系触媒であるP-トルエンスルホン酸やドデシルベンゼンスルホン酸が好ましい。熱硬化性樹脂組成物(A)の固形分100質量部あたり、P-トルエンスルホン酸やドデシルベンゼンスルホン酸を固形分量で0.1~3.0質量部、好ましくは0.3~1.0質量部含有することが望ましい。アミノ樹脂の硬化触媒の量が0.1質量部以下では、その効果が得られない。アミノ樹脂の硬化触媒の量が3質量部以上では、硬化が飽和するだけでなく、加工性も劣化する。
 ブロックイソシアネート樹脂の硬化触媒としては、ジ-n-ブチルチンオキサイド、n-ジブチルチンクロライド、ジ-n-ブチルチンジラウリレート、ジ-n-ブチルチンジアセテート、ジ-n-オクチルチンオキサイド、ジ-n-オクチルチンジラウリレート、テトラ-n-ブチルチン等が挙げられる。それぞれ必要に応じて添加すればよく、単独もしくは、混合して使用しても良い。
 クリヤ塗装用樹脂組成物には、更に添加剤としてレベリング剤、消泡剤、酸化防止剤、紫外線吸収剤、艶消し剤、シランカップリング剤等を混合させ、塗料化しても良い。また、顔料又は染料を分散させ、カラークリヤ塗装膜とすることや、アルミペーストやパール顔料などの光輝材を混合して意匠性を出してもよい。また、必要に応じてエポキシ樹脂、シリコン樹脂、フッ素樹脂、ポリエステル樹脂等を含んで良い。
 このような組成のアクリル樹脂(A1)と架橋硬化樹脂(A2)を含むことによって、1コート1ベイク(1回塗布、1回乾燥)でステンレス特有の美麗な外観を活かしたクリヤ塗装ステンレス鋼板の製造が可能となる。
「樹脂ビーズ(B)」
 続いて、クリヤ塗装ステンレス鋼板の品質を確保するために重要な耐プレッシャーマーク性と耐疵付き性を発現させる樹脂ビーズ(B)について述べる。
 本実施形態のクリヤ塗装用樹脂組成物は、熱硬化性樹脂組成物(A)の100質量部あたり、樹脂ビーズ(B)を0.5~4.0質量部含有する。
 樹脂ビーズの含有量が0.5質量部未満では、耐疵付き性の効果が得られない。樹脂ビーズの含有量が4.0質量部超では、クリヤ塗装膜の透明性が劣化すると共に、塗装作業性も低下する。この樹脂ビーズの含有量は、特には1.0~3.0質量部が好ましく、さらには1.0~2.0質量部が好ましい。
 樹脂ビーズ(B)は、クリヤ塗装膜の塗装必要膜厚の0.20~3.0倍の平均粒径を用いることが好ましい。クリヤ塗装膜の塗装必要膜厚の0.20~3.0倍の平均粒径の樹脂ビーズを用いることにより、クリヤ塗装膜の表面光沢を著しく落とすことなく本実施形態の特徴である良好な耐プレッシャーマーク性及び耐擦り疵性が得られる。樹脂ビーズ(B)の平均粒径が塗装必要膜厚の0.20倍未満では、樹脂ビーズの粒径が小さすぎる為に、骨材としての機能が低下し、耐プレッシャーマーク性及び耐擦り疵性に効果がない。樹脂ビーズ(B)の平均粒径が塗装必要膜厚の3.0倍超になると、塗膜表層の樹脂ビーズの頭出しが多くなり、表面にざらつきが出て、且つ表面光沢が落ちる。
 樹脂ビーズ(B)の平均粒径は、クリヤ塗装膜の塗装必要膜厚の0.3~2.0倍が好ましく、0.5~1.3倍が更に好ましく、0.8~1.0倍が最も好ましい。樹脂ビーズ(B)の平均粒径は、一般にレーザー回折法により測定された粒度分布から求められる。
 樹脂ビーズ(B)の材質としては、アクリル樹脂、ウレタン樹脂、ベンゾクアナミン樹脂、スチレン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、フッ素樹脂等が挙げられる。本実施形態の目的である耐プレッシャーマーク性及び耐擦り疵性を得るには、樹脂本来の硬さが必要である。このため、樹脂ビーズ(B)の材質は、アクリル樹脂、ウレタン樹脂、フッ素樹脂が好ましい。また、塗料が溶剤系であるため、耐溶剤性が要求されることから、架橋型の樹脂ビーズが好ましい。
 架橋型アクリル樹脂ビーズとしては、アートパールA-400、G-200、G-400、G-600、G-800、GR-200、GR-300、GR-400、GR-600、GR-800、J-4P、J-5P、J-7P、S-5Pなどの根上工業(株)製の市販品;テクポリマーMBX-8、MBX-12、MBX-15、MBX-30、MBX-40、MBX-50、MB20X-5、MB20X-30、MB30X-5、MB30X-8、MB30X-20、BM30X-5、BM30X-8、BM30X-12、ARX-15、ARX-30、MBP-8、ACP-8などの積水化成品工業(株)製の市販品;ケミスノーMX-150、MX-180TA、MX-300、MX-500、MX-500H、MX-1000、MX-1500H、MX-2000、MX-3000、MR-2HG、MR-7HG、MR-10HG、MR-3GSN、MR-2G、MR-7G、MR-10G、MR-20G、MR-30G、MR-60G、MR-90Gなどの綜研化学(株)製の市販品;スタフィロイドAC-3355、AC-3816、AC-3832、AC-4030、AC-3364、GM-0401S、GM-0801、GM-1001、GM-2001、GM-2801、GM-4003、GM-5003、GM-9005、GM-6292などのガンツ化成株式会社製の市販品等が例示される。
 架橋型ウレタン樹脂ビーズとしては、アートパールC-100、C-200、C-300、C-400、C-800、CZ-400、P-400T、P-800T、HT-400BK、U-600T、CF-600T、MT-400BR、MT-400YOなどの根上工業(株)製の市販品等が例示される。
 フッ素樹脂ビーズには、DYNEON PTFE マイクロパウダー TF-9201、TF-9205、TF-9207などの住友3M(株)製の市販品;Fluon PTFE ルブリカント L-150J、L-169J、L-170J、L-172J、L-173Jなどの旭硝子(株)製の市販品等が例示される。
 これらはそれぞれ必要に応じて添加すればよく、単独もしくは、混合して使用しても良い。
 また、クリヤ塗装用樹脂組成物の他の添加成分として、ポリエチレンワックスやラノリンワックス等のワックスを配合すれば、スリック性が向上し、耐擦り疵性をさらに向上させる。
 クリヤ塗装用樹脂組成物を着色するために、各種透明性のある有機顔料および無機顔料を添加しても良い。また、クリヤ塗装用樹脂組成物の意匠性を向上するために各種のパール顔料、アルミペースト等の光輝材を含有してもよい。その場合、意匠性に対する要求がより厳しくなり、従来の透明クリヤであればほとんど問題にないならない程度の微小なプレッシャーマークや擦り疵であっても問題となる場合がある。このため、より好ましい範囲での塗膜厚さの管理や樹脂ビーズ粒径の管理が必要となる。そのためには、分散工程を経ることによって、樹脂ビーズの粒径分布をより狭くして、樹脂組成物に添加するなどの手法が望ましい。
 本実施形態のクリヤ塗装ステンレス鋼板において、クリヤ塗装膜の膜厚は、1~10μmが好ましく、2~6μmがより好ましく、3~5μmが最も好ましい。クリヤ塗装膜の膜厚が10μmを超えると、1コート1ベイクでの塗装作業性が劣化する。またクリヤ塗膜の曲げ加工性が低下して、曲げ加工時に微小クラックが入り、耐食性の低下につながる。さらに、膜厚が厚くなると、耐プレッシャーマーク性を確保するために添加する樹脂ビーズの平均粒径を大きくする必要があるが、樹脂ビーズの平均粒径が大きくなると、クリヤ塗装ステンレス鋼板としての意匠性が低下する。また、クリヤ塗装膜の膜厚が1μm未満では、膜厚コントロールが困難になり、意匠性が低下する。
 クリヤ塗装膜を塗装する前に、ステンレス鋼板に化成処理を施しておくことが好ましい。化成処理液としては、環境問題を考慮すると、ノンクロメートが好ましい。一般にはアミノシラン系、エポキシシラン系カップリング剤が好ましい。化成処理液の付着量が2~50mg/m(蛍光X線にてSiO量を測定)になるようにステンレス鋼板に化成処理を施し、次いでステンレス鋼板素材の表面到達温度(PMT)が60~140℃程度となる条件で焼付けし、乾燥される。
 アミノシラン系カップリング剤としては、N-2(アミノエチル)3-アミノプロピルメチルジメトキシシラン、N-2(アミノエチル)3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシランが挙げられる。
 エポキシ系シランカップリング剤としては、2-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン等のシランカップリング剤が挙げられる。
 これらは、単独もしくは混合して使用しても良い。
 化成処理液の塗布は、スプレー、ロールコート、カーテンフローコート、静電塗布等の方法を用いて行うことができる。
 乾燥は、水分を蒸発させれば良く、その温度は、ステンレス鋼板素材の表面到達温度(PMT)にして60~140℃が適当である。この化成処理に際し、必要に応じて、アルカリ脱脂や酸、アルカリによるエッチング等の公知の前処理を施しても構わない。
 クリヤ塗装膜は、ステンレス鋼板の表面側だけではなく、裏面にも施してもいい。また、ステンレス鋼板の裏面はクリヤ塗装でなくても構わない。ステンレス鋼板の裏面の塗装膜厚は1~6μm程度であればよい。樹脂の種類は、特に限定されないが、エポキシ系、アクリル系、ウレタン系、ポリエステル系などの樹脂が用いられる。裏面にも塗装膜があれば、耐プレッシャーマーク性は良好となる。
 本実施形態によれば、アクリル樹脂を架橋硬化させるための架橋性硬化樹脂としてブロックイソシアネート樹脂およびアミノ樹脂を含有し、更に一定の粒径の架橋系樹脂ビーズを含有するクリヤ塗装膜を具備することによって、良好な耐プレッシャーマーク性及び耐擦り疵性が達成できる。
 以下に、本実施形態の実施例および比較例について説明する。
 温度計、還流冷却器、攪拌器、滴下ロート、窒素ガス導入管を備えた4つ口フラスコに、表1に示された量(質量部)のトルエン、酢酸ブチルを入れ、110℃まで昇温し、次いで、窒素ガスを吹き込みながら攪拌した。この状態で溶液を攪拌しながら、メタアクリル酸メチル、スチレン、メタアクリル酸n-ブチル、メタアクリル酸2-ヒドロキシエチル、アクリル酸2-ヒドロキシエチル、アクリル酸メチル、アゾビスイソブチロニトリル(AIBN)から選ばれる原料の混合物を3時間かけて滴下した。滴下終了後、さらにAIBNを添加して、同温度(110℃)でさらに3時間反応させた。以上により、不揮発分50質量%のアクリル系共重合体(アクリル樹脂)を得た。
 得られたアクリル樹脂の数平均分子量及びガラス転移点を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 得られたアクリル樹脂に、表1に示す架橋性硬化樹脂を混合することにより、熱硬化性樹脂組成物A-1~B-2を得た。なお、架橋性硬化樹脂のブロックイシシアネートとしては、NCO基含有率が10.5%のデスモジュールVPLS2253(住化バイエルウレタン(株)製)を用いた。また、メラミン樹脂としては、サイメル327(三井サイテック(株)製)を用いた。アクリル樹脂と架橋性硬化樹脂との混合比は、表1に記載の通りである。
 なお、表1の配合比は質量部である。
 得られた熱硬化性樹脂組成物A-1~B-2に、表2~4に示す添加成分及び樹脂ビーズを混合することにより、実施例1~14及び比較例1~5のクリヤ塗装用樹脂組成物を得た。
 なお、表2~表4の配合量の単位は、全て質量部である。ただし、混合時に添加したシンナーは乾燥時に揮発するため、熱硬化性樹脂組成物の固形分100質量部あたりの樹脂ビーズ質量部を、「樹脂ビーズ/熱硬化性樹脂組成物固形分」として記載した。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 ステンレス鋼板としては、SUS430/No.4研磨仕上げ材を用いた。
 これらのステンレス鋼板上にノンクロメートの化成処理液をロールコーターにて塗装した。この化成処理液の塗装は、SiO付着量が2~10mg/mになる条件で行った。なお、SiO付着量は、蛍光X線にて測定した。次いで、表面到達温度(PMT)が100℃になる条件でステンレス鋼板を乾燥させた。
 次いで、得られたクリヤ塗装用樹脂組成物を、塗付量が3.0~4.0g/mとなるようにバーコーターにてステンレス鋼板に塗装した。そして、表面到達温度(PMT)が232℃になる条件で焼付けて、表2~表3に示す実施例1~7及び比較例1~5のクリヤ塗装ステンレス鋼板を得た。
 また、表4に示すように、塗膜厚さと樹脂ビーズの平均粒径の影響を確認するために、塗膜厚さを3、10、18μmとなるように実施例8~11のクリヤ塗装ステンレス鋼板を得た。
 更に、表4に示すように、樹脂ビーズの種類の影響を確認するために、実施例12~14のクリヤ塗装ステンレス鋼板を得た。
 なお、表2~4中、熱硬化性樹脂組成物の添加量は、固形分の質量部を示している。酸触媒(P-トルエンスルホン酸)及びスズ触媒(ジ-n-ブチルチンジラウリレート)、レベリング剤や消泡剤(ともにアクリル系樹脂)の添加量は、その有効成分(溶剤などを除いた主成分)の質量部を示している。
 樹脂ビーズA~Cは、ガンツ化成製の架橋型アクリル樹脂ビーズであり、平均粒径は、樹脂ビーズAが3μm、Bが7μm、Cが10μmである。樹脂ビーズDは、根上工業製の架橋型ウレタン樹脂ビーズであり、平均粒径は3μmである。樹脂ビーズEは、旭硝子製のフッ素系樹脂ビーズであり、平均粒径は3μmである。実施例14にて用いた樹脂ビーズFは、BYK-Chemie製のPE樹脂ビーズであり、平均粒径は3.5μmである。
 ポリエチレンワックスとしては、CERAFLOUR 961(BYK-Chemie(ビックケミー)社製)の平均粒径3.5μmのものを用いた。
 実施例1~14及び比較例1~5のクリヤ塗装ステンレス鋼板について、耐プレッシャーマーク性、耐擦り疵性、クリヤ塗装膜の加工性、硬さ、光沢度及び耐薬品性を調べた。
 評価方法は以下の通りである。結果を表2~4に示す。
(1)耐プレッシャーマーク性
 供試材を2枚重ね、40℃の雰囲気で10kg/cmの圧力でプレスした。このプレスした状態のまま24時間保持した。24時間後に、その耐プレッシャーマーク性を評価した。評価は、以下のランク1~5の5段階で行った。
 ランク5:プレッシャーマークがない(合格)
 ランク4:ほとんどプレッシャーマークが目立たない(合格)
 ランク3:見る角度によっては、はっきりとプレッシャーマークが確認できる(不合格)
 ランク2:プレッシャーマークによって色調・光沢の劣化が見られる。(不合格)
 ランク1:著しく光沢が低下し、どの方向からもプレッシャーマークが確認できる(不合格)
(2)耐擦り疵性
 摩擦子としてクレンザーを染み込ませたガーゼを、荷重200gで供試材の表面に当接させた。この状態でガーゼを50往復させて、供試材の表面を研磨した。そして、耐擦り疵性を評価した。評価は、以下のランク1~5の5段階で行った。
 ランク5:擦り疵がない(合格)
 ランク4:ほとんど擦り疵が目立たない(合格)
 ランク3:はっきりと擦り疵が確認できる(不合格)
 ランク2:擦り疵で塗膜の光沢がなくなっている(不合格)
 ランク1:塗膜が削れ、素地に達している(不合格)
(3)塗膜の加工性
 JIS K5600 5-2(耐カッピング性)に従って評価した。評価は、クラックが生じた深さによって、以下のランク1~5の5段階で行った。
 ランク5:7mm以上(合格)
 ランク4:5~7mm(合格)
 ランク3:3~5mm(不合格)
 ランク2:1~3mm(不合格)
 ランク1:1mm以下(不合格)
(4)塗膜表面硬さ
 JIS K5600 5-4(引っかき硬度(鉛筆法))に従って評価した。評価は、下記のランク1~5の5段階で行った。
 ランク5:4H以上(合格)
 ランク4:3H(合格)
 ランク3:2H(不合格)
 ランク2:H(不合格)
 ランク1:H未満(不合格)
(5)光沢度
 JIS K5600 4-7 鏡面光沢度に従って評価した。評価は、下記のランク1~5の5段階で行った。
 ランク5:100以上(合格)
 ランク4:80~100(合格)
 ランク3:60~80(不合格)
 ランク2:40~60(不合格)
 ランク1:40未満(不合格)
(6)耐薬品性
 5%硫酸と5%水酸化ナトリウムを、それぞれ供試材に2mL滴下し、蓋をした。この状態で16時間放置した。その後の塗膜の状態を観察し、評価した。評価は、下記のランク1~5の5段階で行った。
 ランク5:跡が全く無い(合格)
 ランク4:跡が僅かに認められる(合格)
 ランク3:跡がやや目立つ(不合格)
 ランク2:跡が濃く残る(不合格)
 ランク1:剥離する(不合格)
 実施例1~14の評価結果より、アクリル樹脂を架橋硬化させる樹脂としてブロックイソシアネート樹脂とアミノ樹脂を含有する熱硬化性樹脂組成物と、所定の量および平均粒径の樹脂ビーズを含有するクリヤ塗装膜を具備することによって、耐プレッシャーマーク性及び耐すり疵性に優れたクリヤ塗装ステンレス鋼板が得られることが分かる。
 詳細には、実施例1~9,12,13は、A-1~A-4の熱硬化性樹脂組成物と、所定の量の樹脂ビーズとを含み、樹脂ビーズ平均粒径/塗装厚が0.20~3.0倍である。このため、耐プレッシャーマーク性と耐すり疵性のいずれか一方または両方の評価が5と大変良好であった。
 実施例10,11は、樹脂ビーズの平均粒径に対して塗膜厚が薄い場合と厚い場合の例である。いずれも、所定の量の樹脂ビーズを含有しているため、耐プレッシャーマーク性及び耐すり疵性は合格レベルであった。
 実施例14は、樹脂ビーズの種類がPEの例である。所定の量の樹脂ビーズを含有しているため、耐プレッシャーマーク性及び耐すり疵性は合格レベルであった。
 一方、比較例について、B-1の熱硬化性樹脂組成物を用いた例(比較例1)は、耐プレッシャーマーク性や耐擦り疵性だけではなく、クリヤ塗装膜の一般的な特性として重要な加工性、硬さ及び耐薬品性に劣っていた。
 B-2の熱硬化性樹脂組成物を用いた例(比較例2)は、全ての評価項目において劣っていた。
 樹脂ビーズ含有量が少ない例(比較例3)は、耐プレッシャーマーク性及び塗膜の加工性に劣っていた。
 樹脂ビーズ含有量が多い例(比較例4,5)は、耐プレッシャマーク性や耐擦り疵性には優れるが、塗膜の加工性およびクリヤ塗装ステンレス鋼板の意匠性として重要な光沢度で劣っていた。
 本発明によると、ステンレス鋼板の意匠性を維持し、かつ耐プレッシャーマーク性及び耐擦り疵性に優れたクリヤ塗装ステンレス鋼板を提供できる。このクリヤ塗装ステンレス鋼板は、ステンレス特有の美麗な金属光沢を活かした家電製品の筐体や内装材、外装材として好適に適用できる。

Claims (3)

  1.  ステンレス鋼板と、前記ステンレス鋼板の2つの主面のいずれか一方又は両方に塗布されたクリヤ塗装膜と、を具備し、
     前記クリヤ塗装膜は、熱硬化性樹脂組成物(A)と、前記熱硬化性樹脂組成物(A)の固形分100質量部あたり0.5~4.0質量部の樹脂ビーズ(B)と、を含有し、
     前記熱硬化性樹脂組成物(A)は、アクリル樹脂(A1)と、前記アクリル樹脂(A1)を架橋硬化させるブロックイソシアネート樹脂及びアミノ樹脂よりなる架橋硬化樹脂(A2)と、を含み、
     前記アクリル樹脂(A1)は、水酸基、カルボキシル基、及びアルコキシシラン基から選択される1種以上の架橋性官能基を含み、ガラス転移点が30~90℃であり、数平均分子量が3000~50000であることを特徴とする耐プレッシャーマーク性及び耐擦り疵性に優れたクリヤ塗装ステンレス鋼板。
  2.  前記樹脂ビーズ(B)の平均粒径が、前記クリヤ塗装膜の膜厚の0.20~3.0倍であることを特徴とする請求項1に記載の耐プレッシャーマーク性及び耐擦り疵性に優れたクリヤ塗装ステンレス鋼板。
  3.  前記樹脂ビーズ(B)が、架橋型アクリル樹脂ビーズ、架橋型ウレタン樹脂ビーズ、及びフッ素樹脂ビーズから選択される1種または2種以上であることを特徴とする請求項1又は2に記載の耐プレッシャーマーク性及び耐擦り疵性に優れたクリヤ塗装ステンレス鋼板。
PCT/JP2011/057712 2010-03-30 2011-03-28 耐プレッシャーマーク性及び耐擦り疵性に優れたクリヤ塗装ステンレス鋼板 WO2011122587A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2011235775A AU2011235775B2 (en) 2010-03-30 2011-03-28 Clear-coated stainless steel sheet with excellent pressure mark resistance and scratch resistance
US13/636,532 US8623502B2 (en) 2010-03-30 2011-03-28 Clear-coated stainless steel sheet with excellent pressure mark resistance and scratch resistance
KR20127025255A KR20120138238A (ko) 2010-03-30 2011-03-28 내 프레셔 마크성 및 내 긁힘성이 우수한 클리어 도장 스테인리스 강판
EP11762811.5A EP2554369B1 (en) 2010-03-30 2011-03-28 Clear-coated stainless steel sheet with excellent pressure mark resistance and scratch resistance
CN201180017617.9A CN102821948B (zh) 2010-03-30 2011-03-28 耐压痕性和耐划伤性优良的透明涂装不锈钢板
NZ60230611A NZ602306A (en) 2010-03-30 2011-03-28 Clear-coated stainless steel sheet with excellent pressure mark resistance and scratch resistance

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010077367 2010-03-30
JP2010-077367 2010-03-30
JP2011029016A JP5732273B2 (ja) 2010-03-30 2011-02-14 耐プレッシャーマーク性及び耐擦り疵性に優れたクリヤ塗装ステンレス鋼板
JP2011-029016 2011-02-14

Publications (1)

Publication Number Publication Date
WO2011122587A1 true WO2011122587A1 (ja) 2011-10-06

Family

ID=44712282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057712 WO2011122587A1 (ja) 2010-03-30 2011-03-28 耐プレッシャーマーク性及び耐擦り疵性に優れたクリヤ塗装ステンレス鋼板

Country Status (9)

Country Link
US (1) US8623502B2 (ja)
EP (1) EP2554369B1 (ja)
JP (1) JP5732273B2 (ja)
KR (1) KR20120138238A (ja)
CN (1) CN102821948B (ja)
AU (1) AU2011235775B2 (ja)
NZ (1) NZ602306A (ja)
TW (1) TWI540040B (ja)
WO (1) WO2011122587A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140341242A1 (en) * 2011-05-31 2014-11-20 Sumitomo Bakelite Co., Ltd. Resin composition, semiconductor device using same, and method of manufacturing semiconductor device
JP2018199236A (ja) * 2017-05-26 2018-12-20 三菱アルミニウム株式会社 樹脂被膜アルミニウム板

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5936888B2 (ja) * 2012-03-08 2016-06-22 日新製鋼株式会社 塗装金属板
CN103031029B (zh) * 2012-12-31 2015-05-13 杭州立威化工涂料有限公司 一种低温固化自交联氨基丙烯酸涂料及其制备方法
JP6581330B2 (ja) * 2013-06-13 2019-09-25 アクゾ ノーベル コーティングス インターナショナル ビー ヴィ 塗料組成物及びこれを塗装して得られる塗膜
JP6321373B2 (ja) * 2013-12-25 2018-05-09 株式会社デンソー 進路推定装置,及びプログラム
JP6274953B2 (ja) * 2014-04-09 2018-02-07 新日鐵住金ステンレス株式会社 クリヤ塗装ステンレス鋼板
CN104263145A (zh) * 2014-08-29 2015-01-07 湖南新力华纳米科技有限公司 一种水性热固性玻璃酒瓶烤漆及其制备方法
CN104497879A (zh) * 2014-12-31 2015-04-08 芜湖协诚金属制品有限公司 一种汽车导流板冲压成型用涂覆剂
CN105505067B (zh) * 2016-01-28 2020-05-15 廊坊立邦涂料有限公司 一种抗压痕氨基烤漆及其制备方法
JP6700961B2 (ja) * 2016-05-13 2020-05-27 日鉄ステンレス株式会社 クリヤ塗装ステンレス鋼板
JP2018080350A (ja) * 2016-11-14 2018-05-24 新日鐵住金ステンレス株式会社 クリヤ塗装ステンレス鋼板
JP7409039B2 (ja) * 2019-11-22 2024-01-09 Toppanホールディングス株式会社 プリント鋼板
JP7333628B2 (ja) * 2020-07-15 2023-08-25 協立化学産業株式会社 熱硬化性組成物
CN112322165B (zh) * 2020-11-11 2021-12-24 卡秀万辉(无锡)高新材料有限公司 一种抗羊毛毡耐磨哑光pu涂料及其制备方法与应用
CN114672268B (zh) * 2020-12-24 2024-01-30 广东生益科技股份有限公司 一种树脂组合物及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10193508A (ja) 1997-01-10 1998-07-28 Sumitomo Metal Ind Ltd プレコート鋼板とその製造方法
JP2003154309A (ja) 2001-11-20 2003-05-27 Nisshin Steel Co Ltd 耐跡残り性,加工性に優れたクリア塗装ステンレス鋼板
JP2004050657A (ja) * 2002-07-22 2004-02-19 Nisshin Steel Co Ltd 耐ブロッキング性,耐プレッシャーマーク性及び耐汚れ付着性に優れた塗装金属板
JP2005028851A (ja) 2003-07-11 2005-02-03 Sumitomo Metal Steel Products Inc 塗装金属板
JP2005313630A (ja) 2004-03-31 2005-11-10 Nippon Steel & Sumikin Stainless Steel Corp クリヤ塗装ステンレス鋼板及びその製造方法
JP2007098883A (ja) * 2005-10-07 2007-04-19 Nippon Steel & Sumikin Stainless Steel Corp クロメートフリーのクリヤ塗装ステンレス鋼板およびその製造方法
JP2008149607A (ja) * 2006-12-19 2008-07-03 Nippon Steel & Sumikin Stainless Steel Corp クリヤ塗装ステンレス鋼板およびその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2966783D1 (en) 1978-07-19 1984-04-19 Ici Plc Production of polymer microparticles and coating compositions containing them
EP1163306A1 (en) 1999-03-17 2001-12-19 E.I. Du Pont De Nemours And Company High solids clear coating composition
US6780909B2 (en) 2001-04-10 2004-08-24 Basf Corporation Coating composition having low volatile organic content
AU2005201315B2 (en) * 2004-03-31 2006-11-02 Nippon Steel Stainless Steel Corporation Clear-coated stainless steel sheet
JP3965480B2 (ja) * 2004-12-16 2007-08-29 Toto株式会社 複合材、コーティング液および複合材の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10193508A (ja) 1997-01-10 1998-07-28 Sumitomo Metal Ind Ltd プレコート鋼板とその製造方法
JP2003154309A (ja) 2001-11-20 2003-05-27 Nisshin Steel Co Ltd 耐跡残り性,加工性に優れたクリア塗装ステンレス鋼板
JP2004050657A (ja) * 2002-07-22 2004-02-19 Nisshin Steel Co Ltd 耐ブロッキング性,耐プレッシャーマーク性及び耐汚れ付着性に優れた塗装金属板
JP2005028851A (ja) 2003-07-11 2005-02-03 Sumitomo Metal Steel Products Inc 塗装金属板
JP2005313630A (ja) 2004-03-31 2005-11-10 Nippon Steel & Sumikin Stainless Steel Corp クリヤ塗装ステンレス鋼板及びその製造方法
JP2007098883A (ja) * 2005-10-07 2007-04-19 Nippon Steel & Sumikin Stainless Steel Corp クロメートフリーのクリヤ塗装ステンレス鋼板およびその製造方法
JP2008149607A (ja) * 2006-12-19 2008-07-03 Nippon Steel & Sumikin Stainless Steel Corp クリヤ塗装ステンレス鋼板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2554369A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140341242A1 (en) * 2011-05-31 2014-11-20 Sumitomo Bakelite Co., Ltd. Resin composition, semiconductor device using same, and method of manufacturing semiconductor device
JP2018199236A (ja) * 2017-05-26 2018-12-20 三菱アルミニウム株式会社 樹脂被膜アルミニウム板

Also Published As

Publication number Publication date
AU2011235775B2 (en) 2013-10-24
US20130011615A1 (en) 2013-01-10
JP5732273B2 (ja) 2015-06-10
TWI540040B (zh) 2016-07-01
CN102821948B (zh) 2015-06-03
EP2554369A4 (en) 2013-10-23
EP2554369B1 (en) 2017-03-15
NZ602306A (en) 2014-01-31
EP2554369A1 (en) 2013-02-06
US8623502B2 (en) 2014-01-07
AU2011235775A1 (en) 2012-10-18
CN102821948A (zh) 2012-12-12
TW201202024A (en) 2012-01-16
JP2011224975A (ja) 2011-11-10
KR20120138238A (ko) 2012-12-24

Similar Documents

Publication Publication Date Title
JP5732273B2 (ja) 耐プレッシャーマーク性及び耐擦り疵性に優れたクリヤ塗装ステンレス鋼板
JP5289472B2 (ja) クリヤ塗装ステンレス鋼板及びその製造方法
JP4704086B2 (ja) クリヤ塗装ステンレス鋼板及びその製造方法
JP6127363B2 (ja) 活性エネルギー線硬化性樹脂組成物およびそれを用いた積層体
WO1996034063A1 (fr) Composition de revetement, procede d'elaboration de cette composition et procede d'elaboration d'une dispersion de sol d'oxyde inorganique
JP5142525B2 (ja) 塗料用水酸基含有樹脂及び塗料組成物
JP3937739B2 (ja) 上塗り塗料組成物、塗装仕上げ方法及び塗装物品
JP5276829B2 (ja) 導電性クリヤ塗装ステンレス鋼板
JP5936448B2 (ja) 塗料組成物及び塗装物品
WO2017056911A1 (ja) 塗料組成物
JP5371257B2 (ja) カラークリヤ塗装ステンレス鋼板およびその製造方法
JP2017075306A (ja) 光輝性塗料組成物
JP4860454B2 (ja) クリヤ塗装ステンレス鋼板
JP6274953B2 (ja) クリヤ塗装ステンレス鋼板
JP4296178B2 (ja) 塗料組成物及びそれを塗工してなる塗装物
WO2009110441A1 (ja) 熱硬化性被膜用樹脂組成物
JP2013233816A (ja) カラークリヤ塗装ステンレス鋼板およびその製造方法
JP4579129B2 (ja) フッ素クリヤ塗装ステンレス鋼板およびその製造方法
JP2001139876A (ja) 塗料用樹脂組成物
JP6700961B2 (ja) クリヤ塗装ステンレス鋼板
JP2023144229A (ja) 樹脂組成物、塗料組成物及び硬化物
JP2012040486A (ja) 複層塗膜形成方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180017617.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762811

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 13636532

Country of ref document: US

Ref document number: 2011235775

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 20127025255

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011762811

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011762811

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1201005079

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011235775

Country of ref document: AU

Date of ref document: 20110328

Kind code of ref document: A