WO2011122251A1 - 成形金型及び樹脂成形品の製造方法 - Google Patents

成形金型及び樹脂成形品の製造方法 Download PDF

Info

Publication number
WO2011122251A1
WO2011122251A1 PCT/JP2011/055217 JP2011055217W WO2011122251A1 WO 2011122251 A1 WO2011122251 A1 WO 2011122251A1 JP 2011055217 W JP2011055217 W JP 2011055217W WO 2011122251 A1 WO2011122251 A1 WO 2011122251A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
plate
heat
heat insulating
insulating plate
Prior art date
Application number
PCT/JP2011/055217
Other languages
English (en)
French (fr)
Inventor
佳弘 奥村
篤 内藤
基 森
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2012508174A priority Critical patent/JP5708640B2/ja
Publication of WO2011122251A1 publication Critical patent/WO2011122251A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/02Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/02Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means
    • B29C2033/023Thermal insulation of moulds or mould parts

Definitions

  • the present invention relates to a molding die used for injection molding and the like, and a method for manufacturing an optical element and other resin molded products using the molding die.
  • Some molds include a fixed mold and a movable mold.
  • the fixed plate that supports the fixed mold and the movable mold are supported.
  • a cavity for injection molding is formed by aligning and fastening a fixed mold and a movable mold together (see Patent Document 1).
  • a stationary plate is provided with a heat insulating plate and supported on the fixed plate via the heat insulating plate
  • a movable die is provided with a heat insulating plate and supported on the movable plate via the heat insulating plate. The heat that escapes to the support base such as the movable platen is reduced to stabilize the temperature of the mold.
  • the inventors of the present application have studied a phenomenon in which it is not easy to increase the yield rate in the molding method using the molding die as described above, and as a result, the heat insulating plate has a non-uniform temperature distribution in the plane. I noticed that. In particular, in the fixed platen, it was found that a large temperature difference occurred in the vertical direction of the heat insulating plate, and that the temperature difference caused an uneven temperature distribution in the surface of the fixed mold. When molding multiple optical elements from a molding die at once, the flow path of the temperature control medium is limited, and multiple mold parts corresponding to each optical element are individually temperature controlled precisely. Can not do it.
  • an object of the present invention is to provide a molding die capable of molding a resin molded product having high optical performance with a high yield by reducing the temperature distribution generated in the fixed die and the movable die.
  • the present invention also relates to a method of manufacturing an optical element or other resin molded product using the molding die as described above.
  • a molding die includes a first die having a first transfer surface and a second die having a second transfer surface, and the first transfer surface is closed by mold closing.
  • a heat insulating plate disposed between the mold member and the support base, and a heat equalizing member disposed between the mold space and the heat insulating plate and having a higher thermal conductivity than the mold member and the heat insulating plate. It is characterized by having.
  • the first die has a heat uniformizing member that is disposed between the mold space and the heat insulating plate and has a higher thermal conductivity than the mold member and the heat insulating plate.
  • the control member suppresses the influence of the temperature difference generated in the heat insulating plate on the mold member. That is, even during the injection or during cooling, even if the temperature distribution is generated in the heat insulating plate itself that prevents the heat flow to the support base, the influence on the mold space from the heat insulating plate is reduced. Thereby, the difference in temperature distribution in the mold surface at the time of cooling after resin injection or the like can be reduced, and a resin molded product having high optical performance can be molded with a high yield. In particular, when a plurality of resin molded products are molded together, it is possible to prevent a difference in transferability between the resin molded products.
  • the heat uniformizing member is disposed between the mold member and the heat insulating plate.
  • the mold member can be cooled relatively uniformly, and the temperature distribution in the mold surface can be reduced.
  • the mold member includes a mold plate that holds the core having the first transfer surface, and a mounting plate that supports the mold plate from the back together with the core, and the heat equalizing member is the mounting plate. And fixed between the heat insulating plate. In this case, it is possible to effectively prevent the temperature difference of the heat insulating plate from reaching the mold plate, the core and the like by arranging the heat uniformizing member in the vicinity of the heat insulating plate.
  • the mold member is formed by laminating at least two plate members, and the heat equalizing member is sandwiched and fixed between the at least two plate members. In this case, it is possible to suppress the temperature distribution formed in the back mold member from reaching the front mold member.
  • the mold member is a mold plate that holds a core having a first transfer surface
  • the heat equalizing member is an attachment plate that supports the mold plate together with the core from behind.
  • the first mold is attached to the support base which is a fixed platen
  • the second mold is attached to the movable platen.
  • the first mold is attached to the support base which is a movable platen, and the second mold is attached to the fixed platen.
  • the first mold is attached to the support base which is a movable platen
  • the second mold is attached to the fixed platen.
  • the heat conductivity of the mold member is 10 [W / m ⁇ K] or more and 60 [W / m ⁇ K] or less, and the heat conductivity of the heat insulating plate is 0.05 [W / m ⁇ K]. W / m ⁇ K] to 1.5 [W / m ⁇ K], and the thermal conductivity of the heat uniformizing member is 100 [W / m ⁇ K] or more.
  • the method for producing a resin molded product according to the present invention includes a first mold having a first transfer surface and a second mold having a second transfer surface, and the first transfer surface and the second transfer surface are closed by mold closing.
  • a method of manufacturing a resin molded product using a molding die that forms a mold space between the first die and the first die for supporting the die member provided with the first transfer surface and the first die A heat insulating plate disposed between the support base and a heat uniformizing member disposed between the mold space and the heat insulating plate and having a higher thermal conductivity than the mold member and the heat insulating plate.
  • the heat uniformizing member suppresses the influence of the temperature difference generated in the heat insulating plate on the mold member.
  • the first mold of the molding die used for this is disposed between the mold member and the heat insulating plate and has a higher thermal conductivity than the mold member and the heat insulating plate. Insulation that prevents heat flow to the support base during injection or cooling because it has a heat-homogenizing member and the heat-homogenizing member suppresses the influence of the temperature difference generated on the heat insulating plate on the mold member. Even if the temperature distribution is generated in the plate itself, the influence on the mold member from the heat insulating plate is reduced. As a result, the mold member is cooled relatively uniformly, the temperature distribution in the mold surface during subsequent cooling such as resin injection can be reduced, and a resin molded product with high optical performance can be molded with a high yield.
  • FIG. 1 is a front view conceptually illustrating a molding apparatus incorporating a molding die according to a first embodiment.
  • A) is sectional drawing explaining the structure of a fixed mold among the shaping
  • (B) is a figure explaining the end surface of a fixed mold. It is sectional drawing explaining the structure of a stationary mold among the shaping
  • (A) is sectional drawing explaining the modification (4th Embodiment) of the flow path of a heat carrier,
  • B) is a type
  • A) is sectional drawing explaining the modification (5th Embodiment) of the flow path of a thermal medium, (B) is a type
  • the injection molding machine 10 includes a fixed platen 11, a movable platen 12, a mold clamping plate 13, an opening / closing drive device 15, an injection device 16, and a mold temperature controller 17.
  • the injection molding machine 10 enables molding by sandwiching a fixed mold 41 and a movable mold 42 between the movable platen 12 and the fixed platen 11 and clamping both molds.
  • the fixed mold 41 and the movable mold 42 together form a molding mold.
  • the fixed platen 11 is a support base on the fixed side, and is fixed on the support frame 14 so as to face the movable platen 12.
  • the stationary platen 11 detachably supports the stationary mold 41.
  • the fixed platen 11 is fixed to the mold clamping plate 13 via a tie bar 18 so that it can withstand the pressure of mold clamping during molding.
  • the movable platen 12 is a movable-side support base and can move forward and backward with respect to the fixed platen 11.
  • the movable platen 12 detachably supports the movable mold 42.
  • the mold clamping machine 13 is fixed to the end of the support frame 14.
  • the mold clamping machine 13 supports the movable board 12 from the back via the power transmission part 15d of the opening / closing drive device 15 at the time of mold clamping.
  • the opening / closing drive device 15 moves the movable platen 12 forward and backward with respect to the fixed platen 11. That is, the opening / closing drive device 15 expands and contracts the power transmission unit 15 d under the control of the opening / closing control unit 21. As a result, the movable platen 12 can move forward and backward freely with respect to the mold clamping plate 13, and as a result, the movable platen 12 and the fixed platen 11 can be moved toward and away from each other. The mold 41 and the movable mold 42 can be clamped and opened.
  • the injection device 16 can inject the molten resin with the temperature controlled from the resin injection nozzle 16d.
  • the injection device 16 brings the resin injection nozzle 16d into contact with the sprue bush 77 (see FIG. 2A) provided on the fixed platen 11, and the flow path
  • the molten resin in the cylinder 16a can be supplied to the FP (see FIG. 2A) at a desired timing.
  • the mold temperature controller 17 supplies and circulates a temperature-controlled heat medium into the fixed mold 41 and the movable mold 42. Thereby, the temperature of the fixed mold 41 and the movable mold 42 can be maintained at an appropriate temperature during molding.
  • FIG. 2A is a side sectional view for explaining the structure of the fixed mold 41
  • FIG. 2B is a mold end view of the fixed mold 41, that is, a front view.
  • the movable mold 42 is driven by the opening / closing drive device 15 shown in FIG. 1 and can be moved back and forth in the ⁇ Z directions.
  • a mold space for injection molding can be formed by matching the fixed mold 41 and the movable mold 42 with the parting surfaces PS1 and PS2 and clamping the mold.
  • the fixed mold 41 includes a parting surface PS1 side, that is, an inner mold plate 71, a mounting plate 72 that supports the mold plate 71 from behind, a mounting plate 72, and a fixed platen. 11 and a plate-shaped heat equalizing member 83 disposed between the mounting plate 72 and the heat insulating plate 82.
  • a parting surface PS1 side that is, an inner mold plate 71, a mounting plate 72 that supports the mold plate 71 from behind, a mounting plate 72, and a fixed platen. 11 and a plate-shaped heat equalizing member 83 disposed between the mounting plate 72 and the heat insulating plate 82.
  • through holes 71a, 72a, 82a, and 83a are formed in the template 71, the mounting plate 72, the heat insulating plate 82, and the heat equalizing member 83, respectively.
  • the sprue bush 77 is inserted and fixed to the through hole 71a of the template 71 and the through hole 72a of the mounting plate 72 from the outside.
  • a locate ring 81 is disposed around the rear end of the sprue bush 77 and fixed to the mounting plate 72.
  • the locating ring 81 is inserted from the inside into the nozzle insertion port 11a formed in the fixed platen 11 through the through hole 82a of the heat insulating plate 82 and the through hole 83a of the heat equalizing member 83, and the mounting plate 72 and the like are attached to the locate ring 81. It can be positioned and fixed to the fixed platen 11.
  • the template 71 has a core hole 71 h that holds the core 74.
  • a runner recess 71b connected to a flow path FP extending along a hole 77a formed in the sprue bush 77 and branching radially is connected to a tip end side of the runner recess 71b.
  • the core 74 is provided with a lens recess 74d connected to the gate surface 71c.
  • the runner recess 71b, the gate surface 71c, and the lens recess 74d constitute a mold inner surface 71i and are connected to a mold inner surface 171i provided on the mold plate 171 and the like of the movable mold 42 at the time of clamping.
  • the lens recess 74d constituting the mold inner surface 71i on the fixed mold 41 side is a first transfer surface corresponding to a first optical surface of a lens (not shown) to be molded, and is on the movable mold 42 side.
  • the lens recess 174d constituting the mold inner surface 171i is a second transfer surface corresponding to the second optical surface of the lens to be molded, and the mold corresponding to the molded product between the opposed first and second transfer surfaces.
  • a space is formed.
  • a jacket 78 which is a flow path for circulating a heat medium is formed inside the mold plate 71 and the mounting plate 72 in order to keep the temperature of the mold at an appropriate temperature during molding.
  • a temperature sensor 79 for measuring the temperature of the fixed mold 41, more specifically, the temperature of the mold inner surface 71i of the mold plate 71 and the vicinity thereof is embedded in the mold plate 71.
  • the heat insulating plate 82 has a lower thermal conductivity than both the template 71 and the mounting plate 72, for example, 0.05 [W / m ⁇ K] or more and 1.5 [W / m ⁇ K] or less.
  • the thermal conductivity of the mold plate 71 and the mounting plate 72 as the mold member is, for example, 10 [W / m ⁇ K] or more and 60 [W / m ⁇ K] or less, and the thermal conductivity of the heat uniformizing member 83. Is, for example, 100 [W / m ⁇ K] or more.
  • the fixed platen 11 is, for example, 30 [W / m ⁇ K] or more.
  • the template 71 and the mounting plate 72 are, for example, pre-hardened steel having a thermal conductivity of about 33 [W / m ⁇ K] or a thermal conductivity of about 23 [W / m ⁇ K].
  • the heat insulating plate 82 is, for example, a heat-resistant epoxy resin material having a thermal conductivity of about 0.59 [W / m ⁇ K] and based on glass fiber, and a heat of about 0.3 [W / m ⁇ K].
  • the heat equalizing member 83 is, for example, a copper alloy having a thermal conductivity of about 171 [W / m ⁇ K], an aluminum alloy having a thermal conductivity of about 101,112 [W / m ⁇ K], or a thermal conductivity of 317 [ W / m ⁇ K] and tellurium steel, and has a thickness of 5 mm, for example.
  • the heat uniformizing member 83 may be formed of, for example, beryllium copper having a thermal conductivity of about 90 [W / m ⁇ K] or a zinc alloy having a thermal conductivity of about 97 [W / m ⁇ K].
  • the stationary platen 11 is made of cast iron having a thermal conductivity of about 40 [W / m ⁇ K], for example.
  • Table 1 summarizes the characteristics of specific examples of various materials capable of forming the fixed mold 41 for reference.
  • the fixed platen 11 is firmly fixed to the support frame 14, and heat radiation to the support frame 14 is increased. For this reason, a large heat distribution is formed on the fixed platen 11 in the vertical direction, with the upper side being a high temperature and the lower side being a low temperature. As a result, the heat insulating plate 82 also tends to have a high temperature on the upper side and a low temperature on the lower side.
  • the heat insulating plate 82 is thickened, the temperature distribution in the XY plane on the surface side of the heat insulating plate 82, that is, the mounting plate 72 side can be reduced, and the temperature difference can be eliminated.
  • the heat homogenizing member 83 between the mounting plate 72 and the heat insulating plate 82, the heat is diffused in the heat homogenizing member 83, and the temperature in the XY plane on the surface side of the heat homogenizing member 83. Reduce the distribution to eliminate temperature differences. As a result, the temperature distribution of the mounting plate 72 and the template 71 is also reduced, and the temperatures at various locations on the surface of the template 71 can be made substantially the same.
  • the movable mold 42 is less likely to cause the above problems. This is because the movable platen 12 is supported via the tie bars 18, so that the movable platen 12 is relatively thermally isolated, and the temperature distribution is hardly generated above and below the movable platen 12.
  • the mold temperature controller 17 heats the fixed mold 41 and the movable mold 42 to a temperature suitable for molding.
  • the opening / closing drive device 15 is operated to advance the movable platen 12 to start mold closing. Even when the movable platen 12 moves to the fixed platen 11 side and the mold closing is completed until the fixed die 41 and the movable die 42 come into contact with each other, the closing operation of the opening / closing drive device 15 is further continued. Then, mold clamping is performed to clamp the fixed mold 41 and the movable mold 42 with a necessary pressure.
  • the injection device 16 is operated to inject the molten resin into the mold space between the clamped fixed mold 41 and the movable mold 42 with a necessary pressure.
  • the mold temperature controller 17 moderately heats the fixed mold 41 and the movable mold 42, and the molten resin supplied from the injection device 16 is slowly cooled.
  • the opening / closing drive device 15 is operated to open the mold to retract the movable platen 12.
  • the movable mold 42 moves backward, and the fixed mold 41 and the movable mold 42 are separated. As a result, the resin molded product can be taken out from between the fixed mold 41 and the movable mold 42.
  • regions A1 to A8 on the fixed mold 41 indicate temperature measurement points on the template 71 in the experiment.
  • the injection molding machine 10 shown in FIG. 1 was operated under the same conditions as during molding.
  • the temperature of the fixed mold 41 shown in FIG. 2 (A) and the like is measured a plurality of times at a set temperature of 133.5 ° C., the temperatures of the regions A1 to A8 are averaged at 128.8 ° C. and 128.8 ° C.
  • the heat equalizing member 83 between the mounting plate 72 and the heat insulating plate 82, the temperature distribution on the surface of the template 71 can be reduced and the temperature difference can be eliminated. Further, when the Newton error of the lens molded using the injection molding machine 10 shown in FIG. 1 was measured, the relative difference in Newton error obtained with each lens corresponding to the four lens recesses 74d was 0. The number was 5 or less. When the same pre-hardened steel plate material as the template 71 was disposed instead of the heat uniformizing member 83, the relative difference (runout width) of the Newton error as described above was about 2.0. .
  • the mold in the fixed mold 41 that is the first mold, the mold is disposed between the mounting plate 72 and the heat insulating plate 82. Since the heat uniformizing member 83 having a higher thermal conductivity than the plate 71, the mounting plate 72, and the heat insulating plate 82 is provided, the heat uniformizing member 83 is a mounting plate having a temperature difference generated in the heat insulating plate 82. The influence on 72 etc. will be suppressed.
  • the die plate 71 is not a space between the mounting plate 72 and the heat insulating plate 82 but two stacked die members.
  • the heat equalizing member 83 is inserted between the mounting plate 72 and the mounting plate 72.
  • the fixed die 141 is disposed between the mold plate 71 and the mounting plate 72, and has a higher heat than the mold plate 71, the mounting plate 72, and the heat insulating plate 82. Since the heat homogenizing member 83 having conductivity is provided, the heat homogenizing member 83 suppresses the influence of the temperature difference generated in the heat insulating plate 82 on the mounting plate 72 and the like. Thereby, the mold plate 71 is cooled relatively uniformly, the temperature distribution of the mold inner surface 71i at the time of cooling after injection of the resin can be reduced, and a resin molded product with high optical performance can be molded with a high yield.
  • an additional heat equalizing member 83 can be disposed between the mounting plate 72 and the heat insulating plate 82.
  • the heat equalizing member 83 is not disposed between the mounting plate 272 and the heat insulating plate 82, but the mounting plate 272 itself is a heat uniformizing member. That is, the template 71 alone is a mold member.
  • the fixed die 241 is disposed between the mold plate 71 and the heat insulating plate 82 and has a heat conductivity higher than that of the mold plate 71 and the heat insulating plate 82. Since the mounting plate 272 as a uniformizing member is provided, the mounting plate 272 suppresses the influence of the temperature difference generated in the heat insulating plate 82 and the like on the template 71. Thereby, the mold plate 71 is cooled relatively uniformly, the temperature distribution of the mold inner surface 71i at the time of cooling after injection of the resin can be reduced, and a resin molded product with high optical performance can be molded with a high yield.
  • the fixed mold 41 constituting the molding mold according to the present embodiment is a jacket 378 formed of a linearly extending portion of the mold plate 71 and the mounting plate 72. Is forming.
  • a heat uniformizing member 83 having a relatively high thermal conductivity can be disposed between the template 71 and the mounting plate 72. Further, the heat uniformizing member 83 can be removed to make the mounting plate 72 itself a heat uniformizing member having a relatively high thermal conductivity.
  • the fixed mold 41 constituting the molding die according to the present embodiment forms a rectangular frame-shaped jacket 478 in the mold plate 71 and the mounting plate 72.
  • a heat uniformizing member 83 having a relatively high thermal conductivity can be disposed between the template 71 and the mounting plate 72. Further, the heat uniformizing member 83 can be removed to make the mounting plate 72 itself a heat uniformizing member having a relatively high thermal conductivity.
  • the present invention has been described based on the above embodiments, the present invention is not limited to the above embodiments, and various modifications are possible.
  • aluminum or pure copper can be used as the heat uniformizing member 83 and the mounting plate 272.
  • the heat uniformizing member 83 and the mounting plate 272 a stainless steel or other plate-like body incorporating a heat pipe can be used. In this case, the temperature equalizing effect by the heat equalizing member 83 can be enhanced.
  • the heat uniformizing member 83 and the mounting plate 272 stainless steel or other plate-like body incorporating a heat lane can be used.
  • the heat lane is a steel material with a built-in flow path filled with an organic medium such as pure water, alternative chlorofluorocarbon, or butane, and the temperature equalizing effect by the heat equalizing member 83 can be enhanced.
  • a material composed of aluminum and carbon nanofiber, a material composed of aluminum or copper and carbon material, aluminum and ceramics such as Al-SiC A cemented carbide that is a composite material obtained by sintering carbides of group IVa, Va, and VIa group metals with an iron-based metal such as Fe, Co, and Ni, a graphite sheet formed of carbon, and the like can be used.
  • the arrangement location of the jacket 78 for circulating the heat medium is not limited to the template 71, the mounting plate 72, or between them, and can be various places.
  • the jacket 78 is not limited to oil temperature control and water temperature control, but can be replaced with various systems such as a cartridge heater, a casting heater, and a hot plate.
  • the temperature adjusting means such as the jacket 78 is not limited to the arrangement pattern illustrated in FIG. 2B, FIG. 5B, FIG. 6B, and the like, and includes various patterns including straight lines, curves, and the like. it can.
  • the heat equalizing member 83 is provided only on the fixed mold 41, 141, 241 side, but a similar heat equalizing member 83 can be provided on the movable mold 42 side.
  • the heat equalizing member 83 is provided only on the movable mold 42 side supported by the movable platen 12
  • the movable plate 12 movable mold 42 becomes the first mold and the fixed mold 41 supported by the fixed platen 11. Is the second mold.
  • the four cores 74 are hold
  • the injection molding machine 10 is a horizontal type, that is, the fixed mold 41 and the movable mold 42 are horizontally opposed to each other, but the present invention is not limited to this. That is, a vertical injection molding machine in which the fixed mold 41 and the movable mold 42 are arranged to face each other in the vertical direction can be used.
  • the injection molding machine 10 is an apparatus for molding a thermoplastic resin.
  • an apparatus for molding a thermosetting resin by appropriately modifying the injection molding machine 10. It can be. Also in this case, the uniformity of the surface temperature of the fixed mold 41 and the like can be improved.
  • the fixed mold 41 and the movable mold 42 of the above embodiment can be used not only for resin molding but also for glass molding, silicone rubber molding, magnesium alloy molding, and the like.
  • the movable platen 12 is supported via the tie bars 18, but the movable platen 12 may be supported via a slide guide.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

 第1金型である固定金型41において、取付板72と断熱板82との間に配置されて、型板71、取付板72、及び断熱板82に比較して高い熱伝導率を有する熱均一化部材83を設けているので、熱均一化部材83が、断熱板82に生じた温度差の取付板72等への影響を抑制することになる。つまり、成形の射出時や冷却時において、支持基盤である固定盤11への熱流を阻止する断熱板82自体に温度分布が生じていても、断熱板82から取付板72等への影響が低減される。これにより、型板71や取付板72が比較的均一に冷却され、樹脂の射出後の冷却時における型内面71iの温度分布を低減でき、高い光学性能の樹脂成形品を歩留まり良く成形できる。

Description

成形金型及び樹脂成形品の製造方法
 本発明は、射出成形等に用いられる成形金型、及び、かかる成形金型を利用した光学素子その他の樹脂成形品の製造方法に関する。
 成形金型として、固定金型と可動金型とを備えるものがあり、このような成形金型を組み込んで成形を行う射出成形機として、固定金型を支持する固定盤と可動金型を支持する可動盤とを備え、固定金型と可動金型とを型合わせして締め付けることで射出成形用のキャビティを形成するものがある(特許文献1参照)。この射出成形機では、固定金型に断熱板を設け断熱板を介して固定盤上に支持し、可動金型に断熱板を設け断熱板を介して可動盤上に支持することで、固定盤や可動盤といった支持基盤に逃げる熱を減少させて、成形金型の温度の安定を図っている。
特開2010-5852号公報
 しかし、上記のような成形金型において、例えば複数個のレンズ等の光学素子を一括して成形する場合、製品間で転写性に差が生じ、歩留まり率を高めることが容易でなくなっている。特に、携帯端電話機用のカメラレンズ、光ピックアップ用の対物レンズでは、小型化と高性能化の双方の進展が求められており、樹脂成形品を高い光学性能にしつつ歩留まり率を高める必要がある。
 本願の発明者は、上記のような成形金型を用いる成形方法において歩留まり率を高めることが容易でない現象について検討した結果、断熱板が面内で不均一な温度分布を有することが大きな原因となっていることに気づいた。特に、固定盤では、断熱板の上下方向に大きな温度差が生じており、その温度差が固定金型の面内に不均一な温度分布を生じさせていることを突き止めた。なお、成形金型から複数個の光学素子を一括して成形する場合、温調用の媒体の流路が制限され、個々の光学素子に対応する複数箇所の金型部分を個別に精密に温度調節することができない。
 そこで、本発明は、固定金型や可動金型に生じる温度分布を低減することで、高い光学性能の樹脂成形品を歩留まり良く成形できる成形金型を提供することを目的とする。
 また、本発明は、上記のような成形金型を利用した光学素子その他の樹脂成形品の製造方法に関する。
 上記課題を解決するため、本発明に係る成形金型は、第1転写面を有する第1金型と、第2転写面を有する第2金型とを備え、型閉じによって第1転写面と第2転写面との間に型空間を形成する成形金型であって、第1金型が、第1転写面を設けた型部材と、第1金型を支持するための支持基盤と、型部材と支持基盤との間に配置される断熱板と、型空間と断熱板との間に配置されて型部材と断熱板とに比較して高い熱伝導率を有する熱均一化部材とを有することを特徴とする。
 上記成形金型では、第1金型が、型空間と断熱板との間に配置されて型部材と断熱板とに比較して高い熱伝導率を有する熱均一化部材を有するので、熱均一化部材が、断熱板に生じた温度差の型部材への影響を抑制することになる。つまり、射出等の際や冷却時において、支持基盤への熱流を阻止する断熱板自体に温度分布が生じていても、断熱板から型空間への影響が低減される。これにより、樹脂射出等の後の冷却時における型面内の温度分布の格差を低減でき、高い光学性能の樹脂成形品等を歩留まり良く成形できる。特に、複数個の樹脂成形品を一括して成形する場合に、樹脂成形品間で転写性に差が生じることを防止できる。
 また、本発明の具体的な態様又は側面では、上記成形金型において、熱均一化部材が、型部材と断熱板との間に配置される。この場合、型部材を比較的均一に冷却することができ、型面内の温度分布を低減できる。
 本発明の別な側面では、型部材が、第1転写面を有するコアを保持する型板と、型板をコアとともに背後から支持する取付板とを有し、熱均一化部材が、取付板と断熱板とに挟まれて固定される。この場合、断熱板に近接して熱均一化部材を配置することで、断熱板の温度差が型板やコア等に及ぶことを効果的に阻止することができる。
 本発明のさらに別な側面では、型部材は、少なくとも2つの板部材を積層してなり、熱均一化部材が、少なくとも2つの板部材に挟まれて固定される。この場合、奥側の型部材に形成される温度分布が表側の型部材に及ぶことを抑制できる。
 本発明のさらに別な側面では、型部材が、第1転写面を有するコアを保持する型板であり、熱均一化部材が、前記型板を前記コアとともに背後から支持する取付板である。この場合、取付板に形成される温度分布が型板やコアに及ぶことを抑制できる。
 本発明のさらに別な側面では、第1金型が、固定盤である上記支持基盤に取り付けられ、第2金型が、可動盤に取り付けられる。この場合、固定盤の上下方向等に大きな温度差が生じていても、その温度差が型部材の面内に不均一な温度分布を生じさせることを防止でき、第1光学面を高精度で成形することができる。
 本発明のさらに別な側面では、第1金型が、可動盤である上記支持基盤に取り付けられ、第2金型は、固定盤に取り付けられる。この場合、可動盤の上下方向等に大きな温度差が生じていても、その温度差が型部材の面内に不均一な温度分布を生じさせることを防止でき、第1光学面を高精度で成形することができる。
 本発明のさらに別な側面では、型部材の熱伝導率が、10〔W/m・K〕以上60〔W/m・K〕以下であり、断熱板の熱伝導率が、0.05〔W/m・K〕以上1.5〔W/m・K〕以下であり、熱均一化部材の熱伝導率が、100〔W/m・K〕以上である。
 本発明に係る樹脂成形品の製造方法は、第1転写面を有する第1金型と、第2転写面を有する第2金型とを備え、型閉じによって第1転写面と第2転写面との間に型空間を形成する成形金型を用いた樹脂成形品の製造方法であって、第1金型が、第1転写面を設けた型部材と、第1金型を支持するための支持基盤との間に配置される断熱板と、型空間と断熱板との間に配置されて型部材と断熱板とに比較して高い熱伝導率を有する熱均一化部材とを有し、熱均一化部材が、断熱板に生じた温度差の型部材への影響を抑制することを特徴とする。
 上記樹脂成形品の製造方法では、これに用いる成形金型の第1金型が、型部材と断熱板との間に配置されて型部材と断熱板とに比較して高い熱伝導率を有する熱均一化部材を有し、熱均一化部材が、断熱板に生じた温度差の型部材への影響を抑制するので、射出等の際や冷却時において、支持基盤への熱流を阻止する断熱板自体に温度分布が生じていても、断熱板から型部材への影響が低減される。これにより、型部材が比較的均一に冷却され、樹脂射出等の後の冷却時における型面内の温度分布を低減でき、高い光学性能の樹脂成形品を歩留まり良く成形できる。
第1実施形態の成形金型を組み込んだ成形装置を概念的に説明する正面図である。 (A)は、図1に示す成形金型のうち固定金型の構造を説明する断面図であり、(B)は、固定金型の端面を説明する図である。 第2実施形態の成形金型のうち固定金型の構造を説明する断面図である。 第3実施形態の成形金型のうち固定金型の構造を説明する断面図である。 (A)は、熱媒体の流路の一変形例(第4実施形態)を説明する断面図であり、(B)は、(A)の流路の配置を説明する型端面図である。 (A)は、熱媒体の流路の一変形例(第5実施形態)を説明する断面図であり、(B)は、(A)の流路の配置を説明する型端面図である。
 〔第1実施形態〕
 以下、本発明の第1実施形態に係る成形金型を組み込んだ成形装置について、図面を参照しつつ説明する。
 図1に示すように、射出成形機10は、固定盤11と、可動盤12と、型締め盤13と、開閉駆動装置15と、射出装置16と、金型温度調節機17とを備える。射出成形機10は、可動盤12と固定盤11との間に固定金型41と可動金型42とを挟持して両金型を型締めすることにより成形を可能にする。ここで、固定金型41と可動金型42とは、両者を合わせて成形金型を構成する。
 固定盤11は、固定側の支持基盤であり、可動盤12に対向して支持フレーム14上に固定されている。固定盤11は、固定金型41を着脱可能に支持している。なお、固定盤11は、タイバー18を介して型締め盤13に固定されており、成形時の型締めの圧力に耐え得るようになっている。可動盤12は、可動側の支持基盤であり、固定盤11に対して進退移動可能になっている。可動盤12は、可動金型42を着脱可能に支持している。型締め盤13は、支持フレーム14の端部に固定されている。型締め盤13は、型締めに際して、開閉駆動装置15の動力伝達部15dを介して可動盤12をその背後から支持する。
 開閉駆動装置15は、可動盤12を固定盤11に対して進退させる。つまり、開閉駆動装置15は、開閉制御部21の制御下で動力伝達部15dを伸縮させる。これにより、型締め盤13に対して可動盤12が近接したり離間したり自在に進退移動し、結果的に、可動盤12と固定盤11とを互いに近接・離間させることができ、固定金型41と可動金型42との型締め及び型開きを行うことができる。
 射出装置16は、樹脂射出ノズル16dから温度制御された状態で溶融樹脂を射出することができる。射出装置16は、固定金型41と可動金型42とを型締めした状態で、固定盤11に設けたスプルブッシュ77(図2(A)参照)に樹脂射出ノズル16dを接触させ、流路FP(図2(A)参照)に対してシリンダ16a中の溶融樹脂を所望のタイミングで供給することができる。
 金型温度調節機17は、固定金型41,可動金型42中に温度制御された熱媒体を供給し循環させる。これにより、成形時に固定金型41,可動金型42の温度を適切な温度に保つことができる。
 図2(A)は、固定金型41の構造を説明する側断面図であり、図2(B)は、固定金型41の型端面図すなわち正面図である。なお、可動金型42は、図1に示す開閉駆動装置15に駆動されて±Z方向に進退移動可能になっている。固定金型41,可動金型42をパーティング面PS1,PS2で型合わせして型締めすることにより、射出成形用の型空間を形成することができる。
 図2(A)等に示すように、固定金型41は、パーティング面PS1側、すなわち内側の型板71と、型板71を背後から支持する取付板72と、取付板72と固定盤11との間に配置される断熱板82と、取付板72と断熱板82との間に配置される板状の熱均一化部材83とを備える。なお、型板71と取付板72と断熱板82と熱均一化部材83とには、それぞれ貫通孔71a,72a,82a,83aが形成されている。このうち型板71の貫通孔71aと取付板72の貫通孔72aとに、スプルブッシュ77が外側から挿入されて固定される。スプルブッシュ77の後方端の周囲には、ロケートリング81が配置され取付板72に対して固定されている。ロケートリング81は、断熱板82の貫通孔82aと熱均一化部材83の貫通孔83aとを介して、固定盤11形成されたノズル挿入口11aに内側から挿入されており、取付板72等を固定盤11に位置決めして固定することができる。
 型板71は、コア74を保持するコア孔71hを有している。型板71のパーティング面PS1側には、スプルブッシュ77内に形成された孔77aに沿って延びる流路FPに接続されて放射状に分岐するランナ凹部71bと、ランナ凹部71bの先端側に接続されるゲート面71cとが設けられ、コア74には、ゲート面71cに接続されるレンズ凹部74dが設けられている。これらのランナ凹部71bと、ゲート面71cと、レンズ凹部74dとは、型内面71iを構成しており、型締め時に可動金型42の型板171等に設けた型内面171iと接続されて、樹脂が充填される空間を形成する。特に、固定金型41側の型内面71iを構成するレンズ凹部74dは、成形対象であるレンズ(不図示)の第1光学面に対応する第1転写面となっており、可動金型42側の型内面171iを構成するレンズ凹部174dは、成形対象であるレンズの第2光学面に対応する第2転写面となっており、対向する第1及び第2転写面間に成形品対応する型空間が形成される。
 なお、型板71と取付板72との内部には、成形時に金型の温度を適切な温度に保つため、熱媒体を流通させるための流路であるジャケット78が形成されている。また、型板71には、固定金型41の温度、より詳細には型板71の型内面71iやその近傍における温度を計測するための温度センサ79が埋め込まれている。
 以下、固定金型41のうち、断熱板82や熱均一化部材83について説明する。断熱板82は、型板71及び取付板72のいずれよりも低い熱伝導率を有し、例えば0.05〔W/m・K〕以上1.5〔W/m・K〕以下となっている。なお、型部材としての型板71及び取付板72の熱伝導率は、例えば10〔W/m・K〕以上60〔W/m・K〕以下であり、熱均一化部材83の熱伝導率は、例えば100〔W/m・K〕以上である。また、固定盤11は、例えば30〔W/m・K〕以上である。
 具体的な素材について説明すると、型板71と取付板72とは、例えば33〔W/m・K〕程度の熱伝導率を有するプリハードン鋼や、23〔W/m・K〕程度の熱伝導率を有するステンレス鋼、40〔W/m・K〕程度の熱伝導率を有する炭素鋼等で形成されている。断熱板82は、例えば0.59〔W/m・K〕程度の熱伝導率を有しガラス繊維を基材とする耐熱性エポキシ樹脂材、0.3〔W/m・K〕程度の熱伝導率を有しガラス繊維を基材とする珪素系バインダ材、0.13〔W/m・K〕程度の熱伝導率を有しガラス繊維を基材とするイソ系不飽和ポリエステル材等で形成されており、例えば5~15mm程度の厚みを有する。また、熱均一化部材83は、例えば熱伝導率171〔W/m・K〕程度の銅合金、熱伝導率101,112〔W/m・K〕程度のアルミ合金、又は熱伝導率317〔W/m・K〕程度のテルル鋼で形成されており、例えば5mmの厚みを有する。なお、熱均一化部材83は、例えば熱伝導率90〔W/m・K〕程度のベリリウム銅、又は熱伝導率97〔W/m・K〕程度の亜鉛合金で形成することもできる。固定盤11は、例えば熱伝導率40〔W/m・K〕程度の鋳鉄等で形成されている。
 以下の表1は、固定金型41を形成可能な各種材料の具体例の特徴を参考としてまとめたものである。
Figure JPOXMLDOC01-appb-T000001
 ここで、断熱板82や熱均一化部材83の役割について説明する。固定盤11は、支持フレーム14に強固に固定されており、支持フレーム14への放熱が大きくなっている。このため、固定盤11には、上下方向に大きな熱分布が形成され、上側が高温で下側が低温となっている。この結果、断熱板82も、上側が高温で下側が低温となる傾向が生じる。ここで、断熱板82を厚くすれば、断熱板82の表面側すなわち取付板72側におけるXY面内の温度分布を低減して温度差をなくすことができるが、断熱板82を厚くした場合、強度や精度が低下する問題が生じる。そこで、取付板72と断熱板82との間に熱均一化部材83を挿入することで、熱均一化部材83内で熱を拡散させ、熱均一化部材83の表面側におけるXY面内の温度分布を低減して温度差をなくす。結果的に、取付板72や型板71でも温度分布が低減され、型板71の表面の各所おける温度を略一致させることができる。
 なお、可動金型42では、上記のような問題が生じにくい。これは、可動盤12がタイバー18を介して支持されているため、可動盤12が比較的熱的に孤立した状態となり、可動盤12の上下に温度分布が生じにくいことに起因している。
 以下、図1の射出成形機10を用いたレンズの製造について説明する。まず、金型温度調節機17により、固定金型41,可動金型42を成形に適する温度まで加熱する。次に、開閉駆動装置15を動作させ、可動盤12を前進させて型閉じを開始させる。固定金型41と可動金型42とが接触する型当たり位置まで可動盤12が固定盤11側に移動して型閉じが完了しても、開閉駆動装置15の閉動作を更に継続することにより、固定金型41と可動金型42とを必要な圧力で締め付ける型締めが行われる。次に、射出装置16を動作させて、型締めされた固定金型41と可動金型42との間の型空間中に、必要な圧力で溶融樹脂を注入する射出を行わせる。この際、金型温度調節機17により、固定金型41と可動金型42とが適度に加熱されており、射出装置16から供給される溶融樹脂が緩やかに冷却される。溶融樹脂が冷却されて十分固化した段階で、開閉駆動装置15を動作させて、可動盤12を後退させる型開きが行われる。これに伴って、可動金型42が後退し、固定金型41と可動金型42とが離間する。この結果、固定金型41と可動金型42の間から樹脂成形品を取り出すことができる。
 以下、図2(A)等に示す固定金型41,可動金型42を用いた具体的な実験例について説明する。なお、図2(B)において、固定金型41上の領域A1~A8は、実験での型板71上における温度の測定点を示している。図1に示す射出成形機10を成形時と同様の条件下で動作させた。図2(A)等に示す固定金型41の温度を設定温度を133.5℃として複数回計測したところ、各領域A1~A8の温度は、それぞれ平均で128.8℃、128.8℃、128.5℃、128.3℃、128.3℃、128.4℃、128.1℃、128.2℃であり、最大温度差は、0.7℃であった。なお、熱均一化部材83を除いて取付板72等と同様の材料で形成された板材を配置した場合、設定温度を125℃として、各領域A1~A8の温度は、それぞれ平均で117.5℃、117.1℃、115.9℃、115.9℃、116.8℃、117.6℃、118.0℃、117.9℃であり、最大温度差は、2.1℃であった。つまり、熱均一化部材83を取付板72と断熱板82との間に配置することで、型板71の表面における温度分布を低減して温度差をなくすことができる。また、図1に示す射出成形機10を用いて成形したレンズのニュートン誤差を計測したところ、4ヶ所のレンズ凹部74dに対応する各レンズで得られたニュートン誤差の相対的な差は、0.5本以下であった。なお、熱均一化部材83に代えて型板71と同じプリハードン鋼製の板材を配置した場合、上記のようなニュートン誤差の相対的な差(振れ幅)は、2.0本程度であった。
 以上のように、本実施形態の固定金型41,可動金型42によれば、第1金型である固定金型41において、取付板72と断熱板82との間に配置されて、型板71、取付板72、及び断熱板82に比較して高い熱伝導率を有する熱均一化部材83を設けているので、熱均一化部材83が、断熱板82に生じた温度差の取付板72等への影響を抑制することになる。つまり、成形の射出時や冷却時において、支持基盤である固定盤11への熱流を阻止する断熱板82自体に温度分布が生じていても、断熱板82から取付板72等への影響が低減される。これにより、型板71や取付板72が比較的均一に冷却され、樹脂の射出後の冷却時における型内面71iの温度分布を低減でき、高い光学性能の樹脂成形品を歩留まり良く成形できる。
 〔第2実施形態〕
 以下、第2実施形態に係る成形金型及び樹脂成形品の製造方法について説明する。なお、第2実施形態に係る成形金型及び樹脂成形品の製造方法は、第1実施形態を変形したものであり、特に説明しない部分については、第1実施形態と同様であるものとする。
 図3に示すように、本実施形態に係る成形金型を構成する固定金型141の場合、取付板72と断熱板82との間ではなく、2つの積層された型部材である型板71と取付板72との間に熱均一化部材83を挿入している。
 本実施形態の成形金型によれば、固定金型141において、型板71と取付板72との間に配置されて、型板71、取付板72、及び断熱板82に比較して高い熱伝導率を有する熱均一化部材83を設けているので、熱均一化部材83が、断熱板82に生じた温度差の取付板72等への影響を抑制することになる。これにより、型板71が比較的均一に冷却され、樹脂の射出後の冷却時における型内面71iの温度分布を低減でき、高い光学性能の樹脂成形品を歩留まり良く成形できる。
 なお、本実施形態において、取付板72と断熱板82との間に追加の熱均一化部材83を配置することもできる。
 〔第3実施形態〕
 以下、第3実施形態に係る成形金型及び樹脂成形品の製造方法について説明する。なお、第3実施形態に係る成形金型及び樹脂成形品の製造方法は、第1実施形態を変形したものであり、特に説明しない部分については、第1実施形態と同様であるものとする。
 図4に示すように、本実施形態に係る成形金型を構成する固定金型241の場合、取付板272と断熱板82との間に熱均一化部材83を配置するのではなく、取付板272自体を熱均一化部材としている。つまり、型板71単独で型部材としてなっている。
 本実施形態の成形金型によれば、固定金型241において、型板71と断熱板82との間に配置されて、型板71及び断熱板82に比較して高い熱伝導率を有する熱均一化部材としての取付板272を設けているので、取付板272が、断熱板82等に生じた温度差の型板71への影響を抑制することになる。これにより、型板71が比較的均一に冷却され、樹脂の射出後の冷却時における型内面71iの温度分布を低減でき、高い光学性能の樹脂成形品を歩留まり良く成形できる。
 〔第4実施形態〕
 以下、第4実施形態に係る成形金型及び樹脂成形品の製造方法について説明する。なお、第4実施形態に係る成形金型及び樹脂成形品の製造方法は、第1実施形態を変形したものであり、特に説明しない部分については、第1実施形態と同様であるものとする。
 図5(A)及び図5(B)に示すように、本実施形態に係る成形金型を構成する固定金型41は、型板71や取付板72において直線的に延びる部分からなるジャケット378を形成している。なお、本実施形態の場合も、型板71と取付板72との間に相対的に高い熱伝導率を有する熱均一化部材83を配置することができる。また、熱均一化部材83を除去して取付板72自体を相対的に高い熱伝導率を有する熱均一化部材とすることができる。
 〔第5実施形態〕
 以下、第5実施形態に係る成形金型及び樹脂成形品の製造方法について説明する。なお、第5実施形態に係る成形金型及び樹脂成形品の製造方法は、第1実施形態を変形したものであり、特に説明しない部分については、第1実施形態と同様であるものとする。
 図6(A)及び6(B)に示すように、本実施形態に係る成形金型を構成する固定金型41は、型板71や取付板72において矩形枠状のジャケット478を形成している。なお、本実施形態の場合も、型板71と取付板72との間に相対的に高い熱伝導率を有する熱均一化部材83を配置することができる。また、熱均一化部材83を除去して取付板72自体を相対的に高い熱伝導率を有する熱均一化部材とすることができる。
 以上実施形態に即して本発明を説明したが、本発明は、上記実施形態に限定されるものではなく、様々な変形が可能である。例えば、熱均一化部材83や取付板272として、アルミニウムや純銅を用いることができる。
 また、熱均一化部材83や取付板272として、ヒートパイプを組み込んだステンレス鋼その他の板状体を用いることもできる。この場合、熱均一化部材83による温度の均一化効果を高めることができる。
 また、熱均一化部材83や取付板272として、ヒートレーンを組み込んだステンレス鋼その他の板状体を用いることもできる。ヒートレーンとは、純水、代替フロン、ブタン等の有機媒体を充填した流路を内蔵した鋼材であり、熱均一化部材83による温度の均一化効果を高めることができる。
 その他、熱均一化部材83や取付板272の少なくとも一部として、アルミニウムとカーボンナノファイバーとから構成される材料、アルミニウム又は銅と炭素材料とから構成される材料、Al-SiC等のアルミニウムとセラミックスとから構成される材料、周期律表IVa、Va、VIa族金属の炭化物をFe、Co、Ni等の鉄系金属で焼結した複合材料である超硬合金、炭素で形成されたグラファイトシート等を用いることができる。
 また、熱媒体を流通させるためのジャケット78の配置場所は、型板71、取付板72、又はこれらの間に限らず、様々な場所とすることができる。また、ジャケット78は、油温調、水温調といったものに限らず、カートリッジヒーターや鋳込みヒーター、ホットプレートなど様々な方式に置き換えることができる。ここで、ジャケット78等の温度調節手段は、図2(B)、図5(B)、図6(B)等に例示される配置パターンに限らず、直線、曲線等を含む様々なパターンとできる。
 また、上記実施形態では、固定金型41,141,241側にのみ熱均一化部材83を設けているが、可動金型42側に同様の熱均一化部材83を設けることもできる。なお、可動盤12に支持される可動金型42側にのみ熱均一化部材83を設ける場合、可動盤12可動金型42が第1金型となり、固定盤11に支持される固定金型41が第2金型となる。
 また、上記実施形態では、型板71に4つのコア74を保持しているが、本発明は、これに限るものではなく、2つ若しくは3つ又は5つ以上のコア74を保持する型板71とすることができる。
 また、上記実施形態は、射出成形機10が横置きタイプ、すなわち固定金型41と可動金型42とが水平に対向配置されるものとしたが、本発明はこれに限らない。つまり、固定金型41と可動金型42とを鉛直方向に対向配置した竪型の射出成形機とすることもできる。
 また、上記実施形態は、射出成形機10が熱可塑性の樹脂を成形するための装置であるとしたが、射出成形機10を適宜改変することで、熱硬化性の樹脂を成形するための装置とすることができる。この場合も、固定金型41等の表面温度の均一性を高めることができる。
 また、上記実施形態の固定金型41,可動金型42は、樹脂成形に限らず、ガラスの成形、シリコーンゴムの成形、マグネシウム合金の成形等にも転用することができる。
 また、上記実施形態では、可動盤12がタイバー18を介して支持されているが、可動盤12がスライドガイドを介して支持される構造とすることもできる。
 10 射出成形機
 11 固定盤
 11a ノズル挿入口
 12 可動盤
 13 型締め盤
 15 開閉駆動装置
 16 射出装置
 16a シリンダ
 16d 樹脂射出ノズル
 17 金型温度調節機
 21 開閉制御部
 41,141,241 固定金型
 42 可動金型
 71 型板
 71b ランナ凹部
 71c ゲート面
 71h コア孔
 71i 型内面
 72 取付板
 74 コア
 74d レンズ凹部
 77 スプルブッシュ
 78 ジャケット
 79 温度センサ
 81 ロケートリング
 82 断熱板
 83 熱均一化部材
 FP 流路
 PS1,PS2 パーティング面

Claims (9)

  1.  第1転写面を有する第1金型と、第2転写面を有する第2金型とを備え、型閉じによって前記第1転写面と前記第2転写面との間に型空間を形成する成形金型であって、
     前記第1金型は、
     前記第1転写面を設けた型部材と、
     前記第1金型を支持するための支持基盤と、
     前記型部材と前記支持基盤との間に配置される断熱板と、
     前記型空間と前記断熱板との間に配置されて前記型部材と前記断熱板とに比較して高い熱伝導率を有する熱均一化部材とを有することを特徴とする成形金型。
  2.  前記熱均一化部材は、前記型部材と前記断熱板との間に配置されることを特徴とする請求項1に記載の成形金型。
  3.  前記型部材は、前記第1転写面を有するコアを保持する型板と、前記型板を前記コアとともに背後から支持する取付板とを有し、前記熱均一化部材は、前記取付板と前記断熱板とに挟まれて固定されることを特徴とする請求項1又は2に記載の成形金型。
  4.  前記型部材は、少なくとも2つの板部材を積層してなり、前記熱均一化部材は、少なくとも2つの板部材の間に挟まれて固定されることを特徴とする請求項1又は2に記載の成形金型。
  5.  前記型部材は、前記第1転写面を有するコアを保持する型板であり、前記熱均一化部材は、前記型板を前記コアとともに背後から支持する取付板であることを特徴とする請求項1又は2に記載の成形金型。
  6.  前記第1金型は、固定盤である前記支持基盤に取り付けられ、前記第2金型は、可動盤に取り付けられることを特徴とする請求項1から請求項5までのいずれか一項に記載の成形金型。
  7.  前記第1金型は、可動盤である前記支持基盤に取り付けられ、前記第2金型は、固定盤に取り付けられることを特徴とする請求項1から請求項6までのいずれか一項に記載の成形金型。
  8.  前記型部材の熱伝導率は、10〔W/m・K〕以上60〔W/m・K〕以下であり、
     前記断熱板の熱伝導率は、0.05〔W/m・K〕以上1.5〔W/m・K〕以下であり、
     前記熱均一化部材の熱伝導率は、100〔W/m・K〕以上であることを特徴とする請求項1から請求項7までのいずれか一項に記載の成形金型。
  9.  第1転写面を有する第1金型と、第2転写面を有する第2金型とを備え、型閉じによって前記第1転写面と前記第2転写面との間に型空間を形成する成形金型を用いた樹脂成形品の製造方法であって、
     前記第1金型は、前記第1転写面を設けた型部材と、前記第1金型を支持するための支持基盤との間に配置される断熱板と、前記型空間と前記断熱板との間に配置されて前記型部材と前記断熱板とに比較して高い熱伝導率を有する熱均一化部材とを有し、
     前記熱均一化部材は、前記断熱板に生じた温度差の前記型部材への影響を抑制することを特徴とする樹脂成形品の製造方法。
PCT/JP2011/055217 2010-03-31 2011-03-07 成形金型及び樹脂成形品の製造方法 WO2011122251A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012508174A JP5708640B2 (ja) 2010-03-31 2011-03-07 成形金型及び樹脂成形品の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-084676 2010-03-31
JP2010084676 2010-03-31

Publications (1)

Publication Number Publication Date
WO2011122251A1 true WO2011122251A1 (ja) 2011-10-06

Family

ID=44711977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055217 WO2011122251A1 (ja) 2010-03-31 2011-03-07 成形金型及び樹脂成形品の製造方法

Country Status (2)

Country Link
JP (1) JP5708640B2 (ja)
WO (1) WO2011122251A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013189608A2 (de) * 2012-06-21 2013-12-27 Ifw Manfred Otte Gmbh Formwerkzeug, insbesondere spritzgiesswerkzeug
JP6043887B1 (ja) * 2016-01-27 2016-12-14 株式会社山岡製作所 熱加工型
WO2018091498A1 (de) * 2016-11-16 2018-05-24 Braunform Gmbh Werkzeugelement und werkzeug
EP3338980A1 (fr) * 2016-12-26 2018-06-27 Compagnie Plastic Omnium Moule de compression à système de chauffe réduit
CN112549542A (zh) * 2020-11-24 2021-03-26 合肥市阳德热能系统有限公司 一种可阶段冷却的牙套生产设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108556236B (zh) * 2018-05-10 2020-06-05 赣州恒利建材有限公司 一种合成树脂瓦片生产用压铸装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0596548A (ja) * 1991-03-28 1993-04-20 General Electric Co <Ge> サイクル時間の短い高温表面成形用の多層金型構造物
JP2008246699A (ja) * 2007-03-29 2008-10-16 Konica Minolta Opto Inc 光学素子成形用金型及び光学素子成形用金型作成方法
JP2009113423A (ja) * 2007-11-08 2009-05-28 Ricoh Co Ltd 射出成形用金型
JP2010082995A (ja) * 2008-09-30 2010-04-15 Konica Minolta Opto Inc 樹脂成形金型及び射出成形機
JP2010173280A (ja) * 2009-02-02 2010-08-12 Meiki Co Ltd 極薄成形品の成形金型および成形方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0596548A (ja) * 1991-03-28 1993-04-20 General Electric Co <Ge> サイクル時間の短い高温表面成形用の多層金型構造物
JP2008246699A (ja) * 2007-03-29 2008-10-16 Konica Minolta Opto Inc 光学素子成形用金型及び光学素子成形用金型作成方法
JP2009113423A (ja) * 2007-11-08 2009-05-28 Ricoh Co Ltd 射出成形用金型
JP2010082995A (ja) * 2008-09-30 2010-04-15 Konica Minolta Opto Inc 樹脂成形金型及び射出成形機
JP2010173280A (ja) * 2009-02-02 2010-08-12 Meiki Co Ltd 極薄成形品の成形金型および成形方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013189608A2 (de) * 2012-06-21 2013-12-27 Ifw Manfred Otte Gmbh Formwerkzeug, insbesondere spritzgiesswerkzeug
WO2013189608A3 (de) * 2012-06-21 2014-03-20 Ifw Manfred Otte Gmbh Formwerkzeug, insbesondere spritzgiesswerkzeug
JP6043887B1 (ja) * 2016-01-27 2016-12-14 株式会社山岡製作所 熱加工型
WO2018091498A1 (de) * 2016-11-16 2018-05-24 Braunform Gmbh Werkzeugelement und werkzeug
EP3338980A1 (fr) * 2016-12-26 2018-06-27 Compagnie Plastic Omnium Moule de compression à système de chauffe réduit
FR3061060A1 (fr) * 2016-12-26 2018-06-29 Compagnie Plastic Omnium Moule de compression a systeme de chauffe reduit.
CN108237682A (zh) * 2016-12-26 2018-07-03 全耐塑料公司 具有缩减的加热系统的压缩模具
CN112549542A (zh) * 2020-11-24 2021-03-26 合肥市阳德热能系统有限公司 一种可阶段冷却的牙套生产设备
CN112549542B (zh) * 2020-11-24 2022-06-10 合肥市阳德热能系统有限公司 一种可阶段冷却的牙套生产设备

Also Published As

Publication number Publication date
JPWO2011122251A1 (ja) 2013-07-08
JP5708640B2 (ja) 2015-04-30

Similar Documents

Publication Publication Date Title
JP5708640B2 (ja) 成形金型及び樹脂成形品の製造方法
EP2527125B1 (en) Mold apparatus
JP5342668B2 (ja) 射出成形機の型締機構
JP2009255468A (ja) 2色成形用金型及び2色成形方法
JP5083215B2 (ja) 光学部品製造装置およびその製造方法
JP4888487B2 (ja) 光学部品用金型装置およびその段取り方法
JP2009202549A (ja) 樹脂成形品の製造方法
KR101821709B1 (ko) 금형장치
US20040046281A1 (en) Localized compression molding process for fabricating microstructures on thermoplastic substrates
JP5294618B2 (ja) 射出成形用金型
JP2009172813A (ja) 光学成形品の成形方法
CN110691682B (zh) 成形装置
JP4939949B2 (ja) 射出成形金型
JP2010201866A (ja) 金型装置、断熱部材および金型装置の製造方法
JP3984498B2 (ja) 成形用金型および、これを用いるプラスチックの成形方法
JP2010005852A (ja) 射出成形機および射出成形方法
JP2013123900A (ja) 射出成形用金型
JP2020099999A (ja) ホットランナーノズル、射出成形金型、樹脂成形品の製造方法、ホットランナーノズルの製造方法
JP2002283355A (ja) 樹脂成形金型
US20230111054A1 (en) Cooling module with microporous cooling structure applied thereto and method of locally cooling mold using the same
JP2013086390A (ja) 射出成形型
KR102555462B1 (ko) 차량 제어기 하우징 제조를 위한 고압다이캐스팅 장치
JP6264113B2 (ja) 光学素子用の成形金型
JP2013166314A (ja) 高熱効率射出成形用金型と射出成形法
JP2008284704A (ja) 成形型および光学素子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762491

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012508174

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11762491

Country of ref document: EP

Kind code of ref document: A1