WO2011122111A1 - 回転電機 - Google Patents

回転電機 Download PDF

Info

Publication number
WO2011122111A1
WO2011122111A1 PCT/JP2011/052555 JP2011052555W WO2011122111A1 WO 2011122111 A1 WO2011122111 A1 WO 2011122111A1 JP 2011052555 W JP2011052555 W JP 2011052555W WO 2011122111 A1 WO2011122111 A1 WO 2011122111A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
gap
rotor
mag
permanent magnet
Prior art date
Application number
PCT/JP2011/052555
Other languages
English (en)
French (fr)
Inventor
智広 稲垣
健 武田
新一 大竹
剛 宮路
裕太 渡邉
良介 宇鷹
新也 佐野
岳志 朝永
Original Assignee
アイシン・エィ・ダブリュ株式会社
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社, トヨタ自動車株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Priority to DE112011100218.1T priority Critical patent/DE112011100218B4/de
Priority to CN201180009646.0A priority patent/CN102782990B/zh
Publication of WO2011122111A1 publication Critical patent/WO2011122111A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention relates to a rotating electrical machine such as an embedded magnet synchronous motor having a structure in which a rotor supporting a permanent magnet is rotated with respect to a stator, and more particularly to a rotating electrical machine having a structure that can improve loss with a simple structure.
  • a rotating electrical machine for example, an embedded magnet synchronous motor (hereinafter also referred to as IPM), includes a rotatable rotating shaft, a stator having a stator core formed in a cylindrical shape, and a rotor core fixed to the rotating shaft.
  • a rotor a permanent magnet provided with a set of different magnetic poles arranged in the radial direction of the rotor, a magnetic field yoke provided on the outer periphery of the stator, and a magnetic circuit between the magnetic field yoke and the rotor.
  • a winding stator coil
  • a hybrid vehicle or the like has attracted attention as a vehicle with improved fuel efficiency, and the hybrid vehicle is composed of a gasoline engine, a transmission, an inverter, a battery, a motor, and a control device thereof.
  • the motor is used in the above-described hybrid vehicle and the like as a motor having high controllability with high reliability, high efficiency and variable rotation speed.
  • the electrical angle around the rotation center of the rotor is within a range of 127 ° to 140 °, and the V-shape with the rotation center side as the apex.
  • a rotor body (rotor core) formed with first and second holes for accommodating the first and second magnets, respectively.
  • a structure is proposed that includes a support portion that divides the first and second holes at the apex portion of the V-shape and is capable of high-speed rotation and improved energy efficiency (Patent Document 1). reference).
  • a motor for example, an embedded magnet synchronous motor (IPM)
  • IPM embedded magnet synchronous motor
  • the applicant of the present invention formed a gap (air gap) around the permanent magnet embedded in the rotor in the embedded magnet type synchronous motor, and the relationship between the permanent magnet and the gap was determined.
  • the present invention provides a rotating electrical machine that can further reduce the motor loss and further increase the efficiency of the rotating electrical machine by appropriately defining the relationship between the permanent magnet and the air gap portion with the simplest possible configuration.
  • the purpose is to provide.
  • the present invention includes a stator core (15) formed in an annular shape, a stator (13) having a stator coil (24) wound around the stator core (15), and the stator (13 A rotating shaft (11) positioned at the center of the rotating shaft (11), and a rotor (12) rotatably disposed in the stator (13) in a state of being fixed to the rotating shaft (11). And a permanent magnet (17a, 17b) disposed along an inverted V shape that gradually narrows from the rotation center (O) side of the rotor (12).
  • a plurality of support portions (20) are provided on the rotor (12) so as to extend radially around the rotation center (O), In correspondence with each of the plurality of support portions (20), A predetermined distance from the edge (17c, 17d) of the permanent magnet (17a, 17b) in the flow direction (27) of the magnetic flux (23) between the permanent magnet (17a, 17b) and the stator (13) ( l core ) When the power supply to the stator coil (24) generates low torque in a low current state, magnetic saturation occurs at a spaced position, and when the maximum torque occurs in the high current state, magnetic saturation occurs. It is characterized by forming void portions (21, 25, 26, 28, 30) having a predetermined length (l mag ) that can be prevented from being generated.
  • the gap (for example, 21, 25, 26, 28)
  • the rotor (12) is notched at positions corresponding to the permanent magnets (17a, 17b) in the circumferential direction.
  • the gap (for example, 21) The corresponding permanent magnet (17a, 17b) at a position where the outer diameter portion (12a) of the rotor (12) and the support portion (20) intersect at a position corresponding to the permanent magnet (17a, 17b). ), And is cut out so as to extend along the inclination direction.
  • the gap (for example, 30) At a position corresponding to each of the permanent magnets (17a, 17b) in the circumferential direction of the rotor (12), a rectangular through-hole is formed so as to extend along the inclination direction of the corresponding permanent magnet (17a, 17b). It is characterized by being made.
  • the present invention starts from the edge (17c, 17d) of the permanent magnet (17a, 17b) of the gap (21, 25, 26, 28, 30).
  • the predetermined length in the direction perpendicular to the distance (l core ) is the overlap width l mag of the gaps (21, 25, 26, 28, 30) and the permanent magnets (17a, 17b).
  • l mag / l core is the following formula: 2.4 ⁇ l mag / l core ⁇ 10.0 It is characterized by satisfying.
  • a gap of a predetermined length that can generate magnetic saturation when a low torque is generated when the power supply to the stator coil is in a low current state, and does not generate magnetic saturation when a maximum torque is generated when the power supply is in a high current state. Since it is formed, it has a simple configuration in which a gap of a predetermined shape is formed in the support portion. However, in a low current state, magnetic saturation is generated to weaken the magnetic flux of the permanent magnet (reduce the magnetic flux).
  • the gap is formed by notching at a position corresponding to each of the permanent magnets in the circumferential direction of the rotor. Therefore, the gap having a predetermined shape is formed in the rotor by pressing or the like.
  • a rotary electric machine with a highly efficient configuration can be realized only by (punching).
  • the gap portion extends along the inclination direction of the corresponding permanent magnet at the portion where the outer diameter portion of the rotor and the support portion intersect at the position corresponding to the permanent magnet. Therefore, a highly efficient rotating electrical machine can be realized simply by notching (punching) a predetermined-shaped gap on the inner diameter side of the rotor by pressing or the like. .
  • the gap portion is formed in a rectangular shape so as to extend along the inclination direction of the corresponding permanent magnet at a position corresponding to the permanent magnet in the circumferential direction of the rotor. Therefore, a rotary electric machine having a highly efficient configuration can be realized simply by notching (punching) a gap having a predetermined shape on the inner diameter side of the rotor by pressing or the like.
  • the predetermined distance from the edge of the permanent magnet in the gap is the distance l core from the permanent magnet to the gap, and the gap is perpendicular to the distance l core.
  • the predetermined length is the overlap width l mag between the gap and the permanent magnet
  • l mag / l core satisfies the following formula: 2.4 ⁇ l mag / l core ⁇ 10.0
  • (A) is a graph showing the B- ⁇ characteristic in the low current state in the l core portion of the present embodiment
  • (b) is a graph showing the magnet material characteristic in the low current state.
  • (A) is a graph showing the B- ⁇ characteristic when the maximum torque is generated in the l core portion of this embodiment
  • (b) is a graph showing the magnet material characteristics when the maximum torque is generated.
  • (A) is a graph showing the operating point at the time of low current and the operating point at the maximum torque
  • (b) is a graph of the magnet material characteristics showing the operating point at the time of low current and the operating point at the maximum torque.
  • FIG. 4 is a schematic diagram schematically showing the positional relationship of (a).
  • FIGS. 1 to 13 an embodiment of a rotating electrical machine according to the present invention will be described with reference to FIGS. 1 to 13.
  • the present invention will be described with reference to an example in which the present invention is applied to a motor generator (rotating electric machine) mounted on a hybrid vehicle.
  • the rotating electric machine according to the present invention is applied to a motor or a generator.
  • FIG. 1 is a plan sectional view showing the entire rotating electrical machine according to the present embodiment
  • FIG. 2 is a plan sectional view showing a magnetic flux when the rotating electrical machine is unloaded.
  • the field yoke 14 is not shown for convenience.
  • the rotating electrical machine 10 includes a rotor 12 in which a plurality of permanent magnets 17a and 17b are arranged in the circumferential direction, and a three-phase coil that forms a rotating magnetic field (the stator coil in FIG. 1). 24) and a stator 13 wound thereon.
  • the rotating electrical machine 10 is generally formed in a cylindrical shape that is long in the front-back direction of FIG. 1, and has a rotating shaft 11 at the center in a plan view.
  • the rotating electrical machine 10 is rotatably supported by being positioned at the center of the stator 13 and a stator (stator) 13 having a stator core 15 formed in an annular shape and a stator coil 24 wound around the stator core 15.
  • a rotor having a rotating shaft 11, a hollow cylindrical field yoke 14 disposed on the outer periphery of the stator 13, and a rotor core 16 rotatably disposed in the stator 13 while being fixed to the rotating shaft 11.
  • the permanent magnets 17a and 17b are embedded in the rotor core 16 so as to extend in the front-back direction of FIG.
  • the rotor core 16 constituting the rotor 12 is configured such that a plurality of electromagnetic steel plates are laminated in the axial direction of the rotary shaft 11 (front-back direction in FIG. 1).
  • the stator 13 has a stator coil 24 wound around a stator core 15. Further, a plurality of stator teeth 18 formed at intervals in the circumferential direction and slots 19 positioned between the stator teeth 18 are formed on the inner peripheral surface of the stator core 15.
  • the stator coil 24 is wound around the entire circumference of the stator core 15 as a three-phase winding (U-phase, V-phase, W-phase) by a three-phase winding in a predetermined connection state in accordance with a predetermined winding method. That is, the stator coil 24 is arranged so that the same phase and different polarity in the AC of a plurality of phases are adjacent to each other, the U + phase and the U ⁇ phase make a pair, the V + phase and the V ⁇ phase make a pair, The W + phase and the W ⁇ phase are paired. In FIG. 1, for convenience, only the U phase of the stator coil 24 is schematically illustrated, but the V phase and the W phase are also provided in the same manner.
  • the stator 13 is formed in a hollow cylindrical shape, and is constituted by a stator core 15 in which a plurality of electromagnetic steel plates are laminated in the front-back direction in FIG.
  • the rotor 12 is supported so as to be rotatable about a rotation center (rotation axis) O extending in the front-back direction of FIG. 1 at the center of the columnar rotation shaft 11.
  • the field yoke 14 containing the stator 13 and the rotor 12 includes a side wall portion (not shown) attached to the outer peripheral surface of the stator 13 and a top plate (not shown) formed at both axial end portions of the side wall portion. And have a part.
  • a through hole (not shown) is formed at the center of the top plate portion, and the rotary shaft 11 is rotatably fitted and supported in the through hole via a bearing (not shown).
  • the rotor core 16 has a plurality (16 in the present embodiment) of permanent magnets 17a and 17b (hereinafter collectively referred to simply as permanent magnets 17) at predetermined intervals in the circumferential direction of the rotor 12. Alternatingly arranged.
  • the plurality of permanent magnets 17 are arranged such that the adjacent permanent magnets 17a and 17b follow an inverted V shape that gradually narrows from the rotation center O side toward the outer peripheral side.
  • a plurality of (eight in the present embodiment) support portions 20 are formed on the rotor core 16 of the rotor 12 so as to extend radially at equal angular intervals around the rotation center O of the rotary shaft 11.
  • the permanent magnets 17 a and 17 b that form the magnet pair 9 are respectively embedded in predetermined positions of the rotor core 16.
  • the surface of the permanent magnet 17a facing the rotor outer peripheral side is the N pole and the surface facing the rotor inner peripheral side is the S pole.
  • the surface of the permanent magnet 17b facing the rotor outer peripheral side is the S pole, and the surface facing the rotor inner peripheral side is the N pole.
  • the permanent magnets 17 a and 17 b are disposed so that the directions of the S pole and the N pole are reversed for each adjacent magnet pair 9.
  • the d-axis and q-axis formed by the magnetic poles of the permanent magnet 17 are as shown by the arrows in the figure.
  • a space portion 7 is formed so as to extend in the axial direction of the rotary shaft 11 on the rotation center O side of the adjacent permanent magnet 17b and the permanent magnet 17a.
  • the rotor 12 is formed with gaps (air gaps) 21 corresponding to the permanent magnets 17a (17b).
  • a plurality (16 in the present embodiment) of the gaps 21 are respectively formed at positions corresponding to the permanent magnets 17 a and 17 b of the support portions 20 in the circumferential direction of the rotor 12.
  • the plurality of gaps 21 in the plurality of support parts 20 are formed so as to block (in the blocking direction) the flow direction 27 of the magnetic flux 23.
  • the gap portion 21 corresponds to each of the plurality of support portions 20, and the flow direction of the magnetic flux 23 between the magnet pair 9 including the permanent magnets 17 a and 17 b and the stator 13 (FIG. 2). 3, at a position spaced a predetermined distance (l core ) from the edge 17 c (see FIG. 3) of the permanent magnets 17 a and 17 b at the arrow 27) in FIG.
  • l core predetermined distance
  • the power supply is a second predetermined value (motor current 150.0 shown in FIG. 5) larger than the first predetermined value. It is configured in a shape having a predetermined length (l mag ) that can prevent magnetic saturation from occurring when maximum torque is generated in a high current state smaller than [Arms]).
  • the gap portion 21 has an outer diameter portion 12 a and a support portion 20 of the rotor 12 at positions corresponding to the permanent magnets 17 a and 17 b in the circumferential direction of the rotor 12. Are cut out so as to extend along the inclination direction of the corresponding permanent magnets 17a, 17b.
  • reference numeral 21 a is a formation start portion of the gap portion 21
  • reference numeral 21 b is a formation end portion of the gap portion 21.
  • the gap portion 21 is formed in a substantially V shape so as to bite from the space portion 7 side to the outer diameter portion 12a side, and with respect to each permanent magnet 17a, 17b, an edge portion from the formation start portion 21a toward the formation end portion 21b. It is formed so as to be gradually separated from 17c, and the portion of the formation end portion 21b is farthest from the edge portion 17c, and forms a distance l core from the permanent magnet 17a to the gap portion 21.
  • the permanent magnets 17a and 17b are embedded and fixed in a fitting portion 12b that is cut out in the outer diameter portion 12a of the rotor 12 so as to extend in the axial direction of the rotary shaft 11.
  • a space portion 22a is formed on the stator 13 side of the fitting portion 12b so as to extend in the axial direction of the rotary shaft 11, and the space portion 22b is formed on the rotation center O side of the fitting portion 12b. 11 extending in the axial direction.
  • a locking projection 12c that locks the movement of the permanent magnets 17a and 17b toward the space 22a is formed on the support 20 side of the space 22a.
  • a locking projection 21c that locks the movement of the permanent magnets 17a and 17b to the rotation center O side is formed on the rotation center O side of the space 22b.
  • FIG. 3A the gap is illustrated between the edge 17 c and the rotor 12, but actually there is no gap, and the edge 17 c is in close contact with the rotor 12.
  • the permanent magnets 17 b are mainly described. However, the gaps 21 corresponding to the permanent magnets 17 a are opposite to the gaps 21 corresponding to the permanent magnets 17 b (inclination in the opposite direction). Is formed.
  • a control unit (not shown) for rotating electric machine control receives a torque command value to be output from an ECU (Electrical Control Unit) (not shown) outside the rotary electric machine
  • a motor control current for outputting a torque designated by the received torque command value is generated, and the generated motor control current is transmitted from the input unit 29 shown in FIG. 1 to the stator coil 24 ⁇ the neutral points 1 and 2.
  • the rotor 12 rotates with respect to the stator 13 by supplying it so as to flow (for convenience, only the U phase is shown).
  • the predetermined distance (b) is a distance l core from each edge 17c of the permanent magnets 17a and 17b to the formation end portion 21b of the gap 21 and a predetermined length in the direction perpendicular to the distance l core of the gap 21
  • l mag / l core is Formula (A) 2.4 ⁇ l mag / l core ⁇ 10.0 (A) It is configured to satisfy.
  • the dimension a of l mag can be set to 3.20 mm, for example, and the dimension b of l core can be set to 1.33 mm, for example.
  • the torque T and the loss W are generally expressed by the following equations (B) and (C) using the magnet magnetic flux ⁇ m.
  • T P n ⁇ ⁇ m + (L d ⁇ L q ) ⁇ I d ⁇ ⁇ I q (B)
  • W k h ⁇ f ⁇ B 2 ⁇ k e ⁇ f 2 ⁇ B 2 .
  • FIG. 1 The relationship between the motor current and the magnet magnetic flux ⁇ m due to the provision of the rotor 12 having the gap portion 21 of the present embodiment is as shown in FIG.
  • This graph is a graph showing the current-magnet magnetic flux characteristics of the rotating electrical machine 10 of the present embodiment, with the magnetic flux ⁇ m [Wb] on the vertical axis and the motor current [Arms] on the horizontal axis.
  • the magnet magnetic flux ⁇ m gradually changes from 0.084 [Wb] to 0.06 [Wb] between the motor currents 0 to 200 [Arms].
  • the numerical value range of 2.4 ⁇ l mag / l core ⁇ 10.0 is the range in which the torque [Nm] during the rotation of the rotor 12 is reduced by 0.5%. This is an effective range in which the effect of.
  • the numerical value range of l mag / l core in the above formula (A) is more preferably 2.4 ⁇ l mag / l core ⁇ 6.9, and in this range, the torque when the rotor 12 rotates It is possible to more effectively suppress the decrease in [Nm], to further reduce the motor loss when the maximum torque is generated, and to further improve the rotation efficiency.
  • the mechanism (2) of the invention will be described.
  • the magnet magnetic flux ⁇ m can be expressed by the following formula (D) by the permeance method.
  • the magnetic circuit by the permanent magnet 17a (or 17b) has a magnetic field H m in the rotor 12 (rotor core 16), a magnetic resistance R mag [A / Wb], l core in the l mag portion.
  • Part magnetic resistance R core , l mag part and magnetic resistance R other other than l core part, and the magnetic flux ⁇ m is as shown by an arrow.
  • B mag which is the magnetic flux density of the l mag portion shown in FIG. 3B, shows a larger magnetic flux density (about 1.04 [T]) at low current than the magnet material characteristic diagram shown in FIG.
  • a small magnetic flux density (about 0.46 [T]) is shown when the maximum torque is generated.
  • l mag / l core and B mag The relationship between l mag / l core and B mag is as shown in FIG. 8B at the low current operating point and the maximum torque operating point. That is, as shown in FIG. 8B, the value of B mag that is the magnetic flux density of the l mag portion is determined by the operating point regardless of the value of l mag / l core , so B mag is an operation at low current. It can be seen that both the point and the maximum torque operating point are constant at about 1.04 [T] and about 0.56 [T], respectively, and therefore take a constant value at a certain operating point.
  • ⁇ core which is the permeability of the l core portion at low current (low current state) and at maximum torque (maximum torque state).
  • 6 (a) and 7 (a) are graphs showing the correlation between the magnetic flux density [T] and the magnetic permeability [H / m] of the l core part at low current and maximum torque, respectively.
  • FIGS. 6B and 7B are graphs showing the magnetic permeability [H / m] of the l core portion with respect to l mag / l core in the low current state and the maximum torque state, respectively.
  • ⁇ core which is the permeability of the l core portion takes a small value (approximately 0 [H / m]).
  • the magnetic permeability is a slope of the hysteresis characteristic, the magnetic permeability is decreased when the magnetic saturation is reached, approaches the air-core state, and the self-inductance does not reach zero, but the current increases when the short circuit is considered as a small limit.
  • ⁇ core which is the permeability of l core portion is a large value (for example, 8400 when l mag / l core is 6.5).
  • the rotor 12 is provided with the plurality of support portions 20 so as to extend radially around the rotation center O, and the permanent magnets 17a are respectively associated with the support portions 20. , 17b and the stator 13 in the direction of flow of the magnetic flux 23 (27 in FIG. 2), the stator coil 24 is fed at a position spaced apart from the edge 17c of the permanent magnets 17a, 17b by a predetermined distance (l core ).
  • a predetermined distance (l core ).
  • the first predetermined value motor current 9.0 [Arms] shown in FIG. 5
  • a gap 21 having a predetermined length (l mag ) that can prevent magnetic saturation from occurring when a maximum torque is generated in a high current state smaller than 150.0 [Arms]) is formed.
  • the support portion 20 has a simple configuration in which the gap portion 21 having a predetermined shape is formed
  • the supply current is larger than the first predetermined value (that is, the supplied current is
  • the permanent magnets 17a and 17b are weakened (decreasing the magnet flux) to generate magnetic saturation, thereby causing the stator 13
  • the iron loss represented by the sum of hysteresis loss and eddy current loss can be reduced. Thereby, it is difficult to generate a torque drop in a low current state, and the operating efficiency (motor performance) of the rotating electrical machine 10 can be improved.
  • the supplied current is smaller than the second predetermined value (that is, when the supplied current is large (at the time of generating a maximum torque at a high current))
  • the decrease in the magnetic flux of the permanent magnets 17a and 17b is reduced (the magnet).
  • the magnetic flux transmitted from the permanent magnets 17a and 17b to the stator 13 is not reduced, the decrease in iron loss is suppressed, and the maximum torque is unlikely to decrease.
  • the operating efficiency (motor performance) of the rotating electrical machine 10 can be improved.
  • the gap 21 is cut out at positions corresponding to the permanent magnets 17a and 17b in the circumferential direction of the rotor 12, so that the gap 21 having a predetermined shape is cut by pressing or the like.
  • the rotary electric machine 10 having a highly efficient configuration can be realized simply by forming a notch (punching).
  • the rotating electrical machine 10 having a highly efficient configuration can be realized.
  • the predetermined distance from the edge 17c of the permanent magnets 17a, 17b of the gap 21 is the distance l core from the permanent magnets 17a, 17b to the gap 21, and the gap 21
  • l mag / l core is expressed by the following formula: 2.4 ⁇ l mag / l Since core ⁇ 10.0 is satisfied, the relationship between the gap 21 and the permanent magnets 17a and 17b can be optimized, and the rotating electrical machine 10 having a highly efficient configuration can be realized.
  • FIGS. 11 (a), 11 (b) and FIG. FIGS. 11A, 11B, and 12 are diagrams for explaining the relationship between the permanent magnet and the gap portion at the outer peripheral edge portion of the rotor in different modified examples. Note that these modified examples are different from the above-described configuration only in the shape of the gaps 25, 26, 28, and the other parts are substantially the same. Description is omitted.
  • the gap 25 extends along the inclination direction of the permanent magnets 17a and 17b at positions corresponding to the permanent magnets 17a and 17b in the circumferential direction of the rotor 12, respectively. Notches are formed.
  • reference numeral 25 a is a formation start portion of the gap portion 25
  • reference numeral 25 b is a formation end portion of the gap portion 25.
  • the gap portion 25 is formed in a substantially V shape so as to bite from the space portion 7 (see FIG. 1) side to the outer diameter portion 12a (see FIG. 3) side, and for each permanent magnet 17a, 17b, a formation start portion 25a.
  • the predetermined distance (b) from each edge 17d of the permanent magnets 17a and 17b in the gap 25 is defined as a distance l core from each edge 17d of the permanent magnets 17a and 17b to the formation end portion 25b of the gap 25.
  • the predetermined length in the direction perpendicular to the distance l core of the gap portion 25 is set to the distance a between the formation start portion 25a and the formation end portion 25b in the gap portion 25, that is, the gap portion 25 and the permanent magnet 17a,
  • l mag / l core is the above-mentioned formula (A) 2.4 ⁇ l mag / l core ⁇ 10.0 (A) It is configured to satisfy.
  • a predetermined distance (b) from each edge 17c of the permanent magnets 17a, 17b of the gap 26 is set to a gap from each edge 17c of the permanent magnets 17a, 17b.
  • a distance l core to the formation end portion 26b of the gap 26 and a predetermined length in the direction perpendicular to the distance l core of the gap portion 26 is set between the formation start portion 26a and the formation end portion 26b in the gap portion 26.
  • the predetermined distance (b) from each edge 17d of the permanent magnets 17a and 17b of the gap 28 is changed from the edge 17d of each of the permanent magnets 17a and 17b to the end of formation of the gap 28.
  • the distance l core to the portion 28b and the predetermined length in the direction perpendicular to the distance l core of the gap portion 28 are defined as a distance a between the formation start portion 28a and the formation end portion 28b in the gap portion 28, that is,
  • l mag / l core is the above-described formula (A). 2.4 ⁇ l mag / l core ⁇ 10.0 (A) It is configured to satisfy.
  • the gap 30 in the present embodiment is inclined by the corresponding permanent magnets 17 a at positions corresponding to the permanent magnets 17 a and 17 b in the circumferential direction of the rotor 12.
  • a rectangular shape is formed so as to extend along the direction and along the axial direction of the rotating shaft 11.
  • the gap 30 corresponding to the permanent magnet 17a is formed in a direction opposite to the gap 30 corresponding to the permanent magnet 17b (inclination in the reverse direction).
  • the dimension a of l mag can be set to 3.50 mm, for example, and the dimension b of l core can be set to 0.70 mm, for example.
  • the predetermined distance from each edge 17c of the permanent magnets 17a and 17b in the gap 30 is set as a distance l core from each edge 17c of the permanent magnets 17a and 17b to the long side 30b on the side close to the gap 30;
  • the predetermined length in the direction perpendicular to the distance l core of the gap portion 21 is set to the distance a between the short side 30a and the short side 30a in the gap portion 30, that is, the overhang of the gap portion 30 and the permanent magnets 17a and 17b.
  • the gap portion 30 is rectangular so as to extend along the inclination direction of the corresponding permanent magnets 17a and 17b at positions corresponding to the permanent magnets 17a and 17b in the circumferential direction of the rotor 12, respectively. Since it is formed so as to penetrate the shape, the rotary electric machine 10 having a highly efficient configuration can be realized simply by notching (punching) the gap 30 having a predetermined shape on the inner diameter side of the rotor 12 by press working or the like. The effect that can be produced.
  • the rotating electrical machine according to the present invention can be used for a hybrid vehicle, a hybrid system, and the like, and is particularly suitable for use where it is required to further reduce the motor loss and further increase the efficiency. is there.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

 各支持部(20)にそれぞれ対応させて、永久磁石(17a,17b)とステータ(13)との間における磁束(23)の流れ方向(27)での永久磁石(17a,17b)から所定距離(lcore)離間した位置に、ステータコイル(24)への給電が低電流状態では磁気飽和を発生させ、かつ給電が高電流状態での最大トルク時には磁気飽和を発生させないようにし得る、所定長さ(lmag)の空隙部(21)を形成した。このため、支持部(20)に空隙部(21)を形成した簡素な構成を備えながらも、低トルク状態でのトルク低下を抑え、高電流状態での最大トルク時には最大トルクの低下を抑えて、回転電機(10)の作動効率を向上させることができる。

Description

回転電機
 本発明は、永久磁石を支持するロータをステータに対して回転させる構造の埋込磁石同期モータ等の回転電機に係り、特に、簡単な構成により損失を改善し得る構成の回転電機に関する。
 一般に、回転電機、例えば埋込磁石同期モータ(以下、IPMともいう。)では、回転可能な回転シャフトと、筒状に形成されたステータコアを有するステータと、回転シャフトに固設されたロータコアを有するロータと、異なる磁性の1組の磁極がロータの径方向に並ぶように設けられた永久磁石と、ステータの外周に設けられた磁界ヨークと、該磁界ヨークと上記ロータとの間に磁気回路を形成することによってこれらロータとステータとの間の磁束密度を制御可能な巻線(ステータコイル)と、を備えたものが知られている。
 近年、燃費を改善した車輌としてハイブリッド自動車等が注目されているが、該ハイブリッド自動車は、ガソリンエンジン、トランスミッション、インバータ、電池、モータ、及びそれらの制御装置から構成されており、上記埋込磁石同期モータは、信頼性が高く効率が良く回転速度が可変な制御性の良いモータとして、上記のようなハイブリッド自動車等に用いられている。
 ところで、大型のスポーツユーティリティビークル(以下、SUVという。)等にも対応可能なハイブリッドシステムの開発が期待されているが、その実現には、大出力エンジンとのバランス上、車輌駆動用のモータの出力密度を大幅に向上させる必要がある。モータの出力密度を向上させるには、モータの出力トルク自身を向上させる方法と、モータを高速回転させてこれを歯車機構により減速してトルクを大きくする方法とが挙げられる。
 そこで、上記SUV等にも対応可能なハイブリッドシステムを実現させるため、IPMにおいて、ロータの回転中心を中心とする電気角で127゜~140゜の範囲内に、回転中心側を頂点とするV字に沿って配置した第1、第2の磁石と、これら第1、第2の磁石をそれぞれ収納する第1、第2の孔を形成したロータ本体(ロータコア)とを配置し、該ロータ本体が、V字の頂点部に位置して上記第1、第2の孔を仕切る支持部を備えるように構成して、高速回転が可能でエネルギ効率を改善したものが提案されている(特許文献1参照)。
特開2006-254629号公報
 ところで、モータ、例えば埋込磁石同期モータ(IPM)では、低電流状態でトルク低下を招くことがあるため、低電流状態においてトルク低下を招くことなく、かつ最大トルクを低下させることなく、モータ損失を更に低減させるなどの要請がある。
 本出願人は、当該要請に基づいて鋭意探求した結果、上記埋込磁石型同期モータにおいて、ロータに埋め込んだ永久磁石の周辺に空隙(エアギャップ)を形成し、永久磁石と空隙との関係を適正に規定すれば、更なるモータ損失の実現を図ることが可能な点に着眼したが、埋込磁石型同期モータにあっては、構成上、永久磁石の周辺に空隙を形成したものは存在するものの、永久磁石と空隙との関係を規定したものはない。
 そこで本発明は、可及的に簡素な構成によって永久磁石と空隙部との関係を適正に規定することより、モータ損失を更に低減して回転電機の効率化を更に高め得るようにした回転電機を提供することを目的とする。
 本発明は(例えば図1乃至図13参照)、環状に形成されたステータコア(15)及び該ステータコア(15)に巻回されたステータコイル(24)を有するステータ(13)と、該ステータ(13)の中心に位置して回転可能に配置された回転シャフト(11)と、該回転シャフト(11)に固設された状態で前記ステータ(13)内に回転可能に配置されたロータ(12)と、該ロータ(12)の回転中心(O)側から次第に狭まる逆V字状に沿うように配置される永久磁石(17a,17b)と、を備えてなる回転電機(10)において、
 前記回転中心(O)を中心として放射状に延びるように前記ロータ(12)に複数の支持部(20)を設け、
 前記複数の支持部(20)にそれぞれ対応させて、
 前記永久磁石(17a,17b)と前記ステータ(13)との間における磁束(23)の流れ方向(27)での前記永久磁石(17a,17b)の縁部(17c,17d)から所定距離(lcore)離間した位置に、前記ステータコイル(24)への給電が低電流状態での低トルク発生時には磁気飽和を発生させ、かつ前記給電が高電流状態での最大トルク発生時には磁気飽和を発生させないようにし得る、所定長さ(lmag)の空隙部(21,25,26,28,30)を形成してなることを特徴とする。
 具体的に本発明は(例えば図1乃至図3参照)、前記空隙部(例えば21,25,26,28)は、
 前記ロータ(12)の周方向における前記永久磁石(17a,17b)にそれぞれ対応する位置に切り欠き形成されてなることを特徴とする。
 また、具体的に本発明は(例えば図1乃至図3参照)、前記空隙部(例えば21)は、
 前記永久磁石(17a,17b)にそれぞれ対応する位置における、前記ロータ(12)の外径部(12a)と前記支持部(20)とが交わる部位にて、対応する前記永久磁石(17a,17b)の傾斜方向に沿って延在するように切り欠き形成されてなることを特徴とする。
 具体的に本発明は(例えば図13参照)、前記空隙部(例えば30)は、
 前記ロータ(12)の周方向における前記永久磁石(17a,17b)にそれぞれ対応する位置において、対応する前記永久磁石(17a,17b)の傾斜方向に沿って延在するように矩形状に貫通形成されてなることを特徴とする。
 また、具体的に本発明は(例えば図1乃至図13参照)、前記空隙部(21,25,26,28,30)の前記永久磁石(17a,17b)の縁部(17c,17d)からの前記所定距離を、前記永久磁石(17a,17b)から前記空隙部(21,25,26,28,30)までの距離lcoreとし、かつ、前記空隙部(21,25,26,28,30)の該距離(lcore)に対する垂直方向での前記所定長さを、前記空隙部(21,25,26,28,30)と前記永久磁石(17a,17b)とのオーバーラップ幅lmagとしたとき、lmag/lcoreが次式
 2.4<lmag/lcore<10.0
を満たしてなることを特徴とする。
 なお、上記カッコ内の符号は、図面と対照するためのものであるが、これは、発明の理解を容易にするための便宜的なものであり、特許請求の範囲の構成に何等影響を及ぼすものではない。
 請求項1に係る本発明によると、ロータに設けた複数の支持部にそれぞれ対応させて、永久磁石とステータとの間における磁束の流れ方向での永久磁石の縁部から所定距離離間した位置に、ステータコイルへの給電が低電流状態での低トルク発生時には磁気飽和を発生させ、かつ給電が高電流状態での最大トルク発生時には磁気飽和を発生させないようにし得る、所定長さの空隙部を形成したので、支持部に所定形状の空隙部を形成した簡素な構成からなるものでありながら、低電流状態では、磁気飽和を発生させることで、永久磁石の磁束を弱めて(磁石磁束を小さくして)、永久磁石からステータに伝わる磁束を低減することで鉄損を減少させ、低電流時におけるトルク低下を発生し難くして、回転電機の作動効率を向上させることができる。一方、高電流状態では、磁気飽和を発生させないようにすることで、永久磁石の磁束の低下を減少させて(磁石磁束の減少を抑えて)、永久磁石からステータに伝わる磁束を低減させず鉄損の減少を抑制し、最大トルクの低下を発生し難くして、回転電機の作動効率を向上させることができる。
 請求項2に係る本発明によると、空隙部が、ロータの周方向における永久磁石にそれぞれ対応する位置に切り欠き形成されてなるので、プレス加工等によってロータに所定形状の空隙部を切り欠き形成(打ち抜き加工)するだけで、高効率な構成の回転電機を実現することができる。
 請求項3に係る本発明によると、空隙部が、永久磁石にそれぞれ対応する位置における、ロータの外径部と支持部とが交わる部位にて、対応する永久磁石の傾斜方向に沿って延在するように切り欠き形成されてなるので、プレス加工等によってロータの内径側に所定形状の空隙部を切り欠き形成(打ち抜き加工)するだけで、高効率な構成の回転電機を実現することができる。
 請求項4に係る本発明によると、空隙部が、ロータの周方向における永久磁石にそれぞれ対応する位置において、対応する永久磁石の傾斜方向に沿って延在するように矩形状に貫通形成されてなるので、プレス加工等によってロータの内径側に所定形状の空隙部を切り欠き形成(打ち抜き加工)するだけで、高効率な構成の回転電機を実現することができる。
 請求項5に係る本発明によると、空隙部の永久磁石の縁部からの所定距離を、永久磁石から空隙部までの距離lcoreとし、かつ、空隙部の該距離lcoreに対する垂直方向での所定長さを、空隙部と永久磁石とのオーバーラップ幅lmagとしたとき、lmag/lcoreが次式、2.4<lmag/lcore<10.0を満たしてなるので、空隙の永久磁石に対する関係を良好にして、高効率な構成の回転電機を実現することができる。
本発明に係る実施形態における回転電機の全体を示す平面断面図である。 本発明に係る実施形態における回転電機の無負荷時の磁束を示す平面断面図である。 ロータの外周縁部での永久磁石と空隙部とを関係を説明する図であり、(a)は永久磁石と空隙部との位置関係の寸法を示す平面図、(b)は(a)の位置関係を模式的に示す模式図である。 図3(b)の状態において形成される磁気回路を模式的に示す模式図である。 本実施形態における回転電機の電流-磁石磁束の特性を示すグラフ図である。 (a)は本実施形態のlcore部における低電流状態でのB-μ特性を示すグラフ図、(b)は低電流状態での磁石材料特性を示すグラフ図である。 (a)は本実施形態のlcore部における最大トルク発生時のB-μ特性を示すグラフ図、(b)は最大トルク発生時の磁石材料特性を示すグラフ図である。 (a)は低電流時動作点及び最大トルク時動作点等を示すグラフ図、(b)は低電流時動作点及び最大トルク時動作点を示す磁石材料特性のグラフ図である。 低電流状態での各関係を示す図であり、(a),(b)は低電流時損失を示すグラフ図、(c)は磁石磁束の低電流時動作点を示すグラフ図である。 最大トルク発生時の各関係を示す図であり、(a),(b)は最大トルク発生時のトルクを示すグラフ図、(c)は磁石磁束の最大トルク時動作点を示すグラフ図である。 (a),(b)はそれぞれ変形例におけるロータの外周縁部での永久磁石と空隙部との関係を説明する図である。 別の変形例におけるロータの外周縁部での永久磁石と空隙部との関係を説明する図である。 他の実施形態におけるロータの外周縁部での永久磁石と空隙部との関係を説明する図であり、(a)は永久磁石と空隙部との位置関係の寸法を示す平面図、(b)は(a)の位置関係を模式的に示す模式図である。
 以下、本発明に係る回転電機の実施形態を図1乃至図13に沿って説明する。なお、以下に説明する実施形態では、本発明を、ハイブリッド車輌に搭載されるモータジェネレータ(回転電機)に適用した例を挙げて説明するが、本発明に係る回転電機は、モータや、ジェネレータにも適用し得るものであり、またハイブリッド車輌以外の各種車輌(燃料電池車や電気自動車等の電動車輌)、或いは、産業機器、空調機器、環境機器等の種々の機器に搭載される回転電機にも適用し得ることは勿論である。
 まず、図1及び図2を参照して、本実施形態における回転電機の概略構成について説明する。図1は本実施形態における回転電機の全体を示す平面断面図、図2は該回転電機の無負荷時の磁束を示す平面断面図である。なお、図1では、便宜上、界磁ヨーク14の図示は省略している。
 図1及び図2に示すように、回転電機10は、複数個の永久磁石17a,17bが周方向に亘って配置されたロータ12と、回転磁界を形成する三相コイル(図1のステータコイル24)が巻回されたステータ13とを備えている。
 すなわち、上記回転電機10は、全体的に図1の手前-奥方向に長い円筒状に構成されており、平面視における中心部分に回転シャフト11を有している。そして、回転電機10は、環状に形成されたステータコア15及び該ステータコア15に巻回されたステータコイル24を有するステータ(固定子)13と、該ステータ13の中心に位置して回転可能に支持された回転シャフト11と、ステータ13の外周に配置された中空円筒状の界磁ヨーク14と、回転シャフト11に固設された状態で上記ステータ13内に回転可能に配置されたロータコア16を有するロータ(回転子)12と、該ロータ12の回転中心O側から次第に狭まる逆V字状に沿うように配置される永久磁石17a,17bからなる複数組(本実施形態では8組)の磁石対9とを有している。
 各永久磁石17a,17bは、ロータコア16に対してそれぞれ図1の手前-奥方向に延在するように埋設されている。ロータ12を成すロータコア16は、複数枚の電磁鋼板を、回転シャフト11の軸方向(図1の手前-奥方向)に積層した状態に構成されている。上記ステータ13は、ステータコア15に巻回されたステータコイル24を有している。また、ステータコア15の内周面には、周方向に間隔を隔てて複数形成されたステータティース18と、該ステータティース18間に位置するスロット19とが形成されている。
 上記ステータコイル24は、ステータコア15の全周において、所定の結線状態となる3相巻線による3相(U相、V相、W相)として所定の巻方式に則って巻回されている。つまり、ステータコイル24は、複数位相の交流における同相で異極性のものが隣接するように配置され、U+相とU-相が対を成し、V+相とV-相が対を成し、W+相とW-相が対を成している。なお、図1には、便宜上、ステータコイル24のU相のみを模式的に図示したが、V相及びW相も同様に設けられている。
 ロータ12とステータ13との間には、所定間隔のエアギャップGpが設けられており、これらロータ12とステータ13とは、互いに僅かに径方向に離間した状態で配置されている。該ステータ13は中空円筒状に形成されており、複数枚の電磁鋼板を図1の手前-奥方向に積層したステータコア15によって構成されている。該ステータ13内には、上記ロータ12が、円柱状の回転シャフト11の中心において図1の手前-奥方向に延びる回転中心(回転軸線)Oを中心として回転可能に支持されている。
 ステータ13及びロータ12を収容している上記界磁ヨーク14は、ステータ13の外周面に装着される不図示の側壁部分と、該側壁部分の軸方向両端部に形成された不図示の天板部分とを有している。該天板部分の中央部には不図示の貫通孔が形成されており、該貫通孔には、不図示の軸受を介して上記回転シャフト11が回転可能に嵌め込み支持されている。
 上記ロータコア16には、ロータ12の周方向に所定の間隔をあけて複数(本実施形態では16個)の永久磁石17a,17b(以下、これらを総称して単に永久磁石17ともいう。)が交互に配置されている。これら複数の永久磁石17は、隣り合う永久磁石17aと永久磁石17bとが回転中心O側から外周側に向かって次第に狭まる逆V字状に沿うように配置されている。ロータ12のロータコア16には、回転シャフト11の回転中心Oを中心とした等角度間隔で放射状に延びるように複数(本実施形態では8本)の支持部20が形成されている。磁石対9をなす永久磁石17a,17bはそれぞれ、ロータコア16の各所定の位置に埋め込み配置されている。
 例えば、図2における最上部に記載されている磁石対9の永久磁石17a,17bでは、該永久磁石17aのロータ外周側を向く面がN極とされ且つロータ内周側を向く面がS極となるように配置され、永久磁石17bのロータ外周側を向く面がS極とされ且つロータ内周側を向く面がN極となるように配置されている。このような磁石対9における永久磁石17a,17bのS極,N極の向きが、隣接する磁石対9ごとにそれぞれ逆になるように配設されている。図2に示すように、永久磁石17の磁極がつくるd軸、q軸は図示の矢印のようになっている。
 上記ロータ12(ロータコア16)における、隣り合う永久磁石17bと永久磁石17aの回転中心O側には、回転シャフト11の軸方向に延びるように空間部7が貫通形成されており、該空間部7には、径方向に延びる2本の梁状部8が設けられている。該ロータ12には、永久磁石17a(17b)に対応する空隙部(エアギャップ)21がそれぞれ形成されている。複数(本実施形態では16個)の空隙部21はそれぞれ、ロータ12の周方向において各支持部20の永久磁石17a,17bにそれぞれ対応する位置に形成されている。
 上記複数の支持部20における複数の空隙部21は、図2に示すように、磁束23の流れ方向27を遮るように(遮る方向に)形成されており、このことは後述の空隙部25,26,28,30も同様である。そして、空隙部21は、図1に示すように、複数の支持部20にそれぞれ対応させて、永久磁石17a,17bからなる磁石対9とステータ13との間における磁束23の流れ方向(図2、図3(a)の矢印27)での永久磁石17a,17bの縁部17c(図3参照)から所定距離(lcore)離間した位置に、ステータコイル24への給電が第1所定値(図5に示すモータ電流(相電流)9.0[Arms])より大きい低電流状態では磁気飽和を発生させ、かつ上記給電が該第1所定値より大きい第2所定値(図5に示すモータ電流150.0[Arms])よりも小さい高電流状態での最大トルク発生時には磁気飽和を発生させないようにし得る、所定長さ(lmag)を有する形状に構成されている。
 上記空隙部21は、図3(a),(b)に示すように、ロータ12の周方向における永久磁石17a,17bにそれぞれ対応する位置において、該ロータ12の外径部12aと支持部20とが交わる部位にて、対応する永久磁石17a,17bの傾斜方向に沿って延在するように切り欠き形成されている。図3(a)において、符号21aは空隙部21の形成開始部であり、符号21bは空隙部21の形成終端部である。空隙部21は、空間部7側から外径部12a側に食い込むように略V字状に形成され、各永久磁石17a,17bに対し、形成開始部21aから形成終端部21bに向かって縁部17cから次第に離れるように斜めに形成され、形成終端部21bの部位が縁部17cから最も離れて、永久磁石17aから空隙部21までの距離lcoreを構成する。
 永久磁石17a,17bは、ロータ12の外径部12aにおいて回転シャフト11の軸方向に延びるように切り欠き形成された嵌合部12bに、埋設固定されている。嵌合部12bのステータ13側には空間部22aが、回転シャフト11の軸方向に延在するように形成されており、嵌合部12bの回転中心O側には空間部22bが、回転シャフト11の軸方向に延在するように形成されている。空間部22aの支持部20側には、永久磁石17a,17bの空間部22a側への移動を係止する係止突部12cが形成されている。空間部22bの回転中心O側には、永久磁石17a,17bの回転中心O側への移動を係止する係止突部21cが形成されている。
 図3(a)では、縁部17cとロータ12との間に隙間があるように図示しているが、実際には該隙間は無く、縁部17cはロータ12に密接している。なお、図3では、永久磁石17bを中心に述べているが、各永久磁石17aに対応する空隙部21は、永久磁石17bに対応する空隙部21とは逆の向き(逆向きの傾斜)に形成されている。
 上記構成を有する本回転電機10では、回転電機制御用の制御部(図示せず)が、出力すべきトルク指令値を回転電機外部の不図示のECU(Electrical Control Unit)等から受け取ると、該受け取ったトルク指令値によって指定されたトルクを出力するためのモータ制御電流を生成し、該生成したモータ制御電流を、図1に示す入力部29から、ステータコイル24→中性点1,2へ流れるように供給(便宜上、U相のみ図示)することで、ロータ12がステータ13に対して回転する。
 次に、ロータ12に空隙部21を設けた構成及びそれによる作用について説明する。まず、本回転電機10では、永久磁石17とオーバーラップする空隙部21がある図3(a),(b)に示す構造において、空隙部21の永久磁石17a,17bの各縁部17cからの所定距離(b)を、永久磁石17a,17bの各縁部17cから空隙部21の形成終端部21bまでの距離lcoreとし、かつ、空隙部21の該距離lcoreに対する垂直方向での所定長さを、空隙部21における形成開始部21aと形成終端部21bとの間の距離a、即ち空隙部21と永久磁石17a,17bとのオーバーラップ幅lmagとしたとき、lmag/lcoreが次式(A)
 2.4<lmag/lcore<10.0  …(A)
を満たすように構成されている。
 回転電機10では、上記式(A)の関係を満たす場合、後述するように、低電流状態におけるトルク低下を発生し難くすることができると共に、高電流状態での最大トルク時には、最大トルクを充分に発生させることができる。なお、図3(a),(b)において、lmagの寸法aは例えば3.20mmに、lcoreの寸法bは例えば1.33mmに設定することができる。
 ここで、発明のメカニズム(1)について説明する。トルクT及び損失Wは、一般的に磁石磁束Φmを用いて、次の式(B)、式(C)のように表される。
T=Pn×{Φm+(Ld-Lq)×Id}×Iq  ………(B)
W=kh×f×B2×ke×f2×B2     ………スタインメッツの実験式
Φ=B×S
W∝kh×f×Φm 2+ke×f2×Φm 2    ………(C)
ただし、Pn:極数、Ld:d軸インダクタンス、Lq:q軸インダクタンス、Id:d軸電流、I:q軸電流、kh:ヒステリシス損比例定数(係数)、f:周波数、B:磁束密度、Φ:磁束[Wb]、S:断面積、ke:渦電流損比例定数(係数)である。
 本実施形態の空隙部21を有するロータ12を備えたことによるモータ電流と磁石磁束Φmとの関係は、図5に示すようになる。同図は、本実施形態の回転電機10の電流-磁石磁束の特性を示すグラフ図であり、縦軸に磁石磁束Φm[Wb]をとり、横軸にモータ電流[Arms]をとっている。
 すなわち、図5に示すグラフでは、モータ電流0~200[Arms]の間で、磁石磁束Φmが0.084[Wb]から0.06[Wb]に緩やかに変化している。
 このようなグラフ特性では、例えばモータ電流(相電流)が9.0[Arms]の低電流状態での動作点Dにおいて、ロータ12に空隙部21を有する本回転電機10におけるオーバーラップ幅lmagと距離lcoreとの比であるlmag/lcoreに対する磁石磁束Φmの関係は、図9(a),(b),(c)に示すようになる。また、例えばモータ電流(相電流)が150.0[Arms]の高電流状態での動作点Mにおいて、オーバーラップ幅lmagと距離lcoreとの比であるlmag/lcoreに対する磁石磁束Φmの関係は、図10(a),(b),(c)に示すようになる。なお、動作点とは、磁気回路内における永久磁石17の磁束密度B、磁界の強さH[A/m]等の状態を示す点を意味している。
 低電流状態では、図9(c)より、lmag/lcore=2.4を境界として、
2.4<lmag/lcore
である場合に、磁石磁束Φmが0.085[Wb]から小さくなり始めるため、上述した式(C)
W∝kh×f×Φm 2+ke×f2×Φm 2    ………(C)
より、損失W(つまりモータ損失[W])が、図9(a),(b)に示すように、約470[W]から次第に低下し始めて、磁気飽和が発生する。つまり、永久磁石17の磁石磁束Φmを弱めて(小さくして)、永久磁石17からステータ13に伝わる磁束を低減することで鉄損を減少させ、低電流状態でのトルク低下を発生し難くして、回転電機10の作動効率を向上させることができる。
 高電流状態では、図10(c)より、lmag/lcore<10.0の範囲において、lmag/lcoreが0から6.9までの間は磁石磁束Φmの低下が少なく、トルク低下は小さい。lmag/lcoreが6.9を超えると、lmag/lcoreが10.0に至るまでは、ロータ12回転時のトルク[Nm]が0.5%低下(図9(a)参照)するものの、本発明による効果を得ることができる。
 即ち、高電流状態の最大トルク発生時では、図10(c)より、
mag/lcore<10.0
の場合に、磁石磁束Φmは、
mag/lcore≧10.0
の場合に比して大きな値をとるので、上述した式(B)
T=Pn×{Φm+(Ld-Lq)×Id}×Iq  ………(B)
より、最大トルクTの低下が小さくなることがわかる。
 このように、図10(a)において、2.4<lmag/lcore<10.0の数値範囲は、ロータ12回転時のトルク[Nm]が0.5%低下する範囲を、本発明による効果が発生する有効範囲とするものである。そして、上記式(A)におけるlmag/lcoreの数値の範囲は、より好ましくは、2.4<lmag/lcore<6.9であり、この範囲の場合、ロータ12回転時のトルク[Nm]の低下をより効果的に抑えて、最大トルク発生時のモータ損失をより低減し、回転効率を一層向上させるという効果を得ることができる。
 次に、発明のメカニズム(2)について説明する。まず、磁石磁束Φmについて考える。ここで、磁石磁束Φmは、図4に示す本実施形態の構成に相当する磁気回路の場合、パーミアンス法により、下記の式(D)で表すことができる。
 すなわち、図4に示すように、永久磁石17a(又は17b)による磁気回路は、ロータ12(ロータコア16)において、磁石磁界Hm、lmag部の磁気抵抗Rmag[A/Wb]、lcore部の磁気抵抗Rcore、lmag部及びlcore部以外の磁気抵抗Rotherで構成され、磁石磁束Φmは矢印のようになる。そして、これらの関係は以下のように表される。
Φm=Hm/(Rmag+Rcore+Rother)
core=(1/μcore)×(lcore/Score)
mag=(1/μr)×(lmag/Smag)
mag=μr×μ0×Hmag
Φm=Hm/{(μ0×Hmag/Bmag)×(lmag/Smag)+(1/μcore)×(lcore/Score)+Rother}………(D)
ただし、Score:lcore部の断面積、Smag:lmag部の断面積、Bmag:lmag部の磁束密度、Hmag:lmag部の磁界、μcore:lcore部の透磁率[H/m]、μr:lmag部の透磁率(リコイル透磁率=磁気回路中での永久磁石がかけられる磁場に対する磁化され易さの目安)、μ0:真空の透磁率である。なお、或る動作点においてのRother、Hmは一定である。
 ここで、上記式(D)におけるBmagについて考える。即ち、図3(b)に示すlmag部の磁束密度であるBmagは、図8(a)に示す磁石材料特性図より、低電流時には大きな磁束密度(約1.04[T])を示すのに対し、最大トルク発生時には小さな磁束密度(約0.46[T])を示す。
 また、lmag/lcoreとBmagとの関係は、低電流時動作点と最大トルク時動作点において図8(b)に示すようになる。即ち、図8(b)に示すように、lmag部の磁束密度であるBmagの値は、lmag/lcoreの値によらず動作点によって決まるので、Bmagは、低電流時動作点においても最大トルク時動作点においても約1.04[T]と約0.56[T]としてそれぞれ一定であり、従って、或る動作点において一定の値をとることがわかる。
 次に、発明のメカニズム(3)について説明する。まず、低電流時(低電流状態)及び最大トルク時(最大トルク状態)におけるlcore部の透磁率であるμcoreについて考える。なお、図6(a)及び図7(a)は低電流時及び最大トルク時それぞれにおけるlcore部の磁束密度[T]と透磁率[H/m]との相関関係を示すグラフであり、図6(b)及び図7(b)は低電流状態及び最大トルク状態それぞれにおけるlmag/lcoreに対するlcore部の透磁率[H/m]を示すグラフである。
 すなわち、低電流状態では、図6(b)より、2.4<lmag/lcoreのとき、lcore部の透磁率であるμcoreが小さな値(ほぼ0[H/m])をとるため、上述した式(D)
Φm=Hm/{(μ0×Hmag/Bmag)×(lmag/Smag)+(1/μcore)×(lcore/Score)+Rother
より、磁石磁束Φmが小さな値をとることになり、上述した式(C)
W∝kh×f×Φm 2+ke×f2×Φm2
より、損失Wが低減されることがわかる。なお、透磁率は、ヒステリシス特性の傾きなので、磁気飽和すると小さくなり、空心状態に近付き、自己インダクタンスは0にまではならないものの、小さくなる極限として短絡を考えれば、電流が増えることになる。
 一方、最大トルク時には、図7(b)より、lmag/lcore<10.0のとき、lcore部の透磁率であるμcoreが大きな値(例えばlmag/lcoreが6.5のとき8400[H/m])をとるため、上述した式(D)
Φm=Hm/{(μ0×Hmag/Bmag)×(lmag/Smag)+(1/μcore)×(lcore/Score)+Rother
より、磁石磁束Φmが大きな値をとることになり、上述した式(B)
T=Pn×{Φm+(Ld-Lq)×Id}×Iq
より、トルクTの低下が小さくなることがわかる。
 以上説明したように、本実施形態の回転電機10では、回転中心Oを中心として放射状に延びるようにロータ12に複数の支持部20を設け、それら支持部20にそれぞれ対応させて、永久磁石17a,17bとステータ13との間における磁束23の流れ方向(図2の27)での永久磁石17a,17bの縁部17cから所定距離(lcore)離間した位置に、ステータコイル24への給電が第1の所定値(図5に示すモータ電流9.0[Arms])より大きい低電流状態では磁気飽和を発生させ、かつ給電が該第1所定値より大きい第2所定値(図5に示すモータ電流150.0[Arms])よりも小さい高電流状態での最大トルク発生時には磁気飽和を発生させないようにし得る、所定長さ(lmag)の空隙部21を形成している。
 このように、本実施形態では、支持部20に所定形状の空隙部21を形成した簡素な構成からなるものでありながら、供給電流が第1所定値より大きいとき(即ち、供給される電流が小さい(低電流状態での)低トルク時)には、永久磁石17a,17bの磁束を弱めて(磁石磁束を小さくして)、磁気飽和を発生させることで、永久磁石17a,17bからステータ13に伝わる磁束を低減して、ヒステリシス損と渦電流損の和で表される鉄損を減少させることができる。これにより、低電流状態でのトルク低下を発生し難くして、回転電機10の作動効率(モータ性能)を向上させることができる。
 一方、供給電流が第2所定値より小さいとき(即ち、供給される電流が大きい(高電流時の)最大トルク発生時)には、永久磁石17a,17bの磁束の低下を減少させて(磁石磁束の減少を抑えて)、磁気飽和を発生させないようにすることで、永久磁石17a,17bからステータ13に伝わる磁束を低減させず鉄損の減少を抑制し、最大トルクの低下を発生し難くして、回転電機10の作動効率(モータ性能)を向上させることができる。
 また、本実施形態によると、空隙部21が、ロータ12の周方向における永久磁石17a,17bにそれぞれ対応する位置に切り欠き形成されてなるので、プレス加工等によって所定形状の空隙部21を切り欠き形成(打ち抜き加工)するだけで、高効率な構成の回転電機10を実現することができる。
 更に、本実施形態によると、空隙部21が、ロータ12の周方向における永久磁石17a,17bにそれぞれ対応する位置において、該ロータ12の外径部12aと支持部20とが交わる部位にて、対応する永久磁石17a,17bの傾斜方向に沿って延在するように切り欠き形成されてなるので、プレス加工等によってロータ12の内径側に所定形状の空隙部21を切り欠き形成(打ち抜き加工)するだけで、高効率な構成の回転電機10を実現することができる。
 更に、本実施形態によると、空隙部21の永久磁石17a,17bの縁部17cからの所定距離を、永久磁石17a,17bから空隙部21までの距離lcoreとし、かつ、空隙部21の該距離lcoreに対する垂直方向での所定長さを、空隙部21と永久磁石17a,17bとのオーバーラップ幅lmagとしたとき、lmag/lcoreが次式、2.4<lmag/lcore<10.0を満たしてなるので、空隙部21の永久磁石17a,17bに対する関係を最適にして、高効率な構成の回転電機10を実現することができる。
 ここで、上述した実施形態の変形例について、図11(a),(b)及び図12を参照して説明する。なお、図11(a),(b)及び図12は、異なる変形例におけるロータの外周縁部での永久磁石と空隙部との関係を説明する図である。なお、これら変形例は、先に説明した構成に比し、空隙部25,26,28の形状等が異なるだけで、他の部分は略々同一なので、主要部分に同一符号を付してその説明を省略する。
 まず、図11(a)に示すように、空隙部25は、ロータ12の周方向における永久磁石17a,17bにそれぞれ対応する位置において、永久磁石17a,17bの傾斜方向に沿って延在するように切り欠き形成されている。図11(a)において、符号25aは空隙部25の形成開始部であり、符号25bは空隙部25の形成終端部である。空隙部25は、空間部7(図1参照)側から外径部12a(図3参照)側に食い込むように略V字状に形成され、各永久磁石17a,17bに対し、形成開始部25aから形成終端部25bに向かって縁部17dから次第に離れるように斜めに形成され、形成終端部25bの部位が縁部17dから最も離れて、永久磁石17aから空隙部25までの距離lcoreを構成する。
 そして、空隙部25の永久磁石17a,17bの各縁部17dからの所定距離(b)を、永久磁石17a,17bの各縁部17dから空隙部25の形成終端部25bまでの距離lcoreとし、かつ、空隙部25の該距離lcoreに対する垂直方向での所定長さを、空隙部25における形成開始部25aと形成終端部25bとの間の距離a、即ち空隙部25と永久磁石17a,17bとのオーバーラップ幅lmagとしたとき、lmag/lcoreが上述した式(A)
 2.4<lmag/lcore<10.0  …(A)
を満たすように構成されている。
 また同様に、図11(b)に示すように、空隙部26の永久磁石17a,17bの各縁部17cからの所定距離(b)を、永久磁石17a,17bの各縁部17cから空隙部26の形成終端部26bまでの距離lcoreとし、かつ、空隙部26の該距離lcoreに対する垂直方向での所定長さを、空隙部26における形成開始部26aと形成終端部26bとの間の距離a、即ち空隙部26と永久磁石17a,17bとのオーバーラップ幅lmagとしたとき、lmag/lcoreが上述した式(A)
 2.4<lmag/lcore<10.0  …(A)
を満たすように構成されている。
 同様に、図12に示すように、空隙部28の永久磁石17a,17bの各縁部17dからの所定距離(b)を、永久磁石17a,17bの各縁部17dから空隙部28の形成終端部28bまでの距離lcoreとし、かつ、空隙部28の該距離lcoreに対する垂直方向での所定長さを、空隙部28における形成開始部28aと形成終端部28bとの間の距離a、即ち空隙部28と永久磁石17a,17bとのオーバーラップ幅lmagとしたとき、lmag/lcoreが上述した式(A)
 2.4<lmag/lcore<10.0  …(A)
を満たすように構成されている。
 これら変形例における空隙部25,26,28を備えた上記構成によっても、前述した先の実施形態とほぼ同等の検証結果が成り立つため、前述した空隙部21に係る先の実施形態と同様の理由により、ほぼ同様の作用効果を奏することができる。
 次に、図13を参照して、本発明に係る他の実施形態について説明するが、先に説明した構成に比し、空隙部21の形状等が異なるだけで、他の部分は略々同一なので、主要部分に同一符号を付してその説明を省略する。
 すなわち、図13(a),(b)に示すように、本実施形態における空隙部30は、ロータ12の周方向における永久磁石17a、17bにそれぞれ対応する位置において、対応する永久磁石17aの傾斜方向に沿って延在するように、かつ回転シャフト11の軸方向に沿うように矩形状に貫通形成されている。
 なお、ここでは、永久磁石17bを中心に述べるが、永久磁石17aに対応する空隙部30は、永久磁石17bに対応する空隙部30とは逆の向き(逆向きの傾斜)に形成されている。なお、図13(a),(b)において、lmagの寸法aは例えば3.50mmに、lcoreの寸法bは例えば0.70mmに設定することができる。
 空隙部30の永久磁石17a,17bの各縁部17cからの所定距離を、永久磁石17a,17bの各縁部17cから空隙部30の近接する側の長辺30bまでの距離lcoreとし、かつ、空隙部21の該距離lcoreに対する垂直方向での所定長さを、空隙部30における短辺30aと短辺30aとの間の距離a、即ち空隙部30と永久磁石17a,17bとのオーバーラップ幅lmagとしたとき、lmag/lcoreが上述した式(A)
 2.4<lmag/lcore<10.0  …(A)
を満たすように構成されている。
 本実施形態における空隙部30を備えた上記構成によっても、前述した先の実施形態とほぼ同等の検証結果が成り立つため、前述した空隙部21に係る先の実施形態と同様の理由により、ほぼ同様の作用効果を奏することができる。
 そして、本実施形態によると、空隙部30が、ロータ12の周方向における永久磁石17a,17bにそれぞれ対応する位置において、対応する永久磁石17a,17bの傾斜方向に沿って延在するように矩形状に貫通形成されてなるので、プレス加工等によってロータ12の内径側に所定形状の空隙部30を切り欠き形成(打ち抜き加工)するだけで、高効率な構成の回転電機10を実現し得る、という効果も奏することができる。
 本発明に係る回転電機は、ハイブリッド自動車やハイブリッドシステム等に用いることが可能であり、特にモータ損失を更に低減して効率化を更に高め得るようにすることを要求されるものに用いて好適である。
10  回転電機
11  回転シャフト
12  ロータ
12a  ロータの外径部
13  ステータ
14  ステータコイル
17a,17b  永久磁石
17c,17d  縁部
20  支持部
21,25,26,28,30  空隙部
23  磁束
27  磁束の流れ方向
O   回転中心
core  所定距離(永久磁石から空隙部までの距離)
mag  所定長さ(空隙部と永久磁石とのオーバーラップ幅)

Claims (5)

  1.  環状に形成されたステータコア及び該ステータコアに巻回されたステータコイルを有するステータと、該ステータの中心に位置して回転可能に配置された回転シャフトと、該回転シャフトに固設された状態で前記ステータ内に回転可能に配置されたロータと、該ロータの回転中心側から次第に狭まる逆V字状に沿うように配置される永久磁石と、を備えてなる回転電機において、
     前記回転中心を中心として放射状に延びるように前記ロータに複数の支持部を設け、
     前記複数の支持部にそれぞれ対応させて、
     前記永久磁石と前記ステータとの間における磁束の流れ方向での前記永久磁石の縁部から所定距離離間した位置に、前記ステータコイルへの給電が低電流状態での低トルク発生時には磁気飽和を発生させ、かつ前記給電が高電流状態での最大トルク発生時には磁気飽和を発生させないようにし得る、所定長さの空隙部を形成してなる、
     ことを特徴とする回転電機。
  2.  前記空隙部は、
     前記ロータの周方向における前記永久磁石にそれぞれ対応する位置に切り欠き形成されてなる、
     請求項1記載の回転電機。
  3.  前記空隙部は、
     前記永久磁石にそれぞれ対応する位置における、前記ロータの外径部と前記支持部とが交わる部位にて、対応する前記永久磁石の傾斜方向に沿って延在するように切り欠き形成されてなる、
     請求項2記載の回転電機。
  4.  前記空隙部は、
     前記ロータの周方向における前記永久磁石にそれぞれ対応する位置において、対応する前記永久磁石の傾斜方向に沿って延在するように矩形状に貫通形成されてなる、
     請求項1記載の回転電機。
  5.  前記空隙部の前記永久磁石の縁部からの前記所定距離を、前記永久磁石から前記空隙部までの距離lcoreとし、かつ、前記空隙部の該距離lcoreに対する垂直方向での前記所定長さを、前記空隙部と前記永久磁石とのオーバーラップ幅lmagとしたとき、lmag/lcoreが次式
     2.4<lmag/lcore<10.0
    を満たしてなる、
     請求項1乃至4のいずれか1項記載の回転電機。
PCT/JP2011/052555 2010-03-30 2011-02-07 回転電機 WO2011122111A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112011100218.1T DE112011100218B4 (de) 2010-03-30 2011-02-07 Drehende Elektromaschine
CN201180009646.0A CN102782990B (zh) 2010-03-30 2011-02-07 旋转电机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010078552A JP5479978B2 (ja) 2010-03-30 2010-03-30 回転電機
JP2010-078552 2010-03-30

Publications (1)

Publication Number Publication Date
WO2011122111A1 true WO2011122111A1 (ja) 2011-10-06

Family

ID=44708785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052555 WO2011122111A1 (ja) 2010-03-30 2011-02-07 回転電機

Country Status (5)

Country Link
US (1) US8618709B2 (ja)
JP (1) JP5479978B2 (ja)
CN (1) CN102782990B (ja)
DE (1) DE112011100218B4 (ja)
WO (1) WO2011122111A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014075882A (ja) * 2012-10-03 2014-04-24 Suzuki Motor Corp Ipm型電動回転機
JP2014075881A (ja) * 2012-10-03 2014-04-24 Suzuki Motor Corp Ipm型電動回転機

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5708181B2 (ja) * 2010-05-12 2015-04-30 株式会社デンソー 回転電機のロータ
JP5643127B2 (ja) * 2011-02-03 2014-12-17 トヨタ自動車株式会社 回転電機用回転子
JP5935615B2 (ja) 2012-09-14 2016-06-15 株式会社デンソー 回転電機のロータ
JP6075034B2 (ja) * 2012-11-29 2017-02-08 スズキ株式会社 Ipm型電動回転機
DE102013219022B4 (de) 2012-09-28 2020-08-06 Suzuki Motor Corporation Elektrische Drehmaschine mit innenliegenden Dauermagneten
JP2014072995A (ja) 2012-09-28 2014-04-21 Suzuki Motor Corp Ipm型電動回転機
DE102013219058B4 (de) 2012-09-28 2020-07-09 Suzuki Motor Corporation Elektrische drehmaschine mit innenliegenden dauermagneten
DE102013219260B4 (de) 2012-09-28 2020-08-06 Suzuki Motor Corporation Elektrische Drehmaschine mit innenliegenden Dauermagneten
DE102013219067B4 (de) * 2012-09-28 2020-08-06 Suzuki Motor Corporation Elektrische drehmaschine mit innenliegenden dauermagneten
DE102013219222B4 (de) 2012-09-28 2020-08-06 Suzuki Motor Corporation Elektrische Drehmaschine mit innenliegenden Dauermagneten
DE102013219106B4 (de) 2012-09-28 2020-08-06 Suzuki Motor Corporation Elektrische drehmaschine mit innenliegenden dauermagneten
JP5765317B2 (ja) 2012-11-02 2015-08-19 株式会社デンソー 回転電機のロータ
JP5757281B2 (ja) 2012-11-02 2015-07-29 株式会社デンソー 回転電機のロータ
JP5958305B2 (ja) 2012-11-29 2016-07-27 スズキ株式会社 Ipm型電動回転機
ES2773911T3 (es) * 2012-12-12 2020-07-15 Mitsubishi Electric Corp Rotor de motor
JP6209372B2 (ja) * 2013-06-27 2017-10-04 株式会社安川電機 回転電機及び回転電機の制御装置
JP5962632B2 (ja) 2013-11-15 2016-08-03 株式会社デンソー 回転電機のロータ及びその製造方法
JP6226196B2 (ja) 2014-04-15 2017-11-08 株式会社デンソー 回転電機のロータ
US11448146B2 (en) * 2015-11-12 2022-09-20 Bombardier Recreational Products Inc. Method and system for starting an internal combustion engine
US10975824B2 (en) 2015-11-12 2021-04-13 Bombardier Recreational Products Inc. Method and system for starting an internal combustion engine
US10883467B2 (en) 2015-11-12 2021-01-05 Bombardier Recreational Products Inc. Method and system for starting an internal combustion engine
US20190089212A1 (en) * 2017-09-15 2019-03-21 Ford Global Technologies, Llc Rotor with nonmagnetic insert
CN108566005B (zh) * 2018-03-16 2020-10-30 珠海格力节能环保制冷技术研究中心有限公司 转子结构、永磁辅助同步磁阻电机及电动汽车
CN110315861B (zh) * 2018-03-28 2022-05-13 精工爱普生株式会社 扫描装置
CN108768023B (zh) * 2018-08-13 2020-01-07 珠海格力电器股份有限公司 转子组件及交替极电机
CN114154367B (zh) * 2021-11-17 2024-07-16 华中科技大学 一种电机齿部磁密比值和最优裂比的确定方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007244017A (ja) * 2006-03-06 2007-09-20 Nissan Motor Co Ltd 回転電機の回転子構造
JP2008278553A (ja) * 2007-04-25 2008-11-13 Toshiba Industrial Products Manufacturing Corp 回転電機の回転子及び回転電機
JP2010004671A (ja) * 2008-06-20 2010-01-07 Toshiba Corp 永久磁石回転式電機

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0746079B1 (en) * 1995-05-31 2003-08-13 Matsushita Electric Industrial Co., Ltd. Motor with built-in permanent magnets
KR100263445B1 (ko) * 1997-11-13 2000-08-01 윤종용 브러시리스 dc모터용 회전자
US6891298B2 (en) * 2002-08-28 2005-05-10 Emerson Electric Co. Interior permanent magnet machine with reduced magnet chattering
US20080258573A1 (en) 2005-03-11 2008-10-23 Toyota Jidosha Kabushiki Kaisha Rotor of Rotating Electric Machine, Rotating Electric Machine and Vehicle Drive Apparatus
JP2006254629A (ja) 2005-03-11 2006-09-21 Toyota Motor Corp 回転電機のロータ、回転電機、車両駆動装置
US7791236B2 (en) * 2007-08-16 2010-09-07 Ford Global Technologies, Llc Permanent magnet machine
JP4492681B2 (ja) * 2007-11-16 2010-06-30 株式会社デンソー 同期機
DE102009003228B4 (de) * 2008-06-20 2020-11-05 Robert Bosch Gmbh Elektrische Maschine
JP4627788B2 (ja) * 2008-06-27 2011-02-09 株式会社日立製作所 永久磁石式回転電機
JP2010045919A (ja) * 2008-08-12 2010-02-25 Toyota Motor Corp 回転電機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007244017A (ja) * 2006-03-06 2007-09-20 Nissan Motor Co Ltd 回転電機の回転子構造
JP2008278553A (ja) * 2007-04-25 2008-11-13 Toshiba Industrial Products Manufacturing Corp 回転電機の回転子及び回転電機
JP2010004671A (ja) * 2008-06-20 2010-01-07 Toshiba Corp 永久磁石回転式電機

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014075882A (ja) * 2012-10-03 2014-04-24 Suzuki Motor Corp Ipm型電動回転機
JP2014075881A (ja) * 2012-10-03 2014-04-24 Suzuki Motor Corp Ipm型電動回転機

Also Published As

Publication number Publication date
DE112011100218T5 (de) 2012-10-31
CN102782990B (zh) 2014-12-10
US20110241468A1 (en) 2011-10-06
US8618709B2 (en) 2013-12-31
CN102782990A (zh) 2012-11-14
JP2011211860A (ja) 2011-10-20
DE112011100218B4 (de) 2016-12-22
JP5479978B2 (ja) 2014-04-23

Similar Documents

Publication Publication Date Title
JP5479978B2 (ja) 回転電機
JP4707696B2 (ja) アキシャルギャップ型モータ
CN103872868B (zh) 多间隙式旋转电机
JP4961302B2 (ja) アキシャルギャップ型モータ
JP4489002B2 (ja) ハイブリッド励磁回転電機、及びハイブリッド励磁回転電機を備えた車両
JP6319973B2 (ja) 永久磁石型回転電機
US20140091664A1 (en) Interior permanent magnet electric rotating machine
JP2009219331A (ja) 永久磁石式ジェネレータとそれを用いたハイブリッド車両
US7482724B2 (en) Ipm electric rotating machine
US10958120B2 (en) Electric machine rotor for harmonic flux reduction
JP2008271640A (ja) アキシャルギャップ型モータ
JP6048191B2 (ja) マルチギャップ型回転電機
JP6539004B1 (ja) 回転子および回転電機
JP6406355B2 (ja) ダブルステータ型回転機
JP5450472B2 (ja) 永久磁石式ジェネレータとそれを用いたハイブリッド車両
JP2010045919A (ja) 回転電機
JP2002153033A (ja) Ipmモータ
JP4459886B2 (ja) ステータおよびモータ
JP2010075049A (ja) 回転電機
JP2007209197A (ja) Ipmモータ
JP2008271642A (ja) アキシャルギャップ型モータ
JP6664890B2 (ja) 界磁巻線型駆動モータの回転子
JP2020115728A (ja) モータ
JP2014082836A (ja) ロータと、それを備える回転電機
JP2014131373A (ja) 永久磁石同期機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180009646.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762352

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112011100218

Country of ref document: DE

Ref document number: 1120111002181

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11762352

Country of ref document: EP

Kind code of ref document: A1