WO2011121945A1 - 光学反射素子 - Google Patents

光学反射素子 Download PDF

Info

Publication number
WO2011121945A1
WO2011121945A1 PCT/JP2011/001721 JP2011001721W WO2011121945A1 WO 2011121945 A1 WO2011121945 A1 WO 2011121945A1 JP 2011001721 W JP2011001721 W JP 2011001721W WO 2011121945 A1 WO2011121945 A1 WO 2011121945A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragms
portions
vibration
meandering
curvature
Prior art date
Application number
PCT/JP2011/001721
Other languages
English (en)
French (fr)
Inventor
晋輔 中園
寿彰 堀江
聡一郎 平岡
山本 雄大
多田 真樹
小牧 一樹
Shigeo FURUKAWA (古川 成男)
Original Assignee
パナソニック株式会社
古川 喜代美
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社, 古川 喜代美 filed Critical パナソニック株式会社
Priority to KR1020127025374A priority Critical patent/KR20130040794A/ko
Priority to US13/581,360 priority patent/US8792151B2/en
Publication of WO2011121945A1 publication Critical patent/WO2011121945A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/0858Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting means being moved or deformed by piezoelectric means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/0841Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting element being moved or deformed by electrostatic means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/085Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting means being moved or deformed by electromagnetic means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/02Viewing or reading apparatus

Definitions

  • the present invention relates to an optical reflecting element used in an image projection apparatus such as a head-up display or a head-mounted display.
  • An optical reflection element using a meandering vibration part is known as one method to meet the demand.
  • FIG. 6 is a perspective view of a conventional optical reflecting element 501 described in Patent Document 1.
  • the high-frequency driving unit 502 of the optical reflecting element 501 includes a mirror unit 30, a pair of meander-type vibrating units 31 that face each other via the mirror unit 30, and a frame that surrounds the outer periphery of the pair of meander-type vibrating units 31 and the mirror unit 30. And a body 32. One end of each of the pair of meandering vibration portions 31 is connected to the mirror portion 30. The other ends of the pair of meander-shaped vibrating portions 31 are connected to the frame body 32.
  • a drive unit having a lower electrode, a piezoelectric body provided on the lower electrode, and an upper electrode provided on the piezoelectric body is provided on the meandering vibration section 31.
  • the mirror unit 30 connected to one end of the meandering vibration unit 31 is swung.
  • the vibration unit 31 of the high frequency drive unit 502 By making the vibration unit 31 of the high frequency drive unit 502 into a meander shape, the displacement of the vibration unit 31 is accumulated. Further, by using resonance drive, the deflection angle of the mirror unit 30 can be increased at a lower voltage, A deflection angle can be secured.
  • the curved part of the meandering vibration part 31 may be destroyed, and the deflection angle of the mirror part 30 is substantially enlarged so much. I can't.
  • the optical reflection element includes a frame, a meandering vibration part having an outer end connected to the inside of the frame, and a mirror part supported by the inner end of the meandering vibration part.
  • the meandering vibration part has a meandering shape having a plurality of curved parts and a plurality of diaphragms that are alternately connected. The curvature of each curved portion of the plurality of curved portions is smaller than the curvature of at least one curved portion closer to the inner end.
  • the deflection angle of the mirror part can be increased.
  • FIG. 1 is a perspective view of an optical reflecting element according to Embodiment 1 of the present invention.
  • FIG. 2 is a perspective view of a high-frequency driving unit of the optical reflecting element shown in FIG. 3A is a perspective view of a main part of the high-frequency driving unit shown in FIG. 3B is a cross-sectional view taken along line 3B-3B of the high-frequency driving unit shown in FIG. 3A.
  • FIG. 4 is a perspective view showing the operation of the optical reflecting element according to Embodiment 1 of the present invention.
  • FIG. 5A is a perspective view of a main part of a high-frequency driving unit of the optical reflecting element according to Embodiment 2 of the present invention.
  • 5B is a cross-sectional view taken along line 5B-5B of the high-frequency drive unit shown in FIG. 5A.
  • FIG. 6 is a perspective view of a conventional optical reflecting element.
  • FIG. 1 is a perspective view of an optical reflecting element 1 according to Embodiment 1 of the present invention.
  • the optical reflecting element 1 is connected to the frame 2, the meandering vibration parts 103 and 203 connected to the frame 2, the frame 4 supported by the meandering vibration parts 103 and 203, and the frame 4.
  • the meandering vibration parts 105 and 205 and the mirror part 6 supported by the meandering vibration parts 105 and 205 are provided.
  • the frame body 2 has a rectangular frame shape and includes portions 102 and 202 that face each other with the central space 2P interposed therebetween.
  • the portions 102 and 202 are short sides of a rectangular frame shape.
  • the frame 2 is configured to be fixed to the mounting base 1001A.
  • the meandering vibration sections 103 and 203 have outer ends 103B and 203B connected to and supported by the portions 102 and 202 of the frame 2, and inner ends 103A and 203A opposite to the outer ends 103B and 203B, respectively.
  • the meander-shaped vibrating portions 103 and 203 extend in a meander shape along the vibration axis S2 from the outer ends 103B and 203B to the inner ends 103A and 103B.
  • the frame body 4 has a rectangular frame shape and includes portions 104 and 204 that face each other with the central space 4P interposed therebetween.
  • the portions 104 and 204 are short sides of a rectangular frame shape.
  • the frame 4 is a movable frame that is connected to and supported by the inner ends 103A and 203A of the meandering vibration units 103 and 203, and swings about the vibration axis S2.
  • the meandering vibration portions 105 and 205 have outer ends 105B and 205B connected to and supported by the portions 104 and 204 of the frame body 4, and inner ends 105A and 205A opposite to the outer ends 105B and 205B, respectively.
  • the meandering vibration portions 105 and 205 extend from the outer ends 105B and 205B to the inner ends 105A and 105B in a meander shape along the vibration axis S1 perpendicular to the vibration axis S2.
  • the mirror unit 6 is connected to and supported by the inner ends 105A and 205A of the meandering vibration units 105 and 205, and swings about the vibration axis S1. Since the frame body 4 swings about the vibration axis S2, the mirror unit 6 swings about the vibration axes S1 and S2.
  • the meandering vibration units 103 and 203 and the frame body 4 constitute a low frequency driving unit 1001C that vibrates at a low frequency.
  • the meandering vibration units 105 and 205 and the mirror unit 6 constitute a high frequency driving unit 1001B that vibrates at a higher frequency than the low frequency driving unit 1001C.
  • FIG. 2 is a perspective view of the high-frequency driving unit 1001B of the optical reflecting element 1 shown in FIG.
  • the meandering vibration portion 105 includes bending portions 107A to 107F that are curved, and vibration plates 108A to 108E that are provided alternately with the bending portions 107A to 107F and have a linear shape that connects the bending portions 107A to 107F in a meander shape.
  • the bending portions 107A to 107F are arranged along the meandering vibration portion 105 in this order in the direction from the inner end 105A to the outer end 105B, and are located on both sides of the vibration axis S1.
  • the curvatures of the curved portions 107A to 107F are reduced from the inner end 105A toward the outer end 105B.
  • the curvatures of the bending portions 107A, 107B, 107C, 107D, 107E, and 107F are 0.0264 ⁇ m ⁇ 1 , 0.0231 ⁇ m ⁇ 1 , 0.0213 ⁇ m ⁇ 1 , 0.0201 ⁇ m ⁇ 1 , and 0.0196 ⁇ m, respectively. ⁇ 1 , 0.0196 ⁇ m ⁇ 1 .
  • the meandering vibration part 205 is provided with alternating curved parts 207A to 207F and curved parts 207A to 207F, and has a diaphragm 208A having a linear shape that connects the curved parts 207A to 207F in a meander shape.
  • the curved portions 207A to 207F are arranged along the meandering vibration portion 205 in this order in the direction from the inner end 205A to the outer end 205B, and are located on both sides of the vibration axis S1.
  • the curvatures of the curved portions 207A to 207F are made smaller from the inner end 205A toward the outer end 205B.
  • the bending portion 207A, 207B, 207C, 207D, 207E respectively bend 107A curvature of 207F, 107B, 107C, 107D, 107E, same 0.0264Myuemu -1 and 107F, 0.0231 ⁇ m -1, 0.0213 ⁇ m ⁇ 1 , 0.0201 ⁇ m ⁇ 1 , 0.0196 ⁇ m ⁇ 1 , and 0.0196 ⁇ m ⁇ 1 .
  • the inner and outer peripheries of the curved portions 107A to 107F and 207A to 207F have a gently curved shape such as an arc shape or an elliptic arc shape.
  • FIG. 3A is a perspective view of a main part of the high-frequency drive unit 1001B shown in FIG.
  • the vibration plates 108A to 108E of the meandering vibration portion 105 are arranged along the vibration axis S1, and the piezoelectric actuator 9 is disposed on every other vibration plate 108A, 108C, 108E.
  • Wirings 15 are provided on the diaphragms 108B and 108D where the piezoelectric actuator 9 is not provided.
  • the wiring 15 connects the upper electrodes 14 of the piezoelectric actuators 9 provided on the diaphragms 108A, 108C, and 108E, respectively.
  • the vibration plates 208A to 208E of the meandering vibration portion 205 are arranged along the vibration axis S1, and the piezoelectric actuator 9 is disposed on each of the vibration plates 208A, 208C, 208E.
  • Wirings 15 are provided on the diaphragms 208B and 208D where the piezoelectric actuator 9 is not provided.
  • the wiring 15 connects the upper electrode 14 of the piezoelectric actuator 9 provided on each of the vibration plates 208A, 208C, and 208E.
  • the upper electrode 14 is wider than the wiring 15.
  • FIG. 3B is a cross-sectional view taken along line 3B-3B of the high-frequency drive unit 1001B shown in FIG. 3A.
  • the meander-shaped vibrating portions 105 and 205 include a silicon substrate 10, a base material 100 made of a silicon oxide film 11 provided on the silicon substrate 10, an actuator 9 provided on the base material 100, and an upper electrode of the actuator 9. 14 and wiring 15 for connecting 14 to each other.
  • a lower electrode 12 is provided on the meandering vibration portion 105 (205), that is, on the surface 100A of the base material 100.
  • a piezoelectric body 13 is provided on the lower electrode 12.
  • the piezoelectric actuator 9 includes a lower electrode 12, a piezoelectric body 13, and an upper electrode 14 provided on the piezoelectric body 13 in the diaphragms 108 ⁇ / b> A, 108 ⁇ / b> C, 108 ⁇ / b> E, 208 ⁇ / b> A, 208 ⁇ / b> C, 208 ⁇ / b> E.
  • the wiring 15 is provided on the piezoelectric body 13.
  • the silicon substrate 10 and the silicon oxide film 11 constitute a base material 100 having an insulating surface 100A.
  • Upper electrodes 14 are formed on the diaphragms 108A, 108C, 108E, 208A, 208C, and 208E.
  • wiring 15 that is narrower than upper electrode 14 is formed on piezoelectric body 13.
  • the piezoelectric body 13 is provided above the base material 100 across the curved portions 107A to 107F and 207A to 207F, and the vibrating plates 108A to 108E and 208A to 208E. ing.
  • the piezoelectric body 13 may be provided at least on the vibration plates 108A, 108C, 108E, 208A, 208C, and 208E, and may not be provided on the bending portions 107A to 107F and 207A to 207F.
  • an insulating layer is provided between the wiring 15 connecting the upper electrode 14 of the actuator 9 and the lower electrode 12 to prevent a short circuit between the wiring 15 and the lower electrode 12.
  • the silicon substrate 10 and the silicon oxide film 11 are used as the base material 100 of the optical reflecting element 1.
  • the material is made of a material having elasticity, mechanical strength, and high Young's modulus, such as a metal, glass, or ceramic substrate. It is preferable from the viewpoint of productivity. For example, it is preferable to use metal, quartz, glass, quartz, or a ceramic material from the viewpoint of mechanical properties and availability. Furthermore, if a metal such as titanium, stainless steel, Elinvar, or a brass alloy is used in addition to silicon, the optical reflecting element 1 having excellent vibration characteristics and workability can be realized.
  • the base material 100 has insulating properties, it is not necessary to provide an insulating film such as the silicon oxide film 11 on the surface thereof.
  • the piezoelectric material used for the piezoelectric body 13 is preferably a material having a high piezoelectric constant such as lead zirconate titanate (PZT).
  • PZT lead zirconate titanate
  • the crystallinity of the piezoelectric body 13 can be improved by using platinum as the lower electrode 12.
  • As the upper electrode 14, titanium / gold or the like can be used.
  • a silicon substrate 10 having a thickness of about 0.5 mm is prepared as a base material 100, and a silicon oxide film 11 is formed on the silicon substrate 10 as an insulating film. Then, the lower electrode 12 is laminated on the silicon oxide film 11 using a thin film process such as sputtering or vapor deposition. At this time, the thickness of the silicon substrate 10 may be changed. The natural frequency can be adjusted by changing the thickness.
  • the piezoelectric body 13 is formed on the lower electrode 12 by sputtering or the like.
  • an orientation control layer made of an oxide dielectric containing Pb and Ti is preferably formed between the piezoelectric body 13 and the lower electrode 12, and an orientation control layer made of PLMT is more preferably formed. .
  • the crystal orientation of the piezoelectric body 13 is further improved, and the piezoelectric actuator 9 having excellent piezoelectric characteristics can be formed.
  • a titanium film is formed on the piezoelectric body 13, and a gold film is formed on the titanium film to form a titanium / gold film that becomes the upper electrode 14 and the wiring 15.
  • the titanium film under the gold film is formed in order to enhance the adhesion with the piezoelectric body 13 such as a PZT thin film, and a metal such as chromium can be used in addition to titanium.
  • a diffusion layer that is excellent in adhesion to the piezoelectric body 13 and is strong with the gold electrode is formed, so that the piezoelectric actuator 9 having high adhesion strength can be formed.
  • the thickness of the platinum lower electrode 12 is 0.2 ⁇ m
  • the thickness of the piezoelectric body 13 is 3.5 ⁇ m
  • the thickness of the titanium film of the upper electrode 14 is 0.01 ⁇ m
  • the thickness of the gold film is 0.3 ⁇ m.
  • the lower electrode 12, the piezoelectric body 13, the upper electrode 14, and the wiring 15 are etched and patterned using a photolithography technique.
  • an etching solution for etching the upper electrode 14 and the wiring 15 an etching solution made of an iodine / potassium iodide mixed solution, ammonium hydroxide, and hydrogen peroxide mixed solution is used.
  • An electrode pattern can be formed.
  • any one of a dry etching method and a wet etching method, or a combination of these methods can be used.
  • a fluorocarbon-based etching gas or SF 6 gas can be used.
  • the piezoelectric body 13 may be patterned by wet etching using a mixed solution of boiling acid, nitric acid, acetic acid and hydrogen peroxide and patterning, and then further etching the lower electrode 12 by dry etching.
  • etching the silicon substrate 10 with higher accuracy dry etching utilizing the anisotropy of silicon is preferable.
  • a mixed gas of SF 6 gas that promotes etching and C 4 F 8 gas that suppresses etching is used, or these gases are alternately switched and used in a direction perpendicular to the surface. Can be etched.
  • the base material of the mirror part 6, the meandering vibration parts 105 and 205, the meandering vibration parts 103 and 203, the frame body 4 and the frame body 2 is integrally formed from the silicon substrate 10 (base material 100). Form. Thereby, it is possible to realize the optical reflection element 1 having stable vibration characteristics and excellent productivity.
  • the mirror part 6 can also be formed by mirror polishing the surface of the substrate 100, but a metal thin film such as gold, silver, or aluminum having excellent light reflection characteristics is formed on the surface of the substrate 100 as a mirror film. May be.
  • a gold film is formed as the upper electrode 14, this gold film can be used as it is as a mirror film, and the production efficiency of the optical reflecting element 1 can be increased.
  • optical reflecting element 1 in the first embodiment will be described below.
  • the lower electrode 12 of the meander-shaped vibrating portions 105 and 205 shown in FIG. 3B is grounded, and an AC voltage having a frequency (30 kHz) corresponding to the resonance frequency of the optical reflecting element 1 is applied to the upper electrode 14.
  • diaphragms 108A, 108C, 108E, 208A, 208C, and 208E in which the wide upper electrode 14 shown in FIG. 3A is disposed are sandwiched between the lower electrode 12 and the upper electrode 14.
  • a voltage is applied to the piezoelectric body 13. Accordingly, the diaphragms 108A to 108E and 208A to 208E are displaced so as to bend in a convex shape alternately in opposite directions.
  • the same AC voltage as that of the upper electrode 14 is also applied to the wiring 15 disposed on the diaphragms 108B, 108D, 208B, 208D adjacent to the diaphragms 108A, 108C, 108E, 208A, 208C, 208E.
  • the width of the wiring 15 is narrower than that of the upper electrode 14, almost no voltage is applied to the piezoelectric body 13 disposed on the diaphragms 108B, 108D, 208B, and 208D.
  • the diaphragms 108B, 108D, 208B, and 208D are displaced in the opposite direction 180 degrees different from the adjacent diaphragms 108A, 108C, 108E, 208A, 208C, and 208E due to the principle of resonance.
  • the diaphragms 108A to 108E and 208A to 208E are displaced in directions different from each other by 180 degrees. Therefore, in the meander-shaped vibrating portions 105 and 205, as the number of diaphragms 108A to 108E and 208A to 208E increases, displacement accumulates from the outer ends 105B and 205B around the vibration axis S1, and even one upper electrode 14 The inner ends 105A and 205A are greatly displaced and swing.
  • the bending direction is reversed every half cycle of vibration of the diaphragms 108A, 108C, 108E, 208A, 208C, 208E, and the displacement Double the amount.
  • the vibration energy of the meandering vibration parts 105 and 205 propagates to the mirror part 6, and The part 6 swings around the vibration axis S1.
  • the vibration axis S2 of the meandering vibration units 103 and 203 constituting the low frequency driving unit 1001C is orthogonal to the vibration axis S1 of the meandering vibration units 105 and 205.
  • the meandering vibration parts 103 and 203 can swing the frame 4 around the vibration axis S2 by performing the same structure and the same operation as the meandering vibration parts 105 and 205.
  • the mirror unit 6 can be swung around the vibration axis S2. In the first embodiment, the frame 4 and the mirror unit 6 are resonantly oscillated around the vibration axis S2 at a frequency of 1 kHz.
  • FIG. 4 is a perspective view showing the operation of the optical reflecting element 1 in the first embodiment, and shows the projection apparatus 1001.
  • the projection apparatus 1001 includes an optical reflection element 1, a light source 18 that makes incident light 19 incident on the mirror portion 6 of the optical reflection element 1, and a mounting base 1001A on which the optical reflection element 1 is mounted and fixed. Incident light 19 incident on the mirror unit 6 from the light source 18 is reflected by the mirror unit 6 to become reflected light 20, and the reflected light 20 reaches the screen 21.
  • the mirror unit 6 swings about the vibration axis S2 to swing the reflected light 20 in the vertical direction at a low frequency, and the mirror unit 6 swings about the vibration axis S1 to make the reflected light 20 higher than the vertical direction.
  • the reflected light 20 can be scanned biaxially by swinging in the horizontal direction at a frequency.
  • the reflected light 20 swung in the vertical direction and the horizontal direction by the mirror unit 6 can scan the screen 21 and display an image 22 on the screen 21. Note that the resolution of the image 22 can be increased by causing the mirror unit 6 to swing the reflected light 20 at a lower frequency in the vertical direction.
  • the vibration axis S1 where the meandering vibration parts 105 and 205 vibrate and the vibration axis S2 where the meandering vibration parts 103 and 203 vibrate intersect at a point 6C on the mirror part 6 (see FIG. 1).
  • the point 6 ⁇ / b> C of the mirror unit 6 is a fixed point that is not displaced with respect to the light source 18, the mounting base 1001 ⁇ / b> A, and the screen 21.
  • the optical reflecting element 1 can swing the mirror portion 6 at a large angle. Therefore, when the distance between the optical reflection element 1 and the screen 21 is not changed, the area of the high-resolution image 22 can be enlarged. When the area of the image 22 is not changed, the distance between the optical reflecting element 1 and the screen 21 can be reduced. Therefore, by using the optical reflecting element 1 for the projection device 1001 such as a head-up display or a head-mounted display, an image can be projected on a large screen while reducing the size of the electronic device.
  • the projection device 1001 such as a head-up display or a head-mounted display
  • the projection apparatus having the structure of the high-frequency drive unit 1001B and not having the low-frequency drive unit 1001C swings the mirror unit 6 around one vibration axis S1, so that the reflected light can be uniaxially scanned.
  • This can be used for a laser printer, for example.
  • the curved part of the meandering vibration part 31 may be broken. Displacement stress applied to each bending portion of the meandering vibration portion 31 is biased, and by repeating vibration, the bending portion that deteriorates from the bending portion that receives the largest displacement stress is broken. Therefore, in the conventional optical reflection element 501 using the meandering vibration part 31, the deflection angle of the mirror part 30 cannot be substantially enlarged.
  • the curved portions 107A to 107F and 207A to 207F on both sides of the vibration axis S1 of the meandering vibrating portions 105 and 205 are moved from the inner ends 105A and 205A toward the outer ends 105B and 205B. Reduce the curvature. Thereby, it is possible to suppress the breakage of the bending portions 107A to 107F and 207A to 207F.
  • the curvature is decreased from the inner ends 105A and 205A toward the outer ends 105B and 205B.
  • the bias of the displacement stress applied to the bending portions 107A to 107F and 207A to 207F is reduced and distributed evenly, and the displacement stress at the fracture limit is reduced.
  • the outer ends 105B and 205B of the meandering vibration portions 105 and 205 are less likely to move than the inner ends 105A and 205A, a larger displacement stress is applied when swinging around the vibration axis S1.
  • the curvature of the curved portion closer to the outer ends 105B and 205B to which larger displacement stress is applied smaller than the curvature of the curved portion closer to the inner ends 105A and 205A, the deviation of the displacement stress can be reduced.
  • the deflection angle of the mirror unit 6 can be increased.
  • the limit deflection angle of the mirror unit 6 can be increased without lowering the resonance frequency even when using resonance driving. In other words, it is possible to prevent the swing angle from decreasing when the drive frequency is increased and to decrease the resonance frequency when increasing the swing angle.
  • the deflection angle of the mirror portion 6 can be increased by evenly reducing the curvature of the curved portions 107A to 107F and 207A to 207F, or by equally reducing the width of the curved portions 107A to 107F and 207A to 207F.
  • the resonance frequency is lowered.
  • the limit deflection angle of the mirror portion 6 can be set without changing the size or the resonance frequency. Can be increased.
  • the curvature of the inner periphery of the bending portions 107A and 207A is set to 0.0264 ⁇ m ⁇ 1 and the curvature of the inner periphery of the bending portions 107B and 207B is set to 0.0231 ⁇ m ⁇ 1.
  • the curvature of the inner periphery of the bending portions 107C and 207C is set to 0.0213 ⁇ m ⁇ 1
  • the curvature of the inner periphery of the bending portions 107D and 207D is set to 0.0201 ⁇ m ⁇ 1
  • the curvature of the bending portions 107E and 207E is 0 .0196 ⁇ m ⁇ 1
  • the curvatures of the curved portions 107F and 207F are set to 0.0196 ⁇ m ⁇ 1 .
  • the mirror can be obtained without changing the element size and the resonance frequency (30 kHz).
  • a large limit deflection angle ( ⁇ 12.6 degrees) of the portion 6 can be secured.
  • the limit deflection angle of the mirror part of the optical reflecting element of the comparative example in which the curvature of the inner periphery of the curved part is uniformly 0.01428 ⁇ m ⁇ 1 is ⁇ 9.5 degrees.
  • the limit deflection angle of the mirror unit 6 can be increased by about 30% without changing the element size and the resonance frequency (30 kHz) from the comparative example.
  • the resolution and area of the image 22 can be increased at the same time, and the downsizing and performance of the electronic device can be improved.
  • the meandering vibration units 103 and 203 are driven to swing and vibrate at 1 kHz, and the meandering vibration units 105 and 205 are driven to swing and vibrate at 30 kHz. These drive frequencies are not limited to this, and the meandering vibration units 103 and 203 are driven at low speed to oscillate, and the meandering vibration units 105 and 205 are faster than the meandering vibration units 103 and 203. Drives and oscillates.
  • the frame 4 has the two portions 104 and 204 facing each other.
  • the meandering vibration portion 103 has an outer end 105B connected to one of the parts 104 and 204 of the frame body 4 inside the frame body 4, and an inner end 105A opposite to the outer end 105B.
  • the meandering vibration portion 205 has an outer end 205B connected to the other of the two portions 104 and 204 of the frame body 4 inside the frame body 4, and an inner end 205A opposite to the outer end 205B.
  • the mirror unit 6 is supported by the inner ends 105 ⁇ / b> A and 205 ⁇ / b> A of the meandering vibrating units 105 and 205.
  • the meander-shaped vibrating portion 105 has a meander shape having a plurality of curved portions 107A to 107F and a plurality of diaphragms 108A to 108E that are alternately connected between the outer end 105B and the inner end 105A.
  • the meandering vibration portion 205 has a meander shape having a plurality of curved portions 207A to 207F and a plurality of diaphragms 108A to 108E that are alternately connected between the outer end 205B and the inner end 205A.
  • each of the plurality of bending portions 107A to 107F is smaller than the curvature of at least one bending portion closer to the inner end 105A than the bending portion of the plurality of bending portions 107A to 107F.
  • the curvature of each of the plurality of bending portions 107A to 107F is not greater than the curvature of all the one or more bending portions closer to the inner end 105A than the bending portion of the plurality of bending portions 107A to 107F. May be.
  • each of the plurality of bending portions 207A to 207F is smaller than the curvature of any bending portion closer to the inner end 205A than the bending portion of the plurality of bending portions 207A to 207F.
  • the curvature of the inner periphery of each of the plurality of bending portions 107A to 107F is the inner periphery of any of the bending portions closer to the inner end 105A than the bending portion of the plurality of bending portions 107A to 107F. Less than curvature.
  • the curvature of the inner periphery of each of the plurality of bending portions 207A to 207F is equal to the inner periphery of at least one bending portion closer to the inner end 205A than the bending portion of the plurality of bending portions 207A to 207F. Less than the curvature of.
  • the curvature of the inner periphery of each of the plurality of bending portions 207A to 207F is the inner curvature of all one or more bending portions closer to the inner end 205A than the bending portion of the plurality of bending portions 207A to 207F. It may not be larger than the curvature of the circumference.
  • the piezoelectric actuator 9 that vibrates the meandering vibration portion 105 includes a lower electrode 12 provided on the base material 100 constituting the meandering vibration portion 105, a piezoelectric body 13 provided on the lower electrode 12, and a piezoelectric body 13. And at least one upper electrode 14 provided thereon.
  • the lower electrode 12 is provided on the substrate 100 across the plurality of diaphragms 108A to 108E and the plurality of diaphragms 108A to 108E.
  • the piezoelectric body 13 is provided on the lower electrode 12 across the plurality of diaphragms 108A to 108E and the plurality of curved portions 107A to 107F.
  • the upper electrode 14 is provided on the piezoelectric body 13 in at least one of the plurality of diaphragms 108A to 108E.
  • the piezoelectric actuator 9 that vibrates the meandering vibration portion 205 includes a lower electrode 12 provided on the base material 100 constituting the meandering vibration portion 205, a piezoelectric body 13 provided on the lower electrode 12, and a piezoelectric body 13. And at least one upper electrode 14 provided thereon.
  • the lower electrode 12 is provided on the substrate 100 across the plurality of diaphragms 208A to 208E and the plurality of curved portions 207A to 207F.
  • the piezoelectric body 13 is provided on the lower electrode 12 across the plurality of diaphragms 208A to 208E and the plurality of curved portions 207A to 207F.
  • the upper electrode 14 is provided on the piezoelectric body 13 in at least one of the plurality of diaphragms 208A to 208E.
  • the meandering vibration portion 105 vibrates so as to swing around the vibration axis S1.
  • the plurality of curved portions 107A to 107F are located on both sides of the vibration axis S1.
  • the curvature of each of the curved portions 107A to 107F is that of any curved portion closer to the inner end 105A than the curved portion of the curved portions 107A to 107F along the meandering vibration portion 105. Less than curvature.
  • the curvature of the inner periphery of each of the plurality of bending portions 107A to 107F is closer to the inner end 105A than the bending portion of the plurality of bending portions 107A to 107F along the meandering vibration portion 105.
  • the meandering vibration unit 205 vibrates so as to swing around the vibration axis S1.
  • the plurality of curved portions 207A to 207F are located on both sides of the vibration axis S1.
  • the curvature of each of the curved portions 207A to 207F is that of any curved portion closer to the inner end 205A than the curved portion of the curved portions 207A to 207F along the meandering vibration portion 205. Less than curvature.
  • the curvature of the inner circumference of each of the plurality of bending portions 207A to 207F is closer to the inner end 205A than the bending portion of the plurality of bending portions 207A to 207F along the meandering vibration portion 205. It is smaller than the curvature of the inner periphery of any curved part.
  • the curvature (particularly the inner circumference) of the bending portion closer to the outer end 105B along the meandering vibration portion 105 is made smaller.
  • the curvature of the bending portion (particularly the inner circumference) closer to the outer end 205B along the meandering vibration portion 205 is made smaller.
  • the plurality of diaphragms 108A to 108E of the meandering vibration section 105 are arranged along the vibration axis S1.
  • the plurality of diaphragms 208A to 208E of the meandering diaphragm 205 are arranged along the vibration axis S1.
  • the plurality of upper electrodes 14 are provided on the piezoelectric body 13 in every other diaphragm 108A, 108C, 108E of the plurality of diaphragms 108A to 108E arranged.
  • the plurality of upper electrodes 14 are provided on the piezoelectric body 13 in every other diaphragm 208A, 208C, 208E of the plurality of diaphragms 208A to 208E arranged.
  • the wiring 15 is provided on the piezoelectric body 13 in the diaphragms 108B and 108D in which the plurality of upper electrodes 14 among the plurality of diaphragms 108A to 108E are not provided, and connects the plurality of upper electrodes 14 together.
  • the wiring 15 is provided on the piezoelectric body 13 in the diaphragms 208B and 208D in which the plurality of upper electrodes 14 among the plurality of diaphragms 208A to 208E are not provided, and connects the plurality of upper electrodes 14.
  • the frame body 2 has two portions 102 and 202 facing each other.
  • the meandering vibration portion 103 includes an outer end 103B connected to one of the two portions 102 and 202 of the frame 2, and an inner end 103A that is positioned on the opposite side of the outer end 103B and supports the frame 4.
  • the meandering vibration portion 203 includes an outer end 203B connected to the other of the two portions 102 and 202 of the frame 2, and an inner end 203A that is positioned on the opposite side of the outer end 203B and supports the frame 4.
  • the high frequency driving unit 1001B has been described mainly.
  • the meandering vibration units 103 and 203 constituting the low frequency driving unit 1001C have the same structure with respect to the curvature of the meandering vibration units 105 and 205 and the bending portion. By doing so, the same effect can be obtained. Since the outer ends 103B and 203B of the meandering vibration units 103 and 203 are configured to be fixed to the mounting base 1001A, they are less likely to move than the inner ends 103A and 203A, and a stronger stress is applied during vibration.
  • the inner periphery and the outer periphery of the plurality of curved portions of the meander-shaped vibrating portions 103 and 203 have a shape that gently curves such as an arc shape or an elliptic arc shape.
  • the curvature (particularly the inner circumference) of the bending portion closer to the outer end 103B along the meandering vibration portion 103 is made smaller.
  • the curvature (particularly the inner circumference) of the bending portion closer to the outer end 203B along the meandering vibration portion 203 is further reduced.
  • the curvature (particularly of the inner circumference) of each of the plurality of bending portions of the meandering vibration portion 103 is that of any bending portion closer to the inner end 103A than the bending portion of the plurality of bending portions. Make it smaller than the curvature (especially the inner circumference).
  • the curvature (particularly of the inner circumference) of each of the plurality of bending portions of the meandering vibration portion 203 is that of any of the bending portions closer to the inner end 203A than the bending portion of the plurality of bending portions. Make it smaller than the curvature (especially the inner circumference).
  • the number of diaphragms of the meander-type vibrating portions 103 and 203 and the meander-type vibrating portions 105 and 205 is five, but the same effect can be obtained if the number is smaller or larger. . Further, the same effect can be obtained for the connection positions of the frames 2 and 4 and the meandering vibration units 103 and 203 and the meandering vibration units 105 and 205 on the vibration axes S1 and S2 and other cases. .
  • FIG. 5A is a perspective view of a main part of the high-frequency driving unit 1001B of the optical reflecting element 1 according to Embodiment 2 of the present invention.
  • 5B is a cross-sectional view taken along line 5B-5B of the high-frequency drive unit 1001B shown in FIG. 5A.
  • 5A and 5B the same reference numerals are assigned to the same portions as those of high-frequency drive unit 1001B in the first embodiment shown in FIGS. 3A and 3B.
  • the upper electrodes 14 and the monitor electrodes 16 are alternately arranged on the piezoelectric bodies 13 of the meandering vibration units 105 and 205.
  • the monitor electrode 16 is laminated on the piezoelectric body 13 like the upper electrode 14.
  • the upper electrode 14 is provided on the piezoelectric body 13 in every other diaphragm 108A, 108C, 108E among the diaphragms 108A to 108E.
  • the monitor electrode 16 is provided on the piezoelectric body 13 together with the wiring 15.
  • the wiring 17 that connects the monitor electrode 16 is disposed on the piezoelectric body 13 together with the upper electrode 14.
  • the monitor electrode 16 is laminated on the piezoelectric body 13 like the upper electrode 14.
  • the upper electrode 14 is provided on the piezoelectric body 13 in every other diaphragm 208A, 208C, 208E of the diaphragms 208A to 208E.
  • the monitor electrode 16 is provided on the piezoelectric body 13 together with the wiring 15.
  • the wiring 17 that connects the monitor electrode 16 is disposed on the piezoelectric body 13 together with the upper electrode 14.
  • the width of the monitor electrode 16 is wider than the wirings 15 and 17.
  • the upper electrode 14 is wider than the wirings 15 and 17.
  • the monitor electrode 16 can detect the deformation of the piezoelectric body 13 as an electric signal, and outputs a signal corresponding to the vibration of the meandering vibration sections 105 and 205. Since the upper electrode 14 and the monitor electrode 16 are alternately arranged in the diaphragms 108A to 108E and 208A to 208E, the signal output from the monitor electrode 16 has a phase opposite to that of the AC voltage applied to the upper electrode 14. Become. Therefore, by inputting this signal to the upper electrode 14 via the feedback circuit, the meandering vibration units 105 and 205 can be self-excited and driven with high accuracy.
  • the piezoelectric actuator 9 is arranged every other vibration plate 108A to 108E, 208A to 208E. Therefore, the number of electrodes to which the wirings 15 and 17 routed by the meandering vibration units 105 and 205 are connected may be two, including the monitor electrode 16 and the upper electrode 14. Accordingly, an increase in the number of electrodes can be suppressed, and the productivity of the small optical reflection element 1 can be improved.
  • the plurality of wirings 15 that connect the plurality of upper electrodes 14 are the piezoelectric bodies 13 in the plurality of diaphragms 108B and 108D that are not provided with the plurality of upper electrodes 14 among the plurality of diaphragms 108A to 108E. It is provided above.
  • the plurality of monitor electrodes 16 that output signals according to the vibration of the meandering vibration unit 105 are arranged on the piezoelectric body 13 in the plurality of diaphragms 108B and 108D provided with the wiring 15 of the plurality of diaphragms 108A to 108E. Are provided with wiring 15 respectively.
  • the plurality of wirings 15 that connect the plurality of upper electrodes 14 are provided on the piezoelectric body 13 in the plurality of diaphragms 208B and 208D that are not provided with the upper electrode 14 among the plurality of diaphragms 208A to 208E.
  • the plurality of monitor electrodes 16 that output signals according to the vibration of the meandering vibration unit 205 are the piezoelectric body 13 in the plurality of diaphragms 208B and 208D provided with the wiring 15 of the plurality of diaphragms 208A to 208E. Each of them is provided together with the wiring 15.
  • the wiring 17 connecting the plurality of monitor electrodes 16 is provided on the piezoelectric body 13 in the diaphragm 108C (108E) provided with at least one of the plurality of upper electrodes 14 among the plurality of diaphragms 108A to 108E. ing.
  • the wiring 17 connecting the plurality of monitor electrodes 16 is provided on the piezoelectric body 13 in the diaphragm 208C (208E) provided with at least one of the plurality of upper electrodes 14 among the plurality of diaphragms 208A to 208E. ing.
  • the meandering vibration units 103 and 203 constituting the low frequency driving unit 1001C also have the same configuration including the piezoelectric actuator 9, the monitor electrode 16, and the wirings 15 and 17, so that the same operation and the same as the high frequency driving unit 1001B An effect is obtained.
  • the optical reflecting element in the present invention can increase the amplitude angle of the mirror section and improve the resolution, and can be applied to an image projection apparatus such as a head-up display, a head-mounted display, or a laser printer.

Abstract

 光学反射素子は、枠体と、枠体に接続された外端とを有するミアンダ形振動部と、ミアンダ形振動部の内端に支持されたミラー部とを備える。ミアンダ形振動部は、交互に連結する複数の湾曲部と複数の振動板とを有するミアンダ形状を有する。複数の湾曲部のそれぞれの湾曲部の曲率は、内端により近い少なくとも1つの湾曲部の曲率より小さい。この光学反射素子では、ミラー部の振れ角を大きくすることができる。

Description

光学反射素子
 本発明は、ヘッドアップディスプレイやヘッドマウントディスプレイ等の画像投影装置に用いられる光学反射素子に関する。
 圧電駆動式の光学反射素子において、投影画像の解像度を上げるために高周波駆動部を高周波化しても、ミラー部の所定の振れ角を確保できる光学反射素子が望まれている。
 その要望に応える一つの方法として、ミアンダ形振動部を用いた光学反射素子が知られている。
 図6は、特許文献1に記載された従来の光学反射素子501の斜視図である。光学反射素子501の高周波駆動部502は、ミラー部30と、ミラー部30を介して互いに対向する一対のミアンダ形振動部31と、一対のミアンダ形振動部31およびミラー部30の外周を囲う枠体32とを備えている。一対のミアンダ形振動部31のそれぞれの一端はミラー部30に連結する。一対のミアンダ形振動部31のそれぞれの他端は枠体32に連結する。ミアンダ形振動部31上には、下部電極と、下部電極上に設けられた圧電体と、圧電体上に設けられた上部電極とを有する駆動部が設けられている。下部電極と上部電極を介して圧電体に交流電圧を印加し共振駆動することで、ミアンダ形振動部31の一端に連結させたミラー部30を揺動させている。
 高周波駆動部502の振動部31をミアンダ形状にすることで、振動部31の変位は蓄積され、さらに共振駆動を利用することで、より低電圧でミラー部30の振れ角を大きくでき、所定の振れ角を確保できる。
 従来の光学反射素子501では、ミラー部30を大きく揺動させようとすると、ミアンダ形振動部31の湾曲部が破壊する場合があり、実質的にはミラー部30の振れ角をそれほど拡大することができない。
特開2009-93120号公報
 光学反射素子は、枠体と、枠体の内側に接続された外端を有するミアンダ形振動部と、ミアンダ形振動部の内端に支持されたミラー部とを備える。ミアンダ形振動部は、交互に連結する複数の湾曲部と複数の振動板とを有するミアンダ形状を有する。複数の湾曲部のそれぞれの湾曲部の曲率は、内端により近い少なくとも1つの湾曲部の曲率より小さい。
 この光学反射素子では、ミラー部の振れ角を大きくすることができる。
図1は本発明の実施の形態1における光学反射素子の斜視図である。 図2は図1に示す光学反射素子の高周波駆動部の斜視図である。 図3Aは図2に示す高周波駆動部の要部斜視図である。 図3Bは図3Aに示す高周波駆動部の線3B-3Bにおける断面図である。 図4は本発明の実施の形態1における光学反射素子の動作を示す斜視図である。 図5Aは本発明の実施の形態2における光学反射素子の高周波駆動部の要部斜視図である。 図5Bは図5Aに示す高周波駆動部の線5B-5Bにおける断面図である。 図6は従来の光学反射素子の斜視図である。
 (実施の形態1)
 図1は本発明の実施の形態1における光学反射素子1の斜視図である。光学反射素子1は、枠体2と、枠体2に接続されたミアンダ形振動部103、203と、ミアンダ形振動部103、203で支持されている枠体4と、枠体4に接続されたミアンダ形振動部105、205と、ミアンダ形振動部105、205で支持されたミラー部6を備える。枠体2は長方形枠形状を有し、中央空間2Pを介して対向する部分102、202を有する。部分102、202は長方形枠形状の短辺である。枠体2は搭載台1001Aに固定されるように構成されている。ミアンダ形振動部103、203は枠体2の部分102、202に接続されて支持されている外端103B、203Bと、外端103B、203Bの反対側の内端103A、203Aをそれぞれ有する。ミアンダ形振動部103、203は外端103B、203Bから内端103A、103Bまで振動軸S2に沿ってミアンダ形状に延びる。枠体4は長方形枠形状を有し、中央空間4Pを介して互いに対向する部分104、204を有する。部分104、204は長方形枠形状の短辺である。枠体4はミアンダ形振動部103、203の内端103A、203Aに接続されて支持され、振動軸S2を中心に揺動する可動枠体である。ミアンダ形振動部105、205は、枠体4の部分104、204に接続されて支持されている外端105B、205Bと、外端105B、205Bの反対側の内端105A、205Aをそれぞれ有する。ミアンダ形振動部105、205は外端105B、205Bから内端105A、105Bまで、振動軸S2と直角の振動軸S1に沿ってミアンダ形状に延びる。ミラー部6は、ミアンダ形振動部105、205の内端105A、205Aに接続されて支持され、振動軸S1を中心に揺動する。枠体4が振動軸S2を中心に揺動するので、ミラー部6は振動軸S1、S2を中心に揺動する。ミアンダ形振動部103、203と枠体4は低周波数で振動する低周波駆動部1001Cを構成する。ミアンダ形振動部105、205とミラー部6は、低周波駆動部1001Cより高い周波数で振動する高周波駆動部1001Bを構成する。
 図2は図1に示す光学反射素子1の高周波駆動部1001Bの斜視図である。ミアンダ形振動部105は、湾曲している湾曲部107A~107Fと、湾曲部107A~107Fと交互に設けられて湾曲部107A~107Fをミアンダ形状に連結する直線形状を有する振動板108A~108Eを有する。湾曲部107A~107Fはこの順で内端105Aから外端105Bに向かう方向にミアンダ形振動部105に沿って配列され、振動軸S1の両側に位置する。内端105Aから外端105Bへ向かうにつれて湾曲部107A~107Fの曲率を小さくしている。実施の形態1では、湾曲部107A、107B、107C、107D、107E、107Fの曲率はそれぞれ0.0264μm-1、0.0231μm-1、0.0213μm-1、0.0201μm-1、0.0196μm-1、0.0196μm-1である。
 同様に、ミアンダ形振動部205は、湾曲している湾曲部207A~207Fと、湾曲部207A~207Fと交互に設けられて湾曲部207A~207Fをミアンダ形状に連結する直線形状を有する振動板208A~208Eを有する。湾曲部207A~207Fはこの順で内端205Aから外端205Bに向かう方向にミアンダ形振動部205に沿って配列され、振動軸S1の両側に位置する。内端205Aから外端205Bへ向かうにつれて湾曲部207A~207Fの曲率を小さくしている。実施の形態1では、湾曲部207A、207B、207C、207D、207E、207Fの曲率はそれぞれ湾曲部107A、107B、107C、107D、107E、107Fと同じ0.0264μm-1、0.0231μm-1、0.0213μm-1、0.0201μm-1、0.0196μm-1、0.0196μm-1である。
 湾曲部107A~107F、207A~207Fの内周と外周は円弧形状や楕円弧形状等のなだらかに曲がる形状を有する。
 図3Aは図2に示す高周波駆動部1001Bの要部斜視図である。ミアンダ形振動部105の振動板108A~108Eは振動軸S1に沿って配列され、それらの1つおきの振動板108A、108C、108Eには圧電アクチュエータ9が配置されている。圧電アクチュエータ9が設けられていない振動板108B、108Dには配線15が設けられている。配線15は振動板108A、108C、108Eにそれぞれ設けられている圧電アクチュエータ9の上部電極14を連結する。同様に、ミアンダ形振動部205の振動板208A~208Eは振動軸S1に沿って配列され、それらの1つおきの振動板208A、208C、208Eには圧電アクチュエータ9が配置されている。圧電アクチュエータ9が設けられていない振動板208B、208Dには配線15が設けられている。配線15は振動板208A、208C、208Eにそれぞれ設けられている圧電アクチュエータ9の上部電極14を連結する。上部電極14の幅は配線15より広い。
 図3Bは図3Aに示す高周波駆動部1001Bの線3B-3Bにおける断面図である。ミアンダ形振動部105、205は、シリコン基板10と、シリコン基板10上に設けられたシリコン酸化膜11よりなる基材100と、基材100上に設けられたアクチュエータ9と、アクチュエータ9の上部電極14を接続する配線15とで構成されている。ミアンダ形振動部105(205)すなわち基材100の表面100A上には下部電極12が設けられている。下部電極12上には圧電体13が設けられている。圧電アクチュエータ9は、振動板108A、108C、108E、208A、208C、208Eにおいて、下部電極12と、圧電体13と、圧電体13上に設けられた上部電極14よりなる。振動板108B、108D、208B、208Dにおいて、配線15は圧電体13上に設けられている。シリコン基板10とシリコン酸化膜11は、絶縁性を有する表面100Aを有する基材100を構成する。振動板108A、108C、108E、208A、208C、208Eには上部電極14が形成されている。振動板108A、108C、108E、208A、208C、208Eと隣り合う振動板108B、108D、208B、208Dにおいて、圧電体13上には上部電極14より幅の狭い配線15が形成されている。
 なお、実施の形態1におけるミアンダ形振動部105、205では、湾曲部107A~107F、207A~207F、振動板108A~108E、208A~208Eに亘って基材100上方に圧電体13が設けてられている。しかし、圧電体13は少なくとも振動板108A、108C、108E、208A、208C、208Eに設けられていればよく、湾曲部107A~107F、207A~207Fには設けられていなくてもよい。この場合、アクチュエータ9の上部電極14を接続する配線15と下部電極12との間に絶縁層を設けることで配線15と下部電極12との間の短絡を防止する。
 光学反射素子1の基材100として本実施の形態1はシリコン基板10とシリコン酸化膜11を用いたが、金属、ガラスまたはセラミック基板などの弾性、機械的強度および高いヤング率を有する材料で構成することが生産性の観点から好ましい。例えば、金属、水晶、ガラス、石英またはセラミック材料を用いることが機械的特性と入手性の観点から好ましい。さらに、シリコンの他に、チタン、ステンレス、エリンバー、黄銅合金などの金属を用いれば、振動特性、加工性に優れた光学反射素子1を実現できる。基材100が絶縁性を有する場合には、その表面にシリコン酸化膜11等の絶縁膜を設ける必要はない。
 圧電体13に用いる圧電体材料としては、チタン酸ジルコン酸鉛(PZT)などの高い圧電定数を有する材料が好ましい。この場合、下部電極12として白金を用いることにより、圧電体13の結晶性を向上させることができる。上部電極14としては、チタン/金等を用いることができる。
 実施の形態1における光学反射素子1の製造方法について以下に説明する。
 まず始めに、基材100として、厚みが約0.5mmのシリコン基板10を準備し、シリコン基板10上に絶縁膜としてシリコン酸化膜11を形成する。そしてシリコン酸化膜11上にスパッタリング法または蒸着法などの薄膜プロセスを用いて下部電極12を積層する。このとき、シリコン基板10の厚みは変えても良い。厚みを変えることにより、固有周波数を調整できる。
 その後、下部電極12の上にスパッタリング法などによって圧電体13を形成する。このとき、圧電体13と下部電極12との間には、PbとTiを含む酸化物誘電体よりなる配向制御層を形成することが好ましく、PLMTからなる配向制御層を形成することがより好ましい。これによって、圧電体13の結晶配向性がより高まり、圧電特性に優れた圧電アクチュエータ9を形成できる。
 次に、圧電体13の上にチタン膜を形成し、チタン膜上に金膜を形成することで上部電極14と配線15となるチタン/金膜を形成する。
 このとき、金膜の下層のチタン膜はPZT薄膜などの圧電体13との密着力を高めるために形成しており、チタンの他にクロムなどの金属を用いることができる。これによって、圧電体13との密着性に優れ、かつ、金電極とは強固な拡散層を形成していることから、密着強度の高い圧電アクチュエータ9を形成することができる。
 なお、実施の形態1では、白金の下部電極12の厚みは0.2μm、圧電体13の厚みは3.5μm、上部電極14のチタン膜の厚みは0.01μmであり、金膜の厚みは0.3μmである。
 次に、下部電極12、圧電体13、上部電極14および配線15を、フォトリソ技術を用いてエッチングし、パターニングする。
 このとき、上部電極14および配線15をエッチングするエッチング液としてはヨウ素/ヨウ化カリウム混合溶液と水酸化アンモニウム、過酸化水素混合溶液からなるエッチング液を用いて、上部電極14および配線15の所定の電極パターンを形成することができる。
 また、下部電極12、圧電体13をエッチングする方法としては、ドライエッチング法とウエットエッチング法のいずれかの方法、あるいはこれらを組み合わせた方法などを用いることができる。
 ドライエッチング法であればフルオロカーボン系のエッチングガス、あるいはSFガスなどを用いることができる。
 その他、圧電体13を、沸酸、硝酸、酢酸および過酸化水素の混合溶液を用いてウエットエッチングし、パターニングし、その後、さらに、ドライエッチングによって下部電極12をエッチングしてパターニングしてもよい。
 次に、XeFガスを用いてシリコン基板10を等方的にドライエッチングすることによって不必要な部分を除去し、基材100をパターニングすることで、図1に示す形状の光学反射素子1を形成することができる。
 なお、シリコン基板10をより高精度にエッチングする場合は、シリコンの異方性を利用したドライエッチングが好ましい。この場合は、エッチングを促進するSFガスとエッチングを抑制するCガスの混合ガスを用いるか、あるいはこれらのガスを交互に切り替えて用いることにより、表面に直角の方向に直線的にエッチングできる。
 以上のような製造方法によって、小型で、高精度な光学反射素子1を一括して効率よく作製することができる。
 実施の形態1では、ミラー部6、ミアンダ形振動部105、205、ミアンダ形振動部103、203、枠体4、枠体2の基材を、シリコン基板10(基材100)から一体的に形成する。これによって、安定した振動特性と、生産性に優れた光学反射素子1を実現することができる。
 なお、ミラー部6は基材100の表面を鏡面研磨することによっても形成できるが、光の反射特性に優れた金や銀、アルミニウムなどの金属薄膜を基材100の表面にミラー膜として形成してもよい。実施の形態1では、上部電極14として金の膜を形成するので、この金の膜をそのままミラー膜として用いることができ、光学反射素子1の生産効率を高めることができる。
 実施の形態1における光学反射素子1の動作について下記に説明する。
 まず、図3Bに示すミアンダ形振動部105、205の下部電極12を接地し、上部電極14には、光学反射素子1の共振周波数に相当する周波数(30kHz)の交流電圧を印加する。
 交流電圧の印加により、図3Aに示す幅の広い上部電極14が配置されている振動板108A、108C、108E、208A、208C、208Eでは、下部電極12と上部電極14との間に挟まれた圧電体13に電圧が印加される。これにより、振動板108A~108E、208A~208Eは互いに反対の方向に交互に凸状に湾曲するように変位する。
 この時、振動板108A、108C、108E、208A、208C、208Eの隣の振動板108B、108D、208B、208Dに配置されている配線15にも上部電極14と同じ交流電圧が印加される。しかし、配線15は上部電極14より幅が狭いので、振動板108B、108D、208B、208Dに配置された圧電体13には電圧が殆ど印加されない。したがって振動板108B、108D、208B、208Dは、共振の原理により、隣り合う振動板108A、108C、108E、208A、208C、208Eと180度異なる反対の方向に変位する。
 実施の形態1では、1つの上部電極14で、振動板108A~108E、208A~208Eで互いに隣り合う振動板が180度異なる方向に変位する。したがって、ミアンダ形振動部105、205では、振動板108A~108E、208A~208Eの数が増えるにしたがって、外端105B、205Bから振動軸S1の周りで変位が蓄積され、1つの上部電極14でも内端105A、205Aが大きく変位し揺動する。
 また、実施の形態1では、圧電アクチュエータ9に交流電圧を印加し共振させるので、振動板108A、108C、108E、208A、208C、208Eの振動の半周期毎に湾曲する方向が逆になり、変位量も倍増する。
 図2に示すように、ミアンダ形振動部105、205の内端105A、205Aにミラー部6が連結しているので、ミアンダ形振動部105、205の振動エネルギーがミラー部6に伝播し、ミラー部6が振動軸S1を中心に揺動する。
 図1に示すように、低周波駆動部1001Cを構成するミアンダ形振動部103、203の振動軸S2はミアンダ形振動部105、205の振動軸S1と直交する。ミアンダ形振動部103、203はミアンダ形振動部105、205と同様な構造、同様な動作を行うことにより振動軸S2を中心に枠体4を揺動させることができ、枠体4を介して振動軸S2を中心にミラー部6を揺動させることができる。実施の形態1では、1kHzの周波数で振動軸S2を中心に枠体4とミラー部6を共振揺動する。
 図4は実施の形態1における光学反射素子1の動作を示す斜視図であり、投影装置1001を示す。投影装置1001は、光学反射素子1と、光学反射素子1のミラー部6に入射光19を入射させる光源18と、光学反射素子1を搭載して固定する搭載台1001Aとを備える。光源18からミラー部6へ入射した入射光19はミラー部6で反射して反射光20となり、反射光20はスクリーン21に達する。ミラー部6が振動軸S2を中心に揺動することで反射光20を低い周波数で垂直方向に振り、ミラー部6が振動軸S1を中心に揺動することで反射光20を垂直方向より高い周波数で水平方向に振り、反射光20を2軸走査することができる。ミラー部6により垂直方向と水平方向に振られた反射光20はスクリーン21を走査してスクリーン21に画像22を映し出すことができる。なお、ミラー部6が垂直方向により低い周波数で反射光20を振ることで画像22の解像度を高めることができる。
 ミアンダ形振動部105、205が振動する振動軸S1とミアンダ形振動部103、203が振動する振動軸S2とはミラー部6上の点6C(図1参照)で交わっている。したがって、ミラー部6の点6Cは光源18や搭載台1001A、スクリーン21に対して変位しない不動点となる。点6Cに入射光19を入射することで、入射光19と反射光20との光路長が一定となり、高精度な画像22を投影することができる。
 光学反射素子1は大きい角度でミラー部6を揺動させることができる。したがって、光学反射素子1とスクリーン21との距離を変えない場合は、高解像度の画像22の面積を拡大することができる。また、画像22の面積を変えない場合には、光学反射素子1とスクリーン21との距離を縮めることができる。したがって、光学反射素子1を、例えばヘッドアップディスプレイやヘッドマウントディスプレイ等の投影装置1001に利用することで、電子機器を小型しつつ、映像を大画面で投影できる。
 なお、高周波駆動部1001Bの構造を備えて低周波駆動部1001Cを有しない投影装置は、一つの振動軸S1を中心にミラー部6を揺動するので、反射光を一軸走査させることができる。これは、例えばレーザープリンタ等に利用できる。
 図6に示す従来の光学反射素子501では、ミラー部30を大きく揺動させようとすると、ミアンダ形振動部31の湾曲部が破壊する場合がある。ミアンダ形振動部31のそれぞれの湾曲部に掛かる変位応力に偏りがあり、振動を繰り返すことで、最も大きな変位応力を受ける湾曲部から劣化してその湾曲部が壊れる。そのため、ミアンダ形振動部31を用いた従来の光学反射素子501では、実質的にはミラー部30の振れ角をそれほど拡大することができない。
 実施の形態1における光学反射素子1では、ミアンダ形振動部105、205の振動軸S1の両側の湾曲部107A~107F、207A~207Fにおいて、内端105A、205Aから外端105B、205Bへ向かうにつれて曲率を小さくする。これにより、湾曲部107A~107F、207A~207Fの破壊を抑制することができる。
 具体的には、湾曲部107A~107F、207A~207Fにおいて、内端105A、205Aから外端105B、205Bへ向かうにつれて曲率を小さくする。これにより、高周波駆動部1001Bのミアンダ形振動部105、205において、湾曲部107A~107F、207A~207Fに掛かる変位応力の偏りを低減し、均等になるように分散させ、破壊限界の変位応力を低減できる。湾曲部107A~107F、207A~207Fの曲率は小さいほど、そこにかかる変位応力は小さくなる。ミアンダ形振動部105、205の外端105B,205Bは内端105A、205Aより動きにくいので、振動軸S1を中心に揺動する際により大きな変位応力がかかる。より大きな変位応力がかかる外端105B、205Bにより近い湾曲部の曲率を内端105A、205Aにより近い湾曲部の曲率に比べて小さくすることで、変位応力の偏りを低減することができる。
 これにより、高周波駆動部1001Bの駆動周波数を高くしても、ミラー部6の振れ角を増大することが可能となる。
 また、実施の形態1の光学反射素子1では、共振駆動を利用する場合でも共振周波数を低下させることなく、ミラー部6の限界振れ角を増大させることができる。すなわち、駆動周波数を高くしようとすると振れ角が小さくなり、振れ角を増大させようとすると共振周波数が低下することを防止できる。
 例えば、ミアンダ形振動部105、205を長くすることで、振れ角の増大させることができるが、光学反射素子1のサイズが大きくなる上に、共振周波数が低下する。また、湾曲部107A~107F、207A~207Fの曲率を均等に小さくする、または湾曲部107A~107F、207A~207Fの幅を均等に小さくすることでもミラー部6の振れ角の増大させることができるが、共振周波数が低下する。
 しかし、実施の形態1の光学反射素子1では、湾曲部107A~107F、207A~207Fの曲率を前述のように設定することで、サイズや共振周波数を変えずにミラー部6の限界振れ角を増大させることができる。
 具体的には、実施の形態1では、湾曲部107A、207Aの内周の曲率を0.0264μm-1に設定し、湾曲部107B、207Bの内周の曲率を0.0231μm-1に設定し、湾曲部107C、207Cの内周の曲率を0.0213μm-1に設定し、湾曲部107D、207Dの内周の曲率を0.0201μm-1に設定し、湾曲部107E、207Eの曲率を0.0196μm-1に設定し、湾曲部107F、207Fの曲率を0.0196μm-1に設定する。このように、ミアンダ形振動部105、205に沿って外端105B、205Bにより近くに位置する湾曲部の曲率を徐々に小さくすることで、素子サイズや共振周波数(30kHz)を変えずに、ミラー部6の大きな限界振れ角(±12.6度)を確保できる。
 例えば、湾曲部の内周の曲率を一律に0.01428μm-1とした比較例の光学反射素子のミラー部の限界振れ角は±9.5度である。実施の形態1における光学反射素子1では、比較例から素子サイズや共振周波数(30kHz)を変えずに、ミラー部6の限界振れ角を30%程度増大させることができる。これによりは、画像22の高解像度化と面積拡大を同時に実現できるものであり、電子機器の小型化や性能を向上させる。
 実施の形態1においては、ミアンダ形振動部103、203を1kHzで駆動し揺動振動させ、また、ミアンダ形振動部105、205を30kHzで駆動して揺動振動させる。これらの駆動周波数については、これに限定されるものではなく、ミアンダ形振動部103、203が低速で駆動され揺動振動し、ミアンダ形振動部105、205がミアンダ形振動部103、203より高速で駆動され揺動振動する。
 上述のように、枠体4は、互いに対向する2つの部分104,204を有する。ミアンダ形振動部103は、枠体4の内側において枠体4の部分104、204のうちの一方に接続された外端105Bと、外端105Bの反対側の内端105Aとを有する。ミアンダ形振動部205は、枠体4の内側において枠体4の2つの部分104、204の他方に接続された外端205Bと、外端205Bの反対側の内端205Aとを有する。ミラー部6は、ミアンダ形振動部105、205の内端105A、205Aに支持されている。ミアンダ形振動部105は、外端105Bと内端105Aとの間で交互に連結する複数の湾曲部107A~107Fと複数の振動板108A~108Eとを有するミアンダ形状を有する。ミアンダ形振動部205は、外端205Bと内端205Aとの間で交互に連結する複数の湾曲部207A~207Fと複数の振動板108A~108Eとを有するミアンダ形状を有する。複数の湾曲部107A~107Fのそれぞれの湾曲部の曲率は、複数の湾曲部107A~107Fのうちのその湾曲部に比べて内端105Aにより近い少なくとも1つの湾曲部の曲率より小さい。複数の湾曲部107A~107Fのそれぞれの湾曲部の曲率は、複数の湾曲部107A~107Fのうちのその湾曲部に比べて内端105Aにより近い全ての1つ以上の湾曲部の曲率より大きくなくてもよい。複数の湾曲部207A~207Fのそれぞれの湾曲部の曲率は、複数の湾曲部207A~207Fのうちのその湾曲部に比べて内端205Aにより近いいずれの湾曲部の曲率より小さい。特に、複数の湾曲部107A~107Fのそれぞれの湾曲部の内周の曲率は、複数の湾曲部107A~107Fのうちのその湾曲部に比べて内端105Aにより近いいずれの湾曲部の内周の曲率より小さい。特に、複数の湾曲部207A~207Fのそれぞれの湾曲部の内周の曲率は、複数の湾曲部207A~207Fのうちのその湾曲部に比べて内端205Aにより近い少なくとも1つの湾曲部の内周の曲率より小さい。複数の湾曲部207A~207Fのそれぞれの湾曲部の内周の曲率は、複数の湾曲部207A~207Fのうちのその湾曲部に比べて内端205Aにより近い全ての1つ以上の湾曲部の内周の曲率より大きくなくてもよい。
 ミアンダ形振動部105を振動させる圧電アクチュエータ9は、ミアンダ形振動部105を構成する基材100上に設けられた下部電極12と、下部電極12上に設けられた圧電体13と、圧電体13上に設けられた少なくとも1つの上部電極14とを有する。下部電極12は、複数の振動板108A~108Eと、複数の振動板108A~108Eに亘って基材100上に設けられている。圧電体13は、複数の振動板108A~108Eと複数の湾曲部107A~107Fに亘って下部電極12上に設けられている。上部電極14は、複数の振動板108A~108Eの少なくとも1つにおいて圧電体13上に設けられている。ミアンダ形振動部205を振動させる圧電アクチュエータ9は、ミアンダ形振動部205を構成する基材100上に設けられた下部電極12と、下部電極12上に設けられた圧電体13と、圧電体13上に設けられた少なくとも1つの上部電極14とを有する。下部電極12は、複数の振動板208A~208Eと、複数の湾曲部207A~207Fに亘って基材100上に設けられている。圧電体13は、複数の振動板208A~208Eと複数の湾曲部207A~207Fに亘って下部電極12上に設けられている。上部電極14は、複数の振動板208A~208Eの少なくとも1つにおいて圧電体13上に設けられている。
 ミアンダ形振動部105は振動軸S1を中心に揺動するように振動する。複数の湾曲部107A~107Fは振動軸S1の両側に位置する。複数の湾曲部107A~107Fのそれぞれの湾曲部の曲率は、ミアンダ形振動部105に沿って複数の湾曲部107A~107Fのうちのその湾曲部に比べて内端105Aにより近いいずれの湾曲部の曲率より小さい。特に、複数の湾曲部107A~107Fのそれぞれの湾曲部の内周の曲率は、ミアンダ形振動部105に沿って複数の湾曲部107A~107Fのうちのその湾曲部に比べて内端105Aにより近いいずれの湾曲部の内周の曲率より小さい。ミアンダ形振動部205は振動軸S1を中心に揺動するように振動する。複数の湾曲部207A~207Fは振動軸S1の両側に位置する。複数の湾曲部207A~207Fのそれぞれの湾曲部の曲率は、ミアンダ形振動部205に沿って複数の湾曲部207A~207Fのうちのその湾曲部に比べて内端205Aにより近いいずれの湾曲部の曲率より小さい。特に、複数の湾曲部207A~207Fのそれぞれの湾曲部の内周の曲率は、ミアンダ形振動部205に沿って複数の湾曲部207A~207Fのうちのその湾曲部に比べて内端205Aにより近いいずれの湾曲部の内周の曲率より小さい。ミアンダ形振動部105の複数の湾曲部107A~107Fにおいて、ミアンダ形振動部105に沿って外端105Bにより近い湾曲部の(特に内周の)曲率をより小さくする。また、ミアンダ形振動部205の複数の湾曲部207A~207Fにおいて、ミアンダ形振動部205に沿って外端205Bにより近い湾曲部の(特に内周の)曲率をより小さくする。
 ミアンダ形振動部105の複数の振動板108A~108Eは振動軸S1に沿って配列されている。ミアンダ形振動部205の複数の振動板208A~208Eは振動軸S1に沿って配列されている。複数の上部電極14は、配列された複数の振動板108A~108Eの1つおきの振動板108A、108C、108Eにおいて圧電体13上に設けられている。同様に、複数の上部電極14は、配列された複数の振動板208A~208Eの1つおきの振動板208A、208C、208Eにおいて圧電体13上に設けられている。
 配線15は複数の振動板108A~108Eのうちの複数の上部電極14が設けられていない振動板108B、108Dにおいて圧電体13上に設けられて、複数の上部電極14を連結する。配線15は、複数の振動板208A~208Eのうちの複数の上部電極14が設けられていない振動板208B、208Dにおいて圧電体13上に設けられて、複数の上部電極14を連結する。
 枠体2は、互いに対向する2つの部分102、202を有する。ミアンダ形振動部103は、枠体2の2つの部分102、202のうちの一方に接続された外端103Bと、外端103Bの反対側に位置して枠体4を支持する内端103Aとを有する。ミアンダ形振動部203は、枠体2の2つの部分102、202のうちの他方に接続された外端203Bと、外端203Bの反対側に位置して枠体4を支持する内端203Aとを有する。
 実施の形態1では、高周波駆動部1001Bを中心に説明したが、低周波駆動部1001Cを構成するミアンダ形振動部103、203もミアンダ形振動部105、205と湾曲部の曲率に関して同様な構造にすることで、同様の効果が得られる。ミアンダ形振動部103、203の外端103B、203Bは搭載台1001Aに固定されるように構成されているので、内端103A、203Aより動きにくく、振動の際により強い応力がかかる。ミアンダ形振動部103、203の複数の湾曲部の内周と外周は円弧形状や楕円弧形状等のなだらかに曲がる形状を有する。ミアンダ形振動部103の複数の湾曲部において、ミアンダ形振動部103に沿って外端103Bにより近い湾曲部の(特に内周の)曲率をより小さくする。また、ミアンダ形振動部203の複数の湾曲部において、ミアンダ形振動部203に沿って外端203Bにより近い湾曲部の(特に内周の)曲率をより小さくする。すなわち、ミアンダ形振動部103の複数の湾曲部のそれぞれの湾曲部の(特に内周の)曲率は、複数の湾曲部のうちのその湾曲部に比べて内端103Aにより近いいずれの湾曲部の(特に内周の)曲率より小さくする。また、ミアンダ形振動部203の複数の湾曲部のそれぞれの湾曲部の(特に内周の)曲率は、複数の湾曲部のうちのその湾曲部に比べて内端203Aにより近いいずれの湾曲部の(特に内周の)曲率より小さくする。これにより、各湾曲部にかかる応力を均等にすることができ、振動軸S2を中心により大きい角度でミラー部6を揺動させることができる。
 なお、実施の形態1では、ミアンダ形振動部103、203とミアンダ形振動部105、205の振動板の数は5つであるが、これより少なくても、多くても同様の効果が得られる。また、枠体2、4とミアンダ形振動部103、203やミアンダ形振動部105、205の接続位置についても、振動軸S1、S2上であっても、それ以外でも、同様の効果が得られる。
 (実施の形態2)
 図5Aは本発明の実施の形態2における光学反射素子1の高周波駆動部1001Bの要部斜視図である。図5Bは図5Aに示す高周波駆動部1001Bの線5B-5Bにおける断面図である。図5Aと図5Bにおいて、図3Aと図3Bに示す実施の形態1における高周波駆動部1001Bと同じ部分には同じ参照番号を付す。図5Aと図5Bに示す実施の形態2における高周波駆動部1001Bでは、ミアンダ形振動部105、205の圧電体13上に上部電極14とモニター電極16とが交互に配置されている。
 具体的には、モニター電極16は、図5Bに示すように、上部電極14と同様に圧電体13上に積層されている。振動板108A~108Eの1つおきの振動板108A、108C、108Eにおいて、圧電体13上に上部電極14が設けられている。振動板108B、108Dにおいて、モニター電極16は配線15と共に圧電体13上に設けられている。振動板108B、108Dにおいて、モニター電極16を連結する配線17が上部電極14と共に圧電体13上に配置されている。
 同様に、モニター電極16は、上部電極14と同様に圧電体13上に積層されている。振動板208A~208Eの1つおきの振動板208A、208C、208Eにおいて、圧電体13上に上部電極14が設けられている。振動板208B、208Dにおいて、モニター電極16は配線15と共に圧電体13上に設けられている。振動板208B、208Dにおいて、モニター電極16を連結する配線17が上部電極14と共に圧電体13上に配置されている。モニター電極16の幅は配線15、17より広い。上部電極14の幅は配線15、17より広い。
 モニター電極16は、圧電体13の変形を電気信号として検知することができ、ミアンダ形振動部105、205の振動に応じた信号を出力する。上部電極14とモニター電極16とが振動板108A~108E、208A~208Eにおいて交互に配置されることで、モニター電極16が出力する信号は、上部電極14に印加される交流電圧とは逆位相となる。したがって、この信号を、フィードバック回路を介して上部電極14に入力することで、ミアンダ形振動部105、205を高精度に自励駆動させることができる。
 実施の形態2では、図1に示す実施の形態1における光学反射素子1と同様に圧電アクチュエータ9は振動板108A~108E、208A~208Eの1つおきに配置されている。したがって、ミアンダ形振動部105、205で引き回される配線15、17が接続される電極の数は、モニター電極16と上部電極14と合わせて2つでよい。したがって電極の数の増大を抑えることができ、小型の光学反射素子1の生産性を向上させることが出来る。
 前述のように、複数の上部電極14を連結する複数の配線15は、複数の振動板108A~108Eのうちの複数の上部電極14が設けられていない複数の振動板108B、108Dにおいて圧電体13上に設けられている。ミアンダ形振動部105の振動に応じた信号を出力する複数のモニター電極16は、複数の振動板108A~108Eのうちの配線15が設けられている複数の振動板108B、108Dにおいて圧電体13上に配線15と共にそれぞれ設けられている。複数の上部電極14を連結する複数の配線15は、複数の振動板208A~208Eのうちの上部電極14が設けられていない複数の振動板208B、208Dにおいて圧電体13上に設けられている。ミアンダ形振動部205の振動に応じた信号を出力する複数のモニター電極16は、複数の振動板208A~208Eのうちの配線15が設けられている複数の振動板208B、208Dにおいて、圧電体13上に配線15と共にそれぞれ設けられている。複数のモニター電極16を連結する配線17は、複数の振動板108A~108Eのうちの複数の上部電極14の少なくとも1つが設けられている振動板108C(108E)において、圧電体13上に設けられている。複数のモニター電極16を連結する配線17は、複数の振動板208A~208Eのうちの複数の上部電極14の少なくとも1つが設けられている振動板208C(208E)において、圧電体13上に設けられている。
 なお、低周波駆動部1001Cを構成するミアンダ形振動部103、203にも圧電アクチュエータ9とモニター電極16、配線15、17を有する同様な構成にすることで、高周波駆動部1001Bと同様な動作および効果が得られる。
 本発明における光学反射素子は、ミラー部の振幅角増大、解像度向上が可能であり、ヘッドアップディスプレイやヘッドマウントディスプレイ、レーザープリンタ等の画像投影装置に適用できる。
2  枠体(第2の枠体)
4  枠体(第1の枠体)
6  ミラー部
9  圧電アクチュエータ(第1の圧電アクチュエータ、第2の圧電アクチュエータ)
12  下部電極(第1の下部電極、第2の下部電極)
13  圧電体(第1の圧電体、第2の圧電体)
14  上部電極(第1の上部電極、第2の上部電極)
15  配線(第1の配線、第2の配線)
17  配線(第3の配線、第4の配線)
16  モニター電極
103  ミアンダ形振動部(第3のミアンダ形振動部)
105  ミアンダ形振動部(第1のミアンダ形振動部)
107A~107F  湾曲部(第1の湾曲部)
108A~108E  振動板(第1の振動板)
203  ミアンダ形振動部(第4のミアンダ形振動部)
205  ミアンダ形振動部(第2のミアンダ形振動部)
207A~207F  湾曲部(第2の湾曲部)
208A~208E  振動板(第2の振動板)
S1  振動軸(第1の振動軸)
S2  振動軸(第2の振動軸)

Claims (9)

  1. 互いに対向する2つの部分を有する第1の枠体と、
    前記第1の枠体の内側において前記第1の枠体の前記2つの部分のうちの一方に接続された第1の外端と、前記第1の外端の反対側の第1の内端とを有する第1のミアンダ形振動部と、
    前記第1の枠体の内側において前記第1の枠体の前記2つの部分の他方に接続された第2の外端と、前記第2の外端の反対側の第2の内端とを有する第2のミアンダ形振動部と、
    前記第1のミアンダ形振動部の前記第1の内端と前記第2のミアンダ形振動部の前記第2の内端とに支持されたミラー部と、
    を備え、
    前記第1のミアンダ形振動部は、前記第1の外端と前記第1の内端との間で交互に連結する複数の第1の湾曲部と複数の第1の振動板とを有するミアンダ形状を有し、
    前記第2のミアンダ形振動部は、前記第2の外端と前記第2の内端との間で交互に連結する複数の第2の湾曲部と複数の第2の振動板とを有するミアンダ形状を有し、
    前記複数の第1の湾曲部のそれぞれの第1の湾曲部の曲率は、前記複数の第1の湾曲部のうちの前記それぞれの第1の湾曲部に比べて前記第1の内端により近い少なくとも1つの第1の湾曲部の曲率より小さく、
    前記複数の第2の湾曲部のそれぞれの第2の湾曲部の曲率は、前記複数の第2の湾曲部のうちの前記それぞれの第2の湾曲部に比べて前記第2の内端により近い少なくとも1つの第2の湾曲部の曲率より小さい、光学反射素子。
  2.    前記複数の第1の振動板に亘って前記第1のミアンダ形振動部上に設けられた第1の下部電極と、
       前記複数の第1の振動板に亘って前記第1の下部電極上に設けられた第1の圧電体と、
       前記複数の第1の振動板の少なくとも1つにおいて前記第1の圧電体上に設けられた少なくとも1つの第1の上部電極と、
    を有して、前記第1のミアンダ形振動部を振動させる第1の圧電アクチュエータと、
       前記複数の第2の振動板に亘って前記第2のミアンダ形振動部上に設けられた第2の下部電極と、
       前記複数の第2の振動板に亘って前記第2の下部電極上に設けられた第2の圧電体と、
       前記複数の第2の振動板の少なくとも1つにおいて前記第2の圧電体上に設けられた少なくとも1つの第2の上部電極と、
    を有して、前記第2のミアンダ形振動部を振動させる第2の圧電アクチュエータと、
    をさらに備えた、請求項1に記載の光学反射素子。
  3. 前記第1のミアンダ形振動部は第1の振動軸を中心に揺動するように振動し、
    前記複数の第1の湾曲部は前記第1の振動軸の両側に位置し、
    前記複数の第1の湾曲部のそれぞれの第1の湾曲部の曲率は、前記第1のミアンダ形振動部に沿って前記複数の第1の湾曲部のうちの前記それぞれの第1の湾曲部より前記第1の内端に近い少なくとも1つの第1の湾曲部の曲率より小さく、
    前記第2のミアンダ形振動部は前記第1の振動軸を中心に揺動するように振動し、
    前記複数の第2の湾曲部は前記第1の振動軸の両側に位置し、
    前記複数の第2の湾曲部のそれぞれの第2の湾曲部の曲率は、前記第2のミアンダ形振動部に沿って前記複数の第2の湾曲部のうちの前記それぞれの第2の湾曲部より前記第2の内端に近い少なくとも1つの第2の湾曲部の曲率より小さい、請求項2に記載の光学反射素子。
  4. 前記第1のミアンダ形振動部の前記複数の第1の振動板は前記第1の振動軸に沿って配列されており、
    前記少なくとも1つの第1の上部電極は、前記配列された複数の第1の振動板の1つおきにおいて前記第1の圧電体上に設けられた複数の第1の上部電極を含み、
    前記第2のミアンダ形振動部の前記複数の第2の振動板は前記第1の振動軸に沿って配列されており、
    前記少なくとも1つの第2の上部電極は、前記配列された複数の第2の振動板の1つおきにおいて前記第2の圧電体上に設けられた複数の第2の上部電極を含む、請求項2に記載の光学反射素子。
  5. 前記複数の第1の振動板のうちの前記複数の第1の上部電極が設けられていない第1の振動板において前記第1の圧電体上に設けられて前記複数の上部電極を連結する第1の配線と、
    前記複数の第2の振動板のうちの前記複数の第2の上部電極が設けられていない第2の振動板において前記第2の圧電体上に設けられて前記複数の第2の上部電極を連結する第2の配線と、
    をさらに備えた、請求項4に記載の光学反射素子。
  6. 前記複数の第1の振動板のうちの前記複数の第1の上部電極が設けられていない複数の第1の振動板において前記第1の圧電体上に設けられて、前記複数の第1の上部電極を連結する複数の第1の配線と、
    前記複数の第1の振動板のうちの前記第1の配線が設けられている前記複数の第1の振動板において前記第1の圧電体上に前記複数の第1の配線と共にそれぞれ設けられ、前記第1のミアンダ形振動部の振動に応じた信号を出力する複数の第1のモニター電極と、
    前記複数の第2の振動板のうちの前記複数の第2の上部電極が設けられていない複数の第2の振動板において前記第2の圧電体上に設けられて、前記複数の第2の上部電極を連結する複数の第2の配線と、
    前記複数の第2の振動板のうちの前記第2の配線が設けられている複数の第2の振動板において、前記第2の圧電体上に前記複数の第2の配線と共にそれぞれ設けられ、前記第2のミアンダ形振動部の振動に応じた信号を出力する複数の第2のモニター電極と、
    前記複数の第1の振動板のうちの前記複数の第1の上部電極の少なくとも1つが設けられている第1の振動板において前記第1の圧電体上に設けられて、前記複数の第1のモニター電極を連結する第3の配線と、
    前記複数の第2の振動板のうちの前記複数の第2の上部電極の少なくとも1つが設けられている第2の振動板において前記第2の圧電体上に設けられて、前記複数の第2のモニター電極を連結する第4の配線と、
    をさらに備えた、請求項4に記載の光学反射素子。
  7. 互いに対向する2つの部分を有する第2の枠体と、
    前記第2の枠体の前記2つの部分のうちの一方に接続された第3の外端と、前記第3の外端の反対側に位置して前記第1の枠体を支持する第3の内端とを有する第3のミアンダ形振動部と、
    前記第2の枠体の前記2つの部分のうちの他方に接続された第4の外端と、前記第4の外端の反対側に位置して前記第1の枠体を支持する第4の内端とを有する第4のミアンダ形振動部と、
    をさらに備えた、請求項1に記載の光学反射素子。
  8. 前記複数の第1の湾曲部の前記それぞれの第1の湾曲部の曲率は、前記複数の第1の湾曲部のうちの前記それぞれの第1の湾曲部に比べて前記第1の内端により近い全ての1つ以上の第1の湾曲部の曲率より大きくない、請求項1に記載の光学反射素子。
  9. 前記複数の第2の湾曲部の前記それぞれの第2の湾曲部の曲率は、前記複数の第2の湾曲部のうちの前記それぞれの第2の湾曲部に比べて前記第2の内端により近い全ての1つ以上の第2の湾曲部の曲率より大きくない、請求項8に記載の光学反射素子。
PCT/JP2011/001721 2010-03-30 2011-03-24 光学反射素子 WO2011121945A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020127025374A KR20130040794A (ko) 2010-03-30 2011-03-24 광학 반사 소자
US13/581,360 US8792151B2 (en) 2010-03-30 2011-03-24 Optical reflection element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010078443A JP5293668B2 (ja) 2010-03-30 2010-03-30 光学反射素子
JP2010-078443 2010-03-30

Publications (1)

Publication Number Publication Date
WO2011121945A1 true WO2011121945A1 (ja) 2011-10-06

Family

ID=44711712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001721 WO2011121945A1 (ja) 2010-03-30 2011-03-24 光学反射素子

Country Status (4)

Country Link
US (1) US8792151B2 (ja)
JP (1) JP5293668B2 (ja)
KR (1) KR20130040794A (ja)
WO (1) WO2011121945A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013140757A1 (ja) * 2012-03-23 2013-09-26 パナソニック株式会社 走査ミラーおよび走査型画像表示装置
JP2014066876A (ja) * 2012-09-26 2014-04-17 Fujifilm Corp ミラー駆動装置及びその駆動方法
EP2757403A1 (en) * 2013-01-16 2014-07-23 Funai Electric Co., Ltd. Vibrating mirror device and electronic device having a projector function
CN109633893A (zh) * 2019-02-01 2019-04-16 西安知微传感技术有限公司 一种电磁驱动振镜及其驱动磁路
CN109683308A (zh) * 2019-02-01 2019-04-26 西安知微传感技术有限公司 一种降低摇摆运动的电磁驱动振镜
CN109633893B (zh) * 2019-02-01 2024-05-14 西安知微传感技术有限公司 一种电磁驱动振镜

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013114857A1 (ja) * 2012-01-31 2013-08-08 パナソニック株式会社 圧電アクチュエータデバイスとその製造方法
JPWO2013136759A1 (ja) 2012-03-15 2015-08-03 パナソニックIpマネジメント株式会社 光学反射素子とアクチュエータ
JP2013200337A (ja) * 2012-03-23 2013-10-03 Stanley Electric Co Ltd 光偏向器
WO2014068846A1 (ja) * 2012-10-31 2014-05-08 パナソニック株式会社 アクチュエータ
JP6168353B2 (ja) * 2013-09-13 2017-07-26 株式会社リコー 光偏向装置、画像形成装置、車両、光偏向装置の制御方法、及び光偏向装置の調整方法
JP7053986B2 (ja) * 2017-12-27 2022-04-13 ミツミ電機株式会社 アクチュエータと光走査装置
JP7132481B2 (ja) * 2018-02-23 2022-09-07 ミツミ電機株式会社 アクチュエータ及び光走査装置
KR101971117B1 (ko) 2018-06-14 2019-08-13 에이에스티엔지니어링(주) 마이크로 웰이 적용된 써모커플 웨이퍼
KR101949977B1 (ko) 2018-06-14 2019-02-21 에이에스티엔지니어링(주) 임베디드 써모커플 웨이퍼
US11221478B2 (en) * 2019-04-15 2022-01-11 Microsoft Technology Licensing, Llc MEMS scanner
KR101999159B1 (ko) 2019-04-15 2019-07-11 에이에스티엔지니어링(주) 코팅 써모커플 및 이를 이용한 써모커플 웨이퍼
DE102020116511B4 (de) * 2020-06-23 2022-03-24 OQmented GmbH Glassubstratbasierte MEMS-Spiegelvorrichtung und Verfahren zu ihrer Herstellung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009093120A (ja) * 2007-10-12 2009-04-30 Panasonic Corp 光学反射素子
JP2009169290A (ja) * 2008-01-18 2009-07-30 Stanley Electric Co Ltd 光偏向器
JP2009192967A (ja) * 2008-02-18 2009-08-27 Panasonic Corp 光学反射素子
JP2009258210A (ja) * 2008-04-14 2009-11-05 Panasonic Corp 光学反射素子

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003315701A (ja) 2002-04-25 2003-11-06 Hitachi Ltd ミラーデバイス及び該ミラーデバイスを備えた光スイッチ
JP5052835B2 (ja) 2006-07-27 2012-10-17 スタンレー電気株式会社 圧電アクチュエータ及びその製造方法
JP4972789B2 (ja) 2007-09-27 2012-07-11 コニカミノルタアドバンストレイヤー株式会社 マイクロスキャナおよびそれを備える光学機器
US8422109B2 (en) 2008-01-31 2013-04-16 Panasonic Corporation Optical reflection element
JP5446122B2 (ja) * 2008-04-25 2014-03-19 パナソニック株式会社 ミアンダ形振動子およびこれを用いた光学反射素子
JP2010148265A (ja) * 2008-12-19 2010-07-01 Panasonic Corp ミアンダ形振動子およびこれを用いた光学反射素子
JP5509742B2 (ja) * 2009-09-04 2014-06-04 ミツミ電機株式会社 圧電アクチュエータ及びこれを用いた光走査装置
JP5736766B2 (ja) * 2010-12-22 2015-06-17 ミツミ電機株式会社 光走査装置
JP5775340B2 (ja) * 2011-03-25 2015-09-09 スタンレー電気株式会社 光偏向器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009093120A (ja) * 2007-10-12 2009-04-30 Panasonic Corp 光学反射素子
JP2009169290A (ja) * 2008-01-18 2009-07-30 Stanley Electric Co Ltd 光偏向器
JP2009192967A (ja) * 2008-02-18 2009-08-27 Panasonic Corp 光学反射素子
JP2009258210A (ja) * 2008-04-14 2009-11-05 Panasonic Corp 光学反射素子

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013140757A1 (ja) * 2012-03-23 2013-09-26 パナソニック株式会社 走査ミラーおよび走査型画像表示装置
US9291816B2 (en) 2012-03-23 2016-03-22 Panasonic intellectual property Management co., Ltd Scanning mirror and scanning image display device
JP2014066876A (ja) * 2012-09-26 2014-04-17 Fujifilm Corp ミラー駆動装置及びその駆動方法
EP2757403A1 (en) * 2013-01-16 2014-07-23 Funai Electric Co., Ltd. Vibrating mirror device and electronic device having a projector function
CN109633893A (zh) * 2019-02-01 2019-04-16 西安知微传感技术有限公司 一种电磁驱动振镜及其驱动磁路
CN109683308A (zh) * 2019-02-01 2019-04-26 西安知微传感技术有限公司 一种降低摇摆运动的电磁驱动振镜
CN109633893B (zh) * 2019-02-01 2024-05-14 西安知微传感技术有限公司 一种电磁驱动振镜

Also Published As

Publication number Publication date
JP5293668B2 (ja) 2013-09-18
US8792151B2 (en) 2014-07-29
US20130050791A1 (en) 2013-02-28
KR20130040794A (ko) 2013-04-24
JP2011209583A (ja) 2011-10-20

Similar Documents

Publication Publication Date Title
WO2011121945A1 (ja) 光学反射素子
JP5446122B2 (ja) ミアンダ形振動子およびこれを用いた光学反射素子
JP5229704B2 (ja) 光走査装置
JP2010148265A (ja) ミアンダ形振動子およびこれを用いた光学反射素子
KR101343314B1 (ko) 광빔 주사장치
JP5239379B2 (ja) 光学反射素子
WO2008038649A1 (fr) Dispositif de balayage optique
JP2009258210A (ja) 光学反射素子
JP2009265560A (ja) 光学反射素子
JP5045470B2 (ja) 光学反射素子
JP2009258339A (ja) 光学反射素子
JP5077139B2 (ja) 光学反射素子
JP5239382B2 (ja) 光学反射素子
JP2009217093A (ja) 光学反射素子
JP2011123246A (ja) 光学反射素子
WO2012176492A1 (ja) 共振駆動アクチュエーター、マイクロスキャナおよび光学機器
JP5045463B2 (ja) 光学反射素子
JP2009192781A (ja) 光学反射素子
JP5045532B2 (ja) 光学反射素子
JP2009244602A (ja) 光学反射素子
WO2021193669A1 (ja) 光学反射素子、および光学反射システム
JP2010060688A (ja) 光学反射素子
JP2011123245A (ja) 光学反射素子
JP2009222841A (ja) 光学反射素子
JP2009223271A (ja) 光学反射素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762197

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13581360

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127025374

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11762197

Country of ref document: EP

Kind code of ref document: A1