JP2014066876A - ミラー駆動装置及びその駆動方法 - Google Patents

ミラー駆動装置及びその駆動方法 Download PDF

Info

Publication number
JP2014066876A
JP2014066876A JP2012212238A JP2012212238A JP2014066876A JP 2014066876 A JP2014066876 A JP 2014066876A JP 2012212238 A JP2012212238 A JP 2012212238A JP 2012212238 A JP2012212238 A JP 2012212238A JP 2014066876 A JP2014066876 A JP 2014066876A
Authority
JP
Japan
Prior art keywords
mirror
piezoelectric actuator
piezoelectric
stress
driving device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012212238A
Other languages
English (en)
Other versions
JP2014066876A5 (ja
JP5916577B2 (ja
Inventor
Takayuki Naono
崇幸 直野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2012212238A priority Critical patent/JP5916577B2/ja
Priority to EP13841383.6A priority patent/EP2902836B1/en
Priority to PCT/JP2013/074648 priority patent/WO2014050586A1/ja
Publication of JP2014066876A publication Critical patent/JP2014066876A/ja
Publication of JP2014066876A5 publication Critical patent/JP2014066876A5/ja
Priority to US14/668,429 priority patent/US10048489B2/en
Application granted granted Critical
Publication of JP5916577B2 publication Critical patent/JP5916577B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/0858Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting means being moved or deformed by piezoelectric means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices
    • G01L1/162Measuring force or stress, in general using properties of piezoelectric devices using piezoelectric resonators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/18Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/105Scanning systems with one or more pivoting mirrors or galvano-mirrors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2041Beam type
    • H10N30/2042Cantilevers, i.e. having one fixed end
    • H10N30/2044Cantilevers, i.e. having one fixed end having multiple segments mechanically connected in series, e.g. zig-zag type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead-based oxides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead-based oxides
    • H10N30/8554Lead-zirconium titanate [PZT] based

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Micromachines (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

【課題】小型で、低い駆動周波数で大きなミラー傾斜角度(回転角)を実現でき、かつ角度センシング機能を搭載したミラー駆動装置及びその駆動方法を提供する。
【解決手段】ミラー部12を挟んで両側に一対の圧電アクチュエータ部14,16が配置され、ミラー部12の端部12A,12Bに連結部18,20を介して圧電アクチュエータ部14,16が接続される。連結部18,20は、回転軸22に垂直な方向を長手方向とする板状部材19を1本以上含んだ構造を有し、圧電アクチュエータ部14,16の駆動によって板状部材19が厚み方向に撓み変形する板状ヒンジ部として機能する。連結部18、20には、共振振動によるミラー部の回転駆動中に連結部に発生する応力を検出するセンサ部24-i(i=1,2,3,4)が設けられている。
【選択図】図1

Description

本発明はミラー駆動装置に係り、特に、光走査に用いる光偏向器に好適なマイクロミラーデバイスの構造及びその駆動方法に関する。
シリコン(Si)の微細加工技術を用いて作製されたマイクロスキャナ(以下、「MEMS(Micro Electro Mechanical System)スキャナ」という。)は、従来の光走査モジュールであるポリゴンミラーなどと比べて小型かつ低消費電力であることが特徴である。このためMEMSスキャナは、レーザープロジェクタから光干渉断層計(OCT;Optical Coherence Tomography)のような光診断用スキャナなど、幅広い応用が期待されている。
MEMSスキャナの構造としては、特許文献1、2などに示されるようなトーションバー方式が一般的である。この方式では、ミラーを支える2本または3本以上のトーションバーがねじられることによってミラーが傾き、光スキャンを行う。特に高いスキャン角度を実現するためには、共振駆動を行う。この場合、ミラーの傾き運動の共振周波数が駆動の周波数と一致するように構造設計される。
また、MEMSスキャナの駆動においては、ミラーの角度をモニタリングしたり、共振状態を維持したりする目的で、ミラーの角度をセンシングできる角度センサを設ける構成が知られている。従来のトーションバー方式のMEMSスキャナに関してトーションバーの根本の部分にピエゾ抵抗効果を用いた角度センサを設ける構成(非特許文献1)や、ピエゾ薄膜の圧電効果を用いた角度センサを用いる構成(非特許文献2)が提案されており、一部が実用化されている。
特開2011−150055号公報 特開2008−40240号公報
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 15, NO. 4, AUGUST2006) T. Iseki et. al., IEEJ Trans2010; 5: 361-368 Koh et. al., OPTICS EXPRESS Vol.19 No.15 (2011) 13812
以上に述べたように、高いスキャン角度を持つMEMSスキャナを実用化するためには、設計上次の2点を満たすことが望まれる。
(1)構造の共振周波数を駆動周波数と一致させる。
(2)角度センサを実装する。
しかしながら、比較的低い周波数で駆動する用途の場合、構造の共振周波数を低くする必要があり、これをトーションバー方式で設計しようとすると、バネの役割を果たすトー
ションバーを極端に脆弱にせざるを得ないという問題がある。一例として、OCTなどの光による測定を行いながらスキャンを実施する用途では、400Hz(ヘルツ)以下の低周波数駆動が行われる。これをトーションバー方式で実現しようとすると、例えば、厚み5μm(マイクロメートル)、幅10μm、長さ600μmの寸法でSiを加工してトーションバーを形成する必要がある。これは非常に脆弱な構造であるため、製造プロセス中やデバイス駆動中など衝撃などが加わると容易に破壊されてしまうという問題がある。また、トーションバーの長さ寸法が増加することで素子の大型化も招いてしまう。
その一方で、低周波数駆動に適した設計として、ミアンダ状に折りたたんだ板バネ構造(板状ヒンジ)を用いる例も提案されている(非特許文献3)。非特許文献3に示された構造は、複数の板バネをミアンダ状に複数折りたたむように繋ぎ合わせたことによって共振周波数を低く抑えることができる。また、一つ一つの板バネはトーションバーの場合よりも剛性が高い構造となるため、外的振動によって破壊されにくい。
しかしながら、非特許文献3に示された構造では、非特許文献1、2に示された従来の角度センサを適用できず、角度をセンシングすることが難しい。そのため、共振を追随する回路などを組み込むことができず、実用化するのが困難であった。
本発明はこのような事情に鑑みてなされたもので、小型で、低い駆動周波数で大きなミラー傾斜角度(回転角)を実現でき、かつ角度センシング機能を搭載したミラー駆動装置及びその駆動方法を提供することを目的とする。
前記目的を達成するために、次の発明を提供する。
(第1態様):第1態様に係るミラー駆動装置は、光を反射する反射面を有するミラー部と、ミラー部を挟んで両側に配置される一対の圧電アクチュエータ部と、ミラー部の回転軸から反射面に沿って回転軸に垂直な方向に離れたミラー部の端部に圧電アクチュエータ部の一端を接続させる連結部と、圧電アクチュエータ部の他端を支持する固定部と、を備え、連結部は、反射面に沿って回転軸に垂直な方向を長手方向とする板状部材を1本以上含んだ構造を有し、圧電アクチュエータ部の駆動によって板状部材が厚み方向に撓み変形する板状ヒンジ部であり、連結部には、圧電アクチュエータ部の駆動によって誘起されるミラー部の回転運動を伴う共振振動によるミラー部の回転駆動中に連結部に発生する応力を検出する応力検出部が設けられている。
この態様によれば、ミラー部を両側から挟むように一対の圧電アクチュエータ部が配置される。圧電アクチュエータ部の一端は連結部を介してミラー部の端部に接続され、他端は固定部に支持される。圧電アクチュエータ部を駆動するとミラー部の端部が変位し、慣性トルクにより回転運動の共振が誘起され、大きな回転角(ミラーの傾き角)を得ることができる。この共振によるミラー部の回転駆動中に板状ヒンジ部として機能する連結部の板状部材は厚み方向に撓み(曲がり)変形し、この変形に応じた応力が応力検出部によって検出される。連結部の変形量とミラー部の角度は一定の対応関係があり、また連結部の変形量と連結部にかかる応力にも対応関係があるため、応力検出部を角度センサとして機能させることができる。なお、複数本の板状部材を備える構成の場合、少なくとも1つの板状部材について応力検出部を備えていればよい。
(第2態様):第1態様に記載のミラー駆動装置において、連結部は、2本以上の板状部材がミアンダ状に折り返すように並べられた構造を有しており、隣り合って並ぶ板状部材同士が共振振動のときに互いに逆方向に撓み変形する構成とすることができる。
複数本の板状部材をミアンダ状に繋ぎ合わせた構造からなる板状ヒンジ部を採用することにより、共振周波数を低く抑える設計が容易である。また、一つ一つの板状部材は比較的剛性が高い構造とすることが可能であるため、外的振動に破壊されにくい構造となる。
(第3態様):第2態様に記載のミラー駆動装置において、ミアンダ状に折り返すように並べられた2本以上の板状部材について、ミラー部に近い側から圧電アクチュエータ部の方向に向かって並び順を示す連続番号を与えてそれぞれの板状部材を特定するときに、応力検出部として、奇数番目の板状部材に発生する応力を検出する第1応力検出部と、偶数番目の板状部材に発生する応力を検出する第2応力検出部と、を備える構成とすることが好ましい。
奇数番目の板状部材と偶数番目の板状部材とは、共振駆動中に互いに逆方向の応力が加わるため、これらを組み合わせて検出を行うことで、検出感度の向上や検出精度の向上が可能となる。
(第4態様):第1態様から第3態様のいずれか1項に記載のミラー駆動装置において、応力検出部は、板状部材上に下部電極、圧電体、上部電極の順に積層された積層構造を有し、圧電体の圧電効果によって応力を電気信号に変換する構造とすることができる。
この態様によれば、板状部材にかかる応力を上部電極と下部電極の間の電圧として検出し、角度センサとして機能させることができる。
(第5態様):第3態様を採用するときの第4態様に記載のミラー駆動装置において、第1応力検出部及び第2応力検出部の両方からそれぞれ電圧信号が得られ、第1応力検出部から得られる第1検出信号と第2応力検出部から得られる第2検出信号の差分を検出する検出回路を備える構成とすることが好ましい。
特に、互いに逆位相(位相差が180°)の第1検出信号、第2検出信号を得て、両者の差分をとることで、検出感度の向上を達成できるとともに、シグナル/ノイズ比(S/N比)の向上を達成できる。
(第6態様):第1態様から第3態様のいずれか1項に記載のミラー駆動装置において、応力検出部は、板状部材の表面部がピエゾ抵抗効果を示す材料で構成され、ピエゾ抵抗効果を示す材料のピエゾ抵抗効果によって応力を抵抗値の変化に変換する構成とすることができる。
連結部にかかる応力を検出する手段としては、圧電効果を利用する構成に限らず、ピエゾ抵抗効果を利用する構成を採用することができる。
(第7態様):第6態様に記載のミラー駆動装置において、抵抗値の変化を電圧信号に変換する検出回路を備える構成とすることができる。
ピエゾ抵抗効果を示す材料に電流を流し、抵抗値に応じた電圧の情報を得ることができる。
(第8態様):第3態様を採用するときの第7態様に記載のミラー駆動装置において、検出回路は、第1応力検出部で構成される第1抵抗と第2応力検出部で構成される第2抵抗とを接続した分圧回路によって電圧信号を得る構成とすることができる。
かかる態様によれば、ピエゾ抵抗効果の温度依存性の影響を除去した検出が可能である
(第9態様):第1態様から第8態様のいずれか1項に記載のミラー駆動装置において、圧電アクチュエータ部は、振動板、下部電極、圧電体、上部電極の順に積層された圧電ユニモルフカンチレバーで構成されるものとすることができる。
圧電カンチレバーは、ユニモルフ構造に限らず、バイモルフ構造も可能であるが、ユニモルフ構造が最も簡単な構成である。圧電駆動方式は、電極間に電圧を印加するだけで駆動できるため、構成が単純で小型化に有益である。
(第10態様):第4態様を採用するときの第9態様に記載のミラー駆動装置において、圧電アクチュエータ部及び応力検出部に用いられる圧電体は1〜10μm厚の薄膜であり、振動板となる基板上に直接成膜された薄膜とすることができる。
かかる態様によれば、圧電アクチュエータ部と応力検出部とを同一のプロセスで作製することが可能である。また、スパッタリング法に代表される気相成長法やゾルゲル法などの直接成膜法を用いることにより、所要の圧電性能を持つ圧電体薄膜を得ることができる。基板に圧電体の薄膜を直接成膜し、ドライエンチング若しくはウエットエッチングなどの半導体プロセスで加工することで、デバイスの作製プロセスを簡便にできる。
(第11態様):第1態様から第10態様のいずれか1項に記載のミラー駆動装置において、圧電アクチュエータ部に用いられる圧電体は、下記式(P)で表される1種又は2種以上のペロブスカイト型酸化物とすることができる。
一般式ABO・・・(P)
(式中、A:Aサイトの元素であり、Pbを含む少なくとも1種の元素。
B:Bサイトの元素であり、Ti,Zr,V,Nb,Ta,Sb,Cr,Mo,W,Mn,Sc,Co,Cu,In,Sn,Ga,Zn,Cd,Fe,及びNiからなる群より選ばれた少なくとも1種の元素。
O:酸素元素。
Aサイト元素とBサイト元素と酸素元素のモル比は1:1:3が標準であるが、これらのモル比はペロブスカイト構造を取り得る範囲内で基準モル比からずれてもよい。)
なお、応力検出部に用いる圧電体についても、圧電アクチュエータ部と同じ圧電材料を用いることができる。
(第12態様):第1態様から第10態様のいずれか1項に記載のミラー駆動装置において、圧電アクチュエータ部に用いられる圧電体は、下記式(PX)で表される1種又は2種以上のペロブスカイト型酸化物とすることができる。
(Zr,Ti,Mb−x−y・・・(PX)
(式中、A:Aサイトの元素であり、Pbを含む少なくとも1種の元素。
Mが、V,Nb,Ta,及びSbからなる群より選ばれた少なくとも1種の元素である。0<x<b、0<y<b、0≦b−x−y。
a:b:c=1:1:3が標準であるが、これらのモル比はペロブスカイト構造を取り得る範囲内で基準モル比からずれてもよい。)
Nb等の元素をドープしたPZTは圧電定数が高いため、小型で大きな変位が得られるデバイスの作製に好適である。なお、応力検出部に用いる圧電体についても、圧電アクチュエータ部と同じ圧電材料を用いることができる。
(第13態様):第12態様に記載のミラー駆動装置において、ペロブスカイト型酸化物(PX)は、Nbを含み、Nb/(Zr+Ti+Nb)モル比が0.06以上0.20
以下であるものとすることが好ましい。
かかる材料は、分極処理を行わなくても良好な圧電特性を示す。したがって、分極処理が不要であり、製造プロセスの簡略化、低コスト化を実現できる。
(第14態様):第1態様から第13態様に記載のミラー駆動装置において、圧電アクチュエータ部に用いられる圧電体はスパッタリング法で成膜された薄膜とすることができる。
(第15態様):第1態様から第14態様のいずれか1項に記載のミラー駆動装置において、一対の圧電アクチュエータ部に駆動電圧を供給する駆動回路であって、ミラー部が回転軸を中心に回転運動を行う共振モードの共振周波数fxの付近でミラー部を共振駆動させる駆動電圧を供給する駆動回路を備える構成とすることができる。
かかる態様によれば、回転共振を利用してミラー部を大きな回転角で振動させることができる。
(第16態様):第1態様から第15態様のいずれか1項に記載のミラー駆動装置におけるミラー駆動方法であって、一対の圧電アクチュエータ部に駆動電圧を印加し、圧電アクチュエータ部を振動させることにより、ミラー部と連結部との接続部分を振動させ、この振動によりミラー部に回転軸周りの回転トルクを与え、ミラー部を共振駆動させるミラー駆動方法。
(第17態様):第16態様に記載のミラー駆動方法において、ミラー部の共振駆動中に応力検出部から得られる検出信号を用いて圧電アクチュエータ部に印加する駆動電圧もしくは駆動周波数を制御する構成とすることができる。
例えば、応力検出部から得られる検出信号に基づいて、圧電アクチュエータ部に供給する駆動電圧の周波数(駆動周波数)、振幅のうち少なくとも一方を制御する構成とすることができる。応力検出部から得られる検出信号を圧電アクチュエータ部の駆動にフィードバックすることにより、安定した共振駆動を実現できる。
本発明によれば、従来のトーションバー方式に比べて、小型で、低い駆動周波数によって大きなミラー傾斜角度(回転角)を実現でき、かつ角度センシング機能を搭載したミラー駆動装置を提供することができる。
第1実施形態に係るMEMSスキャナデバイスの斜視図 図1のMEMSスキャナデバイスをミラー部の反射面側から見た平面図と回路要素を示したブロック構成図とを組み合わせた説明図 圧電アクチュエータ部の断面図 回転共振モードによる駆動時の様子を示す斜視図 図4に示した第1連結部(板状ヒンジ部)をy軸の正方向から見た模式図 連結部の応力検出によって得られる角度検出信号の例を示す図 光学スキャン角度と検出電圧の関係を示すグラフ 印加電圧と光学スキャン角度の関係を示すグラフ PZT中のNbドープ量とアクチュエータ特性・センシング特性の関係をまとめた図表 第2実施形態に係るMEMSスキャナデバイスの構成を示す平面図 第2実施形態に適用される検出回路の構成例を示す図 第3実施形態に係るMEMSスキャナデバイスの構成を示す平面図 第3実施形態における回転共振モードによる駆動時の様子を示す斜視図
以下、添付図面に従って本発明の実施形態について詳説する。
<第1実施形態>
図1は第1実施形態に係るMEMSスキャナデバイスの斜視図である。図2は第1実施形態に係るMEMスキャナデバイスをミラー部の反射面側から見た平面図(上面図)とデバイス駆動及び角度検出のための回路要素を示したブロック構成図とを組み合わせた説明図である。
これらの図面に示したように、本例のMEMSスキャナデバイス10(「ミラー駆動装置」に相当)は、ミラー部12と、該ミラー部12を挟んで両側に配置される一対の圧電アクチュエータ部14、16と、各圧電アクチュエータ部14、16の一方の端部14A、16Aとミラー部12の端部12A、12Bとを繋ぐ連結部18、20と、圧電アクチュエータ部14、16の他方の端部(以下、基端部という。)14B、16Bが固定支持される固定フレーム30(「固定部」に相当)と、を備える。
説明の便宜上、符号14の圧電アクチュエータ部を「第1圧電アクチュエータ部」、符号16の圧電アクチュエータ部を「第2圧電アクチュエータ部」という場合がある。また符号18の連結部を「第1連結部」、符号20の連結部を「第2連結部」という場合があり、符号12Aの端部を「第1端部」、符号12Bの端部を「第2端部」という場合がある。
本例のミラー部12は、図示のように平面視で略矩形であり、光を反射する反射面12Cとなるミラー面(ミラー部12の上面)には、入射光の反射率を高めるために、Au(金)やAl(アルミ)等の金属薄膜が形成されている。ミラーコーティングに用いる材料や膜厚は特に限定されず、公知のミラー材料(高反射率材料)を用いて様々な設計が可能である。
ミラー部12の形状について「矩形」とは厳密な矩形(四角形)に限らず、全体的な基本形状として概ね矩形と把握できる形状であることを意味する。例えば、矩形の角部が面取りされたもの、角部が丸められたもの、辺の一部又は全部が曲線や折れ線で構成されるもの、ミラー部12と各連結部18、20との接続部分に連結上必要な付加的形状が追加されたものなども含まれる。
本発明の実施に際して、ミラー部12の形状は、特に限定されない。図1及び図2に例示した長方形に限らず、正方形、多角形、円形、楕円形など、様々な形状があり得る。また、ミラー部12の平面視形状と反射面12Cの形状は一致してもいいし、異なっていてもよい。反射面12Cはミラー部12における上面の面積範囲内で形成することができる。
本例では、平面視で略長方形の反射面12Cを有するミラー部12を例示し、非駆動時におけるミラー部12の長辺方向をx方向、これと直交する短辺方向をy方向、xy面に垂直な方向をz方向とする直交xyz軸を導入して説明する。
MEMSスキャナデバイス10は、非駆動時において反射面12Cがz軸方向に向いたミラー部12をy軸方向の両側から挟むように一対の圧電アクチュエータ部14、16が
配置される。各圧電アクチュエータ部14、16は、圧電ユニモルフカンチレバー(片持ち梁)構造のアクチュエータであり(図3参照)、逆圧電効果による圧電体の変形によって屈曲変位を行う。すなわち、圧電アクチュエータ部14、16はx方向の一方の端部(基端部14B、16B)が固定フレーム30に固定支持され、反対側の端部14A、16Aはフレーム等に固定されずに、カンチレバー構造によって変位できる非拘束端となっている。
第1圧電アクチュエータ部14の非拘束側の端部14Aは、ミアンダ状に構成された第1連結部18の一方の端部18Aに接続されている。また、第1連結部18の他方の端部18Bはミラー部12におけるx軸方向に沿った辺の第1端部12Aに接続されている。
同様に、第2圧電アクチュエータ部16の非拘束側の端部16Aは、ミアンダ状に構成された第2連結部20の一方の端部20Aに接続されている。また、第2連結部20の他方の端部20Bはミラー部12におけるx軸方向の第2端部12Bに接続されている。
第1連結部18及び第2連結部20がそれぞれ接続されるミラー部12のx軸方向の端部(12A、12B)は、厳密な意味での最端位置であることは要求されず、概ね端部分と把握される範囲(最端位置及びその周辺付近)の部位を含むものである。
本例のMEMSスキャナデバイス10は、第1圧電アクチュエータ部14及び第2圧電アクチュエータ部16を駆動してミラー部12のx軸方向端部(12A、12B)を上下に(ミラー部12の厚み方向に)振動させることにより、ミラー部12にy軸と平行な回転軸22の周りの回転共振運動を励起し、ミラー部12を回転駆動させる(図4参照)。回転軸22は反射面12Cのほぼ中心点を通り、y軸と平行な直線である。このような目的の共振駆動を達成できる範囲で、ミラー中心からx軸方向に離れたミラー部12の端部周辺付近の部位に第1連結部18及び第2連結部20が接続される。つまり、第1連結部18及び第2連結部20が接続されるミラー部12の第1端部12A、第2端部12Bは、回転軸22から反射面12Cに沿ってx軸方向(回転軸22に垂直な方向)に離れたミラー部12の端及びその付近周辺の範囲を含む部分である。
第1連結部18及び第2連結部20は、x軸方向を長手方向とする平板棒状の薄板部材19(「板状部材」に相当)が複数本ミアンダ状に折り返すように並べられた構造を有する。本例では、第1連結部18、第2連結部20について、それぞれ2本の薄板部材19を平行に並べてミアンダ状に折り返すように、これら2本の薄板部材19の端部同士を接続した構造を例示しているが、各連結部(18、20)を構成する薄板部材19の本数は特に制限はなく、1本以上、適宜の本数とすることができる。
第1連結部18及び第2連結部20は、それぞれ第1圧電アクチュエータ部14及び第2圧電アクチュエータ部16を駆動することによって各薄板部材19は厚み方向に撓み(曲がり)変形する板状ヒンジ部として機能する。
圧電アクチュエータ部14、16を駆動して圧電アクチュエータ部14の端部14A、16Aを振動させると、ミラー部12には各圧電アクチュエータ部14、16の端部14A、16Aの加速度方向(力がかかる方向)と反対方向の慣性力が働く。この慣性力はミラー部12を傾ける方向と一致するため、圧電アクチュエータ部14、16で発生する力がミラー部12を傾ける力として効率良く利用される。
このような薄板部材19を用いた曲げヒンジ構造においては、ミラー回転運動の共振周波数で圧電アクチュエータ部14、16を駆動すると、圧電アクチュエータ部14、16の変位に伴って連結部18、20の各薄板部材19が撓み(曲がり)、ミラー部12に慣
性トルクが発生してミラー部12の回転運動共振を誘発する。
圧電アクチュエータ部14、16の変位方向が常にミラー部12の回転方向とほぼ一致し、すべての力がミラーの回転に用いられるため、トーションバー構造と比較して力の使用効率がはるかに良く、回転角が大きくなってもエネルギーロスが少ないため大きな変位(傾き角)が得られる。
また、ミラー部12と圧電アクチュエータ部14、16とを繋ぐミアンダ状の連結部18、20は、各薄板部材19が少しずつ曲がって変位を蓄積していくため、個々の薄板部材19にかかる応力が少なく、回転角が高くなっても破壊されにくいという利点がある。
ここでは、説明の便宜上、第1連結部18及び第2連結部20を構成する複数本の薄板部材19について、図1の左から順に、右に向かって(図2の上から下に向かって)、第1薄板部材19-1、第2薄板部材19-2、第3薄板部材19-3、第4薄板部材19-4と呼ぶ。
すなわち、第1連結部18は、第1薄板部材19-1と第2薄板部材19−2とが繋ぎ合わされて構成される。第2連結部20は、第3薄板部材19-3と第4薄板部材19-4とが繋ぎ合わされて構成される。各薄板部材(19-i、ただしi=1,2,3,4)には、それぞれ圧電アクチュエータ部(14、16)と同様に、下部電極/圧電体/上部電極の積層構造を有するセンサ部24-i(i=1,2,3,4)が設けられている。
なお、用語の混乱を避けるために、圧電アクチュエータ部(14、16)の上部電極を「駆動電極」といい、符号15、17で示す。また、センサ部24-i(i=1,2,3,4)の上部電極を「検出電極」といい、符号25-i(i=1,2,3,4)で示す。駆動電極15、17と検出電極25-i(i=1,2,3,4)はそれぞれ分離されている。
図中の固定フレーム30の表面に設けられた符号31,32,33,34は、検出信号出力用の出力端子である。各出力端子31〜34は、それぞれ細い配線51〜54を介して、対応する検出電極25-i(i=1,2,3,4)と接続されている。なお、各配線51〜54は、圧電体膜上にパターニングされている。
第1薄板部材19-1の上面に形成された検出電極25-1から引き出された配線51は、第1薄板部材19-1から第1圧電アクチュエータ部14の上部電極(駆動電極15)の傍らを長手方向に沿って引き回され、符号31で示した出力端子(第1出力端子)に繋がっている。
第2薄板部材19-2の上面に形成された検出電極25-2から引き出された配線52は、第1薄板部材19-1の検出電極25-1の傍らを長手方向に沿って引き回されるとともに第1圧電アクチュエータ部14の上部電極(駆動電極15)の傍らを長手方向に沿って引き回され、符号32で示した出力端子(第2出力端子)に繋がっている。
第3薄板部材19-3の上面に形成された検出電極25-3から引き出された配線53は、第4薄板部材19-4の検出電極25-4の傍らを長手方向に沿って引き回されるとともに第2圧電アクチュエータ部16の上部電極(駆動電極17)の傍らを長手方向に沿って引き回され、符号33で示した出力端子(第3出力端子)に繋がっている。
第4薄板部材19-4の上に形成された検出電極25-4から引き出された配線54は、第4薄板部材19-4から第2圧電アクチュエータ部16の上部電極(駆動電極17)の傍らを長手方向に沿って引き回され、符号34で示した出力端子(第4出力端子)に繋がって
いる。
このように、各薄板部材19-i(i=1,2,3,4)の検出電極25-i(i=1,2,3,4)は、個別に(独立に)対応する出力端子(31〜34)に接続されており、各センサ部24-i(i=1,2,3,4)から独立に検出信号を得ることができる。なお、下部電極については、複数のセンサ部24-i(i=1,2,3,4)について共通の電極(一体的に繋がった共通電極)として構成することができる。
図2に示したように、第1圧電アクチュエータ部14、第2圧電アクチュエータ部16は、ワイヤーボンディングなどの配線部材を介して駆動回路62に接続される。またセンサ部24-i(i=1,2,3,4)の出力端子(31〜34)は検出回路64に接続される。
図3は、圧電ユニモルフカンチレバー構造からなる圧電アクチュエータ部14、16の断面構造を示す模式図である。圧電アクチュエータ部14、16は、同様の構造であるため、これらを代表して、符号14の圧電アクチュエータ部の構造を説明する。なお、本発明の実施に際して圧電アクチュエータ部として、ユニモルフカンチレバー以外の構造を用いても良い。例えば、電極を挟んで圧電体を2層積層したバイモルフカンチレバーを用いても良い。
図3に示すように、圧電アクチュエータ部14は、振動板42上に下部電極43、圧電体46、上部電極48が積層形成された構造を有する。このような積層構造体は、例えば、シリコン(Si)基板上に、下部電極43、圧電体46、上部電極48の各層を順次に成膜することによって得られる。図3における右端が固定フレーム30(図1、図2参照)に支持された固定端である。
図3に示す構成において、電極(43,48)間に駆動電圧が印加されることで圧電体46が変形し、この変形に伴い、振動板42が撓んで、レバー部が上下に動く。図3の破線はレバー部が上方に変位した様子を表している。圧電アクチュエータ部14、16は、圧電体46の逆圧電効果を利用して電気信号を機械的な変位に変換する手段である。
その一方、連結部(18、20)に設けられるセンサ部24-i(i=1,2,3,4)も図3と同様の積層構造を有している。センサ部24-i(i=1,2,3,4)は、圧電体46の圧電効果を利用して、機械的な歪み(応力)を電気信号に変換する手段として用いられる。
<駆動電圧の供給方法について>
第1実施形態では、一対の圧電アクチュエータ部14、16に対して、駆動回路62から同時に同じ駆動電圧を印加することよって、ミラー部12の両側の圧電アクチュエータ部14、16を同方向に変位させる。このため、一対の圧電アクチュエータ部14、16に駆動用の電力を供給する電力供給源として、共通の(同じ)駆動回路62を用いることができる。圧電アクチュエータ部14、16に供給する駆動波形として、共振を励起する周波数の正弦波形信号やパルス波形信号を用いることができる。
<MEMSスキャナデバイス10の動作について>
第1実施形態に係るMEMSスキャナデバイス10は次のように動作する。
一対の圧電アクチュエータ部14、16に、駆動回路62から同時に同じ駆動電圧を印加すると、圧電アクチュエータ部14、16が変位し、これに接続されているミアンダ状の連結部18、18が曲がり変形する。そして、連結部18、18と接続されているミラー部12の端部12A、12Bが上下方向(z軸方向)に変位する。この動きによって、
ミラー部12に回転トルクを与え、ミラー部12を回転軸22周りに回転運動させる。
例えば、正弦波の駆動電圧を圧電アクチュエータ部14、16に印加することにより、圧電アクチュエータ部14、16を上下に振動させ、ミラー部12に回転運動を誘起する。共振周波数付近の周波数の駆動電圧を印加して共振駆動させることにより、ミラー部12は大きな傾き角で振動する。
ミアンダ状の連結部18、20は、曲がり変形しやすいため、共振駆動において大きな変位を得るのに効果的である(図4、図5参照)。なお、圧電アクチュエータ部14、16に印加する駆動電圧の周波数は、構造体の機械的な共振周波数と厳密に一致させることは必ずしも要求されない。共振が励起される範囲で駆動電圧の周波数の差異が許容される。
この回転共振駆動によってミラー部12は回転軸22を中心に大きな回転角で変位し得る。すなわち、圧電アクチュエータ部14、16の駆動に応じて、中央のミラー部12は、回転軸22を中心として揺動される。ミラー部12の反射面12Cに入射した光(例えば、図示せぬレーザ光源から発せられたレーザ光)はミラー部12の傾き(角度)に応じて反射され、反射光の進行方向(反射光の照射位置)が変わる。本実施形態に係るMEMSスキャナデバイス10によれば、大きな偏向角で光走査することができる。
<角度の検出方法について>
図4及び図5は共振駆動中の連結部(板状ヒンジ部)に係る応力(ρxx成分)を説明するための説明図である。図4は回転共振モードによる駆動時の様子を示す斜視図、図5は図4に示した第1連結部18をy軸の正方向から見た模式図である。なお、図4では固定フレーム30の記載を省略した。また、デバイス構造の対称性から第2連結部20の動きも第1連結部18の動きと同様である。
図4に示したように、共振駆動による動作中、第1連結部18を構成する薄板部材19-1、19-2は互いに逆方向に撓み変形し、それぞれの薄板部材19-1、19-2の表面には、互いに逆方向に応力が働く。すなわち、図5に示したように、第1薄板部材19-1が下に凸となる動き(曲がり変形)をするときには、第2薄板部材19-2は上に凸となる動きとなる。このとき、第1薄板部材19-1の表面には圧縮応力がかかり、第2薄板部材19-2上の表面には引張応力がかかる。
このように、隣り合う第1薄板部材19-1(ヒンジ1)、第2薄板部材19-2(ヒンジ2)は互いに逆方向に撓み、第1薄板部材19-1の曲がりによる角度変位θ1と、第2薄板部材19-2の曲がりによる角度変位θ2が加算されてミラー部12の傾き角となる。その結果、ミラー部12の反射面12Cはy軸周りに(θ1+θ2)の角度で傾く。
このミラー回転運動中に第1薄板部材19-1、第2薄板部材19-2に係る応力を圧電効果によってセンサ部24-1、24-2の上部-下部電極間の電圧として検出し、角度センサとして機能させる。複数の薄板部材19-i(i=1,2,3,4)のうち、少なくとも1つの薄板部材について応力を検知することでミラー部12の角度を推定することができる。
ただし、図4及び図5で説明したように、互いに逆方向に曲がり変形する薄板部材からそれぞれの応力を検出する構成が好ましい。互いに逆方向に曲がり変形する薄板部材からそれぞれの応力を検出することによって逆位相の検出信号を得ることができ(図6参照)、両者の差分を検出することで、検出感度が2倍になり、かつ、同相のノイズがキャンセルされ、S/N比の向上を達成できる。
本実施形態の構造によれば、リニアリティの良好な角度検出が可能である。また、こうして得られる角度検出信号を用いて、AGC(Automatic GainControl)回路や位相同期(PLL;Phase-locked loop)回路を組み、圧電アクチュエータ部に印加する電圧にフィードバックすることによって、環境温度変化などによって共振周波数が変化しても、スキャン角度を一定に保つことができる。例えば、圧電アクチュエータ部に印加した波形と、センサ部から検出した波形の位相が所定の値になるように、駆動回路にフィードバックをかけ、共振を維持する。
このようなフィードバック制御回路を検出回路64内に組み込むことができる。また、駆動回路62、検出回路64、フィードバック制御回路をまとめて、ASIC(Application Specific Integrated Circuit)のような集積回路で構成することができる。
<検出電極の大きさについて>
図1及び図2に示した例では、薄板部材19-i(i=1,2,3,4)の長手方向の長さの略全体にわたって検出電極25-i(i=1,2,3,4)を形成しているが、検出電極25-i(i=1,2,3,4)の大きさは、図示の例に限定されない。薄板部材19の応力を検知するという目的の機能を達成できる範囲で薄板部材19の一部にセンサ部が設けられていればよく、適宜の大きさの検出電極を設計することができる。ただし、検出電極から配線51〜54を介して信号を取り出す必要があるため、配線部など後段の寄生容量成分/抵抗成分の影響を相対的に小さくする観点から、センサ部の検出電極の面積は比較的大きい方が望ましい。
<圧電材料について>
本実施形態に好適な圧電体としては、下記式で表される1種又は2種以上のペロブスカイト型酸化物(P)を含むものが挙げられる。
一般式ABO・・・(P)
(式中、A:Aサイトの元素であり、Pbを含む少なくとも1種の元素。
B:Bサイトの元素であり、Ti,Zr,V,Nb,Ta,Sb,Cr,Mo,W,Mn,Sc,Co,Cu,In,Sn,Ga,Zn,Cd,Fe,及びNiからなる群より選ばれた少なくとも1種の元素。
O:酸素元素。
Aサイト元素とBサイト元素と酸素元素のモル比は1:1:3が標準であるが、これらのモル比はペロブスカイト構造を取り得る範囲内で基準モル比からずれてもよい。)
上記一般式で表されるペロブスカイト型酸化物としては、チタン酸鉛、チタン酸ジルコン酸鉛(PZT)、ジルコニウム酸鉛、チタン酸鉛ランタン、ジルコン酸チタン酸鉛ランタン、マグネシウムニオブ酸ジルコニウムチタン酸鉛、ニッケルニオブ酸ジルコニウムチタン酸鉛、亜鉛ニオブ酸ジルコニウムチタン酸鉛等の鉛含有化合物、及びこれらの混晶系;チタン酸バリウム、チタン酸ストロンチウムバリウム、チタン酸ビスマスナトリウム、チタン酸ビスマスカリウム、ニオブ酸ナトリウム、ニオブ酸カリウム、ニオブ酸リチウム、ビスマスフェライト等の非鉛含有化合物、及びこれらの混晶系が挙げられる。
また、本実施形態の圧電体膜は、下記式で表される1種又は2種以上のペロブスカイト型酸化物(PX)を含むことが好ましい。
一般式Aa(Zrx,Tiy,Mb−x−y)bOc・・・(PX)
(式中、A:Aサイトの元素であり、Pbを含む少なくとも1種の元素。
Mが、V、Nb、Ta、及びSbからなる群より選ばれた少なくとも1種の元素である。0<x<b、0<y<b、0≦b−x−y。
a:b:c=1:1:3が標準であるが、これらのモル比はペロブスカイト構造を取り得る範囲内で基準モル比からずれてもよい。)
ペロブスカイト型酸化物(PX)は、真性PZT、あるいはPZTのBサイトの一部がMで置換されたものである。被置換イオンの価数よりも高い価数を有する各種ドナーイオンを添加したPZTでは、真性PZTよりも圧電性能等の特性が向上することが知られている。Mは、4価のZr,Tiよりも価数の大きい1種又は2種以上のドナーイオンであることが好ましい。かかるドナーイオンとしては、V5+,Nb5+,Ta5+,Sb+,Mo6+,及びW6+等が挙げられる。
b−x−yは、ペロブスカイト構造を取り得る範囲であれば特に制限されない。例えば、MがNbである場合、Nb/(Zr+Ti+Nb)モル比が0.05以上0.25以下であることが好ましく、0.06以上0.20以下であることがより好ましい。
上述の一般式(P)及び(PX)で表されるペロブスカイト型酸化物からなる圧電体膜は、高い圧電歪定数(d31定数)を有するため、かかる圧電体膜を備えた圧電アクチュエータは、変位特性の優れたものとなる。
また、一般式(P)及び(PX)で表されるペロブスカイト型酸化物からなる圧電体膜を備えた圧電アクチュエータは、リニアリティの優れた電圧―変位特性を有している。これらの圧電材料は、本発明を実施する上で良好なアクチュエータ特性、センサ特性を示すものである。なお、一般式(PX)で表されるペロブスカイト型酸化物の方が一般式(P)で表されるものよりも圧電定数が高くなる。
本実施形態における圧電体46の一具体例として、例えば、Nbを原子組成百分率で12%ドープしたチタン酸ジルコン酸鉛(PZT)薄膜を用いることができる。スパッタリング法等によってNbを12%ドープしたPZTを成膜することにより、圧電定数d31=250pm/Vという高い圧電特性を持つ薄膜を安定的に作製できる。なお、バルクの圧電体を基板に接合し、研磨してもよいが、この方法では圧電体を薄膜化するのが難しい(研磨では限界15μm程度である)ために変位量が小さくなる上に、研磨中における破壊などによる歩留まりが小さいといった問題がある。このようなことを鑑みると、気相成長法やゾルゲル法などにより基板上に圧電薄膜を直接成膜する構成が好ましい。特に、本実施形態の圧電体46としては、1μm以上10μm以下の厚さの薄膜であることが好ましい。
<成膜方法について>
圧電体の成膜方法としては気相成長法が好ましい。例えば、スパッタリング法の他、イオンプレーティング法、MOCVD法(有機金属気相成長法)、PLD法(パルスレーザー堆積法)など、各種の方法を適用し得る。また、気相成長法以外の方法(例えば、ゾルゲル法など)を用いることも考えられる。
後述の実施例1では圧電体46として、スパッタリング法によって成膜された4μm厚のPZT薄膜を使用しているが、これに限定されるものではない。
<実施例1;具体的な製造方法の一例>
実施例1として以下の手順によりMEMSスキャナデバイス10を作製した。
(工程1)ハンドル層350μm、ボックス層1μm、デバイス層10μmのSOI(Silicon On Insulator)基板上に、スパッタ法で基板温度350℃にて、Ti層を30nm、Ir電極層を150nm形成した。これらTi層及びIr電極層が図3の下部電極43に相当する。
(工程2)上記得られた基板上に、高周波(RF;radio frequency)スパッタ装置を用いてPZT層を4μm成膜した。成膜ガスは97.5%Arと2.5%Oの混合ガスを用い、ターゲット材料としてはPb1.3((Zr0.52 Ti0.48)0.88 Nb0.12)O3の組成のものを用いた。成膜圧力は2.2mTorr(約0.293Pa)、成膜温度は450℃とした。得られたPZT層は、Nbが原子組成比で12%添加されたNbドープPZT薄膜であった。
(工程3)上記で得られた基板上に、リフトオフ法によって上部電極としてのPt/Ti層をパターン形成し、ICP(inductively coupledplasma;誘導結合プラズマ)ドライエッチングによってPZT薄膜をパターンエッチした。
(工程4)その後、シリコンのドライエッチプロセスによってデバイス層をパターンエッチングし、裏面からハンドル層を深堀エッチング(Deep RIE;Reactive Ion Etching)した。最後に、裏面からBox−SiO層を除去することにより、図1のような構成の圧電MEMSスキャナデバイスを作成した。各部寸法は図2中の記号を用いてL1=1mm(ミリメートル)、L2=2mm、w1=0.1mm、w2=0.4mmとした。
固定フレーム30は、ハンドル層とデバイス層の両方を利用した構造となっており、厚みが約360μmである。圧電アクチュエータ部および板状ヒンジ部はともにSiデバイス層(10μm)/下部電極/PZT薄膜/上部電極の積層構造からなっている。
また、圧電アクチュエータ部は、上部-下部電極間に電圧を印加することによって上下に撓み変形する圧電薄膜ユニモルフアクチュエータとして機能する。
圧電アクチュエータ部14、16は、Siデバイス層(10μm)/下部電極/PZT薄膜/上部電極の積層構造となっており、圧電薄膜ユニモルフアクチュエータとして機能する。
本実施例1では、PZT薄膜をスパッタリング法により基板に直接成膜し、その後ドライエッチング加工することで形成している。このように、圧電体を薄膜化することで作成プロセスを簡便にし、かつ微細なパターニングが可能になる。これによって歩留まりが大幅に向上するとともにデバイスのさらなる小型化に対応することができる。
ただし、本発明の実施に際しての構成は薄膜圧電体に限ったものではく、バルク圧電体を振動板に貼りつけてユニモルフアクチュエータを形成したり、2つの極性の異なる圧電体を貼りあわせてバイモルフアクチュエータとしても良い。本発明の実施に際しては、上記の実施例1に限定されず、基板の材料、電極材料、圧電材料、膜厚、成膜条件などは、目的に応じて適宜選択することができる。
<実施例1に係るMEMSスキャナデバイスの評価>
上記の手順で作製された実施例1に係るMEMSスキャナデバイス10について、圧電アクチュエータ部(14,16)に電位振幅Vp-p=1.2V(ボルト)の正弦波(サイン波)による駆動電圧を印加し、ミラーの回転軸回りの回転共振運動を誘起させてミラー部の機械振れ角をレーザーのスキャン角度で測定したところ、共振周波数fx=154Hz、機械振れ角=±22°であった。
次に、共振周波数に一致する周波数でVp-p=1.2 Vの正弦波を入力して駆動させ、各検出電極25-1〜25-4からの信号をロックインアンプによって検出したところ、検出電極25-1、25-4からは電位振幅470mV(ミリボルト)、検出電極25-2、25-3か
らは電位振幅490mVの電圧出力が得られ、かつこれらの信号の位相差は180°であった(図7参照)。
図6中「Vsense1」は検出電極25-1、25-4からの信号を示しており、「Vsense2」は検出電極25-2、25-3からの信号を示している。
また、圧電アクチュエータ部14、16に与える駆動電圧を変化させてスキャン角度と検出電圧の関係をプロットしたものを図7に示す。図7において、「Differential」は、差分回路によって2つの電圧信号(Vsense1、Vsense2)の差分を検出したものを表している。それぞれの検出電極の角度検出能は、以下の通りであった。
Vsense1:5.41 mV/deg
Vsense2:5.61 mV/deg
差分:11 mV/deg
このように逆位相の検出信号(Vsense1、Vsense2)から両者の差分を検出し、この差分信号を用いて角度の検出を行うことにより、検出信号のドリフトや同相のノイズが除去され、S/N比が向上する。図2に示した検出回路64には差分回路が組み込まれている。
<応力を検出する薄板部材の組み合わせについて>
既に説明したとおり、図1に示したMEMSスキャナデバイス10は、ミラー部12を挟んで左右対称の構造を有しており、共振駆動時には第1薄板部材19-1と第4薄板部材19-2は同等の動きとなり、第2薄板部材19-2と第3薄板部材19-3は同等の動きとなる。そして、第1薄板部材19-1上のセンサ部24-1と第4薄板部材19-4上のセンサ部24-4からは同様の検出信号(図6のVsense1)が得られる。また、第2薄板部材19-2上のセンサ部24-2と第3薄板部材19-3上のセンサ部24-3からは同様の検出信号(図6のVsense2)が得られる。
したがって、互いに逆位相の1組の検出信号(Vsense1、Vsense2)を得るためには、第1薄板部材19-1と第2薄板部材19-2の組み合わせの他、第1薄板部材19-1と第3薄板部材19-3の組み合わせ、第2薄板部材19-2と第4薄板部材19-4の組み合わせ、第3薄板部材19-3と第4薄板部材19-4の組み合わせも可能であり、いずれの組み合わせを採用してもよい。
連結部(18、20)を構成する薄板部材19の本数が変更されても同様であり、逆方向に変位する薄板部材同士を適宜選択して組み合わせることで、逆位相の検出信号が得られる。
ミアンダ状の連結部(18、20)を構成する薄板部材の本数をm本(mは2以上の整数)として一般化して考えると、m本の薄板部材について、ミラー部12に近い側から外側の圧電アクチュエータ部側へ向かって順次に並び順を示す連続番号j(jは整数であり、例えば、j=1,2,…m)を付与して各薄板部材に識別用の番号を与えたとき、奇数番目の薄板部材と、偶数番目の薄板部材とを組み合わせて、それぞれの応力を検出すればよい。なお、連続番号jの初期値は「1」に限らず、「0」でもよく、任意の整数とすることができる。
図1及び図2に示した実施形態はm=2の例であり、ミラー部12に近い側の第2薄板部材19-2と第3薄板部材19-3が「1番目(j=1)」、第1薄板部材19-1と第4薄板部材19-4が「2番目(j=2)」となる。
奇数番目の薄板部材のうちから選択される少なくとも1つの薄板部材に発生する応力を検出するセンサ部と、偶数番目の薄板部材のうちから選択される少なくとも1つの薄板部材に発生する応力を検出するセンサ部とを備える構成とし、これら両方のセンサ部からそれぞれ信号を検出すればよい。
したがって、必ずしもすべての薄板部材19-1〜19-4についてセンサ部を設ける必要性は無く、センシングに使用しないセンサ部を省略する構成も可能である。ただし、ミラー部12を安定的に共振駆動させる観点から、構造的な対称性を備えていることが好ましい。センシングに使用しない薄板部材に対しても、下部電極/圧電体/上部電極の積層構造を形成しておくことにより、構造的対称性を確保することができる。
<実施例2>
実施例2では、PZT成膜時のターゲット材料として、Pb1.3((Zr0.52 Ti0.48)O3の組成のものを用いたこと以外は実施例1と同様の作製方法により、実施例1と同様の構造のMEMSスキャナデバイスを作製した。得られたデバイスについて、実施例1と同様の動作確認実験を行った。図8に、印加電圧と光学スキャン角度の関係を示した。図8では、実施例1(Nb12%PZT)の結果も併せて記載した。
図8中の白抜き三角印は、NbをドープしないPZTについて分極処理を実施しないまま測定した結果である。黒塗り三角印はNbをドープしないPZTについて、成膜後に分極処理を実施した場合の測定結果である。黒塗り丸印は、Nbを12%ドープしたPZT(分極処理無し)を用いた実施例1の測定結果である。
図8に示したように、NbをドープしないPZTの場合、成膜後に分極処理を行わないとアクチュエータ特性(センサ特性)を充分に引き出せない。なお、分極処理に関しては、下部電極をグランドに接続し(接地)、上部電極に−20Vを1分間印加することで行った。その一方で、実施例1のようにNbをドープしたPZTを用いると、未分極状態でも、分極処理後のNbドープ無しPZTを大きく上回るアクチュエータ特性を示している。
図9に、PZT中のNbドープ量とアクチュエータ特性・センシング特性の関係をまとめた表を示す。図9において、スキャン角度、角度検出能ともに、未分極の値を用いている。分極処理の必要性の有無に関する判定は、未分極状態のスキャン角度(0.5Vpp印加時)が、分極処理後のスキャン角度の0.8以下である場合に「C」(分極処理が必要)、0.8を上回り0.9以下の場合は「A」(未分極処理で使用可能)、0.9を上回る場合を「AA」(分極処理不要)とした。
この結果によると、PZTにNbを6%以上ドープすることによって分極処理を行わずに使用することができるため、製造コストを抑えることができる。
また、Nbドープ量が上昇するに従って圧電特性が上がっていくため、Nbドープ量が多いほど、より低い電圧で高いスキャン角度を得ることができ、かつ角度検出の際に高い検出電圧が得られる。
<実施形態の作用効果について>
(1)圧電アクチュエータ部14、16とミラー部12の間を、ミアンダ状に折り畳まれた板状ヒンジ構造の連結部18、20を介して接続した構造となっており、圧電アクチュエータ部14、16によってミラー部12の端部12A,12Bを上下に振動させることで慣性トルクが発生し、回転運動共振が励起される。
(2)上記構造を備えたMEMSスキャナデバイス10において、連結部18、20の薄板部材19に応力検出部としてのセンサ部24-i(i=1,2,3,4)が設けられ、ミラー回転運動中に連結部18、20にかかる応力を圧電効果によって電圧信号として検出している。この電圧信号からミラー部12の角度を把握することができる。
(3)圧電材料として、Nbを6%以上ドープしたPZTを用いることにより、PZTのアクチュエータ特性、センシング特性の両方の性能を引き出すための分極処理を行う必要がなくなり、プロセスが簡略化され、製造コストを低減させることができる。
(4)400Hz以下の低い共振周波数に設計する場合においても、各薄板部材19の部分の剛性を比較的高く保つことができるので、トーションバー方式と比較して外的振動による破壊が抑えられる。
(5)板状ヒンジ部としての連結部18、20をミアンダ状に折りたたむ構造とすることで、駆動中の回転トルクが分散されて、一本一本の薄板部材にかかる応力が小さくなるため、大きなスキャン角度でも安定駆動が可能である。
(6)本実施形態によれば、トーションバーを持たない構造であるのにも関わらず、角度検出が可能である。圧電効果による検出の場合、実用温度範囲では圧電定数が温度の影響をほとんど受けないので、温度による係数変化を補正するための回路などが不要である。このため、簡便な構成で角度を検出できる。
(7)ミラー部12に近い方から奇数番目の薄板部材に設けた検出電極と、ミラー部に近い方から偶数番目の薄板部材に設けた検出電極からは互いに逆位相の信号が得られるため(図6参照)、これら信号の差分を取ることによって検出感度を2倍にすると同時にS/Nを上げることができる。
(8)実施例1、2で説明したように、基板上にPZT薄膜を直接成膜し、これをエッチング加工することでMEMSスキャナデバイスを形成することができる。このように、圧電体を薄膜化することでより細かいパターニングを容易に行うことができるため、歩留まりが大幅に向上するとともにデバイスのさらなる小型化に対応することができる。
<第2実施形態>
第1実施形態、実施例1,2では板状ヒンジ部として機能する連結部18、20に圧電体薄膜を積層し、圧電効果によって応力を電圧に変換する構造を用いたが、板状ヒンジ部の応力を検出する手段はこの例に限らない。例えば、連結部に発生する応力を検出する手段としてピエゾ抵抗効果を利用する形態も可能である。その一例として、シリコン(Si)の連結部18、20の表面にボロン(ホウ素)ドープを行い、ピエゾ抵抗効果を示すp型Si層を形成し、このp型Si層の電気抵抗が印加応力によって変化することを利用して応力検出を行う構成を採用してもよい。
図10は第2実施形態に係るMEMSスキャナデバイスの構成を示す平面図である。図10中、図1及び図2と同一又は類似する要素には同一の符号を付し、その説明は省略する。図10に示すMEMSスキャナデバイス110は、第1実施形態のセンサ部24-i(i=1,2,3,4)に代えて、Siの表面にボロンドープを行ってp型Si層としたピエゾ抵抗材料部125-i(i=1,2,3,4)が設けられている。すなわち、Si表面の一部にボロンを拡散させてp型化したSiによって連結部18、20を構成し、連結部18、20にかかる応力によってp型Si部の電気抵抗が変化するピエゾ抵抗効果を利用して応力を検出する。
ピエゾ抵抗材料部125-i(i=1,2,3,4)は、「応力検出部」に相当しており、応力が加わると抵抗値が変化する。かかる抵抗値の変化を電圧に変換する回路を用いて電圧信号として検出する。
図11は、抵抗値の変化を電圧に変換する回路の構成図である。図中のR1、R2は、それぞれ互いに逆方向に変位する薄板部材に設けられたピエゾ抵抗材料部の抵抗を示している。すなわち、R1は、奇数番目の薄板部材に設けられたピエゾ抵抗材料部の抵抗(例えば、第3薄板部材19-3に設けられたピエゾ抵抗材料部125-3の抵抗)を示し、R2は、偶数番目の薄板部材に設けられたピエゾ抵抗材料部の抵抗(例えば、第4薄板部材19-4に設けられたピエゾ抵抗材料部125-4の抵抗)を示す。
図示のように、R1とR2を接続した分圧回路が構成され、R1とR2で分圧された電圧信号Voutが得られる。第2実施形態では、このような回路が検出回路64に組み込まれる。ピエゾ抵抗効果は温度依存性があるが、図11のような分圧回路を利用することによって、抵抗変化の温度依存成分がキャンセルされる。
なお、第1実施形態で説明したように、圧電薄膜を積層する方式を採用すれば、アクチュエータ部とセンサ部を同じプロセスで一括形成できるため、プロセスが簡便になり、コストを下げることができる。
また、圧電効果は、ピエゾ抵抗効果に比べて温度依存性が小さく、電極間から直接電圧信号を得ることができるため、検出回路の構成も簡単である。
<第3実施形態>
図12は、第3実施形態に係るMEMSスキャナデバイス210の要部平面図、図13はその回転共振モードにおける動作状態を示す斜視図である。
これらの図面中、図1及び図2で説明した例と同一又は類似する要素には同一の符号を付し、その説明は省略する。第3実施形態では、板状ヒンジ部として機能する連結部18、20が3本の薄板部材をミアンダ状につなぎ合わせた構造となっている。他の構成は、第1実施形態と同様の構成である。薄板部材の数が多い分、第1実施形態よりも低い共振周波数が得られる。
図12に示す連結部18は、薄板部材219-1、219-2、219-3がミアンダ状に折り返すように並べられた構造を有する。また、連結部20は、薄板部材219-4、219-5、219-6がミアンダ状に折り返すように並べられた構造を有する。
そして、ミラー部12側に近い方から奇数番目の薄板部材219-3、219-4に検出電極225-3、225-4が設けられ、偶数番目の薄板部材219-2、219-5に検出電極225-2、225-5が設けられている。なお、図示の簡略化のために、図12では配線(51〜54)や出力端子(31〜34)の図示を省略した。
符号219-1、219-6で示す薄板部材は「奇数番目」に該当するため、検出電極225-3、225-4に代えて、または、これと併せて、薄板部材219-1、219-6に検出電極を設ける態様も可能である。
図12に示した第3実施形態のMEMSスキャナデバイス210においても、第1実施形態と同様に、圧電アクチュエータ部14、16の上下駆動によりミラー部12の端部12A、12Bを上下に振動させることで、慣性力によりミラー部12に傾き(回転)運動が誘起され、その共振振動でミラー部12が大きく傾く(図13参照)。ミラー部12と
圧電アクチュエータ部14、16の間に蛇行した形状の連結部(ミアンダ状に折りたたんだ板状ヒンジ部)18、20を設けることにより、ミラー部12の傾き角の変位がさらに拡大する。そして、回転駆動中に連結部に発生する応力を検出して、ミラー部12の角度を把握することができる。
なお、本発明を実施するに際し、連結部18、20の構成として、蛇行した(ミアンダ状の)連結部であることは不可欠な要素というわけではなく、板状ヒンジとして機能する1本の薄板部材で連結部を構成する形態も可能である。
<変形例1>
上述の実施形態では、圧電アクチュエータ部やセンサ部に用いる圧電材料としてPZTを選択したが、もちろんこの材料に限定する必要はない。例えば、BaTiO、KaNaNbO、BiFeOなどの非鉛圧電体を用いることも可能であるし、AlN、ZnOなどの非ペロブスカイト圧電体を用いることも可能である。
<変形例2>
上述した実施形態における圧電アクチュエータ部(14、16)の構成に代えて、複数の圧電カンチレバーを組み合わせた圧電アクチュエータ部を採用することもできる。例えば、ミアンダ状の折り返し構造を持つ圧電カンチレバーを採用することができる。本発明の実施に際して、カンチレバー部の折り返し構造の採否や、折り返し回数(折り畳み数)については、特に限定されない。カンチレバーの折り畳み数を増やすほど、変位量を増大させることが可能である。
板ヒンジ部やカンチレバーの折り畳み数やレバー部の幅等の設計パラメータは全体の共振周波数に影響する。折り畳み数を増やすほど、共振周波数は低下する傾向にある。また、レバー部や板状部材(ヒンジ板)の幅を細くするほど、共振周波数は低下する傾向にある。折り畳み数やレバー部、板状部材(ヒンジ板)の幅などを設計することによって、所望の共振周波数を実現できる。
<応用例>
本発明は、レーザー光等の光を反射して光の進行方向を変える光学装置として様々な用途に利用できる。例えば、光偏向器、光走査装置、レーザープリンタ、バーコード読取機、表示装置、各種の光学センサ(測距センサ、形状測定センサ)、光通信装置、レーザープロジェクタ、OCT画像診断装置などに広く適用することができる。
なお、本発明は以上説明した実施形態に限定されるものではなく、本発明の技術的思想内で当該分野の通常の知識を有するものにより、多くの変形が可能である。
10…MEMSスキャナデバイス、12…ミラー部、14…圧電アクチュエータ部(第1圧電アクチュエータ部)、16…圧電アクチュエータ部(第2圧電アクチュエータ部)、18…連結部(第1連結部)、19…薄板部材、20…連結部(第2連結部)、22…回転軸、30…固定フレーム、42…振動板、43…下部電極、46…圧電体、48…上部電極、62…駆動回路、64…検出回路、110…MEMSスキャナデバイス、210…MEMSスキャナデバイス

Claims (17)

  1. 光を反射する反射面を有するミラー部と、
    前記ミラー部を挟んで両側に配置される一対の圧電アクチュエータ部と、
    前記ミラー部の回転軸から前記反射面に沿って前記回転軸に垂直な方向に離れた前記ミラー部の端部に前記圧電アクチュエータ部の一端を接続させる連結部と、
    前記圧電アクチュエータ部の他端を支持する固定部と、
    を備え、
    前記連結部は、前記反射面に沿って前記回転軸に垂直な方向を長手方向とする板状部材を1本以上含んだ構造を有し、前記圧電アクチュエータ部の駆動によって前記板状部材が厚み方向に撓み変形する板状ヒンジ部であり、
    前記連結部には、前記圧電アクチュエータ部の駆動によって誘起されるミラー部の回転運動を伴う共振振動によるミラー部の回転駆動中に前記連結部に発生する応力を検出する応力検出部が設けられているミラー駆動装置。
  2. 前記連結部は、2本以上の前記板状部材がミアンダ状に折り返すように並べられた構造を有しており、隣り合って並ぶ板状部材同士が前記共振振動のときに互いに逆方向に撓み変形する請求項1に記載のミラー駆動装置。
  3. 前記ミアンダ状に折り返すように並べられた前記2本以上の板状部材について、前記ミラー部に近い側から前記圧電アクチュエータ部の方向に向かって並び順を示す連続番号を与えてそれぞれの板状部材を特定するときに、
    前記応力検出部として、
    奇数番目の板状部材に発生する応力を検出する第1応力検出部と、
    偶数番目の板状部材に発生する応力を検出する第2応力検出部と、
    を備える請求項2に記載のミラー駆動装置。
  4. 前記応力検出部は、前記板状部材上に下部電極、圧電体、上部電極の順に積層された積層構造を有し、前記圧電体の圧電効果によって応力を電気信号に変換する構造である請求項1から3のいずれか1項に記載のミラー駆動装置。
  5. 請求項3を引用するときの請求項4に記載のミラー駆動装置において、
    前記第1応力検出部及び第2応力検出部の両方からそれぞれ電圧信号が得られ、
    前記第1応力検出部から得られる第1検出信号と前記第2応力検出部から得られる第2検出信号の差分を検出する検出回路を備えるミラー駆動装置。
  6. 前記応力検出部は、前記板状部材の表面部がピエゾ抵抗効果を示す材料で構成され、前記ピエゾ抵抗効果を示す前記材料のピエゾ抵抗効果によって応力を抵抗値の変化に変換するものである請求項1から3のいずれか1項に記載のミラー駆動装置。
  7. 前記抵抗値の変化を電圧信号に変換する検出回路を備える請求項6に記載のミラー駆動装置。
  8. 請求項3を引用するときの請求項7に記載のミラー駆動装置において、
    前記検出回路は、前記第1応力検出部で構成される第1抵抗と前記第2応力検出部で構成される第2抵抗とを接続した分圧回路によって電圧信号を得るミラー駆動装置。
  9. 前記圧電アクチュエータ部は、振動板、下部電極、圧電体、上部電極の順に積層された圧電ユニモルフカンチレバーで構成されることを特徴とする請求項1から8のいずれか1項に記載のミラー駆動装置。
  10. 請求項4を引用するときの請求項9に記載のミラー駆動装置において、
    前記圧電アクチュエータ部及び前記応力検出部に用いられる圧電体は1〜10μm厚の薄膜であり、前記振動板となる基板上に直接成膜された薄膜であるミラー駆動装置。
  11. 前記圧電アクチュエータ部に用いられる圧電体は、下記式(P)で表される1種又は2種以上のペロブスカイト型酸化物である請求項1から10のいずれか1項に記載のミラー駆動装置。
    一般式ABO・・・(P)
    (式中、A:Aサイトの元素であり、Pbを含む少なくとも1種の元素。
    B:Bサイトの元素であり、Ti,Zr,V,Nb,Ta,Sb,Cr,Mo,W,Mn,Sc,Co,Cu,In,Sn,Ga,Zn,Cd,Fe,及びNiからなる群より選ばれた少なくとも1種の元素。
    O:酸素元素。
    Aサイト元素とBサイト元素と酸素元素のモル比は1:1:3が標準であるが、これらのモル比はペロブスカイト構造を取り得る範囲内で基準モル比からずれてもよい。)
  12. 前記圧電アクチュエータ部に用いられる圧電体は、下記式(PX)で表される1種又は2種以上のペロブスカイト型酸化物である請求項1から10のいずれか1項に記載のミラー駆動装置。
    (Zr,Ti,Mb−x−y・・・(PX)
    (式中、A:Aサイトの元素であり、Pbを含む少なくとも1種の元素。
    Mが、V,Nb,Ta,及びSbからなる群より選ばれた少なくとも1種の元素である。0<x<b、0<y<b、0≦b−x−y。
    a:b:c=1:1:3が標準であるが、これらのモル比はペロブスカイト構造を取り得る範囲内で基準モル比からずれてもよい。)
  13. 前記ペロブスカイト型酸化物(PX)は、Nbを含み、Nb/(Zr+Ti+Nb)モル比が0.06以上0.20以下である請求項12に記載のミラー駆動装置。
  14. 前記圧電アクチュエータ部に用いられる圧電体はスパッタリング法で成膜された薄膜である請求項1から13のいずれか1項に記載のミラー駆動装置。
  15. 前記一対の圧電アクチュエータ部に駆動電圧を供給する駆動回路であって、
    前記ミラー部が前記回転軸を中心に回転運動を行う共振モードの共振周波数fxの付近で前記ミラー部を共振駆動させる駆動電圧を供給する駆動回路を備える請求項1から14のいずれか1項に記載のミラー駆動装置。
  16. 請求項1から15のいずれか1項に記載のミラー駆動装置におけるミラー駆動方法であって、
    前記一対の圧電アクチュエータ部に駆動電圧を印加し、前記圧電アクチュエータ部を振動させることにより、前記ミラー部と前記連結部との接続部分を振動させ、この振動により前記ミラー部に前記回転軸周りの回転トルクを与え、前記ミラー部を共振駆動させることを特徴とするミラー駆動方法。
  17. 前記ミラー部の共振駆動中に前記応力検出部から得られる検出信号を用いて前記圧電アクチュエータ部に印加する前記駆動電圧もしくは駆動周波数を制御する請求項16に記載のミラー駆動方法。
JP2012212238A 2012-09-26 2012-09-26 ミラー駆動装置及びその駆動方法 Active JP5916577B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012212238A JP5916577B2 (ja) 2012-09-26 2012-09-26 ミラー駆動装置及びその駆動方法
EP13841383.6A EP2902836B1 (en) 2012-09-26 2013-09-12 Mirror driving device and driving method for same
PCT/JP2013/074648 WO2014050586A1 (ja) 2012-09-26 2013-09-12 ミラー駆動装置及びその駆動方法
US14/668,429 US10048489B2 (en) 2012-09-26 2015-03-25 Mirror driving device and driving method for same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012212238A JP5916577B2 (ja) 2012-09-26 2012-09-26 ミラー駆動装置及びその駆動方法

Publications (3)

Publication Number Publication Date
JP2014066876A true JP2014066876A (ja) 2014-04-17
JP2014066876A5 JP2014066876A5 (ja) 2015-02-19
JP5916577B2 JP5916577B2 (ja) 2016-05-11

Family

ID=50387993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012212238A Active JP5916577B2 (ja) 2012-09-26 2012-09-26 ミラー駆動装置及びその駆動方法

Country Status (4)

Country Link
US (1) US10048489B2 (ja)
EP (1) EP2902836B1 (ja)
JP (1) JP5916577B2 (ja)
WO (1) WO2014050586A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017146624A (ja) * 2017-05-18 2017-08-24 株式会社リコー 位置検出装置と映像機器
US11750779B2 (en) 2019-08-20 2023-09-05 Ricoh Company, Ltd. Light deflector, optical scanning system, image projection device, image forming apparatus, and lidar device

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10739460B2 (en) 2010-08-11 2020-08-11 Apple Inc. Time-of-flight detector with single-axis scan
JP5654158B1 (ja) * 2014-05-07 2015-01-14 株式会社トライフォース・マネジメント 可動反射素子および二次元走査装置
US9624100B2 (en) * 2014-06-12 2017-04-18 Apple Inc. Micro pick up array pivot mount with integrated strain sensing elements
DE102014217799B4 (de) * 2014-09-05 2019-11-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Piezoelektrischer Positionssensor für piezoelektrisch angetriebene resonante Mikrospiegel
US9705432B2 (en) * 2014-09-30 2017-07-11 Apple Inc. Micro pick up array pivot mount design for strain amplification
JP6606865B2 (ja) * 2015-05-29 2019-11-20 ミツミ電機株式会社 光走査装置及びその製造方法、光走査制御装置
JP6498047B2 (ja) 2015-06-09 2019-04-10 株式会社トライフォース・マネジメント 可動反射装置およびこれを利用した反射面駆動システム
CN104977104B (zh) * 2015-07-13 2017-04-12 大连理工大学 一种压电式小量程大量程比的测力装置
US10298913B2 (en) * 2016-08-18 2019-05-21 Apple Inc. Standalone depth camera
IT201600132144A1 (it) * 2016-12-29 2018-06-29 St Microelectronics Srl Dispositivo attuatore micro-elettro-meccanico con comando piezoelettrico, mobile nel piano
EP3460981B1 (en) * 2017-07-26 2022-03-30 Tri-Force Management Corporation Power generation element
DE102017220813A1 (de) * 2017-11-22 2019-05-23 Robert Bosch Gmbh Laserprojektionsvorrichtung
JP6985602B2 (ja) * 2018-01-29 2021-12-22 ミツミ電機株式会社 光走査装置及び光走査装置の製造方法
IT201800002364A1 (it) 2018-02-02 2019-08-02 St Microelectronics Srl Dispositivo micro-manipolatore micro-elettro-meccanico con comando piezoelettrico, mobile nel piano
DE102018215528A1 (de) * 2018-09-12 2020-03-12 Robert Bosch Gmbh Mikromechanisches Bauteil und Herstellungsverfahren für ein mikromechanisches Bauteil
US11221478B2 (en) * 2019-04-15 2022-01-11 Microsoft Technology Licensing, Llc MEMS scanner
US11175492B2 (en) 2019-08-12 2021-11-16 Microsoft Technology Licensing, Llc Substrate for scanning mirror system
CN112752209B (zh) * 2019-10-31 2022-03-25 华为技术有限公司 一种压电式mems传感器以及相关设备
CN111289155B (zh) * 2020-02-26 2021-07-13 西安交通大学 基于电磁激励压阻检测的面内振动硅微谐振式压力传感器
US20220026537A1 (en) * 2020-07-22 2022-01-27 Beijing Voyager Technology Co., Ltd. Systems and methods for sensing rotation angles of a micro mirror in an optical sensing system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009258210A (ja) * 2008-04-14 2009-11-05 Panasonic Corp 光学反射素子
JP2011095523A (ja) * 2009-10-30 2011-05-12 Panasonic Corp 光学反射素子
WO2011121945A1 (ja) * 2010-03-30 2011-10-06 パナソニック株式会社 光学反射素子

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008039810A (ja) * 2006-08-01 2008-02-21 Matsushita Electric Ind Co Ltd 光学反射素子
JP4926596B2 (ja) 2006-08-08 2012-05-09 スタンレー電気株式会社 光偏向器及びその製造方法
DE102007058239B4 (de) * 2007-12-04 2021-04-29 Robert Bosch Gmbh Mikrospiegelvorrichtung
CA2729750C (en) * 2008-07-03 2017-06-06 Hotspur Technologies, Inc. Apparatus and method comprising an expandable balloon or member for treating obstructions within body lumens
US8477398B2 (en) * 2009-05-11 2013-07-02 Panasonic Corporation Optical reflection element
JP5400636B2 (ja) 2010-01-20 2014-01-29 スタンレー電気株式会社 光偏向器及びこれを用いた光学装置
JP5592192B2 (ja) * 2010-08-11 2014-09-17 富士フイルム株式会社 圧電体膜とその製造方法、圧電素子および液体吐出装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009258210A (ja) * 2008-04-14 2009-11-05 Panasonic Corp 光学反射素子
JP2011095523A (ja) * 2009-10-30 2011-05-12 Panasonic Corp 光学反射素子
WO2011121945A1 (ja) * 2010-03-30 2011-10-06 パナソニック株式会社 光学反射素子

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017146624A (ja) * 2017-05-18 2017-08-24 株式会社リコー 位置検出装置と映像機器
US11750779B2 (en) 2019-08-20 2023-09-05 Ricoh Company, Ltd. Light deflector, optical scanning system, image projection device, image forming apparatus, and lidar device

Also Published As

Publication number Publication date
US20150198801A1 (en) 2015-07-16
EP2902836B1 (en) 2021-10-27
EP2902836A1 (en) 2015-08-05
EP2902836A4 (en) 2016-05-04
WO2014050586A1 (ja) 2014-04-03
US10048489B2 (en) 2018-08-14
JP5916577B2 (ja) 2016-05-11

Similar Documents

Publication Publication Date Title
JP5916577B2 (ja) ミラー駆動装置及びその駆動方法
JP5323155B2 (ja) ミラー駆動装置及びその駆動方法並びに製造方法
JP5916668B2 (ja) ミラー駆動装置及びその駆動方法
JP5916667B2 (ja) ミラー駆動装置及びその駆動方法
JP5264954B2 (ja) ミラー駆動装置及び方法
US9030721B2 (en) Mirror driving device and method of controlling the device
JP6308701B2 (ja) ミラー駆動装置及びその駆動方法
JP6308700B2 (ja) ミラー駆動装置及びその駆動方法
CN112912784B (zh) 微镜器件及微镜器件的驱动方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160405

R150 Certificate of patent or registration of utility model

Ref document number: 5916577

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250