WO2011118728A1 - 新規共重合体およびその製造方法 - Google Patents

新規共重合体およびその製造方法 Download PDF

Info

Publication number
WO2011118728A1
WO2011118728A1 PCT/JP2011/057235 JP2011057235W WO2011118728A1 WO 2011118728 A1 WO2011118728 A1 WO 2011118728A1 JP 2011057235 W JP2011057235 W JP 2011057235W WO 2011118728 A1 WO2011118728 A1 WO 2011118728A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
monomer
copolymer
acid
polymerization
Prior art date
Application number
PCT/JP2011/057235
Other languages
English (en)
French (fr)
Inventor
淳郎 米田
大祐 道尭
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Priority to JP2012507072A priority Critical patent/JPWO2011118728A1/ja
Publication of WO2011118728A1 publication Critical patent/WO2011118728A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3757(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/20Esters of polyhydric alcohols or phenols, e.g. 2-hydroxyethyl (meth)acrylate or glycerol mono-(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof

Definitions

  • the present invention relates to a novel copolymer and a method for producing the same.
  • detergents used in apparel have been blended with detergent builders (detergent assistants) such as zeolite, carboxymethylcellulose, and polyethylene glycol for the purpose of improving the cleaning effect of the detergent.
  • detergent builders detergent assistants
  • sodium polyacrylate and the like are blended in detergent compositions as detergent builders (for example, Patent Document 1).
  • a copolymer of acrylic acid and 2-hydroxyethyl (meth) acrylate exhibits good clay dispersibility and can be suitably used for various uses such as detergent builders (for example, Patent Document 2).
  • the sodium polyacrylate used in Patent Document 1 has a relatively good ability to prevent re-contamination of hydrophilic soil, but from the aspect of compatibility with liquid detergents and the ability to prevent re-contamination of hydrophobic soil. Its performance is not enough. Further, the copolymer of acrylic acid and 2-hydroxyethyl (meth) acrylate used in Patent Document 2 has room for improving the ability to prevent recontamination of hydrophobic soils.
  • the present invention provides a polymer having both improved compatibility with a surfactant that has been improved more than before when used in detergent applications, and an effect of improving the ability to prevent recontamination of hydrophobic soil, and its production It aims to provide a method.
  • the present invention provides a structural unit (a) derived from 1% by mass to 90% by mass of hydroxypropyl (meth) acrylate (A) and a carboxyl group-containing single monomer of 10% by mass to 99% by mass. It is a copolymer having the structural unit (b) derived from the body (B) as an essential structural unit.
  • a method for producing a copolymer is provided. That is, in the method for producing a copolymer of the present invention, 1% by mass or more and 90% by mass or less of hydroxypropyl (meth) acrylate (A) (monomer (A) And a copolymer having a carboxyl group-containing monomer (B) (also referred to as monomer (B)) of 10% by mass or more and 99% by mass or less as an essential component. It is a manufacturing method.
  • the copolymer of the present invention exhibits an excellent ability to prevent recontamination, the copolymer of the present invention can be suitably used for a detergent composition. Moreover, since it has the compatibility with the outstanding surfactant, it can mix
  • the copolymer of the present invention essentially has a specific proportion of the structural unit (a) derived from hydroxypropyl (meth) acrylate (A) (also referred to as monomer (A)).
  • the hydroxypropyl (meth) acrylate is a general term that combines hydroxypropyl acrylate and hydroxypropyl methacrylate, and the hydroxypropyl (meth) acrylate (A) is either hydroxypropyl acrylate or hydroxypropyl methacrylate. It may also contain both hydroxypropyl acrylate and hydroxypropyl methacrylate.
  • the copolymer of the present invention is derived from hydroxypropyl methacrylate because the copolymer of the present invention can exhibit stable and excellent anti-recontamination ability even under alkaline conditions. It is preferable to have a structural unit.
  • the hydroxypropyl (meth) acrylate (A) contains both hydroxypropyl acrylate and hydroxypropyl methacrylate
  • the copolymer of the present invention is a total of structural units derived from hydroxypropyl acrylate and hydroxypropyl methacrylate. In a specific proportion as the structural unit (a) derived from hydroxypropyl (meth) acrylate (A).
  • the structural unit (a) is in a form in which the carbon-carbon unsaturated double bond is a single bond in the monomer (A), that is, hydroxypropyl (meth) acrylate (A).
  • the structural unit (a) can be represented by the following general formulas (a1) to (a3).
  • R 0 represents a hydrogen atom or a methyl group.
  • the structural unit (a) has the general formula (a1) and / or (a2). .
  • the copolymer of the present invention has a structural unit (a) derived from hydroxypropyl (meth) acrylate (A) (monomer A) of 1% by mass or more with respect to 100% by mass of the structure derived from all monomers, It is essential to have a ratio of 90% by mass or less.
  • the total monomer means the monomer (A), the monomer (B), the monomer (E) described later (that is, hydroxypropyl (meth) acrylate (A) and a carboxyl group-containing single monomer).
  • the proportion of the structural unit (a) with respect to 100% by mass of the structure derived from all monomers is preferably 5% by mass or more and 90% by mass or less, more preferably 10% by mass or more and 90% by mass or less. Preferably they are 20 mass% or more and 90 mass% or less.
  • the copolymer of the present invention has the structural unit (a) derived from the monomer (A) within the above range, the recontamination preventing ability and the compatibility with the surfactant are further improved. Since the structural unit (a) has a high affinity with a surfactant, the copolymer of the present invention has the structural unit (a) derived from the monomer (A) within the above range. It is considered that the compatibility with the activator is improved.
  • the structural unit (a) has an ester group
  • the periphery of the ester group is in a hydrophobic atmosphere
  • the copolymer of the present invention is stable and excellent because of strong hydrolysis resistance and high stability. The ability to prevent recontamination and compatibility with a surfactant can be exhibited.
  • the ester group of the structural unit (a) is hydrolyzed, the produced propylene glycol is safer than ethylene glycol and the like, so the copolymer of the present invention is safe for cosmetic use and the like. It can be preferably used even in a field where the property is strictly required.
  • monomer (A) is water-soluble, it can be polymerized in aqueous solution and can be designed with extremely low mixing of organic solvents and the like, and mixing of organic solvents and the like is strictly controlled. Application to applications is also possible.
  • the copolymer of the present invention is required to have the structural unit (b) derived from the carboxyl group-containing monomer (B) at a specific ratio.
  • the carboxyl group-containing monomer (B) is a monomer that essentially contains 1) a carbon-carbon unsaturated double bond and 2) a carboxyl group and / or a salt thereof.
  • unsaturated monocarboxylic acid monomers such as acrylic acid, methacrylic acid, crotonic acid, ⁇ -hydroxyacrylic acid, ⁇ -hydroxymethylacrylic acid and derivatives thereof, and salts thereof; itaconic acid, fumaric acid And unsaturated dicarboxylic acid monomers such as acid, maleic acid and 2-methyleneglutaric acid, and salts thereof.
  • the unsaturated monocarboxylic acid monomer may be any monomer having one unsaturated group and one carboxyl group in the molecule, but acrylic acid, methacrylic acid, and monovalents thereof. Metal salts, divalent metal salts, ammonium salts, and organic ammonium salts (organic amine salts) are preferred.
  • the unsaturated dicarboxylic acid monomer may be any monomer having one unsaturated group and two carboxyl groups in the molecule, but maleic acid, itaconic acid, citraconic acid, fumaric acid, These monovalent metal salts, divalent metal salts, ammonium salts, organic ammonium salts (organic amine salts), or anhydrides thereof are preferred.
  • Examples of the carboxyl group-containing monomer (B) include a half ester of the unsaturated dicarboxylic acid monomer and an alcohol having 1 to 22 carbon atoms, the unsaturated dicarboxylic acid monomer and a carbon number of 1 A half amide with an amine of ⁇ 22, a half ester of the above unsaturated dicarboxylic acid monomer and a glycol of 2 to 4 carbon atoms, a half amide of maleamic acid and a glycol of 2 to 4 carbon atoms, etc. Good.
  • Examples of the salt of the unsaturated monocarboxylic acid monomer or the salt of the unsaturated dicarboxylic acid monomer include metal salts, ammonium salts, and organic amine salts.
  • Examples of the metal salt include alkali metal salts such as sodium salt, lithium salt, potassium salt, rubidium salt and cesium salt; alkaline earth metal salts such as magnesium salt, calcium salt, strontium salt and barium salt; aluminum and iron And the like; and the like.
  • organic amine salts examples include alkanolamine salts such as monoethanolamine salts, diethanolamine salts, and triethanolamine salts; alkylamine salts such as monoethylamine salts, diethylamine salts, and triethylamine salts; polyamines such as ethylenediamine salts and triethylenediamine salts; Of organic amines; and the like.
  • alkanolamine salts such as monoethanolamine salts, diethanolamine salts, and triethanolamine salts
  • alkylamine salts such as monoethylamine salts, diethylamine salts, and triethylamine salts
  • polyamines such as ethylenediamine salts and triethylenediamine salts
  • the salt of the unsaturated monocarboxylic acid monomer or the salt of the unsaturated dicarboxylic acid monomer is highly effective in improving the ability to prevent recontamination of the resulting copolymer. Therefore, ammonium salts, sodium salts
  • acrylic acid, acrylic acid, acrylic acid, maleic acid, maleic acid and maleic acid are preferred because they have a high effect of improving the ability to prevent recontamination. More preferably, the acid salt is essential.
  • the said carboxyl group containing monomer (B) may be only 1 type, and 2 or more types may be sufficient as it.
  • the copolymer of this invention has the sum total of the structural unit (b) derived from all the carboxyl group containing monomers (B) in a specific ratio.
  • the structural unit (b) is in a form in which the carbon-carbon unsaturated double bond of the monomer (B) is a single bond.
  • the structural unit (b) derived from the carboxyl group-containing monomer (B) is converted to 100% by mass of the structure derived from all monomers (the structural units (a) and (b), and the structure described later). It is essential to have a ratio of 10% by mass to 99% by mass with respect to 100% by mass of the total mass of the unit (e).
  • the ratio of the structural unit (b) to 100% by mass of the structure derived from all monomers is preferably 10% by mass or more and 95% by mass or less, more preferably 10% by mass or more and 90% by mass or less. Preferably they are 10 mass% or more and 80 mass% or less.
  • the copolymer of the present invention When the copolymer of the present invention is used as a detergent builder, by having the structural unit (b) at a specific ratio, the water solubility of the polymer is improved, and the soil particles interacted by the structural unit (a) are removed. It is possible to exert the effect of dispersing.
  • the mass ratio (mass%) with respect to the structure derived from all the monomers of the structural unit (b) derived from a carboxyl group-containing monomer (B) it calculates as a corresponding acid conversion. It shall be. For example, in the case of a structural unit —CH 2 —CH (COONa) — derived from sodium acrylate, the structural unit derived from acrylic acid which is the corresponding acid —CH 2 —CH (COOH) — ).
  • the mass ratio (mass%) with respect to all the monomers of a carboxyl group-containing monomer (B) it shall calculate as a corresponding acid conversion. For example, if it is sodium acrylate, a mass ratio (mass%) is calculated as acrylic acid which is a corresponding acid.
  • the structural unit derived from the other monomer described later is a structural unit derived from an acid group-containing monomer other than the carboxyl group-containing monomer (B), the structural unit derived from the acid group-containing monomer
  • the mass ratio (mass%) to the structure derived from all monomers shall be calculated as the corresponding acid conversion, and the mass ratio (mass%) of the acid group-containing monomer to all monomers is calculated. Is also calculated as the corresponding acid equivalent.
  • the structural unit derived from the other monomer described later is a structural unit derived from an amino group-containing monomer
  • the structural unit derived from the amino group-containing monomer is a structural unit derived from the corresponding unneutralized amine.
  • the amino group-containing monomer is mass-calculated as the corresponding unneutralized amine.
  • the other monomer is vinylamine hydrochloride
  • the mass ratio (% by mass) is calculated as vinylamine which is the corresponding unneutralized amine.
  • the counter anion is considered when calculating the mass ratio (mass%). Do not calculate.
  • the copolymer of the present invention may have a structural unit (e) derived from another monomer (E) other than the hydroxypropyl (meth) acrylate (A) and the carboxyl group-containing monomer (B). I do not care.
  • the other monomer (E) when the copolymer of the present invention contains the other monomer (E) can be copolymerized with the monomers (A) and (B). It does not specifically limit and it selects suitably by a desired effect.
  • N-vinyl monomers such as N-vinylpyrrolidone, N-vinylformamide, N-vinylacetamide, N-vinyl-N-methylformamide, N-vinyl-N-methylacetamide, N-vinyloxazolidone, etc.
  • Amide monomers such as (meth) acrylamide, N, N-dimethylacrylamide, N-isopropylacrylamide; 3- (meth) allyloxy-1,2-dihydroxypropane, 3-allyloxy-1,2-dihydroxypropane, Compounds obtained by adding 6 to 200 mol of ethylene oxide to 3-allyloxy-1,2-dihydroxypropane (3-allyloxy-1,2-di (poly) oxyethylene ether propane etc.), allyl such as (meth) allyl alcohol Ether monomers; isoprene-based monomers such as isoprenol Body; (meth) acrylic acid alkyl ester monomers such as butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, dodecyl (meth) acrylate; hydroxyethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate , Hydroxybutyl (meth) acrylate,
  • the copolymer of the present invention contains a structural unit (e) derived from another monomer (E) as an optional component
  • the copolymer of the present invention has a structure derived from the other monomer (E). It is preferable to contain a unit (e) in the ratio below 30 mass%. More preferably, it is less than 20 mass%, More preferably, it is less than 10 mass%.
  • the total proportion of the structural unit (a) derived from the hydroxypropyl (meth) acrylate (A) and the structural unit (b) derived from the carboxyl group-containing monomer (B) is all It is preferably 70% by mass or more and 100% by mass or less with respect to 100% by mass of the monomer-derived structure (that is, 100% by mass in total of the structural units (a), (b), and (e)), More preferably, they are 80 mass% or more and 100 mass% or less, More preferably, they are 90 mass% or more and 100 mass% or less.
  • the structural units (a), (b), and if necessary, the structural units (e) may be introduced at a specific ratio as described above. Alternatively, they may exist in an alternating, block or random form.
  • the weight average molecular weight of the copolymer of this invention can be set suitably, and is not specifically limited. Specifically, the weight average molecular weight of the copolymer is preferably 1,800 to 200,000, more preferably 2,000 to 100,000, still more preferably 3,000 to 75,000, Most preferably, it is 4,000 to 50,000. If the weight average molecular weight is within the above range, the ability to prevent recontamination tends to be improved.
  • a weight average molecular weight is a measured value by GPC (gel permeation chromatography), and the specific measuring method is computed according to the method described in an Example. Since the copolymer of the present invention is excellent in compatibility with a surfactant in addition to the ability to prevent recontamination, it can be incorporated into a highly concentrated liquid detergent.
  • the copolymer composition of the present invention contains the copolymer of the present invention as an essential component, and may contain only the copolymer of the present invention. 1 or more chosen from the by-product at the time of superposition
  • the copolymer composition of the present invention preferably contains the copolymer of the present invention in a proportion of 1% by mass to 100% by mass with respect to 100% by mass of the copolymer composition of the present invention.
  • One of the forms of a preferable copolymer composition is a form containing a copolymer in a proportion of 40% by mass or more and 60% by mass or less and containing water in a proportion of 40% by mass or more and 60% by mass or less. is there.
  • the production method of the copolymer of the present invention is 1% by mass or more and 90% by mass with respect to 100% by mass of all monomers (total of monomers (A), (B) and (E)) used.
  • the following hydroxypropyl (meth) acrylate (A) (monomer (A)), a carboxyl group-containing monomer of 10% by mass to 99% by mass with respect to 100% by mass of the total monomers used It is characterized by copolymerizing (B) (monomer (B)) as an essential component.
  • the monomer (A) and the monomer (B) may be used alone or in combination of two or more.
  • the other monomer (E) may be further copolymerized as necessary. .
  • the proportion of the monomer (E) used in the method for producing a copolymer of the present invention is 100% by mass with respect to 100% by mass of all monomers (total of monomers (A), (B) and (E)).
  • the content is preferably 0% by mass or more and less than 30% by mass. More preferably, they are 0 mass% or more and less than 20 mass%, More preferably, they are 0 mass% or more and less than 10 mass%. That is, the total use ratio of the monomer (A) and the monomer (B) in the method for producing a copolymer of the present invention is the total monomer (monomer (A), (B), (E )) Is preferably 70% by mass or more and 100% by mass or less with respect to 100% by mass.
  • the method for producing a copolymer of the present invention is such that each copolymer used in producing the above copolymer is from the viewpoint that the obtained copolymer exhibits more preferable recontamination preventing ability and compatibility with a surfactant.
  • the composition ratio of the monomer is 5% by mass or more and 90% by mass or less of hydroxypropyl (meth) acrylate (A) (monomer (A)) with respect to 100% by mass of all monomers, It is preferable that the monomer (B) (monomer (B)) is 10% by mass or more and 95% by mass or less, and the other monomer (E) is 0% by mass or more and less than 30% by mass.
  • the monomer (A) is 10% by mass or more and 90% by mass or less
  • the monomer (B) is 10% by mass or more and 90% by mass or less
  • the monomer (E) is 0% by mass or more.
  • the said other monomer (E) is 0 mass% or more and less than 10 mass%.
  • the total amount of the monomers (A), (B), and (E) is 100% by mass.
  • the method for producing a copolymer of the present invention comprises the above monomers (A), (B), (E) (monomer (A), (B), and (E) together, It is preferable to perform polymerization in the presence of a polymerization initiator.
  • a polymerization initiator those usually used as a polymerization initiator can be used.
  • hydrogen peroxide persulfates such as sodium persulfate, potassium persulfate, ammonium persulfate; dimethyl 2,2 ′ -Azobis (2-methylpropionate), 2,2'-azobis (isobutyronitrile), 2,2'-azobis (2-methylbutyronitrile), 2,2'-azobis (2,4- Dimethylvaleronitrile), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2,2′-azobis (isobutyric acid) dimethyl, 4,4′-azobis (4-cyanovaleric acid) 2,2′-azobis (2-methylpropionamidine) dihydrochloride, 2,2′-azobis [N- (2-carboxyethyl) -2-methylpropionamidine] n hydrate, 2,2′- Azobi [2- (2-imidazolin-2-yl) propane] dihydrochloride, 2,2′-azobis [2- (2-imidazolazol
  • polymerization initiators hydrogen peroxide and persulfate are preferable, and persulfate is most preferable.
  • polymerization initiators may be used alone or in the form of a mixture of two or more. For example, a form in which hydrogen peroxide and persulfate are used in combination is a preferred form.
  • a chain transfer agent may be used as a molecular weight regulator of the polymer as long as it does not adversely affect polymerization.
  • the chain transfer agent include mercaptoethanol, thioglycerol, thioglycolic acid, 2-mercaptopropion, 3-mercaptopropion, thiomalic acid, octyl thioglycolate, octyl 3-mercaptopropionate, 2- Thiol chain transfer agents such as mercaptoethanesulfonic acid, n-dodecyl mercaptan, octyl mercaptan, butyl thioglycolate; halides such as carbon tetrachloride, methylene chloride, bromoform, bromotrichloroethane; Secondary alcohol; phosphorous acid, hypophosphorous acid, and salts thereof (sodium hypophos),
  • the said chain transfer agent may be used independently and may be used with the form of 2 or more types of mixtures.
  • the use of a chain transfer agent has the advantage that the copolymer to be produced can be prevented from having a higher molecular weight than necessary, and a low molecular weight copolymer can be produced efficiently.
  • bisulfite, disulfite, sulfurous acid, dithionic acid, thiosulfuric acid, and / or a salt thereof hereinafter also simply referred to as “bisulfurous acid (salt)”. It is preferable to use.
  • a sulfonic acid group can be introduced into the main chain terminal of the obtained copolymer, and the gel resistance of the copolymer can be improved. Further, it is preferable to use bisulfurous acid (salt) as the chain transfer agent because the color tone of the copolymer (or copolymer composition) can be improved.
  • bisulfurous acid salt
  • an initiator is used in addition to bisulfurous acid (salt).
  • heavy metal ions may be used in combination as a reaction accelerator.
  • the bisulfite (salt) is as described above, but a form of bisulfite, disulfite, or sulfite is preferable.
  • the salt in the bisulfurous acid (salt) a salt of a metal atom, a salt of an ammonium group, or a salt of an organic amine group is preferable.
  • Examples of the metal atom include monovalent metal atoms of alkali metals such as lithium, sodium and potassium; divalent metal atoms of alkaline earth metals such as calcium and magnesium; trivalent metal atoms such as aluminum and iron And the like are preferred.
  • organic amine organic ammonium
  • alkanolamines such as ethanolamine, diethanolamine, and triethanolamine, a triethylamine, etc. are suitable. Further, it may be ammonium.
  • examples of the bisulfites (salts) preferably used in the present invention include sodium bisulfite, potassium bisulfite, ammonium bisulfite, sodium sulfite, potassium sulfite, ammonium sulfite and the like. Sodium bisulfite is particularly preferred. Is preferred.
  • the bisulfurous acid (salt) may be used alone or in the form of a mixture of two or more.
  • a reaction accelerator may be added for the purpose of reducing the amount of initiator used.
  • the reaction accelerator include heavy metal ions.
  • the heavy metal ion means a metal having a specific gravity of 4 g / cm 3 or more.
  • iron, cobalt, manganese, chromium, molybdenum, tungsten, copper, silver, gold, lead, platinum, iridium, osmium, palladium, rhodium, ruthenium etc. are preferable, for example.
  • These heavy metals can be used alone or in combination of two or more. Among these, iron is more preferable.
  • the ionic valence of the heavy metal ions is not particularly limited.
  • the iron ions in the initiator may be Fe 2+ or Fe 3+ , and these may be combined. May be.
  • the heavy metal ions are not particularly limited as long as they are included in the form of ions. However, it is preferable to use a method using a solution in which a heavy metal compound is dissolved because the handleability is excellent.
  • the heavy metal compound used in that case should just contain the heavy metal ion desired to contain in an initiator, and can be determined according to the initiator to be used.
  • the mole salt Fe (NH 4 ) 2 (SO 4 ) 2 ⁇ 6H 2 O)
  • ferrous sulfate ⁇ 7 hydrate ferrous chloride
  • ferric chloride etc. It is preferable to use a heavy metal compound or the like.
  • manganese chloride etc. can be used suitably.
  • these heavy metal compounds since they are water-soluble compounds, they can be used in the form of an aqueous solution and have excellent handleability.
  • the solvent of the solution obtained by dissolving the heavy metal compound is not limited to water, and does not interfere with the polymerization reaction in the production of the copolymer of the present invention, and dissolves the heavy metal compound. Anything is acceptable.
  • the method for adding the heavy metal ions is not particularly limited, but it is preferably added before the completion of the dropwise addition of the monomer, and it is particularly preferable to initially charge the entire amount. Further, the amount used is preferably 100 ppm or less, more preferably 70 ppm or less, still more preferably 50 ppm or less, and particularly preferably 30 ppm or less with respect to the total amount of the reaction solution. If it exceeds 100 ppm, the effect of the addition is no longer seen, and the resulting copolymer is unfavorably colored and cannot be used depending on the application.
  • the content of the heavy metal ions is preferably 0.1 to 10 ppm with respect to the total mass of the polymerization reaction solution at the completion of the polymerization reaction. If the content of heavy metal ions is less than 0.1 ppm, the effect of heavy metal ions may not be sufficiently exhibited. On the other hand, when the content of heavy metal ions exceeds 10 ppm, the color tone of the resulting copolymer may be deteriorated.
  • the term “when the polymerization reaction is completed” means a point in time when the polymerization reaction is substantially completed in the polymerization reaction solution and a desired polymer is obtained.
  • the content of heavy metal ions is calculated based on the total mass of the polymerization reaction solution after neutralization.
  • the total amount of heavy metal ions may be in the above range.
  • a decomposition catalyst for the polymerization initiator or a reducing compound may be added to the reaction system in addition to the above-described compounds.
  • the decomposition catalyst for the polymerization initiator include metal halides such as lithium chloride and lithium bromide; metal oxides such as titanium oxide and silicon dioxide; hydrochloric acid, hydrobromic acid, perchloric acid, sulfuric acid, nitric acid and the like.
  • Metal salts of inorganic acids include carboxylic acids such as formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, benzoic acid, their esters and their metal salts; heterocyclic amines such as pyridine, indole, imidazole, carbazole, and their Derivatives and the like.
  • carboxylic acids such as formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, benzoic acid, their esters and their metal salts
  • heterocyclic amines such as pyridine, indole, imidazole, carbazole, and their Derivatives and the like.
  • the reducing compound examples include organometallic compounds such as ferrocene; iron, copper, nickel, cobalt, manganese, and the like, such as iron naphthenate, copper naphthenate, nickel naphthenate, cobalt naphthenate, and manganese naphthenate.
  • organometallic compounds such as ferrocene; iron, copper, nickel, cobalt, manganese, and the like, such as iron naphthenate, copper naphthenate, nickel naphthenate, cobalt naphthenate, and manganese naphthenate.
  • Inorganic compounds capable of generating metal ions inorganic compounds such as boron trifluoride ether adducts, potassium permanganate, perchloric acid; sulfur dioxide, sulfite, sulfate, bisulfite, thiosulfate, sulfoxide , Sulfur-containing compounds such as benzenesulfinic acid and its substitutes, homologues of cyclic sulfinic acid such as para-toluenesulfinic acid; octyl mercaptan, dodecyl mercaptan, mercaptoethanol, ⁇ -mercaptopropionic acid, thioglycolic acid, thiopropionic acid , ⁇ -thiopropionic acid sodium sulfopro Mercapto compounds such as pill esters and sodium ⁇ -thiopropionate sulfoethyl ester; nitrogen-containing compounds such as hydrazine, ⁇ -hydroxyethyl
  • chain transfer agent when used, the initiator, and the reaction accelerator are used, the combination thereof is not particularly limited and can be appropriately selected from the above examples.
  • combinations of chain transfer agent, initiator, and reaction accelerator include sodium bisulfite / hydrogen peroxide, sodium bisulfite / sodium persulfate, sodium bisulfite / iron ion, sodium bisulfite / hydrogen peroxide / iron. Ions, sodium bisulfite / sodium persulfate / iron ions, sodium bisulfite / sodium persulfate / hydrogen peroxide, sodium bisulfite / oxygen / iron ions and the like are preferable.
  • sodium persulfate / hydrogen peroxide sodium persulfate / hydrogen peroxide / iron ion, sodium hydrogen sulfite / sodium persulfate, sodium hydrogen sulfite / sodium persulfate / iron ion, most preferably sodium hydrogen sulfite.
  • sodium persulfate / iron ions sodium persulfate / hydrogen peroxide / iron ions.
  • the amount of the initiator used is not particularly limited as long as it is an amount capable of initiating copolymerization of the monomers (A) and (B) and, if necessary, other monomers (E). It is preferably 15 g or less, more preferably 1 to 12 g, based on 1 mol of all monomer components consisting of (A), (B) and, if necessary, other monomer (E). preferable.
  • the amount of hydrogen peroxide added is the total amount of monomer (A), (B) and, if necessary, the other monomer (E).
  • the amount is preferably 1.0 to 10.0 g, more preferably 2.0 to 8.0 g, relative to 1 mol of the body component.
  • the amount of hydrogen peroxide added is less than 1.0 g, the weight average molecular weight of the resulting copolymer tends to increase.
  • the addition amount exceeds 10.0 g, the effect of hydrogen peroxide cannot be obtained as the addition amount increases, and the remaining hydrogen peroxide amount increases.
  • the amount of persulfate added is the total amount of monomer (A), (B) and, if necessary, the other monomer (E).
  • the amount is preferably 1.0 to 5.0 g, more preferably 2.0 to 4.0 g, relative to 1 mol of the body component. If the amount of persulfate added is less than 1.0 g, the weight average molecular weight of the resulting copolymer tends to increase. On the other hand, when the addition amount exceeds 5.0 g, the effect of the persulfate is not obtained as the addition amount is increased, and further, adverse effects such as a decrease in the purity of the obtained copolymer are caused.
  • the addition ratio of hydrogen peroxide and persulfate is the weight of persulfate when the weight of hydrogen peroxide added is 1 by weight. Is preferably from 0.1 to 5.0, more preferably from 0.2 to 2.0. When the weight ratio of persulfate is less than 0.1, the weight average molecular weight of the resulting copolymer tends to be high. On the other hand, if the weight ratio of persulfate exceeds 5.0, the persulfate is wasted in the polymerization reaction system in a state where the effect of lowering the molecular weight due to the addition of persulfate cannot be obtained as much as the addition. It will be.
  • the amount of dripping substantially continuously with respect to the total amount used is preferably 85% by mass or more, more preferably 90% by mass or more of the required predetermined amount, Most preferably, the entire amount is dropped.
  • the dropping speed when hydrogen peroxide is continuously dropped can be appropriately set.
  • the dropping of the hydrogen peroxide is preferably started after the start of dropping of the monomer (excluding the monomer to be initially charged) under the conditions of the polymerization temperature and pH at the time of polymerization described later.
  • hydrogen peroxide is dropped after 1 minute or more has passed since the start of dropping of the carboxyl group-containing monomer, more preferably after 3 minutes or more, more preferably after 5 minutes or more, and most preferably after 10 minutes or more. Is to start.
  • By delaying the dropping start time of hydrogen peroxide it is possible to smooth the initial polymerization start and narrow the molecular weight distribution.
  • the time for delaying the hydrogen peroxide dropping start time is preferably within 60 minutes, more preferably within 30 minutes after the start of dropping of the monomer. It is possible to start the dropping of hydrogen peroxide at the same time as the dropping of the monomer, and to charge hydrogen peroxide in advance before the dropping of the monomer. It is preferable that it is 10 mass% or less, More preferably, it is 7 mass% or less, More preferably, it is 5 mass% or less, Most preferably, it is 3 mass% or less.
  • hydrogen peroxide exceeding 10% by mass of the required predetermined amount is added by the time when the monomer starts dropping, for example, when a persulfate is used in combination, the ratio of the concentration of hydrogen peroxide to the persulfate increases.
  • the polymerization may stop. On the other hand, if it starts later than 60 minutes from the start of dropping of the monomer, the chain transfer reaction due to hydrogen peroxide does not occur, so the molecular weight at the initial stage of polymerization increases.
  • the hydrogen peroxide dropping end time is preferably terminated simultaneously with the monomer dropping end time under the conditions of polymerization temperature and pH at the time of polymerization described later, and is 10 minutes or longer than the monomer dropping end time. It is more preferable to end early, and it is particularly preferable to end earlier than 30 minutes. In addition, even if it complete
  • the method for adding the persulfate is not particularly limited in view of its decomposability and the like, but the amount dripped substantially continuously with respect to the total amount used is 50% by mass or more of the required predetermined amount. It is preferable that the amount is 80% by mass or more, and it is most preferable to add the whole amount dropwise.
  • the dropping speed in the case of continuously dropping the persulfate can be appropriately set.
  • the persulfate dropping completion time is not particularly limited, but is relatively decomposed, such as persulfates such as ammonium persulfate, potassium persulfate, and sodium persulfate under the conditions of polymerization temperature and pH at the time of polymerization.
  • persulfates such as ammonium persulfate, potassium persulfate, and sodium persulfate under the conditions of polymerization temperature and pH at the time of polymerization.
  • it is preferable to drop until the monomer dropping end time more preferably within 30 minutes after the monomer dropping ends, and within 5 to 20 minutes after the monomer dropping. It is particularly preferable to finish the process. Thereby, the effect which can reduce the residual amount of the monomer in a copolymer remarkably can be found.
  • the addition of these initiators does not particularly adversely affect the polymerization, and is set according to the residual amount of monomer in the obtained copolymer. It is good.
  • the preferred range is described only for the dropping end time, but the dropping start time is not limited at all and may be set as appropriate.
  • the dropping of the initiator may be started before the start of dropping of the monomer.
  • one initiator is dropped. May be started, and after a certain period of time has elapsed, or after the completion, the addition of another initiator may be started. In any case, it may be appropriately set according to the decomposition rate of the initiator and the reactivity of the monomer.
  • the concentration of the polymerization initiator at the time of addition is not particularly limited, but is preferably 5 to 60% by mass with respect to the solution of the polymerization initiator. Particularly preferred is 10 to 50% by mass. If the concentration of the initiator is less than 5% by mass, the monomer concentration during polymerization will be very low as a result, so that the polymerizability of the monomer can be very poor. The remaining amount of the body becomes very large. Moreover, the efficiency and productivity of transportation and the like are lowered, which is not preferable from the economical aspect. On the other hand, if it exceeds 60% by mass, there is a problem in terms of safety and ease of dripping.
  • the addition amount of the chain transfer agent is not limited as long as the monomers (A) and (B) and, if necessary, other monomers (E) are polymerized satisfactorily. Is preferably 1 to 20 g with respect to 1 mol of the total monomer component consisting of the monomers (A) and (B) and, if necessary, the other monomer (E). More preferably, it is 15 g. If the amount is less than 1 g, the molecular weight may not be controlled. On the other hand, if the amount exceeds 20 g, a large amount of impurities may be generated and the polymer content may be lowered. In particular, bisulfite (salt) is used. In this case, excessive bisulfurous acid (salt) may be decomposed in the reaction system, and harmful sulfurous acid gas may be generated. Moreover, there is a risk that it may be economically disadvantageous.
  • the mixing ratio of persulfate and bisulfite (salt) is not particularly limited, but 0.5 to 5 parts by weight of bisulfite (salt) is used per 1 part by weight of persulfate. Is preferred. More preferably, with respect to 1 part by mass of persulfate, the lower limit of the bisulfurous acid (salt) is 1 part by mass, and most preferably 2 parts by mass.
  • the upper limit of bisulfite (salt) is more preferably 4 parts by mass, and most preferably 3 parts by mass with respect to 1 part by mass of persulfate.
  • the bisulfite (salt) is less than 0.5 parts by mass, the total amount of the initiator may increase when the molecular weight is lowered. Conversely, if it exceeds 5 parts by mass, side reactions increase. There is a risk that impurities due to this increase.
  • the total amount of the chain transfer agent, initiator, and reaction accelerator used is the total monomer component 1 composed of the monomers (A) and (B) and, if necessary, other monomers (E).
  • the amount is preferably 2 to 20 g based on mole. By setting it as such a range, the copolymer of this invention can be produced efficiently and the molecular weight distribution of a copolymer can be made into a desired thing. More preferably, it is 4 to 18 g, and still more preferably 6 to 15 g.
  • a continuous charging method such as dropping or divided charging can be applied.
  • a chain transfer agent may be introduced alone into the reaction vessel, and is previously mixed with each monomer (A), (B), other monomer (E), solvent, etc. constituting the monomer component. You may keep it.
  • the copolymerization of the monomers (A), (B) and, if necessary, other monomers (E) uses water in 50% by mass or more of the solvent used, and / or The reaction is preferably performed in the presence of a chain transfer agent, more preferably 50% by mass or more of the solvent used, and more preferably in the presence of a chain transfer agent.
  • a chain transfer agent more preferably 50% by mass or more of the solvent used, and more preferably in the presence of a chain transfer agent.
  • the solvent used in the above embodiment is not particularly limited as long as it contains water in a proportion of 50% by mass with respect to the total amount of the solvent used. From the viewpoint of improving the solubility of the monomer used for polymerization in a solvent, an organic solvent may be added as necessary. Even in this case, the content of water in the total mixed solvent is 50% by mass or more.
  • organic solvents that can be used include lower alcohols such as methanol, ethanol, and isopropyl alcohol; lower ketones such as acetone, methyl ethyl ketone, and diethyl ketone; ethers such as dimethyl ether and dioxane; and amides such as dimethylformaldehyde. .
  • the amount of water is preferably 80% by mass or more, and most preferably water alone (ie, 100% by mass) with respect to the total amount of solvent used.
  • the organic solvent is added, from the viewpoint of the solubility of the monomer component and the resulting copolymer, one or more kinds selected from the group consisting of water and lower alcohols having 1 to 4 carbon atoms are used. It is preferable to use a solvent.
  • the use amount of a solvent such as water is preferably 40 to 200% by mass with respect to 100% by mass of the monomer component. More preferably, it is 45 mass% or more, More preferably, it is 50 mass% or more.
  • the amount of the solvent used is less than 40% by mass, the resulting copolymer may have a high molecular weight. If it exceeds 200% by mass, the concentration of the obtained copolymer will be low, and solvent removal is required. There is a risk.
  • the solvent may be partly or wholly charged in the reaction vessel in the initial stage of polymerization, but a part of the solvent may be added (dropped) into the reaction system during the polymerization reaction, or the monomer. Components, initiators, and the like may be added (dropped) into the reaction system during the polymerization reaction together with these components in a form in which the components and initiator are dissolved in advance.
  • monomer components, polymerization initiators, etc. can be added to the reaction vessel by charging all of the monomer components into the reaction vessel and adding the polymerization initiator into the reaction vessel.
  • Method of performing polymerization charging a part of the monomer component into the reaction vessel, and adding the polymerization initiator and the remaining monomer component continuously or stepwise (preferably continuously) into the reaction vessel.
  • a method of carrying out copolymerization by charging a part of the reaction mixture into a reaction vessel and adding the polymerization initiator and the remaining monomer components into the reaction vessel (preferably continuously) is suitable.
  • these methods since the molecular weight distribution of the obtained copolymer can be narrowed (sharpened) and the ability to prevent recontamination of the polymer can be improved, a polymerization initiator and a monomer It is preferable to carry out copolymerization by a method in which the components are successively added dropwise to the reaction vessel.
  • the copolymerization method can be carried out by commonly used methods such as solution polymerization, bulk polymerization, suspension polymerization, and emulsion polymerization, and is not particularly limited, but solution polymerization is preferred.
  • the solvent that can be used in this case is preferably a mixed solvent in which 50% by mass of water or water is based on the total solvent. When only water is used, it is preferable in that the solvent removal step can be omitted.
  • the copolymerization method can be carried out either batchwise or continuously. In the above copolymerization method, the copolymerization conditions such as the copolymerization temperature are appropriately determined depending on the copolymerization method used, the solvent, the polymerization initiator, etc.
  • the copolymerization temperature is usually 0 ° C. or higher. Moreover, it is preferable that it is 150 degrees C or less. More preferably, it is 40 degreeC or more, More preferably, it is 60 degreeC or more, Most preferably, it is 80 degreeC or more. Moreover, More preferably, it is 120 degrees C or less, More preferably, it is 110 degrees C or less. In particular, when bisulfite (salt) is used as the chain transfer agent, the copolymerization temperature is usually 60 ° C. to 95 ° C., preferably 70 ° C. to 95 ° C., more preferably 80 ° C. to 95 ° C. .
  • the copolymerization temperature need not always be kept substantially constant in the polymerization reaction. For example, the polymerization is started from room temperature, the temperature is increased to a set temperature at an appropriate temperature increase time or rate, and then the set temperature is reached. Depending on the dropping method of the monomer component, the initiator, etc., the temperature may be changed over time (temperature increase or decrease) during the polymerization reaction.
  • the polymerization time is not particularly limited, but is preferably 30 to 420 minutes, more preferably 45 to 390 minutes, still more preferably 60 to 360 minutes, and most preferably 90 to 300 minutes.
  • “polymerization time” represents the time during which a monomer is added unless otherwise specified.
  • the pressure in the reaction system in the copolymerization method may be any of normal pressure (atmospheric pressure), reduced pressure, and increased pressure, but in terms of the molecular weight of the resulting copolymer,
  • the reaction system is preferably sealed and the reaction is carried out under pressure.
  • the atmosphere in the reaction system may be an air atmosphere, but is preferably an inert atmosphere.
  • the inside of the system is preferably replaced with an inert gas such as nitrogen before the start of polymerization.
  • the pH during the polymerization in the copolymerization is preferably acidic.
  • a persulfate and a bisulfite (salt) are used in combination as the combination of the initiator and the chain transfer agent, it is preferably carried out under acidic conditions.
  • the increase in the viscosity of the aqueous solution of the polymerization reaction system can be suppressed, and the copolymer can be produced satisfactorily.
  • the polymerization reaction can proceed under high concentration conditions, the production efficiency can be greatly increased, and the final solid content concentration can be high concentration polymerization of 40% or more, and the residual contained A monomer having a total monomer concentration of 30,000 ppm or less can be obtained.
  • the pH of the reaction solution during polymerization at 25 ° C. is preferably 1-6. More preferably, it is 5 or less, More preferably, it is 3 or less.
  • the copolymer obtained by the above copolymerization method can be used as it is as a main component of a scale inhibitor, but may be further neutralized with an alkaline substance if necessary.
  • an alkaline substance it is preferable to use inorganic salts such as hydroxides, chlorides and carbonates of monovalent metals and divalent metals; ammonia; organic ammonium (organic amine) and the like.
  • the neutralization rate at the time of copolymerization can be appropriately changed depending on the initiator.
  • the total acid groups of acid group-containing monomers such as carboxyl group-containing monomers
  • the neutralization rate of the monomer is represented by mol% of the monomer forming the salt when the total number of moles of the monomer is 100 mol%.
  • the neutralization rate of the monomer exceeds 60 mol%, the polymerization rate in the copolymerization step does not increase, and the molecular weight of the resulting copolymer may decrease, or the production efficiency may decrease. More preferably, it is 50 mol% or less, more preferably 40 mol% or less, particularly preferably 30 mol% or less, more particularly preferably 20 mol% or less, and most preferably 10 mol%. It is as follows. When persulfate and hydrogen peroxide are used in combination, 99 mol% or less, preferably 50 to 95 mol, based on the total amount of acid groups of the acid group-containing monomer such as a carboxyl group-containing monomer. % Or less.
  • the degree of neutralization after completion of polymerization is determined by the acid content of the carboxyl group-containing monomer and other monomers, if applicable, in order to promote the decomposition of residual hydrogen peroxide.
  • the unsaturated carboxylic acid is all in acid form
  • salt forms such as sodium salts and ammonium salts using alkaline substances
  • a method in which a neutralization rate of 0 to 60 mol% is subjected to copolymerization is preferred.
  • the copolymer (or copolymer composition) of the present invention comprises a water treatment agent, a fiber treatment agent, a dispersant, a detergent builder (or a detergent composition), a scale inhibitor (scale inhibitor), and a metal ion sealing agent.
  • a detergent builder it can be used by adding to detergents for various uses such as clothing, tableware, dwelling, hair, body, toothpaste, and automobile.
  • the copolymer (or copolymer composition) of the present invention can be used as a water treatment agent.
  • the water treatment agent may contain a polymerized phosphate, phosphonate, anticorrosive, slime control agent, and chelating agent as other compounding agents.
  • the water treatment agent is useful for scale prevention in a cooling water circulation system, a boiler water circulation system, a seawater desalination apparatus, a pulp digester, a black liquor concentration tank, and the like. Further, any appropriate water-soluble polymer may be included as long as it does not affect the performance and effects.
  • the copolymer (or copolymer composition) of the present invention can be used as a fiber treatment agent.
  • the fiber treatment agent includes at least one selected from the group consisting of a dye, a peroxide, and a surfactant, and the copolymer (or copolymer composition) of the present invention.
  • the content of the copolymer of the present invention in the fiber treatment agent is preferably 1 to 100% by mass, more preferably 5 to 100% by mass, based on the entire fiber treatment agent. Further, any appropriate water-soluble polymer may be included as long as the performance and effects are not affected.
  • This fiber treatment agent can be used in the steps of refining, dyeing, bleaching and soaping in fiber treatment.
  • dyeing agents, peroxides, and surfactants include those usually used for fiber treatment agents.
  • the blending ratio of the copolymer of the present invention and at least one selected from the group consisting of a dye, a peroxide, and a surfactant is, for example, an improvement in whiteness, color unevenness, and dyeing tempering degree of fibers.
  • at least one selected from the group consisting of a dyeing agent, a peroxide, and a surfactant is added in an amount of 0.1 to 1 part by weight of the copolymer of the present invention in terms of a pure amount of the fiber treatment agent. It is preferable to use a composition blended at a ratio of 100 parts by mass as a fiber treatment agent.
  • Arbitrary appropriate fiber can be employ
  • cellulosic fibers such as cotton and hemp, chemical fibers such as nylon and polyester, animal fibers such as wool and silk, semi-synthetic fibers such as human silk, and woven fabrics and blended products thereof.
  • the fiber treatment agent When the fiber treatment agent is applied to the refining process, it is preferable to blend the copolymer of the present invention with an alkali agent and a surfactant.
  • a peroxide When applied to the bleaching step, it is preferable to blend the copolymer of the present invention, a peroxide, and a silicic acid-based agent such as sodium silicate as a decomposition inhibitor for the alkaline bleaching agent.
  • the copolymer (or copolymer composition) of the present invention can be used as an inorganic pigment dispersant.
  • the inorganic pigment dispersant may contain condensed phosphoric acid and its salt, phosphonic acid and its salt, and polyvinyl alcohol as other compounding agents.
  • the content of the copolymer of the present invention in the inorganic pigment dispersant is preferably 5 to 100% by mass with respect to the whole inorganic pigment dispersant. Further, any appropriate water-soluble polymer may be included as long as it does not affect the performance and effect.
  • the inorganic pigment dispersant can exhibit good performance as a dispersant for heavy or light calcium carbonate or clay inorganic pigment used in paper coating. For example, by adding a small amount of an inorganic pigment dispersant to an inorganic pigment and dispersing it in water, high concentration calcium carbonate having low viscosity and high fluidity and good aging stability of their performance. High concentration inorganic pigment slurries such as slurries can be produced.
  • the amount of the inorganic pigment dispersant used is preferably 0.05 to 2.0 parts by mass with respect to 100 parts by mass of the inorganic pigment.
  • the amount of the inorganic pigment dispersant used is within the above range, a sufficient dispersion effect can be obtained, and an effect commensurate with the addition amount can be obtained, which can be economically advantageous.
  • the copolymer and copolymer composition of the present invention can be used as a detergent builder.
  • a detergent builder it can be used by adding to detergents for various uses such as clothing, tableware, dwelling, hair, body, toothpaste, and automobile.
  • the copolymer (or copolymer composition) of the present invention can also be added to a detergent composition.
  • the content of the copolymer in the detergent composition is not particularly limited. However, from the viewpoint that excellent builder performance can be exhibited, the content of the copolymer is preferably 0.1 to 15% by mass, more preferably 0.3%, based on the total amount of the detergent composition. Is 10% by mass, and more preferably 0.5-5% by mass.
  • Detergent compositions used in detergent applications usually include surfactants and additives used in detergents. Specific forms of these surfactants and additives are not particularly limited, and conventionally known knowledge can be appropriately referred to in the detergent field.
  • the detergent composition may be a powder detergent composition or a liquid detergent composition.
  • the surfactant is one or more selected from the group consisting of an anionic surfactant, a nonionic surfactant, a cationic surfactant, and an amphoteric surfactant.
  • the total amount of the anionic surfactant and the nonionic surfactant is preferably 50% by mass or more, more preferably 60% by mass with respect to the total amount of the surfactant. It is above, More preferably, it is 70 mass% or more, Most preferably, it is 80 mass% or more.
  • anionic surfactants include alkylbenzene sulfonate, alkyl ether sulfate, alkenyl ether sulfate, alkyl sulfate, alkenyl sulfate, ⁇ -olefin sulfonate, ⁇ -sulfo fatty acid or ester salt, alkane sulfonate , Saturated fatty acid salt, unsaturated fatty acid salt, alkyl ether carboxylate, alkenyl ether carboxylate, amino acid type surfactant, N-acyl amino acid type surfactant, alkyl phosphate ester or salt thereof, alkenyl phosphate ester or Its salts are preferred.
  • An alkyl group such as a methyl group may be branched from the alkyl group or alkenyl group in these anionic surfactants.
  • Nonionic surfactants include polyoxyalkylene alkyl ethers, polyoxyalkylene alkenyl ethers, polyoxyethylene alkyl phenyl ethers, higher fatty acid alkanolamides or alkylene oxide adducts thereof, sucrose fatty acid esters, alkyl glycoxides, fatty acid glycerin monoesters. Esters, alkylamine oxides and the like are preferred.
  • An alkyl group such as a methyl group may be branched from the alkyl group or alkenyl group in these nonionic surfactants.
  • cationic surfactant a quaternary ammonium salt or the like is suitable.
  • amphoteric surfactant a carboxyl type amphoteric surfactant, a sulfobetaine type amphoteric surfactant, and the like are suitable.
  • the alkyl group and alkenyl group in these cationic surfactants and amphoteric surfactants may be branched from an alkyl group such as a methyl group.
  • the blending ratio of the surfactant is usually 10 to 60% by mass, preferably 15 to 50% by mass, more preferably 20 to 45% by mass, particularly preferably based on the total amount of the detergent composition. Is 25 to 40% by mass. If the blending ratio of the surfactant is too small, sufficient detergency may not be exhibited, and if the blending ratio of the surfactant is too large, the economy may be lowered.
  • Additives include anti-redeposition agent to prevent redeposition of contaminants such as alkali builder, chelate builder, sodium carboxymethyl cellulose, stain inhibitor such as benzotriazole and ethylene-thiourea, soil release agent, color transfer Inhibitors, softeners, alkaline substances for pH adjustment, fragrances, solubilizers, fluorescent agents, colorants, foaming agents, foam stabilizers, polishes, bactericides, bleaching agents, bleaching aids, enzymes, dyes A solvent or the like is preferable. In the case of a powder detergent composition, it is preferable to blend zeolite.
  • the detergent composition may contain other detergent builders in addition to the copolymer (or copolymer composition) of the present invention.
  • Other detergent builders are not particularly limited, but include, for example, alkali builders such as carbonates, bicarbonates, silicates, tripolyphosphates, pyrophosphates, bow glass, nitrilotriacetate, ethylenediaminetetraacetate, And acid salt, copolymer salt of (meth) acrylic acid, acrylic acid-maleic acid copolymer, fumarate, chelate builder such as zeolite, and carboxyl derivative of polysaccharide such as carboxymethylcellulose.
  • the counter salt used in the builder include alkali metals such as sodium and potassium, ammonium and amine.
  • the total blending ratio of the additive and other detergent builder is usually preferably 0.1 to 50% by mass with respect to 100% by mass of the cleaning composition. More preferably, it is 0.2 to 40% by mass, further preferably 0.3 to 35% by mass, particularly preferably 0.4 to 30% by mass, and most preferably 0.5 to 20% by mass or less. It is. If the additive / other detergent builder blending ratio is less than 0.1% by mass, sufficient detergent performance may not be exhibited, and if it exceeds 50% by mass, the economy may be reduced.
  • the concept of the above-mentioned detergent composition includes specific detergents such as synthetic detergents for household detergents, textile industry and other industrial detergents, hard surface cleaners, and bleaching detergents that enhance one of the components. Detergents that are only used are also included.
  • the amount of water contained in the liquid detergent composition is usually preferably 0.1 to 75% by mass, more preferably based on the total amount of the liquid detergent composition. Is 0.2 to 70% by mass, more preferably 0.5 to 65% by mass, still more preferably 0.7 to 60% by mass, particularly preferably 1 to 55% by mass, The amount is preferably 1.5 to 50% by mass.
  • the detergent composition when the detergent composition is a liquid detergent composition, the detergent composition preferably has a kaolin turbidity of 200 mg / L or less, more preferably 150 mg / L or less, and even more preferably 120 mg / L or less. Especially preferably, it is 100 mg / L or less, Most preferably, it is 50 mg / L or less.
  • ⁇ Measurement method of kaolin turbidity> A sample (liquid detergent) uniformly stirred in a 50 mm square cell having a thickness of 10 mm was removed and air bubbles were removed. Then, a NDU2000 manufactured by Nippon Denshoku Co., Ltd. Kaolin turbidity: mg / L) is measured.
  • protease, alkaline lipase, and alkaline cellulase that are highly active in an alkaline cleaning solution are preferable.
  • the amount of the enzyme added is preferably 5% by mass or less with respect to 100% by mass of the cleaning composition. If it exceeds 5% by mass, improvement in detergency cannot be seen, and the economy may be reduced.
  • the alkali builder, silicate, carbonate, sulfate and the like are preferable.
  • chelate builder diglycolic acid, oxycarboxylate, EDTA (ethylenediaminetetraacetic acid), DTPA (diethylenetriaminepentaacetic acid), STPP (sodium tripolyphosphate), citric acid and the like are preferable.
  • Other water-soluble polycarboxylic acid-based polymers other than the copolymer in the present invention may be used.
  • the above detergent composition should be a detergent with excellent dispersibility, extremely high quality agent performance and excellent stability that is less likely to cause performance degradation when stored for long periods of time and precipitation of impurities when held at low temperatures. Can do.
  • ⁇ Quantification method of carboxyl group-containing monomer The content of the carboxyl group-containing monomer or the like was measured using liquid chromatography under the following conditions. Apparatus: L-7000 series detector manufactured by Hitachi, Ltd. UV detector L-7400 manufactured by Hitachi, Ltd. Column: Shodex RSpak DE-413 manufactured by Showa Denko Co., Ltd. Flow rate: 1.0 ml / min Column temperature: 40 ° C Mobile phase: 0.1% aqueous phosphoric acid solution. ⁇ Measurement conditions of weight average molecular weight> The weight average molecular weight of the copolymer was measured using GPC (gel permeation chromatography) under the following conditions.
  • GPC gel permeation chromatography
  • a targot meter was set at 25 ° C., 1 L of hard water, 5 g of a surfactant aqueous solution, 1 g of a 5% polymer aqueous solution in terms of solid content, and 1.0 g of carbon black were placed in a pot and stirred at 150 rpm for 1 minute. . Then, 5 white cloths were put and stirred at 100 rpm for 10 minutes. (V) The white cloth was drained by hand, and 1 L of tap water adjusted to 25 ° C. was placed in the pot and stirred at 100 rpm for 2 minutes.
  • a detergent composition containing a test sample (polymer) was prepared with the following formulation. SFT-70H (Nippon Shokubai Co., Ltd., polyoxyethylene alkyl ether); 40 g Neoperex F-65 (manufactured by Kao Corporation, sodium dodecylbenzenesulfonate); 7.7 g (active ingredient 5 g) Coatamine 86W (manufactured by Kao Corporation, stearyltrimethylammonium chloride); 17.9 g (active ingredient 5 g) Diethanolamine; 5g Ethanol; 5 g Propylene glycol; 5g Test sample (solid content conversion): 1.5 g Ion-exchanged water; balance (the amount of ion-exchanged water is appropriately adjusted so that the total amount is 100 g, with the amount of test sample used as the actual usage) Stir well so that each component becomes uniform, and measure the turbidity value at 25 ° C.
  • Example 1 In a 500 ml glass separable flask equipped with a reflux condenser and a stirrer, 115.5 g of pure water and 0.0066 g of Mole salt (the amount of iron (II) relative to the total charged amount (where the total charged amount is The total weight of the charged product including the neutralization step after the completion of the polymerization, hereinafter the same shall apply)), and the temperature was raised to 70 ° C. with stirring (initial charge).
  • the dropping time was 80% AA, 48% NaOH for 180 minutes, 100% HPA for 150 minutes, 35% SBS for 180 minutes, and 15% NaPS for 200 minutes. The start of dropping was all simultaneous. Further, during each dropping time, the dropping rate of each component was kept constant, and dropping was continuously performed. After completion of the dropwise addition, the reaction solution was aged at 70 ° C. for 30 minutes to complete the polymerization. After the completion of the polymerization, the reaction solution was allowed to cool, and 36.6 g (0.44 mol) of 48% NaOH was gradually added dropwise to the reaction solution while stirring to neutralize it. Thus, the copolymer composition (polymer composition (1)) of the present invention having a solid content concentration of 43% by mass was obtained. Let the copolymer of this invention whose final neutralization degree contained in a polymer composition (1) is 97 mol% be a polymer (1).
  • the polymerization formulation is summarized in Table 1 below.
  • Examples 2 to 3 Except for changing the conditions as described in Table 1, polymer compositions (2) to (3) were obtained in the same manner as in Example 1 (the contained copolymers were polymer (2) to ( 3)).
  • Example 4 A 500 ml glass separable flask equipped with a reflux condenser and a stirrer was charged with 46.6 g of pure water, 17.28 g of maleic acid (hereinafter referred to as MA), 1.24 g of 48% NaOH, and 0.0051 g of Mole salt (total 3 ppm) in terms of iron (II) weight with respect to the charged amount, and heated to 90 ° C. with stirring (initial charging). Next, in a polymerization reaction system at a constant temperature of 90 ° C.
  • MA maleic acid
  • MA 1.24 g of 48% NaOH
  • Mole salt total 3 ppm
  • the reaction solution was allowed to cool, and 9.9 g of pure water and 64.8 g (0.78 mol) of 48% NaOH were gradually added dropwise to the reaction solution while stirring to dilute and neutralize.
  • the copolymer composition (polymer composition (4)) of the present invention having a solid content concentration of 45% by mass was obtained.
  • the copolymer of the present invention having a final neutralization degree of 90 mol% contained in the polymer composition (4) is referred to as polymer (4).
  • the polymerization formulations are summarized in Table 2 below.
  • Example 5 In a 500 ml glass separable flask equipped with a reflux condenser and a stirrer, 82.6 g of pure water and 0.0058 g of Mole salt (the iron (II) weight with respect to the total charged amount (where the total charged amount is The total weight of the charged product including the neutralization step after the completion of the polymerization, hereinafter the same shall apply)), and the temperature was raised to 70 ° C. with stirring (initial charging).
  • the reaction solution was aged at 70 ° C. for 30 minutes to complete the polymerization. After the completion of the polymerization, the reaction solution was allowed to cool, and 51.1 g (0.61 mol) of 48% NaOH was gradually added dropwise to the reaction solution while stirring to neutralize it.
  • the copolymer composition (polymer composition (5)) of the present invention having a solid content concentration of 43% by mass was obtained.
  • the copolymer of the present invention having a final neutralization degree of 97 mol% contained in the polymer composition (5) is referred to as polymer (5).
  • the polymerization formulation is summarized in Table 3 below.
  • the dropping time of the aqueous solution was 180 minutes for 80% AA aqueous solution, 100% HEMA, and 48% NaOH, 175 minutes for 35% SBS, and 185 minutes for 15% NaPS.
  • the dropping rate of each aqueous solution was constant, and the dropping of each aqueous solution was continuously performed.
  • the reaction solution was kept (aged) at 90 ° C. for 30 minutes to complete the polymerization.
  • a comparative polymer composition having a solid content concentration of 54% hereinafter referred to as comparative polymer composition (2)
  • the polymerization formulation is summarized in Table 4 below.
  • Example 6 In Example 6, using the obtained polymers (1) to (5) and comparative polymers (1) to (2), the weight average molecular weight, recontamination preventing ability, Compatibility with liquid detergents was evaluated. The results are shown in Table 5 below.
  • the copolymer of the present invention has a better ability to prevent recontamination than conventional polymers, and also has compatibility with liquid detergents (compatibility with surfactants). It became clear that it was excellent.
  • the copolymer of the present invention has a high ability to prevent recontamination and compatibility with liquid detergents. Therefore, when it uses for additives, such as a water treatment agent, a builder for detergents, a detergent composition, a dispersing agent, a cleaning agent, it can exhibit the especially outstanding performance.
  • additives such as a water treatment agent, a builder for detergents, a detergent composition, a dispersing agent, a cleaning agent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Detergent Compositions (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

洗剤用途に用いられた場合に従来より一層改善された界面活性剤との相溶性と、疎水性汚れの再汚染防止能の向上効果とを兼ね備えた重合体、及びその製造方法を提供することを目的とする。 1質量%以上、90質量%以下のヒドロキシプロピル(メタ)アクリレート(A)由来の構造単位(a)、及び、10質量%以上、99質量%以下のカルボキシル基含有単量体(B)由来の構造単位(b)を必須構造単位として有する共重合体。 

Description

新規共重合体およびその製造方法
本発明は、新規共重合体及びその製造方法に関する。
従来、衣料類に用いられる洗剤には、洗剤の洗浄効果を向上させることを目的として、ゼオライト、カルボキシメチルセルロース、ポリエチレングリコール等の洗剤ビルダー(洗剤助剤)を配合することが行われている。
近年では、上記の各種洗剤ビルダーに加えて、ポリアクリル酸ナトリウム等が洗剤ビルダーとして洗剤組成物に配合されている(例えば、特許文献1)。また、アクリル酸と2-ヒドロキシエチル(メタ)アクリレートのコポリマーが、良好なクレー分散能を示し、洗剤ビルダー等の各種用途に好適に用いることができることが開示されている(例えば、特許文献2)。
特開2000-80396号公報 特表2008-534694号公報
上述のように、様々なタイプの洗剤ビルダーの開発が試みられている。
ここで、近年ではドラム式洗濯機の普及等により、液体洗剤の使用機会が増加していることから、各種洗剤ビルダーは液体洗剤にも配合可能なように、十分な界面活性剤との相溶性を有することが要求されている。さらに近年の市場動向としては、液体洗剤は高濃縮タイプ(水の組成比が低い)が好まれる傾向にあり、また、需要者の嗜好として、濁りのない、透明度の高い液体洗剤が好まれる傾向にある。従って、重合体に求められる、界面活性剤等に代表される他の液体洗剤成分との相溶性に対する要求が、従来と比較して非常に厳しくなってきている。
また、ビルダー性能に関しても、近年の消費者の環境問題への意識の高まりにより、消費者が風呂の残り湯を洗濯に使用することにより節水を図ったりすることが定着してきている。残り湯の使用により、カルシウム成分の濃縮による高硬度条件下や、汚れ成分の多い条件下で洗濯をしなければならないという問題に対応する為、汚れ成分の洗濯中の繊維等への再付着を抑制する、いわゆる再汚染防止能が従来より一層改善された剤や、疎水性汚れの分散性が従来より一層改善された剤が要求されている。
特許文献1で用いられているポリアクリル酸ナトリウムは、比較的良好な親水性汚れの再汚染防止能を有するが、疎水性汚れの再汚染防止能や、液体洗剤との相溶性の面からはその性能は十分とはいえない。
また、特許文献2で用いられているアクリル酸と2-ヒドロキシエチル(メタ)アクリレートのコポリマーは、疎水性汚れの再汚染防止能等を改良する余地があった。
このように、従来、種々の重合体が報告されてはいるものの、上述した現在の消費者ニーズにさらに適応した洗剤ビルダーの開発が求められている。
そこで、本発明は、洗剤用途に用いられた場合に従来より一層改善された界面活性剤との相溶性と、疎水性汚れの再汚染防止能の向上効果とを兼ね備えた重合体、及びその製造方法を提供することを目的とする。
本発明者らは、上記目的を達成するために様々な重合体や共重合体について鋭意検討を行った結果、ヒドロキシプロピル(メタ)アクリレート由来の構造単位及びカルボキシル基含有単量体由来の構造単位を特定の割合で導入した共重合体(本発明の共重合体)は、優れた再汚染防止能を有することを知得した。また上記本発明の共重合体は、良好な界面活性剤との相溶性を有することを知得した。上記知見に基づいて、本発明を完成した。
すなわち、本発明は、1質量%以上、90質量%以下のヒドロキシプロピル(メタ)アクリレート(A)由来の構造単位(a)、及び、10質量%以上、99質量%以下のカルボキシル基含有単量体(B)由来の構造単位(b)を必須構造単位として有する共重合体である。
本発明の別の局面では、共重合体の製造方法が提供される。すなわち、本発明の共重合体の製造方法は、全単量体100質量%に対して、1質量%以上、90質量%以下のヒドロキシプロピル(メタ)アクリレート(A)(単量体(A)ともいう)、及び、10質量%以上、99質量%以下のカルボキシル基含有単量体(B)(単量体(B)ともいう)を必須として共重合することを特徴とする共重合体の製造方法である。
本発明の共重合体は、優れた再汚染防止能を示すことから、本発明の共重合体は洗剤組成物に好適に使用することができる。また、優れた界面活性剤との相溶性を有することから、液体洗剤組成物にも好ましく配合することができる。
以下、本発明を詳細に説明する。
〔本発明の共重合体〕
<ヒドロキシプロピル(メタ)アクリレート>
本発明の共重合体は、ヒドロキシプロピル(メタ)アクリレート(A)(単量体(A)ともいう)由来の構造単位(a)を特定の割合で有することを必須としている。
上記ヒドロキシプロピル(メタ)アクリレートとは、ヒドロキシプロピルアクリレートと、ヒドロキシプロピルメタクリレートとを合わせた総称であり、上記ヒドロキシプロピル(メタ)アクリレート(A)としては、ヒドロキシプロピルアクリレート、ヒドロキシプロピルメタクリレートのいずれか一方であってもよいし、ヒドロキシプロピルアクリレート及びヒドロキシプロピルメタクリレートの両方を含んでいてもよい。中でも、本発明の共重合体がアルカリ性条件下においても、特に安定して優れた再汚染防止能を発現することができるようになることから、本発明の共重合体は、ヒドロキシプロピルメタクリレートに由来する構造単位を有することが好ましい。
なお、上記ヒドロキシプロピル(メタ)アクリレート(A)が、ヒドロキシプロピルアクリレート及びヒドロキシプロピルメタクリレートの両方を含む場合には、本発明の共重合体は、ヒドロキシプロピルアクリレート及びヒドロキシプロピルメタクリレート由来の構造単位の合計をヒドロキシプロピル(メタ)アクリレート(A)由来の構造単位(a)として特定の割合で有することになる。
上記構造単位(a)は、単量体(A)、すなわちヒドロキシプロピル(メタ)アクリレート(A)において、炭素-炭素不飽和二重結合が単結合になった形態となる。構造単位(a)は、具体的には、下記一般式(a1)~(a3)で表すことができる。
Figure JPOXMLDOC01-appb-C000001
上記一般式(a1)~(a3)において、Rは、水素原子又はメチル基を表す。
これらの中でも、本発明の共重合体の耐加水分解性が特に良好となることから、構造単位(a)として、上記一般式(a1)、及び/又は、(a2)を有することが特に好ましい。
本発明の共重合体は、ヒドロキシプロピル(メタ)アクリレート(A)(単量体A)由来の構造単位(a)を全単量体由来の構造100質量%に対して、1質量%以上、90質量%以下の割合で有することを必須としている。本発明において、全単量体とは、単量体(A)、単量体(B)、後述する単量体(E)(すなわち、ヒドロキシプロピル(メタ)アクリレート(A)及びカルボキシル基含有単量体(B)以外のその他の単量体)をいう。構造単位(a)の割合が上記範囲内であれば、共重合体の再汚染防止能や界面活性剤との相溶性の向上効果が得られる。全単量体由来の構造100質量%に対する構造単位(a)の割合は、好ましくは5質量%以上、90質量%以下であり、さらに好ましくは10質量%以上、90質量%以下であり、特に好ましくは20質量%以上、90質量%以下である。本発明の共重合体が、上記範囲で単量体(A)由来の構造単位(a)を有することにより、再汚染防止能や界面活性剤との相溶性がより向上する。
上記構造単位(a)は、界面活性剤との親和性が高いことから、本発明の共重合体が、上記範囲で単量体(A)由来の構造単位(a)を有することにより、界面活性剤との相溶性が向上すると考えられる。
上記構造単位(a)はエステル基を有するものの、エステル基周辺が疎水性雰囲気であるため、耐加水分解性が強く、安定性が高いことから、本発明の共重合体は安定して優れた再汚染防止能や界面活性剤との相溶性等を発現することができる。また、構造単位(a)のエステル基は仮に加水分解しても、生成するプロピレングリコールは、エチレングリコール等と比較して安全性が高い為、本発明の共重合体は、化粧品用途等の安全性を厳しく要求される分野においても、好ましく使用することができる。更に、単量体(A)は水溶性を示すことから、水溶液重合が可能であり、有機溶剤等の混入を著しく少なく設計することが可能であるから、有機溶剤等の混入が厳しく管理される用途への適用も可能になる。
<カルボキシル基含有単量体>
本発明の共重合体は、カルボキシル基含有単量体(B)由来の構造単位(b)を特定の割合で有することを必須としている。
上記カルボキシル基含有単量体(B)は、1)炭素-炭素不飽和二重結合と、2)カルボキシル基及び/又はその塩とを必須として含有する単量体である。具体的には、アクリル酸、メタクリル酸、クロトン酸、α-ヒドロキシアクリル酸、α-ヒドロキシメチルアクリル酸及びそれらの誘導体等の不飽和モノカルボン酸系単量体及びそれらの塩;イタコン酸、フマル酸、マレイン酸、2-メチレングルタル酸等の不飽和ジカルボン酸系単量体及びそれらの塩;等が挙げられる。
上記不飽和モノカルボン酸系単量体としては、分子内に1つの不飽和基と、1つのカルボキシル基とを有する単量体であればよいが、アクリル酸、メタクリル酸や、それらの一価金属塩、二価金属塩、アンモニウム塩、有機アンモニウム塩(有機アミン塩)が好適である。
上記不飽和ジカルボン酸系単量体としては、分子内に1つの不飽和基と、2つのカルボキシル基とを有する単量体であればよいが、マレイン酸、イタコン酸、シトラコン酸、フマル酸や、それらの一価金属塩、二価金属塩、アンモニウム塩、有機アンモニウム塩(有機アミン塩)、又は、それらの無水物が好適である。
上記カルボキシル基含有単量体(B)としてはまた、上記不飽和ジカルボン酸系単量体と炭素数1~22個のアルコールとのハーフエステル、上記不飽和ジカルボン酸系単量体と炭素数1~22のアミンとのハーフアミド、上記不飽和ジカルボン酸系単量体と炭素数2~4のグリコールとのハーフエステル、マレアミド酸と炭素数2~4のグリコールとのハーフアミド等であってもよい。
上記不飽和モノカルボン酸系単量体の塩、又は、上記不飽和ジカルボン酸系単量体の塩における塩としては、金属塩、アンモニウム塩、有機アミン塩が挙げられる。
上記金属塩としては、ナトリウム塩、リチウム塩、カリウム塩、ルビジウム塩、セシウム塩等のアルカリ金属の塩;マグネシウム塩、カルシウム塩、ストロンチウム塩、バリウム塩等のアルカリ土類金属の塩;アルミニウム、鉄等の塩;等が挙げられる。上記有機アミン塩としては、モノエタノールアミン塩、ジエタノールアミン塩、トリエタノールアミン塩等のアルカノールアミン塩;モノエチルアミン塩、ジエチルアミン塩、トリエチルアミン塩等のアルキルアミン塩;エチレンジアミン塩、トリエチレンジアミン塩等のポリアミン等の有機アミンの塩;等が挙げられる。
上記不飽和モノカルボン酸系単量体の塩、又は、上記不飽和ジカルボン酸系単量体の塩における塩としては、これらのうち、得られる共重合体の再汚染防止能の向上効果が高いことから、アンモニウム塩、ナトリウム塩、カリウム塩であることが好ましく、より好ましくはナトリウム塩である。
上記カルボキシル基含有単量体(B)の中でも、アクリル酸、アクリル酸塩、マレイン酸、マレイン酸塩が得られる共重合体の再汚染防止能の向上効果が高いことから好ましく、アクリル酸、アクリル酸塩を必須とすることがより好ましい。
上記カルボキシル基含有単量体(B)は、1種のみであってもよいし、2種以上であってもよい。この場合、本発明の共重合体は、全種のカルボキシル基含有単量体(B)由来の構造単位(b)の合計を特定の割合で有することになる。
上記構造単位(b)は、単量体(B)の炭素-炭素不飽和二重結合が単結合になった形態となる。
本発明の共重合体は、カルボキシル基含有単量体(B)由来の構造単位(b)を全単量体由来の構造100質量%(構造単位(a)、(b)、及び後述する構造単位(e)の総質量100質量%)に対して、10質量%以上、99質量%以下の割合で有することを必須としている。構造単位(b)が上記範囲内であれば、共重合体の再汚染防止能や界面活性剤との相溶性の向上効果が得られる。全単量体由来の構造100質量%に対する構造単位(b)の割合は、好ましくは10質量%以上、95質量%以下であり、さらに好ましくは10質量%以上、90質量%以下であり、特に好ましくは10質量%以上、80質量%以下である。
本発明の共重合体は、洗剤ビルダーとして使用した場合、構造単位(b)を特定割合で有することにより、重合体の水溶性が良好になり、構造単位(a)により相互作用した汚れ粒子を分散する効果を発揮することが可能となる。
なお、本発明において、カルボキシル基含有単量体(B)由来の構造単位(b)の、全単量体由来の構造に対する質量割合(質量%)を計算する場合は、対応する酸換算として計算するものとする。例えば、アクリル酸ナトリウムに由来の構造単位-CH-CH(COONa)-であれば、対応する酸であるアクリル酸由来の構造単位-CH-CH(COOH)-として、質量割合(質量%)の計算をする。同様に、カルボキシル基含有単量体(B)の全単量体に対する質量割合(質量%)を計算する場合も、対応する酸換算として計算するものとする。例えば、アクリル酸ナトリウムであれば、対応する酸であるアクリル酸として質量割合(質量%)の計算をする。
更に、後述するその他の単量体由来の構造がカルボキシル基含有単量体(B)以外の酸基含有単量体由来の構造単位である場合、該酸基含有単量体由来の構造単位の、全単量体由来の構造に対する質量割合(質量%)は、対応する酸換算として計算するものとし、該酸基含有単量体の全単量体に対する質量割合(質量%)を計算する場合も、対応する酸換算として計算するものとする。
また、後述するその他の単量体由来の構造がアミノ基含有単量体由来の構造単位である場合、該アミノ基含有単量体由来の構造単位は対応する未中和アミン由来の構造単位として、該アミノ基含有単量体は対応する未中和アミンとして質量計算するものとする。例えば、その他の単量体がビニルアミン塩酸塩の場合、対応する未中和アミンであるビニルアミンとして質量割合(質量%)を計算する。
なお、上記アミノ基含有単量体由来の構造単位、上記アミノ基含有単量体におけるアミノ基が4級化されている場合には、質量割合(質量%)を計算する際、カウンターアニオンは考慮しないで計算するものとする。
<その他の単量体>
本発明の共重合体は、ヒドロキシプロピル(メタ)アクリレート(A)及びカルボキシル基含有単量体(B)以外のその他の単量体(E)由来の構造単位(e)を有していても構わない。
本発明の共重合体がその他の単量体(E)を含む際のその他の単量体(E)としては、上記単量体(A)及び(B)と共重合可能なものであれば特に限定されるものではなく、所望の効果によって適宜選択される。具体的には、N-ビニルピロリドン、N-ビニルホルムアミド、N-ビニルアセトアミド、N-ビニル-N-メチルホルムアミド、N-ビニル-N-メチルアセトアミド、N-ビニルオキサゾリドン等のN-ビニル単量体;(メタ)アクリルアミド、N,N-ジメチルアクリルアミド、N-イソプロピルアクリルアミド等のアミド系単量体;3-(メタ)アリルオキシ-1,2-ジヒドロキシプロパン、3-アリルオキシ-1,2-ジヒドロキシプロパン、3-アリルオキシ-1,2-ジヒドロキシプロパンにエチレンオキサイドを6~200モル付加させた化合物(3-アリルオキシ-1,2-ジ(ポリ)オキシエチレンエーテルプロパン等)、(メタ)アリルアルコール等のアリルエーテル系単量体;イソプレノール等のイソプレン系単量体;ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ドデシル(メタ)アクリレート等の(メタ)アクリル酸アルキルエステル系単量体;ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、α-ヒドロキシメチルエチル(メタ)アクリレート、ヒドロキシペンチル(メタ)アクリレート、ヒドロキシネオペンチル(メタ)アクリレート、ヒドロキシヘキシル(メタ)アクリレート等の単量体(A)以外の(メタ)アクリル酸ヒドロキシアルキル系単量体;スチレン、インデン、ビニルアニリン等のビニルアリール単量体、イソブチレン、酢酸ビニル;ビニルピリジン、ビニルイミダゾール等の複素環式芳香族炭化水素基とアミノ基を有するビニル芳香族系アミノ基含有単量体及びそれらの4級化物や塩;ジメチルアミノエチルアクリレート、ジメチルアミノエチルメタクリレート、ジメチルアミノプロピルアクリレート、アミノエチルメタクリレート等のアミノアルキル(メタ)アクリレート類及びそれらの4級化物や塩;ジアリルアミン、ジアリルジメチルアミン等のアリルアミン類及びそれらの4級化物や塩;(i)(メタ)アリルグリシジルエーテル、イソプレニルグリシジルエーテル、ビニルグリシジルエーテルのエポキシ環に、(ii)ジメチルアミン、ジエチルアミン、ジイソプロピルアミン、ジn-ブチルアミン等のジアルキルアミン、ジエタノールアミン、ジイソプロパノールアミン等のアルカノールアミン、イミノジ酢酸、グリシン等のアミノカルボン酸、モルホリン、ピロール等の環状アミン類等のアミンを反応させることにより得られる単量体及びそれらの4級化物や塩;3-アリルオキシ-2-ヒドロキシプロパンスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸、スチレンスルホン酸、ビニルスルホン酸等のスルホン酸基を有する単量体及びそれらの塩;ビニルアルコール、(メタ)アリルアルコール、イソプレノール等の不飽和アルコールにアルキレンオキサイドが1~300モル付加した構造を有する単量体等のポリアルキレングリコール鎖含有単量体;等が挙げられる。
また、上記他の単量体(E)は、1種のみであってもよいし、2種以上であってもよい。
本発明の共重合体が、任意成分であるその他の単量体(E)由来の構造単位(e)を含む場合、本発明の共重合体は、その他の単量体(E)由来の構造単位(e)を30質量%未満の割合で含むことが好ましい。より好ましくは、20質量%未満であり、さらに好ましくは、10質量%未満である。すなわち、本発明の共重合体は、ヒドロキシプロピル(メタ)アクリレート(A)由来の構造単位(a)及びカルボキシル基含有単量体(B)由来の構造単位(b)の合計の割合が、全単量体由来の構造100質量%(すなわち構造単位(a)、(b)、及び(e)の合計100質量%)に対して、70質量%以上、100質量%以下であることが好ましく、より好ましくは、80質量%以上、100質量%以下であり、さらに好ましくは、90質量%以上、100質量%以下である。
<共重合体のその他の物性>
本発明の共重合体は、上記構造単位(a)、(b)、及び必要であれば構造単位(e)が、上記したような特定の割合で導入されていればよく、各構造単位は、交互、ブロック状あるいはランダム状のいずれで存在していてもよい。
また、本発明の共重合体の重量平均分子量は、適宜設定できるものであり、特に限定されない。具体的には、共重合体の重量平均分子量は、1,800~200,000であることが好ましく、より好ましくは2,000~100,000、更に好ましくは、3,000~75,000、最も好ましくは4,000~50,000である。重量平均分子量が上記範囲内であれば、再汚染防止能が向上する傾向にある。
なお、本明細書において、重量平均分子量は、GPC(ゲルパーミエーションクロマトグラフィー)による測定値であり、具体的な測定方法は実施例に記載される方法に従って算出される。
本発明の共重合体は、再汚染防止能に加えて界面活性剤との相溶性に優れる為、高濃縮タイプの液体洗剤へも配合が可能となる。
〔本発明の共重合体組成物〕
本発明の共重合体組成物は、本発明の共重合体を必須として含有し、本発明の共重合体のみを含んでいても良いが、通常はその他に、重合開始剤残渣、残存モノマー、重合時の副生成物、水分から選ばれる1以上を含有する。本発明の共重合体組成物は、本発明の共重合体組成物100質量%に対し、本発明の共重合体を1質量%以上、100質量%以下の割合で含有することが好ましい。好ましい共重合体組成物の形態の一つは、共重合体を40質量%以上、60質量%以下の割合で含有し、水を40質量%以上、60質量%以下の割合で含有する形態である。
〔本発明の共重合体の製造方法〕
本発明の共重合体の製造方法は、全単量体(単量体(A)、(B)、(E)の合計)使用量100質量%に対して、1質量%以上、90質量%以下のヒドロキシプロピル(メタ)アクリレート(A)(単量体(A))、全単量体の使用量100質量%に対して、10質量%以上、99質量%以下のカルボキシル基含有単量体(B)(単量体(B))を必須として共重合することを特徴としている。
本発明の共重合体の製造方法においては、上記単量体(A)、単量体(B)は、それぞれ1種を用いても、2種以上を用いても構わない。本発明の共重合体の製造方法においては、上記単量体(A)、単量体(B)以外に、必要に応じ、上記その他の単量体(E)を更に共重合させてもよい。
本発明の共重合体の製造方法における単量体(E)の使用割合は、全単量体(単量体(A)、(B)、(E)の合計)100質量%に対して、0質量%以上、30質量%未満とすることが好ましい。より好ましくは、0質量%以上、20質量%未満であり、さらに好ましくは、0質量%以上、10質量%未満である。すなわち、本発明の共重合体の製造方法における単量体(A)及び単量体(B)の合計の使用割合は、全単量体(単量体(A)、(B)、(E)の合計)100質量%に対して、70質量%以上、100質量%以下とすることが好ましい。より好ましくは、80質量%以上、100質量%以下であり、さらに好ましくは、90質量%以上、100質量%以下である。
なお、上記任意成分である単量体(E)を使用する場合も、1種を単独で用いてもよいし、2種以上を用いてもよい。
本発明の共重合体の製造方法は、得られる共重合体がより好ましい再汚染防止能や界面活性剤との相溶性を発現するという観点から、上記共重合体を製造する際に用いる各単量体の組成比は、全単量体100質量%に対して、ヒドロキシプロピル(メタ)アクリレート(A)(単量体(A))を5質量%以上、90質量%以下、カルボキシル基含有単量体(B)(単量体(B))を10質量%以上、95質量%以下、上記その他の単量体(E)を、0質量%以上、30質量%未満とすることが好ましい。より好ましくは、単量体(A)が10質量%以上、90質量%以下、単量体(B)が10質量%以上、90質量%以下、単量体(E)が、0質量%以上、20質量%未満であり、特に好ましくは、ヒドロキシプロピル(メタ)アクリレート(A)(単量体(A))が20質量%以上、90質量%以下、カルボキシル基含有単量体(B)が10質量%以上、80質量%以下、上記その他の単量体(E)が、0質量%以上、10質量%未満である。なお、上記単量体(A)、(B)、及び(E)の合計量は100質量%としている。
<重合開始剤>
本発明の共重合体の製造方法は、上記単量体(A)、(B)、(E)(単量体(A)、(B)、及び(E)を合わせて、「単量体組成物」ということがある。)を重合開始剤の存在下で重合することが好ましい。
上記開始剤としては、通常重合開始剤として用いられているものを使用することができ、例えば、過酸化水素;過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩;ジメチル2,2’-アゾビス(2-メチルプロピオネート)、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス(イソ酪酸)ジメチル、4,4’-アゾビス(4-シアノ吉草酸)、2,2’-アゾビス(2-メチルプロピオンアミジン)二塩酸塩、2,2’-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン]n水和物、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二硫酸塩二水和物、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)等のアゾ系化合物;過酸化ベンゾイル、過酸化ラウロイル、過酢酸、ジ-t-ブチルパーオキサイド、クメンヒドロパーオキサイド等の有機過酸化物等が好適である。これらの重合開始剤のうち、過酸化水素、過硫酸塩が好ましく、過硫酸塩が最も好ましい。これらの重合開始剤は、単独で使用されてもよいし、2種以上の混合物の形態で使用されてもよい。例えば、過酸化水素と過硫酸塩とを組み合わせて用いる形態は好ましい形態である。
<連鎖移動剤>
本発明の共重合体の製造方法は、必要に応じ、重合に悪影響を及ぼさない範囲内で、重合体の分子量調整剤として連鎖移動剤を用いても良い。連鎖移動剤としては、具体的には、メルカプトエタノール、チオグリセロール、チオグリコール酸、2-メルカプトプロピオン際、3-メルカプトプロピオン際、チオリンゴ酸、チオグリコール酸オクチル、3-メルカプトプロピオン酸オクチル、2-メルカプトエタンスルホン酸、n-ドデシルメルカプタン、オクチルメルカプタン、ブチルチオグリコレート等の、チオール系連鎖移動剤;四塩化炭素、塩化メチレン、ブロモホルム、ブロモトリクロロエタン等の、ハロゲン化物;イソプロパノール、グリセリン等の、第2級アルコール;亜リン酸、次亜リン酸、及びそれらの塩(次亜リン酸ナトリウム、次亜リン酸カリウム等)や、重亜硫酸(亜硫酸水素)、二亜硫酸(メタ重亜硫酸)、亜硫酸、亜ジチオン酸(亜二チオン酸)、チオ硫酸、及びそれらの塩(亜硫酸水素ナトリウム、亜硫酸水素カリウム、メタ重亜硫酸ナトリウム、メタ重亜硫酸カリウム、亜二チオン酸ナトリウム、亜二チオン酸カリウム等)等の、低級酸化物及びそれらの塩等が挙げられる。上記連鎖移動剤は、単独で使用されてもよいし、2種以上の混合物の形態で使用されてもよい。
連鎖移動剤を使用すると、製造される共重合体が必要以上に高分子量化することを抑制し、低分子量の共重合体を効率よく製造することができるという利点がある。これらのうち、本発明に係る共重合反応においては、重亜硫酸、二亜硫酸、亜硫酸、亜ジチオン酸、チオ硫酸、及び/又は、それらの塩(以下、単に「重亜硫酸(塩)類」ともいう。)を用いることが好適である。これにより、得られる共重合体の主鎖末端にスルホン酸基を導入することができることとなり、共重合体の耐ゲル性を向上させることが可能となる。また、連鎖移動剤として、重亜硫酸(塩)類を用いることにより、共重合体(又は、共重合体組成物)の色調を改善することができるので好ましい。
本発明の製造方法において、上述したように、重亜硫酸(塩)類を連鎖移動剤として使用することは好ましい形態であるが、その場合、重亜硫酸(塩)類に加えて開始剤を使用することとなる。さらに、反応促進剤として、重金属イオンを併用してもよい。
上記重亜硫酸(塩)類とは、上記の通りであるが、亜硫酸水素塩、二亜硫酸塩、亜硫酸塩である形態が好適である。上記重亜硫酸(塩)類における塩としては、金属原子の塩、アンモニウム基の塩、有機アミン基の塩が好適である。上記金属原子としては、例えば、リチウム、ナトリウム、カリウム等のアルカリ金属の一価の金属原子;カルシウム、マグネシウム等のアルカリ土類金属の二価の金属原子;アルミニウム、鉄等の三価の金属原子等の塩が好ましい。また、上記有機アミン(有機アンモニウム)としては、エタノールアミン、ジエタノールアミン、トリエタノールアミン等のアルカノールアミンや、トリエチルアミン等が好適である。更に、アンモニウムであってもよい。ゆえに、本発明で好ましく使用される重亜硫酸(塩)類としては、例えば、亜硫酸水素ナトリウム、亜硫酸水素カリウム、亜硫酸水素アンモニウム、亜硫酸ナトリウム、亜硫酸カリウム、亜硫酸アンモニウム等が挙げられ、亜硫酸水素ナトリウムが特に好適である。上記重亜硫酸(塩)類は、単独で使用されてもよいし、2種以上の混合物の形態で使用されてもよい。
<反応促進剤>
本発明の共重合体の製造方法は、開始剤等の使用量を低減する等の目的で反応促進剤を加えても良い。反応促進剤としては、重金属イオンが例示される。本発明で重金属イオンとは、比重が4g/cm以上の金属を意味する。上記金属イオンとしては、例えば、鉄、コバルト、マンガン、クロム、モリブデン、タングステン、銅、銀、金、鉛、白金、イリジウム、オスミウム、パラジウム、ロジウム、ルテニウム等が好ましい。これらの重金属は1種又は2種以上を用いることができる。これらの中でも、鉄がより好ましい。上記重金属イオンのイオン価は特に限定されるものではなく、例えば、重金属として鉄が用いられる場合、開始剤における鉄イオンとしては、Fe2+であっても、Fe3+であってよく、これらが組み合わされていてもよい。
上記重金属イオンは、イオンの形態として含まれるものであれば特に限定されないが、重金属化合物を溶解してなる溶液を用いる方法を用いると、取り扱い性に優れるため好適である。その際に用いる重金属化合物は、開始剤に含有することを所望する重金属イオンを含むものであればよく、用いる開始剤に応じて決定することができる。上記重金属イオンとして鉄を用いる場合、モール塩(Fe(NH(SO・6HO)、硫酸第一鉄・7水和物、塩化第一鉄、塩化第二鉄等の重金属化合物等を用いることが好ましい。また、重金属イオンとしてマンガンを用いる場合、塩化マンガン等を好適に用いることができる。これらの重金属化合物を用いる場合においては、いずれも水溶性の化合物であるため、水溶液の形態として用いることができ、取り扱い性に優れることになる。なお、上記重金属化合物を溶解してなる溶液の溶媒としては、水に限定されるものではなく、本発明の共重合体の製造において、重合反応を妨げるものでなく、かつ、重金属化合物を溶解するものであればよい。
上記重金属イオンの添加方法は特に限定されないが、単量体の滴下終了前までに添加することが好ましく、全量初期仕込することが特に好ましい。また、使用量としては反応液全量に対して100ppm以下であることが好ましいが、より好ましくは70ppm以下、さらに好ましくは50ppm以下、特に好ましくは30ppm以下である。100ppmを越えると添加した効果はもはや見られず、また得られた共重合体の着色が大きく用途によっては使用できない恐れがあるため好ましくない。
上記重金属イオンの含有量は、また、重合反応完結時における重合反応液の全質量に対して好ましくは0.1~10ppmであることが好ましい。重金属イオンの含有量が0.1ppm未満であると、重金属イオンによる効果が十分に発現しないおそれがある。一方、重金属イオンの含有量が10ppmを超えると、得られる共重合体の色調の悪化を来たすおそれがある。
なお、上記重合反応完結時とは、重合反応液中において重合反応が実質的に完了し、所望する重合体が得られた時点を意味する。例えば、重合反応液中において重合された重合体がアルカリ成分で中和される場合には、中和した後の重合反応液の全質量を基準に、重金属イオンの含有量を算出する。2種以上の重金属イオンが含まれる場合には、重金属イオンの総量が上述の範囲であればよい。
本発明の共重合体の製造方法において、重合の際には、上述した化合物等に加えて、重合開始剤の分解触媒や還元性化合物を反応系に添加してもよい。上記重合開始剤の分解触媒としては、例えば、塩化リチウム、臭化リチウム等のハロゲン化金属;酸化チタン、二酸化ケイ素等の金属酸化物;塩酸、臭化水素酸、過塩素酸、硫酸、硝酸等の無機酸の金属塩;ギ酸、酢酸、プロピオン酸、酪酸、イソ酪酸、安息香酸等のカルボン酸、それらのエステル及びそれらの金属塩;ピリジン、インドール、イミダゾール、カルバゾール等の複素環アミン及びそれらの誘導体等が挙げられる。これらの分解触媒は1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。
また、上記還元性化合物としては、例えば、フェロセン等の有機金属化合物;ナフテン酸鉄、ナフテン酸銅、ナフテン酸ニッケル、ナフテン酸コバルト、ナフテン酸マンガン等の、鉄、銅、ニッケル、コバルト、マンガン等の金属イオンを発生できる無機化合物;三フッ化ホウ素エーテル付加物、過マンガン酸カリウム、過塩素酸等の無機化合物;二酸化硫黄、亜硫酸塩、硫酸エステル、重亜硫酸塩、チオ硫酸塩、スルホキシ酸塩、ベンゼンスルフィン酸とそれらの置換体、パラトルエンスルフィン酸等の環状スルフィン酸の同族体等の硫黄含有化合物;オクチルメルカプタン、ドデシルメルカプタン、メルカプトエタノール、α-メルカプトプロピオン酸、チオグリコール酸、チオプロピオン酸、α-チオプロピオン酸ナトリウムスルホプロピルエステル、α-チオプロピオン酸ナトリウムスルホエチルエステル等のメルカプト化合物;ヒドラジン、β-ヒドロキシエチルヒドラジン、ヒドロキシルアミン等の窒素含有化合物;ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、n-ブチルアルデヒド、イソブチルアルデヒド、イソバレリアンアルデヒド等のアルデヒド類;L-アスコルビン酸等が挙げられる。これらの還元性化合物もまた、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。メルカプト化合物等の還元性化合物は、連鎖移動剤として添加してもよい。
本発明の共重合体の製造方法において、上記連鎖移動剤、開始剤、及び反応促進剤を用いる場合、それらの組み合わせは、特に制限されず、上記各例示の中から適宜選択できる。例えば、連鎖移動剤、開始剤、及び反応促進剤の組み合わせとしては、亜硫酸水素ナトリウム/過酸化水素、亜硫酸水素ナトリウム/過硫酸ナトリウム、亜硫酸水素ナトリウム/鉄イオン、亜硫酸水素ナトリウム/過酸化水素/鉄イオン、亜硫酸水素ナトリウム/過硫酸ナトリウム/鉄イオン、亜硫酸水素ナトリウム/過硫酸ナトリウム/過酸化水素、亜硫酸水素ナトリウム/酸素/鉄イオン等の形態が好ましい。より好ましくは、過硫酸ナトリウム/過酸化水素、過硫酸ナトリウム/過酸化水素/鉄イオン、亜硫酸水素ナトリウム/過硫酸ナトリウム、亜硫酸水素ナトリウム/過硫酸ナトリウム/鉄イオンであり、最も好ましくは亜硫酸水素ナトリウム/過硫酸ナトリウム/鉄イオン、過硫酸ナトリウム/過酸化水素/鉄イオンである。
<重合開始剤等の使用量>
上記開始剤の使用量は、単量体(A)、(B)、及び必要であれば他の単量体(E)の共重合を開始できる量であれば特に制限されないが、単量体(A)、(B)、及び必要であれば他の単量体(E)からなる全単量体成分1モルに対して、15g以下であることが好ましく、1~12gであることがより好ましい。
上記開始剤として、過酸化水素を使用する場合、過酸化水素の添加量は、単量体(A)、(B)、及び必要であれば他の単量体(E)からなる全単量体成分1モルに対して、1.0~10.0gであることが好ましく、2.0~8.0gであることがより好ましい。過酸化水素の添加量が1.0g未満であると、得られる共重合体の重量平均分子量が高くなる傾向にある。一方、添加量が10.0gを超えると過酸化水素の効果が添加量に伴うほど得られなくなり、さらに残存する過酸化水素量が多くなる等の悪影響を及ぼす。
上記開始剤として、過硫酸塩を使用する場合、過硫酸塩の添加量は、単量体(A)、(B)、及び必要であれば他の単量体(E)からなる全単量体成分1モルに対して、1.0~5.0gであることが好ましく、2.0~4.0gであることがより好ましい。過硫酸塩の添加量が1.0g未満であると、得られる共重合体の重量平均分子量が高くなる傾向がある。一方、添加量が5.0gを超えると、過硫酸塩の効果が添加量に伴うほど得られなくなり、さらに、得られる共重合体の純度が低下する等悪影響を及ぼすことになる。
上記開始剤として過酸化水素と過硫酸塩を併用する場合、過酸化水素及び過硫酸塩の添加比率は、重量比で添加する過酸化水素の重量を1としたときに、過硫酸塩の重量が0.1~5.0であることが好ましく、0.2~2.0であることがより好ましい。過硫酸塩の重量比が0.1未満であると、得られる共重合体の重量平均分子量が高くなる傾向がある。一方、過硫酸塩の重量比が5.0を超えると、過硫酸塩の添加による分子量低下の効果が添加に伴うほど得られない状態で、重合反応系において過硫酸塩が無駄に消費されることになる。
上記過酸化水素の添加方法としては、全使用量に対し、実質的に連続的に滴下する量が必要所定量の85質量%以上であることが好ましく、特に好ましくは90質量%以上であり、全量を滴下することが最も好ましい。過酸化水素を連続的に滴下する場合のその滴下速度は適宜設定することができる。
上記過酸化水素の滴下は、後述する重合温度、重合時のpHにおける条件下において、単量体(初期仕込みする単量体を除く)の滴下開始後、遅らせて開始することが好ましい。好ましくはカルボキシル基含有単量体の滴下開始から1分以上経過後、より好ましくは3分以上経過後、さらに好ましくは5分以上経過後、最も好ましくは10分以上経過後に過酸化水素の滴下を開始することである。過酸化水素の滴下開始時間を遅らすことにより、初期の重合開始をスムーズにし、分子量分布を狭くすることが可能となる。
上記過酸化水素の滴下開始時間を遅らす時間は、単量体の滴下開始後60分以内であることが好ましく、30分以内であることがより好ましい。
過酸化水素の滴下を単量体の滴下と同時に開始すること、単量体の滴下前に予め過酸化水素を仕込むことも可能であるが、予め過酸化水素を仕込む場合は、必要所定量の10質量%以下であることが好ましく、より好ましくは7質量%以下、さらに好ましくは5質量%以下、特に好ましくは3質量%以下である。
単量体の滴下開始時間までに必要所定量の10質量%を超える過酸化水素を添加すると、例えば過硫酸塩を併用する場合には過硫酸塩に対する過酸化水素の濃度の比率が大きくなり、重合が停止するおそれがある。一方、単量体の滴下開始時間から60分より遅く開始すると、過酸化水素による連鎖移動反応等が起こらなくなる為、重合初期の分子量が高くなる。
上記過酸化水素の滴下終了時間は、後述する重合温度、重合時のpHにおける条件下において、単量体の滴下終了時間と同時に終了することが好ましく、単量体滴下終了時間よりも10分以上早く終了することがより好ましく、30分以上早く終了することが特に好ましい。なお、単量体の滴下終了時間より遅く終了しても、重合系において特に悪影響を及ぼすものではない。ただし、添加した過酸化水素が重合終了時までに完全には分解しないため、過酸化水素としての効果が得られず無駄となり、また、過酸化水素が多量に残存する恐れがあることから、得られた共重合体の熱安定性に悪影響を及ぼす可能性があるため好ましくはない。
また、上記過硫酸塩の添加方法としては、その分解性等を鑑み、特に限定はされないが、全使用量に対し、実質的に連続的に滴下する量が必要所定量の50質量%以上であることが好ましく、特に好ましくは80質量%以上であり、全量を滴下することが最も好ましい。過硫酸塩を連続的に滴下する場合のその滴下速度は適宜設定することができる。
上記過硫酸塩の滴下終了時間においても特には限定されないが、後述する重合温度、重合時のpHにおける条件下において、過硫酸アンモニウム、過硫酸カリウム、過硫酸ナトリウム等の過硫酸塩等、比較的分解の早い開始剤においては、単量体の滴下終了時間まで滴下することが好ましく、単量体滴下終了後から30分以内に終了することがより好ましく、単量体滴下後5分~20分以内に終了することが特に好ましい。これにより、共重合体における単量体の残量を著しく減じることが出来る効果を見出せる。
なお、単量体の滴下終了前に、これら開始剤の滴下を終了しても、重合に特に悪影響を及ぼすものではなく、得られた共重合体中における単量体の残存量に応じて設定すれば良いものである。
これら比較的分解の早い開始剤について、滴下終了時間についてのみ好ましい範囲を述べたが、滴下開始時間は何ら限定されるものではなく、適宜設定すれば良い。例えば、場合によっては単量体の滴下開始前に開始剤の滴下を開始しても良いし、特に2種以上の開始剤を併用して用いる併用系の場合においては、一つの開始剤の滴下を開始し、一定の時間が経過してから、又は、終了してから別の開始剤の滴下を開始しても良い。いずれも、開始剤の分解速度、単量体の反応性に応じて適宜設定すれば良い。
上記重合開始剤を水等の溶媒に溶解して添加する場合の、添加時の重合開始剤の濃度は、特には限定されないが、重合開始剤の溶液に対して、好ましくは5~60質量%、特に好ましくは10~50質量%である。開始剤の濃度が5質量%未満であると、結果的に重合中の単量体濃度が非常に低くなるので、単量体の重合性が非常に悪くなり得られる共重合体中における単量体の残存量が非常に多くなる。また輸送等の効率や生産性も低くなり経済的な面からも好ましくない。逆に60質量%を超えると、安全性や滴下の簡便性の面で問題となる。
本発明の方法において、上記連鎖移動剤の添加量は、単量体(A)、(B)、及び必要であれば他の単量体(E)が良好に重合する量であれば制限されないが、単量体(A)、(B)、及び必要であれば他の単量体(E)からなる全単量体成分1モルに対して、1~20gであることが好ましく、2~15gであることがより好ましい。1g未満であると、分子量の制御ができないおそれがあり、逆に、20gを超えると、不純物が多量に生成し、重合体純分が低下するおそれがあり、特に重亜硫酸(塩)類を使用する場合には、余剰の重亜硫酸(塩)類が反応系中で分解され、有害な亜硫酸ガスが発生するおそれがある。しかも、経済的にも不利となるおそれがある。
上記開始剤と連鎖移動剤との組み合わせとしては、過硫酸塩と重亜硫酸(塩)類とをそれぞれ1種以上用いることが最も好ましい。この場合、過硫酸塩と重亜硫酸(塩)類との混合比は、特に制限されないが、過硫酸塩1質量部に対して、重亜硫酸(塩)類0.5~5質量部を用いることが好ましい。より好ましくは、過硫酸塩1質量部に対して、重亜硫酸(塩)類の下限は、1質量部であり、最も好ましくは2質量部である。また、重亜硫酸(塩)類の上限は、過硫酸塩1質量部に対して、より好ましくは4質量部であり、最も好ましくは3質量部である。
ここで、重亜硫酸(塩)類が0.5質量部未満であると、低分子量化する際に開始剤総量が増加するおそれがあり、逆に5質量部を超えると、副反応が増加し、それによる不純物が増加するおそれがある。
上記連鎖移動剤、開始剤、及び反応促進剤の総使用量は、単量体(A)、(B)、及び必要であれば他の単量体(E)からなる全単量体成分1モルに対して、2~20gであることが好ましい。このような範囲とすることで、本発明の共重合体を効率よく生産することができ、また、共重合体の分子量分布を所望のものとすることができる。より好ましくは、4~18gであり、さらに好ましくは、6~15gである。
上記重合開始剤及び連鎖移動剤の反応容器への添加方法としては、滴下、分割投入等の連続投入方法を適用することができる。また、連鎖移動剤を単独で反応容器へ導入してもよく、単量体成分を構成する各単量体(A)、(B)やその他の単量体(E)、溶媒等とあらかじめ混合しておいてもよい。
<重合溶媒、原料の添加方法、重合温度>
本発明において、単量体(A)、(B)、さらに必要であれば他の単量体(E)の共重合は、使用する溶媒の50質量%以上に水を用いる、及び/又は、連鎖移動剤の存在下で行うことが好ましく、使用する溶媒の50質量%以上に水を用い、かつ連鎖移動剤の存在下で行うことがより好ましい。この際、使用する溶媒の50質量%以上に水を用いることによって、重合に使用される有機溶剤の量を抑制できるため、重合終了後の有機溶剤の留去が容易であるという利点がある。
上記態様で使用される溶媒としては、使用する溶媒全量に対して50質量%の割合で水を含むものであれば特に制限されない。重合に使用される単量体の溶媒への溶解性向上という観点から、必要に応じて、有機溶媒を添加してもよい。この場合においても、全混合溶媒中の水の含量は50質量%以上である。この際使用できる有機溶剤としては、メタノール、エタノール、イソプロピルアルコール等の低級アルコール類;アセトン、メチルエチルケトン、ジエチルケトン等の低級ケトン類;ジメチルエーテル、ジオキサン等のエーテル類;ジメチルホルムアルデヒド等のアミド類が挙げられる。これらの溶媒は、単独で使用されてもあるいは2種以上の混合物の形態で使用されてもよい。本発明では、水の量は、使用する溶媒全量に対して、好ましくは80質量%以上であることが好ましく、最も好ましくは水単独(即ち、100質量%)である。上記有機溶媒を添加する場合は、単量体成分及び得られる共重合体の溶解性の点から、水及び炭素数1~4の低級アルコールからなる群より選択される1種又は2種以上の溶媒を用いることが好ましい。
水等の溶媒の使用量としては、単量体成分100質量%に対して40~200質量%が好ましい。より好ましくは、45質量%以上であり、更に好ましくは、50質量%以上である。また、より好ましくは、180質量%以下であり、更に好ましくは、150質量%以下である。溶媒の使用量が40質量%未満であると、得られる共重合体の分子量が高くなるおそれがあり、200質量%を超えると、得られる共重合体の濃度が低くなり、溶媒除去が必要となるおそれがある。なお、溶媒は、重合初期に一部又は全量を反応容器内に仕込んでおけばよいが、溶媒の一部を重合反応中に反応系内に添加(滴下)してもよいし、単量体成分や開始剤等を予め溶媒に溶解させた形で、これらの成分と共に重合反応中に反応系内に添加(滴下)してもよい。
上記共重合方法において、単量体成分や重合開始剤等の反応容器への添加方法としては、反応容器に単量体成分の全てを仕込み、重合開始剤を反応容器内に添加することによって共重合を行う方法;反応容器に単量体成分の一部を仕込み、重合開始剤と残りの単量体成分を反応容器内に連続してあるいは段階的に(好ましくは連続して)添加することによって共重合を行う方法;反応容器に重合溶媒を仕込み、単量体成分と重合開始剤の全量を添加する方法;単量体(A)、(B)、場合により(E)のうちの一種の一部を反応容器に仕込み、重合開始剤と残りの単量体成分を反応容器内に(好ましくは連続して)添加することによって共重合を行う方法等が好適である。このような方法の中でも、得られる共重合体の分子量分布を狭く(シャープに)することができ、重合体の再汚染防止能を向上することができうることから、重合開始剤と単量体成分を反応容器に逐次滴下する方法で共重合を行うことが好ましい。
上記共重合方法としては、例えば、溶液重合やバルク重合、懸濁重合、乳化重合等の通常用いられる方法で行うことができ、特に限定されるものではないが、溶液重合が好ましい。この際使用できる溶媒は、上述したように、全溶媒に対して50質量%が水である混合溶媒又は水であることが好ましい。水のみを使用する場合には、脱溶剤工程を省略できる点で好適である。
上記共重合方法は、回分式でも連続式でも行うことができる。
上記共重合方法において、共重合温度等の共重合条件としては、用いられる共重合方法、溶媒、重合開始剤等により適宜定められるが、共重合温度としては、通常、0℃以上であることが好ましく、また、150℃以下であることが好ましい。より好ましくは、40℃以上であり、更に好ましくは、60℃以上であり、特に好ましくは、80℃以上である。また、より好ましくは、120℃以下であり、更に好ましくは、110℃以下である。特に、連鎖移動剤として重亜硫酸(塩)類を用いる場合には、共重合温度は、通常、60℃~95℃、好ましくは70℃~95℃、さらに好ましくは、80℃~95℃である。この際、60℃未満では、重亜硫酸(塩)類由来の不純物が多量に生成するおそれがある。逆に、95℃を越えると、有毒な亜硫酸ガスが放出されるおそれがある。
上記共重合温度は、重合反応において、常にほぼ一定に保持する必要はなく、例えば、室温から重合を開始し、適当な昇温時間又は昇温速度で設定温度まで昇温し、その後、設定温度を保持するようにしてもよいし、単量体成分や開始剤等の滴下方法に応じて、重合反応中に経時的に温度変動(昇温又は降温)させてもよい。
<重合時間、重合圧力、重合pH>
重合時間は特に制限されないが、好ましくは30~420分であり、より好ましくは45~390分であり、さらに好ましくは60~360分であり、最も好ましくは90~300分である。なお、本発明において、「重合時間」とは、特に断らない限り、単量体を添加している時間を表す。
上記共重合方法における反応系内の圧力としては、常圧(大気圧)下、減圧下、加圧下の何れであってもよいが、得られる共重合体の分子量の点で、常圧下、又は、反応系内を密閉し、加圧下で行うのが好ましい。また、加圧装置や減圧装置、耐圧性の反応容器や配管等の設備の点で、常圧(大気圧)下で行うのが好ましい。反応系内の雰囲気としては、空気雰囲気でもよいが、不活性雰囲気とするのが好ましく、例えば、重合開始前に系内を窒素等の不活性ガスで置換することが好ましい。
上記共重合における重合中のpHは、酸性が好ましい。特に、上記開始剤と連鎖移動剤との組み合わせとして、過硫酸塩と重亜硫酸(塩)類とを併用する場合は、酸性条件下で行うことが好ましい。酸性条件下で行うことによって、重合反応系の水溶液の粘度の上昇を抑制し、共重合体を良好に製造することができる。また、高濃度の条件下で重合反応を進行させることができるので、製造効率を大幅に上昇することができ、最終固形分濃度が40%以上の高濃度重合とすることができ、含まれる残存モノマーの総濃度が30,000ppm以下のものを得ることができる。
上記酸性条件としては、重合中の反応溶液の25℃でのpHが1~6であることが好ましい。より好ましくは、5以下であり、更に好ましくは、3以下である。上記共重合方法により得られる共重合体は、そのままでもスケール防止剤の主成分等として用いることができるが、必要に応じて、更にアルカリ性物質で中和して用いてもよい。アルカリ性物質としては、一価金属及び二価金属の水酸化物、塩化物及び炭酸塩等の無機塩;アンモニア;有機アンモニウム(有機アミン)等を用いることが好ましい。
共重合を行う際の中和率は、開始剤によって適宜変更できる。例えば、上記開始剤と連鎖移動剤との組み合わせとして、過硫酸塩と重亜硫酸(塩)類とを併用する場合は、カルボキシル基含有単量体等の酸基含有単量体の酸基の合計量に対して、単量体の中和率を0~60モル%として単量体成分の共重合を行うことが好ましい。単量体の中和率は、単量体の全モル数を100モル%としたときに、塩を形成している単量体のモル%で表されることになる。単量体の中和率が60モル%を超えると、共重合工程における重合率が上がらず、得られる共重合体の分子量が低下したり、製造効率が低下したりするおそれがある。より好ましくは、50モル%以下であり、更に好ましくは、40モル%以下、特に好ましくは、30モル%以下であり、より特に好ましくは、20モル%以下であり、最も好ましくは、10モル%以下である。
また、過硫酸塩と過酸化水素を併用する場合は、カルボキシル基含有単量体等の酸基含有単量体の酸基の合計量に対して、99モル%以下、好ましくは50~95モル%以下である。中和度が50モル%未満であると過酸化水素の分解が十分に起こらず、重量平均分子量が高くなる傾向がある。また99モル%を越えると強アルカリ性の腐食性条件となるため、高温では製造設備が腐食する恐れがあり、さらに、アルカリによって過酸化水素が分解してしまうため、添加量が多くなってしまうという恐れもある。重合終了後(即ち単量体滴下終了後)の中和度は、残存する過酸化水素の分解を促進するために、カルボキシル基含有単量体及び該当する場合にはその他の単量体の酸量の合計量に対して、好ましくは80モル%以上、より好ましくは90モル%以上、さらに好ましくは95モル%以上とする。
上記単量体の中和率を0~60モル%として共重合を行う方法としては、例えば、単量体が不飽和カルボン酸系単量体である場合、全て酸型である不飽和カルボン酸系単量体を中和せずに共重合に付することにより行う方法や、不飽和カルボン酸系単量体をアルカリ性物質を用いてナトリウム塩やアンモニウム塩等の塩の形態に中和するときに中和率を0~60モル%としたものを共重合に付することにより行う方法等が好適である。
〔本発明の共重合体、共重合体組成物の用途〕
本発明の共重合体(又は共重合体組成物)は、水処理剤、繊維処理剤、分散剤、洗剤ビルダー(又は洗剤組成物)、スケール防止剤(スケール抑制剤)、金属イオン封止剤、増粘剤、各種バインダー、乳化剤、スキンケア剤、ヘアケア剤等として用いられうる。洗剤ビルダーとしては、衣料用、食器用、住居用、毛髪用、身体用、歯磨き用、及び自動車用等、様々な用途の洗剤に添加されて使用されうる。
<水処理剤>
本発明の共重合体(又は共重合体組成物)は、水処理剤に用いることができる。該水処理剤には、必要に応じて、他の配合剤として、重合リン酸塩、ホスホン酸塩、防食剤、スライムコントロール剤、キレート剤を用いても良い。
上記水処理剤は、冷却水循環系、ボイラー水循環系、海水淡水化装置、パルプ蒸解釜、黒液濃縮釜等でのスケール防止に有用である。また、性能、効果に影響しない範囲で、任意の適切な水溶性重合体を含んでもよい。
<繊維処理剤>
本発明の共重合体(又は共重合体組成物)は、繊維処理剤に用いることができる。該繊維処理剤は、染色剤、過酸化物、及び界面活性剤からなる群より選ばれる少なくとも1つと、本発明の共重合体(又は共重合体組成物)を含む。
上記繊維処理剤における本発明の共重合体の含有量は、繊維処理剤全体に対して、好ましくは1~100質量%であり、より好ましくは5~100質量%である。また、性能、効果に影響しない範囲で、任意の適切な水溶性重合体を含んでいてもよい。
以下に、より実施形態に近い、繊維処理剤の配合例を示す。この繊維処理剤は、繊維処理における精錬、染色、漂白、ソーピングの工程で使用することができる。染色剤、過酸化物、及び界面活性剤としては繊維処理剤に通常使用されるものが挙げられる。
本発明の共重合体と、染色剤、過酸化物、及び界面活性剤からなる群より選ばれる少なくとも1つとの配合比率は、例えば、繊維の白色度、色むら、染色けんろう度の向上のためには、繊維処理剤純分換算で、本発明の共重合体1質量部に対して、染色剤、過酸化物、及び界面活性剤からなる群より選ばれる少なくとも1つを0.1~100質量部の割合で配合された組成物を繊維処理剤として用いることが好ましい。
上記繊維処理剤を使用できる繊維としては、任意の適切な繊維を採用し得る。例えば、木綿、麻等のセルロース系繊維、ナイロン、ポリエステル等の化学繊維、羊毛、絹糸等の動物性繊維、人絹等の半合成繊維、並びに、それらの織物及び混紡品が挙げられる。
上記繊維処理剤を精錬工程に適用する場合は、本発明の共重合体と、アルカリ剤及び界面活性剤とを配合することが好ましい。漂白工程に適用する場合では、本発明の共重合体と、過酸化物と、アルカリ性漂白剤の分解抑制剤としての珪酸ナトリウム等の珪酸系薬剤とを配合することが好ましい。
<無機顔料分散剤>
本発明の共重合体(又は共重合体組成物)は、無機顔料分散剤に用いることができる。該無機顔料分散剤には、必要に応じて、他の配合剤として、縮合リン酸及びその塩、ホスホン酸及びその塩、ポリビニルアルコールを用いても良い。
上記無機顔料分散剤中における、本発明の共重合体の含有量は、無機顔料分散剤全体に対して、好ましくは5~100質量%である。また性能、効果に影響しない範囲で、任意の適切な水溶性重合体を含んでいてもよい。
上記無機顔料分散剤は、紙コーティングに用いられる重質ないしは軽質炭酸カルシウム、クレイの無機顔料の分散剤として良好な性能を発揮し得る。例えば、無機顔料分散剤を無機顔料に少量添加して水中に分散することにより、低粘度でしかも高流動性を有し、かつ、それらの性能の経日安定性が良好な、高濃度炭酸カルシウムスラリーのような高濃度無機顔料スラリーを製造することができる。
上記無機顔料分散剤を無機顔料の分散剤として用いる場合、該無機顔料分散剤の使用量は、無機顔料100質量部に対して、0.05~2.0質量部が好ましい。該無機顔料分散剤の使用量が上記範囲内にあることによって、十分な分散効果を得ることが可能となり、添加量に見合った効果を得ることが可能となり、経済的にも有利となり得る。
<洗剤ビルダー>
本発明の共重合体、共重合体組成物は、洗剤ビルダーとして用いられうる。洗剤ビルダーとしては、衣料用、食器用、住居用、毛髪用、身体用、歯磨き用、及び自動車用等、様々な用途の洗剤に添加されて使用されうる。
<洗剤組成物>
本発明の共重合体(又は共重合体組成物)は、洗剤組成物にも添加しうる。
洗剤組成物における当該共重合体の含有量は特に制限されない。ただし、優れたビルダー性能を発揮しうるという観点からは、共重合体の含有量は、洗剤組成物の全量に対して、好ましくは0.1~15質量%であり、より好ましくは0.3~10質量%であり、さらに好ましくは0.5~5質量%である。
洗剤用途で用いられる洗剤組成物には、通常、洗剤に用いられる界面活性剤や添加剤が含まれる。これらの界面活性剤や添加剤の具体的な形態は特に制限されず、洗剤分野において従来公知の知見が適宜参照されうる。また、上記洗剤組成物は、粉末洗剤組成物であってもよいし、液体洗剤組成物であってもよい。
界面活性剤は、アニオン性界面活性剤、ノニオン性界面活性剤、カチオン性界面活性剤、及び両性界面活性剤からなる群から選択される1種又は2種以上である。2種以上が併用される場合、アニオン性界面活性剤とノニオン性界面活性剤との合計量は、界面活性剤の全量に対して50質量%以上であることが好ましく、より好ましくは60質量%以上であり、さらに好ましくは70質量%以上であり、特に好ましくは80質量%以上である。
アニオン性界面活性剤としては、アルキルベンゼンスルホン酸塩、アルキルエーテル硫酸塩、アルケニルエーテル硫酸塩、アルキル硫酸塩、アルケニル硫酸塩、α-オレフィンスルホン酸塩、α-スルホ脂肪酸又はエステル塩、アルカンスルホン酸塩、飽和脂肪酸塩、不飽和脂肪酸塩、アルキルエーテルカルボン酸塩、アルケニルエーテルカルボン酸塩、アミノ酸型界面活性剤、N-アシルアミノ酸型界面活性剤、アルキルリン酸エステル又はその塩、アルケニルリン酸エステル又はその塩等が好適である。これらのアニオン性界面活性剤におけるアルキル基、アルケニル基には、メチル基等のアルキル基が分岐していてもよい。
ノニオン性界面活性剤としては、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレンアルケニルエーテル、ポリオキシエチレンアルキルフェニルエーテル、高級脂肪酸アルカノールアミド又はそのアルキレンオキサイド付加物、ショ糖脂肪酸エステル、アルキルグリコキシド、脂肪酸グリセリンモノエステル、アルキルアミンオキサイド等が好適である。これらのノニオン性界面活性剤におけるアルキル基、アルケニル基には、メチル基等のアルキル基が分岐していてもよい。
カチオン性界面活性剤としては、第4級アンモニウム塩等が好適である。また、両性界面活性剤としては、カルボキシル型両性界面活性剤、スルホベタイン型両性界面活性剤等が好適である。これらのカチオン性界面活性剤、両性界面活性剤におけるアルキル基、アルケニル基は、メチル基等のアルキル基が分岐していてもよい。
上記界面活性剤の配合割合は、通常、洗剤組成物の全量に対して10~60質量%であり、好ましくは15~50質量%であり、さらに好ましくは20~45質量%であり、特に好ましくは25~40質量%である。界面活性剤の配合割合が少なすぎると、十分な洗浄力を発揮できなくなるおそれがあり、界面活性剤の配合割合が多すぎると、経済性が低下するおそれがある。
添加剤としては、アルカリビルダー、キレートビルダー、カルボキシメチルセルロースナトリウム等の汚染物質の再沈着を防止するための再付着防止剤、ベンゾトリアゾールやエチレン-チオ尿素等の汚れ抑制剤、ソイルリリース剤、色移り防止剤、柔軟剤、pH調節のためのアルカリ性物質、香料、可溶化剤、蛍光剤、着色剤、起泡剤、泡安定剤、つや出し剤、殺菌剤、漂白剤、漂白助剤、酵素、染料、溶媒等が好適である。また、粉末洗剤組成物の場合にはゼオライトを配合することが好ましい。
上記洗剤組成物は、本発明の共重合体(又は共重合体組成物)に加えて、他の洗剤ビルダーを含んでもよい。他の洗剤ビルダーとしては、特に制限されないが、例えば、炭酸塩、炭酸水素塩、珪酸塩等のアルカリビルダーや、トリポリリン酸塩、ピロリン酸塩、ボウ硝、ニトリロトリ酢酸塩、エチレンジアミンテトラ酢酸塩、クエン酸塩、(メタ)アクリル酸の共重合体塩、アクリル酸-マレイン酸共重合体、フマル酸塩、ゼオライト等のキレートビルダー、カルボキシメチルセルロース等の多糖類のカルボキシル誘導体等が挙げられる。上記ビルダーに用いられる対塩としては、ナトリウム、カリウム等のアルカリ金属、アンモニウム、アミン等が挙げられる。
上記添加剤と他の洗剤用ビルダーの合計の配合割合は、通常、洗浄剤組成物100質量%に対して0.1~50質量%が好ましい。より好ましくは0.2~40質量%であり、さらに好ましくは0.3~35質量%であり、特に好ましくは0.4~30質量%であり、最も好ましくは0.5~20質量%以下である。添加剤/他の洗剤ビルダーの配合割合が0.1質量%未満であると、十分な洗剤性能を発揮できなくなるおそれがあり、50質量%を超えると経済性が低下するおそれがある。
なお、上記洗剤組成物の概念には、家庭用洗剤の合成洗剤、繊維工業その他の工業用洗剤、硬質表面洗浄剤のほか、その成分の1つの働きを高めた漂白洗剤等の特定の用途にのみ用いられる洗剤も含まれる。
上記洗剤組成物が液体洗剤組成物である場合、液体洗剤組成物に含まれる水分量は、通常、液体洗剤組成物の全量に対して0.1~75質量%であることが好ましく、より好ましくは0.2~70質量%であり、さらに好ましくは0.5~65質量%であり、さらにより好ましくは0.7~60質量%であり、特に好ましくは1~55質量%であり、最も好ましくは1.5~50質量%である。
上記洗剤組成物が液体洗剤組成物である場合、当該洗剤組成物は、カオリン濁度が200mg/L以下であることが好ましく、より好ましくは150mg/L以下であり、さらに好ましくは120mg/L以下であり、特に好ましくは100mg/L以下であり、最も好ましくは50mg/L以下である。
<カオリン濁度の測定方法>
厚さ10mmの50mm角セルに均一に攪拌した試料(液体洗剤)を仕込み、気泡を除いた後、日本電色株式会社製NDH2000(商品名、濁度計)を用いて25℃でのTubidity(カオリン濁度:mg/L)を測定する。
上記洗浄剤組成物に配合することができる酵素としては、プロテアーゼ、リパーゼ、セルラーゼ等が好適である。中でも、アルカリ洗浄液中で活性が高いプロテアーゼ、アルカリリパーゼ、及びアルカリセルラーゼが好ましい。
上記酵素の添加量は、洗浄剤組成物100質量%に対して5質量%以下であることが好ましい。5質量%を超えると、洗浄力の向上が見られなくなり、経済性が低下するおそれがある。
上記アルカリビルダーとしては、珪酸塩、炭酸塩、硫酸塩等が好適である。上記キレートビルダーとしては、ジグリコール酸、オキシカルボン酸塩、EDTA(エチレンジアミン四酢酸)、DTPA(ジエチレントリアミン五酢酸)、STPP(トリポリリン酸ナトリウム)、クエン酸等が好適である。本発明における共重合体以外のその他の水溶性ポリカルボン酸系ポリマーを用いてもよい。
上記洗浄剤組成物は、分散能に優れ、更に、長期間保存した場合の性能低下や低温で保持した場合の不純物析出等が生じにくい極めて高品質剤性能で安定性に優れた洗剤とすることができる。
以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。なお、特に断りのない限り、「部」は「質量部」を、「%」は「質量%」を意味するものとする。
また、単量体の定量、共重合体の重量平均分子量の測定及び評価は、下記方法に従って行った。
<ヒドロキシプロピル(メタ)アクリレート等の定量方法>
ヒドロキシプロピル(メタ)アクリレート等の等の定量は、以下の条件の高速クロマトグラフィーで行った。
測定装置:東ソー株式会社製 8020シリーズ
カラム:株式会社資生堂製 CAPCELL PAK C1 UG120
温度:40.0℃
溶離液:10mmol/Lリン酸水素二ナトリウム・12水和物水溶液
(リン酸でpH7に調整)/アセトニトリル=45/55(体積比)
流速:1.0ml/min
検出器:RI、UV(検出波長215nm)。
<カルボキシル基含有単量体の定量方法>
カルボキシル基含有単量体等の含有量の測定は、下記条件で、液体クロマトグラフィーを用いて行った。
装置:株式会社日立製作所製 L-7000シリーズ
検出器:株式会社日立製作所製 UV検出器 L-7400
カラム:株式会社昭和電工製 Shodex RSpak DE-413
流量:1.0ml/min
カラム温度:40℃
移動相:0.1%リン酸水溶液。
<重量平均分子量の測定条件>
共重合体の重量平均分子量の測定は、下記条件で、GPC(ゲルパーミエーションクロマトグラフィー)を用いて行った。
装置:日立社製 L-7000シリーズ
検出器:RI
カラム:昭和電工社製 SHODEX Asahipak GF-310-HQ, GF-710-HQ, GF-1G 7B
カラム温度:40℃
流速:0.5ml/min
検量線:創和科学株式会社製 POLYACRYLIC ACID STANDARD
溶離液:0.1N酢酸ナトリウム/アセトニトリル=3/1(質量比).
<固形分の測定>
窒素雰囲気下、130℃に加熱したオーブンで本発明の共重合体(本発明の共重合体組成物1.0gに水1.0gを加えたもの)を1時間放置して乾燥処理した。乾燥前後の重量変化から、固形分(%)と、揮発成分(%)を算出した。
<再汚染防止能>
(i)Test fabric社より入手したポリエステル布を5cm×5cmに切断し、白布を作製した。この白布を予め日本電色工業社製の測色色差計SE2000型を用いて、白色度を反射率にて測定した。
(ii)塩化カルシウム2水和物1.1gに純水を加えて15kgとし、硬水を調製した。
(iii)ポリオキシエチレン(20)ラウリルエーテル4.0gに、純水を加えて100.0gとし、界面活性剤水溶液を調製した。pHは、水酸化ナトリウムで8.5に調整した。
(iv)ターゴットメーターを25℃にセットし、硬水1Lと界面活性剤水溶液5g、固形分換算で5%の重合体水溶液1g、カーボンブラック1.0gをポットに入れ、150rpmで1分間撹拌した。その後、白布5枚を入れ、100rpmで10分間撹拌した。
(v)手で白布の水を切り、25℃にした水道水1Lをポットに入れ、100rpmで2分間撹拌した。
(vi)白布に当て布をして、アイロンでしわを伸ばしながら乾燥させた後、上記測色色差計にて再度、白布の白度を反射率にて測定した。
(vii)以上の測定結果から、下式により再汚染防止能を求めた。
(viii)再汚染防止能(%)=〔(洗浄後の白色度)/(原白布の白色度)〕×100。
<液体洗剤との相溶性(界面活性剤との相溶性)>
試験サンプル(重合体)を含む洗剤組成物を下記の配合で調製した。
SFT-70H(日本触媒(株)製、ポリオキシエチレンアルキルエーテル);40g
ネオペレックスF-65(花王(株)製、ドデシルベンゼンスルホン酸ナトリウム);7.7g(有効成分5g)
コータミン86W(花王(株)製、ステアリルトリメチルアンモニウムクロライド);17.9g(有効成分5g)
ジエタノールアミン;5g
エタノール;5g
プロピレングリコール;5g
試験サンプル(固形分換算);1.5g
イオン交換水;バランス(イオン交換水の量は、試験サンプルの量を実際の使用量として、上記全合計が100gとなるように適宜調整する。)
各成分が均一になる様に充分に攪拌し、25℃での濁度値を、濁度計(日本電色工業社製「NDH2000」)を用い、Turbidity(カオリン濁度mg/l)で測定した。
評価結果は次の3段階を基準とした。
○:濁度値(0~50(mg/l))、目視で分離、沈殿又は白濁していない。
△:濁度値(50~200(mg/l))、目視で僅かに白濁している。
×:濁度値(200(mg/l)以上)、目視で白濁している。
<実施例1>
還流冷却器、攪拌機を備えた容量500mlのガラス製セパラブルフラスコに、純水115.5gと、モール塩0.0066g(総仕込み量に対する鉄(II)の質量(ここで、総仕込み量とは、重合完結後の中和工程を含む、全ての投入物重量をいう。以下同様とする。)に換算すると3ppm)を仕込み、攪拌下、70℃に昇温した(初期仕込み)。
次いで攪拌下、70℃一定状態の重合反応系中に80質量%アクリル酸水溶液(以下、80%AAと称す)43.0g(0.48mol)、48質量%水酸化ナトリウム水溶液(以下、48%NaOHと称す)1.99g(0.02mol)、100%アクリル酸2-ヒドロキシプロピル(以下、100%HPAと称す)を80.3g(0.62mol)、15質量%過硫酸ナトリウム水溶液(以下15%NaPSと称す)14.6g、35質量%重亜硫酸ナトリウム水溶液(以下、35%SBSと称す)18.8g、をそれぞれ別個の滴下ノズルより滴下した。それぞれの滴下時間は、80%AA、48%NaOHを180分間、100%HPAを150分間、35%SBSを180分間、15%NaPSを200分間とした。なお、滴下開始はすべて同時とした。また、それぞれの滴下時間の間、各成分の滴下速度は一定とし、連続的に滴下した。
滴下終了後、さらに30分間に渡って反応溶液を70℃に保持して熟成し重合を完結せしめた。重合の完結後、反応溶液を放冷し、48%NaOH36.6g(0.44mol)を攪拌下、反応溶液に徐々に滴下して中和した。このようにして、固形分濃度が43質量%の本発明の共重合体組成物(重合体組成物(1))を得た。重合体組成物(1)に含まれる最終中和度が97mol%の本発明の共重合体を重合体(1)とする。重合処方を下記表1にまとめた。
<実施例2~3>
表1に記載したように条件を変更した以外は実施例1と同様にして、重合体組成物(2)~(3)を得た(含まれる共重合体をそれぞれ重合体(2)~(3)とする)。
Figure JPOXMLDOC01-appb-T000002
<実施例4>
還流冷却器、攪拌機を備えた容量500mlのガラス製セパラブルフラスコに、純水46.6g、マレイン酸(以下、MAと称す)17.28g、48%NaOH1.24g、モール塩0.0051g(総仕込み量に対する鉄(II)重量に換算すると3ppm)を仕込み、攪拌下、90℃に昇温した(初期仕込み)。
次いで攪拌下、90℃一定状態の重合反応系中に80%AA54.0g(0.60mol)、48%NaOH2.5g(0.03mol)、100%HPAを25.9g(0.01mol)、15%NaPSを10.1g、35質量%SBS10.9g、をそれぞれ別個の滴下ノズルより滴下した。それぞれの滴下時間は、80%AA、48%NaOHを180分間、100%HPAを180分間、35%SBSを175分間、15%NaPSを210分間とした。なお、滴下開始はすべて同時とした。また、それぞれの滴下時間の間、各成分の滴下速度は一定とし、連続的に滴下した。
滴下終了後、さらに30分間に渡って反応溶液を90℃に保持して熟成し重合を完結せしめた。重合の完結後、反応溶液を放冷し、純水9.9gと、48%NaOH64.8g(0.78mol)を、それぞれ、攪拌下、反応溶液に徐々に滴下して希釈、中和した。このようにして、固形分濃度が45質量%の本発明の共重合体組成物(重合体組成物(4))を得た。重合体組成物(4)に含まれる最終中和度が90mol%の本発明共重合体を重合体(4)とする。重合処方を下記表2にまとめた。
Figure JPOXMLDOC01-appb-T000003
<実施例5>
還流冷却器、攪拌機を備えた容量500mlのガラス製セパラブルフラスコに、純水82.6gと、モール塩0.0058g(総仕込み量に対する鉄(II)重量(ここで、総仕込み量とは、重合完結後の中和工程を含む、全ての投入物重量をいう。以下同様とする。)に換算すると3.0ppm)を仕込み、攪拌下、70℃に昇温した(初期仕込み)。
次いで攪拌下、70℃一定状態の重合反応系中に80%AA60.0g(0.67mol)、48%%NaOH2.78g(0.03mol)、100%メタクリル酸2-ヒドロキシプロピル(以下、100%HPMAと称す)を48.0g(0.33mol)、15%NaPS13.3g、35%SBS17.1g、をそれぞれ別個の滴下ノズルより滴下した。それぞれの滴下時間は、80%AA、48%NaOHを180分間、HPMAを150分間、35%SBSを180分間、15%NaPSを200分間とした。なお、滴下開始はすべて同時とした。また、それぞれの滴下時間の間、各成分の滴下速度は一定とし、連続的に滴下した。
滴下終了後、さらに30分間に渡って反応溶液を70℃に保持して熟成し重合を完結せしめた。重合の完結後、反応溶液を放冷し、48%NaOH51.1g(0.61mol)を攪拌下、反応溶液に徐々に滴下して中和した。このようにして、固形分濃度が43質量%の本発明の共重合体組成物(重合体組成物(5))を得た。重合体組成物(5)に含まれる最終中和度が97mol%の本発明の共重合体を重合体(5)とする。重合処方を下記表3にまとめた。
Figure JPOXMLDOC01-appb-T000004
<比較例1>
還流冷却器、撹拌機を備えた容量2.5LのSUS製のセパラブルフラスコに、純水125.8g及びモール塩0.0233gを仕込み、撹拌しながら90℃まで昇温して重合反応系とした。次いで、撹拌下、約90℃に保たれた上記重合反応系中に、80%AA450.0g、48%NaOH20.9g、35%SBS57.1g、15%NaPS66.7gをそれぞれ別個の滴下ノズルから滴下して、反応溶液とした。なお、上記水溶液の滴下時間は、80%AA、48%NaOHは、180分間、35%SBSは175分間、15%NaPSは190分間とした。また、各水溶液の滴下速度は一定とし、各水溶液の滴下は連続的に行った。
上記15%NaPS滴下終了後、更に30分間、上記反応溶液を90℃に保持(熟成)し、重合を完結させた。重合完結後、上記反応溶液を放冷し、該反応溶液を撹拌しながら、48%NaOH375.0gを徐々に滴下して、反応溶液を中和した。このようにして、固形分濃度45%の比較重合体組成物(比較重合体組成物(1))を得た。比較重合体組成物(1)に含まれる最終中和度が95mol%の比較重合体を比較重合体(1)とする。重合処方を下記表4にまとめた。
<比較例2>
還流冷却器、撹拌機を備えた容量2.5LのSUS製セパラブルフラスコに、純水175.0g及びモール塩0.0182gを仕込み、撹拌しながら90℃まで昇温して重合反応系とした。次いで、撹拌下、約90℃に保たれた上記重合反応系中に、80%AA363.7g、100%2-ヒドロキシエチルメタクリレート(以下、100%HEMAと称す)124.9g、48%NaOH16.8g、35%SBS;85.7g、15%NaPS100.0gをそれぞれ別個の滴下ノズルから滴下して、反応溶液とした。なお、上記水溶液の滴下時間は、80%AA水溶液、100%HEMA、及び48%NaOHは180分間、35%SBSは175分間、15%NaPSは185分間とした。また、各水溶液の滴下速度は一定とし、各水溶液の滴下は連続的に行った。
上記15%NaPSの滴下終了後、更に30分間、上記反応溶液を90℃に保持(熟成)し、重合を完結させた。このようにして、固形分濃度54%の比較重合体組成物(以下、比較重合体組成物(2)とする)を得た。比較重合体組成物(2)に含まれる比較重合体を比較重合体(2)とする。重合処方を下記表4にまとめた。
Figure JPOXMLDOC01-appb-T000005
<実施例6>
実施例6では、得られた重合体(1)~(5)及び比較重合体(1)~(2)を用いて、上記に記載した方法で、それぞれの重量平均分子量、再汚染防止能、液体洗剤への相溶性を評価した。結果を下記表5に示す。
Figure JPOXMLDOC01-appb-T000006
上記評価結果から、本発明の共重合体は、従来の重合体と比較して良好な再汚染防止能を有し、また、液体洗剤との相溶性(界面活性剤との相溶性)にも優れることが明らかとなった。
本発明の共重合体は、高い再汚染防止能及び液体洗剤への相溶性を有する。したがって、水処理剤、洗剤用ビルダー、洗剤組成物、分散剤、洗浄剤、等の添加剤に用いた場合に特に優れた性能を発揮できる。
 
 

Claims (3)

  1. 1質量%以上、90質量%以下のヒドロキシプロピル(メタ)アクリレート由来の構造単位(a)、及び、10質量%以上、99質量%以下のカルボキシル基含有単量体由来の構造単位(b)を必須構造単位として有する共重合体。
  2. 全単量体100質量%に対して、1質量%以上、90質量%以下のヒドロキシプロピル(メタ)アクリレート、及び、10質量%以上、99質量%以下のカルボキシル基含有単量体を必須として共重合することを特徴とする共重合体の製造方法。
  3. 請求項1に記載の共重合体からなる洗剤ビルダー。
     
PCT/JP2011/057235 2010-03-25 2011-03-24 新規共重合体およびその製造方法 WO2011118728A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012507072A JPWO2011118728A1 (ja) 2010-03-25 2011-03-24 新規共重合体およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010069365 2010-03-25
JP2010-069365 2010-03-25

Publications (1)

Publication Number Publication Date
WO2011118728A1 true WO2011118728A1 (ja) 2011-09-29

Family

ID=44673273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057235 WO2011118728A1 (ja) 2010-03-25 2011-03-24 新規共重合体およびその製造方法

Country Status (2)

Country Link
JP (1) JPWO2011118728A1 (ja)
WO (1) WO2011118728A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023242077A1 (en) 2022-06-14 2023-12-21 Basf Se Method of making water-soluble polymers for use as shale encapsulators for drilling fluids

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6136308A (ja) * 1984-07-18 1986-02-21 バスフ アクチェン ゲゼルシャフト 洗浄剤又は清浄剤のための共重合物
JPS61246299A (ja) * 1985-02-23 1986-11-01 ザ、プロクタ−、エンド、ギヤンブル、カンパニ− 洗剤組成物
JPH06315622A (ja) * 1993-01-26 1994-11-15 Natl Starch & Chem Investment Holding Corp 多機能性マレエートポリマー

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6136308A (ja) * 1984-07-18 1986-02-21 バスフ アクチェン ゲゼルシャフト 洗浄剤又は清浄剤のための共重合物
JPS61246299A (ja) * 1985-02-23 1986-11-01 ザ、プロクタ−、エンド、ギヤンブル、カンパニ− 洗剤組成物
JPH06315622A (ja) * 1993-01-26 1994-11-15 Natl Starch & Chem Investment Holding Corp 多機能性マレエートポリマー

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023242077A1 (en) 2022-06-14 2023-12-21 Basf Se Method of making water-soluble polymers for use as shale encapsulators for drilling fluids

Also Published As

Publication number Publication date
JPWO2011118728A1 (ja) 2013-07-04

Similar Documents

Publication Publication Date Title
JP5999893B2 (ja) ポリアルキレングリコール系重合体及びその製造方法
JP5656702B2 (ja) (メタ)アクリル酸系共重合体およびその製造方法
WO2012086716A1 (ja) ポリ(メタ)アクリル酸(塩)水溶液及びその製造方法
JP2010138243A (ja) スルホン酸基含有共重合体およびその製造方法およびその用途
JP5506616B2 (ja) ポリアルキレングリコール系重合体及びその製造方法
JP2011116811A (ja) カチオン性基含有共重合体およびその製造方法
JP2012017457A (ja) ポリ(メタ)アクリル酸系重合体水溶液およびその製法
JP5562013B2 (ja) アミノ基含有共重合体およびその製造方法およびその用途
JP5448754B2 (ja) アミノ基含有共重合体およびその製造方法
JP6002198B2 (ja) 新規重合体およびその製造方法
JP2011116812A (ja) アミノ基含有共重合体およびその製造方法
JP2012207068A (ja) 新規重合体およびその製造方法
JP6139991B2 (ja) カルボキシル基含有重合体組成物
JP5906280B2 (ja) アミノ基含有共重合体およびその製造方法
WO2011118728A1 (ja) 新規共重合体およびその製造方法
JP5606229B2 (ja) エーテル結合含有重合体及びその製造方法
JP2012207067A (ja) 新規重合体およびその製造方法
JP2012057089A (ja) エーテル結合含有重合体及びその製造方法
JP5312183B2 (ja) カルボキシル基含有重合体の製造方法
JP5730070B2 (ja) 重合体組成物およびその製造方法
JP2011241350A (ja) (メタ)アクリル酸系共重合体およびその製造方法
JP6640786B2 (ja) スルホン酸基含有重合体及びその製造方法
JP5748583B2 (ja) 重合体組成物およびその製造方法
JP2013060561A (ja) 重合体およびその製造方法
JP5756167B2 (ja) カチオン性基含有共重合体およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759533

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012507072

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11759533

Country of ref document: EP

Kind code of ref document: A1