WO2011118587A1 - 温度、pH及び塩濃度感応性分離材及びその用途 - Google Patents

温度、pH及び塩濃度感応性分離材及びその用途 Download PDF

Info

Publication number
WO2011118587A1
WO2011118587A1 PCT/JP2011/056844 JP2011056844W WO2011118587A1 WO 2011118587 A1 WO2011118587 A1 WO 2011118587A1 JP 2011056844 W JP2011056844 W JP 2011056844W WO 2011118587 A1 WO2011118587 A1 WO 2011118587A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
sensitive
phase transition
phase
separation material
Prior art date
Application number
PCT/JP2011/056844
Other languages
English (en)
French (fr)
Inventor
直彦 嶋田
丸山 厚
Original Assignee
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学 filed Critical 国立大学法人九州大学
Priority to US13/636,436 priority Critical patent/US8822550B2/en
Priority to EP11759392.1A priority patent/EP2551285A4/en
Priority to JP2012507015A priority patent/JP5800323B2/ja
Publication of WO2011118587A1 publication Critical patent/WO2011118587A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F26/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F26/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a single or double bond to nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/10Acylation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/34Introducing sulfur atoms or sulfur-containing groups
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/08Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer
    • C12N11/082Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds

Definitions

  • the present invention is a temperature, pH or salt concentration sensitive separation comprising a high temperature dissolution type polymer compound or a salt thereof as an active ingredient which is insoluble in a low temperature range and dissolves in a high temperature range under physiological conditions.
  • the present invention relates to a material and use of the separation material.
  • low-temperature-soluble polymer compounds such as poly-N-isopropylacrylamide serve as a base material for cell sheet engineering applied to cell separation (Non-patent Document 1) and drug delivery systems (Non-patent Document 2), and are suitable for regenerative medicine. It has become a trigger for a new wind.
  • the present invention provides a high-temperature-dissolving type temperature-sensitive polymer compound that responds under physiological conditions and has biological functionality, and also provides various uses as a temperature, pH, or salt concentration-sensitive separation material. For the purpose.
  • phase transition temperature can be appropriately controlled by adjusting pH and salt concentration, or by allowing an anionic substance or a cationic substance to coexist.
  • the present invention has been completed based on such knowledge and includes the following embodiments.
  • Temperature, pH, and salt concentration sensitive separation material (1-1) An aqueous solution having a salt concentration of at least 1 mM having a pH of 3 to 10.5 and having a phase transition temperature in the range of 5 to 65 ° C. An insoluble phase is formed at a temperature lower than the temperature, and a dissolved phase is formed at a temperature higher than the phase transition temperature, and a polymer compound represented by the following general formula (I) or an addition salt thereof as an active ingredient, temperature, pH Or salt concentration sensitive separation material (hereinafter simply referred to as “temperature sensitive separation material”):
  • n represents a number satisfying 0.4 ⁇ n ⁇ 1
  • R 1 represents a hydrogen atom or a substituent represented by the following formula (1)
  • R 2 represents the following formula ( Each of the substituents represented by 2) is meant.
  • the ligand is selected from the group consisting of biotin or iminobiotin (or avidin or streptavidin), antibody, sugar chain, lectin, protein A, protein G, DNA, RNA, enzyme, and receptor.
  • thermosensitive separation material according to any one of (1-1) to (1-4), further comprising an anionic substance or a cationic substance.
  • thermosensitive separation material (2-1) Separation / concentration material, drug delivery system carrier, drug of temperature-sensitive separation material described in any of (1-1) to (1-7) Use for preparing a release substrate, an enzyme-immobilized substrate, an antibody-immobilized substrate, a cell culture substrate, a light control material, an optical functional material, or a sensing substrate.
  • (2-2) Separation / concentration material, drug comprising the temperature-sensitive separation material described in any one of (1-1) to (1-7) or containing the temperature-sensitive separation material as an active ingredient Delivery system carrier, drug release substrate, enzyme-immobilized substrate, antibody-immobilized substrate, cell culture substrate, light control material, optical functional material, or sensing substrate.
  • a drug release agent comprising a combination of the temperature-sensitive separation material described in any of (1-1) to (1-7) and a drug.
  • the method may be achieved by changing the temperature of the aqueous solution from a higher temperature to a lower temperature than the phase transition temperature of the temperature-sensitive separation material, or by controlling the pH or salt concentration of the aqueous solution. You may achieve by changing the phase transition temperature of a separating material from low temperature to high temperature rather than the temperature of aqueous solution.
  • the immobilized enzyme according to (2-5) is removed from a temperature condition lower than the phase transition temperature of the temperature-sensitive separation material.
  • An enzyme reaction comprising a step of reacting an enzyme and a substrate under a temperature condition higher than a phase transition temperature.
  • an antigen-antibody reaction comprising a step of reacting an antibody with an antigen under a temperature condition higher than a phase transition temperature.
  • the methods (2-6) and (2-7) may be achieved by changing the temperature of the aqueous solution from a lower temperature to a higher temperature than the phase transition temperature of the temperature-sensitive separation material.
  • By controlling the salt concentration it may be achieved by changing the phase transition temperature of the temperature-sensitive separation material from a higher temperature to a lower temperature than the temperature of the aqueous solution.
  • Aqueous two-phase distribution method (3-1) Aqueous two-phase distribution method having the following steps: (1) A sample containing an object to be separated and the temperature-sensitive separation material described in any of (I-1) to (I-7) at a salt concentration of at least 1 mM in the range of pH 3 to 10.5 Coexisting in an aqueous solution, and (2) A step of phase separation by controlling the temperature of the aqueous solution to be lower than the phase transition temperature from a temperature higher than the phase transition temperature of the temperature-sensitive separation material.
  • the step (2) may be performed by changing the temperature of the aqueous solution from a higher temperature to a lower temperature than the phase transition temperature of the temperature-sensitive separation material, or by controlling the pH or salt concentration of the aqueous solution, You may carry out by making the phase transition temperature of a temperature sensitive separation material into the high temperature from the low temperature rather than the temperature of aqueous solution.
  • the substance to be separated is at least one selected from the group consisting of proteins, cells, anionic substances, cationic substances, hydrogen bonding substances, and hydrophobic bonding substances (3-1) Or the aqueous two-phase partition method described in (3-2).
  • the cationic dye is at least one selected from the group consisting of ethidium bromide, propidium iodide, and tetrakis (1-methylpyridin-4-yl) porphyrin p-toluenesulfonate.
  • m means an integer of 10 or more.
  • n is a number satisfying 0.4 ⁇ n ⁇ 1).
  • n is a number satisfying 0.4 ⁇ n ⁇ 1).
  • the polymer compound (I) having a high temperature dissolution type temperature sensitivity targeted by the present invention is characterized by having a specific proportion of hydrogen-bonding functional groups and cationic functional groups (amino groups). .
  • Such a high molecular compound (I) does not exhibit a high-temperature dissolution type temperature-sensitive behavior in pure water, but exhibits a high-temperature dissolution type temperature-sensitive behavior under physiological conditions in an aqueous solution having a salt concentration of at least 1 mM.
  • a dissolved phase is formed at a temperature higher than a specific temperature (phase transition temperature), and an insoluble phase is formed at a temperature lower than the phase transition temperature.
  • the temperature-sensitive polymer compound (I) can be effectively used as a separating material for capturing and separating various substances under physiological conditions by utilizing the temperature sensitivity under the physiological conditions. Can do.
  • the temperature-sensitive polymer compound (I) is used for, for example, separation of biochemical or physiological materials (for example, physiologically active substances such as cells and proteins), DDS, drug release, enzyme immobilization, cells It can be effectively used for culturing, dimming, sensing and the like.
  • temperature-sensitive polymers According to the compound (I), it can be captured and separated (isolated) under low temperature conditions below the phase transition temperature without being denatured or losing activity.
  • the ATR-IR spectrum (infrared absorption spectrum) of polyallylamine (PAA-15K) and the carbamoylated polyallylamine prepared in Production Example 1 (Carb-PAA-15K 92, carbamoylation degree 0.92) are shown.
  • (A) 1 H-NMR spectra of polyallylamine (PAA-15K) and carbamoylated polyallylamine (Carb-PAA-15K87) (degree of carbamoylation 0.87) are shown. “A” indicates the peak of the non-carbamoylated methylene proton, and “b” indicates the peak of the carbamoylated methylene proton.
  • a confocal image obtained by observing a Carb-PAA-15KPA92 solution (10 mM Hepes-NaOH (pH7.5) +150 mM NaCl) at a concentration of 3.7 mg / mL at room temperature (25 ° C) is shown.
  • Example 2 shows the transmittance% (500 nm) in the temperature range from 70 ° C. to 5 ° C.
  • the horizontal axis represents the concentration of Carb-PAA-15K (mg / mL), and the vertical axis represents the phase transition temperature (° C.). It is a figure which shows the relationship between pH and phase transition temperature ° C (dissolution temperature ° C) about Carb-PAA-15K (Carb-PAA-15K 67 and 87-97) (1 mg / mL) (pH dependence).
  • the horizontal axis represents pH, and the vertical axis represents the phase transition temperature (° C.). It is a figure which shows the relationship between salt concentration and phase transition temperature ° C (dissolution temperature ° C) about Carb-PAA-15K (Carb-PAA-15K 87-97) (1 mg / mL) (salt concentration dependence).
  • the horizontal axis indicates the NaCl concentration (mM), and the vertical axis indicates the phase transition temperature (° C.). It is the result of investigating the influence of an anionic substance on the phase transition temperature ° C of Carb-PAA-15K.
  • Carb-PAA-15K 87 as Carb-PAA-15K, and anionic dyes (monovalent anion: fluorescein (FL), divalent anion: bromophenol blue (BPB), tetravalent anion: Trypan blue (TB) and Evans blue (EB) were used.
  • the horizontal axis represents temperature (° C.), and the vertical axis represents transmittance (%) at 800 nm.
  • the temperature in parentheses means the phase transition temperature (° C.) of the mixture of Carb-PAA-15K and an anionic dye.
  • Carb-PAA-15K 87 prepared in Experimental Example 5 and various anionic dyes (monovalent anion: fluorescein (FL), divalent anion: bromophenol blue (BPB), tetravalent anion: trypan blue (TB) , Evans Blue (EB)) (10 mM Hepes-NaOH (pH 7.5) + 150 mM NaCl) is adjusted to 10-50 ° C, and the maximum absorption wavelength (nm) of each mixture at each temperature is set to UV. -Shows the results measured with a VIS spectrophotometer.
  • the horizontal axis represents temperature (° C.), and the vertical axis represents transmittance (%) at 500 nm.
  • degreeC phase transition temperature
  • (A) shows the result showing the relationship between the solution temperature of 70 to 5 ° C. and the transmittance% of the solution
  • (B) shows the result showing the relationship between the salt concentration and the phase transition temperature ° C.
  • FIG. 1 shows the result of having investigated the influence of pH with respect to the phase transition temperature (degreeC) of the succinylated carbamoylated polyallylamine (Suc-Carb-PAA-15K
  • FIG. The horizontal axis represents temperature (° C.), and the vertical axis represents transmittance (%) at 500 nm.
  • Temperature sensitive separation material High temperature dissolution type temperature sensitive polymer compound and method for producing the same Temperature, pH or salt concentration sensitive separation material of the present invention
  • m represents the degree of polymerization of the temperature-sensitive polymer compound of the present invention. Specifically, m means an integer of 10 or more. It is preferably 10 to 5000, more preferably 20 to 2000, and particularly preferably 20 to 1000.
  • n represents the degree of introduction of hydrogen-bonding functional groups (R 1 and R 2 ) in the temperature-sensitive polymer compound of the present invention. Specifically, n represents a number of 0.4 ⁇ n ⁇ 1. From the viewpoint of physiological conditions, 0.84 ⁇ n ⁇ 1 is more preferable, and 0.87 ⁇ n ⁇ 1 is more preferable.
  • examples of the substituent represented by R 1 include a group having a proton acceptor such as a hydrogen atom or an oxo group (C ⁇ O).
  • Specific examples of the group having a proton acceptor include a succinyl group (1) represented by the following formula.
  • the hydrogen-bonding functional group represented by R 2 includes proton acceptors such as an oxo group (C ⁇ O) and protons such as a primary amino group (—NH 3 ) and an imino group (> NH).
  • a group having a donor can be given.
  • substituents (1 ′), (2), and (3 ′) represented by the following formula are exemplified.
  • the carbamoyl group shown by Formula (2) can be mentioned.
  • Examples of the addition salt of the temperature-sensitive polymer compound (I) of the present invention include an addition salt to a side chain amino group in a monomer unit constituting the polymer compound.
  • Examples of such addition salts include hydrochlorides, hydrobromides, hydroiodides, sulfates, phosphates, phosphonates, carboxylates such as acetates, methanesulfonates, p-toluenesulfonic acid.
  • Examples thereof include oxycarboxylates such as salts, citrates and tartrates, and benzoates.
  • the compound (III) in which R 1 is a hydrogen atom and R 2 is an acetyl group represented by the above formula (1 ′) is represented by the following formula (II): It can be produced by reacting the indicated polyallylamine or a salt thereof with acetic anhydride ((CH 3 CO) 2 O).
  • examples of the salt of polyallylamine (II) include inorganic salts such as hydrochloride, sulfate, and phosphate. Both reactions are preferably carried out while dissolving polyallylamine or a salt thereof in water, an organic solvent, or a mixed solvent thereof, dropwise adding acetic anhydride thereto, and stirring.
  • the substituent (1) having an acetyl group in the polyallylamine (II) is introduced in a desired proportion (introduction ratio) (n is 0.4 ⁇ n ⁇ 1 in the general formula (III)). As shown, the stoichiometrically required calculation amount can be mentioned.
  • compound (IV) wherein R 1 is a hydrogen atom and R 2 is a carbamoyl group represented by the above formula (2) is represented by the following formula (II):
  • formula (II) Can be produced by reacting polyallylamine or a salt thereof with cyanate (MCNO).
  • examples of the salt of polyallylamine (II) include inorganic salts such as hydrochloride, sulfate, and phosphate.
  • MCNO means a salt of cyanic acid (M)).
  • polyallylamine (II) or a salt thereof is already known, and specifically, for example, it can be prepared according to the description in JP-A-60-106803 (Patent Document 1).
  • the salt-free free type polyallylamine (II) can be prepared by neutralizing a known polyallylamine salt with an alkali and then dialyzing the by-product neutralized salt against water.
  • Commercially available polyallylamine (salt-free) can also be used.
  • Examples of such commercially available products include a 15% concentration polyallylamine (molecular weight of about 10,000) aqueous solution (PAA-15: manufactured by Nittobo Co., Ltd.), a 10% concentration polyallylamine (molecular weight about 10,000) aqueous solution (PAA-10C: Nittobo Co., Ltd.), 20% polyallylamine (molecular weight about 10,000) aqueous solution (PAA-L: Nittobo Co., Ltd.), and 20% polyallylamine (molecular weight about 100,000) aqueous solution (PAA) -H: manufactured by Nitto Boseki Co., Ltd.).
  • Examples of the solvent used to make polyallylamine (II) into solution include water, an organic solvent, or a mixture thereof.
  • the organic solvent is preferably a polar solvent because of the solubility of polyallylamine, for example, alcohols such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol; acetonitrile, formamide, N, N-dimethylformamide Dimethyl sulfoxide, tetrahydrofuran, 1,4-dioxane and the like.
  • the polyallylamine concentration in the polyallylamine solution used for the reaction is not limited, but can be usually 1 to 50% by weight, preferably 2 to 30% by weight, more preferably 5 to 20% by weight.
  • Preferred examples of cyanate (MCNO) to be reacted with polyallylamine (II) or a salt thereof include alkali metal salts of cyanic acid such as potassium cyanate and sodium cyanate. Preferably it is potassium cyanate.
  • the ratio of the cyanate used is that the substituent (2) having a carbamoyl group in the polyallylamine (II) is a desired ratio (introduction ratio) (in the general formula (IV), n is 0.4 ⁇ n ⁇ 1).
  • the proportion of cyanate used include 0.4 to 10 moles per mole of polyallylamine.
  • an upper limit should just be 10 mol or less, Preferably it is 5 mol or less, More preferably, it is 3 mol or less.
  • the lower limit can be set to the number of moles corresponding to the introduction rate (carbamoylation degree) of the substituent (2) (see Production Examples 1 and 2, Tables 1 to 3). For example, when the degree of carbamoylation is 0.4, the setting can be adjusted to about 0.4 mol, and when it is set to 0.8, the setting can be adjusted to about 0.8 mol.
  • cyanate (MCNO) is slowly added dropwise to a raw material polyallylamine (II) or a salt solution thereof.
  • cyanate (MCNO) can be dissolved in a solvent and dropped into a solution of the raw material polyallylamine (II) or a salt thereof.
  • the solvent for dissolving cyanate (III) is usually the same as the solvent for dissolving the raw material polyallylamine.
  • the reaction between polyallylamine (II) or a salt thereof and cyanate (MCNO) is preferably carried out with stirring.
  • the reaction temperature is not particularly limited but is preferably maintained at 0 to 100 ° C, more preferably 30 to 60 ° C.
  • the reaction time is not particularly limited, the solution of the temperature sensitive polymer compound (IV) of the present invention can be obtained usually in 12 to 48 hours, preferably in 12 to 25 hours.
  • the temperature-sensitive polymer compound (IV) of the present invention can be obtained as a solid by vacuum drying the reaction solution in order to remove the by-produced alcohol and reaction solvent.
  • the addition salt of the temperature-sensitive polymer compound (IV) of the present invention uses a partial salt of polyallylamine as a raw material, and this and cyanate (MCNO), and a case where free polyallylamine is used. Similarly, it can be produced by reacting. Normally, when a partial salt of polyallylamine, which is a raw material, is reacted with cyanate (III), NH of the polyallylamine is preferentially substituted with hydrogen-bonding substituents. The After completion of the reaction, the resulting temperature-sensitive polymer compound (IV) salt solution is added to a solvent such as acetone and reprecipitated, whereby the temperature-sensitive polymer compound (IV) addition salt of the present invention is added. It can be taken out as a solid.
  • MCNO cyanate
  • the temperature-responsive polymer compound (1) in which R 1 is a hydrogen atom and R 2 is a pyroglutamyl group represented by (3 ′) is obtained by using polyglutamine (II) using pyroglutamic acid and a suitable condensing agent. ) By introducing a pyroglutamyl group into the amino group by an amide bond.
  • the degree of acetylation, the degree of carbamoylation, or the degree of pyroglutamylation (hereinafter collectively referred to as “acylation degree”) (mol%) in the temperature-sensitive polymer compound (I) of the present invention is the raw material used.
  • acylation degree a degree of acetylation, the degree of carbamoylation, or the degree of pyroglutamylation (hereinafter collectively referred to as “acylation degree”) (mol%) in the temperature-sensitive polymer compound (I) of the present invention is the raw material used.
  • cyanate or pyroglutamic acid When an equimolar amount of acetic anhydride, cyanate or pyroglutamic acid is used with respect to the amino group of the starting polyallylamine (II), the amino group is usually acetylated, carbamoylated or pyroglutamylated ( Acylated).
  • the cation density (or the density of hydrogen bonding substituents) of the temperature sensitive polymer compound of the present invention can be adjusted.
  • the cationicity and hydrophobicity of the temperature-sensitive polymer compound (I) of the present invention can be changed depending on the type of hydrogen-bonding substituent introduced as the R 2 group. . Therefore, when the temperature-sensitive polymer compound (I) of the present invention is used in various applications, it is possible to select a hydrogen bonding substituent having an appropriate cation density and having an appropriate hydrophobicity. preferable.
  • the introduction rate of hydrogen-bonding substituents such as the degree of acylation of polyallylamine (II) can be measured by NMR measurement or colloid titration.
  • R 1 may be a succinyl group represented by the following formula.
  • R 2 is as described above, and is preferably a carbamoyl group represented by the formula (2).
  • the compound (V) in which R 1 is a succinyl group represented by the above formula (1) and R 2 is a carbamoyl group represented by the above formula (2) is It can be produced by reacting the temperature-sensitive polymer compound of the present invention represented by the formula (IV) produced by the method described above or a salt thereof with succinic anhydride.
  • the salt of the temperature-sensitive polymer compound (IV) include inorganic salts such as hydrochloride, sulfate, and phosphate.
  • the temperature-sensitive polymer compound (IV) or a salt thereof is dissolved in DMSO and reacted with succinic acid, preferably succinic anhydride in the dissolved state.
  • succinic acid preferably succinic anhydride
  • the succinyl group (1) is introduced into the polymer compound (IV) at a desired ratio (introduction ratio) (in the general formula (V), n is 0.4 ⁇ n ⁇ 1).
  • the amount of calculation required stoichiometrically can be mentioned.
  • the succinic acid may be used in an amount of 1 to 5 equivalents, preferably 3 equivalents, or about the equivalent of the primary amino group of the polymer compound (IV). .
  • the reaction temperature is not particularly limited but is preferably maintained at 0 to 100 ° C, more preferably 30 to 60 ° C.
  • the reaction time is not particularly limited, the solution of the temperature sensitive polymer compound (V) of the present invention can be obtained usually in 12 to 48 hours, preferably in 12 to 25 hours.
  • reaction solution may be dialyzed in order to remove unproduct, by-products and reaction solvent (DMSO), and then vacuum-dried, whereby the temperature-sensitive polymer compound (V ) Can be obtained as a solid.
  • DMSO reaction solvent
  • addition salt of the temperature-sensitive polymer compound (V) of the present invention can be produced and obtained by using the addition salt of the temperature-sensitive polymer compound (IV) as a raw material.
  • the temperature-sensitive polymer compound (I) thus prepared (including the above compounds (IV) and (V)) or an addition salt thereof in an aqueous solution containing at least 1 mM salt having a pH of 3 to 10.5. And having a phase transition temperature in the range of 5 to 65 ° C., preferably in the range of 5 to 50 ° C.
  • phase transition temperature in the range of 5 to 65 ° C. (or 5 to 50 ° C.)
  • the temperature-sensitive polymer compound (I) or an addition salt thereof is insoluble in the aqueous solution to form an insoluble phase.
  • boundary temperature between the temperature at which the compound (I) or its addition salt dissolves in the aqueous solution and forms a dissolved phase is in the range of 5 to 65 ° C. (or 5 to 50 ° C.) To do. That is, “phase transition” means a phase transition between an insoluble phase and a dissolved phase formed by the temperature-sensitive polymer compound (I) or an addition salt thereof in the aqueous solution.
  • phase transition temperature is obtained by dissolving the temperature-sensitive polymer compound (I) or an addition salt thereof in an aqueous solution containing at least 1 mM salt and measuring the visible light transmittance of 500 nm in a quartz cell while lowering the temperature.
  • the visible light transmittance of the clarified solution when the compound is completely dissolved is 100%, it can be determined as the temperature at which the transmittance starts decreasing when the temperature is lowered.
  • the salt examples include KCl, NaCl, CaCl 2 , MgCl 2 , KBr, NaBr, Na 2 SO 4 , and MgSO 4
  • the temperature sensitive polymer compound (I) is represented by the formula (IV) Is preferably sodium chloride, and is preferably succinylated carbamoyl polyallylamine (Suc-Carb-PAA) represented by formula (V) Mention may be made of calcium chloride.
  • temperature sensitive separation material is the temperature sensitive polymer compound (I) (described above).
  • Compound (IV) and (V) are included) or an addition salt thereof as an active ingredient, and similarly contains at least 1 mM salt having a pH of 3 to 10.5 based on the properties of the active ingredient It has a phase transition temperature in the range of 5 to 65 ° C, preferably 5 to 50 ° C.
  • the phase transition temperature of the temperature-sensitive separation material of the present invention depends on the type of solvent in which it is dissolved, the salt concentration of the solvent, the pH, the concentration of the separation material in the solvent, and the presence of other components in the solvent (particularly anionic properties).
  • the presence and amount of the substance, the cationic substance, the hydrogen bonding substance or the hydrophobic bonding substance may vary.
  • the temperature-sensitive separating material of the present invention as described above, has an aqueous solution containing the temperature-sensitive polymer compound (I) or an addition salt thereof and containing at least 1 mM sodium chloride having a pH of 3 to 10.5.
  • phase transition temperature in the range of 5 to 65 ° C., preferably 5 to 50 ° C., forms an insoluble phase at a temperature lower than the phase transition temperature, and dissolves at a temperature higher than the phase transition temperature. Is formed.
  • R 1 has a hydrogen atom
  • R 2 has a carbamoyl group (2)
  • the substituent introduction rate (carbamoyl).
  • the phase transition temperature in an aqueous solution containing at least 10 mM sodium chloride having a pH of 4 to 9.5, the phase transition temperature is in the range of 10 to 45 ° C., and the temperature is lower than the phase transition temperature.
  • the insoluble phase is formed at, and the dissolved phase is formed at a temperature higher than the phase transition temperature.
  • R 1 has a hydrogen atom
  • R 2 has a carbamoyl group (2)
  • a more preferred temperature-sensitive separation material has a phase transition temperature in the range of 20 to 40 ° C. in an aqueous solution containing at least 50 mM sodium chloride having a pH of 5.5 to 8.5 and is lower than the phase transition temperature.
  • An insoluble phase is formed at a temperature, and a dissolved phase is formed at a temperature higher than the phase transition temperature.
  • R 1 has a hydrogen atom
  • R 2 has a carbamoyl group (2)
  • Another preferred temperature-sensitive separation material has a phase transition temperature in the range of 5 to 30 ° C. in an aqueous solution containing at least 150 mM sodium chloride having a pH of 4.5 to 5, and is lower than the phase transition temperature.
  • An insoluble phase is formed at a temperature, and a dissolved phase is formed at a temperature higher than the phase transition temperature.
  • Another preferred temperature-sensitive separating material has a phase transition temperature in the range of 30 to 36 ° C. in an aqueous solution containing at least 150 mM calcium chloride having a pH of 7.5, and a temperature lower than the phase transition temperature.
  • An insoluble phase is formed, and a dissolved phase is formed at a temperature higher than the phase transition temperature.
  • Yet another preferred temperature sensitive separation material has a phase transition temperature in the range of 5-15 ° C. in an aqueous solution containing at least 150 mM magnesium chloride at pH 7.5, at a temperature lower than the phase transition temperature. An insoluble phase is formed, and a dissolved phase is formed at a temperature higher than the phase transition temperature.
  • the phase transition temperature is measured by measuring the transmittance of visible light of 500 nm in a quartz cell while dissolving the temperature-sensitive separation material in an aqueous solution containing at least 1 mM salt and lowering the temperature.
  • the visible light transmittance of the clarified solution when the separating material is completely dissolved is 100%, it is obtained as the temperature at which the transmittance starts decreasing when the temperature is lowered.
  • the salt examples include KCl, NaCl, CaCl 2 , MgCl 2 , KBr, NaBr, Na 2 SO 4 , and MgSO 4
  • the temperature sensitive polymer compound (I) is represented by the formula (IV)
  • sodium chloride is preferably used
  • succinylated carbamoyl polyallylamine represented by the formula (V) calcium chloride can be preferably used.
  • the concentration of the salt is not particularly limited as long as it is 1 mM or more as described above. Preferably it is 1 to 3000 mM, more preferably 50 to 1000 mM.
  • the concentration of the temperature sensitive separating material in the aqueous solution is usually 0.1 mg / ml or more, preferably 0.1 to 300 mg / ml, in terms of the concentration of the temperature sensitive polymer compound (I). Preferably, 0.1-100 mg / ml can be mentioned.
  • the temperature-sensitive separation material of the present invention may contain the temperature-sensitive polymer compound (I) or its addition salt itself as an active ingredient, and has a binding property to an object to be separated.
  • An active ingredient may be obtained by immobilizing a ligand having a monomer unit constituting the polymer compound (I) via an optional linker such as an alkylene group, if necessary.
  • Such ligands include biotin or iminobiotin (or avidin or streptavidin), antibody (or antigen), molecular chaperone, sugar chain, lectin, protein A, protein G, DNA, RNA, enzyme (or substrate in an enzymatic reaction), Examples include receptors (or ligands (agonists or antagonists) for receptors), competitive inhibitors, coenzymes and the like.
  • the method for binding the ligand to the temperature-sensitive polymer compound (I) is not limited.
  • a protein such as an antibody (or antigen), enzyme, or receptor
  • the protein has a carboxyl group.
  • a method for forming a peptide bond with the amino group of the temperature-sensitive polymer compound (I) can be exemplified.
  • the ligand carboxyl group can be esterified with N-hydroxysuccinimide (NHS) to form an activated ester group, and then the amide bond with the amino group of the temperature sensitive polymer compound (I) can be formed.
  • the functional polymer compound (I) can be bound (for example, see Experimental Example 6).
  • the linker is not particularly limited, and examples thereof include lower alkylene groups having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms, and more preferably 1 to 3 carbon atoms as described above.
  • the anionic substance used in combination with the temperature-sensitive separating material is not particularly limited as long as it is a substance having an anion group.
  • fluorescein (FL) having a monovalent anion fluorescein (FL) having a monovalent anion
  • BBP bromophenol blue
  • Anionic dyes such as trypan blue (TB) and evans blue (EB) having a tetravalent anion can be exemplified.
  • the cationic substance used in combination with the temperature-sensitive separating material is not particularly limited as long as it is a substance having a cationic group.
  • ethidium bromide having a monovalent cation propidium iodide having a divalent cation, and a tetravalent cation.
  • TMPyP tetrakis (1-methylpyridinium-4-yl) porphyrin p-toluenesulfonate.
  • the temperature sensitivity of the temperature sensitive separation material of the present invention is reversible, and it is preferable that the temperature sensitivity is maintained even by repeated changes of dissolution and insolubilization.
  • the temperature sensitive separation material of the present invention can be applied to various uses and usages that can utilize the above properties.
  • separation / concentration agent in aqueous two-phase distribution method see (3-1) below
  • base material in drug release agent base material for drug release
  • carrier in drug delivery system see below (3-3)
  • carrier for immobilizing enzymes and antibodies see (3-2) below
  • cell culture substrate cell culture substrate
  • light control material see Experimental Example 5
  • optical functional material for sensing substrate, Can be used as
  • the temperature-sensitive separation material of the present invention when used as a cell culture substrate or its component, it is set to a temperature lower than the phase transition temperature of the temperature-sensitive separation material, and the cells are in an insoluble phase. By culturing and then adjusting it to a temperature higher than the phase transition temperature to make it a lysis phase, the cells can be recovered by liquefaction.
  • the temperature-sensitive separation material of the present invention when used as a sensor base material (sensing base material) that responds to changes in pH or salt concentration, the reaction in vivo accompanying changes in pH or salt concentration is measured. Is possible.
  • the aqueous two-phase distribution method can be carried out by using the temperature-sensitive separation material of the present invention as a separating agent or a concentrating agent.
  • the aqueous two-phase distribution method includes a coacervate layer formed when the temperature of the aqueous solvent in which the temperature-sensitive separation material of the present invention is dissolved is lower than the phase transition temperature of the temperature-sensitive separation material. This is a method of separating and concentrating the separated object by utilizing the difference in affinity of the separated object with respect to the aqueous layer.
  • a sample containing a substance to be separated is dissolved in an aqueous solvent in which the temperature-sensitive separation material is dissolved under a temperature condition higher than the phase transition temperature of the temperature-sensitive separation material.
  • the coacervate layer and the aqueous layer are formed by setting the temperature lower than the phase transition temperature.
  • the separation is distributed more in either layer due to the difference in affinity for the coacervate layer and the aqueous layer. Therefore, the separation object is recovered from the layer to which the separation object is distributed. If desired, the recovery rate of the separation object can be increased by repeating this operation.
  • the aqueous two-phase partitioning method is particularly preferably used for separation and concentration of a separation object having an affinity for the temperature-sensitive separation material of the present invention that forms a coacervate layer.
  • the aqueous two-phase partitioning method comprises at least 1 mM of a sample containing a substance to be separated (test sample) and the temperature-sensitive separation material of the present invention in a pH range of 3 to 10.5. It can be carried out by coexisting in an aqueous solution having a salt concentration and then changing the temperature of the aqueous solution from a temperature higher than the phase transition temperature of the temperature-sensitive separation material to a temperature lower than the phase transition temperature. Since the object to be separated having affinity for the temperature sensitive separation material of the present invention is distributed to the coacervate layer formed from the temperature sensitive separation material, the coacervate layer is sedimented by centrifugation or dialyzed.
  • the separation object By concentrating by, for example, the separation object can be separated from the test sample.
  • the salt include sodium chloride and calcium chloride, but are not limited thereto.
  • Other salts may e.g. KCl, NaCl, MgCl 2, KBr , NaBr, be exemplified Na 2 SO 4, MgSO 4, and the like.
  • a temperature-sensitive polymer (IV) or an addition salt thereof, in which R 1 is a hydrogen atom and R 2 is a carbamoyl group (2), as an active ingredient Can include anionic substances.
  • the anionic substance is not particularly limited as long as it has an anionic group.
  • fluorescein (FL) having a monovalent anion
  • bromophenol blue (BPB) having a divalent anion
  • trypan blue having a tetravalent anion
  • Anionic dyes such as TB
  • Evans Blue EB
  • a cationic substance can be mentioned.
  • the cationic substance is not particularly limited as long as it has a cationic group.
  • ethidium bromide having a monovalent cation
  • propidium iodide having a divalent cation
  • TMPyP having a tetravalent cation (tetrakis (1-methylpyridinium) -4-yl) porphyrin p-toluenesulfonate.
  • examples of the separation object include proteins, cells, hydrogen bonding substances, hydrophobic bonding substances and the like.
  • hydrogen-bonding substances include nucleic acids such as RNA and DNA, or nucleic acid derivatives such as antisense nucleic acids, siRNA, miRNA, ribozyme, and RNA aptamer.
  • Hydrophobic substances include anticancer agents such as paclitaxel, or carbon. A nanotube etc. can be illustrated.
  • the temperature-sensitive separation material applied to the aqueous two-phase partitioning method may contain or be separated from the temperature-sensitive polymer compound (I) or its addition salt itself as an active ingredient.
  • a ligand having a binding property to the substance to be separated is immobilized on the monomer unit constituting the polymer compound (I) via an optional linker such as an alkylene group as the active ingredient. May be.
  • biotin or iminobiotin or avidin or streptavidin
  • antibody or antigen
  • molecular chaperone sugar chain, lectin, protein A, protein G, DNA, RNA, enzyme (enzymatic reaction) Substrate), receptors (ligands (agonists / antagonists) for receptors), competitive inhibitors, coenzymes and the like.
  • One set of specific examples known to perform the specific interaction includes antigen-antibody, enzyme-substrate (inhibitor), various physiologically active substances-receptors, biotin or iminobiotin-avidin or Streptavidin, DNA-DNA (RNA) and the like can be mentioned. These sets include not only natural molecules but also synthetic molecules-natural molecules and synthetic molecules-synthetic molecules. Examples of the interaction include single or combination of electrostatic interaction, hydrophobic interaction, hydrogen bond, van der Waals interaction and the like.
  • the aqueous two-phase partitioning method of the present invention is a method in which a temperature-sensitive separation material having a phase transition temperature in a relatively low temperature range of preferably 5 to 36 ° C. can be used as a separation / concentration agent. It can be suitably used for bio-products such as living organisms in culture and bio-separation in which proteins such as enzymes, antibodies and physiologically active substances are separated.
  • Enzyme or antibody immobilization substrate reaction method using the same , or temperature-sensitive separation material of the present invention can be used as an enzyme or antibody immobilization substrate (solid phase).
  • an immobilized enzyme or an immobilized antibody By immobilizing an enzyme or an antibody, an immobilized enzyme or an immobilized antibody can be prepared and provided.
  • Such immobilized enzymes and immobilized antibodies are effective materials for qualitative or quantitative analysis of test substances (proteins, etc.) such as immunoassay methods, protein purification, and bioreactor construction.
  • the temperature-sensitive polymer compound (I) or an addition salt thereof is prepared by immobilizing a ligand having an enzyme binding property to a monomer unit constituting the compound via a linker as necessary. It is preferable to use it.
  • the ligand biotin or iminobiotin can be preferably exemplified as described above.
  • the immobilized enzyme can be prepared by chemically immobilizing the enzyme on the temperature sensitive separation material (enzyme immobilization substrate) of the present invention.
  • a method for immobilizing an enzyme the method of binding a ligand (enzyme) to the temperature-sensitive polymer compound (I) described in 2 above can be similarly used.
  • the immobilized enzyme thus prepared in an aqueous solution containing a substrate having a salt concentration of at least 1 mM having a pH of 3 to 10.5 is set at a temperature lower than the phase transition temperature of the temperature-sensitive separation material.
  • the temperature-sensitive separation material (immobilized enzyme) in which is immobilized is phase-separated as an insoluble phase. And if necessary, the enzyme reaction can be started by making the immobilized enzyme compatible with the aqueous solution containing the substrate by changing the temperature, pH, etc. to a temperature higher than the phase transition temperature. .
  • An immobilized antibody can also be prepared by chemically immobilizing an antibody on the temperature-sensitive separation material (antibody immobilization substrate) of the present invention.
  • an antibody immobilization method the method of binding a ligand (antibody) to the temperature-sensitive polymer compound (I) described in 2 above can be used in the same manner.
  • the temperature of the immobilized antibody thus prepared is set to a temperature lower than the phase transition temperature of the temperature-sensitive separation material in an aqueous solution containing the antigen of the antibody having a salt concentration of at least 1 mM at pH 3 to 10.5.
  • the temperature-sensitive separation material (immobilized antibody) on which the antibody is immobilized is phase-separated as an insoluble phase.
  • the antigen-antibody reaction can be initiated by compatibilizing the immobilized antibody with an aqueous solution containing the antigen by changing the temperature or pH to a temperature higher than the phase transition temperature. it can.
  • an antigen-antibody reaction can be carried out by immobilizing the antigen in place of an antibody on a temperature-sensitive separation material and mixing the antigen of the antibody in an aqueous solution.
  • a drug-releasing agent can be provided by combining the temperature-sensitive separating material with a drug.
  • the drug-releasing agent uses the temperature-sensitive separation material of the present invention as a carrier (drug carrier) of a so-called drug delivery system (DDS), and is a combination of the temperature-sensitive separation material of the present invention and an arbitrary drug. Consists of.
  • the temperature-sensitive separation material of the present invention reversibly dissolves and insolubilizes (phase transition) by controlling the temperature under physiological conditions, and the coacervate disappears or forms accordingly. Is applied to the control of drug release and retention.
  • the drug-releasing agent of the present invention is suitably used for an intelligent preparation (intelligent DDS) in which a drug is to be administered as needed when necessary.
  • the means for loading or binding various drugs (for example, various anticancer agents such as adreamycin and taxol) on the temperature-sensitive separation material of the present invention is an aqueous solution of the temperature-sensitive separation material.
  • various drugs for example, various anticancer agents such as adreamycin and taxol
  • the temperature-sensitive separating material of the present invention and various drugs are allowed to coexist in an aqueous solution with a salt concentration of at least 1 mM of pH 3 to 10.5, and the temperature, pH, etc.
  • various drugs can be supported or bound to the temperature sensitive separation material of the present invention. Subsequently, various drugs can be released from the temperature-sensitive separating material of the drug releasing agent by controlling the temperature, pH, and the like so that the temperature is higher than the phase transition temperature of the temperature-sensitive separating material.
  • the temperature-sensitive polymer compound (I) or an addition salt thereof may be used as it is as the temperature-sensitive separation material, and the above-described ligand is immobilized via a linker as necessary.
  • the sensitive polymer compound (I) or an addition salt thereof may be used.
  • the coacervate layer formed from the temperature-sensitive separation material is preferably set to a temperature lower than the phase transition temperature.
  • a method of binding a drug to the inside or the surface of can be mentioned.
  • the drug release agent of the present invention is a secondary treatment such that the drug is supported on or bonded to a temperature-sensitive separation material, and further accommodated or supported on a substrate such as a capsule, sponge, gel, or liposome. May be given.
  • the temperature is higher than the phase transition temperature of the temperature-sensitive separation material, so that various drugs can be obtained from the coacervate layer formed from the temperature-sensitive separation material of the drug release agent. Can be released.
  • the dosage form of the drug releasing agent of the present invention is also arbitrary, and is appropriately selected depending on the dosage form.
  • oral administration, transdermal administration, intravenous or intramuscular administration, and rectal administration may be mentioned depending on the dosage form such as oral preparation, patch, injection, infusion, suppository and the like.
  • aqueous two-phase partitioning method enzyme immobilization, drug release agent, etc.
  • binding of target substance or target substance to the temperature-sensitive separation material of the present invention is binding using ion complex or charge transfer complex, biochemical affinity, etc. Bonding using is preferred.
  • the target substance or target substance bound to the temperature-sensitive separation material of the present invention includes, for example, salt concentration control, pH control, control of inhibitors, substrates, etc., control of denaturing agents such as urea and SDS, organic solvents, metal ions
  • the bond strength can be controlled by appropriately selecting or combining methods such as control, temperature control, etc., and thus the distribution rate, reaction rate, drug release rate, and the like can be controlled.
  • immobilization of various ligands to a temperature responsive material is preferably a covalent bond in order to maintain the reproducibility of the temperature responsive material, but binding using an ion complex or a charge transfer complex.
  • binding utilizing biochemical affinity may be used.
  • FIG. 1 shows an ATR-IR spectrum (infrared absorption spectrum) of the polymer compound (carbamoylated polyallylamine: Carb-PAA92) obtained above together with polyallylamine (PAA-15K) used as a raw material.
  • ATR-IR spectrum infrared absorption spectrum
  • the polymer compound carbamoylated polyallylamine: Carb-PAA92
  • PAA-15K polyallylamine
  • FIG. 2 shows NMR spectra of polyallylamine (PAA-15K) and carbamoylated polyallylamine (Carb-PAA-15K) (degree of carbamoylation 0.87, Carb-PAA-15K87).
  • polyallylamine hydrochloride instead of “PAA-15K” having a molecular weight of 1.5 ⁇ 10 4 , a polyallylamine hydrochloride having a molecular weight of 5 ⁇ 10 3 (m in formula (II) having a m of 50; This is also referred to as “PAA-5K”), or polyallylamine hydrochloride having a molecular weight of 1.5 ⁇ 10 5 (m in the formula (II) is 1500; this is also referred to as “PAA-150K”).
  • Carb-PAA-15K-1592 is insolubilized at a temperature lower than about 26 ° C. (phase transition temperature) in an aqueous solution with a physiologically low salt concentration. It was confirmed that it was solubilized at a high temperature range, that is, a high-temperature soluble type (upper critical solution temperature type) temperature-sensitive polymer compound. This phase transition was sharp and reversible.
  • Carb-PAA-15K 92 was precipitated by centrifuging Carb-PAA-15K 92 insolubilized under a low temperature condition of less than 26 ° C for 3 minutes at 10,000 rpm. Therefore, according to the polymer compound of the present invention, for example, a substance that is deactivated or denatured at a high temperature, such as a biological material such as a cell or protein, or a physiologically active substance, maintains its activity under physiological low temperature conditions. However, it is possible to separate (bioseparation), capture or concentrate.
  • the polymer compound of the present invention is reversibly solubilized by raising the temperature to the above-mentioned phase transition temperature or higher, substances captured or concentrated under lower temperature conditions should be heated to the phase transition temperature or higher. Thus, it is possible to recover from the polymer compound. That is, the polymer compound of the present invention can be effectively used as a bioseparation material (separation / concentration agent).
  • Fig. 4 shows a confocal image obtained by observing a Carb-PAA-15K-92 solution (10 mM Hepes-NaOH (pH 7.5) + 150 mM NaCl) at a concentration of 3.7 mg / mL at room temperature (25 ° C).
  • Carb-PAA-15K-92 forms a coacervate with a particle size of about 5 ⁇ m in the solution.
  • polyallylamine PAA-15K, PAA-5K, PAA-150K
  • carbamoylated polyallylamine Carb-PAA-15K (Carb-PAA-15K 87-100)
  • Carb- PAA-5K, Carb-PAA-150K was dissolved in a physiological buffer (10 mM Hepes-NaOH (pH7.5) +150 mM NaCl) to a concentration of 1 mg / ml.
  • the solution is then placed in a quartz cell, and the absorbance at 500 nm is measured with a UV-VIS spectrophotometer (absorptiometer) while decreasing the temperature at a rate of 1 ° C / min.
  • the transmittance% was obtained from the absorbance in the same manner as in Experimental Example 1.
  • Fig. 5A The results of polyallylamine (PAA-15K) and carbamoylated polyallylamine (Carb-PAA-15K (Carb-PAA-15K 87-100)) are shown in Fig. 5A, as shown in Fig. 5A, when the degree of carbamoylation is 0.87 or more.
  • Table 4 shows the phase transition temperatures (° C) of various Carb-PAA-15K.
  • Carb-PAA-15K (1 mg / mL) with a degree of carbamoylation of 0.87 or higher is in the range of 5-50 ° C under physiological conditions (10 mM Hepes-NaOH (pH 7.5) + 150 mM NaCl). It is a high-temperature dissolution type polymer compound having a phase transition temperature.
  • Tables 5 and 6 show the phase transition temperatures (° C) of various Carb-PAA-5K and Carb-PAA-150K.
  • Carb-PAA-5K (1 mg / mL) with a degree of carbamoylation of 0.88 or higher is in the range of 5-40 ° C under physiological conditions (10 mM Hepes-NaOH (pH 7.5) + 150 mM NaCl).
  • Carb-PAA-150K (1mg / mL), a high-temperature-soluble polymer compound with a phase transition temperature and a carbamoylation degree of 0.83 or higher, has physiological conditions (10mM Hepes-NaOH (pH7.5) + 150mM NaCl).
  • a high-melting polymer compound having a phase transition temperature in the range of 5 to 67 ° C.
  • FIG. 5B shows 1 mg / mL Carb-PAA-15K (Carb-PAA-150K 87-100) (indicated by ⁇ ), Carb-PAA-5K (Carb-PAA-150K 88-100) (indicated by ⁇ ),
  • the results of plotting the phase transition temperature (° C.) with respect to Carb-PAA-150K (Carb-PAA-150K 83 to 95) (indicated by ⁇ ) are shown with the carbamoyl group introduction rate (carbamoylation degree) on the horizontal axis.
  • the degree of carbamoylation can be set when a temperature-sensitive polymer compound having a desired phase transition temperature is produced. For example, when a temperature sensitive polymer compound having a phase transition temperature of 15 ° C. is prepared using “PAA-15K” having a molecular weight of 1.5 ⁇ 10 4 as the starting polyallylamine hydrochloride, the degree of carbamoylation Can be set to 0.9.
  • Carb-PAA 15K concentration dependence Measure the phase transition temperature (° C) while changing the concentration of various Carb-PAA-15K (Carb-PAA-150K 87-100) in the range of 0.1-5 mg / mL. did. Specifically, various types of Carb-PAA-15K (Carb-PAA-150K 87-100) are added to a physiological buffer (10 mM Hepes-NaOH (pH 7.5) +150 mM NaCl) in an amount of 0.1 to 5 mg / mL. Dissolve the solution at a concentration of 1 to 5 ° C., and reduce the temperature at a rate of 1 ° C./min in the range from 70 ° C.
  • the transmittance% was determined from the absorbance. Based on the transmittance obtained for various types of Carb-PAA-15K (Carb-PAA-150K 87-100) at a concentration of 0.1 to 5 mg / mL, the temperature at which the transmittance starts to decrease when the temperature is lowered from 100% transmittance was determined as the phase transition temperature.
  • the horizontal axis represents the concentration of Carb-PAA-15K (mg / mL), and the vertical axis represents the phase transition temperature (° C.). From this result, Carb-PAA-15K at a concentration of 0.1-5 mg / mL increases the concentration of each Carb-PAA-15K under physiological buffer conditions (10 mM Hepes-NaOH (pH 7.5) + 150 mM NaCl). It can be seen that the phase transition temperature increases with this.
  • Results are shown in FIG. In FIG. 7, the horizontal axis indicates the pH of Carb-PAA-15K, and the vertical axis indicates the phase transition temperature (° C.). As can be seen from this, in the range of pH 5.5 to 8.5, none of the Carb-PAA-15Ks had a substantially constant phase transition temperature (° C.) and no change was observed. For Carb-PAA-15K 87 to 94, when the pH exceeded 8.5, a tendency for the phase transition temperature (° C.) to increase as the pH increased was observed. This tendency was remarkable in Carb-PAA-15K-1587, which has a relatively low carbamoyl group introduction rate (degree of carbamoylation).
  • Carb-PAA-15K 97 which has a high carbamoyl group introduction rate (carbamoylation degree), maintained a substantially constant phase transition temperature (° C.) in the pH range of 5.5 to 9.5.
  • Carb-PAA-15K ⁇ 67 is a high-temperature dissolution type having a phase transition temperature (° C.) of 10 to 15 ° C. under alkaline conditions of pH 9.5 to 10.5. It was confirmed to be a molecular compound.
  • phase separation can be achieved by changing the pH.
  • there are places where changes in pH occur in vivo such as the area around cancer tissue is acidic. Therefore, phase transition behavior is expected to occur depending on the pH environment of the tissue, and it is expected that it can be used for sensing.
  • Carb-PAA15K (Carb-PAA-15K 87-97) buffer solutions adjusted to various salt concentrations with 4N NaCl (10 mM HEPES-NaOH (pH 7.5) + 50-1000 mM) NaCl) is dissolved to a concentration of 1 mg / mL, and the absorbance at 500 nm is measured with a UV-VIS spectrophotometer while decreasing the temperature at a rate of 1 ° C./min in the range from 70 ° C. to 5 ° C. (Absorptiometer) and the phase transition temperature (° C.) was calculated from the absorbance according to the method of Experimental Example 2.
  • the horizontal axis represents NaCl concentration (mM), and the vertical axis represents the phase transition temperature (° C.).
  • Carb-PAA-15K 97 has a salt concentration in the range of 50-200 mM
  • Carb-PAA (94) has a salt concentration in the range of 50-300 mM
  • Carb-PAA-15K 87-92 has a salt concentration.
  • the concentration was in the range of 50 to 400 mM
  • the phase transition temperature (° C.) tended to increase as the salt concentration increased.
  • phase transition temperature (° C) under the condition that the salt concentration is 1000 mM (10 mM HEPES-NaOH (pH 7.5) + 1000 mM NaCl) is 30 ° C for Carb-PAA-15K 92 to 97, and Carb-PAA- The 15K 1587 was 25 ° C.
  • the phase transition temperature (° C.) of Carb-PAA-15KA87 was maintained at about 25 ° C. when the salt concentration was in the range of 500 to 1000 mM.
  • phase separation can be achieved by changing the salt concentration.
  • a method can be used in which an object to be separated is captured under conditions of a low salt concentration, and then a salt is added to the system and phase separation (separation) is performed.
  • Carb-PAA-15K 87 is dissolved in a physiological buffer solution (10 mMpesHepes-NaOH (pH7.5) +150 mMClNaCl) to a concentration of 1 mg / mL, and each of the above is dissolved therein.
  • An anionic dye was blended to a concentration of 0 ⁇ M or 10 ⁇ M.
  • the transmittance (%) at 800 nm was measured with a UV-VIS spectrophotometer (absorptiometer) while lowering the temperature of this solution in the range from 40 ° C. to 5 ° C. at a rate of 1 ° C./min.
  • the horizontal axis indicates the phase transition temperature (° C.), and the vertical axis indicates the transmittance (%) at 800 nm. From this result, it was confirmed that the polymer compound of the present invention changes in phase transition temperature in the presence of an anionic substance. The degree of change depends on the number of anions, and it was confirmed that the phase transition temperature increases as the number of anions increases.
  • phase separation occurs when the temperature-sensitive separation material of the present invention is added, so that it can be separated by centrifugation.
  • FIG. 10A The result is shown in FIG. 10A.
  • shaft is shown to FIG. 10B.
  • Evans Blue (EB) alone does not change the maximum absorption wavelength (nm) depending on the temperature
  • Carb-PAA (87) containing Evans Blue (EB) has a maximum absorption wavelength (nm) depending on the temperature. It was confirmed that the color of the mixed liquid changed (reversible change) depending on the temperature. This temperature dependence of the maximum absorption wavelength (nm) is only observed for Carb-PAA (87) containing Evans Blue (EB), but not for Carb-PAA (87) containing other anionic dyes. (FIG. 10B).
  • the temperature-sensitive separation material of the present invention is useful as a light control material.
  • Production Example 3 100 mg of the carbamoylated polyallylamine (degree of carbamoylation: 0.87, Carb-PAA-15K 87) produced in Production Example 1 is dissolved in 5 mL of DMSO, and 1 equivalent of amino group of carbamoylated polyallylamine (Carb-PAA-15K 87) is obtained. On the other hand, succinic anhydride was added at a ratio of 3 equivalents and reacted at 40 ° C. for 24 hours. After completion of the reaction, dialysis was performed against water using a dialysis membrane (MWCO: 3,500) at the same temperature to remove by-products and lyophilization was performed.
  • MWCO dialysis membrane
  • FIG. 12 shows polyallylamine (PAA-15K), carbamoylated polyallylamine (Carb-PAA-15K) (degree of carbamoylation 0.87, Carb-PAA-15K 87) and succinylated carbamoylated polyallylamine.
  • PAA-15K polyallylamine
  • Carb-PAA-15K carbamoylated polyallylamine
  • succinylated carbamoylated polyallylamine The NMR spectrum of (Suc-Carb-PAA-15K 87) is shown. Since the peak of “a” disappeared and the peak of “b” appeared again, it was confirmed that all primary amino groups were succinylated.
  • succinylated CPA should be insolubilized at a lower temperature range at about 34.6 ° C (phase transition temperature) in a low-concentration CaCl 2 aqueous solution, and solubilized at a higher temperature range. That is, it was confirmed to be a high-temperature dissolution type (upper critical solution temperature type) temperature-sensitive polymer compound.
  • the succinylated CPA as in the case of the carbamoylated polyallylamine described above, for example, biological materials such as cells and proteins, and substances that are deactivated or denatured at high temperatures, such as physiologically active substances, Separation (bioseparation), capture or concentration while maintaining activity at low temperature conditions.
  • biological materials such as cells and proteins
  • substances that are deactivated or denatured at high temperatures such as physiologically active substances, Separation (bioseparation), capture or concentration while maintaining activity at low temperature conditions.
  • the succinylated CPA of the present invention is reversibly solubilized by raising the temperature to the above-mentioned phase transition temperature or higher, substances captured or concentrated under lower temperature conditions should be heated to the phase-transition temperature or higher.
  • the succinylated CPA of the present invention can be effectively used as a bioseparation material (separation / concentration agent).
  • FIG. 14A shows the result showing the relationship between the solution temperature of 70 to 5 ° C. and the transmittance% of the solution
  • FIG. 14B shows the result showing the relationship between the salt concentration and the phase transition temperature.
  • succinylated CPA is bounded in an aqueous solution of 50-1000 mM salt (CaCl 2 , Ca (NO 3 ) 2 , CaBr 2 ) at about 30 ° C. to 40 ° C. (phase transition temperature). It was confirmed that the polymer was insolubilized at a lower temperature range and solubilized at a higher temperature range, that is, a high-temperature dissolution type (upper critical solution temperature type) temperature-sensitive polymer compound.
  • 50-1000 mM salt CaCl 2 , Ca (NO 3 ) 2 , CaBr 2
  • the succinylated CPA had a salt concentration in the range of 50 to 150 mM, and the phase transition temperature (° C.) tended to increase as the salt concentration increased. From this result, it can be seen that according to the temperature-sensitive separation material containing succinylated CPA as an active ingredient, for example, even when the pH or temperature of the system cannot be changed, phase separation can be achieved by changing the salt concentration. For example, a method can be used in which an object to be separated is captured under conditions of a low salt concentration, and then a salt is added to the system and phase separation (separation) is performed.
  • Succinylated CPA is a high temperature dissolution type temperature-sensitive material having a phase transition temperature (° C) of 5 to 30 ° C under acidic conditions of pH 4.5 to 5.5 in a physiological buffer containing 150 mM sodium chloride. It was a polymer compound, and the phase transition temperature under the condition of pH 4.5 was 7.9 ° C., and the phase transition temperature under the condition of pH 5.5 was 29.6 ° C.
  • phase separation can be achieved by changing the pH.
  • there are places where changes in pH occur in vivo such as the area around cancer tissue is acidic. Therefore, phase transition behavior is expected to occur depending on the pH environment of the tissue, and it is expected that it can be used for sensing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Peptides Or Proteins (AREA)

Abstract

 本発明は、生理学的条件で温度に応答し、生体機能性を有するUCST型の温度応答性高分子化合物を提供するとともに、その温度応答性材としての各種用途を提供することを目的とする。本発明の温度応答性材として、pH3~10.5の範囲にある少なくとも1mMの塩濃度の水溶液中、5~50℃の範囲に上限臨界共溶温度を有することを特徴とする、下記一般式(I)で示される高分子化合物またはその付加塩を有効成分とする温度応答性材を挙げることができる: (式中、mは10以上の整数、nは0.4≦n≦1を満たす数を意味し、Rは水素原子またはサクシニル基、Rはカルバモイル基をそれぞれ意味する。)

Description

温度、pH及び塩濃度感応性分離材及びその用途
 本発明は、生理学的条件下で、低温域では不溶で高温域では溶解するといった高温溶解型の温度感応性を有する高分子化合物またはその塩を有効成分とする温度、pH又は塩濃度感応性分離材、並びに当該分離材の用途に関する。
 従来より、水溶液中における低温溶解型(下限臨界共溶温度型:LCST型)の温度感応性高分子化合物に関する研究は数多くあり、その相転移メカニズムの解明から、相転移温度制御のための分子設計方法も明らかになっている。例えば、ポリN-イソプロピルアクリルアミド等の低温溶解型高分子化合物は、細胞分離(非特許文献1)やドラッグデリバリーシステム(非特許文献2)に応用される細胞シート工学の基盤材料となり、再生医療に新風を起こす起爆剤となっている。
 一方、水溶液中または生理学的条件下で高温溶解型(上限臨界共溶温度型:UCST型)の温度感応性高分子化合物の開発は、工学分野において大きなインパクトを与える基盤的材料となるにも関わらず、これらに関する研究は極めて少ない。これは、水系でUCST挙動を示す高分子化合物の例が数例しかなく(非特許文献3~5参照)、さらにこれらの多くは生理的条件、つまり生理的なpH、塩濃度および温度の条件下において温度感応特性を発現できないことによる。
特開昭60-106803号公報
Okano, T. et al., (1993) J. Biomed. Mater. Res., 27, 1243-1251 Kim, Y.-H. et al., (1994) J. Control. Release, 28, 148-152 Buscall, R. et al., (1982) Eur. Polym. J., 18, 967-974 Schulz, D. N. et al. (1986) Polymer, 27, 1734-1742 Aoki, T. et al., (1999) Polymer. J., 31, 1185-1188
 上記のことから、生理学的条件で応答する高温溶解型高分子化合物の構築が不可欠となっている。そこで本発明は、生理学的条件で応答し、生体機能性を有する高温溶解型の温度感応性高分子化合物を提供するとともに、その温度、pH又は塩濃度感応性分離材としての各種用途を提供することを目的とする。
 本発明者らは、上記目的を達成すべく鋭意検討を重ねていたところ、下式(II):
Figure JPOXMLDOC01-appb-C000006
(式中、mは10以上の整数を意味する。)
で示されるポリアリルアミンの側鎖に水素結合性の官能基を特定の割合で有する高分子化合物(H-PAA)及びその塩が、生理学的条件、具体的には生理学的なpH及び塩濃度の条件下で、所定温度(相転移温度)以上では溶解(相溶)しているものの、降温操作により上記温度より低くすると不溶化(非相溶)する、高温溶解型(UCST型)の挙動を示すことを見出し、さらに当該相転移温度はpHや塩濃度を調整したり、またアニオン性物質やカチオン性物質を共存させることで適宜制御ができることを見出した。
 本願発明はかかる知見に基づいて完成したものであり、下記の実施形態を包含するものである。
  (1)温度、pH、塩濃度感応性分離材
(1-1)pH3~10.5の少なくとも1mMの塩濃度の水溶液において、5~65℃の範囲に相転移温度を有し、当該相転移温度よりも低い温度で不溶相を、当該相転移温度よりも高い温度で溶解相を形成する、下記一般式(I)で示される高分子化合物またはその付加塩を有効成分とする、温度、pH又は塩濃度感応性分離材(以下、単に「温度感応性分離材」という):
Figure JPOXMLDOC01-appb-C000007
(式中、mは10以上の整数、nは0.4≦n≦1を満たす数を意味し、Rは水素原子または下式(1)で示される置換基、Rは下式(2)で示される置換基をそれぞれ意味する。) 
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 (1-2)上記高分子化合物(I)が、これを構成するモノマーの一部に、必要に応じてリンカーを解してリガンドが結合してなるものである、(1-1)記載の温度感応性分離材。
 (1-3)上記リガンドが、ビオチンまたはイミノビオチン(またはアビジンまたはストレプトアビジン)、抗体、糖鎖、レクチン、プロテインA、プロテインG、DNA、RNA、酵素、及び受容体からなる群から選択される少なくとも1種である(1-2)記載の温度感応性分離材。
 (1-4)上記リガンドが、ビオチンまたはイミノビオチンであり、リンカーがアルキレン基である、(1-2)記載の温度感応性分離材。
 (1-5)さらにアニオン性物質またはカチオン性物質を含有することを特徴とする(1-1)乃至(1-4)のいずれかに記載する温度感応性分離材。
 (1-6)アニオン性物質がアニオン系色素である、(1-5)に記載する温度感応性分離材。
 (1-7)アニオン系色素が、フルオレセイン、ブロモフェノールブルー、トリパンブルー、及びエバンスブルーからなる群から選択されるいずれか少なくとも1種である(1-6)に記載する温度感応性分離材。
 (2)温度感応性分離材の用途
(2-1)(1-1)乃至(1-7)の何れかに記載する温度感応性分離材の、分離・濃縮材、ドラッグデリバリーシステムキャリアー、薬物放出基材、酵素固定化基材、抗体固定化基材、細胞培養基材、調光材、光機能材料、またはセンシング基材を調製するための使用。
 (2-2)(1-1)乃至(1-7)の何れかに記載する温度感応性分離材からなるか、または当該温度感応性分離材を有効成分とする、分離・濃縮材、ドラッグデリバリーシステムキャリアー、薬物放出基材、酵素固定化基材、抗体固定化基材、細胞培養基材、調光材、光機能材料、またはセンシング基材。
 (2-3)(1-1)乃至(1-7)の何れかに記載する温度感応性分離材と薬物とを組み合わせてなる薬物放出剤。
 (2-4)pH3~10.5の少なくとも1mMの塩濃度の水溶液において、温度感応性分離材の相転移温度よりも低い温度条件下にある(2-3)記載の薬物放出剤を、温度感応性分離材の相転移温度よりも高い温度におく工程を有する、薬物放出剤から薬物を放出させる方法。
 なお当該方法は、水溶液の温度を温度感応性分離材の相転移温度よりも高温から低温に変えることにより達成してもよいし、また水溶液のpHまたは塩濃度を制御することで、温度感応性分離材の相転移温度を水溶液の温度よりも低温から高温に変えることにより達成してもよい。
 (2-5)(1-1)乃至(1-7)の何れかに記載する温度感応性分離材に酵素または抗体が固定化された固定化酵素または抗体であって、当該分離材を構成する一般式(I)で示される温度感応性高分子化合物を構成するモノマーの一部に、必要に応じてリンカーを介して、酵素または抗体が結合してなるものである固定化酵素または抗体。
 (2-6)pH3~10.5の少なくとも1mMの塩濃度の基質を含む水溶液において、(2-5)記載の固定化酵素を、温度感応性分離材の相転移温度よりも低い温度条件から相転移温度よりも高い温度条件に置いて酵素と基質とを反応させる工程を有する、酵素反応。
 (2-7)pH3~10.5の少なくとも1mMの塩濃度の抗原を含む水溶液において、(2-5)記載の固定化抗体を、温度感応性分離材の相転移温度よりも低い温度条件から相転移温度よりも高い温度条件に置いて抗体と抗原を反応させる工程を有する、抗原抗体反応。
 なお(2-6)及び(2-7)の方法は、水溶液の温度を温度感応性分離材の相転移温度よりも低温から高温に変えることにより達成してもよいし、また水溶液のpHまたは塩濃度を制御することで、温度感応性分離材の相転移温度を水溶液の温度よりも高温から低温に変えることにより達成してもよい。
 (3)水性2相分配法
(3-1)下記の工程を有する水性2相分配法:
(1)被分離物を含む試料と(I-1)乃至(I-7)の何れかに記載する温度感応性分離材とを、pH3~10.5の範囲にある少なくとも1mMの塩濃度の水溶液中に共存させる工程、及び
(2)当該水溶液の温度が、上記温度感応性分離材の相転移温度より高い温度から相転移温度より低い温度になるように制御して相分離する工程。
 ここで(2)の工程は、水溶液の温度を温度感応性分離材の相転移温度よりも高温から低温にすることにより行ってもよいし、また水溶液のpHまたは塩濃度を制御することで、温度感応性分離材の相転移温度を水溶液の温度よりも低温から高温にすることにより行ってもよい。
 (3-2)さらに下記の(3)の工程または(3)と(4)の工程を有する、(3-1)に記載する水性2相分配法:
(3)相分離工程によって被分離物が分配された相を、非分配相から分離し回収する工程、
(4)上記工程により分離した被分離物分配相から、被分離物を回収する工程。
 (3-3)被分離物がタンパク質、細胞、アニオン性物質、カチオン性物質、水素結合性物質、及び疎水結合性物質からなる群から選択されるいずれか少なくとも1つである(3-1)または(3-2)に記載する水性2相分配法。
 (3-4)アニオン性物質がアニオン系色素である、(3-3)に記載する水性2相分配法。
 (3-5)アニオン系色素が、フルオレセイン、ブロモフェノールブルー、トリパンブルー、及びエバンスブルーからなる群から選択されるいずれか少なくとも1種である(3-4)に記載する水性2相分配法。
 (3-6)カチオン性物質がカチオン系色素である、(3-3)に記載する水性2相分配法。
 (3-7)カチオン系色素が、エチジウムブロマイド、プロピジウムアイオダイド、及びテトラキス(1-メチルピリジウム-4-イル)ポルフィリンp-トルエンスルホナートからなる群から選択されるいずれか少なくとも1種である(3-6)に記載する水性2相分配法。
 (3-8)水素結合性物質が、核酸または核酸誘導体である、(3-3)に記載する水性2相分配法。
 (3-9)疎水結合性物質が、パクリタキセルまたはカーボンナノチューブである、(3-8)に記載する水性2相分配法。
 (4)高温溶解型温度感応性高分子化合物およびその製造方法
(4-1)一般式(II):
Figure JPOXMLDOC01-appb-C000010
(式中、mは10以上の整数を意味する。)
で示されるポリアリルアミンまたはその部分塩に、シアン酸塩を67~100モル%の割合で反応させることを特徴とする、下記一般式(IV)で示される、(1-1)に記載のRが水素原子、Rがカルバモイル基である高分子化合物(I)またはその付加塩の製造方法:
Figure JPOXMLDOC01-appb-C000011
(式中、mは10以上の整数、nは0.4≦n≦1を満たす数を意味する。)。
 (4-2)一般式(V)で示されるサクシニル化カルバモイル化ポリアリルアミンまたはその付加塩:
Figure JPOXMLDOC01-appb-C000012
(式中、mは10以上の整数、nは0.4≦n≦1を満たす数を意味する。)。
 (4-3)一般式(IV):
Figure JPOXMLDOC01-appb-C000013
(式中、mは10以上の整数、nは0.4≦n≦1を満たす数を意味する。)
で示されるカルバモイル化ポリアリルアミンまたはその付加塩に、無水コハク酸を反応させることを特徴とする、(4-2)に記載の一般式(V)で示されるサクシニル化カルバモイル化ポリアリルアミンまたはその付加塩の製造方法。
 本発明が対象とする高温溶解型温度感応性を有する高分子化合物(I)は、特定の割合の水素結合性の官能基とカチオン性の官能基(アミノ基)とを有することを特徴とする。かかる高分子化合物(I)は、純水中では高温溶解型の温度感応性挙動を示さないものの、塩濃度が少なくとも1mMの水溶液中で、生理的条件で高温溶解型の温度感応性挙動を示し、特定の温度(相転移温度)よりも高い温度で溶解相を形成し、当該相転移温度よりも低い温度で不溶相を形成する性質を有している。
 このため、当該温度感応性高分子化合物(I)は、その生理的条件下における温度感応性を利用することで、生理的条件下における各種物質の捕捉や分離に、分離材として有効に用いることができる。具体的には、温度感応性高分子化合物(I)は、例えば生化学的または生理学的材料(例えば、細胞やタンパク質等の生理活性物質)の分離、DDS、薬剤放出、酵素の固定化、細胞培養、調光、センシングなどに、有効に用いることができる。特に高温条件で変性したり活性が低下するなど、高温環境が好ましくない物質(例えば、細胞、遺伝子等の核酸、酵素や抗体などのタンパク質、その他のバイオプロダクトなど)については、温度感応性高分子化合物(I)によれば、相転移温度以下の低温条件下で、変性させたり活性を失うことなく、捕獲し分離(単離)することが可能である。
ポリアリルアミン(PAA-15K)と製造例1で調製したカルバモイル化ポリアリルアミン(Carb-PAA-15K 92、カルバモイル化度0.92)のATR-IRスペクトル(赤外線吸収スペクトル)を示す。 (A)ポリアリルアミン(PAA-15K)とカルバモイル化ポリアリルアミン(Carb-PAA-15K 87)(カルバモイル化度0.87)のH-NMRスペクトルを示す。「a」はカルバモイル化されていないメチレンのプロトンのピーク、「b」はカルバモイル化されたメチレンのプロトンのピークを示す。(B)ポリアリルアミン(PAA-15K)とカルバモイル化ポリアリルアミン(Carb-PAA-15K 92)(カルバモイル化度0.92)の13C-NMRスペクトルを示す。160ppmにカルバモイル基の(C=O)のピークが観察される。 生理的緩衝液(10mM Hepes-NaOH (pH7.5)+150mM NaCl in water)に溶解したCarb-PAA-15K 92(2.5mg/ml)について、温度℃と透過率%との関係を示す図である(実験例1)。 室温条件下(25℃)で3.7mg/mL濃度のCarb-PAA-15K 92溶液(10mM Hepes-NaOH (pH7.5)+150mM NaCl)を共焦点顕微鏡観察した共焦点画像を示す。 (A)ポリアリルアミン(PAA-15K)と各種のCarb-PAA-15K(Carb-PAA-15K 87~100)(濃度1mg/ml)を溶解した生理的緩衝液(10mM Hepes-NaOH (pH7.5)+150mM NaCl)について、70℃から5℃までの温度範囲での透過率%(500nm)を示す(実験例2)。(B)1mg/mL のCarb-PAA-15K(Carb-PAA-15K 87~100)についてカルバモイル基の導入率(カルバモイル化度)を横軸とし、高温溶解温度UCST(℃)(相転移温度)をプロットした結果を示す。 Carb-PAA-15K(Carb-PAA-15K 87~100)についてCarb-PAA-15K 濃度(0.1~5mg/mL)と相転移温度℃(溶解温度℃)との関係を示す図である(Carb-PAA-15K 濃度依存性)。横軸はCarb-PAA-15Kの濃度(mg/mL)を、縦軸は相転移温度(℃)を示す。 Carb-PAA-15K(Carb-PAA-15K 67及び87~97)(1mg/mL)についてpHと相転移温度℃(溶解温度℃)との関係を示す図である(pH依存性)。横軸はpHを、縦軸は相転移温度(℃)を示す。 Carb-PAA-15K(Carb-PAA-15K 87~97)(1mg/mL)について塩濃度と相転移温度℃(溶解温度℃)との関係を示す図である(塩濃度依存性)。横軸はNaClの濃度(mM)を、縦軸は相転移温度(℃)を示す。 Carb-PAA-15Kの相転移温度℃に対するアニオン性物質の影響を調べた結果である。Carb-PAA-15KとしてCarb-PAA-15K 87を、またそれに配合するアニオン性物質としてアニオン系色素(一価アニオン:フルオレセイン(FL)、二価アニオン:ブロモフェノールブルー(BPB)、四価アニオン:トリパンブルー(TB)、エバンスブルー(EB))を用いた。横軸は温度(℃)を、縦軸は800nmにおける透過率(%)を示す。なお、グラフ中、括弧内の温度は、Carb-PAA-15Kとアニオン系色素の混合物の相転移温度(℃)を意味する。 (A)実験例5で調製したCarb-PAA-15K 87と各種アニオン系色素(一価アニオン:フルオレセイン(FL)、二価アニオン:ブロモフェノールブルー(BPB)、四価アニオン:トリパンブルー(TB)、エバンスブルー(EB))との混合液(10mM Hepes-NaOH (pH7.5)+150mM NaCl)の温度を10~50℃に調製し、各混合液の各温度における極大吸収波長(nm)をUV-VIS分光光度計(吸光光度計)で測定した結果を示す。(B)各混合液について、温度を横軸に、図10(A)の結果から求めた極大吸収波長(nm)を縦軸にプロットした結果を示す。 ポリアリルアミン(PAA-15K)をビオチン化したビオチン化PAA-15K、Carb-PAA-15K 92、及びCarb-PAA-15K 92をビオチン化したビオチン化Carb-PAA-15K 92をそれぞれ分離材として、アビジンを分離回収した際の、アビジン回収率%を対比した結果を示す(実験例6)。 (A)ポリアリルアミン(PAA-15K)、カルバモイル化ポリアリルアミン(Carb-PAA-15K 87)(カルバモイル化度0.87)、及びサクシニル化カルバモイル化ポリアリルアミン(Suc-Carb-PAA-15K 87)のH-NMRスペクトルを示す。「a」はサクシニル化されていないメチレンのプロトンのピーク、「b」はサクシニル基由来のエチレンのプロトンのピークを示す。 製造例3において調製したSuc-Carb-PAA-15K 87の相転移温度に対する塩(MaCl2、CaCl2)の影響を調べた結果である(実験例7)。横軸は温度(℃)を、縦軸は500nmにおける透過率(%)を示す。 製造例3で調製したサクシニル化カルバモイル化ポリアリルアミン(Suc-Carb-PAA-15K 87)の相転移温度℃に対する塩濃度の影響を調べた結果である(実験例8)。(A)は溶液温度70~5℃と溶液の透過率%との関係を示す結果を、(B)は塩濃度と相転移温度℃との関係を示す結果を示す。 製造例3で調製したサクシニル化カルバモイル化ポリアリルアミン(Suc-Carb-PAA-15K 87)の相転移温度℃に対するpHの影響を調べた結果を示す図である。横軸は温度(℃)を、縦軸は500nmにおける透過率(%)を示す。
 1.高温溶解型の温度感応性高分子化合物およびその製造方法
本発明の温度、pHまたは塩濃度感応性分離材(以下、単に「温度感応性分離材」という)の有効成分である温度感応性高分子化合物(I)は、下記の一般式で示される。
Figure JPOXMLDOC01-appb-C000014
 上記式中、mは本発明の温度感応性高分子化合物の重合度を表す。具体的には、mは10以上の整数を意味する。好ましくは10~5000であり、より好ましくは20~2000であり、特に好ましくは20~1000である。
 上記式中、nは本発明の温度感応性高分子化合物における水素結合性官能基(R及びR)の導入度を表す。具体的には、nは0.4≦n≦1の数を示す。生理的条件の観点からより好ましくは0.84≦n≦1であり、さらに好ましくは0.87≦n≦1である。
 本発明において、Rで示される置換基は、水素原子またはオキソ基(C=O)等のプロトンアクセプターを有する基を挙げることができる。プロトンアクセプターを有する基としては、具体的には下式で示されるサクシニル基(1)が例示される。
Figure JPOXMLDOC01-appb-C000015
 また、本発明において、Rで示される水素結合性官能基は、オキソ基(C=O)等のプロトンアクセプター及び第一アミノ基(-NH)やイミノ基(>NH)などのプロトンドナーを有する基を挙げることができる。具体的には下式で示される置換基(1’)、(2)、及び(3’)が例示される。好ましくは、式(2)で示されるカルバモイル基を挙げることができる。
Figure JPOXMLDOC01-appb-C000016
 本発明の温度感応性高分子化合物(I)の付加塩とは、当該高分子化合物を構成するモノマー単位中の側鎖アミノ基への付加塩を挙げることができる。かかる付加塩としては、塩酸塩、臭化水素酸塩、ヨウ化水素酸塩、硫酸塩、リン酸塩、ホスホン酸塩、酢酸塩等のカルボン酸塩類、メタンスルホン酸塩、p-トルエンスルホン酸塩、クエン酸塩や酒石酸塩などオキシカルボン酸塩、安息香酸塩を例示することができる。
 本発明の温度感応性高分子化合物(I)のうち、Rが水素原子で、Rが上記式(1’)で示されるアセチル基である化合物(III)は、下式(II)で示されるポリアリルアミンまたはその塩を無水酢酸((CH3CO)2O)と反応させることで製造することができる。ここでポリアリルアミン(II)の塩としては、塩酸塩、硫酸塩、及びリン酸塩などの無機塩を挙げることができる。両者の反応は、水、有機溶媒またはこれらの混合溶媒にポリアリルアミンまたはその塩を溶解し、これに無水酢酸を滴下し、撹拌しながら行うことが好ましい。
Figure JPOXMLDOC01-appb-C000017
(n及びmは、上記と同意義である。)。
 無水酢酸の使用割合としては、上記ポリアリルアミン(II)にアセチル基を有する置換基(1)が所望の割合(導入率)(一般式(III)中、nが0.4≦n≦1)で導入されるように、化学量論的に必要な計算量を挙げることができる。
 本発明の温度応答性高分子化合物(I)のうち、Rが水素原子で、Rが上記式(2)で示されるカルバモイル基である化合物(IV)は、下式(II)で示されるポリアリルアミンまたはその塩をシアン酸塩(MCNO)と反応させることで製造することができる。ここでポリアリルアミン(II)の塩としては、塩酸塩、硫酸塩、及びリン酸塩などの無機塩を挙げることができる。
Figure JPOXMLDOC01-appb-C000018
(n及びmは、上記と同意義である。MCNOはシアン酸の塩(M)を意味する。)。
 なお、ポリアリルアミン(II)またはその塩の製造方法は既に公知であり、具体的には例えば特開昭60-106803号公報(特許文献1)の記載に従って調製することができる。塩を含まないフリーのタイプのポリアリルアミン(II)は、既知のポリアリルアミンの塩をアルカリで中和後、副生する中和塩を水に対して透析することで調製することができる。また、市販のポリアリルアミン(塩フリー)を使用することもできる。かかる市販品としては、濃度15%のポリアリルアミン(分子量約1万)水溶液(PAA-15:日東紡績(株)製)、濃度10%のポリアリルアミン(分子量約1万)水溶液(PAA-10C:日東紡績(株)製)、濃度20%のポリアリルアミン(分子量約1万)水溶液(PAA-L:日東紡績(株)製)、及び濃度20%のポリアリルアミン(分子量約10万)水溶液(PAA-H:日東紡績(株)製)を例示することができる。
 ポリアリルアミン(II)を溶液にするために使用する溶媒としては、水、有機溶媒またはこれらの混合液を挙げることができる。有機溶媒としては、ポリアリルアミンの溶解性から極性溶媒であることが好ましく、例えばメタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール等のアルコール類;アセトニトリル、ホルムアミド、N,N-ジメチルホルムアミド、ジメチルスルホキシド、テトラヒドロフラン、1,4-ジオキサン等を挙げることができる。反応に使用するポリアリルアミン溶液におけるポリアリルアミン濃度としては、制限されないが、通常1~50重量%、好ましくは2~30重量%、より好ましくは5~20重量%を挙げることができる。
 ポリアリルアミン(II)またはその塩と反応させるシアン酸塩(MCNO)としては、シアン酸カリウムやシアン酸ナトリウム等のシアン酸のアルカリ金属塩を好適に例示することができる。好ましくはシアン酸カリウムである。かかるシアン酸塩の使用割合としては、上記ポリアリルアミン(II)にカルバモイル基を有する置換基(2)が所望の割合(導入率)(一般式(IV)中、nが0.4≦n≦1)で導入されるように、化学量論的に必要な計算量を挙げることができる。シアン酸塩の使用割合として、具体的には、ポリアリルアミン1モルに対して、0.4~10モルになるような割合を挙げることができる。上限は10モル以下であればよいが、好ましくは5モル以下、より好ましくは3モル以下である。下限は置換基(2)の導入率(カルバモイル化度)に応じて対応するモル数に設定することができる(製造例1及び2、表1~3参照)。例えば、カルバモイル化度を0.4にする場合には0.4モル程度、0.8にする場合には0.8モル程度に設定調整することができる。
 ポリアリルアミン(II)またはその塩とシアン酸塩(MCNO)とを反応させて、Rが水素原子で、Rがカルバモイル基である本発明の高分子化合物(IV)を製造するときは、まず、原料のポリアリルアミン(II)またはその塩の溶液にシアン酸塩(MCNO)をゆっくりと滴下することが好ましい。このとき、溶媒にシアン酸塩(MCNO)を溶解させて、原料のポリアリルアミン(II)またはその塩の溶液に滴下することもできる。この場合、シアン酸塩(III)を溶解させるための溶媒は、通常、原料のポリアリルアミンを溶解させるための溶媒と同じである。ポリアリルアミン(II)またはその塩とシアン酸塩(MCNO)との反応は、撹拌しながら行うことが好ましい。反応温度は、特に制限されないが、好ましくは0~100℃、より好ましくは30~60℃に維持することが望ましい。反応時間も特に制限されないが、通常12~48時間、好ましくは12~25時間で、本発明の温度感応性高分子化合物(IV)の溶液を得ることができる。
 反応終了後、副生したアルコールと反応溶媒を除去するために、反応溶液を、真空乾燥することにより、本発明の温度感応性高分子化合物(IV)を、固体として得ることができる。
 また、本発明の温度感応性高分子化合物(IV)の付加塩は、原料として、ポリアリルアミンの部分塩を用い、これとシアン酸塩(MCNO)とを、フリーのポリアリルアミンを用いた場合と同様に、反応させることにより、製造することができる。通常、原料のポリアリルアミンの部分塩とシアン酸塩(III)とを反応させた場合、そのポリアリルアミンのNHで、塩を形成していないNHが、優先的に水素結合性置換基で置換される。反応終了後、得られる温度感応性高分子化合物(IV)の塩の溶液を、アセトン等の溶媒に加えて再沈することにより、本発明の温度感応性高分子化合物(IV)の付加塩を、固体として取り出すことが可能となる。
 なお、Rが水素原子で、Rが(3’)で示されるピログルタミル基である温度応答性高分子化合物(1)は、ピログルタミン酸と適当な縮合剤を用いて、ポリアリルアミン(II)のアミノ基にピログルタミル基をアミド結合で導入することによって製造することができる。
 本発明の温度感応性高分子化合物(I)のにおけるアセチル化度、カルバモイル化度またはピログルタミル化度(以下、これらを総称して「アシル化度」ともいう)(モル%)は、用いる原料の無水酢酸、シアン酸塩またはピログルタミン酸の量に依存する。原料のポリアリルアミン(II)のアミノ基に対し、等モル量の無水酢酸、シアン酸塩またはピログルタミン酸を用いたときは、通常、ほとんど、そのアミノ基はアセチル化、カルバモイル化またはピログルタミル化(アシル化)される。従って、原料として用いる無水酢酸、シアン酸塩またはピログルタミン酸の量を調整することにより、本発明の温度感応性高分子化合物のカチオン密度(または水素結合性置換基の密度)を調整することができる。
 また、Rが水素原子である場合、R基として導入する水素結合性置換基の種類により、本発明の温度感応性高分子化合物(I)のカチオン性や疎水性を変化させることができる。従って、本発明の温度感応性高分子化合物(I)を種々の用途で使用するときは、適当なカチオン密度を有し、かつ、適当な疎水性を有する水素結合性置換基を選択することが好ましい。
 なお、ポリアリルアミン(II)のアシル化度など、水素結合性置換基の導入率(本発明化合物の生成率)は、NMR測定またはコロイド滴定により測定することができる。
 また本発明の温度感応性高分子化合物(I)は、Rが下式で示されるサクシニル基であることもできる。
Figure JPOXMLDOC01-appb-C000019
 この場合、式(I)において、Rは前述の通りであるが、好ましくは式(2)で示されるカルバモイル基である。
 本発明の温度応答性高分子化合物(I)のうち、Rが上記式(1)で示されるサクシニル基で、Rが上記式(2)で示されるカルバモイル基である化合物(V)は、前述する方法で製造される式(IV)で示される本発明の温度感応性高分子化合物またはその塩を、無水コハク酸と反応させることで製造することができる。ここで温度感応性高分子化合物(IV)の塩としては、塩酸塩、硫酸塩、及びリン酸塩などの無機塩を挙げることができる。
Figure JPOXMLDOC01-appb-C000020
(n及びmは、上記と同意義である。DMSOはジメチルスルホキシドを意味する。)。
 具体的には、温度感応性高分子化合物(IV)またはその塩をDMSOに溶解し、溶解した状態でコハク酸、好ましくは無水コハク酸と反応させる。コハク酸の使用割合としては、上記高分子化合物(IV)に、サクシニル基(1)が所望の割合(導入率)(一般式(V)中、nは0.4≦n≦1)で導入されるように、化学量論的に必要な計算量を挙げることができる。コハク酸の使用割合として、具体的には、高分子化合物(IV)の一級アミノ基に対して、1~5等量、好ましくは3等量またはその前後になるような割合を挙げることができる。反応温度は、特に制限されないが、好ましくは0~100℃、より好ましくは30~60℃に維持することが望ましい。反応時間も特に制限されないが、通常12~48時間、好ましくは12~25時間で、本発明の温度感応性高分子化合物(V)の溶液を得ることができる。
 反応終了後、未生成物、副生物および反応溶媒(DMSO)を除去するために、反応溶液を透析してもよく、その後、真空乾燥することにより、本発明の温度感応性高分子化合物(V)を、固体として得ることができる。
 また、本発明の温度感応性高分子化合物(V)の付加塩は、原料として、温度感応答性高分子化合物(IV)の付加塩を用いることで、製造取得することができる。
 斯くして調製される温度感応性高分子化合物(I)(上記化合物(IV)及び(V)が含まれる)またはその付加塩は、pH3~10.5の少なくとも1mMの塩を含有する水溶液中で、5~65℃の範囲、好ましくは5~50℃の範囲に相転移温度を有することを特徴とする。
 ここで「5~65℃(または5~50℃)の範囲に相転移温度を有する」とは、温度感応性高分子化合物(I)またはその付加塩が上記水溶液中で不溶化し不溶相を形成する温度と、当該化合物(I)またはその付加塩が上記水溶液中で溶解し溶解相を形成する温度との境界温度が、5~65℃(または5~50℃)の範囲にあることを意味する。つまり「相転移」とは、上記水溶液において温度感応答性高分子化合物(I)またはその付加塩によって形成される不溶相と溶解相との相転移を意味する。
 かかる「相転移温度」は、温度感応性高分子化合物(I)またはその付加塩を少なくとも1mMの塩を含有する水溶液に溶解し、降温させながら石英セル中で500nmの可視光の透過率を測定し、当該化合物が完全に溶解しているときの清澄溶液の可視光の透過率を100%とした場合に、これを降温したときに該透過率が減少し始める温度として求めることができる。
 ここで塩とはKCl, NaCl, CaCl2, MgCl2, KBr, NaBr, Na2SO4, 及びMgSO4等を挙げることができるが、温度感応性高分子化合物(I)が、式(IV)で示されるカルバモイル化ポリアリルアミン(Carb-PAA)である場合、好適には塩化ナトリウムを、また式(V)で示されるサクシニル化カルバモイルポリアリルアミン(Suc-Carb-PAA)である場合、好適には塩化カルシウムを挙げることができる。
 2.温度、pHまたは塩濃度感応性分離材
 本発明の温度、pHまたは塩濃度感応性分離材(以下、「温度感応性分離材」という)は、前述する温度感応性高分子化合物(I)(上記化合物(IV)及び(V)が含まれる)またはその付加塩を有効成分とするものであって、当該有効成分の特性に基づいて、同様に、pH3~10.5の少なくとも1mMの塩を含有する水溶液中で、5~65℃、好ましくは5~50℃の範囲に相転移温度を有することを特徴とする。
 本発明の温度感応性分離材の相転移温度は、それを溶解する溶媒の種類、溶媒の塩濃度、pH、溶媒中の分離材の濃度、及び溶媒中の他成分の存在(特に、アニオン性物質、カチオン性物質、水素結合性物質または疎水結合性物質などの存在及びその量)に応じて変動し得る。しかし、本発明の温度感応性分離材は、上記するように、温度感応性高分子化合物(I)またはその付加塩を有し、pH3~10.5の少なくとも1 mMの塩化ナトリウムを含有する水溶液中で、5~65℃、好ましくは5~50℃の範囲に相転移温度を有し、当該相転移温度よりも低い温度で不溶相を形成し、当該相転移温度よりも高い温度で溶解相を形成するものである。
 かかる温度感応性分離材の一例として、前述する温度感応性高分子化合物(I)のうち、Rとして水素原子、Rとしてカルバモイル基(2)を有し、且つ当該置換基導入率(カルバモイル化度)が0.4(n=0.4)以上、好ましくは0.67(n=0.67)以上である化合物(IV)またはその付加塩からなる温度感応性分離材を挙げることができる。
 また好適な温度感応性分離材として、pH4~9.5の少なくとも10mMの塩化ナトリウムを含有する水溶液中で、10~45℃の範囲に相転移温度を有し、当該相転移温度よりも低い温度で不溶相を形成し、当該相転移温度よりも高い温度で溶解相を形成するものである。かかる温度感応性分離材の一例として、前述する温度感応性高分子化合物(I)のうち、Rとして水素原子、Rとしてカルバモイル基(2)を有し、且つ当該置換基導入率(カルバモイル化度)が0.87(n=0.87)以上である化合物(IV)またはその付加塩からなる温度感応性分離材を挙げることができる。
 より好ましい温度感応性分離材は、pH5.5~8.5の少なくとも50mMの塩化ナトリウムを含有する水溶液中で、20~40℃の範囲に相転移温度を有し、当該相転移温度よりも低い温度で不溶相を形成し、当該相転移温度よりも高い温度で溶解相を形成するものである。かかる温度感応性分離材の一例として、前述する温度感応性高分子化合物(I)のうち、Rとして水素原子、Rとしてカルバモイル基(2)を有し、且つ当該置換基導入率(カルバモイル化度)が0.94(n=0.94)以上である化合物(IV)またはその付加塩からなる温度感応性分離材を挙げることができる。
 また他の好ましい温度感応性分離材は、pH4.5~5の少なくとも150mMの塩化ナトリウムを含有する水溶液中で、5~30℃の範囲に相転移温度を有し、当該相転移温度よりも低い温度で不溶相を形成し、当該相転移温度よりも高い温度で溶解相を形成するものである。また他の好ましい温度感応性分離材は、pH7.5の少なくとも150mMの塩化カルシウムを含有する水溶液中で、30~36℃の範囲に相転移温度を有し、当該相転移温度よりも低い温度で不溶相を形成し、当該相転移温度よりも高い温度で溶解相を形成するものである。さらに別の好ましい温度感応性分離材は、pH7.5の少なくとも150mMの塩化マグネシウムを含有する水溶液中で、5~15℃の範囲に相転移温度を有し、当該相転移温度よりも低い温度で不溶相を形成し、当該相転移温度よりも高い温度で溶解相を形成するものである。このような温度感応性分離材の一例として、前述する温度感応性高分子化合物(I)のうち、Rとしてサクシニル基(1)、Rとしてカルバモイル基(2)を有する化合物、好ましくは当該カルバモイル基の置換基導入率(カルバモイル化度)が0.87(n=0.87)である化合物(V)を例示することができる。
 ここで相転移温度は、前述するように、当該温度感応性分離材を少なくとも1mMの塩を含有する水溶液に溶解し、降温させながら石英セル中で500nmの可視光の透過率を測定し、当該分離材が完全に溶解しているときの清澄溶液の可視光の透過率を100%とした場合に、これを降温したときに該透過率が減少し始める温度として求められる。
 ここで塩とはKCl, NaCl, CaCl2, MgCl2, KBr, NaBr, Na2SO4, 及びMgSO4等を挙げることができるが、温度感応性高分子化合物(I)が、式(IV)で示されるカルバモイル化ポリアリルアミンである場合、好適には塩化ナトリウムを、また式(V)で示されるサクシニル化カルバモイルポリアリルアミンである場合、好適には塩化カルシウムを挙げることができる。
 上記塩の濃度の濃度としては、上記するように1mM以上であれば特に制限されない。好ましくは1~3000mMであり、より好ましくは50~1000mMである。また、水溶液中での温度感応性分離材の濃度は、温度感応性高分子化合物(I)の濃度に換算して、通常0.1mg/ml以上、好ましくは0.1~300mg/ml、より好ましくは0.1~100mg/mlを挙げることができる。
 また本発明の温度感応性分離材は、温度感応性高分子化合物(I)またはその付加塩そのものを有効成分とするものであってもよいし、また分離しようとする被分離物と結合性を有するリガンドを、高分子化合物(I)を構成するモノマーユニットに、必要に応じてアルキレン基などの任意のリンカーを介して固定化したものを有効成分とするものであってもよい。
 かかるリガンドとしては、ビオチン又はイミノビオチン(またはアビジンまたはストレプトアビジン)、抗体(または抗原)、分子シャペロン、糖鎖、レクチン、プロテインA、プロテインG、DNA、RNA、酵素(または酵素反応における基質)、受容体(または受容体に対するリガンド(アゴニスト若しくはアンタゴニスト))、競争阻害剤、補酵素等が例示される。
 温度感応性高分子化合物(I)に上記リガンドを結合する方法としては、制限されないが、例えば抗体(または抗原)、酵素または受容体などの蛋白質をリガンドとして結合させる場合、蛋白質にはカルボキシル基と温度感応性高分子化合物(I)のアミノ基との間でペプチド結合を形成させる方法を例示することができる。またリガンドのカルボキシル基をN-ヒドロキシスクシンイミド(NHS)でエステル化して活性化エステル基とし、次いで温度感応性高分子化合物(I)のアミノ基とアミド結合を形成することによっても、リガンドと温度感応性高分子化合物(I)を結合させることができる(例えば、実験例6参照)。
 なお、リンカーとしては、特に制限されないが、前述するように炭素数1~6、好ましくは炭素数1~4、より好ましくは炭素数1~3等の低級アルキレン基を例示することができる。
 温度感応性分離材と併用するアニオン性物質としては、アニオン基を有する物質であれば特に制限されないが、例えば一価アニオンを有するフルオレセイン(FL)、二価アニオンを有するブロモフェノールブルー(BPB)、四価アニオンを有するトリパンブルー(TB)やエバンスブルー(EB)等のアニオン系色素を挙げることができる。
 また、温度感応性分離材と併用するカチオン性物質としては、カチオン基を有する物質であれば特に制限されないが、例えば一価カチオンを有するエチジウムブロマイド、二価カチオンを有するプロピジウムアイオダイド、四価カチオンを有するTMPyP(テトラキス(1-メチルピリジニウム-4-イル)ポルフィリンp-トルエンスホナートを挙げることができる。
 本発明の温度感応性分離材の温度感応性は可逆的であり、溶解と不溶化の繰返し変化によってもその温度感応性は保持されることが好ましい。
 3.温度、pHまたは塩濃度感応性分離材の用途
 本発明の温度感応性分離材は、上記特性を利用することができる種々の用途や用法に適用することができる。例えば、水性二相分配法における分離・濃縮剤(後述(3-1)参照)、薬物放出剤における基材(薬物放出基材)(後述(3-3)参照)、ドラッグデリバリーシステムにおける運搬体(ドラッグデリバリーシステムキャリアー)、酵素や抗体を固定化するための担体(後述(3-2)参照)、細胞培養基材、調光材(実験例5参照)、光機能材料、センシング基材、として用いることができる。
 例えば、本発明の温度感応性分離材を、細胞培養基材またはその成分として用いる場合、それを当該温度感応性分離材の相転移温度よりも低い温度に設定して不溶相の状態で細胞を培養し、次いでそれを相転移温度よりも高い温度に調整して溶解相にすることで、液体化して細胞を回収することができる。例えば、本発明の温度感応性分離材を、pH変化や塩濃度変化に応答するセンサーの基材(センシング基材)として用いる場合、pHや塩濃度変化を伴う生体内での反応を測定することが可能である。
 (3-1)水性二相分配法
 水性二相分配法は、本発明の温度感応性分離材を分離剤または濃縮剤として用いることにより実施することができる。具体的には、水性二相分配法は、本発明の温度感応性分離材を溶解した水性溶媒の温度を、当該温度感応性分離材の相転移温度より低くした際に形成されるコアセルベート層と水層に対する被分離物の親和性の差を利用して、被分離物を分離し濃縮する方法である。分離しようとする被分離物を含む試料(被分離試料)を、まず温度感応性分離材を溶解した水性溶媒に当該温度感応性分離材の相転移温度より高い温度条件下で溶解させ、次いでこの温度を相転移温度より低い温度にすることでコアセルベート層及び水層を形成する。斯くして、被分離物はコアセルベート層及び水層に対する親和性の差によってどちらかの層により多く分配される。そこで、被分離物が分配された層から、当該被分離物を回収する。所望により、この操作を繰り返すことにより被分離物の回収率を増加することができる。
 当該水性二相分配法は、特にコアセルベート層を形成する本発明の温度感応性分離材に対して親和性を有する被分離物の分離及び濃縮に好適に使用される。
 具体的には、本発明において、水性二相分配法は、被分離物を含む試料(被験試料)と本発明の温度感応性分離材とを、pH3~10.5の範囲にある少なくとも1mMの塩濃度の水溶液中に共存させ、次いで、当該水溶液の温度を当該温度感応性分離材の相転移温度より高い温度から相転移温度より低い温度にすることによって実施することができる。本発明の温度感応性分離材に親和性を有する被分離物は、当該温度感応性分離材から形成されるコアセルベート層に分配されるため、当該コアセルベート層を、遠心により沈降させるかまたは透析すること等により濃縮することで、被験試料から被分離物を分離することができる。ここで塩としては塩化ナトリウムや塩化カルシウムなどを例示することができるが、これに限定されない。他の塩としては、例えばKCl, NaCl, MgCl2, KBr, NaBr, Na2SO4, MgSO4等を例示することができる。
 Rが水素原子、Rがカルバモイル基(2)である温度感応性高分子化合物(IV)またはその付加塩を有効成分とする温度感応性分離材を用いる場合、上記被分離物の一例としては、アニオン性物質を挙げることができる。アニオン性物質としては、アニオン基を有する物質であれば特に制限されないが、例えば一価アニオンを有するフルオレセイン(FL)、二価アニオンを有するブロモフェノールブルー(BPB)、四価アニオンを有するトリパンブルー(TB)やエバンスブルー(EB)等のアニオン系色素:シアニン系アニオン色素を挙げることができる。
 Rがサクシニル基(1)、Rがカルバモイル基(2)である温度感応性高分子化合物(V)またはその付加塩を有効成分とする温度感応性分離材を用いる場合、上記被分離物の一例としては、カチオン性物質を挙げることができる。カチオン性物質としては、カチオン基を有する物質であれば特に制限されないが、例えば一価カチオンを有するエチジウムブロマイド、二価カチオンを有するプロピジウムアイオダイド、四価カチオンを有するTMPyP(テトラキス(1-メチルピリジニウム-4-イル)ポルフィリンp-トルエンスホナートを挙げることができる。
 またその他、被分離物の一例としては、タンパク質、細胞、水素結合性物質、疎水結合性物質などを挙げることができる。水素結合性物質としては、RNAやDNA等の核酸、またはアンチセンス核酸、siRNA、miRNA、リボザイム、RNAアプタマーなどの核酸誘導体を、また疎水結合性物質としてはパクリタキセル等の抗がん剤、またはカーボンナノチューブなどを例示することができる。
 尚、水性二相分配法に適用される温度感応性分離材は、温度感応性高分子化合物(I)またはその付加塩そのものを有効成分とするものであってもよいし、また分離しようとする被分離物と結合性を有するリガンドを、高分子化合物(I)を構成するモノマーユニットに、必要に応じてアルキレン基などの任意のリンカーを介して固定化したものを有効成分とするものであってもよい。
 かかるリガンドとしては、前述するように、ビオチン又はイミノビオチン(またはアビジンまたはストレプトアビジン)、抗体(または抗原)、分子シャペロン、糖鎖、レクチン、プロテインA、プロテインG、DNA、RNA、酵素(酵素反応における基質)、受容体(受容体に対するリガンド(アゴニスト・アンタゴニスト))、競争阻害剤、補酵素等が例示される。上記特異的な相互作用を行うことが知られている一組の具体例としては、抗原-抗体、酵素-基質(阻害剤)、各種の生理活性物質-受容体、ビオチン又はイミノビオチン-アビジンまたはストレプトアビジン、DNA-DNA(RNA)等が挙げられる。これらの組は、天然分子同士に限らず、合成分子-天然分子、合成分子-合成分子も包含される。また、相互作用としては、静電相互作用、疎水性相互作用、水素結合、ファンデルワールス相互作用等の単独乃至組み合わせが挙げられる。
 本発明の水性二相分配法は、好ましくは5~36℃といった比較的低温域に相転移温度を有する温度感応性分離材を分離・濃縮剤として用いることができる方法であるため、微生物や細胞培養の生体物等のバイオプロダクトや、酵素や抗体や生理活性物質などタンパク質などを被分離物とするバイオセパレーションに好適に使用することができる。
 (3-2)酵素または抗体の固定化基材、それを用いた反応方法
 また本発明の温度感応性分離材は、酵素または抗体の固定化基材(固相)として用いることができ、これに酵素または抗体を固定化することにより、固定化酵素または固定化抗体を調製し提供することができる。
 かかる固定化酵素及び固定化抗体は、イムノアッセイ法等の被験物質(タンパク質等)の定性または定量分析、タンパク質の精製、バイオリアクター構築のための有力な材料となる。この場合、温度感応性高分子化合物(I)またはその付加塩としては、これを構成するモノマーユニットに酵素に対して結合性を有するリガンドを、必要に応じてリンカーを介して固定化したものを用いることが好ましい。かかるリガンドとしては、前述するように、ビオチン又はイミノビオチンを好適に例示することができる。
 固定化酵素は、本発明の温度感応性分離材(酵素固定化基材)に酵素を化学的に固定化することにより調製することができる。酵素の固定化方法としては、上記2で説明した温度感応性高分子化合物(I)にリガンド(酵素)を結合する方法を同様に用いることができる。斯くして調製した固定化酵素を、pH3~10.5の少なくとも1mMの塩濃度の基質を含む水溶液中において、その温度を温度感応性分離材の相転移温度より低い温度に設定することで酵素を固定化した温度感応性分離材(固定化酵素)を不溶相として相分離しておく。そして、必要に応じて、温度やpH等を変化させて相転移温度より高い温度にすることで、固定化酵素を、基質を含む水溶液と相溶化することで、酵素反応を開始させることができる。
 また固定化抗体も、本発明の温度感応性分離材(抗体固定化基材)に抗体を化学的に固定化することにより調製することができる。抗体の固定化方法としては、上記2で説明した温度感応性高分子化合物(I)にリガンド(抗体)を結合する方法を同様に用いることができる。斯くして調製した固定化抗体を、pH3~10.5の少なくとも1mMの塩濃度の上記抗体の抗原を含む水溶液中において、その温度を温度感応性分離材の相転移温度より低い温度に設定することで抗体を固定化した温度感応性分離材(固定化抗体)を不溶相として相分離しておく。そして、必要に応じて、温度やpH等を変化させて相転移温度より高い温度にすることで、固定化抗体を、抗原を含む水溶液と相溶化することで、抗原抗体反応を開始させることができる。また、抗体に代えてその抗原を温度感応性分離材に固定化して、水溶液に当該抗体の抗原を配合して、抗原抗体反応を行うこともできる。
 (3-3)薬物放出剤、薬物放出方法
 また本発明によれば、上記温度感応性分離材を薬物と組み合わせることで薬物放出剤を提供することができる。当該薬物放出剤は、本発明の温度感応性分離材をいわゆるドラッグデリバリーシステム(DDS)のキャリアー(薬物の担持体)として用いるもので、本発明の温度感応性分離材と任意の薬物との組み合わせからなる。本発明の薬物放出剤は、本発明の温度感応性分離材が生理学的条件下で温度を制御することで可逆的に溶解及び不溶化し(相転移)、これに伴ってコアセルベートが消失したり形成したりするという特性を、薬物の放出及び保持の制御に応用したものである。本発明の薬物放出剤は、必要なときに必要なだけ薬物を投与しようというインテリゼント化製剤(インテリゼントDDS)に好適に用いられる。
 本発明の薬物放出剤において、本発明の温度感応性分離材に各種薬物(例えば、アドレアマイシン、タキソール等の各種の抗ガン剤等)を担持または結合させる手段は、温度感応性分離材の水性溶液を、温度やpH等の制御下で温度感応性分離材と所望の薬物を接触させる方法が挙げられる。具体的には、本発明の温度感応性分離材と各種薬物を、pH3~10.5の少なくとも1mMの塩濃度を水溶液中で共存させ、当該水溶液の温度やpH等を制御することで、温度感応性分離材の相転移温度よりも低い温度にすることで、本発明の温度感応性分離材に各種薬物を担持または結合させることができる。次いで、温度やpH等を制御することで、温度感応性分離材の相転移温度よりも高い温度にすることで、薬物放出剤の温度感応性分離材から各種薬物を放出させることができる。
 この場合、温度感応性分離材として、温度感応性高分子化合物(I)またはその付加塩をそのまま使用してもよいし、また前述するリガンドを、必要に応じてリンカーを介して固定化した温度感応性高分子化合物(I)またはその付加塩を用いてもよい。
 また、本発明の薬物放出剤において、薬物を温度感応性分離材に担持または結合させる態様としては、好ましくは相転移温度よりも低い温度にすることで温度感応性分離材から形成されるコアセルベート層の内部または表面に、薬物を結合させる方法を挙げることができる。また、本発明の薬物放出剤は、薬物を温度感応性分離材に担持または結合させた状態で、更にカプセル、スポンジ、ゲル、リポソーム等の基材に収容または担持させる等、二次的な処理が施されていても良い。この場合も、温度やpH等を制御することで、温度感応性分離材の相転移温度よりも高い温度にすることで、薬物放出剤の温度感応性分離材から形成されたコアセルベート層から各種薬物を放出させることができる。
 なお、本発明の薬物放出剤の投与形態も任意であり、その剤形により適宜選択される。例えば、経口剤、貼付剤、注射剤、点滴、坐剤等の剤形に応じて、経口投与、経皮投与、静脈内または筋肉内投与、及び直腸投与などが挙げられる。
 水性二相分配法、酵素の固定化、薬物放出剤等において、標的物質や目的物の本発明の温度感応性分離材に対する結合は、イオンコンプレックスや電荷移動錯体を利用した結合、生化学的親和性等を利用した結合が好ましい。本発明の温度感応性分離材に結合した標的物質または目的物は、例えば、塩濃度制御、pH制御、阻害剤、基質等の制御、尿素、SDSなどの変性剤の制御、有機溶媒、金属イオンなどの制御、温度制御などの方法を適宜選定乃至組み合わせることにより結合強度を制御し、ひいては分配率、反応速度、薬物放出速度等を制御することができる。また、種々のリガンドの温度等応答性材への固定化は、温度等応答性材の繰返し再現性を保持するには共有結合であることが好ましいが、イオンコンプレックスや電荷移動錯体を利用した結合、生化学的親和性等を利用した結合であってもよい。
 以下、製造例及び実験例を挙げて本発明の構成及び効果をより明確に説明する。但し、本発明はこれらの製造例及び実験例によって何ら制限されるものではない。
 製造例1
 ポリアリルアミン塩酸塩500mg(アミンとして5ミリモル)に水10mLを加えて溶解し、50℃に加熱し、これにシアン酸カリウム260mg~1.3g(ポリアミンアミン1モルに対して0.6~3モル)を水1mLに溶解した液を適下した後、24時間、同温度に保った。反応終了後、同温度で透析膜(MWCO:3,500)を用いて、水に対して24時間透析して副生した塩化カリウムを除き、凍結乾燥を行った。なお、ここではポリアリルアミン塩酸塩として、分子量が1.5×10のもの(式(II)中のmが150のもの)を使用した(以下、これを「PAA-15K」ともいう)。
 図1に、原料として使用したポリアリルアミン(PAA-15K)とともに、上記で得られた高分子化合物(カルバモイル化ポリアリルアミン:Carb-PAA92)のATR-IRスペクトル(赤外線吸収スペクトル)を示す。図から分かるように、得られた高分子化合物には、1550 cm-1及び1350 cm-1付近にカルバモイル基由来の吸収が認められた。
 そこで、凍結乾燥した高分子化合物(カルバモイル化ポリアリルアミン:以下、「Carb-PAA-15K」ともいう)(表1参照)10mgを0.1% NaODを含む重水中に加え、60℃にてNMRを測定し、カルバモイル基の導入率(カルバモイル化度)を決定した。NMR測定データの一例として、図2に、ポリアリルアミン(PAA-15K)とカルバモイル化ポリアリルアミン(Carb-PAA-15K)(カルバモイル化度0.87、Carb-PAA-15K 87)のNMRスペクトルを示す。カルバモイル化度は、2.6ppm(カルバモイル化されていないメチレンのプロトンピーク:図2において「a」として示す) と3.1ppm(カルバモイル化されたメチレンのプロトンピーク:図2において「b」として示す)のピークの面積比により、下式に従って算出した。
[数1]
  (b / (a+b) ) ×  100% 
 結果を表1に示す。なお、カルバモイル化度をもとにサンプルコードを付けた。
Figure JPOXMLDOC01-appb-T000021
 製造例2
 ポリアリルアミン塩酸塩として、分子量が1.5×10の「PAA-15K」に代えて、分子量が5×10のポリアリルアミン塩酸塩(式(II)中のmが50のもの;以下、これを「PAA-5K」ともいう)、または分子量が1.5×10のポリアリルアミン塩酸塩(式(II)中のmが1500のもの;これを「PAA-150K」ともいう)を用いて、これを製造例1と同様に、種々の割合でシアン酸カリウムと反応させて(表2及び3参照)、カルバモイル化ポリアリルアミン(Carb-PAA 5Kシリーズ、Carb-PAA 5Kシリーズ)を製造した。そして、製造例に記載する方法で、各カルバモイル化ポリアリルアミンについてカルバモイル化度を求めた。
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
 実験例1 
 製造例1において調製したCarb-PAA-15K 92を、生理的緩衝液(10mM Hepes-NaOH (pH7.5)+150mM NaCl in water)に2.5mg/ml濃度になるように溶解した。次いで、かかるCarb-PAA-15K 92溶液を石英セルに入れ、溶液温度を70~5℃の範囲で変化させ、その間の溶液の透過率(%)を紫外可視分光光度計によって測定した。なお、溶液の透過率%は下式から算出した。
[数2]
透過率(%) = 10 (- 吸光度)
 結果を図3に示す。図3から分かるように、Carb-PAA-15K 92は、生理学的低塩濃度の水溶液中で、約26℃(相転移温度)を境界にしてそれよりも低い温度域では不溶化し、それよりも高い温度域では可溶化すること、つまり高温溶解型(上限臨界共溶温度型)の温度感応性高分子化合物であることが確認された。またこの相転移はシャープで可逆的であった。
 また26℃未満の低温条件下で不溶化状態にあるCarb-PAA-15K 92を、10000rpmで3分間遠心分離することでCarb-PAA-15K 92を沈殿させることができた。このことから、本発明の高分子化合物によれば、例えば、細胞やタンパク質などの生物材料や生理活性物質のように高温で失活または変性する物質を、生理学的な低温条件で活性を維持しながら、分離(バイオセパレーション)、捕捉または濃縮することが可能である。また本発明の高分子化合物は上記相転移温度以上にすることで可逆的に可溶化するため、それよりも低い温度条件下で捕捉または濃縮した物質は、その相転移温度以上に加温することで、当該高分子化合物から離脱させて回収することも可能である。すなわち、本発明の高分子化合物は、バイオセパレーションの材料(分離・濃縮剤)として有効に利用することができる。
 図4に、室温条件下(25℃)で3.7mg/mL濃度のCarb-PAA-15K 92溶液(10mM Hepes-NaOH (pH7.5)+150mM NaCl)を共焦点顕微鏡観察した共焦点画像を示す。これからわかるように、Carb-PAA-15K 92は溶液中で、粒径約5μm程度のコアセルベートを形成していることがわかる。
 実験例2
 実験例1の結果に基づいて、製造例1及び2で調製した各種のカルバモイル化ポリアリルアミン(Carb-PAA-15K, Carb-PAA-5K, Carb-PAA-150K)の相転移温度を調べた。
 具体的には、原料として使用したポリアリルアミン(PAA-15K, PAA-5K, PAA-150K)と各種のカルバモイル化ポリアリルアミン(Carb-PAA-15K(Carb-PAA-15K 87~100)、Carb-PAA-5K、Carb-PAA-150K)を、生理的緩衝液(10mM Hepes-NaOH (pH7.5)+150mM NaCl)に、1mg/ml濃度になるように溶解した。次いで、かかる溶液を石英セルに入れ、溶液温度を70℃から5℃までの範囲で、1℃/分の速度で温度を下げながら、500nmにおける吸光度をUV-VIS分光光度計(吸光光度計)で測定し、実験例1と同様にして当該吸光度から透過率%を求めた。
 ポリアリルアミン(PAA-15K)とカルバモイル化ポリアリルアミン(Carb-PAA-15K(Carb-PAA-15K 87~100)の結果を図5Aに示す。図5Aに示すように、カルバモイル化度が0.87以上であるCarb-PAA 15K(1mg/mL)は、生理的緩衝液(10mM Hepes-NaOH (pH7.5)+150mM NaCl)条件下、5~50℃の温度範囲で、シャープ且つ可逆的に相転移することが確認された。
 表4に各種のCarb-PAA-15Kの相転移温度(℃)を示す。これからわかるように、カルバモイル化度が0.87以上のCarb-PAA-15K(1mg/mL)は、生理的条件(10mM Hepes-NaOH (pH7.5)+150mM NaCl)下で、5~50℃の範囲に相転移温度を有する高温溶解型の高分子化合物である。
 また表5及び6に各種のCarb-PAA-5K及びCarb-PAA-150Kの相転移温度(℃)を示す。これからわかるように、カルバモイル化度が0.88以上のCarb-PAA-5K(1mg/mL)は、生理的条件(10mM Hepes-NaOH (pH7.5)+150mM NaCl)下で、5~40℃の範囲に相転移温度を有する高温溶解型の高分子化合物であり、またカルバモイル化度が0.83以上のCarb-PAA-150K(1mg/mL)は、生理的条件(10mM Hepes-NaOH (pH7.5)+150mM NaCl)下で、5~67℃の範囲に相転移温度を有する高温溶解型の高分子化合物である。
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
 図5Bに、1mg/mL のCarb-PAA-15K(Carb-PAA-150K 87~100)(●で示す)、Carb-PAA-5K(Carb-PAA-150K 88~100)(▲で示す)、Carb-PAA-150K(Carb-PAA-150K 83~95)(■で示す)についてカルバモイル基の導入率(カルバモイル化度)を横軸とし、相転移温度(℃)をプロットした結果を示す。表4~6と図5Bの結果からわかるように、生理的緩衝液(10mM Hepes-NaOH (pH7.5)+150mM NaCl)条件下、5~65℃の温度範囲で、カルバモイル基の導入率(カルバモイル化度)が多くなるにつれて相転移温度が高くなることがわかる。また図5Bに示す相関関係に基づいて、所望の相転移温度をもつ温度感応性高分子化合物を作製する場合に、カルバモイル化度の程度を設定することが可能になる。例えば、出発原料のポリアリルアミン塩酸塩として、分子量が1.5×10の「PAA-15K」を用いて、相転移温度15℃の温度感応性高分子化合物を作成する場合は、カルバモイル化度を0.9にすれば良い。
 実験例3
 製造例1で調製した各種のカルバモイル化ポリアリルアミン(Carb-PAA 15K)について、相転移温度に対するCarb-PAA-15Kの濃度、pH、及塩濃度が及ぼす影響を評価した。
 (1)Carb-PAA 15K濃度依存性
 各種のCarb-PAA-15K(Carb-PAA-150K 87~100)の濃度を0.1~5mg/mLの範囲で変化させながら、相転移温度(℃)を測定した。具体的には、各種のCarb-PAA-15K(Carb-PAA-150K 87~100)を、生理的緩衝液(10mM Hepes-NaOH (pH7.5)+150mM NaCl)に、0.1~5mg/mLの濃度になるように溶解し、かかる溶液を70℃から5℃までの範囲で、1℃/分の速度で温度を下げながら、500nmにおける吸光度をUV-VIS分光光度計(吸光光度計)で測定し、当該吸光度から実験例1の方法に従って透過率%を求めた。0.1~5mg/mL濃度の各種Carb-PAA-15K(Carb-PAA-150K 87~100)について得られた透過率に基づいて、透過率100%の状態から降温させて透過率が減少し始める温度を相転移温度として決定した。
 結果を図6に示す。図6において、横軸はCarb-PAA-15Kの濃度(mg/mL)を、縦軸は相転移温度(℃)を示す。この結果から、0.1~5mg/mL濃度のCarb-PAA 15Kは、生理的緩衝液(10mM Hepes-NaOH (pH7.5)+150mM NaCl)条件下、各Carb-PAA-15Kの濃度が上昇するに伴い、相転移温度が上昇することがわかる。
 図6の結果から、濃度を変動させたとき、ある濃度で一定の温度になれば、これが高温溶解型(UCST型)の温度感応性高分子化合物(温度感応性分離材)であるとの証明になるといえる。また図6の結果から、本発明の温度感応性高分子化合物を有効成分とする温度感応性分離材によれば、その濃度に応じて相転移温度を調整制御することができることがわかる。
 (2)pH依存性の評価
 各種のCarb-PAA-15K(Carb-PAA-15K 67及びCarb-PAA-15K 87~97)の濃度を1mg/mLに調製し、pHを5.5~10.5の範囲で変化させながら、相転移温度(℃)を測定した。具体的には、各種のCarb-PAA-15K(Carb-PAA-15K 67及びCarb-PAA-15K 87~97)を、各種のpH(5.5~10.5)に調整した生理的緩衝液(下記参照)に1mg/mLの濃度になるように溶解し、かかる溶液を70℃から5℃までの範囲で、1℃/分の速度で温度を下げながら、500nmにおける吸光度をUV-VIS分光光度計(吸光光度計)で測定し、当該吸光度から実験例2の方法に従って相転移温度(℃)を算出した。
 <緩衝液>
pH5.5と6.5:10mM MES-NaOH+150mM NaCl
pH7.5と8.5:10mM HEPES-NaOH+150mM NaCl
pH9.5と10.5:10mM ホウ酸-NaOH+150mM NaCl。
 結果を図7に示す。図7において、横軸はCarb-PAA-15KのpHを、縦軸は相転移温度(℃)を示す。これからわかるように、pH5.5~8.5の範囲ではいずれのCarb-PAA-15Kも相転移温度(℃)がほぼ一定で変動が認められなかった。Carb-PAA-15K 87~94については、pHが8.5を超えるとpHが高くなるにつれて相転移温度(℃)が上昇する傾向が認められた。その傾向は、カルバモイル基の導入率(カルバモイル化度)の比較的低いCarb-PAA-15K 87において顕著であった。しかし、カルバモイル基の導入率(カルバモイル化度)が高いCarb-PAA-15K 97は、pH5.5~9.5の範囲でほぼ一定の相転移温度(℃)を維持していた。また図7に示すように、Carb-PAA-15K 67は、pH9.5~10.5のアルカリ条件下で、10~15℃に相転移温度(℃)を有する高温溶解型の温度感応性高分子化合物であることが確認された。
 この結果から、本発明の温度感応性分離材によれば、例えば、系の温度を変化できない場合でも、pHを変えることで相分離させることができることがわかる。特に、ガン組織の周りは酸性になっているなど、生体内ではpHの変化が起きている場所がある。従って、組織のpH環境に応じて相転移挙動が起きることが予想され、センシングに使えることが予想される。
 (3)塩濃度依存性の評価
 各種のCarb-PAA-15K(Carb-PAA-15K 87~97)を溶解する水溶液の塩濃度を、4N NaClを用いて、50~1000mMの範囲で変化させながら、相転移温度(℃)を測定した。具体的には、各種のCarb-PAA15K(Carb-PAA-15K 87~97)を、4N NaClで各種の塩濃度になるように調整した緩衝液(10mM HEPES-NaOH(pH7.5)+50~1000mM NaCl)に1mg/mLの濃度になるように溶解し、かかる溶液を70℃から5℃までの範囲で、1℃/分の速度で温度を下げながら、500nmにおける吸光度をUV-VIS分光光度計(吸光光度計)で測定し、当該吸光度から実験例2の方法に従って相転移温度(℃)を算出した。
 結果を図8に示す。図8において、横軸はNaClの濃度(mM)を、縦軸は相転移温度(℃)を示す。これからわかるように、Carb-PAA-15K 97は塩濃度が50~200mMの範囲で、Carb-PAA(94)は塩濃度が50~300mMの範囲で、またCarb-PAA-15K 87~92は塩濃度が50~400mMの範囲で、塩濃度の上昇に伴い相転移温度(℃)も上昇する傾向が見られた。塩濃度が1000mMの条件下(10mM HEPES-NaOH(pH7.5)+1000mM NaCl)での相転移温度(℃)は、Carb-PAA-15K 92~97はいずれも30℃であり、Carb-PAA-15K 87は25℃であった。また、Carb-PAA-15K 87の相転移温度(℃)は塩濃度が500~1000mMの範囲で25℃程度に維持された。
 なお、塩濃度が0mM、すなわち純水の条件ではいずれのCarb-PAA-15Kも相転移しないこと、つまり相転移温度を有する高温溶解型の温度感応性高分子化合物ではないことが確認された。
 この結果から、本発明の温度感応性分離材によれば、例えば、系のpHや温度を変化できない場合でも、塩濃度を変えることで相分離させることができることがわかる。例えば、低塩濃度の条件で被分離物を捕捉させ、その後、当該系に塩を追加して相分離(セパレーション)する方法を挙げることができる。
 実験例4
 Carb-PAA-15Kの相転移温度に対するアニオン性物質の影響を調べた。Carb-PAA-15KとしてCarb-PAA-15K 87を、またアニオンとしてアニオン系色素(一価アニオン:フルオレセイン(FL)、二価アニオン:ブロモフェノールブルー(BPB)、四価アニオン:トリパンブルー(TB)、エバンスブルー(EB))を用いた。
 具体的には、Carb-PAA-15K 87を、生理的緩衝液(10mM Hepes-NaOH (pH7.5)+150mM NaCl)に、1mg/mLの濃度になるように溶解し、この中に上記の各アニオン系色素を、0μMまたは10μMの濃度になるように配合した。かかる溶液を40℃から5℃までの範囲で、1℃/分の速度で温度を下げながら、800nmにおける透過率(%)をUV-VIS分光光度計(吸光光度計)で測定した。
 結果を図9に示す。図9において、横軸は相転移温度(℃)を、縦軸は800nmにおける透過率(%)を示す。この結果から、本発明の高分子化合物はアニオン性物質の存在下で相転移温度が変化することが確認された。またその変化の程度はアニオンの数に依存し、アニオンの数が多いほど、相転移温度が高くなることが確認された。捕えたいアニオン性物質が存在する時、本発明の温度感応性分離材を加えると相分離するので、遠心すると分離することができる。
 実験例5
 実験例5で調製したCarb-PAA-15K 87と各種アニオン系色素(一価アニオン:フルオレセイン(FL)、二価アニオン:ブロモフェノールブルー(BPB)、四価アニオン:トリパンブルー(TB)、エバンスブルー(EB))の混合液(10mM Hepes-NaOH (pH7.5)+150mM NaCl)の温度を10~50℃に調製し、各混合液の各温度における極大吸収波長(nm)をUV-VIS分光光度計(吸光光度計)で測定した。
 結果を図10Aに示す。また、各混合液について、温度を横軸に、図10Aの結果から求めた極大吸収波長(nm)を縦軸にプロットした結果を図10Bに示す。
 これからわかるように、エバンスブルー(EB)は単独では温度によって極大吸収波長(nm)は変動しないものの、エバンスブルー(EB)を配合したCarb-PAA(87)は温度によって極大吸収波長(nm)が変動すること、つまり当該混合液は温度によって色調が変化(可逆的変化)することが確認された。かかる極大吸収波長(nm)の温度依存性は、エバンスブルー(EB)を配合したCarb-PAA(87)にのみ認められ、その他のアニオン系色素を配合したCarb-PAA(87)では認められなかった(図10B)。
 この結果から、本発明の温度感応性分離材は、調光材として有用であることがわかる。
 実験例6
 Carb-PAA-15K 92 50mgを3mLの0.1Mホウ酸緩衝液(pH 9.0)に溶解後、biotin (0.4 mg)、N-hydroxysuccinimide(3 mg)、1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (96 mg)が混合された0.1Mホウ酸緩衝液(pH 9.0)を2mL加え、30℃で2時間反応させた。また、ポリアリルアミン塩酸塩 40 mgを3mLの0.1Mホウ酸緩衝液(pH 9.0)に溶解後、biotin (4 mg)、N-hydroxysuccinimide(3 mg)、1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (96 mg)が混合された0.1Mホウ酸緩衝液(pH 9.0)を2mL加え、30℃で2時間反応させた。反応液は透析(MWCO:3,500)を行い、凍結乾燥した。上記反応物は水に対して透析(MWCO:3,500)を行い、凍結乾燥した。1H-NMRの測定から、Carb-PAA 92のビオチン化率は側鎖に対して1mol%(p = 0.01, n = 0.92)であることが分かった。また、ポリアリルアミンも同様に1mol%であった。
Figure JPOXMLDOC01-appb-C000027
 ビオチン化されたCarb-PAA-15K 92(2 mg)とローダミン標識されたアビジン(5μg)を緩衝液(10mM HEPES-NaOH(pH7.5)+50~1000mM NaCl)200μLに懸濁後、37℃で30分インキュベートした。その後、氷中で10分静置し、4℃10,000rpmで3分遠心した。上澄み除去後、上記の緩衝液を200μL加え、再懸濁後、蛍光測定(励起波長:545 nm, 蛍光波長575 nm)を行い回収されたアビジンの量を測定した。また、対照サンプルとして、Carb-PAA-15K 92及びビオチン化されたポリアリルアミン(ビオチン化PAA)を用い、上記と同様の実験を行った。結果を図11に示す。Carb-PAA-15K 92およびビオチン化PAAのアビジンの回収率は25%以下だったのに対し、ビオチン化Carb-PAA-15K 92は約80%のアビジンを回収することができた。この結果より、本発明の高分子化合物は低温において、タンパク質を高効率に回収できる材料(バイオセパレーター)であることが示された。
 製造例3
 製造例1で製造したカルバモイル化ポリアリルアミン(カルバモイル化度:0.87、Carb-PAA-15K 87)100mgをDMSO5mLに溶解し、カルバモイル化ポリアリルアミン(Carb-PAA-15K 87)のアミノ基1等量に対して無水コハク酸を3等量の割合で添加し、40℃で24時間反応させた。反応終了後、同温度で透析膜(MWCO:3,500)を用いて、水に対して24時間透析して副生物を除き、凍結乾燥を行った。
 凍結乾燥した高分子化合物(サクシニル化カルバモイル化ポリアリルアミン:以下「Suc-Carb-PAA-15K 87」または「サクシニル化CPA」ともいう)10mgを0.1% NaODを含む重水中に加え、60℃にてNMRを測定し、サクシニル基の導入率(サクシニル化度)を決定した。NMR測定データの一例として、図12に、ポリアリルアミン(PAA-15K)、カルバモイル化ポリアリルアミン(Carb-PAA-15K)(カルバモイル化度0.87、Carb-PAA-15K 87)及びサクシニル化カルバモイル化ポリアリルアミン(Suc-Carb-PAA-15K 87)のNMRスペクトルを示す。「a」のピークが消失し、新たに「b」のピークが現れたことから、一級アミノ基はすべてサクシニル化されていることが確認された。
 実験例7
 製造例3において調製したサクシニル化カルバモイル化ポリアリルアミン(サクシニル化CPA)を、緩衝液(10mM Hepes-NaOH (pH7.5)+150mM MgCl又はCaCl)に1mg/ml濃度になるように溶解した。次いで、かかるサクシニル化CPA溶液を石英セルに入れ、溶液温度を70~5℃の範囲で変化させ、その間の溶液の透過率(%)を紫外可視分光光度計によって測定した。なお、溶液の透過率%は下式から算出した。
[数3]
透過率(%) = 10 (- 吸光度)
 結果を図13に示す。図13から分かるように、サクシニル化CPAは、低濃度のMgCl2水溶液中で、約10℃(相転移温度)を境界にしてそれよりも低い温度域では不溶化し、それよりも高い温度域では可溶化すること、つまり高温溶解型(上限臨界共溶温度型)の温度感応性高分子化合物であることが確認された。またこの相転移はシャープで可逆的であった。
 さらにサクシニル化CPAは、低濃度のCaCl2水溶液中で、約34.6℃(相転移温度)を境界にしてそれよりも低い温度域では不溶化し、それよりも高い温度域では可溶化すること、つまり高温溶解型(上限臨界共溶温度型)の温度感応性高分子化合物であることが確認された。
 以上の結果から、サクシニル化CPAによれば、前述するカルバモイル化ポリアリルアミンと同様に、例えば、細胞やタンパク質などの生物材料や生理活性物質のように高温で失活または変性する物質を、生理学的な低温条件で活性を維持しながら、分離(バイオセパレーション)、捕捉または濃縮することが可能である。また本発明のサクシニル化CPAは上記相転移温度以上にすることで可逆的に可溶化するため、それよりも低い温度条件下で捕捉または濃縮した物質は、その相転移温度以上に加温することで、当該サクシニル化CPAから離脱させて回収することも可能である。すなわち、本発明のサクシニル化CPAは、バイオセパレーションの材料(分離・濃縮剤)として有効に利用することができる。
 実験例8
 製造例3で調製したサクシニル化CPA について、相転移温度に対する塩濃度及びpHが及ぼす影響を評価した。
 (1)塩濃度依存性の評価
 具体的には、サクシニル化CPAを溶解する生理緩衝液(10mM Hepes-NaOH (pH7.5))中の塩濃度(CaCl、Ca(NO)、CaBr)を50~1000mMの範囲で変化させながら相転移温度(℃)を測定した。具体的には、サクシニル化CPAを上記生理緩衝液に1mg/mLの濃度になるように溶解し、かかる溶液を70℃から5℃までの範囲で、1℃/分の速度で温度を下げながら、500nmにおける吸光度をUV-VIS分光光度計(吸光光度計)で測定し、当該吸光度から実験例2の方法に従って相転移温度(℃)を算出した。
 結果を図14及び表7に示す。図14Aは溶液温度70~5℃と溶液の透過率%との関係を示す結果を、図14Bは塩濃度と相転移温度との関係を示す結果を示す。
Figure JPOXMLDOC01-appb-T000028
 これから分かるように、サクシニル化CPAは、50~1000mMの塩(CaCl、Ca(NO)、CaBr)の水溶液中で、約30℃~40℃(相転移温度)を境界にしてそれよりも低い温度域では不溶化し、それよりも高い温度域では可溶化すること、つまり高温溶解型(上限臨界共溶温度型)の温度感応性高分子化合物であることが確認された。
 また図14Bからわかるように、サクシニル化CPA は塩濃度が50~150mMの範囲で、塩濃度の上昇に伴い相転移温度(℃)も上昇する傾向が見られた。この結果から、サクシニル化CPAを有効成分とする温度感応性分離材によれば、例えば、系のpHや温度を変化できない場合でも、塩濃度を変えることで相分離させることができることがわかる。例えば、低塩濃度の条件で被分離物を捕捉させ、その後、当該系に塩を追加して相分離(セパレーション)する方法を挙げることができる。
 (2)pH依存性の評価
 サクシニル化CPAの濃度を1mg/mLに調製し、pHを4.5~10.5の範囲で変化させながら、相転移温度(℃)を測定した。具体的には、サクシニル化CPAを、各種のpH(4.5~10.5)に調整した生理的緩衝液(下記参照)に1mg/mLの濃度になるように溶解し、かかる溶液を70℃から5℃までの範囲で、1℃/分の速度で温度を下げながら、500nmにおける吸光度をUV-VIS分光光度計(吸光光度計)で測定し、当該吸光度から実験例2の方法に従って相転移温度(℃)を算出した。
 <緩衝液>
pH4.5   :10mM カコジル酸+150mM NaCl    
pH5.5と6.5:10mM MES-NaOH+150mM NaCl
pH7.5と8.5:10mM HEPES-NaOH+150mM NaCl
pH9.5と10.5:10mM ホウ酸-NaOH+150mM NaCl。
 結果を図15に示す。サクシニル化CPAは150mMの塩化ナトリウムを含む生理的緩衝液の中では、pH4.5~5.5の酸性条件下で5~30℃に相転移温度(℃)を有する高温溶解型の温度感応性高分子化合物であり、pH4.5条件下での相転移温度は7.9℃、pH5.5条件下での相転移温度は29.6℃であった。
 この結果から、本発明の温度感応性分離材によれば、例えば、系の温度を変化できない場合でも、pHを変えることで相分離させることができることがわかる。特に、ガン組織の周りは酸性になっているなど、生体内ではpHの変化が起きている場所がある。従って、組織のpH環境に応じて相転移挙動が起きることが予想され、センシングに使えることが予想される。

Claims (15)

  1. pH3~10.5の少なくとも1mMの塩濃度の水溶液において、5~65℃の範囲に相転移温度を有し、当該相転移温度より低い温度で不溶相を形成し、当該相転移温度より高い温度で溶解相を形成する性質を有する下記一般式(I)で示される温度感応性高分子化合物またはその付加塩を有効成分とする、温度、pHまたは塩濃度感応性分離材:
    Figure JPOXMLDOC01-appb-C000001
    (式中、mは10以上の整数、nは0.4≦n≦1を満たす数を意味し、Rは水素原子または下式(1)で示される置換基、Rは下式(2)で示される置換基をそれぞれ意味する。) 
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
  2. 上記温度感応性高分子化合物(I)が、これを構成するモノマーの一部に、必要に応じてリンカーを介してリガンドが結合してなるものである、請求項1に記載する温度、pHまたは塩濃度感応性分離材。
  3. 上記温度感応性高分子化合物(I)が、これを構成するモノマーの一部にリンカーを介してリガンドが結合してなるものであって、上記リガンドがビオチンまたはイミノビオチンであり、リンカーがアルキレン基である請求項2に記載する温度、pHまたは塩濃度感応性分離材。
  4. アニオン性物質またはカチオン性物質を含有することを特徴とする請求項1乃至3の何れかに記載する温度、pHまたは塩濃度感応性分離材。
  5. アニオン性物質がアニオン系色素であり、カチオン性物質がカチオン系色素である、請求項4に記載する温度、pHまたは塩濃度感応性分離材。
  6. 下記の工程を有する水性2相分配法:
    (1)被分離物を含む試料と請求項1乃至5の何れかに記載する温度、pHまたは塩濃度感応性分離材とを、pH3~10.5の範囲にある少なくとも1mMの塩濃度の水溶液中に共存させる工程、及び
    (2)当該水溶液の温度が、上記分離材の相転移温度より高い温度から相転移温度より低い温度になるように制御して相分離する工程。
  7. さらに下記の(3)の工程、または(3)と(4)の工程を有する、請求項6に記載する水性2相分配法:
    (3)相分離工程によって被分離物が分配された相を、非分配相と分離し回収する工程、
    (4)上記工程により分離した被分離物分配相から、被分離物を回収する工程。
  8. 被分離物が、タンパク質、細胞、アニオン性物質、カチオン性物質、水素結合性物質、及び疎水結合性物質からなる群から選択されるいずれか少なくとも1つである、請求項6または7に記載する水性2相分配法。
  9. 請求項1乃至5の何れかに記載する温度、pHまたは塩濃度感応性分離材と薬物を組み合わせてなることを特徴とする薬物放出剤。
  10. pH3~10.5の少なくとも1mMの塩濃度の水溶液において、
    温度感応性分離材の相転移温度よりも低い温度条件下にある請求項9記載の薬物放出剤を、温度感応性分離材の相転移温度よりも高い温度におく工程を有する、
    薬物放出剤から薬物を放出させる方法。
  11. 請求項1乃至5の何れかに記載する温度、pHまたは塩濃度感応性分離材に酵素または抗体が固定化された固定化酵素または抗体であって、当該分離材を構成する一般式(I)で示される温度感応性高分子化合物を構成するモノマーの一部に、必要に応じてリンカーを介して、酵素または抗体が結合してなるものである固定化酵素または抗体。
  12. pH3~10.5の少なくとも1mMの塩濃度の基質を含む水溶液において、
    請求項11記載の固定化酵素を、温度感応性分離材の相転移温度よりも低い温度条件から相転移温度よりも高い温度条件に置いて酵素と基質とを反応させる工程を有する、酵素反応。
  13. pH3~10.5の少なくとも1mMの塩濃度の抗原を含む水溶液において、
    請求項11記載の固定化抗体を、温度感応性分離材の相転移温度よりも低い温度条件から相転移温度よりも高い温度条件に置いて抗体と抗原を反応させる工程を有する、
    抗原抗体反応。
  14. 一般式(V)で示されるサクシニル化カルバモイル化ポリアリルアミンまたはその付加塩:
    Figure JPOXMLDOC01-appb-C000004
    (式中、mは10以上の整数、nは0.4≦n≦1を満たす数を意味する。)
  15. 一般式(IV):
    Figure JPOXMLDOC01-appb-C000005
    (式中、mは10以上の整数、nは0.4≦n≦1を満たす数を意味する。)
    で示されるカルバモイル化ポリアリルアミンまたはその付加塩に、無水コハク酸を反応させることを特徴とする、請求項14に記載の一般式(V)で示されるサクシニル化カルバモイル化ポリアリルアミンまたはその付加塩の製造方法。
PCT/JP2011/056844 2010-03-23 2011-03-22 温度、pH及び塩濃度感応性分離材及びその用途 WO2011118587A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/636,436 US8822550B2 (en) 2010-03-23 2011-03-22 Temperature-, pH- or salt concentration-sensitive separation material and use thereof
EP11759392.1A EP2551285A4 (en) 2010-03-23 2011-03-22 TEMPERATURE, PH OR SALT CONCENTRATION SENSITIVE SEPARATING MATERIAL AND USE THEREOF
JP2012507015A JP5800323B2 (ja) 2010-03-23 2011-03-22 温度、pH及び塩濃度感応性分離材及びその用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-066792 2010-03-23
JP2010066792 2010-03-23

Publications (1)

Publication Number Publication Date
WO2011118587A1 true WO2011118587A1 (ja) 2011-09-29

Family

ID=44673138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056844 WO2011118587A1 (ja) 2010-03-23 2011-03-22 温度、pH及び塩濃度感応性分離材及びその用途

Country Status (4)

Country Link
US (1) US8822550B2 (ja)
EP (1) EP2551285A4 (ja)
JP (1) JP5800323B2 (ja)
WO (1) WO2011118587A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103333283A (zh) * 2013-07-15 2013-10-02 华东理工大学 可形成偏碱性两水相体系的两种pH响应再生型聚合物及其制备方法与应用
JP2016086782A (ja) * 2014-11-10 2016-05-23 国立大学法人東京工業大学 温度応答性細胞塊作製方法
JP2019196416A (ja) * 2018-05-07 2019-11-14 国立大学法人東京工業大学 人工シャペロン分子及びこれを用いたタンパク質の品質管理法
WO2023276937A1 (ja) * 2021-06-30 2023-01-05 日油株式会社 細胞剥離剤および細胞分離方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103408753B (zh) * 2013-03-19 2016-05-25 上海大学 温敏型胶原蛋白多肽聚合物及其制备方法
CN114350647B (zh) * 2021-12-23 2024-05-10 江苏大学 Ucst型非离子水溶性聚合物在固定化葡萄糖异构酶中的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60106803A (ja) 1983-11-14 1985-06-12 Nitto Boseki Co Ltd アリル尿素重合体の製造方法
JPH04110313A (ja) * 1990-08-31 1992-04-10 Agency Of Ind Science & Technol 含フッ素高分子化合物とその製造方法及び高分子超薄膜
JPH07278235A (ja) * 1994-04-14 1995-10-24 Nitto Boseki Co Ltd 感温性重合体、親水性−疎水性熱可逆型材料及びそれ らの製造方法
JPH10204120A (ja) * 1997-01-24 1998-08-04 Nitto Boseki Co Ltd 親水性−疎水性熱可逆型材料
JPH10316827A (ja) * 1997-05-20 1998-12-02 Nitto Boseki Co Ltd 熱可逆型材料

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4435950B2 (ja) * 2000-08-21 2010-03-24 独立行政法人産業技術総合研究所 コアセルベート形成能を持つ熱応答性高分子並びにそれを用いた、液液相分配法、固定化酵素及び薬物放出剤
DE60110808T2 (de) * 2000-08-23 2006-05-11 National Institute Of Advanced Industrial Science And Technology Temperatursensibler polymer/polymer-komplex
US7316816B2 (en) * 2004-06-10 2008-01-08 Agency For Science Technology And Research Temperature and pH sensitive copolymers
JP2006028306A (ja) * 2004-07-14 2006-02-02 Fuji Xerox Co Ltd 高分子ゲル組成物、及び光学素子
US8382987B2 (en) * 2006-09-27 2013-02-26 Alessandra Luchini Method for harvesting nanoparticles and sequestering biomarkers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60106803A (ja) 1983-11-14 1985-06-12 Nitto Boseki Co Ltd アリル尿素重合体の製造方法
JPH04110313A (ja) * 1990-08-31 1992-04-10 Agency Of Ind Science & Technol 含フッ素高分子化合物とその製造方法及び高分子超薄膜
JPH07278235A (ja) * 1994-04-14 1995-10-24 Nitto Boseki Co Ltd 感温性重合体、親水性−疎水性熱可逆型材料及びそれ らの製造方法
JPH10204120A (ja) * 1997-01-24 1998-08-04 Nitto Boseki Co Ltd 親水性−疎水性熱可逆型材料
JPH10316827A (ja) * 1997-05-20 1998-12-02 Nitto Boseki Co Ltd 熱可逆型材料

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
AOKI, T. ET AL., POLYMER. J., vol. 31, 1999, pages 1185 - 1188
BUSCALL, R. ET AL., EUR. POLYM. J., vol. 18, 1982, pages 967 - 974
KIM, Y.-H. ET AL., J. CONTROL. RELEASE, vol. 28, 1994, pages 148 - 152
NAOHIKO SHIMADA ET AL.: "Seiriteki Jokenka de Koon Yokai Soten'i o Shimesu Polyallylamine Yudotai", THE SOCIETY OF POLYMER SCIENCE, JAPAN IYO KOBUNSHI SYMPOSIUM KOEN YOSHISHU, vol. 39, 16 July 2010 (2010-07-16), pages 71 - 72, XP008161877 *
OKANO, T. ET AL., J. BIOMED. MATER. RES., vol. 27, 1993, pages 1243 - 1251
SCHULZ, D.N. ET AL., POLYMER, vol. 27, 1986, pages 1734 - 1742
See also references of EP2551285A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103333283A (zh) * 2013-07-15 2013-10-02 华东理工大学 可形成偏碱性两水相体系的两种pH响应再生型聚合物及其制备方法与应用
JP2016086782A (ja) * 2014-11-10 2016-05-23 国立大学法人東京工業大学 温度応答性細胞塊作製方法
JP2019196416A (ja) * 2018-05-07 2019-11-14 国立大学法人東京工業大学 人工シャペロン分子及びこれを用いたタンパク質の品質管理法
JP7296610B2 (ja) 2018-05-07 2023-06-23 国立大学法人東京工業大学 人工シャペロン分子及びこれを用いたタンパク質の品質管理法
WO2023276937A1 (ja) * 2021-06-30 2023-01-05 日油株式会社 細胞剥離剤および細胞分離方法

Also Published As

Publication number Publication date
JPWO2011118587A1 (ja) 2013-07-04
EP2551285A4 (en) 2013-09-04
EP2551285A1 (en) 2013-01-30
US20130012597A1 (en) 2013-01-10
US8822550B2 (en) 2014-09-02
JP5800323B2 (ja) 2015-10-28

Similar Documents

Publication Publication Date Title
Brooks et al. Synthesis and applications of boronic acid-containing polymers: from materials to medicine
JP5800323B2 (ja) 温度、pH及び塩濃度感応性分離材及びその用途
Li et al. Chemical modification of M13 bacteriophage and its application in cancer cell imaging
Cambre et al. Biomedical applications of boronic acid polymers
Dennis et al. Surface ligand effects on metal-affinity coordination to quantum dots: implications for nanoprobe self-assembly
US9523683B2 (en) Functionalized polydiacetylene sensors
EP2839284B1 (en) A microparticle assembly
AU2021378290A1 (en) Affinity reagents having enhanced binding and detection characteristics
Riccardi et al. Fluorescent thrombin binding aptamer-tagged nanoparticles for an efficient and reversible control of thrombin activity
Prusty et al. A fluorogenic reaction based on heavy-atom removal for ultrasensitive DNA detection
CN104321355A (zh) 用于测定应用的聚合物支架
Jin et al. Amphiphilic triblock copolymer bioconjugates with biotin groups at the junction points: synthesis, self-assembly, and bioactivity
Li et al. Synergy of CO2 response and aggregation-induced emission in a block copolymer: a facile way to “see” cancer cells
CN111601596B (zh) 无规杂聚物在外部环境中保留蛋白质功能
Avitabile et al. Fluorescence and morphology of self‐assembled nucleobases and their diphenylalanine hybrid aggregates
KR20180136436A (ko) 폴리플루오레노[4,5-cde]옥세핀 접합체 및 피분석물 검출 방법에서의 이의 용도
Sullivan et al. Hybrid aptamer-molecularly imprinted polymer (AptaMIP) nanoparticles selective for the antibiotic moxifloxacin
Hu et al. Spatiotemporal monitoring endocytic and cytosolic pH gradients with endosomal escaping pH-responsive micellar nanocarriers
WO2012165356A1 (ja) 感温性ポリアミノ酸またはその塩
WO2019004482A1 (ja) 複素環式ボロン酸誘導体
Klika Škopić et al. Towards DNA‐Encoded Micellar Chemistry: DNA‐Micelle Association and Environment Sensitivity of Catalysis
Küchler et al. Preparation and Applications of Dendronized Polymer–Enzyme Conjugates
JP2014114395A (ja) 温度感応性材料及びその用途
WO2015163952A1 (en) Isatoic anhydride derivatives and applications thereof
Jiang et al. Sialyl-Tn Antigen-Imprinted Dual Fluorescent Core–Shell Nanoparticles for Ratiometric Sialyl-Tn Antigen Detection and Dual-Color Labeling of Cancer Cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759392

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012507015

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13636436

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011759392

Country of ref document: EP