WO2011118553A1 - 変速機駆動装置 - Google Patents

変速機駆動装置 Download PDF

Info

Publication number
WO2011118553A1
WO2011118553A1 PCT/JP2011/056736 JP2011056736W WO2011118553A1 WO 2011118553 A1 WO2011118553 A1 WO 2011118553A1 JP 2011056736 W JP2011056736 W JP 2011056736W WO 2011118553 A1 WO2011118553 A1 WO 2011118553A1
Authority
WO
WIPO (PCT)
Prior art keywords
casing
electromagnetic coil
rotor
shaft
clutch
Prior art date
Application number
PCT/JP2011/056736
Other languages
English (en)
French (fr)
Inventor
弘毅 香川
行竹 康博
Original Assignee
株式会社ジェイテクト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジェイテクト filed Critical 株式会社ジェイテクト
Priority to CN201180015594.8A priority Critical patent/CN102822571B/zh
Priority to EP11759358A priority patent/EP2551556A1/en
Priority to US13/636,876 priority patent/US9046173B2/en
Publication of WO2011118553A1 publication Critical patent/WO2011118553A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/26Generation or transmission of movements for final actuating mechanisms
    • F16H61/28Generation or transmission of movements for final actuating mechanisms with at least one movement of the final actuating mechanism being caused by a non-mechanical force, e.g. power-assisted
    • F16H61/32Electric motors actuators or related electrical control means therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/26Generation or transmission of movements for final actuating mechanisms
    • F16H61/28Generation or transmission of movements for final actuating mechanisms with at least one movement of the final actuating mechanism being caused by a non-mechanical force, e.g. power-assisted
    • F16H2061/2838Arrangements with single drive motor for selecting and shifting movements, i.e. one motor used for generating both movements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/20Control lever and linkage systems
    • Y10T74/20012Multiple controlled elements
    • Y10T74/20018Transmission control
    • Y10T74/2003Electrical actuator

Definitions

  • This invention relates to a transmission drive device.
  • the transmission driving device of Patent Document 1 includes two motors, a shift operation motor and a select operation motor, and these motors allow the same operation as a manual operation to be performed.
  • a clutch mechanism for selectively transmitting the rotational torque of the electric motor to one of a shift operation member for shift operation and a select operation member for select operation is employed.
  • the clutch mechanism connects / releases the first electromagnetic clutch that connects / releases the first rotating body connected to the shift operating member and the input shaft, and connects / releases the second rotating body connected to the select operating member and the input shaft.
  • a second electromagnetic clutch is provided. When the first electromagnetic clutch is in an excited state, the second electromagnetic clutch is in a non-excited state, and when the second electromagnetic clutch is in an excited state, the first electromagnetic clutch is in a non-excited state.
  • the second rotating body When the first electromagnetic clutch is connected, the second rotating body is released from the input shaft. In this case, if there is a reverse input to the select actuating member, the second rotating body rotates, and the select actuating member may be activated (moved) without being controlled by the control unit. Similarly, when the first rotating body is released from the input shaft and there is a reverse input to the shift operating member, the first rotating body rotates and the shift operating member operates without being controlled by the control unit. There is a risk of moving.
  • An object of the present invention is to provide a transmission drive device.
  • a first aspect of the present invention includes a casing (5; 107), a shift operation member (8; 101) for performing a shift operation, a select operation member (12; 101) for performing a select operation, and electric An input shaft (30; 110) to which rotational torque of the motor (9; 103) is input, and a first rotating body (31; 112) for transmitting rotational torque to one of the shift operating member and the select operating member.
  • first engagement portion (56; 170) provided so as to be integrally rotatable with the first rotating body and engageable with the casing-side engagement portion
  • the first clutch includes a first electromagnetic coil (36; 119), and in a non-excited state of the first electromagnetic coil in the first clutch, the first engagement portion is attracted to the first electromagnetic coil side, and the casing side engagement
  • the 1st engaging part which can be engaged with the 1st casing side engaging part is provided in the 1st rotary body so that integral rotation is possible.
  • the first engagement portion engages with the first casing side engagement portion.
  • the first engagement portion is attracted to the first electromagnetic coil, and the engagement between the first engagement portion and the first casing side engagement portion is released. .
  • the first electromagnetic coil of the first clutch When the input shaft and the first rotating body are connected, the first electromagnetic coil of the first clutch is in an excited state, so that the engagement between the first engagement portion and the first casing side engagement portion is disengaged. . That is, the first rotating body is released from the casing. Therefore, when rotational torque is transmitted from the input shaft to the first rotating body, the first rotating body rotates integrally with the input shaft.
  • the first electromagnetic coil of the first clutch is in the non-excited state, so the first engagement portion and the first casing side engagement portion are engaged.
  • the first rotating body is coupled to the casing. In the connected state to the casing, the first rotating body cannot rotate. Therefore, the first rotating body released from the input shaft is made non-rotatable, thereby preventing displacement (movement or rotation) of the operating member when a reverse input is made to the shift operating member or the select operating member. be able to.
  • the first electromagnetic coil of the first clutch is used to connect / release the first rotating body to / from the casing, there is no need to provide a dedicated magnetic circuit for connecting / releasing the first rotating body to / from the casing.
  • cost reduction can be achieved.
  • the first rotary coil and the casing side engaging portion are disposed so as to be integrally rotatable with the first rotating body and movable in the axial direction.
  • the transmission may further include a magnetic ring (55, 70), and the first engagement portion may be provided so as to be integrally movable with the magnetic ring.
  • the magnetic ring is arrange
  • the magnetic ring is attracted to the first electromagnetic coil side and moves to the first electromagnetic coil side. Therefore, the 1st engaging part provided in the magnetic ring so that integral movement is moved to the direction away from the 1st casing side engaging part. Thereby, the engagement between the first engaging portion and the first casing side engaging portion is released, and the first rotating body is released from the casing. Therefore, connection / release between the first rotating body and the casing can be switched with a relatively simple configuration.
  • the first clutch is provided between the first electromagnetic coil and the casing side engaging portion so as to be integrally rotatable with the first rotating body (167).
  • the armature In the excited state of the first electromagnetic coil, the armature is attracted to the first electromagnetic coil side, and the armature engages with the input shaft, whereby the first rotating body and the input A shaft is connected, and when the first electromagnetic coil is in an unexcited state, the armature and the first rotating body are disengaged to release the first rotating body from the input shaft.
  • the first engagement portion may be a transmission driving device provided to the armature so as to be integrally movable.
  • the 1st electromagnetic coil is arrange
  • the first engaging portion is provided on the armature so as to be movable together.
  • the armature is not attracted to the first electromagnetic coil, so the armature does not engage with the input shaft.
  • the first engagement portion is not moved, and the engagement state between the first engagement portion and the first casing side engagement portion is maintained. Therefore, in this state, the first rotating body is released from the input shaft and connected to the casing.
  • the armature in the excited state of the first electromagnetic coil, the armature is attracted to the first electromagnetic coil side, moves to the first electromagnetic coil side, and engages with the input shaft. Further, the first engaging portion provided so as to be integrally movable with the armature moves in a direction away from the first casing side engaging portion, whereby the first engaging portion and the first casing side engaging portion are Is disengaged. Therefore, in this excited state, the first rotating body is released from the casing and connected to the input shaft. Thereby, connection / release with respect to the casing of a 1st rotary body can be switched by a comparatively simple structure.
  • the 1st engaging part is provided so that movement with the armature is possible. Therefore, it is not necessary to separately provide a member for connection with the casing, so that the cost can be further reduced.
  • the first engagement portion may include a friction portion (56) that frictionally engages with the casing-side engagement portion.
  • the friction part may be formed in an annular shape. In this configuration, the first casing side engaging portion and the first engaging portion can be engaged regardless of the rotational posture of the first rotating body with respect to the input shaft. Therefore, there is no restriction on the mutual rotation posture in the connected state of the input shaft and the first rotating body.
  • the first engagement portion may include an engagement piece (170) or an engagement recess that lock-engages with the casing-side engagement portion.
  • the engagement between the first casing side engaging portion and the first engaging portion can be kept strong. Thereby, rotation of the 1st rotary body at the time of release of the 1st clutch can be prevented more certainly.
  • the engagement recess may be constituted by a groove or a hole.
  • the electromagnetic clutch further includes a second engagement portion (71) that can be engaged with the casing-side engagement portion, and the second clutch includes a second electromagnetic coil (37).
  • the second engaging portion In the non-excited state of the second electromagnetic coil in the second clutch, the second engaging portion is attracted to the second electromagnetic coil side and engaged with the casing side engaging portion, In the excitation state of the second electromagnetic coil, it may be a transmission drive device that is disengaged from the casing side engaging portion.
  • the second engaging portion that can be engaged with the second casing side engaging portion is provided on the second rotating body so as to be integrally rotatable.
  • the second engaging portion engages with the second casing side engaging portion.
  • the second engagement portion is attracted to the second electromagnetic coil, and the engagement between the second engagement portion and the second casing side engagement portion is released. .
  • the second electromagnetic coil of the second clutch When the input shaft and the first rotating body are connected, the second electromagnetic coil of the second clutch is in a non-excited state, so that the second engagement portion and the second casing side engagement portion are engaged, Two rotating bodies are connected to the casing. In the connected state to the casing, the second rotating body cannot rotate. Further, when the input shaft and the second rotating body are connected, the second electromagnetic coil of the second clutch is in an excited state, so that the engagement between the second engagement portion and the second casing side engagement portion is released. ing. That is, the second rotating body is released from the casing. Therefore, when rotational torque is transmitted from the input shaft to the second rotating body, the second rotating body rotates integrally with the input shaft.
  • both the first and second rotating bodies cannot be rotated in the released state from the input shaft. Therefore, it is possible to prevent the displacement (movement or rotation) of the operation member when there is a reverse input to the shift operation member or the select operation member.
  • FIG. 1 is a diagram showing a schematic configuration of a transmission in which a transmission drive device according to an embodiment (first embodiment) of the present invention is incorporated. It is a disassembled perspective view which shows schematic structure of the transmission drive device shown in FIG. It is sectional drawing of the electric actuator at the time of a connection of an input shaft and a 1st rotor. It is sectional drawing of an electric actuator at the time of a connection of an input shaft and a 2nd rotor. It is sectional drawing which shows schematic structure of the transmission drive device which concerns on other embodiment (2nd Embodiment) of this invention. It is sectional drawing of the electric actuator shown in FIG. FIG. 7 is a cross-sectional view taken along the cutting plane line VII-VII in FIG. 6.
  • FIG. 1 is a diagram showing a schematic configuration of a transmission 2 in which a transmission drive device 1 according to an embodiment (first embodiment) of the present invention is incorporated.
  • FIG. 2 is an exploded perspective view showing a schematic configuration of the transmission drive device 1.
  • the transmission 2 is a known parallel gear transmission (not shown), and is mounted on a vehicle such as a passenger car or a truck.
  • the transmission 2 includes a gear housing 4, a parallel gear type transmission mechanism (not shown) housed in the gear housing 4, and a transmission drive device 1 for driving the transmission mechanism.
  • the transmission drive device 1 includes a shift shaft (shift operation member) 8 that causes the transmission mechanism to perform a shift operation, a select shaft (select operation member) 12 that causes the transmission mechanism to perform a selection operation, and the shift shaft 8 and the select shaft 12. And an electric actuator 3 used as a common drive source for driving the motor.
  • one end 10a of an internal lever 10 accommodated in the gear housing 4 is supported so as to be able to rotate together and move in the axial direction Y1 of the shift shaft 8.
  • the male spline 8b of the shift shaft 8 is fitted to the female spline on the inner periphery of the spline hole provided at one end 10a of the internal lever 10.
  • the internal lever 10 rotates together with the shift shaft 8 around the central axis C ⁇ b> 1 of the shift shaft 8.
  • One end 8 a of the shift shaft 8 protrudes outside the gear housing 4.
  • the select shaft 12 extends along a direction substantially orthogonal to the shift shaft 8. One end of the select shaft 12 is connected to one end 13 a of the select fork 13. As a result, the select fork 13 can rotate with the select shaft 12 around the central axis C2 of the select shaft 12. A bifurcated fork 14 engaged with an internal lever is provided at the other end 13 b of the select fork 13. The other end 12 a of the select shaft 12 protrudes outside the gear housing 4.
  • shift rods 15, 16, and 17 extending in parallel with each other are accommodated. Shift blocks 18, 19, and 20 that are engaged with the other end 10b of the internal lever 10 are fixed to the shift rods 15, 16, and 17, respectively.
  • Each shift rod is provided with a shift fork 21 that engages with a clutch sleeve (not shown) (only the shift fork 21 provided on the shift rod 17 is shown in FIG. 2).
  • the electric actuator 3 is provided outside the gear housing 4 and includes a cylindrical casing 5 and a first output shaft 6 and a second output shaft 7 housed in the casing 5.
  • the electric actuator 3 is fixed to the outer surface of the gear housing 4 or a predetermined portion of the vehicle.
  • the electric actuator 3 includes an electric motor 9 that selectively outputs rotational torque to the first output shaft 6 or the second output shaft 7.
  • the 1st output shaft 6 and the 2nd output shaft 7 are arrange
  • the first output shaft 6 is constituted by a screw shaft, and a first nut 22 is attached to the first output shaft 6 via a ball (not shown).
  • the first output shaft 6 and the first nut 22 function as a ball screw mechanism.
  • the second output shaft 7 is constituted by a screw shaft, and a second nut 23 is attached to the second output shaft 7 via a ball (not shown).
  • the second output shaft 7 and the second nut 23 function as a ball screw mechanism.
  • One end 8 a of the shift shaft 8 enters the casing 5 and is connected to the first nut 22.
  • the link mechanism 24 includes a first link arm 25 having a first end 25a and a second end 25b, a second link arm 26 having a third end 26a and a fourth end 26b, and a fifth end 27a. And a third link arm 27 having a sixth end portion 27b.
  • the first end portion 25 a enters the casing 5 and is rotatably connected to the second nut 23.
  • the first link arm 25 is rotatably supported.
  • the first link arm 25 can swing around the fulcrum 28.
  • the third end portion 26 a is connected and fixed to the other end 12 a of the select shaft 12. Therefore, the second link arm 26 rotates with the select shaft 12 around the central axis C2.
  • the third link arm 27 connects the second end 25b and the fourth end 26b.
  • the fifth end portion 27a is connected to the second end portion 25b, and the sixth end portion 27b is connected to the fourth end portion 26b. Since the 3rd link arm 27 connects open ends, the attitude
  • the first link arm 25 swings around the fulcrum 28
  • the second link arm 26 swings in conjunction with this swinging operation, and the select shaft 12 rotates around the central axis C2 accordingly.
  • FIG. 3 and 4 are sectional views of the electric actuator 3.
  • FIG. 3 shows a state in which the input shaft 30 described below and the first rotor (first rotating body) 31 described below are connected
  • FIG. 4 shows the input shaft 30 and the second rotor (second rotating body) 32. Indicates the time of connection.
  • the casing 5 accommodates the input shaft 30 to which the rotational torque of the electric motor 9 (see FIG. 1) is input.
  • the input shaft 30 has an outer cylindrical shape and is arranged concentrically with the first output shaft 6 and the second output shaft 7.
  • the input shaft 30 is allowed to move in the axial direction (reciprocating movement).
  • a first rotor 31 and a second rotor 32 are accommodated in the casing 5 so as to sandwich the input shaft 30 in the axial direction.
  • the first rotor 31 is disposed on one side of the input shaft 30 (the right side shown in FIGS. 3 and 4).
  • the second rotor 32 is disposed on the other side of the input shaft 30 (left side shown in FIGS. 3 and 4).
  • the first and second rotors 31 and 32 are not allowed to move in the axial direction.
  • the connection destination of the input shaft 30 is switched between the first rotor 31 and the second rotor 32 (the rotational torque of the input shaft 30 is selected between the first rotor 31 and the second rotor 32.
  • the clutch mechanism 33 includes a first clutch 34 that connects / releases the input shaft 30 and the first rotor 31, and a second clutch 35 that connects / releases the input shaft 30 and the second rotor 32.
  • the second clutch 35 In the operating state of the first clutch 34 (excitation state of the first electromagnetic coil 36 described later), the second clutch 35 is in the non-operating state (non-excitation state of the second electromagnetic coil 37 described later), and the operation of the second clutch 35 is performed.
  • the first clutch 34 is in a non-operating state (non-excitation state of the first electromagnetic coil 36 described later).
  • a first spring member (not shown in FIG. 3; see FIG. 4) 38 is fixedly disposed on almost the entire side surface of one side of the input shaft 30 (the right side shown in FIGS. 3 and 4).
  • the first spring member 38 is constituted by, for example, a disk-shaped plate spring.
  • a disc-shaped first magnetic plate 39 is fixedly arranged on one side (the right side shown in FIGS. 3 and 4) of the first spring member 38.
  • a disc-shaped first facing 40 is fixedly arranged on one side (the right side shown in FIGS. 3 and 4) of the first magnetic plate 39.
  • the first magnetic plate 39 and the first facing 40 constitute a first armature 41 described later.
  • first spring member 38, the first magnetic plate 39, and the first facing 40 are laminated in order from the input shaft 30 side.
  • the members 38, 39, and 40 have substantially the same outer diameter, and are arranged so that a gap is formed between the outer periphery thereof and the inner periphery of the casing 5.
  • a second spring member (not shown in FIG. 4; see FIG. 3) 42 is fixedly arranged on almost the entire side surface of the other side (the left side shown in FIGS. 3 and 4) of the input shaft 30.
  • the second spring member 42 is constituted by, for example, a disk-shaped plate spring.
  • a disc-shaped second magnetic plate 43 is fixedly arranged on the other side (the left side shown in FIGS. 3 and 4) of the second spring member 42.
  • a disc-shaped second facing 44 is fixedly disposed on the other side of the second magnetic plate 43 (left side shown in FIGS. 3 and 4).
  • the second magnetic plate 43 and the second facing 44 constitute a second armature 45 which will be described later.
  • the second spring member 42, the second magnetic plate 43, and the second facing 44 are stacked in order from the input shaft 30 side.
  • the members 42, 43, 44 have substantially the same outer diameter, and are arranged so that a gap is formed between the outer periphery thereof and the inner periphery of the casing 5.
  • the first rotor 31 is rotatably supported coaxially with the input shaft 30 via a first rolling bearing 47 and an annular first field 48 (described later).
  • first field 48 is fitted and fixed to the casing 5
  • the outer ring of the first rolling bearing 47 is fitted and fixed to the inner periphery of the first field 48.
  • the first rotor 31 includes a substantially cylindrical main body 80, a large-diameter first armature hub 49 protruding radially outward from the outer periphery of the main body 80, and radially outward from the outer periphery of the main body 80.
  • a protruding large-diameter first brake hub 50 and a first boss 51 for supporting the end of the first output shaft 6 are provided.
  • the first armature hub 49 is provided at the axially inner end (the end on the input shaft 30 side, the left end shown in FIGS. 3 and 4).
  • the first armature hub 49 is provided on the outer side in the axial direction than the support position by the first rolling bearing 47 (on the side opposite to the input shaft 30; the right side shown in FIGS.
  • the first armature hub 49 and the first brake hub 50 have substantially the same outer diameter.
  • the first boss 51 is formed on the axially outer side of the first brake hub 50 (on the side opposite to the input shaft 30 side, the right side shown in FIGS. 3 and 4).
  • the end of the first output shaft 6 (the left end shown in FIGS. 3 and 4) is fixedly attached to the first boss 51.
  • the first clutch 34 includes a first field 48 and a first armature 41.
  • the first field 48 has a first electromagnetic coil 36 built in the yoke.
  • a third facing 53 having a disk shape is fixedly disposed over the entire side surface (the left surface shown in FIGS. 3 and 4) of the first rotor (first armature hub 49) on the input shaft 30 side.
  • the third facing 53 is for frictional engagement with the first facing 40.
  • the third facing 53 is arranged such that a gap is formed between the outer periphery thereof and the inner periphery of the casing 5.
  • annular third spring member 54 (not shown in FIG. 3) is provided on the peripheral portion of the side surface (the right surface shown in FIGS. 3 and 4) of the first brake hub 50 opposite to the input shaft 30 side. (See FIG. 4) is fixedly arranged.
  • the third spring member 54 is constituted by, for example, a leaf spring.
  • An annular plate-like first magnetic ring 55 is fixedly disposed on the third spring member 54 on the side opposite to the input shaft 30 side (the right side shown in FIGS. 3 and 4).
  • the first magnetic ring 55 is disposed at a position sandwiching the peripheral edge portion of the first armature hub 49 with the first field 48.
  • a fourth ring-shaped facing (first engaging portion, friction portion) 56 is fixed to the first magnetic ring 55 on the side opposite to the input shaft 30 side (the right side shown in FIGS. 3 and 4).
  • the members 54, 55, and 56 have substantially the same inner diameter and outer diameter, and are disposed so that a gap is formed between the outer periphery of the members 54, 55, and 56 and the inner periphery of the casing 5.
  • Each member 54, 55, 56 rotates integrally with the first rotor 31 and moves in the axial direction along with the one rotor 31.
  • annular plate-shaped first engagement ring 58 surrounding the first boss 51 and the first output shaft 6 is formed on the casing 5 so as to protrude inward from the inner periphery thereof.
  • the first engagement ring 58 is disposed on the side opposite to the input shaft 30 side (the right side shown in FIGS. 3 and 4) with respect to the first brake hub 50 in the axial direction.
  • the first engagement ring 58 opposes the peripheral portion (that is, the region where the fourth facing 56 is disposed) of the side surface (the right surface shown in FIGS. 3 and 4) of the first brake hub 50 opposite to the input shaft 30 side.
  • a first opposing surface 59 is provided.
  • a fifth facing (casing side engaging portion) 60 for frictional engagement with the fourth facing 56 is fixedly disposed on the first facing surface 59.
  • the fifth facing 60 is arranged such that a gap is formed between the outer periphery thereof and the inner periphery of the casing 5.
  • the fourth facing 56 frictionally engages the fifth facing 60.
  • the first magnetic ring 55 provided integrally with the fourth facing 56 is attracted to the first field 48 including the first electromagnetic coil 36, The fourth facing 56 moves in a direction away from the fifth facing 60 (the left direction shown in FIGS. 3 and 4), whereby the engagement between the fourth facing 56 and the fifth facing 60 is released. A gap is formed between the fourth facing 56 and the fifth facing 60.
  • the second rotor 32 is rotatably supported coaxially with the input shaft 30 via a second rolling bearing 62 and an annular second field 63 (described later). Specifically, the second field 63 is fitted and fixed to the casing 5, and the outer ring of the second rolling bearing 62 is fitted and fixed to the inner periphery of the second field 63.
  • the second rotor 32 includes a substantially cylindrical main body 81, a large-diameter second armature hub 64 projecting radially outward from the outer periphery of the main body 81, and radially outward from the outer periphery of the main body 81.
  • a projecting large-diameter second brake hub 65 and a second boss 66 for supporting the end of the second output shaft 7 are provided.
  • the second armature hub 64 is provided at the inner end in the axial direction (the end on the input shaft 30 side, the right end shown in FIGS. 3 and 4).
  • the second armature hub 64 is provided on the outer side in the axial direction than the position supported by the second rolling bearing 62 (on the side opposite to the input shaft 30; the left side shown in FIGS. 3 and 4).
  • the second armature hub 64 and the second brake hub 65 have substantially the same outer diameter.
  • the second boss 66 is formed on the outer side in the axial direction of the second brake hub 65 (on the side opposite to the input shaft 30 side, the left side shown in FIGS. 3 and 4).
  • the end of the second output shaft 7 (the right end shown in FIGS. 3 and 4) is fixedly attached to the second boss 66.
  • the second clutch 35 includes a second field 63 and a second armature 45.
  • the second field 63 has a second electromagnetic coil 37 built in the yoke.
  • a disk-like sixth facing 68 is fixedly arranged over the entire side surface (the right surface shown in FIGS. 3 and 4) of the second rotor 32 (second armature hub 64) on the input shaft 30 side.
  • the sixth facing 68 is for frictional engagement with the second facing 44.
  • the sixth facing 68 is arranged such that a gap is formed between the outer periphery thereof and the inner periphery of the casing 5.
  • annular fourth spring member 69 (not shown in FIG. 4) is provided at the peripheral edge of the side surface (left surface shown in FIGS. 3 and 4) of the second brake hub 65 opposite to the input shaft 30 side. 3) is fixedly arranged.
  • the fourth spring member 69 is constituted by, for example, a leaf spring.
  • An annular plate-like second magnetic ring 70 is fixedly disposed on the fourth spring member 69 on the side opposite to the input shaft 30 side (the left side shown in FIGS. 3 and 4).
  • the second magnetic ring 70 is disposed at a position sandwiching the peripheral edge portion of the second armature hub 64 with the second field 63.
  • a seventh facing 71 having an annular plate shape is fixedly disposed on the second magnetic ring 70 on the side opposite to the input shaft 30 side (the left side shown in FIGS. 3 and 4). That is, the fourth spring member 69, the second magnetic ring 70, and the seventh facing 71 are laminated in order from the input shaft 30 side.
  • Each of the members 69, 70, 71 has substantially the same inner diameter and outer diameter, and is disposed so that a gap is formed between the outer periphery thereof and the inner periphery of the casing 5.
  • Each member 69, 70, 71 rotates integrally with the second rotor 32 and moves in the axial direction along with the second rotor 32.
  • annular plate-like second engagement ring 73 surrounding the second boss 66 and the second output shaft 7 is formed on the casing 5 so as to protrude inward from the inner periphery thereof.
  • the second engagement ring 73 is disposed on the side opposite to the input shaft 30 side (the left side shown in FIGS. 3 and 4) from the second brake hub 65 in the axial direction.
  • the second engagement ring 73 opposes the peripheral portion (that is, the region where the seventh facing 71 is disposed) of the side surface (the left surface shown in FIGS. 3 and 4) of the second brake hub 65 opposite to the input shaft 30 side.
  • a second facing surface 74 is provided.
  • an eighth facing (casing side engaging portion) 75 for frictional engagement with the seventh facing 71 is fixedly disposed on the second facing surface 74.
  • the eighth facing 75 is disposed such that a gap is formed between the outer periphery thereof and the inner periphery of the casing 5.
  • the seventh facing 71 is frictionally engaged with the eighth facing 75.
  • the second magnetic ring 70 provided integrally with the seventh facing 71 is attracted to the second field 63 including the second electromagnetic coil 37,
  • the seventh facing 71 moves in a direction away from the eighth facing 75 (the right direction shown in FIGS. 3 and 4), whereby the engagement between the seventh facing 71 and the eighth facing 75 is disengaged.
  • a gap is formed between the seventh facing 71 and the eighth facing 75.
  • the first to eighth facings 40, 44, 53, 56, 60, 68, 71, 75 are formed using a friction material such as polished special steel strip (SK5M or the like), for example.
  • a friction material such as polished special steel strip (SK5M or the like)
  • the first armature 41 is sucked into the first field 48, but the second armature 45 is not sucked into the second field 63. Therefore, the first armature 41 and the input shaft 30 move toward the first rotor 31 side (the right direction shown in FIGS. 3 and 4).
  • the third facing 53 constituting a part of the first armature 41 is frictionally engaged with the first facing 40 fixed to the first rotor 31. Thereby, the engagement between the first armature 41 and the input shaft 30 is achieved, and the first output shaft 6 is connected to the input shaft 30.
  • the first magnetic ring 55 is attracted to the first electromagnetic coil 36 side and axially directed toward the first electromagnetic coil 36 side (left side shown in FIGS. 3 and 4). Move to. Therefore, the fourth facing 56 fixed to the first magnetic ring 55 moves in a direction away from the fifth facing 60 (the first engagement ring 58), and thereby the fourth facing 56 and the fifth facing. 60 is disengaged. Therefore, the rotational torque of the input shaft 30 is transmitted to the first rotor 31. The rotational torque of the first rotor 31 is transmitted to the first output shaft 6 fixed to the first rotor 31. As the first output shaft 6 rotates, the first nut 22 moves in the axial direction, whereby the select shaft 12 is rotated.
  • the first spring member 38 In the coupled state of the input shaft 30 and the first output shaft 6, the first spring member 38 is sandwiched between the first magnetic plate 39 and the input shaft 30 and contracted in the axial direction.
  • the three spring members 54 are sandwiched between the first magnetic ring 55 and the first brake hub 50 and contract in the axial direction. Therefore, the first spring member 38 and the third spring member 54 do not appear in FIG.
  • the second electromagnetic coil 37 when the second electromagnetic coil 37 is not excited, the second magnetic ring 70 is not attracted to the second electromagnetic coil 37 side, and the second magnetic ring 70 does not move in the axial direction. Therefore, the seventh facing 71 fixed to the second magnetic ring 70 and the eighth facing 75 (second engaging ring 73) are in an engaged state. That is, the second rotor 32 is connected to the casing 5 when the input shaft 30 and the first rotor 31 are connected. In the connected state to the casing 5, the second rotor 32 is held by the casing 5 and cannot rotate.
  • the second clutch 35 is in a connected state and the first clutch 34 is in a released state.
  • the second electromagnetic coil 37 is in an excited state, and the first electromagnetic coil 36 is in a non-excited state.
  • the second armature 45 is sucked into the second field 63, but the first armature 41 is not sucked into the first field 48. Accordingly, the second armature 45 and the input shaft 30 move to the second field 63 side.
  • the sixth facing 68 constituting a part of the second armature 45 is frictionally engaged with the second facing 44 fixed to the input shaft 30. Thereby, the engagement between the second armature 45 and the input shaft 30 is achieved, and the second output shaft 7 is connected to the input shaft 30.
  • the second magnetic ring 70 In the excited state of the second electromagnetic coil 37, the second magnetic ring 70 is attracted to the second electromagnetic coil 37 side and moves in the axial direction toward the second electromagnetic coil 37 side. Therefore, the seventh facing 71 fixed to the second magnetic ring 70 moves in a direction away from the eighth facing 75 (second engagement ring 73), whereby the seventh facing 71 and the eighth facing 75 Is disengaged. Therefore, the rotational torque of the input shaft 30 is transmitted to the second rotor 32. Then, the rotational torque of the second rotor 32 is transmitted to the second output shaft 7 fixed to the second rotor 32. As the second output shaft 7 rotates, the second nut 23 moves in the axial direction, whereby the select shaft 12 is rotated.
  • the first armature 41 and the third facing 53 fixed to the first rotor 31 are not engaged.
  • the first electromagnetic coil 36 is not excited, the first magnetic ring 55 is not attracted to the first electromagnetic coil 36 side, and the first magnetic ring 55 does not move in the axial direction. Therefore, the fourth facing 56 fixed to the first magnetic ring 55 and the fifth facing 60 (first engaging ring 58) are in an engaged state. That is, the first rotor 31 is connected to the casing 5 when the input shaft 30 and the second rotor 32 are connected. In the connected state to the casing 5, the first rotor 31 is held by the casing 5 and cannot rotate.
  • the second spring member 42 When the input shaft 30 and the second output shaft 7 are connected, the second spring member 42 is sandwiched between the second magnetic plate 43 and the input shaft 30 and contracted in the axial direction.
  • the four spring members 69 are sandwiched between the second magnetic ring 70 and the second brake hub 65 and contract in the axial direction. Therefore, the second spring member 42 and the fourth spring member 69 do not appear in FIG.
  • the second rotor 32 is connected to the casing 5 in the connected state of the first rotor 31 and the input shaft 30. In the connected state to the casing 5, the second rotor 32 cannot rotate. Therefore, it is possible to prevent the shift shaft 8 from rotating when there is a reverse input to the second rotor 32.
  • the first rotor 31 is connected to the casing 5 in a connected state between the second rotor 32 and the input shaft 30. In the connected state to the casing 5, the first rotor 31 cannot rotate. Therefore, it is possible to prevent the select shaft 12 from rotating when there is a reverse input to the first rotor 31. Further, the electromagnetic coils 36 and 37 of the clutches 34 and 35 are used to connect / release the rotors 31 and 32 to / from the casing 5. Therefore, it is not necessary to provide a dedicated magnetic circuit for connecting / releasing the rotors 31 and 32 to / from the casing 5, thereby reducing costs.
  • the seventh and eighth facings 71 and 75 are each formed in an annular shape, the seventh facing 71 and the eighth facing 75 are engaged regardless of the rotational posture of the first rotor 31 with respect to the input shaft 30. To do. Further, since the seventh and eighth facings 71 and 75 are each formed in an annular shape, the seventh facing 71 and the eighth facing 75 are engaged regardless of the rotational posture of the second rotor 32 with respect to the input shaft 30. Is possible. Therefore, there is no restriction on the rotational posture of the input shaft 30 and the rotors 31 and 32 connected to each other.
  • FIG. 5 is a cross-sectional view showing a schematic configuration of a transmission driving apparatus 100 according to another embodiment (second embodiment) of the present invention.
  • the transmission drive device 100 shown in FIG. 5 is different from the transmission drive device 1 shown in FIG. 1 in that a shift select that causes the transmission mechanism to perform a shift operation and a select operation instead of the shift shaft 8 and the select shaft 12.
  • a shaft (shift operating member, select operating member) 101 is provided.
  • the transmission drive device 100 includes an electric actuator 102 (see FIG. 6) that is used as a common drive source for the shift operation and the select operation of the shift select shaft 101.
  • one end 10a of an internal lever 10 housed in the gear housing 4 is fixed.
  • One end 101a of the shift select shaft 101 protrudes outside the gear housing 4 and enters an electric actuator 102 (see FIG. 6) provided outside the gear housing 4.
  • the electric actuator 102 moves the shift select shaft 101 in the axial direction Y2 and rotates it about its central axis C3.
  • the electric actuator 102 is fixed to the outer surface of the gear housing 4 or a predetermined portion of the vehicle.
  • the electric actuator 102 includes the electric motor 103, a shift conversion mechanism 104 for converting the rotational torque of the electric motor 103 into a force for rotating the shift select shaft 101 around its central axis C3, and the rotational torque of the electric motor 103.
  • the shift conversion mechanism 105 for converting the shift select shaft 101 into a force that moves the shift select shaft 101 in the axial direction Y2 and the transmission destination of the rotational driving force of the electric motor 103 are transferred between the shift conversion mechanism 104 and the select conversion mechanism 105.
  • a switching unit 106 is provided for switching.
  • the electric motor 103, the shift conversion mechanism 104, the select conversion mechanism 105, and the switching unit 106 are accommodated in a substantially cylindrical casing 107.
  • the electric motor 103 is employed as the electric motor 103.
  • the electric motor 103 is disposed outside the casing 107.
  • the output shaft 109 of the electric motor 103 extends along a predetermined direction (left-right direction shown in FIG. 6) orthogonal to the shift select shaft 101.
  • the switching unit 106 includes a first transmission shaft (input shaft) 110 that is coaxially connected to the output shaft 109 of the electric motor 103, and a first rotor (first shaft) that is coaxial with the first transmission shaft 110 and rotatably provided.
  • the first rotor 112, the second rotor 111 coaxially and rotatably provided on the first transmission shaft 110, and the first rotor 112 and the second rotor (second rotor) 111.
  • a clutch mechanism 113 for switching the connection destination of the transmission shaft 110 (selectively transmitting the rotational torque of the first transmission shaft 110 to the first rotor 112 and the second rotor 111) is provided.
  • the second rotor 111 is disposed on the opposite side to the electric motor 103 with respect to the first transmission shaft 110.
  • the first transmission shaft 110 has a small-diameter main shaft portion 114 provided on the electric motor 103 side, and is provided on the second rotor 111 side continuously to the main shaft portion 114, and has a large-diameter portion 115 having a larger diameter than the main shaft portion 114. And.
  • a first rotor 112 surrounding the outer periphery of the main shaft portion 114 of the first transmission shaft 110 is provided on the side opposite to the second rotor 111 with respect to the large diameter portion 115 of the first transmission shaft. That is, the first and second rotors 112 and 111 are arranged so as to sandwich the large diameter portion 115 of the first transmission shaft 110.
  • the clutch mechanism 113 includes a first clutch 117 that connects / releases the first transmission shaft 110 and the first rotor 112, and a second clutch 116 that connects / releases the first transmission shaft 110 and the second rotor 111. ing. In the operating state of the first clutch 117 (the excitation state of the first electromagnetic coil 119), the second clutch 116 is in the non-operating state (the non-excitation state of the second electromagnetic coil 118). In an operating state of the second clutch 116 (excitation state of a second electromagnetic coil 118 described later), the first clutch 117 is in a non-operating state (non-excitation state of a first electromagnetic coil 119 described later).
  • a relatively small-diameter annular first gear 120 is fitted and fixed to the outer periphery of the first rotor 112.
  • the first gear 120 is provided coaxially with the first rotor 112.
  • the first gear 120 is supported by rolling bearings 121 and 122.
  • the outer rings of the rolling bearings 121 and 122 are internally fitted and fixed to the first gear 120.
  • Inner rings of the rolling bearings 121 and 122 are externally fitted and fixed to the outer periphery of the main shaft portion 114 of the first transmission shaft 110.
  • the shift conversion mechanism 104 includes a ball screw mechanism 122 and a connecting rod 124 that connects the nut 123 of the ball screw mechanism 122 and the shift select shaft 101.
  • the ball screw mechanism 122 includes a screw shaft 125 connected to the second rotor 111 and extending coaxially with the second rotor 111, and a nut 123 attached to the screw shaft 125.
  • a plurality of balls (not shown) are movably interposed between the male screw of the screw shaft 125 and the female screw of the nut 123, and the ball screw mechanism 122 performs the rotational motion of the second rotor 111. Convert to axial linear motion.
  • One end of the screw shaft 125 (left end shown in FIG. 6) is supported by a rolling bearing 126.
  • the inner ring of the rolling bearing 126 is externally fitted and fixed to one end of the screw shaft 125.
  • the outer ring of the rolling bearing 126 is fitted in a through-hole penetrating the inner and outer surfaces of the bottom wall 127 of the unit casing fixed to the casing.
  • a lock nut is engaged with the outer ring of the rolling bearing 126, and movement in the other axial direction (rightward in FIG. 6) is restricted.
  • a portion of the end of the screw shaft 125 closer to the electric motor 103 than the rolling bearing 126 (left side shown in FIG. 6) is inserted into the inner periphery of the second rotor 111 and is connected to the second rotor 111 so as to be integrally rotatable. Has been.
  • the other end of the screw shaft 125 (the right end shown in FIG. 6) is supported by a rolling bearing 128.
  • the outer ring of the rolling bearing 128 is fixed to the casing 107.
  • a pair of cylindrical engagement shafts 129 extending in a direction parallel to the shift select shaft 101 (a direction perpendicular to the paper surface in FIG. 6; the left-right direction shown in FIG. 7) (only one in FIG. 6). (Shown) is protrudingly formed.
  • the shift select shaft 101 is supported by a pair of plain bearings 130 and 131 (see FIG. 7) fitted and fixed in the casing 107 so as to be linearly reciprocable and rotatable in the axial direction Y2.
  • a plurality of rack teeth 132 are formed at intervals in the axial direction Y2.
  • a spline portion 133 is formed at a predetermined position closer to the gear box 2 than the rack teeth 132 on the outer periphery of the shift select shaft 101.
  • the connecting rod 124 connects the first portion 134 for connecting to the nut 123, the second portion 135 (see FIG. 7) for connecting to the shift select shaft 101, and the first portion 134 and the second portion 135.
  • the first portion 134 includes a pair of support plate portions 138 having U-shaped engagement grooves 137 that engage with the respective engagement shafts 129.
  • the second portion 135 has a cylindrical shape and is fitted on the shift select shaft 101.
  • a spline groove 139 is formed on the inner periphery of the second portion 135 to be spline-fitted to a spline portion 133 formed on the outer periphery of the shift select shaft 101.
  • the second portion 135 is connected to the shift select shaft 101 in a state in which relative rotation is impossible and relative axial movement is allowed. Therefore, when the nut 123 moves along the axial direction of the screw shaft (the left-right direction shown in FIG. 6, the direction orthogonal to the paper surface shown in FIG. 7) as the screw shaft 125 rotates, the connecting rod 124 shifts. It swings around the central axis C3 of the select shaft 101.
  • the select conversion mechanism 105 includes a first gear 120, a second transmission shaft 141 that extends in parallel with the first transmission shaft 110 and is rotatably provided, and one end of the second transmission shaft 141 (the left end shown in FIG. 6). ) A second gear 142 that is coaxially fixed at a predetermined position near the second end, and a small-diameter pinion 143 that is coaxially fixed at a predetermined position near the other end of the second transmission shaft 141 (the right end shown in FIG. 3). I have.
  • the second gear 142 is formed with a larger diameter than both the first gear 120 and the pinion 143.
  • One end of the second transmission shaft 141 (left end shown in FIG. 6) is supported by a rolling bearing 144.
  • the inner ring of the rolling bearing 144 is externally fitted and fixed to one end portion (left end portion shown in FIG. 6) of the second transmission shaft 141.
  • the outer ring of the rolling bearing 144 is fixed in a cylindrical recess formed on the inner surface of the lid that covers the opening of the casing 107.
  • the other end portion (the right end portion shown in FIG. 6) of the second transmission shaft 141 is supported by a rolling bearing 145.
  • FIGS. 8 and 9 are enlarged cross-sectional views showing configurations of the first transmission shaft 110, the first and second rotors 112 and 111, and the clutch mechanism 113.
  • FIG. 8 shows a state when the first transmission shaft 110 and the second rotor 111 are connected
  • FIG. 9 shows a state when the first transmission shaft 110 and the first rotor 112 are connected.
  • the first transmission shaft 110 is rotatably supported coaxially with the output shaft 109 of the electric motor 103 via a rolling bearing 150 and an annular first field 151 (described later).
  • the first field 151 is fitted and fixed to the casing 107 (the casing 107 is not shown in FIGS. 8 and 9), and the outer ring of the rolling bearing 150 is fixed to the first field 151.
  • the casing 107 is not shown in FIGS. 8 and 9
  • the outer ring of the rolling bearing 150 is fixed to the first field 151. Has been.
  • the large-diameter portion 115 includes a large-diameter portion main body 152, a first armature hub 153 projecting radially outward from the outer periphery of the large-diameter portion main body 152, and the outer periphery of the large-diameter portion main body 152 radially outward. And an armature support hub 154 projecting toward the head.
  • the first armature hub 153 is provided at the end of the large diameter portion 115 on the electric motor 103 side (left side shown in FIGS. 8 and 9).
  • the armature support hub 154 is provided at the end of the large diameter portion 115 on the second rotor 111 side (the right side shown in FIGS. 8 and 9).
  • a housing groove 155 for housing the rolling bearing 150 is formed between the first armature hub 153 and the armature support hub 154 on the outer periphery of the large-diameter portion main body 152.
  • the first field 151 that is externally fitted and fixed to the rolling bearing 150 is disposed adjacent to one of the first armature hubs 153 in the axial direction (the right side in FIGS. 8 and 9).
  • the armature support hub 154 is formed of, for example, an annular leaf spring.
  • the armature support hub 154 has a first facing surface 157 that faces the second armature hub 156.
  • a second armature 158 for engaging with the second armature hub 156 is fixedly disposed on the first facing surface 157.
  • the first rotor 112 is rotatably supported coaxially with the output shaft 109 of the electric motor 103 by the main shaft portion 114 of the first transmission shaft 110 via the rolling bearings 121 and 122 as described above.
  • the first rotor 112 includes a cylindrical first rotor main body 164 and a leaf spring portion 165 provided at an end of the first rotor 112 on the large diameter portion 115 side (the right end shown in FIGS. 8 and 9). It has.
  • the leaf spring portion 165 has a second facing surface 166 facing the first armature hub 153 and has an annular plate shape, and an inner peripheral end thereof is on the large diameter portion 115 side of the first rotor main body portion 164. It is connected to the end (the right end shown in FIGS.
  • a first armature 167 for engaging with the first armature hub 153 is fixedly disposed on the second facing surface 166. That is, the first armature 167 and the first field 151 are arranged at a position sandwiching the first armature hub 153.
  • the first field 151 has a first electromagnetic coil 119 built in the yoke.
  • the first armature 167, the first armature hub 153, and the first field 151 constitute a first clutch 117.
  • plate spring part 165 may be provided integrally with the 1st rotor main-body part 164, and may be provided separately and may be fixed to the 1st rotor main-body part 164.
  • An engagement groove (casing side engagement) described below is provided at a predetermined position in the middle of the radial direction of the other surface 168 (the left surface shown in FIGS. 8 and 9) on the opposite side of the second opposing surface 166 of the leaf spring portion 165.
  • Part) 169 and the engagement piece 170 which locks and engages is fixedly arranged.
  • the main shaft portion 114 of the first transmission shaft 110 and the first rotor main body portion 164 are disposed on the opposite side of the second rotor 111 (the left side shown in FIGS. 8 and 9) with respect to the annular plate-shaped leaf spring portion 165.
  • An encircling plate-shaped engaging plate (fixing member) 171 is provided. The engagement plate 171 is externally fixed to the casing 107.
  • the engagement plate 171 for example, a plate for retaining from the casing 107 of the switching unit 106 can be used.
  • the engagement plate 171 has a facing surface 172 that faces the other surface 168 of the leaf spring portion 165.
  • An engaging groove 169 for locking engagement with the engaging piece 170 is formed on the facing surface 172.
  • the engagement plate 171 is formed with engagement grooves 169 at a plurality of circumferential positions (for example, three positions). As described above, since the shift select shaft 101 reciprocates in the axial direction as the first rotor 112 rotates, the rotational posture of the first rotor 112 and the axial position of the shift select shaft 101 are linked. .
  • the formation position of the engagement groove 169 is set to a position where the engagement groove 169 is engaged with the engagement piece 170 of the first rotor 112 when the shift select shaft 101 is at a predetermined selection position (3 positions). Therefore, any one of the engagement grooves 169 locks with the engagement piece 170.
  • the first rotor 112 is connected to the casing 107. In the coupled state with the casing 107, the first rotor 112 is held by the casing 107 and cannot rotate.
  • the engagement piece 170 enters the engagement groove 169, and the engagement piece 170 and the engagement groove 169 are locked.
  • the first armature 167 is attracted to the first field 151 including the first electromagnetic coil 119, and the first armature 167 is on the second rotor 111 side (see FIG. 9). 8 and the right side shown in FIG. 9, and the first armature 167 is frictionally engaged with the first armature hub 153.
  • the leaf spring portion 165 is elastically deformed so that the peripheral edge portion approaches the first field 151 side.
  • the engagement piece 170 moves in a direction away from the engagement groove 169 (rightward in FIGS. 8 and 9). The lock engagement with the joint groove 169 is released.
  • the second rotor 111 is rotatably supported coaxially with the output shaft 109 of the electric motor 103 via a rolling bearing 160 and an annular second field 159.
  • the second rotor 111 is provided on the second rotor main body 161 and an end of the second rotor 111 on the first transmission shaft 110 side, and has a disk shape larger in diameter than the second rotor main body 161.
  • a stepped portion 162 for locking the outer ring of the rolling bearing 160 is formed on the outer periphery of the second rotor main body 161 on the opposite side of the first transmission shaft 110 with respect to the second armature hub 156.
  • a second field 159 that is fitted on the rolling bearing 160 is disposed adjacent to the second armature hub 156. That is, the second armature hub 156 is sandwiched between the second armature 158 and the second field 159.
  • the second field 159 has a second electromagnetic coil 118 built in the yoke.
  • the second armature 158, the second armature hub 156, and the second field 159 constitute a second clutch 116.
  • the second clutch 116 is in a connected state and the first clutch 117 is in a released state.
  • the second electromagnetic coil 118 is in an excited state, and the first electromagnetic coil 119 is in a non-excited state.
  • the second armature 158 is sucked into the second field 159 and the second armature 158 is frictionally engaged with the second armature hub 156.
  • the first transmission shaft 110 and the second rotor 111 rotate integrally, and the rotational torque of the first transmission shaft 110 is transmitted to the second rotor 111.
  • rotational torque from the electric motor 103 is applied to the second rotor 111
  • the screw shaft 125 rotates with the rotation of the second rotor 111
  • the nut 123 attached to the screw shaft 125 moves in the axial direction.
  • the connecting rod 124 swings around the central axis C3 of the shift select shaft 101. Since the second portion 135 of the connecting rod 124 is provided so as not to rotate relative to the shift select shaft 101, the shift select shaft 101 rotates about the central axis C3 as the connecting rod 124 swings.
  • the first clutch 117 is in a connected state, and the first electromagnetic clutch 116 is in a released state.
  • the first electromagnetic coil 119 is in an excited state
  • the second electromagnetic coil 118 is in a non-excited state.
  • the first armature 167 is frictionally engaged with the first armature hub 153, and the lock engagement between the engagement piece 170 and the engagement groove 169 is released.
  • the first transmission shaft 110 and the first rotor 112 rotate integrally, and the rotational torque of the first transmission shaft 110 is transmitted to the first rotor 112.
  • the rotational torque from the electric motor 103 applied to the first rotor 112 is applied to the pinion 143 via the first gear 120, the second gear 142, and the second transmission shaft 141. Then, due to the engagement of the rack teeth 132 and the pinion 143, the shift select shaft 101 moves in the axial direction Y2 as the pinion 143 rotates. Thereby, the rotational torque of the electric motor 103 is converted into a moving force of the shift select shaft 101 in the axial direction Y2.
  • the first rotor 112 is coupled to the casing 107 in the coupled state between the second rotor 111 and the first transmission shaft 110.
  • the first rotor 112 In the connected state to the casing 107, the first rotor 112 cannot rotate. Therefore, the shift select shaft 101 can be prevented from moving in the axial direction when there is a reverse input to the first rotor 112 released from the first transmission shaft 110.
  • the first electromagnetic coil 119 of the first clutch 117 is used to connect / release the first rotor 112 to / from the casing 107. Therefore, there is no need to provide a dedicated magnetic circuit for connecting / releasing the first rotor 112 to / from the casing 107, thereby reducing costs.
  • the engagement piece 170 is provided so as to be movable together with the first armature 167. Therefore, there is no need to separately provide a member for connection with the casing 107, so that the cost can be further reduced.
  • the first rotor 112 rotates by receiving a rotational force based on the weight of the shift select shaft 101, and as a result, the shift select shaft 101 is lowered. May be allowed.
  • the engagement groove 169 is used as the engagement recess has been described as an example, but an engagement hole (a through hole penetrating the leaf spring portion 165) is employed as the engagement recess.
  • the engagement piece 170 was employ
  • adopts the engagement piece 170 as a casing side engaging part may be sufficient.
  • the engagement rings 58 and 73 may be externally fixed to the casing 5 instead of a part of the casing 5.
  • the engagement plate 171 may be configured by a part of the casing 107 instead of being externally fixed to the casing 107.
  • the shape of the engagement plate 171 is not limited to the annular plate shape. Moreover, you may be comprised combining the some board
  • connection state of the rotors 31 and 32 and the casing 5 may be implement
  • connection state of the 1st rotor 112 and the casing 107 may be implement
  • the configuration in which the first rotor 112 for moving the shift select shaft 101 in the axial direction (selecting operation) and the casing 107 are connected has been described as an example.
  • a configuration in which the second rotor 111 for rotating (shifting) the shift select shaft 101 and the casing 107 may be connected may be employed.
  • both the structure which connects the 1st rotor 112 and the casing 107, and the structure which connects the 2nd rotor 111 and the casing 107 may be employ
  • the rotating body in a released state from the input shaft is made unrotatable, so that the displacement of the operating member when there is a reverse input to the shift operating member or the select operating member. Can be prevented.
  • SYMBOLS 1 Transmission drive device, 5 ... Casing, 8 ... Shift shaft (shift operation member), 12 ... Select shaft (select operation member), 9 ... Electric motor, 30 ... Input shaft, 31 ... 1st rotor (1st rotation) Body), 32 ... second rotor (second rotating body), 33 ... clutch mechanism, 34 ... first clutch, 35 ... second clutch, 36 ... first electromagnetic coil, 37 ... second electromagnetic coil, 55 ... first Magnetic ring 56... 4th facing (first engaging portion, friction portion), 60... 5th facing (casing side engaging portion), 70... 2nd magnetic ring, 71... 7th facing, 75.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Gear-Shifting Mechanisms (AREA)
  • Structure Of Transmissions (AREA)

Abstract

【課題】入力軸からの解放状態にある回転体を回転不能とし、これにより、シフト作動部材またはセレクト作動部材に逆入力があった場合における当該作動部材の変位を防止することができる変速機駆動装置を提供すること。 【解決手段】入力軸30と第1ロータ31との連結時では、第1電磁コイル36は励磁状態にあり、第2電磁コイル37は無励磁状態にある。この状態では、第2磁性リング70は第2電磁コイル37側に吸引されず、第2磁性リング70に固定された第7フェーシング71と、第8フェーシング75とが係合状態にあり、第2ロータ32がケーシング5と連結している。ケーシング5への連結状態では、第2ロータ32は回転不能である。 【効果】第2ロータ32に逆入力があった場合に、シフトシャフト8が回転するのを防止することができる。

Description

変速機駆動装置
 この発明は、変速機駆動装置に関する。
 従来から、マニュアルトランスミッションのクラッチが自動化された自動制御式マニュアルトランスミッション(Automated Manual Transmission)の変速機駆動装置が知られている。
 たとえば特許文献1の変速機駆動装置では、シフト作動用モータと、セレクト作動用モータという2つのモータが備えられており、これらのモータにより、手動操作と同様の操作を行わせるようにしている。
特開昭63-30637号公報
 特許文献1では、2つの電動モータを用いるため、高コスト化するおそれがある。
 そこで、本願発明者らは、1つの電動モータを用いて、シフト作動およびセレクト作動の両方を実現させることを検討している。たとえば、電動モータの回転トルクを、シフト作動用のシフト作動部材、およびセレクト作動用のセレクト作動部材の一方に選択的に伝達させるためのクラッチ機構を採用する。クラッチ機構は、シフト作動部材に連結された第1回転体と入力軸とを連結/解放する第1電磁クラッチ、およびセレクト作動部材に連結された第2回転体と入力軸とを連結/解放する第2電磁クラッチを備えている。第1電磁クラッチが励磁状態にあるときは、第2電磁クラッチは無励磁状態とされ、また、第2電磁クラッチが励磁状態にあるときは、第1電磁クラッチは無励磁状態とされる。
 第1電磁クラッチが連結されている場合は、第2回転体が入力軸から解放されている。その場合に、セレクト作動部材に逆入力があると、第2回転体が回転し、制御部の制御によらずにセレクト作動部材が作動(移動)するおそれがある。また、同様に、第1回転体が入力軸から解放された状態で、シフト作動部材に逆入力があると、第1回転体が回転し、制御部の制御によらずにシフト作動部材が作動(移動)するおそれがある。
 そこで、この発明は、入力軸からの解放状態にある回転体を回転不能とし、これにより、シフト作動部材またはセレクト作動部材に逆入力があった場合における当該作動部材の変位を防止することができる変速機駆動装置を提供することを目的とする。
 本発明の第1の観点は、ケーシング(5;107)と、シフト作動を行うためのシフト作動部材(8;101)と、セレクト作動を行うためのセレクト作動部材(12;101)と、電動モータ(9;103)の回転トルクが入力される入力軸(30;110)と、前記シフト作動部材および前記セレクト作動部材の一方に回転トルクを伝達するための第1回転体(31;112)と、前記シフト作動部材および前記セレクト作動部材の他方に回転トルクを伝達するための第2回転体(32;111)と、前記入力軸と前記第1回転体とを連結/解放する第1クラッチ(34;117)、および前記入力軸と前記第2回転体とを連結/解放する第2クラッチ(35;116)を有し、前記入力軸の回転トルクを、第1回転体または前記第2回転体に選択的に伝達するクラッチ機構(33;113)と、前記ケーシングまたは前記ケーシングに固定的に備えられた固定部材(171)に設けられたケーシング側係合部(60,75;169)と、前記第1回転体に一体回転可能に設けられ、前記ケーシング側係合部に係合可能な第1係合部(56;170)とを含み、前記第1クラッチは、第1電磁コイル(36;119)を有する電磁クラッチからなり、前記第1クラッチにおける第1電磁コイルの無励磁状態では、前記第1係合部は、当該第1電磁コイル側に吸引されて、前記ケーシング側係合部に係合するとともに、前記第1電磁コイルの励磁状態では、前記ケーシング側係合部との係合が外れるようになっている、変速機駆動装置(1;100)である。
 なお、括弧内の数字は、後述の実施形態における対応構成要素等を表すが、特許請求の範囲を実施形態に限定する趣旨ではない。以下、この項において同じ。
 この構成によれば、第1ケーシング側係合部と係合可能な第1係合部が、第1回転体に一体回転可能に設けられている。第1電磁コイルの無励磁状態では、この第1係合部は第1ケーシング側係合部に係合する。また、第1電磁コイルの励磁状態では、第1係合部は第1電磁コイルに吸引されて、第1係合部と第1ケーシング側係合部との係合が外れるようになっている。
 入力軸と第1回転体とが連結される場合、第1クラッチの第1電磁コイルは励磁状態にあるので、第1係合部と第1ケーシング側係合部との係合は外れている。すなわち、第1回転体がケーシングから解放されている。そのため、入力軸から第1回転体に回転トルクが伝達されると、第1回転体は入力軸とともに一体的に回転する。
 一方、入力軸と第2回転体とが連結される場合、第1クラッチの第1電磁コイルは無励磁状態にあるので、第1係合部と第1ケーシング側係合部とが係合し、第1回転体がケーシングに連結される。このケーシングへの連結状態では、第1回転体は回転不能である。したがって、入力軸からの解放状態にある第1回転体を回転不能とし、これにより、シフト作動部材またはセレクト作動部材に逆入力があった場合における当該作動部材の変位(移動または回転)を防止することができる。
 また、第1クラッチの第1電磁コイルを用いて、第1回転体のケーシングに対する連結/解放を行うので、ケーシングに第1回転体を連結/解放させるための専用の磁気回路を設ける必要がなく、これにより、コストダウンを図ることができる。
 本発明本発明野の第2の観点においては、前記第1電磁コイルと前記ケーシング側係合部との間において、前記第1回転体に一体回転可能かつ、軸方向に移動可能に配置された磁性リング(55,70)をさらに含み、前記第1係合部は、前記磁性リングに一体移動可能に設けられている、変速機駆動装置であってもよい。
 この構成によれば、第1電磁コイルと第1ケーシング側係合部との間に磁性リングが配置されている。すなわち、第1電磁コイルは、磁性リングに対して第1ケーシング側係合部と反対側に配置されている。
 第1電磁コイルの無励磁状態では、磁性リングは第1電磁コイル側に吸引されず、そのため、第1係合部は移動しない。そのため、第1係合部と第1ケーシング側係合部との間で係合状態が保たれている。すなわち、第1回転体がケーシングに連結される。
 一方、第1電磁コイルの励磁状態では、磁性リングは第1電磁コイル側に吸引されて、第1電磁コイル側に移動する。そのため、磁性リングに一体移動可能に設けられた第1係合部が、第1ケーシング側係合部から離反する方向に移動する。これにより、第1係合部と第1ケーシング側係合部との係合が外れ、第1回転体がケーシングから解放される。ゆえに、比較的簡単な構成で、第1回転体とケーシングとの連結/解放を切り換えることができる。
 本発明の第3の観点においては、前記第1クラッチは、前記第1電磁コイルと前記ケーシング側係合部との間において、前記第1回転体に一体回転可能に設けられたアーマチュア(167)をさらに有し、前記第1電磁コイルの励磁状態では、当該第1電磁コイル側に前記アーマチュアが吸引されて、当該アーマチュアが前記入力軸と係合することにより、前記第1回転体と前記入力軸とが連結されるとともに、前記第1電磁コイルの無励磁状態では、前記アーマチュアと前記第1回転体との係合が外れることにより、前記第1回転体が前記入力軸から解放されるものであり、前記第1係合部は、前記アーマチュアに一体移動可能に設けられている変速機駆動装置であってもよい。
 この構成によれば、第1電磁コイルは、アーマチュアに対して第1ケーシング側係合部と反対側に配置されている。第1係合部は、アーマチュアに一体移動可能に設けられている。
 第1電磁コイルの無励磁状態では、アーマチュアは第1電磁コイル側に吸引されないので、アーマチュアは入力軸と係合しない。また、アーマチュアの吸引がないので第1係合部の移動はなく、第1係合部と第1ケーシング側係合部との係合状態が保たれる。したがって、この状態で、第1回転体は入力軸から解放され、かつケーシングに連結される。
 一方、第1電磁コイルの励磁状態では、アーマチュアは第1電磁コイル側に吸引されて、第1電磁コイル側に移動し、入力軸と係合する。また、アーマチュアに一体移動可能に設けられた第1係合部が、第1ケーシング側係合部から離反する方向に移動し、これにより、第1係合部と第1ケーシング側係合部との係合が外れる。したがって、この励磁状態では、第1回転体はケーシングから解放され、かつ入力軸に連結される。これにより、比較的簡単な構成で、第1回転体のケーシングに対する連結/解放を切り換えることができる。
 また、第1係合部がアーマチュアと一体移動可能に設けられている。そのため、ケーシングとの連結のための部材を別途設ける必要がないので、さらにコストダウンを図ることができる。
 第4の観点として、前記第1係合部は、前記ケーシング側係合部に対して摩擦係合する摩擦部(56)を含むものであってもよい。この場合、摩擦部は、円環状に形成されていてもよい。この構成では、入力軸に対する第1回転体の回転姿勢に拘わらず、第1ケーシング側係合部と第1係合部とが係合することが可能である。そのため、入力軸と第1回転体との連結状態における互いの回転姿勢に制約がない。
 また、第5の観点として、前記第1係合部は、前記ケーシング側係合部に対してロック係合する係合片(170)または係合凹所を含むものであってもよい。この場合、第1ケーシング側係合部と第1係合部との間の係合を強固に保つことができる。これにより、第1クラッチの解放時における第1回転体の回転をより確実に防止することができる。また、係合凹所は、溝や孔により構成されていてもよい。
 本発明の第6の観点においては、前記ケーシング側係合部に係合可能な第2係合部(71)をさらに含み、前記第2クラッチは、第2電磁コイル(37)を有する電磁クラッチからなり、前記第2クラッチにおける第2電磁コイルの無励磁状態では、前記第2係合部は、当該第2電磁コイル側に吸引されて、前記ケーシング側係合部に係合するとともに、前記第2電磁コイルの励磁状態では、前記ケーシング側係合部との係合が外れるようになっている変速機駆動装置であってもよい。
 この構成によれば、第2ケーシング側係合部と係合可能な第2係合部が、第2回転体に一体回転可能に設けられている。第2電磁コイルの無励磁状態では、第2係合部は第2ケーシング側係合部に係合する。また、第2電磁コイルの励磁状態では、第2係合部は第2電磁コイルに吸引されて、第2係合部と第2ケーシング側係合部との係合が外れるようになっている。
 入力軸と第1回転体とが連結される場合、第2クラッチの第2電磁コイルは無励磁状態にあるので、第2係合部と第2ケーシング側係合部とが係合し、第2回転体がケーシングに連結される。このケーシングへの連結状態では、第2回転体は回転不能である。
 また、入力軸と第2回転体とが連結される場合、第2クラッチの第2電磁コイルは励磁状態にあるので、第2係合部と第2ケーシング側係合部との係合は外れている。すなわち、第2回転体がケーシングから解放されている。そのため、入力軸から第2回転体に回転トルクが伝達されると、第2回転体は入力軸とともに一体的に回転する。
 これにより、第1および第2回転体の双方において、入力軸からの解放状態での回転が不能とされる。ゆえに、シフト作動部材またはセレクト作動部材に逆入力があった場合における当該作動部材の変位(移動または回転)を防止することができる。
本発明の一実施形態(第1実施形態)に係る変速機駆動装置が組み込まれた変速機の概略構成を示す図である。 図1に示す変速機駆動装置の概略構成を示す分解斜視図である。 入力軸と第1ロータとの連結時における電動アクチュエータの断面図である。 入力軸と第2ロータとの連結時における電動アクチュエータの断面図である。 本発明の他の実施形態(第2実施形態)に係る変速機駆動装置の概略構成を示す断面図である。 図5に示す電動アクチュエータの断面図である。 図6の切断面線VII-VIIで切断したときの断面図である。 第1伝達軸と第2ロータとの連結時における第1伝達軸、第1および第2ロータ、ならびにクラッチ機構の構成を示す拡大断面図である。 第1伝達軸と第1ロータとの連結時における第1伝達軸、第1および第2ロータ、ならびにクラッチ機構の構成を示す拡大断面図である。
 以下には、図面を参照して、この発明の実施の形態について具体的に説明する。図1は、本発明の一実施形態(第1実施形態)に係る変速機駆動装置1が組み込まれた変速機2の概略構成を示す図である。図2は、変速機駆動装置1の概略構成を示す分解斜視図である。
 変速機2は、公知の平行歯車式変速機(図示せず)であり、乗用車やトラックなどの車両に搭載される。変速機2は、ギヤハウジング4と、ギヤハウジング4内に収容される平行歯車式の変速機構(図示せず)と、この変速機構を駆動するための変速機駆動装置1とを備えている。変速機駆動装置1は、変速機構にシフト動作を行わせるシフトシャフト(シフト作動部材)8と、変速機構にセレクト動作を行わせるセレクトシャフト(セレクト作動部材)12と、シフトシャフト8およびセレクトシャフト12を駆動するための共通の駆動源として用いられる電動アクチュエータ3とを備えている。
 シフトシャフト8の途中部には、ギヤハウジング4内に収容されるインターナルレバー10の一端10aが、同伴回転可能にかつシフトシャフト8の軸方向Y1に移動可能に支持されている。具体的には、インターナルレバー10の一端10aに設けられたスプライン孔の内周の雌スプラインに、シフトシャフト8の雄スプライン8bが嵌合している。インターナルレバー10は、シフトシャフト8の中心軸線C1まわりに、シフトシャフト8と同伴回転する。シフトシャフト8の一端8aは、ギヤハウジング4外に突出している。
 セレクトシャフト12は、シフトシャフト8と略直交する方向に沿って延びる。セレクトシャフト12の一端は、セレクトフォーク13の一端13aに連結されている。これにより、セレクトフォーク13は、セレクトシャフト12の中心軸線C2まわりに、セレクトシャフト12と同伴回転可能とされている。セレクトフォーク13の他端13bには、インターナルレバーに係合した二股状のフォーク14が設けられている。セレクトシャフト12の他端12aは、ギヤハウジング4外に突出している。
 ギヤハウジング4内には、互いに平行に延びる複数のシフトロッド15,16,17が収容されている。各シフトロッド15,16,17には、インターナルレバー10の他端10bと係合するシフトブロック18,19,20が固定されている。また、各シフトロッドには、クラッチスリーブ(図示せず)と係合するシフトフォーク21が設けられている(図2では、シフトロッド17に設けられたシフトフォーク21のみを示す)。
 電動アクチュエータ3は、ギヤハウジング4外に設けられており、円筒状のケーシング5と、ケーシング5内に収容された第1出力軸6および第2出力軸7とを備えている。電動アクチュエータ3は、ギヤハウジング4の外表面または車両の所定箇所に固定されている。電動アクチュエータ3は、第1出力軸6または第2出力軸7に対して選択的に回転トルクを出力する電動モータ9を備えている。第1出力軸6および第2出力軸7は同軸に配置されており、互いに独立して回転可能に設けられている。
 第1出力軸6はねじ軸により構成されており、この第1出力軸6にボール(図示せず)を介して第1ナット22が取り付けられている。これら第1出力軸6および第1ナット22は、ボールねじ機構として機能している。第2出力軸7はねじ軸により構成されており、この第2出力軸7にボール(図示せず)を介して第2ナット23が取り付けられている。これら第2出力軸7および第2ナット23は、ボールねじ機構として機能している。ケーシング5内には、シフトシャフト8の一端8aが進入し、第1ナット22に連結されている。
 また、セレクトシャフト12の他端12aは、リンク機構24を介して、第2出力軸7に取り付けられた第2ナット23に連結されている。リンク機構24によって、第2出力軸7の回転トルクが、セレクトシャフト12に伝達される。リンク機構24は、第1端部25aおよび第2端部25bを有する第1リンクアーム25と、第3端部26aおよび第4端部26bを有する第2リンクアーム26と、第5端部27aおよび第6端部27bを有する第3リンクアーム27とを備えている。
 第1端部25aは、ケーシング5内に進入して、第2ナット23に回転可能に連結されている。そして、第1リンクアーム25によって回動可能に支持されている。第1リンクアーム25は、支点28まわりに揺動可能である。第3端部26aは、セレクトシャフト12の他端12aに連結固定されている。そのため、第2リンクアーム26がセレクトシャフト12と同伴して中心軸線C2まわりに回転する。第3リンクアーム27は、第2端部25bと第4端部26bとを連結している。具体的には、第5端部27aが第2端部25bに連結され、第6端部27bが第4端部26bに連結されている。第3リンクアーム27が開放端同士を連結するので、第1および第2リンクアーム26に対する姿勢を変更可能である。第1リンクアーム25が支点28まわりに揺動すると、この揺動動作に連動して第2リンクアーム26が揺動し、これに伴ってセレクトシャフト12が中心軸線C2まわりに回転する。
 電動アクチュエータ3の第2出力軸7が回転されると、それに伴って、第2出力軸7およびセレクトフォーク13が、セレクトシャフト12の中心軸線C2まわりに揺動する。これにより、セレクトフォーク13の他端のフォーク14が、インターナルレバー10をシフトシャフト8の軸方向Y1に移動させる。その結果、インターナルレバー10の他端10bが所要のシフトブロック18,19,20に係合し、これによりセレクト動作が達成される。
 一方、電動アクチュエータ3の第1出力軸6が回転されると、これに伴って、シフトシャフト8およびインターナルレバー10が、シフトシャフト8の中心軸線C1まわりに揺動する。その結果、インターナルレバー10と係合しているシフトブロック18,19,20が、シフトロッド15,16,17の軸方向Z1に移動し、これにより、シフト動作が達成される。
 図3および図4は、電動アクチュエータ3の断面図である。図3は、次に述べる入力軸30と次に述べる第1ロータ(第1回転体)31との連結時を示し、図4は、入力軸30と第2ロータ(第2回転体)32との連結時を示す。
 前述のように、ケーシング5内には、電動モータ9(図1参照)の回転トルクが入力される入力軸30が収容されている。この入力軸30は、外郭円筒形状をなしており、第1出力軸6および第2出力軸7と同心に配置されている。入力軸30は、軸方向への移動(往復移動)が許容されている。ケーシング5内には、入力軸30を軸方向に挟むように、第1ロータ31および第2ロータ32が収容されている。第1ロータ31は、入力軸30の一方側(図3および図4に示す右側)に配置されている。第2ロータ32は、入力軸30の他方側(図3および図4に示す左側)に配置されている。なお、第1および第2ロータ31,32は、軸方向への移動が許容されていない。
 また、ケーシング5内には、第1ロータ31と第2ロータ32との間で入力軸30の連結先を切り換える(入力軸30の回転トルクを、第1ロータ31と第2ロータ32とに選択的に伝達する)ためのクラッチ機構33が収容されている。このクラッチ機構33は、入力軸30と第1ロータ31とを連結/解放する第1クラッチ34と、入力軸30と第2ロータ32とを連結/解放する第2クラッチ35とを備えている。第1クラッチ34の稼動状態(後述する第1電磁コイル36の励磁状態)では第2クラッチ35は非稼動状態であり(後述する第2電磁コイル37の無励磁状態)、第2クラッチ35の稼動状態(後述する第2電磁コイル37の励磁状態)では第1クラッチ34は非稼動状態(後述する第1電磁コイル36の無励磁状態)である。
 入力軸30の一方側(図3および図4に示す右側)の側面には、そのほぼ全域に第1ばね部材(図3にて図示せず。図4参照)38が固定配置されている。この第1ばね部材38は、たとえば円板状の板ばねなどによって構成されている。第1ばね部材38の一方側(図3および図4に示す右側)には、円板状の第1磁性板39が固定配置されている。さらに、第1磁性板39の一方側(図3および図4に示す右側)には、円板状の第1フェーシング40が固定配置されている。この第1磁性板39と第1フェーシング40とによって後述する第1アーマチュア41が構成されている。すなわち、入力軸30側から順に、第1ばね部材38、第1磁性板39および第1フェーシング40が積層配置されている。各部材38,39,40は、互いにほぼ同じ外径を有しており、それらの外周とケーシング5の内周との間に隙間が形成されるように配置されている。
 入力軸30の他方側(図3および図4に示す左側)の側面には、そのほぼ全域に第2ばね部材(図4にて図示せず。図3参照)42が固定配置されている。この第2ばね部材42は、たとえば円板状の板ばねなどによって構成されている。第2ばね部材42の他方側(図3および図4に示す左側)には、円板状の第2磁性板43が固定配置されている。さらに、第2磁性板43の他方側(図3および図4に示す左側)には、円板状の第2フェーシング44が固定配置されている。この第2磁性板43と第2フェーシング44とによって後述する第2アーマチュア45が構成されている。すなわち、入力軸30側から順に、第2ばね部材42、第2磁性板43および第2フェーシング44が積層配置されている。各部材42,43,44は、互いにほぼ同じ外径を有しており、それらの外周とケーシング5の内周との間に隙間が形成されるように配置されている。
 これにより、各部材38,39,40,42,43,44は、入力軸30と一体的に回転するとともに、入力軸30に同伴して軸方向に移動する。
 次いで、第1ロータ31および第1クラッチ34について説明する。
 第1ロータ31には、第1転がり軸受47および円環状の第1フィールド48(後述する)を介して、入力軸30と同軸に回転可能に支持されている。具体的には、ケーシング5に第1フィールド48が内嵌固定されるとともに、その第1フィールド48の内周に第1転がり軸受47の外輪が内嵌固定されている。第1ロータ31は、外郭略円筒状の本体部80と、本体部80の外周から径方向外方に突出する大径の第1アーマチュアハブ49と、本体部80の外周から径方向外方に突出する大径の第1ブレーキ用ハブ50と、第1出力軸6の端部を支持するための第1ボス51とを備えている。第1アーマチュアハブ49は、軸方向内端(入力軸30側端部。図3および図4で示す左端)に設けられている。第1アーマチュアハブ49は、第1転がり軸受47による支持位置よりも軸方向外側(入力軸30と反対側。図3および図4で示す右側)に設けられている。第1アーマチュアハブ49と第1ブレーキ用ハブ50とはほぼ同じ外径を有している。第1ボス51は、第1ブレーキ用ハブ50の軸方向外側(入力軸30側と反対側。図3および図4で示す右側)に形成されている。第1ボス51に第1出力軸6の端部(図3および図4で示す左端部)が固定的に取り付けられている。
 第1クラッチ34は、第1フィールド48と、第1アーマチュア41とを備えている。第1フィールド48は、ヨーク内に第1電磁コイル36を内蔵している。第1ロータ(第1アーマチュアハブ49)の入力軸30側の側面(図3および図4に示す左面)の全域には、円板状をなす第3フェーシング53が固定配置されている。この第3フェーシング53は、第1フェーシング40と摩擦係合するためのものである。第3フェーシング53は、その外周とケーシング5の内周との間に隙間が形成されるように配置されている。
 また、第1ブレーキ用ハブ50における入力軸30側と反対側の側面(図3および図4に示す右面)の周縁部には、円環状の第3ばね部材54(図3にて図示せず。図4参照)が固定配置されている。この第3ばね部材54は、たとえば板ばねなどによって構成されている。第3ばね部材54には、入力軸30側と反対側(図3および図4に示す右側)に、円環板状の第1磁性リング55が固定配置されている。この第1磁性リング55は、第1フィールド48との間で第1アーマチュアハブ49の周縁部を挟む位置に配置されている。さらに、第1磁性リング55には、入力軸30側と反対側(図3および図4に示す右側)に、円環板状の第4フェーシング(第1係合部、摩擦部)56が固定配置されている。すなわち、入力軸30側から順に、第3ばね部材54、第1磁性リング55および第4フェーシング56が積層配置されている。各部材54,55,56は、互いにほぼ同じ内径および外径を有しており、それらの外周とケーシング5の内周との間に隙間が形成されるように配置されている。各部材54,55,56は、第1ロータ31と一体的に回転するとともに、1ロータ31に同伴して軸方向に移動する。
 一方、ケーシング5には、第1ボス51および第1出力軸6を取り囲む円環板状の第1係合リング58が、その内周から内方に向けて突出形成されている。第1係合リング58は、軸方向に関して、第1ブレーキ用ハブ50よりも入力軸30側の反対側(図3および図4に示す右側)に配置されている。第1係合リング58は、第1ブレーキ用ハブ50における入力軸30側と反対側の側面(図3および図4に示す右面)の周縁部(すなわち第4フェーシング56の配置領域)に対向する第1対向面59を有している。第1対向面59には、第4フェーシング56と摩擦係合するための第5フェーシング(ケーシング側係合部)60が固定配置されている。第5フェーシング60は、その外周とケーシング5の内周との間に隙間が形成されるように配置されている。
 第1電磁コイル36の無励磁状態(図4参照)では、第4フェーシング56は第5フェーシング60に摩擦係合する。また、第1電磁コイル36の励磁状態(図3参照)では、第4フェーシング56と一体的に設けられた第1磁性リング55が第1電磁コイル36を含む第1フィールド48に吸引されて、第4フェーシング56が第5フェーシング60から離反する方向(図3および図4に示す左方向)に向けて移動し、これにより、第4フェーシング56と第5フェーシング60との係合が外れ、第4フェーシング56と第5フェーシング60との間に隙間が形成される。
 次いで、第2ロータ32および第2クラッチ35について説明する。
 第2ロータ32には、第2転がり軸受62および円環状の第2フィールド63(後述する)を介して、入力軸30と同軸に回転可能に支持されている。具体的には、ケーシング5に第2フィールド63が内嵌固定されるとともに、その第2フィールド63の内周に第2転がり軸受62の外輪が内嵌固定されている。第2ロータ32は、外郭略円筒状の本体部81と、本体部81の外周から径方向外方に突出する大径の第2アーマチュアハブ64と、本体部81の外周から径方向外方に突出する大径の第2ブレーキ用ハブ65と、第2出力軸7の端部を支持するための第2ボス66とを備えている。第2アーマチュアハブ64は、軸方向内端(入力軸30側端部。図3および図4で示す右端)に設けられている。第2アーマチュアハブ64は、第2転がり軸受62による支持位置よりも軸方向外側(入力軸30と反対側。図3および図4で示す左側)に設けられている。第2アーマチュアハブ64と第2ブレーキ用ハブ65とはほぼ同じ外径を有している。第2ボス66は、第2ブレーキ用ハブ65の軸方向外側(入力軸30側と反対側。図3および図4で示す左側)に形成されている。第2ボス66に第2出力軸7の端部(図3および図4で示す右端部)が固定的に取り付けられている。
 第2クラッチ35は、第2フィールド63と、第2アーマチュア45とを備えている。第2フィールド63は、ヨーク内に第2電磁コイル37を内蔵している。第2ロータ32(第2アーマチュアハブ64)の入力軸30側の側面(図3および図4に示す右面)の全域には、円板状をなす第6フェーシング68が固定配置されている。この第6フェーシング68は、第2フェーシング44と摩擦係合するためのものである。第6フェーシング68は、その外周とケーシング5の内周との間に隙間が形成されるように配置されている。
 また、第2ブレーキ用ハブ65における入力軸30側と反対側の側面(図3および図4に示す左面)の周縁部には、円環状の第4ばね部材69(図4にて図示せず。図3参照)が固定配置されている。この第4ばね部材69は、たとえば板ばねなどによって構成されている。第4ばね部材69には、入力軸30側と反対側(図3および図4に示す左側)に、円環板状の第2磁性リング70が固定配置されている。この第2磁性リング70は、第2フィールド63との間で第2アーマチュアハブ64の周縁部を挟む位置に配置されている。さらに、第2磁性リング70には、入力軸30側と反対側(図3および図4に示す左側)に、円環板状の第7フェーシング71が固定配置されている。すなわち、入力軸30側から順に、第4ばね部材69、第2磁性リング70および第7フェーシング71が積層配置されている。各部材69,70,71は、互いにほぼ同じ内径および外径を有しており、それらの外周とケーシング5の内周との間に隙間が形成されるように配置されている。各部材69,70,71は、第2ロータ32と一体的に回転するとともに、第2ロータ32に同伴して軸方向に移動する。
 一方、ケーシング5には、第2ボス66および第2出力軸7を取り囲む円環板状の第2係合リング73が、その内周から内方に向けて突出形成されている。第2係合リング73は、軸方向に関して、第2ブレーキ用ハブ65よりも入力軸30側の反対側(図3および図4に示す左側)に配置されている。第2係合リング73は、第2ブレーキ用ハブ65における入力軸30側と反対側の側面(図3および図4で示す左面)の周縁部(すなわち第7フェーシング71の配置領域)に対向する第2対向面74を有している。第2対向面74には、第7フェーシング71と摩擦係合するための第8フェーシング(ケーシング側係合部)75が固定配置されている。第8フェーシング75は、その外周とケーシング5の内周との間に隙間が形成されるように配置されている。
 第2電磁コイル37の無励磁状態(図3参照)では、第7フェーシング71は第8フェーシング75に摩擦係合する。また、第2電磁コイル37の励磁状態(図4参照)では、第7フェーシング71と一体的に設けられた第2磁性リング70が第2電磁コイル37を含む第2フィールド63に吸引されて、第7フェーシング71が第8フェーシング75から離反する方向(図3および図4に示す右方向)に向けて移動し、これにより、第7フェーシング71と第8フェーシング75との係合が外れ、第7フェーシング71と第8フェーシング75との間に隙間が形成される。
 なお、第1~第8フェーシング40,44,53,56,60,68,71,75は、たとえば、みがき特殊帯鋼(SK5M等)などの摩擦材を用いて形成されている。
 入力軸30と第1ロータ31との連結時(図3参照)には、第1クラッチ34が連結状態にあり、第2クラッチ35が解放状態にある。このとき、第1電磁コイル36は励磁状態にあり、第2電磁コイル37は無励磁状態にある。
 この状態では、第1アーマチュア41は第1フィールド48に吸引されるが、第2アーマチュア45は第2フィールド63に吸引されない。したがって、第1アーマチュア41および入力軸30が、第1ロータ31側(図3および図4に示す右方向)に向けて移動する。そして、第1アーマチュア41の一部を構成する第3フェーシング53が、第1ロータ31に固定された第1フェーシング40と摩擦係合する。これにより、第1アーマチュア41と入力軸30との係合が達成されて、第1出力軸6は入力軸30に連結する。
 また、第1電磁コイル36の励磁状態では、第1磁性リング55は第1電磁コイル36側に吸引されて、第1電磁コイル36側(図3および図4に示す左側)に向けて軸方向に移動する。そのため、第1磁性リング55に固定された第4フェーシング56が、第5フェーシング60(第1係合リング58)から離反する方向に向けて移動し、これにより、第4フェーシング56と第5フェーシング60との係合が外れる。そのため、入力軸30の回転トルクが第1ロータ31に伝達される。そして、第1ロータ31の回転トルクは、第1ロータ31に固定された第1出力軸6に伝達される。第1出力軸6の回転に伴って第1ナット22が軸方向に移動し、これによりセレクトシャフト12が回転される。
 なお、入力軸30と第1出力軸6との連結状態では、第1ばね部材38は、第1磁性板39と入力軸30との間に挟まれて軸方向に縮んでおり、また、第3ばね部材54は、第1磁性リング55と第1ブレーキ用ハブ50との間に挟まれて軸方向に縮んでいる。そのため、図3では第1ばね部材38および第3ばね部材54は表れていない。
 また、第2電磁コイル37の無励磁状態では、第2磁性リング70は第2電磁コイル37側に吸引されず、第2磁性リング70が軸方向に移動しない。そのため、第2磁性リング70に固定された第7フェーシング71と、第8フェーシング75(第2係合リング73)とは係合状態にある。すなわち、入力軸30と第1ロータ31との連結時には、第2ロータ32がケーシング5と連結している。このケーシング5への連結状態では、第2ロータ32はケーシング5によって保持されており、回転不能である。
 一方、図4に示す入力軸30と第2ロータ32との連結時(図4参照)には、第2クラッチ35が連結状態にあり、第1クラッチ34が解放状態にある。このとき、第2電磁コイル37は励磁状態にあり、第1電磁コイル36は無励磁状態にある。
 この状態では、第2アーマチュア45は第2フィールド63に吸引されるが、第1アーマチュア41は第1フィールド48に吸引されない。したがって、第2アーマチュア45および入力軸30が第2フィールド63側に移動する。そして、第2アーマチュア45の一部を構成する第6フェーシング68が、入力軸30に固定された第2フェーシング44と摩擦係合する。これにより、第2アーマチュア45と入力軸30との係合が達成されて、第2出力軸7は入力軸30に連結する。
 また、第2電磁コイル37の励磁状態では、第2磁性リング70は第2電磁コイル37側に吸引されて、第2電磁コイル37側に向けて軸方向に移動する。そのため、第2磁性リング70に固定された第7フェーシング71が、第8フェーシング75(第2係合リング73)から離反する方向に移動し、これにより、第7フェーシング71と第8フェーシング75との係合が外れる。そのため、入力軸30の回転トルクが第2ロータ32に伝達される。そして、第2ロータ32の回転トルクは、第2ロータ32に固定された第2出力軸7に伝達される。第2出力軸7の回転に伴って第2ナット23が軸方向に移動し、これによりセレクトシャフト12が回転される。
 また、入力軸30が第2フィールド63側に移動するので、第1アーマチュア41と、第1ロータ31に固定された第3フェーシング53とは係合しない。また、第1電磁コイル36の無励磁状態では、第1磁性リング55は第1電磁コイル36側に吸引されず、第1磁性リング55が軸方向に移動しない。そのため、第1磁性リング55に固定された第4フェーシング56と、第5フェーシング60(第1係合リング58)とは係合状態にある。すなわち、入力軸30と第2ロータ32との連結時には、第1ロータ31がケーシング5と連結している。ケーシング5への連結状態では、第1ロータ31はケーシング5によって保持されており、回転不能である。
 なお、入力軸30と第2出力軸7との連結状態では、第2ばね部材42は、第2磁性板43と入力軸30との間に挟まれて軸方向に縮んでおり、また、第4ばね部材69は、第2磁性リング70と第2ブレーキ用ハブ65との間に挟まれて軸方向に縮んでいる。そのため、図4では第2ばね部材42および第4ばね部材69は表れていない。
 以上により、この実施形態によれば、第1ロータ31と入力軸30との連結状態では、第2ロータ32がケーシング5に連結される。ケーシング5への連結状態では、第2ロータ32は回転不能である。したがって、第2ロータ32に逆入力があった場合に、シフトシャフト8が回転するのを防止することができる。
 また、第2ロータ32と入力軸30との連結状態では、第1ロータ31がケーシング5に連結される。ケーシング5への連結状態では、第1ロータ31は回転不能である。したがって、第1ロータ31に逆入力があった場合に、セレクトシャフト12が回転するのを防止することができる。
 また、クラッチ34,35の電磁コイル36,37を用いて、ロータ31,32のケーシング5に対する連結/解放を行う。したがって、ロータ31,32のケーシング5に対する連結/解放のための専用の磁気回路を設ける必要がなく、これにより、コストダウンを図ることができる。
 また、第7および第8フェーシング71,75がそれぞれ円環状に形成されているので、入力軸30に対する第1ロータ31の回転姿勢に拘わらず、第7フェーシング71と第8フェーシング75とは係合する。さらに、第7および第8フェーシング71,75がそれぞれ円環状に形成されているので、入力軸30に対する第2ロータ32の回転姿勢に拘わらず、第7フェーシング71と第8フェーシング75とは係合することが可能である。そのため、入力軸30とロータ31,32との連結状態における互いの回転姿勢に制約がない。
 図5は、本発明の他の実施形態(第2実施形態)に係る変速機駆動装置100の概略構成を示す断面図である。この第2実施形態において、図1~図4に示す実施形態(第1実施形態)に示された各部に対応する部分には、第1実施形態と同一の参照符号を付して示し、説明を省略する。図5に示す変速機駆動装置100が、図1に示す変速機駆動装置1と相違する点は、シフトシャフト8およびセレクトシャフト12に代えて、変速機構にシフト動作およびセレクト動作を行わせるシフトセレクトシャフト(シフト作動部材、セレクト作動部材)101が設けられている点である。変速機駆動装置100には、シフトセレクトシャフト101のシフト動作およびセレクト動作のための共通の駆動源として用いられる電動アクチュエータ102(図6参照)が備えられている。
 シフトセレクトシャフト101の途中部には、ギヤハウジング4内に収容されるインターナルレバー10の一端10aが、固定されている。シフトセレクトシャフト101の一端101aは、ギヤハウジング4外に突出し、ギヤハウジング4外に設けられた電動アクチュエータ102(図6参照)内に進入する。電動アクチュエータ102によって、シフトセレクトシャフト101は、軸方向Y2に移動されるとともに、その中心軸線C3まわりに回転される。電動アクチュエータ102は、ギヤハウジング4の外表面または車両の所定箇所に固定されている。
 電動アクチュエータ102によって、シフトセレクトシャフト101が軸方向Y2に移動すると、インターナルレバー10の他端10bが所要のシフトブロック18,19,20に係合し、これによりセレクト動作が達成される。また、電動アクチュエータ102によって、シフトセレクトシャフト101がその中心軸線C3まわりに回転されると、インターナルレバー10と係合しているシフトブロック18,19,20が、シフトロッド15,16,17の軸方向Z1に移動し、これにより、シフト動作が達成される。
 図6は、図5に示す電動アクチュエータの断面図である。図7は、図6の切断面線VII-VIIで切断したときの断面図である。
 電動アクチュエータ102は、電動モータ103と、電動モータ103の回転トルクを、シフトセレクトシャフト101をその中心軸線C3まわりに回転させる力に変換するためのシフト変換機構104と、電動モータ103の回転トルクを、シフトセレクトシャフト101をその軸方向Y2に移動させる力に変換するためのセレクト変換機構105と、電動モータ103の回転駆動力の伝達先を、シフト変換機構104とセレクト変換機構105との間で切り換えるため切換えユニット106とを備えている。これら電動モータ103、シフト変換機構104、セレクト変換機構105および切換えユニット106は、略筒状のケーシング107内に収容されている。
 電動モータ103としては、たとえばブラシレスモータが採用されている。電動モータ103は、ケーシング107外に配置されている。電動モータ103の出力軸109は、シフトセレクトシャフト101と直交する所定の方向(図6に示す左右方向)に沿って延びている。
 切換えユニット106は、電動モータ103の出力軸109と同軸に連結された第1伝達軸(入力軸)110と、第1伝達軸110と同軸にかつ、回転可能に設けられた第1ロータ(第1回転体)112と、第1伝達軸110に同軸にかつ、回転可能に設けられた第2ロータ111と、第1ロータ112と第2ロータ(第2回転体)111との間で第1伝達軸110の連結先を切り換える(第1伝達軸110の回転トルクを、第1ロータ112と第2ロータ111とに選択的に伝達する)ためのクラッチ機構113とを備えている。第2ロータ111は、第1伝達軸110に対し、電動モータ103と反対側に配置されている。
 第1伝達軸110は、電動モータ103側に設けられた小径の主軸部114と、主軸部114に連続して第2ロータ111側に設けられ、主軸部114よりも大径の大径部115とを備えている。第1伝達軸の大径部115に対し、第2ロータ111と反対側には、第1伝達軸110の主軸部114の外周を取り囲む第1ロータ112が設けられている。すなわち、第1および第2ロータ112,111が、第1伝達軸110の大径部115を挟むように配置されている。
 クラッチ機構113は、第1伝達軸110と第1ロータ112とを連結/解放する第1クラッチ117と、第1伝達軸110と第2ロータ111とを連結/解放する第2クラッチ116とを備えている。第1クラッチ117の稼動状態(第1電磁コイル119の励磁状態)では、第2クラッチ116は非稼動状態(第2電磁コイル118の無励磁状態)にある。第2クラッチ116の稼動状態(後述する第2電磁コイル118の励磁状態)では、第1クラッチ117は非稼動状態にある(後述する第1電磁コイル119の無励磁状態)。
 第1ロータ112の外周には、比較的小径の円環状の第1歯車120が外嵌固定されている。第1歯車120は、第1ロータ112と同軸に設けられている。第1歯車120は転がり軸受121,122によって支持されている。転がり軸受121,122の外輪は、第1歯車120に内嵌固定されている。転がり軸受121,122の内輪は、第1伝達軸110の主軸部114の外周に外嵌固定されている。
 シフト変換機構104は、ボールねじ機構122と、このボールねじ機構122のナット123とシフトセレクトシャフト101とを連結する連結ロッド124とを備えている。ボールねじ機構122は、第2ロータ111に連結され、第2ロータ111と同軸に延びるねじ軸125と、このねじ軸125に取り付けられるナット123とを備えている。ねじ軸125の雄ねじと、ナット123の雌ねじとの間に、複数のボール(図示しない)が転動可能に介在しており、ボールねじ機構122は第2ロータ111の回転運動を、ナット123の軸方向直線運動に変換する。
 ねじ軸125の一端部(図6に示す左端部)は、転がり軸受126によって支持されている。転がり軸受126の内輪は、ねじ軸125の一端部に外嵌固定されている。また、転がり軸受126の外輪は、ケーシングに対して固定されたユニットケーシングの底壁127の内外面を貫通する貫通孔に内嵌されている。また、転がり軸受126の外輪にはロックナットが係合されて、軸方向他方(図6に示す右方)への移動が規制されている。ねじ軸125の一端部における転がり軸受126よりも電動モータ103側(図6に示す左側)の部分は、第2ロータ111の内周に挿通されて、この第2ロータ111に一体回転可能に連結されている。
 ねじ軸125の他端部(図6に示す右端部)は、転がり軸受128によって支持されている。転がり軸受128の外輪は、ケーシング107に固定されている。ナット123の両側面には、シフトセレクトシャフト101に平行な方向(図6における紙面に直交する方向。図7に示す左右方向)に延びる一対の円柱状の係合軸129(図6では一方のみ図示)が突出形成されている。
 シフトセレクトシャフト101は、ケーシング107に内嵌固定された一対のすべり軸受130,131(図7参照)によって、その軸方向Y2に直線往復動自在に、かつ回転自在に支持されている。シフトセレクトシャフト101の外周には、ラック歯132(図7参照)が軸方向Y2に間隔を隔てて複数形成されている。シフトセレクトシャフト101の外周における、ラック歯132よりもギヤボックス2寄りの所定位置に、スプライン部133が形成されている。
 連結ロッド124は、ナット123に連結するための第1部分134と、シフトセレクトシャフト101に連結するための第2部分135(図7参照)と、第1部分134と第2部分135とを接続する接続部136とを備えている。第1部分134は、各係合軸129と係合するU字係合溝137を有する支持板部138を一対備えている。第2部分135は、円筒状をなし、シフトセレクトシャフト101に外嵌されている。第2部分135の内周には、シフトセレクトシャフト101の外周に形成されるスプライン部133にスプライン嵌合するスプライン溝139(図7参照)が形成されている。そのため、第2部分135は、シフトセレクトシャフト101に対して、相対回転不能にかつ、相対軸方向移動が許容された状態で連結されている。そのため、ねじ軸125の回転に伴って、ナット123が、ねじ軸の軸方向(図6に示す左右方向。図7に示す紙面に直交する方向)に沿って移動すると、連結ロッド124が、シフトセレクトシャフト101の中心軸線C3まわりに揺動する。
 セレクト変換機構105は、第1歯車120と、第1伝達軸110と平行に延び、回転可能に設けられた第2伝達軸141と、第2伝達軸141における一端部(図6に示す左端部)寄りの所定位置に同軸に固定された第2歯車142と、第2伝達軸141の他端部(図3に示す右端部)寄りの所定位置に同軸に固定された小径のピニオン143とを備えている。なお、第2歯車142は、第1歯車120およびピニオン143の双方よりも大径に形成されている。
 第2伝達軸141の一端部(図6に示す左端部)は、転がり軸受144によって支持されている。転がり軸受144の内輪は、第2伝達軸141の一端部(図6に示す左端部)に外嵌固定されている。また、転がり軸受144の外輪は、ケーシング107の開口を覆う蓋の内面に形成された円筒状の凹部内に固定されている。また、第2伝達軸141の他端部(図6に示す右端部)は、転がり軸受145によって支持されている。
 図8および図9は、第1伝達軸110、第1および第2ロータ112,111、ならびにクラッチ機構113の構成を示す拡大断面図である。図8は、第1伝達軸110と第2ロータ111との連結時を示し、図9は、第1伝達軸110と第1ロータ112との連結時を示す。
 第1伝達軸110は、転がり軸受150および円環状の第1フィールド151(後述する)を介して電動モータ103の出力軸109と同軸に回転可能に支持されている。具体的には、ケーシング107に第1フィールド151が内嵌固定されるとともに(図8および図9では、ケーシング107は図示せず)、その第1フィールド151に転がり軸受150の外輪が内嵌固定されている。
 大径部115は、大径部本体152と、大径部本体152の外周から径方向外方に向けて張り出す第1アーマチュアハブ153と、大径部本体152の外周から径方向外方に向けて張り出すアーマチュア支持用ハブ154とを備えている。第1アーマチュアハブ153は、大径部115の電動モータ103側(図8および図9に示す左側)の端部に設けられている。アーマチュア支持用ハブ154は、大径部115の第2ロータ111側(図8および図9に示す右側)の端部に設けられている。
 大径部本体152の外周における第1アーマチュアハブ153およびアーマチュア支持用ハブ154の間には、転がり軸受150を収容する収容溝155が形成されている。そして、この転がり軸受150に外嵌固定される第1フィールド151が、第1アーマチュアハブ153の軸方向の一方(図8および図9に示す右方)に隣接して配置されている。
 アーマチュア支持用ハブ154は、たとえば円環状の板ばねによって形成されている。アーマチュア支持用ハブ154は、第2アーマチュアハブ156と対向する第1対向面157を有している。第1対向面157には、第2アーマチュアハブ156と係合するための第2アーマチュア158が固定配置されている。
 第1ロータ112は、前述のように転がり軸受121,122を介して第1伝達軸110の主軸部114によって、電動モータ103の出力軸109と同軸に回転可能に支持されている。第1ロータ112は、円筒状の第1ロータ本体部164と、第1ロータ112における大径部115側の端部(図8および図9に示す右端部)に設けられた板ばね部165とを備えている。板ばね部165は、第1アーマチュアハブ153と対向する第2対向面166を有し、円環板状をなしており、その内周端が第1ロータ本体部164の大径部115側の端部(図8および図9に示す右端部)につながっている。第2対向面166には、第1アーマチュアハブ153と係合するための第1アーマチュア167が固定配置されている。すなわち、第1アーマチュア167および第1フィールド151が、第1アーマチュアハブ153を挟む位置に配置されている。第1フィールド151は、ヨーク内に第1電磁コイル119を内蔵している。第1アーマチュア167、第1アーマチュアハブ153および第1フィールド151によって第1クラッチ117が構成されている。なお、板ばね部165は、第1ロータ本体部164と一体的に設けられていてもよいし、別体に設けられて第1ロータ本体部164に固定されていてもよい。
 板ばね部165の第2対向面166と反対側の他方面168(図8および図9に示す左面)の径方向の途中部の所定箇所には、次に述べる係合溝(ケーシング側係合部)169とロック係合する係合片170が固定配置されている。
 また、円環板状の板ばね部165に対し、第2ロータ111の反対側(図8および図9で示す左側)に、第1伝達軸110の主軸部114および第1ロータ本体部164を取り囲む円環板状の係合板(固定部材)171が設けられている。係合板171は、ケーシング107に外付け固定されている。この係合板171として、たとえば切換えユニット106のケーシング107から抜止め用の板を用いることができる。係合板171は、板ばね部165の他方面168に対向する対向面172を有している。対向面172には、係合片170とロック係合するための係合溝169が形成されている。係合板171には、周方向の複数位置(たとえば3位置)に係合溝169が形成されている。前述のように、第1ロータ112の回転に伴ってシフトセレクトシャフト101が軸方向に往復移動するので、第1ロータ112の回転姿勢と、シフトセレクトシャフト101の軸方向位置とは連動している。係合溝169の形成位置は、シフトセレクトシャフト101が所定のセレクト位置(3位置)にあるときの第1ロータ112の係合片170と係合する位置に設定されている。そのため、いずれかの係合溝169が係合片170とロック係合する。これにより、第1ロータ112がケーシング107に連結する。このケーシング107との連結状態では、第1ロータ112はケーシング107によって保持されており、回転不能である。
 第1電磁コイル119の無励磁状態(図8参照)では、係合片170は係合溝169に入り込み、係合片170と係合溝169とがロック係合する。
 一方、第1電磁コイル119の励磁状態(図9参照)では、第1アーマチュア167が第1電磁コイル119を含む第1フィールド151に吸引されて、第1アーマチュア167が第2ロータ111側(図8および図9に示す右側)に向けて移動し、第1アーマチュア167が第1アーマチュアハブ153と摩擦係合する。このとき、板ばね部165が、その周縁部が第1フィールド151側に近づくように弾性変形する。板ばね部165の弾性変形に伴って、係合片170が係合溝169から離反する方向(図8および図9に示す右方)に向けて移動し、これにより、係合片170と係合溝169とのロック係合が外れる。
 第2ロータ111は、転がり軸受160および円環状の第2フィールド159を介して電動モータ103の出力軸109と同軸に回転可能に支持されている。第2ロータ111は、第2ロータ本体部161と、第2ロータ111における第1伝達軸110側の端部に設けられ、第2ロータ本体部161よりも大径の円板状をなす第2アーマチュアハブ156とを備えている。第2ロータ本体部161の外周には、第2アーマチュアハブ156に対して第1伝達軸110と反対側に、転がり軸受160の外輪を係止するための段部162が形成されている。この転がり軸受160に外嵌される第2フィールド159が、第2アーマチュアハブ156に隣接して配置されている。すなわち、第2アーマチュア158と第2フィールド159とによって、第2アーマチュアハブ156が挟まれている。
 第2フィールド159は、ヨーク内に第2電磁コイル118を内蔵している。第2アーマチュア158、第2アーマチュアハブ156および第2フィールド159によって第2クラッチ116が構成されている。
 第1伝達軸110と第2ロータ111との連結時(図8参照)には、第2クラッチ116が連結状態にあり、第1クラッチ117が解放状態にある。このとき、第2電磁コイル118は励磁状態にあり、第1電磁コイル119は無励磁状態にある。この状態では、第2アーマチュア158が第2フィールド159に吸引されて、第2アーマチュア158が第2アーマチュアハブ156と摩擦係合する。これにより、第2アーマチュア158と第1伝達軸110との係合が達成されて、第2ロータ111は第1伝達軸110に連結する。また、第1電磁コイル119が無励磁状態であるので、係合片170と係合溝169とがロック係合し、第1ロータ112がケーシング107に連結し、回転不能である。
 そして、第1伝達軸110と第2ロータ111とが一体的に回転し、第1伝達軸110の回転トルクは第2ロータ111に伝達される。第2ロータ111に電動モータ103からの回転トルクが付与されると、第2ロータ111の回転に伴ってねじ軸125が回転し、ねじ軸125に取り付けられたナット123が軸方向に移動する。そして、ナット123の軸方向移動に伴って、連結ロッド124が、シフトセレクトシャフト101の中心軸線C3まわりに揺動する。連結ロッド124の第2部分135がシフトセレクトシャフト101に相対回転不能に設けられているので、連結ロッド124の揺動に伴って、シフトセレクトシャフト101が中心軸線C3まわりに回転する。
 第1伝達軸110と第1ロータ112との連結時(図9参照)には、第1クラッチ117が連結状態にあり、第1電磁クラッチ116が解放状態にある。このとき、第1電磁コイル119は励磁状態にあり、第2電磁コイル118は無励磁状態にある。この状態では、前述のように、第1アーマチュア167が第1アーマチュアハブ153と摩擦係合するとともに、係合片170と係合溝169とのロック係合が外れる。そして、第1伝達軸110と第1ロータ112とが一体的に回転し、第1伝達軸110の回転トルクは第1ロータ112に伝達される。第1ロータ112に付与された電動モータ103からの回転トルクは、第1歯車120、第2歯車142および第2伝達軸141を介してピニオン143に付与される。そして、ラック歯132およびピニオン143の噛み合いにより、ピニオン143の回転に伴ってシフトセレクトシャフト101が軸方向Y2に移動する。これにより、電動モータ103の回転トルクが、シフトセレクトシャフト101の軸方向Y2への移動力に変換される。
 以上によりこの実施形態によれば、第2ロータ111と第1伝達軸110との連結状態では、第1ロータ112がケーシング107に連結される。ケーシング107への連結状態では、第1ロータ112は回転不能である。したがって、第1伝達軸110から解放されている第1ロータ112に逆入力があった場合に、シフトセレクトシャフト101が軸方向に移動するのを防止することができる。
 また、第1クラッチ117の第1電磁コイル119を用いて、第1ロータ112のケーシング107に対する連結/解放を行う。したがって、ケーシング107に対する第1ロータ112の連結/解放のための専用の磁気回路を設ける必要がなく、これにより、コストダウンを図ることができる。
 また、係合片170が第1アーマチュア167と一体移動可能に設けられている。そのため、ケーシング107との連結のための部材を別途設ける必要がないので、さらにコストダウンを図ることができる。
 また、図6に破線で示すように、電動アクチュエータ102の車両への取付けにおいて、シフトセレクトシャフト101が上下方向(鉛直方向。または鉛直方向に近い方向)に延びていると、シフトセレクトシャフト101に自重による下向きの力(下方方向力)が作用し、シフトセレクトシャフト101の自重に基づく回転力が、ピニオン143、第2伝達軸141ならびに第1および第2歯車120,142を介して第1ロータ112に作用する。第1伝達軸110と第1ロータ112とが連結されている場合は、シフトセレクトシャフト101がその自重により下降する(軸方向に移動する)ことはない。しかしながら、第1伝達軸110と第1ロータ112とが解放状態にある場合、第1ロータ112がシフトセレクトシャフト101の自重に基づく回転力を受けて回転し、その結果、シフトセレクトシャフト101の下降を許容するおそれがある。
 これに対し、この実施形態では、第2ロータ111が第1伝達軸110と連結されているときは、第1ロータ112がケーシング107に連結される。そのため、第1ロータ112が回転しない。これにより、第1伝達軸110と第2ロータ111との解放状態におけるシフトセレクトシャフト101の下降を確実に防止することができる。
 以上、この発明の2つの実施形態について説明したが、この発明は他の形態でも実施することができる。
 たとえば、第2実施形態において、係合凹所として係合溝169を用いる場合を例に挙げて説明したが、係合凹所として係合孔(板ばね部165を貫通する貫通孔)を採用することもできる。また、第1係合部として係合片170を採用し、ケーシング側係合部として係合凹所を採用する構成を例に挙げて説明したが、第1係合部として係合凹所を採用し、ケーシング側係合部として係合片170を採用する構成であってもよい。
 第1実施形態において、係合リング58,73が、ケーシング5の一部ではなく、ケーシング5に対して外付け固定されていてもよい。また、第2実施形態において、係合板171が、ケーシング107に対して外付け固定されたものでなく、ケーシング107の一部によって構成されていてもよい。
 また、第2実施形態において、係合板171の形状は、円環板状に限られない。また、それぞれ係合溝169が形成された複数の板材を組み合わせて構成されていてもよい。
 また、第1実施形態において、ロータ31,32とケーシング5との連結状態を、第2実施形態のようなロック係合(噛合い)により実現するものであってもよい。
 また、第2実施形態において、第1ロータ112とケーシング107との連結状態を、第1実施形態のような摩擦係合により実現するものであってもよい。
 また、第2実施形態において、シフトセレクトシャフト101を軸方向に移動させる(セレクト動作させる)ための第1ロータ112と、ケーシング107とを連結させる構成を例に挙げて説明したが、これに代えて、シフトセレクトシャフト101を回転させる(シフト動作させる)ための第2ロータ111と、ケーシング107とを連結させる構成が採用されていてもよい。また、第1ロータ112およびケーシング107を連結させる構成、ならびに第2ロータ111およびケーシング107を連結させる構成の双方が採用されていてもよい。
 その他、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。
 本発明によれば、変速機駆動装置において、入力軸からの解放状態にある回転体を回転不能とし、これにより、シフト作動部材またはセレクト作動部材に逆入力があった場合における当該作動部材の変位を防止することができる。
1…変速機駆動装置、5…ケーシング、8…シフトシャフト(シフト作動部材)、12…セレクトシャフト(セレクト作動部材)、9…電動モータ、30…入力軸、31…第1ロータ(第1回転体)、32…第2ロータ(第2回転体)、33…クラッチ機構、34…第1クラッチ、35…第2クラッチ、36…第1電磁コイル、37…第2電磁コイル、55…第1磁性リング、56…第4フェーシング(第1係合部、摩擦部)、60…第5フェーシング(ケーシング側係合部)、70…第2磁性リング、71…第7フェーシング、75…第8フェーシング(ケーシング側係合部)、100…変速機駆動装置、101…シフトセレクトシャフト(シフト作動部材、セレクト作動部材)、103…電動モータ、107…ケーシング、110…第1伝達軸(入力軸)、111…第2ロータ(第2回転体)、112…第1ロータ(第1回転体)、113…クラッチ機構、116…第2クラッチ、117…第1クラッチ、119…第1電磁コイル、167…第1アーマチュア、169…係合溝(ケーシング側係合部)、170…係合片、171…係合リング(固定部材)

Claims (6)

  1.  ケーシングと、
     シフト作動を行うためのシフト作動部材と、
     セレクト作動を行うためのセレクト作動部材と、
     電動モータの回転トルクが入力される入力軸と、
     前記シフト作動部材および前記セレクト作動部材の一方に回転トルクを伝達するための第1回転体と、
     前記シフト作動部材および前記セレクト作動部材の他方に回転トルクを伝達するための第2回転体と、
     前記入力軸と前記第1回転体とを連結/解放する第1クラッチ、および前記入力軸と前記第2回転体とを連結/解放する第2クラッチを有し、前記入力軸の回転トルクを、第1回転体または前記第2回転体に選択的に伝達するクラッチ機構と、
     前記ケーシングまたは前記ケーシングに固定的に備えられた固定部材に設けられたケーシング側係合部と、
     前記第1回転体に一体回転可能に設けられ、前記ケーシング側係合部に係合可能な第1係合部とを含み、
     前記第1クラッチは、第1電磁コイルを有する電磁クラッチからなり、
     前記第1クラッチにおける第1電磁コイルの無励磁状態では、前記第1係合部は、当該第1電磁コイル側に吸引されて、前記ケーシング側係合部に係合するとともに、前記第1電磁コイルの励磁状態では、前記ケーシング側係合部との係合が外れるようになっている、変速機駆動装置。
  2.  前記第1電磁コイルと前記ケーシング側係合部との間において、前記第1回転体に一体回転可能かつ、軸方向に移動可能に配置された磁性リングをさらに含み、
     前記第1係合部は、前記磁性リングに一体移動可能に設けられている、請求項1記載の変速機駆動装置。
  3.  前記第1クラッチは、前記第1電磁コイルと前記ケーシング側係合部との間において、前記第1回転体に一体回転可能に設けられた第1アーマチュアをさらに有し、
     前記第1電磁コイルの励磁状態では、当該第1電磁コイル側に前記アーマチュアが吸引されて、当該アーマチュアが前記入力軸と係合することにより、前記第1回転体と前記入力軸とが連結されるとともに、前記第1電磁コイルの無励磁状態では、前記アーマチュアと前記第1回転体との係合が外れることにより、前記第1回転体が前記入力軸から解放されるものであり、
     前記第1係合部は、前記アーマチュアに一体移動可能に設けられている、請求項1記載の変速機駆動装置。
  4.  前記第1係合部は、前記ケーシング側係合部に対して摩擦係合する摩擦部を含む、請求項1~3のいずれか一項に記載の変速機駆動装置。
  5.  前記第1係合部は、前記ケーシング側係合部に対してロック係合する係合片または係合凹所を含む、請求項1~3のいずれか一項に記載の変速機駆動装置。
  6.  前記ケーシング側係合部に係合可能な第2係合部をさらに含み、
     前記第2クラッチは、第2電磁コイルを有する電磁クラッチからなり、
     前記第2クラッチにおける第2電磁コイルの無励磁状態では、前記第2係合部は、当該第2電磁コイル側に吸引されて、前記ケーシング側係合部に係合するとともに、前記第2電磁コイルの励磁状態では、前記ケーシング側係合部との係合が外れるようになっている、請求項1~5のいずれか一項に記載の変速機駆動装置。
PCT/JP2011/056736 2010-03-24 2011-03-22 変速機駆動装置 WO2011118553A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180015594.8A CN102822571B (zh) 2010-03-24 2011-03-22 变速器驱动装置
EP11759358A EP2551556A1 (en) 2010-03-24 2011-03-22 Transmission driving device
US13/636,876 US9046173B2 (en) 2010-03-24 2011-03-22 Transmission driving device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010067990A JP5440861B2 (ja) 2010-03-24 2010-03-24 変速機駆動装置
JP2010-067990 2010-03-24

Publications (1)

Publication Number Publication Date
WO2011118553A1 true WO2011118553A1 (ja) 2011-09-29

Family

ID=44673105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056736 WO2011118553A1 (ja) 2010-03-24 2011-03-22 変速機駆動装置

Country Status (5)

Country Link
US (1) US9046173B2 (ja)
EP (1) EP2551556A1 (ja)
JP (1) JP5440861B2 (ja)
CN (1) CN102822571B (ja)
WO (1) WO2011118553A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6224517B2 (ja) * 2014-05-09 2017-11-01 京浜精密工業株式会社 変速操作機構

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6330637A (ja) 1986-07-24 1988-02-09 Fujitsu Ltd 変速機の駆動装置
JPH05256362A (ja) * 1991-12-06 1993-10-05 Eaton Corp 変速機のシフト方法及びその装置
JPH09112688A (ja) * 1995-07-29 1997-05-02 Ford Motor Co 電気式ギヤシフト機構
JPH10122361A (ja) * 1996-05-23 1998-05-15 Eaton Corp 変速機シフト装置およびそのジョークラッチ
JP2003074697A (ja) * 2001-08-30 2003-03-12 Isuzu Motors Ltd 変速操作装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19635866C2 (de) 1996-09-04 1998-07-23 Daimler Benz Ag Schaltvorrichtung für ein Zahnräderwechselgetriebe
BR9812009A (pt) 1997-08-27 2000-09-26 Daimler Chrysler Ag Dispositivo de engate para uma caixa de mudança de engrenagens
US6182522B1 (en) * 1999-01-15 2001-02-06 Santo Romano Tartivita Transmission for automotive vehicles or machinery
US6230577B1 (en) * 1999-01-20 2001-05-15 Borgwarner Inc. Electric shift control assembly
EP1538370A3 (en) * 2003-12-05 2011-11-30 Honda Motor Co., Ltd. Transmission control system
JPWO2005057051A1 (ja) 2003-12-11 2007-07-05 株式会社日立製作所 電動アクチュエータとその制御装置
JP3958740B2 (ja) * 2003-12-17 2007-08-15 本田技研工業株式会社 変速機の制御装置
DE102005040633A1 (de) * 2005-08-27 2007-03-29 Deere & Company, Moline Getriebeschaltstelle zum Herstellen einer drehfesten Verbindung zwischen einem Zahnrad und einer Welle
JP5440862B2 (ja) 2009-09-01 2014-03-12 株式会社ジェイテクト 変速装置
JP5472729B2 (ja) * 2010-02-24 2014-04-16 株式会社ジェイテクト 変速装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6330637A (ja) 1986-07-24 1988-02-09 Fujitsu Ltd 変速機の駆動装置
JPH05256362A (ja) * 1991-12-06 1993-10-05 Eaton Corp 変速機のシフト方法及びその装置
JPH09112688A (ja) * 1995-07-29 1997-05-02 Ford Motor Co 電気式ギヤシフト機構
JPH10122361A (ja) * 1996-05-23 1998-05-15 Eaton Corp 変速機シフト装置およびそのジョークラッチ
JP2003074697A (ja) * 2001-08-30 2003-03-12 Isuzu Motors Ltd 変速操作装置

Also Published As

Publication number Publication date
JP5440861B2 (ja) 2014-03-12
US20130008279A1 (en) 2013-01-10
EP2551556A1 (en) 2013-01-30
CN102822571A (zh) 2012-12-12
US9046173B2 (en) 2015-06-02
JP2011202683A (ja) 2011-10-13
CN102822571B (zh) 2015-04-01

Similar Documents

Publication Publication Date Title
JP5440862B2 (ja) 変速装置
JP5290978B2 (ja) トランスミッションにおけるフローティング歯車の操作装置
JP2014054160A (ja) 電動アクチュエータ
US10876613B2 (en) Differential gear for a motor vehicle
JP2011112114A (ja) 噛み合いクラッチ装置
US6857982B2 (en) Limited slip differential
WO2011105387A1 (ja) 変速装置
WO2010113618A1 (ja) 電磁クラッチ
JP5440861B2 (ja) 変速機駆動装置
JP2012052648A (ja) 変速機駆動装置
EP2500694A2 (en) Rotational position detecting device and transmission actuating device equipped with the same
WO2019135331A1 (ja) 変速機構
WO2022224441A1 (ja) 軸方向駆動アクチュエータ
US20200088295A1 (en) A three-gear automatic transmission for electric vehicle with a brushless control-by-wire centrifugal ball arm engagement device.
JP2007187249A (ja) 回転伝達装置
JP6888574B2 (ja) 係合装置
JP2012047259A (ja) 変速機駆動装置
JP2012097803A (ja) 変速機駆動装置
JP2014047870A (ja) 電動アクチュエータ
JP6052133B2 (ja) 変速機のシフト機構
JP2014052060A (ja) 電動アクチュエータ
JP6206020B2 (ja) 電磁クラッチ装置
JP2013104500A (ja) 電動アクチュエータ
JP2010190359A (ja) 電動アクチュエータ及び変速機用電動アクチュエータ
JP2018091395A (ja) アクチュエータ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180015594.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759358

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011759358

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13636876

Country of ref document: US

Ref document number: 8342/DELNP/2012

Country of ref document: IN

Ref document number: 2011759358

Country of ref document: EP