WO2011118518A1 - 立体画像表示装置 - Google Patents

立体画像表示装置 Download PDF

Info

Publication number
WO2011118518A1
WO2011118518A1 PCT/JP2011/056536 JP2011056536W WO2011118518A1 WO 2011118518 A1 WO2011118518 A1 WO 2011118518A1 JP 2011056536 W JP2011056536 W JP 2011056536W WO 2011118518 A1 WO2011118518 A1 WO 2011118518A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
image data
enhancement
eye image
eye
Prior art date
Application number
PCT/JP2011/056536
Other languages
English (en)
French (fr)
Inventor
英樹 相羽
Original Assignee
日本ビクター株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ビクター株式会社 filed Critical 日本ビクター株式会社
Priority to CN2011800149330A priority Critical patent/CN102804794A/zh
Priority to KR1020127024301A priority patent/KR20120128693A/ko
Priority to EP11759324.4A priority patent/EP2555529A4/en
Priority to US13/636,577 priority patent/US20130002834A1/en
Publication of WO2011118518A1 publication Critical patent/WO2011118518A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • G09G3/003Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background to produce spatial visual effects
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/139Format conversion, e.g. of frame-rate or size
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/341Displays for viewing with the aid of special glasses or head-mounted displays [HMD] using temporal multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/398Synchronisation thereof; Control thereof
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0252Improving the response speed
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0261Improving the quality of display appearance in the context of movement of objects on the screen or movement of the observer relative to the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0285Improving the quality of display appearance using tables for spatial correction of display data
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/04Changes in size, position or resolution of an image
    • G09G2340/0407Resolution change, inclusive of the use of different resolutions for different screen areas
    • G09G2340/0435Change or adaptation of the frame rate of the video stream
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/16Determination of a pixel data signal depending on the signal applied in the previous frame

Definitions

  • the present invention relates to a stereoscopic image display device that performs stereoscopic display by outputting image data for the left eye and right eye in a time-sharing manner.
  • a stereoscopic image display device for improving ghost (crosstalk) due to a response delay of a display element such as a liquid crystal is known.
  • the input image data of the latest field is compared with the gradation value of the image data of the field displayed immediately before, and the latest voltage to be displayed next from the immediately preceding field as the gradation voltage for image display of the latest field.
  • a gradation voltage emphasizing the gradation change to the field is created and applied to the liquid crystal display panel.
  • a conversion table of gradation values for accelerating the response speed of the liquid crystal with respect to gradation changes and compensating for the response delay is prepared in a predetermined memory in advance, and an arithmetic unit provided at the subsequent stage of the frame memory is used.
  • Patent Document 1 A prior art is disclosed in which an optimum gradation voltage is created to change from the current liquid crystal display state to the gradation to be displayed next (see Patent Document 1).
  • An arithmetic unit provided at the subsequent stage of the memory creates optimum gradation voltages for the left-eye image data and the right-eye image data. Therefore, when the gradation voltage is created, both the left-eye image data and the right-eye image data are calculated, and the memory capacity and the number of input / output terminals of the memory increase. This increases the throughput of data transfer to and from the memory and increases the number of memories and the wiring area, so that there is a problem that the apparatus becomes complicated / large and the manufacturing cost increases.
  • the frame rate of the image data is high, so that not only the throughput is high, but the operation speed of the computing unit is high.
  • the apparatus load becomes large.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a stereoscopic image display device having a simple device configuration and capable of reducing a data processing device load.
  • the first feature of the stereoscopic image display device is that one image data of right-eye image data or left-eye image data for displaying a stereoscopic video is transmitted for one frame period. Based on the difference between the delay unit that outputs the delayed data as delayed data, the right-eye image data, and the left-eye image data, the first image data is emphasized by a first enhancement coefficient, and the first enhancement is performed.
  • a first data enhancement unit that outputs the enhancement data, the other image data of the right-eye image data or the left-eye image data, and the delay data delayed by one frame period by the delay unit Based on the difference, a second data enhancement unit that enhances the other image data with a second enhancement coefficient and outputs it as second enhancement data, the first enhancement data, and the second enhancement data Stores, is to have a first enhancement data, and a division output unit when outputting the time-dividing the second enhancement data at a predetermined frame rate.
  • a second feature of the stereoscopic image display device is that one of the right-eye image data and the left-eye image data for displaying a stereoscopic image is delayed by one frame period and output as delayed data.
  • a first enhancement data is output by emphasizing the one image data with a first enhancement coefficient based on a difference between the delay unit, the right-eye image data, and the left-eye image data. Based on a difference between one data enhancement unit, the other image data of the right-eye image data or the left-eye image data, and the delay data delayed by one frame period by the delay unit.
  • a second data emphasizing unit for emphasizing the image data with a second emphasis coefficient and outputting it as second emphasis data, the first emphasis data, the one image data, and the second emphasis data , Storing the other image data, time-division at a predetermined frame rate in the order of the first enhancement data, the one image data, the second enhancement data, and the other image data.
  • a time-division output unit for outputting.
  • a third feature of the stereoscopic image display device is that one of the right-eye image data and the left-eye image data for displaying a stereoscopic video is delayed by one frame period and output as delayed data.
  • a first enhancement data is output by emphasizing the one image data with a first enhancement coefficient based on a difference between the delay unit, the right-eye image data, and the left-eye image data. Based on a difference between one data enhancement unit, the other image data of the right-eye image data or the left-eye image data, and the delay data delayed by one frame period by the delay unit. Based on the difference between the second data enhancement unit that enhances the image data with the second enhancement coefficient and outputs the second enhancement data as the second enhancement data, and the one image data and the other image data.
  • a fourth data emphasizing unit for emphasizing the other image data with a fourth emphasis coefficient having an emphasis gain smaller than that of the second emphasis coefficient and outputting the fourth image data as fourth emphasis data Storing the first enhancement data, the third enhancement data, the second enhancement data, and the fourth enhancement data; the first enhancement data; the third enhancement data; And a time-division output unit that outputs time-division at a predetermined frame rate in the order of the second emphasized data and the fourth emphasized data.
  • a fourth feature of the stereoscopic image display device is that when the frame rate of the left-eye image data and the right-eye image data is equal to or lower than a first predetermined value, a frame equal to or higher than a second predetermined value is used.
  • a frame rate conversion unit that converts the rate into a rate and outputs it to the delay unit and the first and second data enhancement units is provided.
  • a fifth feature of the stereoscopic image display device is that a delay unit that delays one image data of right-eye image data or left-eye image data by one frame period and outputs it as delay data;
  • a first data emphasizing unit for emphasizing the one image data with a first emphasis coefficient based on a difference between the ophthalmic image data and the left-eye image data, and outputting first emphasis data;
  • the other input data is converted into the second input data.
  • a fifth data emphasizing unit for emphasizing image data displayed earlier in time-series order based on the same frame of the image data with a fifth emphasis coefficient and outputting the data as fifth emphasis data; Of the first emphasis data, the second emphasis data, and the fifth emphasis data, and one of the first emphasis data and the second emphasis data that is displayed first in chronological order.
  • a time-division output unit for converting to a predetermined frequency or more and outputting by time-sharing in the order of emphasized data, the other emphasized data, the fifth emphasized data, and the other emphasized data; Is to have.
  • the apparatus load for data processing can be reduced with a simple apparatus configuration.
  • FIG. 1 is a block diagram illustrating a configuration example of a stereoscopic image display apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram illustrating a specific configuration example of the data enhancement unit provided in the stereoscopic image display apparatus according to Embodiment 1 of the present invention.
  • FIG. 3 is a diagram showing a memory throughput according to a conventional example in which time axis enhancement processing is performed after time-division processing on left-eye image data and right-eye image data.
  • FIG. 4 is a diagram illustrating the throughput of the memory in the stereoscopic image display apparatus according to Embodiment 1 of the present invention.
  • FIG. 1 is a block diagram illustrating a configuration example of a stereoscopic image display apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram illustrating a specific configuration example of the data enhancement unit provided in the stereoscopic image display apparatus according to Embodiment 1 of the present invention.
  • FIG. 3
  • FIG. 5 is a block diagram illustrating a configuration example of a stereoscopic image display apparatus according to Embodiment 2 of the present invention.
  • FIG. 6 is a diagram illustrating the response characteristics of the time-division output unit included in the stereoscopic image display apparatus according to Embodiment 2 of the present invention.
  • FIG. 7 is a diagram showing memory throughput according to a conventional example in which time-axis enhancement processing is performed after time-sharing processing of left-eye image data and right-eye image data.
  • FIG. 8 is a diagram illustrating the memory throughput of the stereoscopic image display apparatus according to the second embodiment of the present invention.
  • FIG. 9 is a block diagram illustrating a configuration example of a stereoscopic image display apparatus according to Embodiment 3 of the present invention.
  • FIG. 10 is a diagram illustrating the response characteristics of the time-division output unit included in the stereoscopic image display apparatus according to Embodiment 3 of the present invention.
  • FIG. 11 is a block diagram illustrating a configuration example of a stereoscopic image display apparatus according to Embodiment 4 of the present invention.
  • FIG. 12 is a block diagram illustrating a configuration example of a stereoscopic image display apparatus according to Embodiment 5 of the present invention.
  • FIG. 13 is a diagram illustrating a state after time division processing in the time division output unit 70 included in the stereoscopic image display apparatus according to Embodiment 5 of the present invention.
  • FIG. 14 is a diagram showing memory throughput according to a conventional example in which time axis enhancement processing is performed after time-sharing processing of left-eye image data and right-eye image data.
  • FIG. 15 is a diagram illustrating the memory throughput when the time-division output unit of the stereoscopic image display device according to the fifth embodiment of the present invention performs time-division reading while performing pull-down processing from the frame memory.
  • the final time-series output order is the order of the left-eye image and the right-eye image based on the left-eye image data and the right-eye image data input at 60 (frames / second).
  • a stereoscopic image display apparatus that performs time-sharing processing and outputs a 120 (frame / second) stereoscopic image will be described as an example.
  • the left-eye image data is image data for viewing with the left eye of the observer
  • the right-eye image data is image data for viewing with the right eye of the observer.
  • FIG. 1 is a block diagram illustrating a configuration example of the stereoscopic image display apparatus 1 according to the first embodiment.
  • the stereoscopic image display apparatus 1 includes a delay unit 10, a data enhancement unit 20a, a data enhancement unit 20b, and a time division output unit 30.
  • the delay unit 10 delays the right-eye image data RI (n) of the frame of interest n by one frame period and outputs it as delayed right-eye image data RI (n ⁇ 1).
  • the frame number of the frame of interest is n (n is a natural number), and the frame number delayed by one frame period from the frame of interest is represented by (n ⁇ 1).
  • the data enhancement unit 20a obtains the right eye image data RI (n) based on the difference between the right eye image data RI (n) of the frame of interest n and the left eye image data LI (n) of the frame of interest n. Emphasize and output as image enhancement data RE (n) for the right eye.
  • the data enhancement unit 20b determines the left eye based on the difference between the delayed right eye image data RI (n ⁇ 1) delayed by one frame period by the delay unit 10 and the left eye image data LI (n) of the frame of interest.
  • the image data LI (n) for use is emphasized and output as image enhancement data LE (n) for the left eye.
  • the time-sharing output unit 30 outputs the right-eye image enhancement data RE (n) emphasized and output from the data enhancement unit 20a, and the left-eye image enhancement data LE (n) that is enhanced and output from the data enhancement unit 20b. ) And holds a predetermined frequency, that is, 120 (frame) corresponding to a double speed rate of the input frequency 60 (frame / second) of the image data RI (n) for the right eye and the image data LI (n) for the left eye. / Second) in time-sequential order and output.
  • the data input to the stereoscopic image display device 1 are two pieces of image data LI (n) for the left eye and image data RI (n) for the right eye, and these data are in a synchronous relationship. Then, for example, it is read from a BD (Blu-ray Disc) or a DVD (Digital Versatile Disc) compatible with stereoscopic (3D) display, or received by digital broadcasting, and input in parallel to the stereoscopic image display device.
  • n is a natural number and indicates the frame numbers of the left-eye image data LI (n) and the right-eye image data RI (n).
  • the image of the stereoscopic image display device 1 is synchronized with the switching of the image data LI (n) for the left eye and the image data RI (n) for the right eye, the observer operates at 120 (frames / second).
  • the observer By wearing 3D glasses with a liquid crystal shutter or 3D glasses with a polarizing filter and viewing the left and right images, it can be viewed as a stereoscopic image.
  • n-th left-eye image data LI (n) and right-eye image data RI (n) are input to the stereoscopic image display device 1
  • the left-eye image data LI. (N) and right-eye image data RI (n) are directly input to the data enhancement unit 20a.
  • the delay unit 10 outputs the (n ⁇ 1) th right-eye image data RI (n ⁇ 1) one frame before.
  • left-eye image data LI (n) and delayed right-eye image data RI (n ⁇ 1) delayed by one frame period are input to the data enhancement unit 20b.
  • the data enhancement unit 20a emphasizes the right-eye image data RI (n) based on the difference between the right-eye image data RI (n) and the left-eye image data LI (n). And output to the time-division output unit 30 as the right-eye image enhancement data RE (n).
  • the data enhancement unit 20b is based on the difference between the left-eye image data LI (n) and the delayed right-eye image data RI (n ⁇ 1) delayed by one frame period by the delay unit 10.
  • the left-eye image data LI (n) is emphasized and output to the time-division output unit 30 as left-eye image enhancement data LE (n).
  • FIG. 2 is a diagram illustrating a specific configuration example of the data emphasizing unit 20b provided in the stereoscopic image display device 1. Note that the configuration of the data enhancement units 20a and 20b has the same configuration except for the enhancement coefficient described later. Therefore, the data enhancement unit to which the delayed right-eye image data RI (n-1) is input is representatively shown here. The configuration of 20b will be described.
  • the data enhancement unit 20b includes a subtractor 21b, an enhancement coefficient multiplier 22b, and an adder 23b.
  • LE (n) LI (n) + K2 (LI (n) ⁇ RI (n ⁇ 1)) (1) Is used to calculate the image enhancement data LE (n) for the left eye.
  • the data enhancement unit 20b includes the left-eye image data LI (n) of the current frame and the delayed right-eye image data RI (n ⁇ 1) delayed by one frame from the delay unit 10. Is first input, the subtractor 21b subtracts the delayed right-eye image data RI (n-1) from the left-eye image data LI (n), and the subtraction result (LI (n) -RI (n- 1)) is output to the enhancement coefficient multiplier 22b.
  • the enhancement coefficient multiplier 22b multiplies the subtraction result (LI (n) ⁇ RI (n ⁇ 1)) from the subtractor 21b by the enhancement coefficient K2, and the multiplication result K2 (LI (n) ⁇ RI (n ⁇ 1) )) Is output to the adder 23b.
  • the adder 23b adds the input left-eye image data LI (n) and the multiplication result K2 (LI (n) ⁇ RI (n ⁇ 1)), and the left-eye image enhancement data LE (n). Get.
  • the image enhancement data LE (n) for the left eye is output from the data enhancement unit 20b and input to the time division output unit 30.
  • the right image data RI (n) and the left eye image data LI (n) are input to the data enhancement unit 20a, the right eye image data RI (n) and the left eye image data Based on the difference from LI (n), the right image data RI (n) is enhanced by the enhancement coefficient K1, and the right-eye image enhancement data RE (n) is output from the data enhancement unit 20b. 30 is output.
  • the emphasis coefficients K1 and K2 are set to optimum values based on calculations or experiments depending on the response characteristics of the liquid crystal used. Is done.
  • the response characteristic of the liquid crystal depends on the data level, the ambient temperature, and the like, and the function of adaptively adjusting the emphasis coefficients K1 and K2 according to the data level, the ambient temperature, and the like may be provided. It is valid.
  • the specific enhancement coefficients K1 and K2 of the data enhancement units 20a and 20b are not particularly limited, and may be the same value or different values.
  • the time division output unit 30 outputs the right-eye image enhancement data RE (n), RE (n + 1), RE (n + 2),... And the left-eye image enhancement data output from the data enhancement units 20a and 20b.
  • LE (n), LE (n + 1), LE (n + 2),... are input and temporarily stored in the frame memory 31, and the frame is twice as high as 60 (frames / second) which is the frequency of each input image data.
  • frame / second corresponding to the rate (double speed rate)
  • Stereoscopic display is performed by alternately reading out the image data that has been subjected to the time axis enhancement processing in the order of series.
  • FIG. 3 is a diagram showing the throughput of a memory according to a conventional example in which time-axis enhancement processing is performed after time-sharing processing of left-eye image data and right-eye image data for comparison
  • FIG. 4 is a stereoscopic image display.
  • FIG. 4 is a diagram showing memory throughput in the device 1.
  • the time axis enhancement processing is performed after the time-sharing processing of the left-eye image data and the right-eye image data.
  • the right-eye image data RI (n) the right-eye image data RI (n)
  • the time axis enhancement process is performed on each of the left-eye image data LI (n), and then the time division process is performed.
  • the image format is HDTV standard horizontal 1920 pixels ⁇ 1080 pixels
  • the frame rate is 60 (frame / second) on the input side, 120 (frame / second) after time division processing, and the data bit length is 8 (bits). ), 3 (ch) of RGB.
  • the conditions of the image format are the same in other embodiments described later.
  • the delay unit 10 that delays the right-eye image data RI (n) by one frame period and outputs it as the delayed right-eye image data RI (n ⁇ 1).
  • right-eye image enhancement data RE (n) by emphasizing the right-eye image data RI (n) based on the difference between the right-eye image data RI (n) and the left-eye image data LI (n). For the left eye based on the difference between the left image data LI (n) and the delayed right eye image data RI (n ⁇ 1) delayed by one frame period by the delay unit 10.
  • a data enhancement unit 20b that enhances the image data LI (n) and outputs it as left-eye image enhancement data LE (n), right-eye image enhancement data RE (n), and left-eye image enhancement data LE (n ) Is stored in the frame memory 31, and a predetermined frequency is Time-division output unit 30 for time-dividing and outputting time-sequentially based on 120 (frames / second), so that time-axis emphasis processing for compensating for delays in response characteristics of liquid crystal and the like is time-division processing Compared with the case where time axis enhancement processing is performed after time division processing, the number of input / output terminals of the delay unit and frame memory is reduced, and the throughput of data transfer between the delay unit and frame memory is also increased. Since it can be kept low and the wiring area can be kept small, the device load for data processing can be reduced with a simple device configuration.
  • the manufacturing cost is reduced, and the burden on the data processing device is reduced, and the right eye when using a display device with a slow response speed represented by a liquid crystal display device is used.
  • Crosstalk between the image data and the left-eye image data can be reduced.
  • the final time-series output order is a three-dimensional image in the order of the left-eye image and the right-eye image.
  • the stereoscopic image display device 1 to be displayed has been described as an example, but other modifications are possible.
  • right-eye image enhancement data RE (n) that emphasizes the right-eye image data RI (n) of the attention frame n and left-eye image that emphasizes the left-eye image data LI (n) of the attention frame n.
  • the enhancement data LE (n) may be written in the frame memory and read out alternately so that the time-series output order is displayed as a stereoscopic image in the order of the right eye image and the left eye image. The same applies to other Examples 2 to 5 described later.
  • the final time series output order is the order of the left-eye image and the right-eye image based on the left-eye image data and the right-eye image data input at 60 (frames / second).
  • An example of a stereoscopic image display apparatus that performs time-sharing processing and outputs a stereoscopic image of 240 (frames / second) will be described.
  • FIG. 5 is a block diagram illustrating a configuration example of the stereoscopic image display apparatus 2 according to the second embodiment.
  • the stereoscopic image display apparatus 2 includes a delay unit 10, a data enhancement unit 20 a, a data enhancement unit 20 b, and a time division output unit 40.
  • symbol is attached
  • the time-sharing output unit 40 outputs the right-eye image enhancement data RE (n) that is emphasized and output from the data enhancement unit 20a, and the left-eye image enhancement data LE (n) that is enhanced and output from the data enhancement unit 20b. ), The right-eye image data RI (n) before being emphasized by the data enhancement unit 20a, and the left-eye image data LI (n) before being emphasized by the data enhancement unit 20b.
  • the image data is held and output in a time-sharing manner based on a predetermined frequency of 240 (frames / second).
  • the image enhancement data for the left eye and the image enhancement data for the right eye after the time axis enhancement processing are alternately switched at a double speed rate of 120 (frames / second) and output in chronological order.
  • the data before and after performing the time axis emphasis processing of the left eye image data and the right eye image data are time-divisionally divided by 240 (frames / second), which is a quadruple rate, that is, the left eye.
  • the image enhancement data LE (n), the left eye image data LI (n), the right eye image enhancement data RE (n), and the right eye image data RI (n) are displayed in a time-sharing manner.
  • a hold-type display device such as a liquid crystal display device such as a TFT liquid crystal
  • writing scan of image data to the TFT liquid crystal is performed in line order, and the image data written to the TFT liquid crystal is the next image data.
  • the shutter glasses are simply opened alternately for the left eye and the right eye, a region (crosstalk) in which the images for the right eye and the left eye are mixed is generated.
  • the writing scan to the TFT liquid crystal is made as short as possible, and a hold period (equivalent to the vertical blanking period) until writing of the image data of the next frame is taken. Open shutter glasses in time.
  • the liquid crystal response compensation is performed using this method in the stereoscopic image display apparatus 1 according to the first embodiment, the emphasized image is also retained for one frame period, and as a result, the original target is obtained.
  • the securing of the period during which the image display is stable is not taken into consideration.
  • the time division processing is performed as follows: (1) left-eye image enhancement data LE (n) subjected to time axis enhancement processing, (2) Left eye image data LI (n) not subjected to time axis enhancement processing, (3) Right eye image enhancement data RE (n) subjected to time axis enhancement processing, and (4) Time axis enhancement processing not performed. Time-division is repeated in the order of right-eye image data RI (n), output, and displayed.
  • the left-eye image enhancement data LE (n) and the right-eye image enhancement data RE (n) that have been subjected to time-axis enhancement processing for liquid crystal response compensation are converted into the left-eye image data and the right-eye image data.
  • a stable period is provided by outputting the left-eye image data LI (n) and the right-eye image data RI (n), which are output only when the image data is switched, and thereafter are not subjected to time-axis enhancement processing.
  • FIG. 6 is a diagram illustrating liquid crystal response characteristics by the time-division output unit 40 included in the stereoscopic image display device 2.
  • the output period of the left-eye image data LI (n) is a stable period, and the time-axis enhancement processing is not performed after the output of the right-eye image enhancement data RE (n) subjected to the time-axis enhancement processing.
  • the memory throughput of the stereoscopic image display apparatus 2 will be described in comparison with a conventional example in which time axis enhancement processing is performed after time division processing.
  • FIG. 7 shows the memory throughput in 240 (frame / second) display according to the conventional example in which the time axis enhancement processing is performed after the time-sharing processing of the left-eye image data and the right-eye image data
  • FIG. It is a figure which shows the throughput of the memory in 240 (frame / second) display by the display apparatus 2.
  • writing into the frame memory has two types of image data for the left eye and image data for the right eye, that is, one screen each on the left and right, and reading from the frame memory is quadruple speed. It is calculated as an operation of reading the left-eye image data twice and the right-eye image data twice continuously at the rate. As shown in FIG.
  • the left eye image enhancement data LE (n), the left eye image data LI (n), and the right eye image are stored in the frame memory 41.
  • the writing of the enhancement data RE (n) and the right-eye image data RI (n) is 60 (frame / second)
  • the throughput is 2986 (Mbit / second), respectively
  • the reading from the frame memory 41 is the quadruple speed rate.
  • the corresponding 240 (frame / second) is 5972 (Mbit / second)
  • the write to the delay unit 10 and the read from the delay unit 10 are also 60 (frame / second) and 2986 (Mbit / second), for a total of 29860. (Mbit / sec).
  • the total throughput of the memory is 41804 (Mbit / second).
  • the total throughput of the memory is 29860 (Mbit / sec), and it can be seen that it is improved.
  • the time axis enhancement process for compensating for the delay of the response characteristic of the liquid crystal and the like is performed in a time-sharing process as in the stereoscopic image display apparatus 1 according to the first embodiment.
  • time axis enhancement processing is performed after time division processing, the number of input / output terminals of the delay unit and frame memory is reduced, and the throughput of data transfer between the delay unit and frame memory is also increased. Since it can be kept low and the wiring area can be kept small, the device load for data processing can be reduced with a simple device configuration.
  • the time-sharing processing is performed for the left eye image enhancement data LE (n), the left eye image data LI (n), the right eye image enhancement data RE (n), and the right eye image data. Since the image data RI (n) is repeatedly output and displayed in a time-sharing manner, the left-eye image enhancement data LE (n) and right-eye subjected to the time axis enhancement processing for the compensation of the liquid crystal response are displayed.
  • the image enhancement data RE (n) is output only when the left and right image data is switched, and then the left eye image data LI (n) and the right eye image data RI (n) are output.
  • FIG. 9 is a block diagram illustrating a configuration example of the stereoscopic image display device 3 according to the third embodiment.
  • Example 2 is different from the stereoscopic image display apparatus 2 according to the second embodiment shown in FIG. 5 in that a data emphasizing unit having two different emphasis coefficients is provided. That is, in Example 2, the image enhancement data LE (n) for the left eye that is time-axis enhanced by the quadruple rate display, the image data LI (n) for the left eye that is not time-axis enhanced, and the right that is time-emphasized. The image data is switched and displayed in the order of the eye image enhancement data RE (n) and the right eye image data RI (n) that is not time-axis enhanced.
  • the image enhancement data LE (n) and the image enhancement data RE (n) for the right eye subjected to the time axis enhancement processing are output.
  • a stable period for outputting the left-eye image data LI (n) and the right-eye image data RI (n) that is not subjected to time-axis enhancement processing is provided.
  • the configuration in which the liquid crystal response is compensated by the time axis enhancement processing only with the frame at the time of switching between the eye image data and the right eye image data may be insufficient.
  • the stereoscopic image display device 3 is weak instead of providing a stable period for outputting the left-eye image data LI (n) and the right-eye image data RI (n) without performing the time axis enhancement processing. It is characterized in that time axis emphasis processing is performed by an emphasis coefficient.
  • the stereoscopic image display device 3 includes a delay unit 10, a data enhancement unit 20a, a data enhancement unit 20b, a data enhancement unit 20c, a data enhancement unit 20d, and a time division output unit 50.
  • the delay unit 10, the data emphasizing unit 20a, and the data emphasizing unit 20b are the same as the configurations of the stereoscopic image display apparatuses 1 and 2 of the first and second embodiments, and thus description thereof is omitted.
  • the data enhancement unit 20c emphasizes the right-eye image data RI (n) based on the difference between the right-eye image data RI (n) and the left-eye image data LI (n).
  • the image is emphasized by an enhancement coefficient K3 having an enhancement gain smaller than the coefficient K1, and is output as right-eye image enhancement data RW (n).
  • the data emphasizing unit 20d receives the right-eye image data RI (n-1) obtained by delaying the right-eye image data RI (n) by one frame period by the delay unit 10, and the left-eye image data LI (n). Based on the difference, the left eye image data LI (n) is enhanced by the enhancement coefficient K4 having a smaller enhancement gain than the enhancement coefficient K2, and is output as the left eye image enhancement data LW (n).
  • the time division output unit 50 enhances the image enhancement data RE (n) for the right eye enhanced by the enhancement coefficient K1 from the data enhancement unit 20a and the image enhancement for the left eye enhanced by the enhancement coefficient K2 from the data enhancement unit 20b.
  • Data LE (n), right-eye image enhancement data RW (n) enhanced by the enhancement coefficient K3 from the data enhancement unit 20c, and left-eye image enhancement enhanced by the enhancement coefficient K4 from the data enhancement unit 20d Data LW (n) is input and held. Then, based on a predetermined frequency, that is, 240 (frames / second), time-division output is performed, and time axis enhancement processing is performed only when switching between left-eye image data and right-eye image data.
  • Image enhancement data LE (n) and right-eye image enhancement data RE (n) are output, and then the left-eye image enhancement data LW (n) and right-eye subjected to time-axis enhancement processing with weak enhancement coefficients K3 and K4 Image enhancement data RW (n) is output.
  • the time-division output unit 50 (1) left-eye image enhancement data LE (n) that has been subjected to time-axis enhancement processing using the enhancement coefficient K1, (2) left Left-eye image enhancement data LW (n) subjected to time-axis enhancement with an enhancement coefficient K3 weaker than the enhancement coefficient K1 of the eye-use image enhancement data LE, and (3) right-eye subjected to time-axis enhancement processing using the enhancement coefficient K2.
  • Image enhancement data RE (n) (4) Right-eye image enhancement data RW (n) that has been subjected to time-axis enhancement processing using an enhancement coefficient K4 that is weaker than the enhancement coefficient K2 of the right-eye image enhancement data RE (n), Output in time-sharing order and display.
  • the stereoscopic image display device 3 compensates the liquid crystal response with the image enhancement data LE (n) and RE (n) subjected to the time axis enhancement processing with the strong enhancement coefficients K1 and K2, and the left-eye image data and the right-eye image data.
  • the image enhancement data LW (n) and RW (n) that have been subjected to the time axis enhancement processing with the weak enhancement coefficients K3 and K4 are displayed until the left and right data are changed. By doing so, it is possible to provide a metastable period in a state close to the stable period described in the second embodiment by displaying the image enhancement data LW (n) and RW (n).
  • FIG. 10 is a diagram illustrating the response characteristics of the time-division output unit 50 included in the stereoscopic image display device 3.
  • the left eye image enhancement subjected to the time axis enhancement processing with the strong enhancement coefficient K1 the left eye image enhancement subjected to the time axis enhancement processing with the weak enhancement coefficient K3.
  • the output period of the left-eye image enhancement data LW (n) becomes a metastable period, and the right-eye image enhancement that has been subjected to the time-axis enhancement process by the strong enhancement coefficient K2.
  • the output period of the right-eye image enhancement data RW (n) is output by outputting the right-eye image enhancement data RW (n) that has been subjected to the time axis enhancement processing using the weak enhancement coefficient K4.
  • the inside is a metastable period, and crosstalk can be further improved.
  • the memory throughput of the stereoscopic image display device 3 is equal to the memory throughput of the stereoscopic image display device 2.
  • the total throughput of the memory is 41804 compared to the case of 240 (frame / second) display according to the conventional example in which the time axis enhancement processing is performed on the left eye image data and the right eye image data after time division processing.
  • the total throughput value of the memory is 29860 (Mbit / second), which is improved in the case of the stereoscopic image display device 3.
  • the time axis enhancement process is performed before the time division process, similarly to the stereoscopic image display apparatuses 1 and 2 according to the first and second embodiments.
  • the number of input / output terminals of the frame memory can be reduced, the throughput of data transfer between the delay unit and the frame memory can be kept low, and the wiring area can also be reduced.
  • the apparatus load can be reduced.
  • compensation of the response characteristic of the liquid crystal is performed only when switching is performed by the image enhancement data LE (n) and RE (n) that have been subjected to the time axis enhancement processing by the strong enhancement coefficients K1 and K2. Thereafter, until the left-eye image data and the right-eye image data are switched, the image enhancement data LW (n) and RW (n) subjected to the time-axis enhancement processing with the weak enhancement coefficients K3 and K4 are displayed. It is the structure which provides a stable period.
  • the weak enhancement coefficient The data enhancement units 20c and 20d for K3 and K4 can handle this.
  • Example 4 In the stereoscopic image display apparatuses 1 to 3 according to the first to third embodiments, in the stereoscopic image display by the time division method, intermittent display is performed by the shutter glasses. Therefore, flicker interference occurs when the intermittent period of the shutter glasses is extremely low. There is a case.
  • the occurrence of flicker interference is not uniquely determined due to environmental factors such as brightness and individual differences. For example, a normal video engineer is perceived as having a permissible level although flicker interference is felt at a frame rate (intermittent period) of 48 to 50 (frames / second), for example. Further, when the frame rate is 60 (frames / second), it is said that there is almost no problem that is hardly felt or a level that is felt slightly. When the frame rate is 75 (frames / second), it is said that the level is not felt at all, that is, the detection limit.
  • the occurrence of flicker interference varies depending on the individual and may change depending on the environment such as brightness.
  • the frame rate is 60 (frames / second) or more
  • the observer hardly feels flicker.
  • the degree of flicker interference increases as the frame rate decreases.
  • most film images are produced at a frame rate of 24 (frames / second).
  • the fourth embodiment when the input frame rate is sufficiently low, that is, when it is equal to or less than the first predetermined value (here, 24 (frame / second) as an example), flicker interference does not occur or is practically used.
  • the second predetermined value here, 48 (frames / second) as an example
  • performing time axis emphasis processing and performing time-division stereoscopic display processing A stereoscopic image display device that outputs a stereoscopic image at a frame rate of 96 (frames / second) will be described as an example.
  • the specific method of frame rate conversion for raising the frame rate is not limited to the present embodiment, and can be combined with any of the methods of the first to third embodiments.
  • FIG. 11 is a block diagram illustrating a configuration example of the stereoscopic image display device 4 according to the fourth embodiment.
  • the stereoscopic image display device 4 includes the left-eye image data LI (n) input at 24 (frames / second) before the stereoscopic image display device 1 according to the first embodiment.
  • the frame rate conversion processing units 60a and 60b for converting the frame rate of the right-eye image data RI (n) to 48 (frames / second) are provided.
  • a frame rate conversion means in the frame rate conversion processing units 60a and 60b a pull-down process for simply outputting image data repeatedly, or a motion compensation for inserting a motion compensated frame by detecting a motion vector of the image data.
  • Two types, such as a type frame rate conversion process, are representative, but are not limited to these processes.
  • the stereoscopic image display device 4 converts the image data RI for right eye converted from 24 (frames / second) to 48 (frames / second) by the frame rate conversion processing units 60a and 60b.
  • the delay unit 10 delays' (n), and the right-eye image data RI ′ (n) and the left-eye image data LI ′ (n) are emphasized by the data enhancement unit 20a and the data enhancement unit 20b.
  • the image is output to the time division output unit 30 as the image enhancement data RE ′ (n) for the right eye and the image enhancement data LE ′ (n) for the left eye (frame / second).
  • the right-eye image enhancement data RE ′ (n) and the left-eye image enhancement data LE ′ (n) input to the time-division output unit 30 are 48 (frames / second).
  • the frame rate is 96 (frame / second) corresponding to the double speed rate.
  • the time axis enhancement process is performed before the time-series conversion process, similarly to the stereoscopic image display apparatuses 1 to 3 according to the first to third embodiments.
  • the number of input / output terminals of the unit 10 and the frame memory 31 can be reduced, the throughput of data transfer between the delay unit 10 and the frame memory 31 can be reduced, and the wiring area can also be reduced.
  • the data processing device load can be reduced.
  • the frame rates of the left-eye image data LI and the right-eye image data RI input at 24 are set to 48 (frames / second).
  • the frame rate conversion processing units 60a and 60b that perform the conversion in (1) are provided in front of the data emphasizing units 20a and 20b and the delay unit 10. Therefore, when the right-eye image enhancement data RE ′ (n) and the left-eye image enhancement data LE ′ (n) are output from the time division output unit 30, the double speed rate is 96 (frames / second). Therefore, the intermittent period is 60 (frames / second) or more, and the observer can hardly perceive flicker.
  • a frame rate in which flicker interference does not occur due to the frame rate conversion processing or which is practically acceptable when the input frame rate is equal to or lower than a first predetermined value (for example, 24 (frames / second)), a frame rate in which flicker interference does not occur due to the frame rate conversion processing or which is practically acceptable. Is increased to a second predetermined value (for example, 48 (frames / second)), and then time-axis emphasis processing is performed and time-series conversion processing is performed, so that a three-dimensional image is obtained at a frame rate of 96 (frames / second).
  • a first predetermined value for example, 24 (frames / second)
  • a second predetermined value for example, 48 (frames / second)
  • time-axis emphasis processing is performed and time-series conversion processing is performed, so that a three-dimensional image is obtained at a frame rate of 96 (frames / second).
  • writing to the frame memory is performed at a low input frame rate (24 (frames / second)), and the frame rate conversion processing is performed by reading from the frame memory that is the subsequent stage of the data emphasizing units 20a and 20b.
  • a stereoscopic image display device that converts a frame rate by reading while performing pull-down processing and outputs a stereoscopic image at a frame rate of 96 (frames / second) will be described as an example.
  • the image enhancement data that is finally output in a time division manner from the time division output unit 30 is the left eye image enhancement data LE (n), the right eye image enhancement.
  • the right-eye image enhancement data RE (n-1) one frame before may be used.
  • the time division output unit reads the frame memory from the frame memory while performing pull-down processing, that is, reads the same image frame repeatedly, thereby improving the frame rate.
  • the left eye image data LI (n) is also preliminarily connected to the right eye image data RI (n) of the same frame n.
  • a data emphasis unit 20e that forms emphasis data based on the difference is provided.
  • FIG. 12 is a block diagram illustrating a configuration example of the stereoscopic image display device 5 according to the fifth embodiment.
  • the stereoscopic image display device 5 includes a delay unit 10, a data enhancement unit 20a, a data enhancement unit 20b, a data enhancement unit 20e, and a time division output unit 70.
  • the delay unit 10, the data enhancement unit 20a, and the data enhancement unit 20b are the same as those included in the stereoscopic image display device 1 according to the first embodiment, and thus the description thereof is omitted.
  • the right eye image data RI (n) and the left eye image data LI (n) are input to the data enhancement unit 20e at the same timing as the data enhancement unit 20a. Then, the difference (LI (n) ⁇ RI (n)) is multiplied by the enhancement coefficient K5, and the multiplication result is added to the left-eye image data LI (n), whereby the left-eye image data LI ( n) is emphasized and output to the time division output unit 70 as left-eye image enhancement data LE ′′ (n).
  • the enhancement coefficient K5 is smaller or larger than the enhancement coefficient K2 or the enhancement coefficient K4. Value or even the same value.
  • the time division output unit 70 is held in the frame memory 71 in order to prevent flicker and the like caused by the low input frame rate of image data input at a frame rate of 24 (frames / second).
  • Left-eye image enhancement data LE (n), right-eye image enhancement data RE (n), and left-eye image enhancement data LE ′′ (n) are sequentially output in a time division manner.
  • FIG. 13 is a diagram illustrating a state after the time division processing in the time division output unit 70 provided in the stereoscopic image display device 5.
  • the input frame rate to the time-division output unit 70 is 24 (frames / second)
  • the left-eye image data and right-eye image data switching cycle is 48 (frames / second)
  • data is read from the frame memory.
  • the period is 96 (frames / second).
  • the time-division output unit 70 included in the stereoscopic image display device 5 performs left-eye image enhancement data LE (n), right-eye corresponding to the timing at which the same frame n is input by time-division processing while performing pull-down processing.
  • pulling down each image data that is, repeating (here, twice for convenience) by reading out the same frame at a frame rate of 96 (frames / second) corresponding to a quadruple speed rate, Division and outputs.
  • the same data is output twice as the right-eye image enhancement data RE (n), whereas the left-eye image enhancement data LE (n).
  • the left-eye image enhancement data LE (n) is output at the first output of the frame switching, whereas the left-eye image enhancement is performed at the second repetition data output timing.
  • the left-eye image enhancement data LE ′′ (n) is output instead of the data LE (n).
  • the right-eye image enhancement data RE (1), RE (2),..., The left-eye image are displayed on the stereoscopic image display device 5 at 24 (frames / second), respectively.
  • the time division output unit 70 performs time division at a frame rate of 96 (frames / second) corresponding to the quadruple speed rate, and LE ( 1), RE (1), LE ′′ (1), RE (1), LE (2), RE (2), LE ′′ (2), RE (2),. Emphasized data will be output.
  • the left-eye image enhancement is read out second time.
  • the image data before the data LE ′′ (n) is based on the same image data R (n) and L (n) as the image enhancement data LE ′′ (n) for the left eye of the same frame n, a different enhancement coefficient K5
  • the image enhancement data LE ′′ (n) for the left eye subjected to the time axis enhancement processing is provided, so that a more natural image can be provided to the observer.
  • FIG. 14 is a diagram showing memory throughput at a frame rate display of 240 (frames / second) according to a conventional example in which time axis enhancement processing is performed after time-sharing processing of left-eye image data and right-eye image data.
  • FIG. 15 is a diagram illustrating the memory throughput when the time-division output unit 70 of the stereoscopic image display device 5 according to the fifth embodiment reads out from the frame memory 71 in a time-division manner while performing pull-down processing.
  • the left-eye image enhancement data LE (n), the right-eye image enhancement data RE (n), the left-eye image to the frame memory 71 When each writing of the emphasized data LE ′′ (n) is 24 (frame / second), the throughput is 1194 (Mbit / second). Reading from the frame memory 71 is 4778 (96 (frame / second)). Mbit / second), and writing to the delay unit 10 and reading from the delay unit 10 are 1194 (Mbit / second) at 24 (frame / second), so that the total is 10748 (Mbit / second).
  • the total throughput of the memory is 16722 (Mbit / second).
  • the total throughput value of the memory is 10748 (Mbit / second), which is improved.
  • the time axis enhancement processing is performed before the time division processing, similarly to the stereoscopic image display devices 1 to 4 of the first to fourth embodiments.
  • the number of input / output terminals of the frame memory 71 can be reduced, the throughput of data transfer between the delay unit 10 and the frame memory 71 can be reduced, and the wiring area can also be reduced.
  • the data processing apparatus load can be reduced.
  • the time-division output unit 70 includes the left-eye image enhancement data LE (n), the right-eye image enhancement data RE (n), and the left-eye image stored in the frame memory 71.
  • the emphasized data LE ′′ (n) is converted into a frame rate of 96 (frame / second) corresponding to the quadruple speed rate with respect to the input frame rate of 24 (frame / second), and is output in a time division manner. Flickers and the like caused by a low input frame rate of 24 (frames / second) can be prevented.
  • the time division output unit 70 when the time division output unit 70 reads out time-divisionally while pulling down from the frame memory 71, that is, when the same image frame is repeatedly read out, the left eye read out the second time
  • the image data before the image enhancement data LE ′′ (n) for the image is based on the same image data RI (n) and LI (n) as the image enhancement data LE ′′ (n) for the left eye of the same frame n, they are different. Since the image enhancement data LE ′′ (n) for the left eye that has been subjected to the time axis enhancement processing using the enhancement coefficient K5, a more natural image can be provided to the observer.
  • the stereoscopic image display device 5 according to the fifth embodiment has been described as applied to the stereoscopic image display device 1 according to the first embodiment illustrated in FIG. 1, but the stereoscopic image display device 2 according to the second embodiment illustrated in FIG. 5. May be adapted.
  • the configuration may be such that left-eye image enhancement data LE ′′ (n) subjected to time-axis enhancement processing with the data of the same frame n is output to the frame memory 41.
  • the third embodiment shown in FIG. The present invention may be applied to such a stereoscopic image display device 3.
  • This can be realized by providing the left-eye image enhancement data LW ′ (n) having a smaller enhancement degree than the image enhancement data LE ′′ (n).
  • the order of time-division output of the left-eye and right-eye image enhancement data is left eye, right eye, left eye,...
  • the present invention is not limited to this, and it is of course possible to perform time-division output in the reverse order of right eye, left eye, right eye,.
  • the description has been made on the assumption that the input image data RI (n) for the right eye and the image data LI (n) for the left eye are given in parallel.
  • the right-eye image data RI (n) and the left-eye image data LI (n) are not given in parallel, and the left-eye is based on the input right-eye image data RI (n).
  • the stereoscopic image display device is configured as hardware.
  • the present invention is not limited to this, and the stereoscopic images of the previous Embodiments 1 to 5 are described.
  • the program may be executed in software by a program in which functions of the display device are programmed and a CPU or the like that executes the program.
  • the liquid crystal stereoscopic image display device has been described as an example.
  • the present invention is not limited to this, and other stereoscopic image display devices such as organic EL, plasma, cathode ray tube, and SED are used. Is also applicable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Controls And Circuits For Display Device (AREA)

Abstract

【解決手段】右眼用画像データRI(n)を1フレーム期間遅延させて遅延右眼用画像データRI(n-1)として出力する遅延部10と、右眼用画像データRI(n)と左眼用画像データLI(n)との差に基づいて右眼用画像強調データRE(n)を出力するデータ強調部20aと、左眼用画像データLI(n)と遅延右眼用画像データRI(n-1)との差に基づいて左眼用画像強調データLE(n)を出力するデータ強調部20bと、右眼用画像強調データRE(n)と左眼用画像強調データLE(n)とを入力してフレームメモリ31に保持し、所定の周波数に基づいて時分割して出力する時分割出力部30とを有する。

Description

立体画像表示装置
 本発明は、左眼用および右眼用の画像データを時分割で出力して立体表示を行う立体画像表示装置に関する。
 一般的に、液晶等の表示素子の応答遅れによるゴースト(クロストーク)の改善を目的とした立体画像表示装置が知られている。
 例えば、最新フィールドの入力画像データと直前に表示されていたフィールドの画像データの階調値とを比較し、最新フィールドの画像表示用の階調電圧として、直前のフィールドから次に表示すべき最新フィールドへの階調変化を強調した階調電圧を作成して液晶表示パネルに与える。そして、階調変化に対する液晶の応答速度を加速し、応答の遅れを補償するための階調値の変換テーブルを所定のメモリ内に予め準備しておき、フレームメモリの後段に設けた演算器により、現在の液晶の表示状態から次に表示すべき階調に変化させるために最適な階調電圧を作成するようにした先行技術が公開されている(特許文献1参照)。
 なお、立体画像表示装置に関する背景技術ではないが、液晶表示装置における応答速度の遅延に基づく残像を防止するため、映像データを時間軸方向に強調するフィルタ(時間軸強調回路)を用いた先行技術も公開されている(特許文献2参照。)。
特開2006-157775号公報 特開2006-337448号公報
 しかしながら、特許文献1の立体画像表示装置では、観察者の左眼で視認させるための左眼用画像データと観察者の右眼で視認させるための右眼用画像データをフレーム単位で記憶するフレームメモリの後段に設けた演算器により、左眼用画像データと右眼用画像データの最適な階調電圧を作成している。そのため、階調電圧を作成する際、左眼用画像データと右眼用画像データの両方を演算することになり、メモリ容量やメモリの入出力端子数が多くなる。これにより、メモリとの間のデータ転送のスループットが増加し、メモリ数や配線面積が増えるので、装置が複雑化/大型化し、製造コストの増加を招くという課題があった。
 また、左眼用画像データと右眼用画像データとを交互に切り替えて表示する場合、画像データのフレームレートが高くなっているので、高スループットとなるだけでなく、演算器の動作速度が速くなり、装置負荷が大きくなるという課題もあった。
 本発明は、上記課題に鑑みてなされたものであり、その目的は、簡易な装置構成で、かつデータ処理の装置負荷を小さくすることができる立体画像表示装置を提供することを目的とする。
 上記目的を達成するため、本発明に係る立体画像表示装置の第1の特徴は、立体映像を表示するための右眼用画像データまたは左眼用画像データのうち一方の画像データを1フレーム期間遅延させて遅延データとして出力する遅延部と、前記右眼用画像データと、前記左眼用画像データとの差に基づいて、前記一方の画像データを第1の強調係数により強調して第1の強調データを出力する第1のデータ強調部と、前記右眼用画像データまたは前記左眼用画像データのうち他方の画像データと、前記遅延部によって1フレーム期間遅延された前記遅延データとの差に基づいて、前記他方の画像データを第2の強調係数により強調して第2の強調データとして出力する第2のデータ強調部と、前記第1の強調データと、前記第2の強調データとを記憶して、前記第1の強調データと、前記第2の強調データを所定のフレームレートで時分割して出力する時分割出力部と、を有することにある。
 本発明に係る立体画像表示装置の第2の特徴は、立体映像を表示するための右眼用画像データまたは左眼用画像データのうち一方の画像データを1フレーム期間遅延させて遅延データとして出力する遅延部と、前記右眼用画像データと、前記左眼用画像データとの差に基づいて、前記一方の画像データを第1の強調係数により強調して第1の強調データを出力する第1のデータ強調部と、前記右眼用画像データまたは前記左眼用画像データのうち他方の画像データと、前記遅延部によって1フレーム期間遅延された前記遅延データとの差に基づいて、前記他方の画像データを第2の強調係数により強調して第2の強調データとして出力する第2のデータ強調部と、前記第1の強調データと、前記一方の画像データと、前記第2の強調データと、前記他方の画像データとを記憶、前記第1の強調データと、前記一方の画像データと、前記第2の強調データと、前記他方の画像データの順序で、所定のフレームレートにより時分割して出力する時分割出力部とを有することにある。
 本発明に係る立体画像表示装置の第3の特徴は、立体映像を表示するための右眼用画像データまたは左眼用画像データのうち一方の画像データを1フレーム期間遅延させて遅延データとして出力する遅延部と、前記右眼用画像データと、前記左眼用画像データとの差に基づいて、前記一方の画像データを第1の強調係数により強調して第1の強調データを出力する第1のデータ強調部と、前記右眼用画像データまたは前記左眼用画像データのうち他方の画像データと、前記遅延部によって1フレーム期間遅延された前記遅延データとの差に基づいて、前記他方の画像データを第2の強調係数により強調して第2の強調データとして出力する第2のデータ強調部と、前記一方の画像データと、前記他方の画像データとの差に基づいて、前記一方の画像データを前記第1の強調係数より強調ゲインの小さい第2の強調係数により強調して第3の強調データとして出力する第3のデータ強調部と、前記他方の画像データと、前記遅延データとの差に基づいて、前記他方の画像データを前記第2の強調係数より強調ゲインの小さい第4の強調係数により強調して第4の強調データとして出力する第4のデータ強調部と、前記第1の強調データと、前記第3の強調データと、前記第2の強調データと、前記第4の強調データとを記憶し、前記第1の強調データと、前記第3の強調データと、前記第2の強調データと、前記第4の強調データの順序で、所定のフレームレートで時分割して出力する時分割出力部と、を有することにある。
 本発明に係る立体画像表示装置の第4の特徴は、前記左眼用画像データおよび前記右眼用画像データのフレームレートが第1の所定値以下の場合に、第2の所定値以上のフレームレートに変換して前記遅延部、前記第1および第2のデータ強調部に出力するフレームレート変換部を、更に有することにある。
 本発明に係る立体画像表示装置の第5の特徴は、右眼用画像データまたは左眼用画像データのうち一方の画像データを1フレーム期間遅延させて遅延データとして出力する遅延部と、前記右眼用画像データと、前記左眼用画像データとの差に基づいて、前記一方の画像データを第1の強調係数により強調して第1の強調データを出力する第1のデータ強調部と、前記右眼用画像データまたは前記左眼用画像データのうち他方の入力データと、前記遅延部によって1フレーム期間遅延された前記遅延データとの差に基づいて、前記他方の入力データを第2の強調係数により強調して第2の強調データとして出力する第2のデータ強調部と、前記一方の画像データと、前記他方の画像データとの差に基づいて、前記一方の画像データと前記他方の画像データとのうち同一フレームに基づいて時系列順で先に表示される画像データを第5の強調係数により強調して第5の強調データとして出力する第5のデータ強調部と、前記第1の強調データと、前記第2の強調データと、前記第5の強調データとを記憶し、前記第1の強調データと前記第2の強調データのうち時系列順で先に表示される一方の強調データ、他方の強調データ、前記第5の強調データ、前記他方の強調データの順序で、時分割して出力することにより、所定の周波数以上に変換して出力する時分割出力部と、を有することにある。
 本発明の立体画像表示装置によれば、簡易な装置構成で、かつデータ処理の装置負荷を小さくすることができる。
図1は、本発明の実施例1に係る立体画像表示装置の構成例を示すブロック図である。 図2は、本発明の実施例1に係る立体画像表示装置に備えられたデータ強調部の具体的な構成例を示す図である。 図3は、左眼用画像データと右眼用画像データを時分割処理後に時間軸強調処理を行う従来例によるメモリのスループットを示した図である。 図4は、本発明の実施例1に係る立体画像表示装置におけるメモリのスループットを示した図である。 図5は、本発明の実施例2に係る立体画像表示装置の構成例を示すブロック図である。 図6は、本発明の実施例2に係る立体画像表示装置が備える時分割出力部による応答特性を説明した図である。 図7は、左眼用画像データと右眼用画像データを時分割処理後に時間軸強調処理を行う従来例によるメモリのスループットを示した図である。 図8は、本発明の実施例2に係る立体画像表示装置によるメモリのスループットを示す図である。 図9は、本発明の実施例3に係る立体画像表示装置の構成例を示すブロック図である。 図10は、本発明の実施例3に係る立体画像表示装置が備える時分割出力部による応答特性を説明した図である。 図11は、本発明の実施例4に係る立体画像表示装置の構成例を示すブロック図である。 図12は、本発明の実施例5に係る立体画像表示装置の構成例を示すブロック図である。 図13は、本発明の実施例5に係る立体画像表示装置が備える時分割出力部70における時分割処理後の状態を示す図である。 図14は、左眼用画像データと右眼用画像データを時分割処理後に時間軸強調処理を行う従来例によるメモリのスループットを示した図である。 図15は、本発明の実施例5に係る立体画像表示装置による時分割出力部にてフレームメモリからプルダウン処理しながら時分割で読み出す場合のメモリのスループットを示した図である。
 以下、本発明に係る立体画像表示装置の実施例1~5について説明する。
<実施例1>
 実施例1では、60(フレーム/秒)で入力される左眼用画像データと右眼用画像データとに基づいて、最終的な時系列出力順が左眼用画像、右眼用画像の順で時分割処理をして120(フレーム/秒)の立体画像として出力する立体画像表示装置を例に挙げて説明する。なお、左眼用画像データは観察者の左眼で視認させるための画像データであり、右眼用画像データは観察者の右眼で視認させるための画像データである。
 図1は、実施例1に係る立体画像表示装置1の構成例を示すブロック図である。
 図1に示すように、立体画像表示装置1は、遅延部10と、データ強調部20aと、データ強調部20bと、時分割出力部30とを有する。
 遅延部10は、注目フレームnの右眼用画像データRI(n)を1フレーム期間遅延させて、遅延右眼用画像データRI(n-1)として出力する。なお、ここでは、注目フレームのフレーム番号をn(nは自然数。)とし、注目フレームから1フレーム期間遅延されたフレーム番号を(n-1)で表す。
 データ強調部20aは、注目フレームnの右眼用画像データRI(n)と、注目フレームnの左眼用画像データLI(n)との差に基づいて右眼用画像データRI(n)を強調して、右眼用画像強調データRE(n)として出力する。
 データ強調部20bは、遅延部10によって1フレーム期間遅延された遅延右眼用画像データRI(n-1)と、注目フレームの左眼用画像データLI(n)との差に基づいて左眼用画像データLI(n)を強調して、左眼用画像強調データLE(n)として出力する。
 時分割出力部30は、データ強調部20aから強調されて出力された右眼用画像強調データRE(n)と、データ強調部20bから強調されて出力された左眼用画像強調データLE(n)とを入力して保持し、所定の周波数、すなわち右眼用画像データRI(n)と左眼用画像データLI(n)の入力周波数60(フレーム/秒)の2倍速レートにあたる120(フレーム/秒)に基づいて、時系列順に時分割して出力する。
 ここで、立体画像表示装置1に入力されるデータは、左眼用画像データLI(n)と右眼用画像データRI(n)との2つであり、これらのデータは同期関係にある。そして、例えば、立体(3D)表示対応のBD(Blu-ray Disc)やDVD(Digital Versatile Disc)から読み出されたり、デジタル放送により受信されて、この立体画像表示装置に並列に入力される。なお、nは自然数であり、左眼用画像データLI(n)と右眼用画像データRI(n)のフレーム番号を示している。
 また、立体画像表示装置1の画像は、左眼用画像データLI(n)や、右眼用画像データRI(n)の切り替わりに同期するので、観察者は、120(フレーム/秒)で動作する液晶シャッタ付きの3Dメガネや、偏光フィルタ付きの3Dメガネを装着して左右の映像を見ることで、立体画像として視認することができる。
 次に、図1に示した立体画像表示装置1の動作について説明する。
 まず、立体画像表示装置1にn番目の立体表示用の左眼用画像データLI(n)と右眼用画像データRI(n)の2つのデータが入力されると、左眼用画像データLI(n)と右眼用画像データRI(n)とはそのままデータ強調部20aに入力される。
 一方、右眼用画像データRI(n)のみが遅延部10に入力されて、遅延部10により1フレーム期間分遅延される。そのため、このタイミングでは、遅延部10からは1フレーム前、すなわち(n-1)番目の右眼用画像データRI(n-1)が出力される。その結果、データ強調部20bには、左眼用画像データLI(n)と、1フレーム期間分遅延された遅延右眼用画像データRI(n-1)とが入力される。
 データ強調部20aは、後述するように、右眼用画像データRI(n)と左眼用画像データLI(n)との差に基づいて、右眼用画像データRI(n)を強調して、右眼用画像強調データRE(n)として、時分割出力部30に出力する。
 データ強調部20bは、後述するように、左眼用画像データLI(n)と、遅延部10により1フレーム期間分遅延された遅延右眼用画像データRI(n-1)との差に基づいて、左眼用画像データLI(n)を強調して、左眼用画像強調データLE(n)として、時分割出力部30に出力する。
 図2は、立体画像表示装置1に備えられたデータ強調部20bの具体的な構成例を示す図である。なお、データ強調部20a,20bの構成は、後述する強調係数を除き同一の構成を有するので、ここでは代表して、遅延右眼用画像データRI(n-1)が入力されるデータ強調部20bの構成を説明する。
 図2において、データ強調部20bは、減算器21bと、強調係数乗算器22bと、加算器23bとを有し、
 LE(n)=LI(n)+K2(LI(n)-RI(n-1))・・・(1)
を用いて、左眼用画像強調データLE(n)を算出する。
 具体的には、データ強調部20bは、現在フレームの左眼用画像データLI(n)と、遅延部10からの1フレーム分だけ遅延された遅延右眼用画像データRI(n-1)とが入力されると、まず減算器21bが左眼用画像データLI(n)から遅延右眼用画像データRI(n-1)を減算し、その減算結果(LI(n)-RI(n-1))を、強調係数乗算器22bへ出力する。
 強調係数乗算器22bは、減算器21bからの減算結果(LI(n)-RI(n-1))に強調係数K2を乗じて、その乗算結果K2(LI(n)-RI(n-1))を加算器23bに出力する。
 加算器23bは、入力される左眼用画像データLI(n)と乗算結果K2(LI(n)-RI(n-1))とを加算して、左眼用画像強調データLE(n)を得る。
 そして、左眼用画像強調データLE(n)が、データ強調部20bから出力され、時分割出力部30に入力される。
 また、図示はしないが、データ強調部20aも、図2と同様に、
 RE(n)=RI(n)+K1(RI(n)-LI(n))・・・(2)
を用いて、右眼用画像強調データRE(n)を算出する。
 具体的には、データ強調部20aに、右側画像データRI(n)と左眼用画像データLI(n)とが入力されると、右眼用画像データRI(n)と左眼用画像データLI(n)との差に基づいて、強調係数K1により右側画像データRI(n)が強調され、右眼用画像強調データRE(n)が、データ強調部20bから出力され、時分割出力部30に出力される。
 なお、データ強調部20a,20bは液晶応答の補償等をするものであるから、それぞれの強調係数K1,K2は、使用される液晶の応答特性によって、計算または実験に基づいて最適な値に設定される。また、液晶の応答特性は、データレベルや周囲温度等に依存することが知られており、強調係数K1,K2をこれらデータレベルや周囲温度等に応じて適応的に調整する機能を備えることも有効である。ここでは、データ強調部20a,20bの具体的な強調係数K1,K2については特に限定せず、同じ値でも、異なる値でもどちらでもよい。
 そして、時分割出力部30は、データ強調部20a,20bから出力される右眼用画像強調データRE(n),RE(n+1),RE(n+2),・・・および左眼用画像強調データLE(n),LE(n+1),LE(n+2),・・・が入力されてフレームメモリ31に一時記憶し、それぞれの入力画像データの周波数である60(フレーム/秒)の2倍のフレームレート(2倍速レート)にあたる120(フレーム/秒)により、LE(n),RE(n),LE(n+1),RE(n+1),LE(n+2),RE(n+2),・・・の時系列順に、時間軸強調処理がなされた画像データを交互に読み出すことで、立体表示を行う。
 次に、立体画像表示装置1によるメモリのスループットの改善効果について説明する。
 図3は、比較のため、左眼用画像データと右眼用画像データを時分割処理後に時間軸強調処理を行う従来例によるメモリのスループットを示した図であり、図4は、立体画像表示装置1におけるメモリのスループットを示した図である。
 従来例では、左眼用画像データと右眼用画像データとを時分割処理した後に時間軸強調処理を行うが、立体画像表示装置1によれば、予め右眼用画像データRI(n)、左眼用画像データLI(n)のそれぞれについて時間軸強調処理を施してから時分割処理を行う。
 なお、計算に当たって、画像フォーマットは、HDTV標準の水平1920画素×1080画素、フレームレートは入力側が60(フレーム/秒)、時分割処理後には120(フレーム/秒)、データビット長は8(bit)、RGBの3(ch)として計算する。なお、この画像フォーマットの条件は、後述の他の実施例でも同様である。
 図3(従来例)と図4(実施例1)とでフレームレート同士を比較すると明らかとなるが、従来例の場合、時分割処理の後段に遅延部およびデータ強調部が設けられるので、遅延部への書き込みおよび遅延部からの読み出しのフレームレートがそれぞれ120(フレーム/秒)となり、スループットがそれぞれ5972(Mbit/秒)となる。これに対し、実施例1の構成の場合、図1に示すように、時分割処理の前段に遅延部10およびデータ強調部20a,20bが設けられているので、遅延部へ10への書き込みおよび遅延部10からの読み出しのフレームレートがそれぞれ60(フレーム/秒)、スループットがそれぞれ2986(Mbit/秒)と、従来例に比較して半分となる。
 その結果、図3(従来例)と図4(実施例1)とでスループットの合計値で比較すると、従来例の場合、図3に示すように、23888(Mbit/秒)になるのに対し、実施例1の場合、図4に示すように、20902(Mbit/秒)となって、改善していることがわかる。
 従って、実施例1に係る立体画像表示装置1によれば、右眼用画像データRI(n)を1フレーム期間遅延させて遅延右眼用画像データRI(n-1)として出力する遅延部10と、右眼用画像データRI(n)と左眼用画像データLI(n)との差に基づいて右眼用画像データRI(n)を強調して右眼用画像強調データRE(n)として出力するデータ強調部20aと、左眼用画像データLI(n)と遅延部10によって1フレーム期間遅延された遅延右眼用画像データRI(n-1)との差に基づいて左眼用画像データLI(n)を強調して左眼用画像強調データLE(n)として出力するデータ強調部20bと、右眼用画像強調データRE(n)と、左眼用画像強調データLE(n)とをフレームメモリ31に保持し、所定の周波数である120(フレーム/秒)に基づいて時系列順に時分割して出力する時分割出力部30とを有するので、液晶の応答特性の遅れ等を補償するための時間軸強調処理を時分割処理前に行うことになり、時分割処理後に時間軸強調処理を行う場合と比べ、遅延部やフレームメモリの入出力端子数が少なくて済み、遅延部やフレームメモリとの間のデータ転送のスループットも低く抑えられ、配線面積も少なく抑えることができるので、簡易な装置構成で、かつデータ処理の装置負荷を小さくすることができる。
 その結果、立体画像表示装置1においては、製造コストを抑え、しかもデータ処理の装置負担も小さく抑えた上で、液晶表示装置に代表される応答速度が遅い表示装置を用いた際の右眼用画像データと左眼用画像データとの間のクロストークを低減することができる。
 なお、実施例1では、注目フレームnの左眼用画像データLI(n)を強調した左眼用画像強調データLE(n)と、注目フレームnの右眼用画像データRI(n)を強調した右眼用画像強調データRE(n)とをフレームメモリに書き込み、これらを交互に順に読み出すことで、最終的な時系列出力順を左眼用画像、右眼用画像の順で立体画像として表示する立体画像表示装置1を例に挙げて説明したが、他の変形例も可能である。
 例えば、注目フレームnの右眼用画像データRI(n)を強調した右眼用画像強調データRE(n)と、注目フレームnの左眼用画像データLI(n)を強調した左眼用画像強調データLE(n)とをフレームメモリに書き込み、これらを交互に順に読み出すことで、時系列出力順を右眼用画像、左眼用画像の順序で立体画像として表示するようにしてもよい。このことは、後述する他の実施例2~5でも同様である。
<実施例2>
 次に、実施例2に係る立体画像表示装置2について説明する。
 実施例2では、60(フレーム/秒)で入力される左眼用画像データと右眼用画像データとに基づいて、最終的な時系列出力順が左眼用画像、右眼用画像の順で時分割処理して240(フレーム/秒)の立体画像として出力する立体画像表示装置を例に挙げて説明する。
 図5は、実施例2に係る立体画像表示装置2の構成例を示すブロック図である。
 図5に示すように、立体画像表示装置2は、遅延部10と、データ強調部20aと、データ強調部20bと、時分割出力部40とを有する。なお、図1に示した立体画像表示装置1と同一の構成要素には、同一符号を付して説明を省略する。
 時分割出力部40は、データ強調部20aから強調されて出力された右眼用画像強調データRE(n)と、データ強調部20bから強調されて出力された左眼用画像強調データLE(n)と、データ強調部20aにより強調される前の右眼用画像データRI(n)と、データ強調部20bにより強調される前の左眼用画像データLI(n)とが入力され、それらの画像データを保持し、所定の周波数である240(フレーム/秒)に基づいて、時分割して出力するように構成されている。
 つまり、実施例1では、時間軸強調処理後の左眼用画像強調データと、右眼用画像強調データとを2倍速レートである120(フレーム/秒)により交互に切り替えて時系列順に出力したのに対し、実施例2では、左眼用画像データと右眼用画像データのそれぞれ時間軸強調処理を行う前後のデータを4倍速レートである240(フレーム/秒)で時分割、すなわち左眼用画像強調データLE(n)、左眼用画像データLI(n)、右眼用画像強調データRE(n)、右眼用画像データRI(n)の順序で時分割して表示する。
 ここで、実施例2において、240(フレーム/秒)の4倍速レートで時分割処理する理由について簡単に説明しておく。
 例えば、TFT液晶等の液晶表示装置のようなホールド型表示装置の場合、画像データのTFT液晶への書き込み走査は、ライン順に行われ、TFT液晶に書き込まれた画像データは、次の画像データの書き込みが行われるまで表示し続ける。つまり、シャッタ眼鏡を単純に左眼と右眼とで交互に開口したのでは、右眼用と左眼用の画像が混在する領域(クロストーク)が生じる。この問題を解決するためには、TFT液晶への書き込み走査を可能な限り短時間とし、次のフレームの画像データの書き込みまでのホールド期間(垂直ブランキング期間に等しい)をとり、このホールド期間のタイミングに合わせてシャッタ眼鏡を開口する。
 しかし、実施例1に係る立体画像表示装置1においてこの方法を用いて液晶応答の補償を行う場合、強調された画像も1フレーム期間保持することになるので、結果的に、本来の目標とする画像表示が安定している期間の確保については考慮されていないこととなる。
 そこで、実施例2に係る立体画像表示装置2が備える時分割出力部40では、時分割処理を、(1)時間軸強調処理がなされた左眼用画像強調データLE(n)、(2)時間軸強調処理がされていない左眼用画像データLI(n)、(3)時間軸強調処理がなされた右眼用画像強調データRE(n)、(4)時間軸強調処理がされていない右眼用画像データRI(n)の順序で時分割して繰り替えし出力して表示する。よって、液晶応答の補償のために時間軸強調処理がなされた左眼用画像強調データLE(n)および右眼用画像強調データRE(n)を、左眼用の画像データと右眼用の画像データの切り替わり時だけに出力する一方、その後に時間軸強調処理がされていない左眼用画像データLI(n)および右眼用画像データRI(n)を出力することにより、安定期間を設けることが可能となり、それぞれ時間軸強調処理がされていない左眼用画像データと右眼用画像データのクロストークの更なる改善が可能となる。
 図6は、立体画像表示装置2が備える時分割出力部40による液晶の応答特性を説明した図である。
 図6に示すように、時間軸強調処理がなされた左眼用画像強調データLE(n)の出力後に、時間軸強調処理がされていない左眼用画像データLI(n)を出力することにより、左眼用画像データLI(n)の出力期間中が安定期間となると共に、時間軸強調処理がなされた右眼用画像強調データRE(n)の出力後に、時間軸強調処理がされていない右眼用画像データRI(n)を出力することにより、右眼用画像データRI(n)の出力期間中が安定期間となり、クロストークの更なる改善が可能となる。
 次に、立体画像表示装置1と同様に、立体画像表示装置2によるメモリのスループットについて、時分割処理後に時間軸強調処理を行う従来例と比較して説明する。
 図7は、左眼用画像データと右眼用画像データを時分割処理後に時間軸強調処理を行う従来例による240(フレーム/秒)表示でのメモリのスループットを示し、図8は、立体画像表示装置2による240(フレーム/秒)表示でのメモリのスループットを示す図である。
 ここで、従来例によるメモリのスループットの計算においては、フレームメモリへの書き込みは左眼用画像データと右眼用画像データの2種類、すなわち左右それぞれ1画面とし、フレームメモリからの読み出しは4倍速レートで左眼用画像データを2回、右眼用画像データを2回連続で読み出す動作として算出している。図7に示すように、スループット合計値で比較すると、左眼用画像データと右眼用画像データとを時分割処理後に時間軸強調処理を行う従来例による240(フレーム/秒)表示の場合、左眼用画像データLI(n)および右眼用画像データRI(n)のフレームメモリへの書き込みが60(フレーム/秒)の場合、スループットが2986(Mbit/秒)となり、フレームメモリからの読み出しが4倍速レートにあたる240(フレーム/秒)で11944(Mbit/秒)で、遅延部への書き込みおよび遅延部からの読み出しも240(フレーム/秒)で11944(Mbit/秒)になるので、合計41804(Mbit/秒)となる。
 これに対し、図8に示すように、立体画像表示装置2によれば、フレームメモリ41への左眼用画像強調データLE(n)、左眼用画像データLI(n)、右眼用画像強調データRE(n)および右眼用画像データRI(n)それぞれの書き込みが60(フレーム/秒)の場合、それぞれスループットが2986(Mbit/秒)となり、フレームメモリ41からの読み出しが4倍速レートにあたる240(フレーム/秒)で5972(Mbit/秒)になり、遅延部10への書き込みおよび遅延部10からの読み出しも60(フレーム/秒)で2986(Mbit/秒)になるので、合計29860(Mbit/秒)となる。
 このように、左眼用画像データと右眼用画像データを時分割処理後に時間軸強調処理を行う従来例による240(フレーム/秒)表示の場合、メモリのスループット合計値が41804(Mbit/秒)となるのに対し、立体画像表示装置2の場合、メモリのスループット合計値が29860(Mbit/秒)となり、改善していることがわかる。
 従って、実施例2に係る立体画像表示装置2によれば、実施例1に係る立体画像表示装置1と同様に、液晶の応答特性の遅れ等を補償するための時間軸強調処理を時分割処理前に行うことになり、時分割処理後に時間軸強調処理を行う場合と比べ、遅延部やフレームメモリの入出力端子数が少なくて済み、遅延部やフレームメモリとの間のデータ転送のスループットも低く抑えられ、配線面積も少なく抑えることができるので、簡易な装置構成で、かつデータ処理の装置負荷を小さくすることができる。
 特に、立体画像表示装置2においては、時分割処理を、左眼用画像強調データLE(n)、左眼用画像データLI(n)、右眼用画像強調データRE(n)、右眼用画像データRI(n)の順序で時分割に繰り替え出力して表示するようにしたので、液晶応答の補償のために時間軸強調処理がなされた左眼用画像強調データLE(n)および右眼用画像強調データRE(n)を、左右の画像データの切替わり時だけに出力する一方、その後に左眼用画像データLI(n)および右眼用画像データRI(n)を出力することにより、安定期間を設けることが可能となり、立体画像表示装置1と比較してもそれぞれ時間軸強調処理がされていない左眼用画像データと右眼用画像データのクロストークの更なる改善が可能となる。
<実施例3>
 次に、実施例3に係る立体画像表示装置3について説明する。
 図9は、実施例3に係る立体画像表示装置3の構成例を示すブロック図である。
 図5に示した実施例2の立体画像表示装置2との相違点は、2種類の異なる強調係数を備えたデータ強調部を備えている点である。つまり、実施例2では、4倍速レート表示により時間軸強調された左眼用画像強調データLE(n)、時間軸強調されていない左眼用画像データLI(n)、時間軸強調された右眼用画像強調データRE(n)、時間軸強調されていない右眼用画像データRI(n)、の順序で画像データを切り替えて表示する。そして左眼用の画像データと右眼用の画像データの切り替わり時にのみ、時間軸強調処理がなされた左眼用画像強調データLE(n)および右眼用画像強調データRE(n)を出力し、その後に時間軸強調処理を行わない左眼用画像データLI(n)および右眼用画像データRI(n)を出力する安定期間を設けるものとして説明したが、液晶の応答特性によっては、左眼用の画像データと右眼用の画像データの切り替わり時のフレームのみで時間軸強調処理による液晶応答の補償をする構成では不十分な場合がある。
 そこで、実施例3の立体画像表示装置3では、時間軸強調処理を行わない左眼用画像データLI(n)および右眼用画像データRI(n)を出力する安定期間を設ける代わりに、弱い強調係数により時間軸強調処理をかけることを特徴とする。
 立体画像表示装置3は、図9に示すように、遅延部10と、データ強調部20aと、データ強調部20bと、データ強調部20cと、データ強調部20dと、時分割出力部50とを有する。ここで、遅延部10と、データ強調部20aと、データ強調部20bとは、実施例1,2の立体画像表示装置1,2が有する構成と同一であるので、説明を省略する。
 図9に示すように、データ強調部20cは、右眼用画像データRI(n)と左眼用画像データLI(n)との差に基づいて、右眼用画像データRI(n)を強調係数K1より強調ゲインの小さい強調係数K3により強調して、右眼用画像強調データRW(n)として出力する。
 データ強調部20dは、遅延部10によって右眼用画像データRI(n)を1フレーム期間遅延された遅延右眼用画像データRI(n-1)と、左眼用画像データLI(n)との差に基づいて、左眼用画像データLI(n)を強調係数K2より強調ゲインの小さい強調係数K4により強調して、左眼用画像強調データLW(n)として出力する。
 時分割出力部50は、データ強調部20aからの強調係数K1により強調された右眼用画像強調データRE(n)と、データ強調部20bからの強調係数K2により強調された左眼用画像強調データLE(n)と、データ強調部20cからの強調係数K3により強調された右眼用画像強調データRW(n)と、データ強調部20dからの強調係数K4により強調された左眼用画像強調データLW(n)とが入力され、それらを保持する。そして、所定の周波数、すなわち240(フレーム/秒)に基づいて、時分割して出力し、左眼用画像データと右眼用画像データの切り替わり時にのみ、時間軸強調処理がなされた左眼用画像強調データLE(n)および右眼用画像強調データRE(n)を出力し、その後に弱い強調係数K3,K4により時間軸強調処理をした左眼用画像強調データLW(n)および右眼用画像強調データRW(n)を出力する。
 つまり、実施例3に係る立体画像表示装置3では、時分割出力部50は、(1)強調係数K1により時間軸強調処理がなされた左眼用画像強調データLE(n)、(2)左眼用画像強調データLEの強調係数K1より弱い強調係数K3により時間軸強調がなされた左眼用画像強調データLW(n)、(3)強調係数K2により時間軸強調処理がなされた右眼用画像強調データRE(n)、(4)右眼用画像強調データRE(n)の強調係数K2よりより弱い強調係数K4により時間軸強調処理がなされた右眼用画像強調データRW(n)、・・・の順序で時分割に出力して表示する。
 このため、立体画像表示装置3では、強い強調係数K1,K2により時間軸強調処理がなされた画像強調データLE(n),RE(n)による液晶応答の補償を左眼用画像データと右眼用画像データの切り替わり時だけに行い、その後、左右のデータが切り替わるまでの間は、弱い強調係数K3,K4により時間軸強調処理がなされた画像強調データLW(n),RW(n)を表示することにより、画像強調データLW(n),RW(n)の表示による実施例2で説明した安定期間に近い状態の準安定期間を設けることができる。
 図10は、立体画像表示装置3が備える時分割出力部50による応答特性を説明した図である。
 図10に示すように、強い強調係数K1により時間軸強調処理がなされた左眼用画像強調データLE(n)の出力後に、弱い強調係数K3により時間軸強調処理がなされた左眼用画像強調データLW(n)を出力することにより、左眼用画像強調データLW(n)の出力期間中が準安定期間となると共に、強い強調係数K2により時間軸強調処理がなされた右眼用画像強調データRE(n)の出力後に、弱い強調係数K4により時間軸強調処理がなされた右眼用画像強調データRW(n)を出力することにより、右眼用画像強調データRW(n)の出力期間中が準安定期間となり、クロストークの更なる改善が可能となる。
 なお、立体画像表示装置3によるメモリのスループットは、立体画像表示装置2によるメモリのスループットと同等である。具体的には、左眼用画像データと右眼用画像データを時分割処理後に時間軸強調処理を行う従来例による240(フレーム/秒)表示の場合と比較すると、メモリのスループット合計値が41804(Mbit/秒)となるのに対し、立体画像表示装置3の場合、立体画像表示装置2と同様に、メモリのスループット合計値が29860(Mbit/秒)となり、改善することになる。
 従って、実施例3に係る立体画像表示装置3によれば、実施例1,2の立体画像表示装置1,2と同様に、時分割処理の前に時間軸強調処理を行うので、遅延部やフレームメモリの入出力端子数が少なくて済み、遅延部やフレームメモリとの間のデータ転送のスループットも低く抑えられ、配線面積も少なく抑えることができるので、簡易な装置構成で、かつデータ処理の装置負荷を小さくすることができる。
 特に、立体画像表示装置3においては、強い強調係数K1,K2により時間軸強調処理がなされた画像強調データLE(n),RE(n)により液晶の応答特性の補償を切り替わり時だけに行い、その後、左眼用画像データと右眼用画像データが切り替わるまでの間は、弱い強調係数K3,K4により時間軸強調処理がなされた画像強調データLW(n),RW(n)を表示する準安定期間を設ける構成である。よって、立体画像表示装置の特性によっては、左眼用画像データと右眼用画像データの切り替わり時のみではデータ強調部20a,20bによる液晶の応答特性の補償では不十分な場合でも、弱い強調係数K3,K4のデータ強調部20c,20dにより対応することができる。
<実施例4>
 実施例1~3の立体画像表示装置1~3では、時分割方式による立体画像表示において、シャッタ眼鏡によって間欠表示になってしまうため、シャッタ眼鏡の間欠周期が極端に低くなると、フリッカ妨害が生じる場合がある。
 フリッカ妨害の発生には、明るさ等の環境や個人差があり、一義的に定まらない。通常の映像技術者は、例えば、48~50(フレーム/秒)のフレームレート(間欠周期)でフリッカ妨害を感じるものの、許容レベルであると言われている。また、60(フレーム/秒)のフレームレートになると、ほとんど感じない問題のないレベルか、わずかに感じるレベルと言われている。そして、75(フレーム/秒)のフレームレートになると、全く感じないレベル、すなわち検知限と言われている。ただし、フリッカ妨害の発生には、個人差もあり、明るさ等の環境によっても変化する場合もある。
 このように、一般的に、フレームレートが60(フレーム/秒)以上では、観察者はフリッカをほとんど感じなくなる。一方、60(フレーム/秒)以下ではフレームレートが低くなるに従い、フリッカ妨害の程度が大きくなる。特に、フィルム映像の多くは、24(フレーム/秒)のフレームレートで製作されているが、この周期で間欠表示させると、観察者は非常に大きなフリッカを知覚する。
 そこで、実施例4では、入力フレームレートが十分に低い場合、すなわち第1の所定値(ここでは、一例として24(フレーム/秒)とする)以下の場合に、フリッカ妨害が生じない、もしくは実用上問題ないフレームレートである第2の所定値(ここでは、一例として48(フレーム/秒)とする)に引き上げた後に、時間軸強調処理をし、時分割して立体表示処理を行うことにより、96(フレーム/秒)のフレームレートで立体画像を出力する立体画像表示装置を例に挙げて説明する。なお、フレームレートに引き上げるためのフレームレート変換の具体的方法は、本実施例に限定せず、また実施例1~3のいずれの方法と組み合わせることも可能である。
 図11は、実施例4に係る立体画像表示装置4の構成例を示すブロック図である。
 図11に示すように、実施例4に係る立体画像表示装置4は、実施例1の立体画像表示装置1の前段に、24(フレーム/秒)で入力する左眼用画像データLI(n)、右眼用画像データRI(n)それぞれのフレームレートを48(フレーム/秒)に変換するフレームレート変換処理部60a,60bを設けたものである。
 ここで、フレームレート変換処理部60a,60bにおけるフレームレート変換の手段としては、単純に繰り返し画像データを出力するプルダウン処理、もしくは画像データの動きベクトルを検出して動き補償したフレームを挿入する動き補償型フレームレート変換処理等の2種類が代表的であるが、これらの処理に限定されるものではない。
 そして、立体画像表示装置4は、立体画像表示装置1と同様に、フレームレート変換処理部60a,60bにより24(フレーム/秒)から48(フレーム/秒)に変換された右眼用画像データRI’(n)を遅延部10が遅延をし、右眼用画像データRI’(n)および左眼用画像データLI’(n)をデータ強調部20a、データ強調部20bにより強調して、48(フレーム/秒)の右眼用画像強調データRE’(n)および左眼用画像強調データLE’(n)として、時分割出力部30へ出力する。
 時分割出力部30では、データ強調部20a、データ強調部20bから48(フレーム/秒)で出力される右眼用画像強調データRE’(n)および左眼用画像強調データLE’(n)が入力されてフレームメモリ31に一時保存し、立体画像表示装置1が備える時分割出力部30と同様に、左眼用画像強調データLE’(n)、右眼用画像強調データRE’(n)、・・・の順序で時分割して出力する。
 ただし、立体画像表示装置4では、時分割出力部30に入力される右眼用画像強調データRE’(n)および左眼用画像強調データLE’(n)が、48(フレーム/秒)なので、出力する際は、その2倍速レートにあたる96(フレーム/秒)のフレームレートとなる。
 従って、実施例4に係る立体画像表示装置4によれば、実施例1~3である立体画像表示装置1~3と同様に、時系列変換処理の前に時間軸強調処理を行うので、遅延部10やフレームメモリ31の入出力端子数が少なくて済み、遅延部10やフレームメモリ31との間のデータ転送のスループットも低く抑えられ、配線面積も少なく抑えることができるので、簡易な装置構成で、かつデータ処理の装置負荷を小さくすることができる。
 特に、立体画像表示装置4においては、図11に示すように、24(フレーム/秒)で入力する左眼用画像データLI、右眼用画像データRIそれぞれのフレームレートを、48(フレーム/秒)に変換を行うフレームレート変換処理部60a,60bを、データ強調部20a,20bや遅延部10の前段に設けている。そのため、時分割出力部30から右眼用画像強調データRE’(n)および左眼用画像強調データLE’(n)を出力する際は、その2倍速レートの96(フレーム/秒)となるので、間欠周期が60(フレーム/秒)以上となり、観察者はフリッカをほとんど知覚しないようにすることができる。
<実施例5>
 実施例4では、入力フレームレートが第1の所定値(例えば、24(フレーム/秒)。)以下の場合に、フレームレートの変換処理により、フリッカ妨害が生じない、もしくは実用上問題ないフレームレートである第2の所定値(例えば48(フレーム/秒)。)に引き上げた後に、時間軸強調処理をして、時系列変換処理を行うことにより、96(フレーム/秒)のフレームレートで立体画像を出力する立体画像表示装置を例に挙げて説明した。
 実施例5では、フレームメモリへの書き込みを低い入力フレームレート(24(フレーム/秒))のまま行い、フレームレートの変換処理を、データ強調部20a,20bの後段であるフレームメモリからの読み出しの際に、プルダウン処理等しながら読み出すことによりフレームレートを変換して、96(フレーム/秒)のフレームレートで立体画像を出力する立体画像表示装置を例に挙げて説明する。
 例えば、実施例1である立体画像表示装置1では、最終的に時分割出力部30から時分割で出力される画像強調データは、左眼用画像強調データLE(n)、右眼用画像強調データRE(n)、次のフレームの左眼用画像強調データLE(n+1)、右眼用画像強調データRE(n+1)、さらに次のフレームの左眼用画像強調データLE(n+2)、・・・の順序となる。よって、時分割出力する際の左眼用画像強調データLE(n)の前のフレームは、1フレーム前の右眼用画像強調データRE(n-1)であるので、予め行う時間軸強調処理としては、1フレーム前の右眼用画像強調データRE(n-1)との間で行えばよかった。
 しかし、実施例5に係る立体画像表示装置5では、時分割出力部において、フレームメモリからプルダウン処理しながら時分割で読み出す、すなわち同一画像フレームを繰り返し読み出すことによりフレームレートを向上させる。
 立体画像表示装置5では、右眼用画像データRI(n)と同様に、予め左眼用画像データLI(n)に対しても、同一フレームnの右眼用画像データRI(n)との差に基づいて強調データを形成するデータ強調部20eを設けたことを特徴とする。
 図12は、実施例5に係る立体画像表示装置5の構成例を示すブロック図である。
 図12において、立体画像表示装置5は、遅延部10と、データ強調部20aと、データ強調部20bと、データ強調部20eと、時分割出力部70とを有する。
 なお、これらの構成のうち、遅延部10と、データ強調部20aと、データ強調部20bとは、実施例1である立体画像表示装置1が備える構成と同一であるので説明を省略する。
 データ強調部20eには、データ強調部20aと同一のタイミングで右眼用画像データRI(n)と、左眼用画像データLI(n)とが入力される。そして、それらの差(LI(n)-RI(n))に対し強調係数K5を乗算し、乗算結果を左眼用画像データLI(n)に加算することにより、左眼用画像データLI(n)を強調し、左眼用画像強調データLE”(n)として時分割出力部70へ出力する。なお、この強調係数K5は、強調係数K2や、強調係数K4より、小さい値、あるいは大きい値、さらには同じ値としてもよい。
 そして、時分割出力部70は、24(フレーム/秒)のフレームレートで入力される画像データの入力フレームレートが低いことが原因で発生するフリッカ等を防止するため、フレームメモリ71に保持されている左眼用画像強調データLE(n)、右眼用画像強調データRE(n)、左眼用画像強調データLE”(n)を順に時分割で出力する。
 図13は、立体画像表示装置5が備える時分割出力部70における時分割処理後の状態を示す図である。
 ここでは、時分割出力部70への入力フレームレートを24(フレーム/秒)、左眼用画像データと右眼用画像データの切り替え周期を48(フレーム/秒)、フレームメモリからのデータの読み出し周期を96(フレーム/秒)とする。
 立体画像表示装置5が備える時分割出力部70は、プルダウン処理しながらの時分割処理により、同一フレームnが入力されるタイミングに対応して、左眼用画像強調データLE(n)、右眼用画像強調データRE(n)、左眼用画像強調データLE”(n)、右眼用画像強調データRE(n)、続いて、次のフレームが(n+1)入力されるタイミングに対応して、左眼用画像強調データLE(n+1)、右眼用画像強調データRE(n+1)、左眼用画像強調データLE”(n+1)、右眼用画像強調データRE(n+1)、・・・の順序で、各画像データをプルダウン処理、すなわち繰り返し(ここでは、便宜上2回とする。)同じフレームを読み出すことにより、4倍速レートにあたる96(フレーム/秒)のフレームレートで、時分割して出力する。
 つまり、立体画像表示装置5が備える時分割出力部70では、右眼用画像強調データRE(n)は繰り返し同じデータが2度出力されるのに対し、左眼用画像強調データLE(n)は、フレームの切り替わり目の1回目の出力の際はその左眼用画像強調データLE(n)が出力されるのに対し、2回目の繰り返しデータが出力されるタイミングでは、左眼用画像強調データLE(n)でなく、左眼用画像強調データLE”(n)が出力される。
 その結果、図13に示すように、立体画像表示装置5に、それぞれ24(フレーム/秒)にて右眼用画像強調データRE(1),RE(2),・・・、左眼用画像強調データLE(1),LE(2),・・・が入力された場合、時分割出力部70からは、4倍速レートにあたる96(フレーム/秒)のフレームレートで時分割して、LE(1),RE(1),LE”(1),RE(1),LE(2),RE(2),LE”(2),RE(2),・・・の順序で時系列順に画像強調データが出力されることになる。
 これにより、本発明の実施例5に係る立体画像表示装置5によれば、フレームメモリ71に保持されている左眼用画像強調データLE(n)、右眼用画像強調データRE(n)、左眼用画像強調データLE”(n)を、4倍速レートにあたる96(フレーム/秒)のフレームレートに変換して時分割して出力するので、24(フレーム/秒)で入力される画像データの入力フレームレートが低いことが原因で発生するフリッカ等を防止することができる。
 また、立体画像表示装置5によれば、時分割出力部70において、フレームメモリ71からプルダウン処理しながら時分割して読み出す、すなわち同一画像フレームを繰り返し読み出す際、2回目に読み出す左眼用画像強調データLE”(n)の前の画像データが、同一フレームnの左眼用画像強調データLE”(n)と同一の画像データR(n),L(n)に基づくものの、異なる強調係数K5により時間軸強調処理された左眼用画像強調データLE”(n)になるので、より自然な映像を観察者に提供することができる。
 次に、このように構成することにより、メモリのスループットがどのように改善されるかを、時分割処理後に時間軸強調を行う従来例と比較して説明する。
 図14は、左眼用画像データと右眼用画像データを時分割処理後に時間軸強調処理を行う従来例による240(フレーム/秒)のフレームレート表示でのメモリのスループットを示した図であり、図15は、実施例5である立体画像表示装置5による時分割出力部70にてフレームメモリ71からプルダウン処理しながら時分割して読み出す場合のメモリのスループットを示した図である。
 図14に示すように、スループット合計値で比較すると、左眼用画像データLI(n)と右眼用画像データRI(n)を時分割処理後に時間軸強調処理を行う従来例の場合、左眼用画像データLI(n)および右眼用画像データのフレームメモリへの書き込みが24(フレーム/秒)で、スループットが1194(Mbit/秒)となる。そして、フレームメモリからの読み出しと、遅延部への書き込みおよび遅延部からの読み出しが共に、96(フレーム/秒)で、スループットが4778(Mbit/秒)となるので、合計スループットが16722(Mbit/秒)となる。
 これに対し、図15に示すように、立体画像表示装置5の場合、フレームメモリ71への左眼用画像強調データLE(n)、右眼用画像強調データRE(n)、左眼用画像強調データLE”(n)それぞれの書き込みが24(フレーム/秒)の場合、それぞれスループットが1194(Mbit/秒)となる。そして、フレームメモリ71からの読み出しが96(フレーム/秒)の4778(Mbit/秒)になり、遅延部10への書き込みおよび遅延部10からの読み出しが24(フレーム/秒)で1194(Mbit/秒)になるので、合計10748(Mbit/秒)となる。
 このように、左眼用画像データと右眼用画像データを時分割処理後に時間軸強調処理を行う従来例の場合、メモリのスループット合計値が16722(Mbit/秒)となるのに対し、実施例5に係る立体画像表示装置5によれば、メモリのスループット合計値が10748(Mbit/秒)となり、改善していることがわかる。
 従って、実施例5の立体画像表示装置5によれば、実施例1~4である立体画像表示装置1~4と同様に、時分割処理の前に時間軸強調処理を行うので、遅延部10やフレームメモリ71の入出力端子数が少なくて済み、遅延部10やフレームメモリ71との間のデータ転送のスループットも低く抑えられ、配線面積も少なく抑えることができるので、簡易な装置構成で、かつデータ処理の装置負荷を小さくすることができる。
 特に、通常、フレームレート変換処理の場合、プルダウン処理または動き補償処理のいずれにしても大容量のフレームメモリが必要になるが、立体画像表示装置5によれば、左眼用画像強調データLE”の入力を追加するだけでよいので、フレームメモリ71の容量を削減することができる。
 また、立体画像表示装置5においては、時分割出力部70はフレームメモリ71に保持されている左眼用画像強調データLE(n)、右眼用画像強調データRE(n)、左眼用画像強調データLE”(n)を、入力フレームレートの24(フレーム/秒)に対して、4倍速レートにあたる96(フレーム/秒)のフレームレートに変換して時分割で出力するので、画像データの入力フレームレートの24(フレーム/秒)が低いことが原因で発生するフリッカ等を防止することができる。
 さらに、立体画像表示装置5によれば、時分割出力部70において、フレームメモリ71からプルダウン処理しながら時分割して読み出し、すなわち同一画像フレームを繰り返し読み出すようにした場合、2回目に読み出す左眼用画像強調データLE”(n)の前の画像データが、同一フレームnの左眼用画像強調データLE”(n)と同一の画像データRI(n),LI(n)に基づくものの、異なる強調係数K5により時間軸強調処理がなされた左眼用画像強調データLE”(n)になるので、より自然な映像を観察者に提供することができる。
 なお、実施例5に係る立体画像表示装置5では、図1に示す実施例1に係る立体画像表示装置1に適用して説明したが、図5に示す実施例2に係る立体画像表示装置2に適応してもよい。その場合には、フレームメモリ41へ同一フレームnのデータにより時間軸強調処理をした左眼用画像強調データLE”(n)を出力する構成とすればよい。また図9に示す実施例3に係る立体画像表示装置3に適応してもよい。その場合には、フレームメモリ51へ同一フレームnのデータにより時間軸強調処理をした左眼用画像強調データLE”(n)と共に、その左眼用画像強調データLE”(n)よりも強調度合いが小さい左眼用画像強調データLW’(n)を与える構成で実現できる。
 なお、実施例1~5の説明においては、左眼および右眼の画像強調データの時分割出力の順序を、左眼、右眼、左眼、・・・としたが、シャッタ眼鏡との組み合わせおよび同期がとれていれば、これに限らず、右眼、左眼、右眼、・・・という逆の順で時分割出力するようにしても勿論よい。
 また、実施例1~5の説明では、入力される右眼用画像データRI(n)と左眼用画像データLI(n)とが並列に与えられることを前提として説明したが、その他にも立体画像表示用の右眼用画像データRI(n)と左眼用画像データLI(n)を伝送するための各種フォーマットがあることは周知の通りであり、これらフォーマットからのデコード手段については特に限定しないし、また、右眼用画像データRI(n)と左眼用画像データLI(n)とが並列に与えられず、入力された右眼用画像データRI(n)を元に左眼用画像データLI(n)を作成したり、あるいはその逆に入力された左眼用画像データLI(n)を元に右眼用画像データRI(n)を作成するような構成でも、さらには通常の2次元表示用の画像データを元に右眼用画像データRI(n)と左眼用画像データLI(n)の双方を作成し、その後実施例1~5のように時間軸強調処理を行って時分割処理をして出力するような構成でも勿論よい。
 また、本発明に係る実施例1~5の説明では、立体画像表示装置をハードウエア的に構成して説明したが、本発明では、これに限らず、前期実施例1~5の各立体画像表示装置の機能をプログラミングしたプログラムと、そのプログラムを実行するCPU等とにより、ソフトウエア的に実行するようにしても勿論よい。
 また、実施例1~5の説明では、液晶の立体画像表示装置を一例として説明したが、本発明は、これに限らず、有機ELや、プラズマ、ブラウン管、SED等のその他の立体画像表示装置についても適用可能である。
 1~5…立体画像表示装置
 10…遅延部
 20a…データ強調部
 20b…データ強調部
 20c…データ強調部
 20d…データ強調部
 20e…データ強調部
 21b…減算器
 22b…強調係数乗算器
 23b…加算器
 30,40,50,70…時分割出力部
 31,41,51,71…フレームメモリ
 60a,60b…フレームレート変換処理部

Claims (5)

  1.  立体映像を表示するための右眼用画像データまたは左眼用画像データのうち一方の画像データを1フレーム期間遅延させて遅延データとして出力する遅延部と、
     前記右眼用画像データと、前記左眼用画像データとの差に基づいて、前記一方の画像データを第1の強調係数により強調して第1の強調データを出力する第1のデータ強調部と、
     前記右眼用画像データまたは前記左眼用画像データのうち他方の画像データと、前記遅延部によって1フレーム期間遅延された前記遅延データとの差に基づいて、前記他方の画像データを第2の強調係数により強調して第2の強調データとして出力する第2のデータ強調部と、
     前記第1の強調データと、前記第2の強調データとを記憶して、前記第1の強調データと、前記第2の強調データを所定のフレームレートで時分割して出力する時分割出力部と、
     を有することを特徴とする立体画像表示装置。
  2.  立体映像を表示するための右眼用画像データまたは左眼用画像データのうち一方の画像データを1フレーム期間遅延させて遅延データとして出力する遅延部と、
     前記右眼用画像データと、前記左眼用画像データとの差に基づいて、前記一方の画像データを第1の強調係数により強調して第1の強調データを出力する第1のデータ強調部と、
     前記右眼用画像データまたは前記左眼用画像データのうち他方の画像データと、前記遅延部によって1フレーム期間遅延された前記遅延データとの差に基づいて、前記他方の画像データを第2の強調係数により強調して第2の強調データとして出力する第2のデータ強調部と、
     前記第1の強調データと、前記一方の画像データと、前記第2の強調データと、前記他方の画像データとを記憶、前記第1の強調データと、前記一方の画像データと、前記第2の強調データと、前記他方の画像データの順序で、所定のフレームレートにより時分割して出力する時分割出力部と、
     を有することを特徴とする立体画像表示装置。
  3.  立体映像を表示するための右眼用画像データまたは左眼用画像データのうち一方の画像データを1フレーム期間遅延させて遅延データとして出力する遅延部と、
     前記右眼用画像データと、前記左眼用画像データとの差に基づいて、前記一方の画像データを第1の強調係数により強調して第1の強調データを出力する第1のデータ強調部と、
     前記右眼用画像データまたは前記左眼用画像データのうち他方の画像データと、前記遅延部によって1フレーム期間遅延された前記遅延データとの差に基づいて、前記他方の画像データを第2の強調係数により強調して第2の強調データとして出力する第2のデータ強調部と、
     前記一方の画像データと、前記他方の画像データとの差に基づいて、前記一方の画像データを前記第1の強調係数より強調ゲインの小さい第2の強調係数により強調して第3の強調データとして出力する第3のデータ強調部と、
     前記他方の画像データと、前記遅延データとの差に基づいて、前記他方の画像データを前記第2の強調係数より強調ゲインの小さい第4の強調係数により強調して第4の強調データとして出力する第4のデータ強調部と、
     前記第1の強調データと、前記第3の強調データと、前記第2の強調データと、前記第4の強調データとを記憶し、前記第1の強調データと、前記第3の強調データと、前記第2の強調データと、前記第4の強調データの順序で、所定のフレームレートで時分割して出力する時分割出力部と、
     を有することを特徴とする立体画像表示装置。
  4.  前記左眼用画像データおよび前記右眼用画像データのフレームレートが第1の所定値以下の場合に、第2の所定値以上のフレームレートに変換して前記遅延部、前記第1および第2のデータ強調部に出力するフレームレート変換部を、
     更に有することを特徴とする請求項1または2に記載の立体画像表示装置。
  5.  右眼用画像データまたは左眼用画像データのうち一方の画像データを1フレーム期間遅延させて遅延データとして出力する遅延部と、
     前記右眼用画像データと、前記左眼用画像データとの差に基づいて、前記一方の画像データを第1の強調係数により強調して第1の強調データを出力する第1のデータ強調部と、
     前記右眼用画像データまたは前記左眼用画像データのうち他方の入力データと、前記遅延部によって1フレーム期間遅延された前記遅延データとの差に基づいて、前記他方の入力データを第2の強調係数により強調して第2の強調データとして出力する第2のデータ強調部と、
     前記一方の画像データと、前記他方の画像データとの差に基づいて、前記一方の画像データと前記他方の画像データとのうち同一フレームに基づいて時系列順で先に表示される画像データを第5の強調係数により強調して第5の強調データとして出力する第5のデータ強調部と、
     前記第1の強調データと、前記第2の強調データと、前記第5の強調データとを記憶し、前記第1の強調データと前記第2の強調データのうち時系列順で先に表示される一方の強調データ、他方の強調データ、前記第5の強調データ、前記他方の強調データの順序で、時分割して出力することにより、所定の周波数以上に変換して出力する時分割出力部と、
     を有することを特徴とする立体画像表示装置。
PCT/JP2011/056536 2010-03-24 2011-03-18 立体画像表示装置 WO2011118518A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2011800149330A CN102804794A (zh) 2010-03-24 2011-03-18 立体图像显示装置
KR1020127024301A KR20120128693A (ko) 2010-03-24 2011-03-18 입체 화상 표시 장치
EP11759324.4A EP2555529A4 (en) 2010-03-24 2011-03-18 3D IMAGE DISPLAY DEVICE
US13/636,577 US20130002834A1 (en) 2010-03-24 2011-03-18 3d image display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-067832 2010-03-24
JP2010067832A JP4840519B2 (ja) 2010-03-24 2010-03-24 立体画像表示装置

Publications (1)

Publication Number Publication Date
WO2011118518A1 true WO2011118518A1 (ja) 2011-09-29

Family

ID=44673073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056536 WO2011118518A1 (ja) 2010-03-24 2011-03-18 立体画像表示装置

Country Status (6)

Country Link
US (1) US20130002834A1 (ja)
EP (1) EP2555529A4 (ja)
JP (1) JP4840519B2 (ja)
KR (1) KR20120128693A (ja)
CN (1) CN102804794A (ja)
WO (1) WO2011118518A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013080161A1 (fr) * 2011-12-02 2013-06-06 Binocle Procede de correction pour la projection alternative d'images stereoscopiques

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014042133A (ja) * 2012-08-22 2014-03-06 Mitsubishi Electric Corp 立体映像表示システム、立体映像表示装置およびフレームレート制御方法
WO2014030411A1 (ja) 2012-08-24 2014-02-27 シャープ株式会社 液晶表示装置およびその駆動方法
WO2014054331A1 (ja) 2012-10-02 2014-04-10 シャープ株式会社 液晶表示装置およびその駆動方法
KR102104333B1 (ko) 2013-05-28 2020-04-27 삼성디스플레이 주식회사 입체 영상 표시 장치
KR102582841B1 (ko) * 2016-07-07 2023-09-27 삼성디스플레이 주식회사 표시 장치
TWI790773B (zh) * 2021-10-12 2023-01-21 宏碁股份有限公司 三維影像顯示系統及其操作方法
CN116110326A (zh) * 2021-11-09 2023-05-12 深圳市奥拓电子股份有限公司 一种时分复用的led显示驱动方法及其芯片

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003264846A (ja) * 2002-03-12 2003-09-19 Toshiba Corp 液晶表示方法
JP2006157775A (ja) 2004-12-01 2006-06-15 Mitsubishi Electric Corp 立体画像表示装置
JP2006337448A (ja) 2005-05-31 2006-12-14 Victor Co Of Japan Ltd 画像表示装置
JP2009025436A (ja) * 2007-07-18 2009-02-05 Seiko Epson Corp 電気光学装置、表示方法及び電子機器
JP2010011184A (ja) * 2008-06-27 2010-01-14 Toshiba Corp 映像信号処理装置及びテレビジョン受信装置及びその制御方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6532008B1 (en) * 2000-03-13 2003-03-11 Recherches Point Lab Inc. Method and apparatus for eliminating steroscopic cross images
JP2004159191A (ja) * 2002-11-07 2004-06-03 Seiko Epson Corp 画像データに応じたフレームレートの変換
JP4262139B2 (ja) * 2004-06-01 2009-05-13 キヤノン株式会社 信号処理装置
EP1977395B1 (en) * 2006-01-27 2018-10-24 Imax Corporation Methods and systems for digitally re-mastering of 2d and 3d motion pictures for exhibition with enhanced visual quality

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003264846A (ja) * 2002-03-12 2003-09-19 Toshiba Corp 液晶表示方法
JP2006157775A (ja) 2004-12-01 2006-06-15 Mitsubishi Electric Corp 立体画像表示装置
JP2006337448A (ja) 2005-05-31 2006-12-14 Victor Co Of Japan Ltd 画像表示装置
JP2009025436A (ja) * 2007-07-18 2009-02-05 Seiko Epson Corp 電気光学装置、表示方法及び電子機器
JP2010011184A (ja) * 2008-06-27 2010-01-14 Toshiba Corp 映像信号処理装置及びテレビジョン受信装置及びその制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2555529A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013080161A1 (fr) * 2011-12-02 2013-06-06 Binocle Procede de correction pour la projection alternative d'images stereoscopiques
FR2983673A1 (fr) * 2011-12-02 2013-06-07 Binocle Procede de correction pour la projection alternative d'images stereoscopiques

Also Published As

Publication number Publication date
JP4840519B2 (ja) 2011-12-21
EP2555529A1 (en) 2013-02-06
KR20120128693A (ko) 2012-11-27
US20130002834A1 (en) 2013-01-03
CN102804794A (zh) 2012-11-28
JP2011205186A (ja) 2011-10-13
EP2555529A4 (en) 2013-08-21

Similar Documents

Publication Publication Date Title
WO2011118518A1 (ja) 立体画像表示装置
JP4569388B2 (ja) 画像表示装置
US20110007136A1 (en) Image signal processing apparatus and image display
JP2011090079A (ja) 表示装置、表示方法およびコンピュータプログラム
JP5472122B2 (ja) 画像伝送システムおよび画像伝送方法
JP6261685B2 (ja) 表示装置
JP2013026727A (ja) 表示装置および表示方法
JP5532232B2 (ja) 映像信号処理装置、映像表示装置および映像表示システム
JP2008165161A (ja) 表示装置および表示システム
JP2011244079A (ja) 立体映像制御装置及び立体映像制御方法
JP4964197B2 (ja) 映像信号処理装置及び映像信号処理方法
JP6368727B2 (ja) 表示装置および表示方法
JP5318811B2 (ja) 2次元/3次元映像処理装置および映像表示装置
EP3828814A1 (en) Electronic apparatus and control method thereof
JP4306274B2 (ja) 液晶表示装置
JP2013077863A (ja) 立体表示装置および立体表示方法
JP3816673B2 (ja) 立体画像の階調表示制御方法および装置
JP5998982B2 (ja) 映像信号処理装置及び方法
Nam et al. 61.4: Novel Impulsive Driving Schemes Using Frame Rate Doubling for 120Hz LCD Panels
JP2017102190A (ja) 表示装置及びその制御方法
JP2013058950A (ja) 画像表示装置及び画像表示方法
JP2009162945A (ja) 液晶表示装置
US8294818B2 (en) De-interlacing method and controller thereof
WO2014013804A1 (ja) 画像処理装置及び画像処理方法、並びに画像表示装置
JP2013026871A (ja) 画像処理装置および方法、並びにプログラム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180014933.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759324

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127024301

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011759324

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13636577

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE