WO2011118169A1 - 燃料電池システム及び燃料電池システムの運転方法 - Google Patents

燃料電池システム及び燃料電池システムの運転方法 Download PDF

Info

Publication number
WO2011118169A1
WO2011118169A1 PCT/JP2011/001597 JP2011001597W WO2011118169A1 WO 2011118169 A1 WO2011118169 A1 WO 2011118169A1 JP 2011001597 W JP2011001597 W JP 2011001597W WO 2011118169 A1 WO2011118169 A1 WO 2011118169A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
fuel cell
hydrogen
valve
containing gas
Prior art date
Application number
PCT/JP2011/001597
Other languages
English (en)
French (fr)
Inventor
章典 行正
繁樹 保田
直久 田邉
英俊 若松
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/393,770 priority Critical patent/US8911912B2/en
Priority to EP11758980.4A priority patent/EP2551945B1/en
Priority to CN201180003691.5A priority patent/CN102484274B/zh
Priority to JP2012506811A priority patent/JP5624606B2/ja
Publication of WO2011118169A1 publication Critical patent/WO2011118169A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • H01M8/04022Heating by combustion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04955Shut-off or shut-down of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04231Purging of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0668Removal of carbon monoxide or carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system in which a small amount of oxidizing gas is mixed into a hydrogen-containing gas supplied to a fuel cell, and a method for operating the fuel cell system.
  • FIG. 8 is a schematic configuration diagram of a conventional fuel cell system. As shown in FIG. 8, in the conventional fuel cell system 700, the means for supplying the hydrogen-containing gas necessary for the power generation operation is not usually provided as an infrastructure. For this reason, a hydrogen generator for generating a hydrogen-containing gas required during power generation operation is provided.
  • the hydrogen generator includes a hydrogen generator 2 having a reformer 3, and a raw material containing an organic compound having at least carbon and hydrogen as constituent elements as a reforming reaction proceeds in a reforming catalyst in the reformer 3.
  • a hydrogen-containing gas is generated from the water vapor.
  • the reforming catalyst included in the reformer 3 is heated to a temperature suitable for the progress of the reforming reaction by the combustor 5 adjacent to the reformer 3.
  • the conventional fuel cell system 700 completes warming-up of the hydrogen generator 2 including the reformer 3 for a while even after the generation of the hydrogen-containing gas is started by the hydrogen generator at the time of startup.
  • the hydrogen-containing gas is not supplied to the fuel cell 1 until the composition becomes stable.
  • the first on-off valve 7a is closed, the second on-off valve 6 is opened, and the hydrogen-containing gas delivered from the hydrogen generator 2 passes through the second flow path 8 which is a bypass flow path.
  • the combustor 5 is configured to be used for combustion as combustion fuel (see, for example, Patent Document 1).
  • the hydrogen-containing gas supplied from the hydrogen generator 2 at the time of startup is not supplied to the fuel cell 1 and flows through the second flow path 8 as described above. It is configured.
  • the hydrogen-containing gas gradually diffuses into the first channel 10 downstream from the branching portion to the second channel 8.
  • the first flow path 10 downstream from the branch portion is more than the flow path (the first flow path 10 upstream from the branch section, the second flow path 8 and the like) through which the hydrogen-containing gas has already passed.
  • the temperature since the temperature is low, condensed water is generated from the diffused hydrogen-containing gas, which may block the flow path.
  • the fuel cell system 700 shifts from start-up to power generation operation, supply of hydrogen-containing gas to the fuel cell is started. If this flow path blockage occurs, supply of hydrogen-containing gas to the fuel cell is hindered. There is a possibility that it is not preferable.
  • the possibility that the hydrogen-containing gas diffuses and flows into the first flow path 10 downstream from the branching portion at the time of start-up and the flow path is blocked by the generated condensed water is conventionally known. It aims at providing the fuel cell system which suppresses more.
  • a fuel cell system of the present invention includes a hydrogen generator having a reformer that generates a hydrogen-containing gas by a reforming reaction using raw materials and steam, and the reforming reaction in the reformer.
  • a combustor that supplies heat for the fuel, a fuel cell that generates power using the hydrogen-containing gas supplied from the hydrogen generator, and a hydrogen-containing gas that is sent from the hydrogen generator and passes through the fuel cell.
  • a first on-off valve provided in one flow path, and a second on-off valve provided in the second flow path The oxidizing gas supplier connected to the third flow path and the first on-off valve are closed and the second on-off valve are opened at the time of start-up, and the hydrogen-containing gas is sent from the hydrogen generator.
  • a controller that controls the oxidant gas supply device to operate and supply oxygen from the third flow path to the first flow path.
  • the operation method of the fuel cell system of the present invention includes a hydrogen generator having a reformer that generates a hydrogen-containing gas by a reforming reaction using raw materials, and supplies heat for the reforming reaction to the reformer.
  • a combustor a fuel cell that generates electricity using the hydrogen-containing gas supplied from the hydrogen generator, a first flow path through which the hydrogen-containing gas that is sent from the hydrogen generator and passes through the fuel cell flows, A second flow path that branches from the first flow path, bypasses the fuel cell, and supplies a hydrogen-containing gas to the combustor; a branch portion to the second flow path; and the fuel cell.
  • a first on-off valve provided; a second on-off valve provided in the second flow path; and the third An operating method of a fuel cell system comprising an oxidizing gas supply device provided in a path, wherein at the time of start-up, the first on-off valve is closed and the second on-off valve is opened, and the hydrogen generator
  • the hydrogen-containing gas is sent out in step (a), and the oxidizing gas supplier operates in step (a), and the oxidizing gas is supplied to the first flow path upstream of the branch portion through the third flow path.
  • the condensate generated by the diffusion of the hydrogen-containing gas into the fuel gas passage downstream from the branching portion may cause the passage blockage. Is also suppressed.
  • FIG. 1 is a diagram showing an example of a schematic configuration of a fuel cell system according to Embodiment 1.
  • FIG. 2 is a diagram showing an example of an outline of an operation flow of the fuel cell system according to the first embodiment.
  • FIG. 3 is a diagram showing an example of a schematic configuration of the fuel cell system according to the second embodiment.
  • FIG. 4 is a diagram illustrating an example of a schematic configuration of a fuel cell system according to Modification 1 of Embodiment 2.
  • FIG. 5 is a diagram illustrating an example of a schematic configuration that characterizes the fuel cell system according to the second modification of the second embodiment.
  • FIG. 6 is a diagram showing an example of a schematic configuration of a fuel cell system according to Modification 3 of Embodiment 2.
  • FIG. 7 is a diagram showing an example of a schematic configuration of a fuel cell system according to Modification 4 of Embodiment 2.
  • FIG. 8 is a schematic configuration diagram of a conventional fuel cell system.
  • FIG. 1 is a diagram illustrating an example of a schematic configuration of the fuel cell system according to the first embodiment.
  • solid arrows indicate paths through which water, raw material gas, oxidizing gas, and oxidizing gas flow when the fuel cell system is operated.
  • broken arrows indicate signals.
  • the fuel cell system 100 of the present embodiment includes a hydrogen generator 2 having a reformer 3 that generates a hydrogen-containing gas by a reforming reaction using raw materials, and a reformer 3.
  • a combustor 5 that supplies heat for a quality reaction, a fuel cell 1 that generates electricity using a hydrogen-containing gas supplied from a hydrogen generator 2, and a hydrogen content that is sent from the hydrogen generator 2 and passes through the fuel cell 1
  • a third flow path 16 through which the oxidizing gas supplied to the first flow path 10 between the battery 1 and the first flow path 10 and the third flow path 16 downstream of the junction 10c between the first flow path 10 and the third flow path 16 is provided.
  • the first on-off valves 7a and 7b provided in the first flow path 10 and the second open / close valves provided in the second flow path 8 Comprising a closed 6, the oxidizing gas supply unit 15 provided in the third flow channel 16, and a controller 200 for controlling the operation of each device constituting the fuel cell system 100.
  • the reforming catalyst for example, a Ni-based catalyst containing Ni as a catalyst metal, a Ru-based catalyst containing Ru as a catalyst metal, or the like is used.
  • the evaporator generates water vapor by evaporating water supplied from a water supply device (not shown) and supplies the water vapor to the reformer 3.
  • the reformer 3 is provided with a temperature detector 3 a that detects the temperature of the reformer 3. The temperature data detected by the temperature detector 3a is fed back to the controller 200.
  • the combustor 5 generates high-temperature combustion gas using the raw material gas or the hydrogen-containing gas generated in the reformer 3 as fuel, and supplies heat so that the reformer 3 has a temperature suitable for the reforming reaction. To do.
  • the combustor 5 also supplies heat for generating water vapor in the evaporator.
  • power generation is performed by reacting the hydrogen-containing gas generated as described above with an oxidant gas (for example, air) supplied from the oxidant gas supplier 14.
  • an oxidant gas for example, air supplied from the oxidant gas supplier 14.
  • a blower or the like is used as the oxidant gas supply unit 14.
  • the first flow path 10 communicates from the hydrogen generator 2 through the fuel cell 1 to the combustor 5.
  • a first on-off valve 7 a is provided between the branch part 10 a and the fuel cell 1
  • a first on-off valve 7 b is provided between the fuel cell 1 and the junction part 10 b. It has been.
  • the second flow path 8 starts from the branch portion 10 a of the first flow path 10, bypasses the fuel cell 1, merges with the first flow path 10 again at the merge section 10 b, and communicates with the combustor 5. Road.
  • the second flow path 8 uses a flow path that is common to the first flow path 10 from the merging portion 10 b to the combustor 5.
  • the 2nd on-off valve 6 is provided between the branch part 10a and the junction part 10b in the 2nd flow path 8, it is not limited to this example, If it is on a 2nd flow path Any part may be used.
  • the oxidizing gas supply unit 15 supplies the oxidizing gas to the first channel 10 between the branch part 10 a and the fuel cell 1 through the third channel 16.
  • the 3rd flow path 16 is comprised so that the 1st flow path 10 and the junction part 10c between the branch part 10a and the 1st on-off valve 7a may merge.
  • the controller 200 only needs to be configured to have a control function, and includes an arithmetic processing unit (not shown) and a storage unit (not shown) for storing a control program.
  • Examples of the arithmetic processing unit include an MPU and a CPU.
  • An example of the storage unit is a memory.
  • the hydrogen generator 2 includes only the reformer 3 as a reactor related to the generation of the hydrogen-containing gas.
  • the present invention is not limited to this example.
  • a shifter (not shown) that reduces carbon monoxide in the hydrogen-containing gas sent from the reformer 3 by a shift reaction, and carbon monoxide in the hydrogen-containing gas at least of an oxidation reaction and a methanation reaction You may provide at least any one of the CO removal device (not shown) reduced by either one.
  • controller 200 may be not only a single controller but also a controller group in which a plurality of controllers cooperate to execute control of the fuel cell system.
  • the second flow path 8 is partially shared downstream of the fuel cell 1 in the first flow path 10, but is not limited to this example, and is shared flow path
  • the portions may be configured as independent channels by the first channel 10 and the second channel 8.
  • FIG. 2 is a diagram illustrating an example of an outline of an operation flow of the fuel cell system according to the first embodiment.
  • a temperature raising operation is started to raise the temperature of the hydrogen generator 2 so that the hydrogen generator 2 can generate a hydrogen-containing gas.
  • the combustor 5 is combusted by the raw material gas that has passed through the hydrogen generator 2.
  • the second on-off valve 6a is maintained while the closed state of the first on-off valve 7a closed by the controller 200 is maintained. Is released (step S200).
  • the operation of the raw material supplier is started to start supplying the raw material to the hydrogen generator 2, and the raw material sent from the hydrogen generator 2 is supplied to the combustor 5 via the second flow path 8 and burned.
  • the vessel 5 starts a combustion operation using this raw material (step S201).
  • the reforming reaction does not proceed in the reformer 3, and the raw material is supplied to the combustor 5 as it is. Then, the reformer 3 and the evaporator are heated by the combustion exhaust gas discharged from the combustor 5 and the temperature is raised.
  • step S202 whether or not the detected temperature T of the temperature detector 3a for detecting the temperature of the reformer 3 is equal to or higher than a predetermined threshold temperature Tth (for example, 300 ° C.) after starting the temperature raising operation of the hydrogen generator 2. Is determined (step S202).
  • a predetermined threshold temperature Tth for example, 300 ° C.
  • step S202 When the detected temperature T becomes equal to or higher than the first threshold temperature Tth (Yes in step S202), the controller 200 starts the operation of the oxidizing gas supply 15 and the first from the downstream of the branching unit 10a through the third flow path 16. Supply of the oxidizing gas to the flow path 10 is started (step S203).
  • the controller 200 After the supply of the oxidizing gas to the first flow path 10 is started, the controller 200 starts the operation of the water supply device, the water supply to the evaporator is started, and the reformer 3 generates the hydrogen-containing gas. The process is started (step S204).
  • step S205 it is determined whether or not the detected temperature T of the temperature detector 3a has reached a second threshold temperature Tx (for example, 650 ° C.) (step S205).
  • a second threshold temperature Tx for example, 650 ° C.
  • the controller 200 opens the first on-off valves 7a and 7b and closes the second on-off valve 6 to supply the hydrogen-containing gas sent from the hydrogen generator 2.
  • Supply to the fuel cell 1 is started, and power generation operation of the fuel cell system 100 is started (step S206).
  • the start of the fuel cell system is completed by the transition to the power generation operation of the fuel cell system 100 in step S206.
  • the controller 200 operates the oxidizing gas supply unit 15 to supply the oxidizing gas to the first flow path 10 downstream from the branch portion 10a through the third flow path 16.
  • the predetermined first threshold temperature Tth is set as a threshold temperature for determining whether the reformer 3 is capable of proceeding with the reforming reaction and is capable of evaporating water in the evaporator.
  • the second threshold temperature Tx is a temperature at which the hydrogen-containing gas can be supplied from the hydrogen generator 2 to the fuel cell 1 in the power generation operation of the fuel cell system. Further, the second threshold temperature Tx is set as a temperature higher than the first threshold temperature Tth.
  • the first threshold temperature Tth and the second threshold temperature Tx are appropriately set according to the configuration, size, etc. of the fuel cell system 100.
  • the control flow is configured to supply the oxidizing gas from the oxidizing gas supply unit 15 to the first flow path 10 before the generation of the hydrogen-containing gas is started. This is because, after the hydrogen generator 2 starts generating the hydrogen-containing gas, the hydrogen-containing gas flows into the first flow path 10 downstream from the branch portion 10a, compared to the case where the oxidizing gas supplier 15 starts to operate. This is to further reduce the possibility of diffusion inflow.
  • the timing of starting the operation of the oxidizing gas supply unit 15 is not limited to this example, and may be after the generation of the hydrogen-containing gas in the hydrogen generator 2 or at the same time.
  • the hydrogen-containing gas flows into the first flow path 10 downstream from the branch portion 10a during the time when the oxidizing gas supplier 15 is not operating when the hydrogen-containing gas is generated, and the condensed water is There is a possibility of generating.
  • the condensed water is discharged to the second flow path 8 on the flow of the oxidizing gas supplied to the first flow path 10 by the subsequent operation of the oxidizing gas supply 15. Further, the blockage of the first channel 10 downstream from the branching portion 10a is suppressed as compared with the conventional fuel cell system.
  • the oxidizing gas is continuously supplied to the first flow path 10 from the oxidizing gas supply 15. You may control so that it may carry out, and you may control so that it may operate
  • this condensed water is discharged to the second flow path 8 by the flow of the oxidizing gas supplied to the first flow path 10 when the next operation is resumed, and is downstream of the branch portion.
  • the blockage of the first channel 10 is suppressed as compared with the conventional fuel cell system.
  • the opening / closing operation of the first opening / closing valve 7b when the first opening / closing valve 7a is closed has not been described, but the first opening / closing valve 7b is closed even if it is opened. Or any of them.
  • the first on-off valve 7b may be controlled to close, and the first on-off valve 7a may be controlled to open. I do not care.
  • only one of the first on-off valve 7a and the first on-off valve 7b may be provided to perform the closing control.
  • the “first on-off valve” that is closed when controlling the inflow destination of the hydrogen-containing gas generated in the hydrogen generator 2 to be the second flow path 8 instead of the fuel cell 1 is the junction section. Any on-off valve may be used as long as it is provided on the first flow path 10 downstream of 10c.
  • an on-off valve is provided on the third flow path 16, and the on-off valve is opened and the operation of the oxidizing gas supplier 15 is started in step S 203 of the operation flow.
  • the condensation of the first flow path 10 downstream from the branch portion 10a described in the first embodiment is performed using one oxidizing gas supply mechanism (the oxidizing gas supply unit 15 and the third flow path 16). It is possible to obtain both effects of suppressing the blockage of the flow path with water and suppressing the decrease in power generation performance due to the adsorption of carbon monoxide on the anode of the fuel cell during power generation operation.
  • the oxidizing gas supply from the oxidizing gas supplier 15 during the power generation operation may be executed continuously during the power generation operation, or may be executed intermittently.
  • FIG. 3 is a diagram illustrating an example of a schematic configuration of the fuel cell system according to the second embodiment.
  • the same components as those in the schematic diagram of FIG. 3 are identical to those in the schematic diagram of FIG.
  • the fuel cell system of the present embodiment has substantially the same configuration as the fuel cell system of the first embodiment.
  • a CO remover 19 that reduces carbon monoxide in the hydrogen-containing gas produced by the reformer 3 by an oxidation reaction and a third flow passage 16 are branched into the hydrogen generator 2 and the CO remover.
  • the fourth embodiment is different from the first embodiment in that it includes a fourth flow path 18 through which the oxidizing gas supplied to 19 flows.
  • the CO remover 19 reduces carbon monoxide in the hydrogen-containing gas generated by the reformer 3 in the hydrogen generator 2 by an oxidation reaction. Specifically, it is reduced by adding an oxidizing gas to the supplied hydrogen-containing gas and converting carbon monoxide to carbon dioxide by an oxidation reaction.
  • the fourth flow path 18 branches from the third flow path 16 and communicates with the CO remover 19.
  • the oxidizing gas supplier 15 supplies the oxidizing gas to the CO remover 19 through the fourth flow path 18. That is, the oxidizing gas sent from the oxidizing gas supply unit 15 is configured to divert into the third channel 16 and the fourth channel 18.
  • the function of supplying the oxidizing gas to the CO remover 19 at the time of start-up and the function of supplying the oxidizing gas to the first flow path 10 downstream from the branch portion 10a are preferable.
  • the oxidizing gas supplier 15 is similarly operated to supply the oxidizing gas to the CO remover 19 and the fuel cell 1.
  • a mode of performing an oxidizing gas supply (air bleed) to the hydrogen-containing gas may be adopted.
  • the flow rate of the oxidizing gas supplied is preferably set according to the amount of the hydrogen-containing gas generated in the reformer 3. This is because the amount of carbon monoxide contained in the hydrogen-containing gas also changes in proportion to the amount of hydrogen-containing gas produced by the reformer 3. Specifically, when the supply amount of the raw material to the reformer 3 increases, the supply amount of the oxidizing gas also increases. When the supply amount of the raw material to the reformer 3 decreases, the supply amount of the oxidizing gas also decreases.
  • FIG. 4 is a diagram illustrating an example of a schematic configuration of a fuel cell system according to this modification.
  • the fuel cell system of the present modification is provided with a third on-off valve 20 in the third flow path 16 upstream of the branching portion to the fourth flow path 18.
  • the third flow path 16 and the fourth flow path 18 are made conductive by opening the open / close valve 20.
  • the third on-off valve 20 is opened.
  • FIGS. 5A to 5C are diagrams showing an example of an outline of a characteristic configuration of the fuel cell system according to this modification.
  • the fuel cell system of the present modification has a third on-off valve 20 that communicates / blocks the third flow path 16 and a fourth switch that communicates / blocks the fourth flow path 18. 4 on-off valve 21.
  • Specific configurations of the third on-off valve 20 and the fourth on-off valve 21 are as shown in FIGS. 5 (a) to 5 (c).
  • the third on-off valve 20 is provided in the third flow path 16 on the downstream side (first flow path 10 side) with respect to the branch to the fourth flow path 18. Yes.
  • the fourth on-off valve 21 is provided in the third flow path 16 on the upstream side (oxidation gas supply 15 side) from the branching portion to the fourth flow path 18.
  • both the third on-off valve 20 and the fourth on-off valve 21 are opened.
  • the third on-off valve 20 is closed and the fourth on-off valve 21 is opened.
  • the third on-off valve 20 is provided in the third flow path 16 on the upstream side (oxidation gas supplier 15 path side) with respect to the branch to the fourth flow path 18. .
  • the fourth on-off valve 21 is provided in the fourth flow path 18.
  • both the third on-off valve 20 and the fourth on-off valve 21 are opened.
  • the third on-off valve 20 is opened and the fourth on-off valve 21 is closed.
  • the third on-off valve 20 is provided in the third flow path 16 on the downstream side (the first flow path 10 side) from the branching portion to the fourth flow path 18. Yes.
  • the fourth on-off valve 21 is provided in the fourth flow path 18.
  • both the third on-off valve 20 and the fourth on-off valve 21 are opened.
  • the third on-off valve 20 is opened and the fourth on-off valve 21 is closed.
  • the third on-off valve 20 is closed and the fourth on-off valve 21 is opened.
  • the controller 200 controls the third on-off valve 20 and By independently controlling the opening / closing operation of the fourth on-off valve 21, the supply / interruption of the oxidizing gas is controlled independently for at least one of the third flow path 16 and the fourth flow path. This is more preferable than Modification 1 in that it can be performed.
  • FIG. 6 is a diagram illustrating an example of a schematic configuration of a fuel cell system according to the present modification.
  • the third on-off valve 20 is provided in the third flow path 16 upstream of the branching portion to the fourth flow path 18 as in the first modification.
  • the third flow path 16 and the fourth flow path 18 are made conductive by opening the third on-off valve 20.
  • the fuel cell 1 is configured to be positioned above the hydrogen generator 2. Therefore, the hydrogen-containing gas inlet of the fuel cell is arranged above the hydrogen-containing gas outlet of the hydrogen generator.
  • the second embodiment is different from the second embodiment in that the first flow path 10 downstream from the branching portion 10a to the second flow path 8 is configured to rise upward from the branching portion 10a.
  • the first flow path 10 downstream from the branching portion 10a is configured to rise, the hydrogen-containing gas sent from the hydrogen generator 2 is downstream from the branching portion 10a.
  • the condensed water may flow backward and flow into the high-temperature CO remover 19 to cause bumping.
  • the flow rate of the hydrogen-containing gas flowing into the combustor 5 may fluctuate greatly, and the combustor 5 may cause misfire or incomplete combustion.
  • the first flow path 10 downstream from the branching portion 10a is shut off at the time of startup, while the second flow path is conductive.
  • the third on-off valve is opened and the oxidizing gas supplier 15 is operated.
  • a gas-liquid separator 22 is provided in the second flow path 8, and the second flow path 8 from the branch portion 10a to the gas-liquid separator 22 is configured to have a downward slope. Yes. This is because the condensed water generated in the second flow path 8 is discharged to the gas-liquid separator 22 without flowing back to the CO remover 19.
  • the fuel cell system of Modification 4 is the same as that of the fuel cell system of Embodiment 2 and Modifications 1-3 thereof, but the third flow path and the fourth flow path are not shared and are independent.
  • an oxidizing gas supply device that supplies an oxidizing gas for air bleeding and an oxidizing gas supply device that supplies an oxidizing gas for the oxidation reaction in the CO remover 19 are separately provided.
  • the fuel cell system may be configured in the same manner as in any one of the second embodiment and its modification example 1-3.
  • FIG. 7 is a diagram showing an example of a schematic configuration of the fuel cell system 100 of the present modification.
  • the third flow path 16 and the fourth flow path 18 are provided independently of each other, and an oxidizing gas for air bleed is used.
  • An oxidizing gas supply unit 15 for supplying and an oxidizing gas supply unit 23 for supplying an oxidizing gas for the oxidation reaction in the CO removing unit 19 are provided.
  • the possibility of causing the channel blockage due to the condensed water generated by the diffusion of the hydrogen-containing gas into the fuel gas channel downstream from the branching portion is suppressed compared to the conventional case. It is useful as a fuel cell system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel Cell (AREA)

Abstract

 燃料電池システム(100)は、改質器(3)を有する水素生成器(2)と、改質器(3)に熱を供給する燃焼器(5)と、燃料電池(1)と、第1の流路(10)と、第2の流路(8)と、分岐部(10a)と燃料電池(1)との間の第1の流路(10)に供給される酸化ガスが流れる第3の流路(16)と、合流部(10c)よりも下流の第1の流路(10)に設けられた第1の開閉弁(7a)と、第2の流路(8)に設けられた第2の開閉弁(6)と、第3の流路(16)に設けられた酸化ガス供給器(15)と、起動時において、第1の開閉弁(7a)が閉止されるとともに第2の開閉弁(6)が開放され、水素生成器(2)より水素含有ガスが送出されている時に、酸化ガス供給器(15)を動作させ、第3の流路(16)を通じて分岐部(10c)より下流の第1の流路(10)に酸化ガスを供給する制御器(200)とを備える。

Description

燃料電池システム及び燃料電池システムの運転方法
 本発明は、燃料電池に供給される水素含有ガスに少量の酸化ガスを混入させる燃料電池システム及び燃料電池システムの運転方法に関する。
 図8は、従来の燃料電池システムの概略構成図である。図8に示されるように、従来の燃料電池システム700において、発電運転時に必要となる水素含有ガスの供給手段は、通常、インフラストラクチャーとして整備されていない。そのため、発電運転時に必要となる水素含有ガスを生成するための水素生成装置が設けられている。
 水素生成装置は改質器3を有する水素生成器2を備え、改質器3内の改質触媒において改質反応が進行することにより、少なくとも炭素及び水素を構成元素とする有機化合物を含む原料と水蒸気とから水素含有ガスが生成される。この際、改質器3が有する改質触媒は、改質器3に隣接する燃焼器5により改質反応の進行に適した温度に加熱される。ところで、従来の燃料電池システム700は、起動時において水素生成装置で水素含有ガスの生成を開始してもしばらくは、改質器3を含む水素生成器2の暖機が完了し、水素含有ガスの組成が安定するまで、燃料電池1への水素含有ガスの供給を行わない。この間、第1の開閉弁7aは閉止されるとともに、第2の開閉弁6は開放され、水素生成器2より送出される水素含有ガスは、バイパス流路である第2の流路8を介して燃焼器5に供給され、燃焼器5はこれを燃焼燃料として燃焼に用いるよう構成されている(例えば、特許文献1参照)。
特開2006-318714号公報
 上記特許文献1記載の燃料電池システムにおいては、上述のように起動時において水素生成器2より供給される水素含有ガスは、燃料電池1に供給されず第2の流路8を通流するよう構成されている。しかし、水素含有ガスは第2の流路8への分岐部より下流の第1の流路10にも徐々に拡散する。この時、分岐部より下流の第1の流路10は、水素含有ガスが既に通流している流路(分岐部よりも上流の第1の流路10、第2の流路8等)よりも温度が低いため、拡散した水素含有ガスより凝縮水が生じ、流路を閉塞する可能性がある。燃料電池システム700を起動から発電運転に移行する際に、燃料電池への水素含有ガスの供給を開始するが、この流路閉塞が生じると、燃料電池への水素含有ガスの供給が阻害される可能性があり好ましくない。
 本発明は、上記従来の課題を考慮して、起動時に、分岐部より下流の第1の流路10に水素含有ガスが拡散流入し、生成した凝縮水により流路閉塞を起こす可能性を従来よりも抑制する燃料電池システムを提供することを目的とする。
 上記課題を解決するために、本発明の燃料電池システムは、原料と水蒸気を用いて改質反応により水素含有ガスを生成する改質器を有する水素生成器と、前記改質器に改質反応のための熱を供給する燃焼器と、前記水素生成器から供給される水素含有ガスを用いて発電する燃料電池と、前記水素生成器より送出され前記燃料電池を通過する水素含有ガスが
流れる第1の流路と、第1の流路より分岐し、前記燃料電池をバイパスして燃焼器に供給される水素含有ガスが流れる第2の流路と、前記第2の流路への分岐部と前記燃料電池との間の第1の流路に供給される酸化ガスが流れる第3の流路と、前記第1の流路と前記第3の流路との合流部より下流の前記第1の流路に設けられた第1の開閉弁と、前記第2の流路に設けられた第2の開閉弁と、前記第3の流路に接続された酸化ガス供給器と、起動時において、第1の開閉弁が閉止されるとともに第2の開閉弁が開放され、前記水素生成器より水素含有ガスが送出されている時に、前記酸化ガス供給器を動作させ、前記第3の流路から前記第1の流路に酸素を供給するよう制御する制御器とを備える。
 本発明の燃料電池システムの運転方法は、原料を用いて改質反応により水素含有ガスを生成する改質器を有する水素生成器と、前記改質器に前記改質反応のための熱を供給する燃焼器と、前記水素生成器から供給される水素含有ガスを用いて発電する燃料電池と、前記水素生成器より送出され前記燃料電池を通過する水素含有ガスが流れる第1の流路と、前記第1の流路より分岐し、前記燃料電池をバイパスして前記燃焼器に水素含有ガスを供給する第2の流路と、前記第2の流路への分岐部と前記燃料電池との間の前記第1の流路に供給される酸化ガスが流れる第3の流路と、前記第1の流路と前記第3の流路との合流部より下流の前記第1の流路に設けられた第1の開閉弁と、前記第2の流路に設けられた第2の開閉弁と、前記第3の流路に設けられた酸化ガス供給器とを備える燃料電池システムの運転方法であって、起動時において、前記第1の開閉弁を閉止するとともに前記第2の開閉弁を開放し、前記水素生成器より前記水素含有ガスを送出するステップ(a)と、ステップ(a)において前記酸化ガス供給器が動作し、前記第3の流路を通じて前記分岐部より上流の前記第1の流路に酸化ガスを供給するステップ(b)とを備える。
 本発明の燃料電池システム及びその運転方法によれば、起動時に、分岐部より下流の燃料ガス流路に水素含有ガスが拡散流入して生成した凝縮水により流路閉塞を起こす可能性が従来よりも抑制される。
図1は実施の形態1の燃料電池システムの概略構成の一例を示す図 図2は実施の形態1の燃料電池システムの動作フローの概要の一例を示す図 図3は実施の形態2の燃料電池システムの概略構成の一例を示す図 図4は実施の形態2の変形例1の燃料電池システムの概略構成の一例を示す図 図5は実施の形態2の変形例2の燃料電池システムの特徴となる構成の概略の一例を示す図 図6は実施の形態2の変形例3の燃料電池システムの概略構成の一例を示す図 図7は実施の形態2の変形例4の燃料電池システムの概略構成の一例を示す図 図8は従来の燃料電池システムの概略構成図
 (実施の形態1)
 以下、実施の形態1の燃料電池システムについて、図面を参照しながら説明する。図1は、実施の形態1の燃料電池システムの概略構成の一例を示す図である。図中、矢印実線は燃料電池システムが運転するときに流れる水や原料ガス、酸化ガス、酸化剤ガスの流れる経路を示す。図中、矢印破線は信号を示す。
 図1に示すように、本実施の形態の燃料電池システム100は、原料を用いて改質反応により水素含有ガスを生成する改質器3を有する水素生成器2と、改質器3に改質反応のための熱を供給する燃焼器5と、水素生成器2から供給される水素含有ガスを用いて発電する燃料電池1と、水素生成器2より送出され燃料電池1を通過する水素含有ガスが流れる第1の流路10と、第1の流路10より分岐し燃料電池1をバイパスして燃焼器5に水素含有ガスを供給する第2の流路8と、分岐部10aと燃料電池1との間の第1の流路10に供給される酸化ガスが流れる第3の流路16と、第1の流路10と第3の流路16との合流部10cより下流の第1の流路10に設けられた第1の開閉弁7a、7bと、第2の流路8に設けられた第2の開閉弁6と、第3の流路16に設けられた酸化ガス供給器15と、燃料電池システム100を構成する各機器の動作を制御する制御器200とを備える。
 なお、改質器3は、原料供給器(図示せず)から供給された原料と蒸発器(図示せず)から供給された水蒸気とが改質触媒上で改質反応して水素含有ガスを生成する。上記改質触媒には、例えば、Niを触媒金属として含むNi系触媒、Ruを触媒金属として含むRu系触媒等が使用される。蒸発器は、水供給器(図示せず)から供給される水を蒸発させることで水蒸気を生成し、改質器3に供給する。また、改質器3には、改質器3の温度を検出する温度検知器3aが備えられている。温度検知器3aで検出した温度のデータは、制御器200にフィードバックされる。燃焼器5は、原料ガスや改質器3で生成された水素含有ガスを燃料として、高温の燃焼ガスを発生させ、改質器3を改質反応に適した温度にするように熱を供給する。また、燃焼器5は、蒸発器において水蒸気を生成するための熱も供給する。燃料電池1において、上記のように生成された水素含有ガスと、酸化剤ガス供給器14から供給される酸化剤ガス(例えば、空気)とを反応させることにより、発電を行う。酸化剤ガス供給器14としては、例えばブロア等が用いられる。
 第1の流路10は、水素生成器2から、燃料電池1を経て、燃焼器5まで連通している。第1の流路10において、分岐部10aと燃料電池1との間には、第1の開閉弁7aが設けられ、燃料電池1と合流部10bとの間に第1の開閉弁7bが設けられている。第2の流路8は、第1の流路10の分岐部10aから始まり燃料電池1をバイパスし、合流部10bにて再び第1の流路10に合流し、燃焼器5まで連通する流路である。つまり、本実施の形態では、第2の流路8は、合流部10bから燃焼器5までにおいて、第1の流路10と共通の流路を利用している。第2の流路8における分岐部10aと合流部10bとの間には第2の開閉弁6が設けられているが、本例に限定されるものではなく、第2の流路上であれば、いずれの箇所もでも構わない。
 酸化ガス供給器15は、第3の流路16を通じて、酸化ガスを分岐部10aと燃料電池1との間の第1の流路10に供給する。ここで、第3の流路16は、分岐部10aと第1の開閉弁7aとの間の第1の流路10と合流部10cにて合流するよう構成されている。
 制御器200は、制御機能を有するように構成されていればよく、演算処理部(図示せず)と、制御プログラムを記憶する記憶部(図示せず)とを備える。演算処理部としては、MPU、CPUが例示される。記憶部としては、メモリーが例示される。
 なお、燃料電池システム100においては、水素生成器2において水素含有ガスの生成に係わる反応器として改質器3のみを備える形態を採用したが、本例に限定されるものではない。例えば、改質器3から送出された水素含有ガス中の一酸化炭素をシフト反応により低減する変成器(図示せず)、及び水素含有ガス中の一酸化炭素を酸化反応及びメタン化反応の少なくともいずれか一方により低減するCO除去器(図示せず)の少なくともいずれか一方を設けてもよい。
 また、制御器200は、単独の制御器だけでなく、複数の制御器が協働して燃料電池システムの制御を実行する制御器群であってもよい。
 また、第2の流路8は、第1の流路10のうち燃料電池1より下流において一部共通化されているが、本例に限定されるものではなく、共通化されている流路部分が、第1の流路10及び第2の流路8とで、それぞれ独立した流路として構成されていてもよい。
 次に、本実施の形態の燃料電池システム100の動作フローについて説明する。図2は、実施の形態1の燃料電池システムの動作フローの概要の一例を示す図である。
 燃料電池システム100の起動時には、まず、水素生成器2において水素含有ガスが生成可能な温度になるよう水素生成器2を昇温する昇温動作を開始する。昇温に際しては、水素生成器2内を通過した原料ガスにより燃焼器5を燃焼するよう構成されている。具体的には、図2に示されるように、燃料電池システム100が起動されると、制御器200により閉止された第1の開閉弁7aの閉止状態を維持したまま、第2の開閉弁6を開放する(ステップS200)。
 続いて原料供給器の動作を開始して水素生成器2に原料の供給を開始し、水素生成器2より送出された原料が第2の流路8を介して燃焼器5に供給され、燃焼器5はこの原料を用いて燃焼動作を開始する(ステップS201)。
 このとき、改質器3にて改質反応は進行しておらず、原料はそのまま燃焼器5に供給される。そして、燃焼器5より排出された燃焼排ガスにより改質器3及び蒸発器が加熱され、昇温される。
 次に、水素生成器2の昇温動作を開始後、改質器3の温度を検知する温度検知器3aの検知温度Tが所定の閾値温度Tth(例えば、300℃)以上であるか否かが判定される(ステップS202)。
 検知温度Tが第1の閾値温度Tth以上になると(ステップS202でYes)、制御器200により酸化ガス供給器15の動作が開始され、第3の流路16を通じて分岐部10aより下流から第1の流路10に酸化ガスの供給が開始される(ステップS203)。
 第1の流路10に酸化ガスの供給が開始された後、制御器200により水供給器の動作が開始され、蒸発器に水供給が開始され、改質器3において水素含有ガスの生成が開始される(ステップS204)。
 水素ガスの生成開始後、温度検知器3aの検知温度Tが、第2の閾値温度Tx(例えば、650℃)に達しているか否かを判定する(ステップS205)。検知温度TがTx以上であると、制御器200は、第1の開閉弁7a及び7bを開放するとともに第2の開閉弁6を閉止して、水素生成器2より送出される水素含有ガスを燃料電池1への供給を開始し、燃料電池システム100の発電運転を開始する(ステップS206)。上記ステップS206での燃料電池システム100の発電運転への移行により燃料電池システムの起動が終了する。
 上述のように、本実施の形態の燃料電池システムは、燃料電池システム100の起動時において、第1の開閉弁7aが閉止されるとともに第2の開閉弁6が開放され、水素生成器2より水素含有ガスが送出されている時に、制御器200により酸化ガス供給器15を動作させ、第3の流路16を通じて分岐部10aより下流の第1の流路10に酸化ガスを供給する。これにより、燃料電池システムの起動時に、分岐部10aより下流の第1の流路10に水素含有ガスが拡散流入して生成した凝縮水により流路閉塞を起こす可能性が従来よりも抑制される。
 なお、上記所定の第1の閾値温度Tthは、改質器3において改質反応の進行が可能な温度であるとともに、蒸発器において水蒸発可能な温度であることを判定する閾値温度として設定される。第2の閾値温度Txは、燃料電池システムの発電運転において水素生成器2より燃料電池1に水素含有ガスを供給可能な温度である。また、第2の閾値温度Txは、第1の閾値温度Tthよりも高い温度として設定される。第1の閾値温度Tth及び第2の閾値温度Txは、燃料電池システム100の構成、サイズ等に応じて適宜設定される。
 また、上記制御フローは、水素含有ガスの生成が開始される前に、酸化ガス供給器15より第1の流路10に酸化ガスを供給するよう構成されている。これは、水素生成器2で水素含有ガスの生成を開始した後、酸化ガス供給器15が動作を開始する場合に比べて、分岐部10aより下流の第1の流路10に水素含有ガスが拡散流入する可能性をより低減するためである。ただし、酸化ガス供給器15の動作を開始するタイミングは、本例に限定されるものではなく、水素生成器2において水素含有ガスの生成が開始された後や、同時であっても構わない。ただし、そのような場合、水素含有ガスの生成時に酸化ガス供給器15が動作していない時間中には分岐部10aより下流の第1の流路10に水素含有ガスが流入し、凝縮水が生成する可能性がある。しかしながら、仮に凝縮水が生成しても、その後の酸化ガス供給器15の動作により第1の流路10に供給された酸化ガスの流れに乗って凝縮水が第2の流路8に排出され、分岐部10aより下流の第1の流路10の流路閉塞が従来の燃料電池システムに比べて抑制される。
 また、起動時において水素生成器2より送出される水素含有ガスが第2の流路8を流れている期間において、酸化ガス供給器15より連続的に酸化ガスを第1の流路10に供給するよう制御しても構わないし、間欠的に動作するよう制御しても構わない。ただし、酸化ガス供給器15を間欠的に動作させた場合、酸化ガス供給器15の非動作期間中には分岐部10aより下流の第1の流路10に水素含有ガスが流入し、凝縮水が生成する可能性がある。しかしながら、仮に凝縮水が生成しても、次の動作再開時にこの凝縮水が第1の流路10に供給された酸化ガスの流れにより第2の流路8に排出され、分岐部より下流の第1の流路10の流路閉塞が従来の燃料電池システムに比べて抑制される。
 また、上記動作フローにおいて、第1の開閉弁7aを閉止している時の第1の開閉弁7bの開閉動作について説明しなかったが、第1の開閉弁7bは、開放していても閉止していてもいずれであっても構わない。また、上記動作フローにおける第1の開閉弁7aの閉止制御に代えて、第1の開閉弁7bを閉止制御するよう構成され、第1の開閉弁7aは開放制御されるよう構成されていても構わない。また、第1の開閉弁7a及び第1の開閉弁7bのいずれか一方のみを設けて閉止制御するよう構成されていても構わない。つまり、水素生成器2において生成している水素含有ガスの流入先を燃料電池1ではなく、第2の流路8になるよう制御する際に閉止する「第1の開閉弁」は、合流部10cより下流の第1の流路10上に設けられた開閉弁であればいずれの開閉弁であっても構わない。
 また、上記実施の形態の燃料電池システムにおいて、第3の流路16上に開閉弁を設け、上記動作フローのステップS203において、この開閉弁を開放するとともに酸化ガス供給器15の動作を開始するよう構成する形態を採用しても構わない。
 [変形例]
 次に、実施の形態1の燃料電池システムの変形例について説明する。本変形例の燃料電池システムは、実施の形態1と同様の構成を有するのでその説明を省略する。本変形例の燃料電池システムは、起動時における動作フローは実施の形態1と同様であるが、燃料電池システム100を起動した後に、発電運転に移行した後においても酸化ガス供給器15を動作させ、燃料電池1に供給される水素含有ガスに第3の流路16を介して酸化ガスを添加することを特徴とする。
 これは、一般的に、エアブリードと呼ばれる動作であり、発電運転時に燃料電池のアノードに一酸化炭素が吸着することによる発電性能の低下が抑制される。本変形例により、1つの酸化ガス供給機構(酸化ガス供給器15及び第3の流路16)を用いて、実施の形態1で説明した分岐部10aより下流の第1の流路10の凝縮水による流路閉塞抑制と、発電運転時に燃料電池のアノードへの一酸化炭素吸着に伴う発電性能の低下抑制の両方の効果が得られる。
 また、発電運転時の酸化ガス供給器15からの酸化ガス供給は、発電運転中において連続的に実行してもいいし、間欠的に実行しても構わない。
 (実施の形態2)
 次に、実施の形態2における燃料電池システムについて説明する。図3は、実施の形態2の燃料電池システムの概略構成の一例を示す図である。図3において、実施の形態1に係る図1の概略図と同じ構成要素については、同じ符号を用い説明を省略する。
 図3に示されるように、本実施の形態の燃料電池システムは、実施の形態1の燃料電池システムとほぼ同様の構成を有する。しかし、水素生成器2内に、改質器3で生成された水素含有ガス中の一酸化炭素を酸化反応により低減するCO除去器19と、第3の流路16において分岐し、CO除去器19に供給される酸化ガスが流れる第4の流路18とを備える点が、実施の形態1と異なる。
 CO除去器19は、水素生成器2内の改質器3で生成された水素含有ガス中の一酸化炭素を酸化反応により低減する。具体的には、供給された水素含有ガスに酸化ガスを付加し、一酸化炭素を酸化反応により二酸化炭素にすることで低減する。
 第4の流路18は、第3の流路16から分岐し、CO除去器19に連通する。第4の流路18を通じて、酸化ガス供給器15はCO除去器19に酸化ガスを供給する。つまり、酸化ガス供給器15より送出された酸化ガスは、第3の流路16及び第4の流路18のそれぞれに分流するよう構成されている。
 これにより、起動時におけるCO除去器19への酸化ガス供給機能と、分岐部10aより下流の第1の流路10への酸化ガス供給機能が兼用され、好ましい。
 なお、本実施の形態の燃料電池システムは、起動時だけでなく発電運転時においても、同様に酸化ガス供給器15を動作させ、CO除去器19への酸化ガス供給と燃料電池1に供給される水素含有ガスへの酸化ガス供給(エアブリード)とを実行する形態を採用しても構わない。
 これにより、1つの酸化ガス供給器15を用いて、発電運転時の水素含有ガス中の一酸化炭素低減と、燃料電池のアノードへの一酸化炭素吸着に伴う発電性能の低下抑制の両方の効果が得られる。
 なお、供給される酸化ガスの流量は、改質器3で生成される水素含有ガスの量に応じて設定されるのが好ましい。これは、改質器3で生成される水素含有ガス量に比例して水素含有ガスに含まれる一酸化炭素量も変化するからである。具体的には、改質器3への原料の供給量が増加すると、上記酸化ガスの供給量も増加させ、改質器3への原料の供給量が減少すると上記酸化ガスの供給量も減少させる。
 [変形例1]
 次に、実施の形態2の燃料電池システムの変形例1について説明する。図4は、本変形例の燃料電池システムの概略構成の一例を示す図である。図4に示されるように本変形例の燃料電池システムは、第4の流路18への分岐部よりも上流の第3の流路16に第3の開閉弁20が設けられ、この第3の開閉弁20を開放することで、第3の流路16及び前記第4の流路18が導通するよう構成されていることを特徴とする。そして、酸化ガス供給器15より酸化ガスを供給する場合には、第3の開閉弁20が開放される。
 [変形例2]
 次に、実施の形態2の燃料電池システムの変形例2について説明する。図5(a)-(c)は、本変形例の燃料電池システムの特徴的な構成の概略の一例を示す図である。本変形例の燃料電池システムは、変形例1の燃料電池システムと異なり、第3の流路16を連通/遮断する第3の開閉弁20と、第4の流路18を連通/遮断する第4の開閉弁21とを備えることを特徴とする。第3の開閉弁20及び第4の開閉弁21の具体的な構成については、図5(a)-(c)に示される通りである。
 図5(a)において、第3の開閉弁20は、第3の流路16において、第4の流路18への分岐部よりも下流側(第1の流路10側)に設けられている。第4の開閉弁21は、第3の流路16において、第4の流路18への分岐部よりも上流側(酸化ガス供給器15側)に設けられている。第3の流路16、第4の流路18の両方に酸化ガスを供給する場合には、第3の開閉弁20、第4の開閉弁21をともに開放する。第4の流路18のみに酸化ガスを供給する場合には、第3の開閉弁20を閉止し、かつ第4の開閉弁21を開放する。
 図5(b)において、第3の開閉弁20は、第3の流路16において、第4の流路18への分岐部よりも上流側(酸化ガス供給器15路側)に設けられている。第4の開閉弁21は、第4の流路18に設けられている。第3の流路16、第4の流路18の両方に酸化ガスを供給する場合には、第3の開閉弁20、第4の開閉弁21をともに開放する。第3の流路16のみに酸化ガスを供給する場合には、第3の開閉弁20を開放し、かつ第4の開閉弁21を閉止する。
 図5(c)において、第3の開閉弁20は、第3の流路16において、第4の流路18への分岐部よりも下流側(第1の流路10側)に設けられている。第4の開閉弁21は、第4の流路18に設けられている。第3の流路16、第4の流路18の両方に酸化ガスを供給する場合には、第3の開閉弁20、第4の開閉弁21をともに開放する。第3の流路16のみに酸化ガスを供給する場合には、第3の開閉弁20を開放し、かつ第4の開閉弁21を閉止する。第4の流路18のみに酸化ガスを供給する場合には、第3の開閉弁20を閉止し、かつ第4の開閉弁21を開放する。
 以上のように本変形例は、変形例1に比べ、第3の流路16及び第4の流路に設けられる開閉弁の数が増加するが、制御器200により第3の開閉弁20及び第4の開閉弁21の開閉動作をそれぞれ独立して制御することで第3の流路16及び第4の流路の少なくともいずれか一方の流路について酸化ガスの供給/遮断を独立して制御することが可能になる点で、変形例1に比べより好ましい。
 [変形例3]
 次に、実施の形態2の燃料電池システムの変形例3について説明する。図6は、本変形例の燃料電池システムの概略構成の一例を示す図である。図6に示すように本変形例の燃料電池システムは、変形例1と同様に第4の流路18への分岐部よりも上流の第3の流路16に第3の開閉弁20が設けられ、この第3の開閉弁20を開放することで、第3の流路16及び第4の流路18が導通するよう構成されている。これに加え、水素生成器2に対して、燃料電池1が上方に位置するように構成されている。よって、水素生成器の水素含有ガスの出口よりも燃料電池の水素含有ガスの入口が上方になるよう構成されている。より具体的には、第2の流路8への分岐部10aより下流の第1の流路10が分岐部10aより上がり勾配になるよう構成されている点が実施の形態2及び他の変形例の燃料電池システムと異なる。このように、分岐部10aより下流の第1の流路10が上がり勾配になるよう構成されると、仮に起動時において、水素生成器2より送出された水素含有ガスが分岐部10aより下流の第1の流路10に拡散流入して凝縮水が生じると、この凝縮水が逆流して高温のCO除去器19に流入して突沸を起こすことがある。突沸が起こると燃焼器5の流入する水素含有ガスの流量が大きく変動し、燃焼器5が失火や不完全燃焼を起こす場合がある。
 ここで、本変形例の燃料電池システムは、変形例1の燃料電池システムと同様に、起動時に分岐部10aより下流の第1の流路10が遮断される一方、第2の流路が導通されている状態で水素生成器2において水素含有ガスが生成している時に、第3の開閉弁を開放するとともに酸化ガス供給器15を動作させる。これにより、凝縮水による第1の流路10の流路閉塞が抑制されるとともにCO除去器19へ逆流した凝縮水の突沸に伴う燃焼器5の燃焼安定性の低下が抑制される。
 なお、本変形例では、第2の流路8に気液分離器22を設け、分岐部10aより気液分離器22に至るまでの第2の流路8を下り勾配になるよう構成している。これは、第2の流路8内で生じた凝縮水がCO除去器19に逆流することなく気液分離器22へ排出させるためである。
[変形例4]
 変形例4の燃料電池システムは、実施の形態2及びその変形例1-3のいずれかの燃料電池システムにおいて、第3の流路と第4の流路が共通化されておらず、独立して設けられているとともに、エアブリード用の酸化ガスを供給する酸化ガス供給器とCO除去器19での酸化反応用の酸化ガスを供給する酸化ガス供給器とを別個に設けられている。
 上記特徴以外は、実施の形態2及びその変形例1-3のいずれかの燃料電池システムと同様に構成されていてもよい。
 次に、本変形例の燃料電池システム100の詳細について説明する。
 図7は、本変形例の燃料電池システム100の概略構成の一例を示す図である。
 図7に示すように、本変形例の燃料電池システム100は、第3の流路16と第4の流路18とが、それぞれ独立して設けられているとともに、エアブリード用の酸化ガスを供給する酸化ガス供給器15とCO除去器19での酸化反応用の酸化ガスを供給する酸化ガス供給器23とを備えている。
 本発明に係る燃料電池システムは、起動時に、分岐部より下流の燃料ガス流路に水素含有ガスが拡散流入して生成した凝縮水により流路閉塞を起こす可能性が従来よりも抑制されるので、燃料電池システム等として有用である。
 100,700  燃料電池システム
 1   燃料電池
 2   水素生成器
 3   改質器
 3a  温度検知器
 5   燃焼器
 6   第2の開閉弁
 7a,7b  第1の開閉弁
 8   第2の流路
 10  第1の流路
 10a  分岐部
 10b,10c  合流部
 14  酸化剤ガス供給器
 15  酸化ガス供給器
 16  第3の流路
 18  第4の流路
 19  CO除去器
 20  第3の開閉弁
 21  第4の開閉弁
 22  気液分離器
 200  制御器

Claims (8)


  1. 原料及び水蒸気を用いて改質反応により水素含有ガスを生成する改質器を有する水素生成器と、前記改質器に前記改質反応のための熱を供給する燃焼器と、

    前記水素生成器から供給される水素含有ガスを用いて発電する燃料電池と、
    前記水素生成器より送出され前記燃料電池を通過する水素含有ガスが流れる第1の流路と、

    前記第1の流路より分岐し、前記燃料電池をバイパスして前記燃焼器に供給される水素含有ガスが流れる第2の流路と、
    前記第2の流路への分岐部と前記燃料電池との間の前記第1の流路に供給される酸化ガスが流れる第3の流路と、
    前記第1の流路と前記第3の流路との合流部よりも下流の前記第1の流路に設けられた第1の開閉弁と、

    前記第2の流路に設けられた第2の開閉弁と、
    前記第3の流路に設けられた酸化ガス供給器と、

    起動時において、前記第1の開閉弁が閉止されるとともに前記第2の開閉弁が開放され、前記水素生成器より前記水素含有ガスが送出されている時に、前記酸化ガス供給器を動作させ、前記第3の流路を通じて前記分岐部より下流の前記第1の流路に酸化ガスを供給する制御器とを備える、

    燃料電池システム。

  2. 前記制御器は、発電運転時において、前記酸化ガス供給器より前記第3の流路を通じて前記燃料電池に供給される水素含有ガスに酸化ガスを供給する、

    請求項1記載の燃料電池システム。

  3. 前記水素生成器は、前記改質器より送出される前記水素含有ガス中の一酸化炭素を酸化反応により低減するためのCO除去器と、前記第3の流路より分岐し、前記CO除去器に供給される酸化ガスが流れる第4の流路とを備え、

    前記制御器は、起動時において、前記第1の開閉弁が閉止されるとともに前記第2の開閉弁が開放され、前記水素生成器より前記水素含有ガスが送出されている時に、前記酸化ガス供給器供給するより送出された酸化ガスが分流し、前記第3の流路及び前記第4の流路のそれぞれを流れるよう構成されている、

    請求項1記載の燃料電池システム。
  4. 前記第4の流路への分岐部よりも上流の前記第3の流路に設けられた第3の開閉弁を備え、

    前記第3の開閉弁を開放することで、前記第3の流路及び前記第4の流路が導通するよう構成され、

    前記制御器は、起動時において、前記第1の開閉弁が閉止されるとともに前記第2の開閉弁が開放され、前記水素生成器より前記水素含有ガスが送出されている時に、前記第3の開閉弁を開放するとともに前記酸化ガス供給器を動作させ、前記第3の流路と前記第4の流路とに酸化ガスを供給する、

    請求項3記載の燃料電池システム。

  5. 前記第3の流路を連通/遮断する第3の開閉弁と、前記第4の流路を連通/遮断する第4の開閉弁とを備え、

    前記制御器は、起動時において、前記第1の開閉弁が閉止されるとともに前記第2の開閉弁が開放され、前記水素生成器より前記水素含有ガスが送出されている時に、前記第3の開閉弁及び前記第4の開閉弁を開放するとともに前記酸化ガス供給器を動作させ、前記第3の流路と前記第4の流路とに酸化ガスを供給する、

    請求項3記載の燃料電池システム。

  6. 前記水素生成器の水素含有ガスの出口よりも前記燃料電池の水素含有ガスの入口が上方になるよう構成されている、

    請求項1記載の燃料電池システム。
  7. 前記第2の流路への分岐部よりも下流の第1の流路が上り勾配になるよう構成されている、
    請求項6記載の燃料電池システム。

  8. 原料及び水蒸気を用いて改質反応により水素含有ガスを生成する改質器を有する水素生成器と、

    前記改質器に前記改質反応のための熱を供給する燃焼器と、
    前記水素生成器から供給される水素含有ガスを用いて発電する燃料電池と、
    前記水素生成器より送出され前記燃料電池を通過する水素含有ガスが流れる第1の流路と、

    前記第1の流路より分岐し、前記燃料電池をバイパスして前記燃焼器に水素含有ガスを供給する第2の流路と、
    前記第2の流路への分岐部と前記燃料電池との間の前記第1の流路に供給される酸化ガスが流れる第3の流路と、
    前記第1の流路と前記第3の流路との合流部より下流の前記第1の流路に設けられた第1の開閉弁と、

    前記第2の流路に設けられた第2の開閉弁と、

    前記第3の流路に設けられた酸化ガス供給器と、を備える燃料電池システムの運転方法であって、
    起動時において、前記第1の開閉弁を閉止するとともに前記第2の開閉弁を開放し、前記水素生成器より前記水素含有ガスを送出するステップ(a)と、

    ステップ(a)において前記酸化ガス供給器が動作し、前記第3の流路を通じて前記分岐部より下流の前記第1の流路に酸化ガスを供給するステップ(b)とを備える、燃料電池システムの運転方法。
PCT/JP2011/001597 2010-03-24 2011-03-17 燃料電池システム及び燃料電池システムの運転方法 WO2011118169A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/393,770 US8911912B2 (en) 2010-03-24 2011-03-17 Fuel cell system and method of operating fuel cell system
EP11758980.4A EP2551945B1 (en) 2010-03-24 2011-03-17 Fuel cell system and method for operating fuel cell system
CN201180003691.5A CN102484274B (zh) 2010-03-24 2011-03-17 燃料电池系统以及燃料电池系统的运转方法
JP2012506811A JP5624606B2 (ja) 2010-03-24 2011-03-17 燃料電池システム及び燃料電池システムの運転方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-067587 2010-03-24
JP2010067587 2010-03-24

Publications (1)

Publication Number Publication Date
WO2011118169A1 true WO2011118169A1 (ja) 2011-09-29

Family

ID=44672748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001597 WO2011118169A1 (ja) 2010-03-24 2011-03-17 燃料電池システム及び燃料電池システムの運転方法

Country Status (5)

Country Link
US (1) US8911912B2 (ja)
EP (1) EP2551945B1 (ja)
JP (1) JP5624606B2 (ja)
CN (1) CN102484274B (ja)
WO (1) WO2011118169A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3806209A4 (en) * 2018-05-30 2021-06-02 Nissan Motor Co., Ltd. FUEL CELL SYSTEM AND ITS OPERATING PROCEDURE

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01197970A (ja) * 1988-02-02 1989-08-09 Toshiba Corp 燃料電池発電システム
JPH02260369A (ja) * 1989-03-31 1990-10-23 Toshiba Corp 燃料電池発電プラント
JP2003229149A (ja) * 2001-11-30 2003-08-15 Matsushita Electric Ind Co Ltd 燃料電池発電システムおよび燃料電池発電方法
JP2006107908A (ja) * 2004-10-05 2006-04-20 Nissan Motor Co Ltd 燃料電池システム
JP2006318714A (ja) 2005-05-11 2006-11-24 Aisin Seiki Co Ltd 燃料電池システム
JP2006344408A (ja) * 2005-06-07 2006-12-21 Osaka Gas Co Ltd 燃料電池発電装置、燃料電池発電装置の再起動方法及び燃料電池発電装置の再起動装置
JP2007149544A (ja) * 2005-11-29 2007-06-14 Toshiba Corp Co選択酸化器及び燃料電池本体のアノード極の空気供給方法
JP2007311359A (ja) * 2001-11-30 2007-11-29 Matsushita Electric Ind Co Ltd 燃料電池発電システムおよびその運転方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001189165A (ja) * 2000-01-05 2001-07-10 Daikin Ind Ltd 燃料電池システム、該燃料電池システムの停止方法及び立ち上げ方法
US7192669B2 (en) 2001-11-30 2007-03-20 Matsushita Electric Industrial Co., Ltd. System and method of fuel cell power generation
JP3807361B2 (ja) * 2002-02-08 2006-08-09 日産自動車株式会社 燃料改質システムおよび燃料電池システム
JP2005044684A (ja) * 2003-07-24 2005-02-17 Matsushita Electric Ind Co Ltd 燃料電池発電装置
US20090117426A1 (en) * 2005-02-18 2009-05-07 Terumaru Harada Fuel Cell System
WO2007123136A1 (ja) 2006-04-19 2007-11-01 Panasonic Corporation 燃料電池システム
JP5406426B2 (ja) * 2006-09-28 2014-02-05 アイシン精機株式会社 燃料電池システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01197970A (ja) * 1988-02-02 1989-08-09 Toshiba Corp 燃料電池発電システム
JPH02260369A (ja) * 1989-03-31 1990-10-23 Toshiba Corp 燃料電池発電プラント
JP2003229149A (ja) * 2001-11-30 2003-08-15 Matsushita Electric Ind Co Ltd 燃料電池発電システムおよび燃料電池発電方法
JP2007311359A (ja) * 2001-11-30 2007-11-29 Matsushita Electric Ind Co Ltd 燃料電池発電システムおよびその運転方法
JP2006107908A (ja) * 2004-10-05 2006-04-20 Nissan Motor Co Ltd 燃料電池システム
JP2006318714A (ja) 2005-05-11 2006-11-24 Aisin Seiki Co Ltd 燃料電池システム
JP2006344408A (ja) * 2005-06-07 2006-12-21 Osaka Gas Co Ltd 燃料電池発電装置、燃料電池発電装置の再起動方法及び燃料電池発電装置の再起動装置
JP2007149544A (ja) * 2005-11-29 2007-06-14 Toshiba Corp Co選択酸化器及び燃料電池本体のアノード極の空気供給方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2551945A4 *

Also Published As

Publication number Publication date
US8911912B2 (en) 2014-12-16
EP2551945A4 (en) 2014-01-01
EP2551945B1 (en) 2015-11-04
EP2551945A1 (en) 2013-01-30
JP5624606B2 (ja) 2014-11-12
US20120164546A1 (en) 2012-06-28
CN102484274A (zh) 2012-05-30
CN102484274B (zh) 2015-07-22
JPWO2011118169A1 (ja) 2013-07-04

Similar Documents

Publication Publication Date Title
US6838062B2 (en) Integrated fuel processor for rapid start and operational control
CA2602239C (en) Fuel cell heating device and method for operating said fuel cell heating device
US6926748B2 (en) Staged lean combustion for rapid start of a fuel processor
JP5789780B2 (ja) 燃料電池システムおよび燃料電池システムの運転方法
JP4130681B2 (ja) 燃料電池システム
KR100829089B1 (ko) 연료전지 시스템 및 그 운전방법
JPWO2010143358A1 (ja) 水素生成装置及びその運転方法
JP2003288930A (ja) 燃料処理装置
JP5628791B2 (ja) 水素生成装置、それを備える燃料電池システム、水素生成装置の運転方法、及び燃料電池システムの運転方法
JP5480684B2 (ja) 水素含有ガス生成装置の起動時運転方法
JP5624606B2 (ja) 燃料電池システム及び燃料電池システムの運転方法
JP2014082062A (ja) 燃料電池発電装置及びその運転方法
WO2011055523A1 (ja) 燃料電池システム
JP2004018357A (ja) 改質反応器システム
JP2010257870A (ja) 燃料電池システム及びその運転方法
JP2015140285A (ja) 水素含有ガス生成装置の運転方法及び水素含有ガス生成装置
JP4835273B2 (ja) 水素生成装置および燃料電池システム
WO2011036886A1 (ja) 燃料電池システム、及び燃料電池システムの運転方法
JP2011204430A (ja) 燃料電池システム
JP2010275118A (ja) 水素生成装置
JP2010282909A (ja) 燃料電池システム
JP2005100733A (ja) 水素生成器
JP2006079928A (ja) 燃料電池システムおよびその運転停止方法
JP2001023659A (ja) 燃料電池システム
JP2004262726A (ja) 燃料改質システムの停止方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180003691.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11758980

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012506811

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13393770

Country of ref document: US

Ref document number: 2011758980

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE