JP2014082062A - 燃料電池発電装置及びその運転方法 - Google Patents

燃料電池発電装置及びその運転方法 Download PDF

Info

Publication number
JP2014082062A
JP2014082062A JP2012228264A JP2012228264A JP2014082062A JP 2014082062 A JP2014082062 A JP 2014082062A JP 2012228264 A JP2012228264 A JP 2012228264A JP 2012228264 A JP2012228264 A JP 2012228264A JP 2014082062 A JP2014082062 A JP 2014082062A
Authority
JP
Japan
Prior art keywords
hydrogen
reformer
amount
fuel cell
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012228264A
Other languages
English (en)
Inventor
Akio Inaya
章雄 稲家
Norihisa Kamiya
規寿 神家
Yukio Yasuda
征雄 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2012228264A priority Critical patent/JP2014082062A/ja
Publication of JP2014082062A publication Critical patent/JP2014082062A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

【課題】装置のコスト上昇や大型化及び複雑化を回避しながら、早期に燃料電池から目標出力電力を供給可能にする燃料電池発電装置を提供する。
【解決手段】燃焼器5で燃焼される水素の第2量は、その第2量の水素を燃焼器5が燃焼した場合に改質器2へ供給される熱量が、改質器2で改質器2が目標出力電力を発生させるための発電反応で消費される第1量と上記第2量との合計量の水素を生成するための改質処理に要する熱量を満足するように設定され、電力供給状態において第1量の水素と第2量の水素との合計量の水素を含む水素含有ガスを生成して燃料電池FCで目標出力電力を発生させるのに先立って、非電力供給状態において改質器2が第2量の水素を含む水素含有ガスを生成するように原燃料流量調節手段10が改質器2への原燃料の供給量を調節し且つ水蒸気流量調節手段11が改質器2への水蒸気の供給量を調節する。
【選択図】図1

Description

本発明は、炭化水素を含む原燃料を水蒸気の存在下で改質処理して水素を含む水素含有ガスを生成する改質器と、改質器で生成された水素含有ガス中の水素を発電反応の燃料として消費する燃料電池と、可燃性ガスを燃焼して、その燃焼熱を改質器に供給する燃焼器と、燃料電池の出力電力を調節するパワーコンディショナと、改質器への原燃料の供給量を調節する原燃料流量調節手段と、改質器への水蒸気の供給量を調節する水蒸気流量調節手段とを備える燃料電池発電装置、及び、その運転方法に関する。
改質器で行われる改質反応は吸熱反応であるため、可燃性ガスを燃焼する燃焼器から改質器へその燃焼熱を供給して、改質器に収容されている改質用触媒を加熱することが行われている。このとき、改質器で生成する水素の量が少なければ、改質器での改質反応に要する熱量が小さくなるため、燃焼器から改質器へ供給する熱量も相対的に小さくてもよい。これに対して、改質器で生成する水素の量が多ければ、改質器での改質反応に要する熱量が大きくなるため、燃焼器から改質器へ供給する熱量は相対的に大きくする必要がある。
特許文献1には、燃焼器で燃焼する可燃性ガスとして、燃料電池で発電反応に使用された後にその燃料極から排出される排燃料ガス(発電反応で消費されることなく残留している水素)を利用する燃料電池発電装置が記載されている。従って、改質器は、目標出力電力を燃料電池で発生させるための発電反応で消費される第1量の水素のみを生成するのではなく、目標出力電力を発生させるための発電反応で消費される第1量の水素と、その発電反応で消費されずに可燃性ガスとして燃焼器での燃焼に消費される第2量の水素との合計量の水素を含む水素含有ガスを生成した上で、燃料電池へと供給する必要がある。
このような燃料電池発電装置を起動し、その後に燃料電池から電力消費装置へ電力供給を開始するときの従来の一般的な手順としては、燃料電池から電力消費装置への電力供給を先ず燃料電池の最小出力電力から暫定的に開始し、その後、電力消費装置で要求される電力に相当する目標出力電力まで一定の出力上昇速度にて燃料電池の出力電力を上昇させるような手順がある。この場合、改質器での水素の生成量は、先ず燃料電池から最小出力電力を供給する場合に要求される水素量(即ち、最小出力電力を発生させるための発電反応で消費される第1量の水素と、その発電反応で消費されずに燃焼器での燃焼に消費される第2量の水素との合計量の水素)から開始し、その後、燃料電池の出力電力の上昇に伴って改質器での水素の生成量を徐々に増加させるような調節が行われる。つまり、燃焼器へ可燃性ガスとして供給される水素量も徐々に増加され、その結果、燃焼器から改質器へ供給する熱量も徐々に増大して、最終的には、燃料電池で目標出力電力を発生する際の運転に必要な熱量を燃焼器から改質器へ供給できるようになる。
このように、従来の燃料電池発電装置では、燃料電池を起動し、その後に燃料電池から電力消費装置への電力供給を開始する時点において、燃焼器から改質器へ供給できる熱量は、燃料電池から目標出力電力を発生させるときに改質器での改質反応に要する熱量を満足しているとは限らない。通常、出力電力が未だ目標出力電力に満たない状態で燃料電池の出力を徐々に上昇させている途中では、燃焼器から改質器へ供給できる熱量も上昇途中であり、燃料電池から目標出力電力を発生させるときに改質器での改質反応に要する熱量より低い熱量しか供給できない。つまり、電力消費装置で要求される電力に相当する目標出力電力を燃料電池で迅速に発生させようとしても、改質器での熱量不足によって水素の生成量が不十分となり、その結果、燃料電池から電力消費装置へ目標出力電力を供給できないことがある。
このように、従来の燃料電池発電装置では、燃料電池を起動した後、長い時間をかけて、電力消費装置で要求される電力に相当する目標出力電力まで燃料電池の出力電力を上昇させていた。
特許文献2では、早期に燃料電池の出力電力を上昇させようとしている燃料電池発電装置が提案されている。具体的には、特許文献2に記載の燃料電池発電装置は、燃料電池に供給する水素含有ガスを生成する改質器を備えるだけでなく、水素を貯蔵するとともにその水素を燃料電池に供給可能な水素貯蔵・供給装置を備えている。
そして、燃料電池の起動時に、未だ改質器の温度が充分に上昇していないために改質器から燃料電池に充分な量の水素を供給できない場合であっても、水素貯蔵・供給装置からの水素を燃料電池に供給して発電させることができる。更に、水素貯蔵・供給装置から供給された水素のうち、燃料電池で使い残した水素を燃焼器に供給して燃焼させることで、その燃焼熱により改質器を加熱し、改質部の温度を上昇させることができる。
特開平8−299781号公報(請求項1、請求項7) 特開平9−266006号公報
特許文献2に記載の燃料電池発電装置を用いた場合、改質器が充分な量の水素を生成できる状態になっていなくても、改質器とは別に設けられる水素貯蔵・供給装置から燃料電池に供給する水素量を自在に調節できるため、燃料電池の出力電力を早期に上昇させることが可能である。
しかし、特許文献2に記載の燃料電池発電装置は、水素貯蔵・供給装置が必須になるため、装置のコストが上昇すると共に装置が大型化し、その構成が複雑になるという問題がある。
本発明は、上記の課題に鑑みてなされたものであり、その目的は、装置のコスト上昇や大型化及び複雑化を回避しながら、早期に燃料電池から目標出力電力を供給可能にする燃料電池発電装置及びその運転方法を提供する点にある。
上記目的を達成するための本発明に係る燃料電池発電装置の特徴構成は、炭化水素を含む原燃料を水蒸気の存在下で改質処理して水素を含む水素含有ガスを生成する改質器と、前記改質器で生成された水素含有ガス中の水素を発電反応の燃料として消費する燃料電池と、可燃性ガスを燃焼して、その燃焼熱を前記改質器に供給する燃焼器と、前記燃料電池の出力電力を調節するパワーコンディショナと、前記改質器への原燃料の供給量を調節する原燃料流量調節手段と、前記改質器への水蒸気の供給量を調節する水蒸気流量調節手段とを備える燃料電池発電装置であって、
前記改質器からの水素含有ガスの供給状態が、前記改質器で生成した水素含有ガスを、前記燃料電池の発電反応で消費させずに前記燃焼器へ供給して前記可燃性ガスとして燃焼させる第1ガス供給状態と、前記改質器で生成した水素含有ガスを前記燃料電池に供給して当該水素含有ガスに含まれる一部の水素を前記燃料電池での発電反応で消費させると共に当該発電反応で消費されずに前記燃料電池から排出される残りの水素を前記燃焼器に供給して前記可燃性ガスとして燃焼させる第2ガス供給状態との何れかの供給状態に切り換え可能に構成され、
前記燃料電池が前記パワーコンディショナを経由して出力電力を電力消費装置へ供給する電力供給状態において前記第2ガス供給状態で前記燃料電池で目標出力電力を発生させるとき、前記改質器が、当該目標出力電力を発生させるための発電反応で消費される第1量の水素と、当該発電反応で消費されずに前記可燃性ガスとして前記燃焼器での燃焼に消費される第2量の水素との合計量の水素を含む水素含有ガスを生成するように、前記原燃料流量調節手段が前記改質器への原燃料の供給量を調節し且つ前記水蒸気流量調節手段が前記改質器への水蒸気の供給量を調節し、
前記燃焼器での燃焼に消費される水素の前記第2量は、当該第2量の水素を前記燃焼器で燃焼した場合に前記改質器へ供給される熱量が、前記目標出力電力を発生させるための発電反応で消費される前記第1量の水素と当該発電反応で消費されずに前記可燃性ガスとして前記燃焼器での燃焼に消費される前記第2量の水素との合計量の水素を前記改質器で生成するための改質処理に要する熱量を満足するように設定され、
前記電力供給状態において前記燃料電池が前記目標出力電力を発生するのに先立って、前記燃料電池が前記パワーコンディショナを経由して前記電力消費装置へ電力を出力していない非電力供給状態において前記第1ガス供給状態で、前記改質器が、前記燃料電池の発電反応で消費されずに前記可燃性ガスとして前記燃焼器での燃焼に消費される前記第2量の水素を含む水素含有ガスを生成するように、前記原燃料流量調節手段が前記改質器への原燃料の供給量を調節し且つ前記水蒸気流量調節手段が前記改質器への水蒸気の供給量を調節する点にある。
上記特徴構成によれば、燃料電池で目標出力電力を発生するのに先立って、非電力供給状態において燃焼器で燃焼される水素の量が第2量に調節され、燃焼器から改質器へその燃焼熱が供給される。この第2量は、燃焼器で燃焼した場合に改質器へ供給される熱量が、目標出力電力を発生させるための発電反応で消費される第1量の水素とその発電反応で消費されずに可燃性ガスとして燃焼器での燃焼に消費される第2量の水素との合計量の水素を改質器で生成するための改質処理に要する熱量を満足するように設定されている。
つまり、燃料電池から電力消費装置への電力供給を開始する前後において、燃焼器に供給されて燃焼される水素の量は第2量(この第2量は、電力供給状態で燃料電池から目標出力電力を発生させるときに燃焼器での燃焼に消費される水素量に対応)で互いに同じである。その結果、燃焼器から改質器へ供給できる熱量も、燃料電池から電力消費装置への電力供給を開始する前後において互いに同じであり、燃料電池から目標出力電力を発生させるときに改質器での改質反応に要する熱量を満足している。そして、電力消費装置で要求される電力に相当する目標出力電力を燃料電池で発生させる時点で、改質器での改質反応に要する熱量は充分な状態となっており、その結果、改質器で第1量と第2量との合計量の水素を生成することができる状態となっている。
従って、従来の燃料電池発電装置で行われていたような運転手順、即ち、燃焼器から改質器へ供給する熱量を徐々に増大させて、最終的に、燃料電池で目標出力電力を発生する際の運転に必要な熱量を燃焼器から改質器へ供給できるようにする運転手順を経なくても、早期に燃料電池で目標出力電力を発生する際の運転に必要な熱量を燃焼器から改質器へ供給できる。加えて、燃料電池に水素を直接供給するための水素貯蔵・供給装置などは不要であるため、装置のコスト上昇や大型化及び複雑化を回避できる。
本発明に係る燃料電池発電装置の別の特徴構成は、供給される水を、前記燃焼器から排出される熱を用いて蒸発させて、前記改質器に水蒸気を供給する水蒸気発生器を備え、
前記水蒸気流量調節手段は、前記水蒸気発生器に供給する水の量を調節することで、前記改質器への水蒸気の供給量を調節するように構成され、
前記水蒸気流量調節手段は、前記非電力供給状態において前記第1ガス供給状態で、前記改質器が前記第2量の水素を含む水素含有ガスを生成しているときの前記水蒸気発生器への水の供給量を、前記電力供給状態において前記第2ガス供給状態で、前記改質器が前記第1量の水素と前記第2量の水素との合計量の水素を含む水素含有ガスを生成しているときの前記水蒸気発生器への水の供給量と同じに調節している点にある。
水蒸気発生器に水を供給したとしても、供給した水の全てが蒸発するまでに時間を要することがある。そのような場合、燃料電池から電力消費装置への電力供給を開始する前後、即ち、非電力供給状態から電力供給状態へ切り換え且つ第1ガス供給状態から第2ガス供給状態へ切り換えるタイミングで、原燃料流量調節手段が改質器への原燃料の供給量を調節し且つ水蒸気流量調節手段が水蒸気発生器への水の供給量を調節したとしても、実際に改質器に供給される水蒸気量が不足して、改質器へ供給される原燃料中のカーボンに対する水蒸気の当量比が所望の値から外れる可能性がある。そして、改質器で実際に生成される水素量が、目標出力電力を発生させるための発電反応で消費される第1量の水素から見て不足して、燃料電池でその目標出力電力を発生できない可能性がある。
ところが本特徴構成によれば、燃料電池から電力消費装置への電力供給を開始する前後において、水蒸気発生器に供給される水の量が同じに調節されている。つまり、燃料電池から電力消費装置への電力供給を開始する時点では、水蒸気発生器から改質器へ供給される水蒸気量が、燃料電池で目標出力電力を発生するときに改質器が第1量の水素と第2量の水素との合計量の水素を含む水素含有ガスを生成するのに要する水蒸気量から見て不足していない状態になっていることを期待できる。その結果、燃料電池で目標出力電力を発生できない状況が生じることを回避できる。
本発明に係る燃料電池発電装置の更に別の特徴構成は、前記改質器で生成される水素含有ガスに含まれる一酸化炭素を二酸化炭素に変成する一酸化炭素変成器と、前記一酸化炭素変成器の温度を調節する温度調節手段とを備え、前記温度調節手段が前記一酸化炭素変成器の温度を目標温度より高い温度に調節した状態で、前記第1ガス供給状態から前記第2ガス供給状態に切り換えると共に前記非電力供給状態から前記電力供給状態に切り換えるように構成されている点にある。
改質器で生成された水素含有ガスが、第1ガス供給状態から第2ガス供給状態へ切り換えることで一酸化炭素変成器に流入し始めたとき、一酸化炭素変成器の温度が低下する可能性がある。そして、一酸化炭素変成器の温度が目標温度よりも低下すると、一酸化炭素を二酸化炭素に変成する処理が一酸化炭素変成器で充分に行われず、燃料電池に供給する水素含有ガス中の一酸化炭素濃度が高まる可能性がある。
ところが本特徴構成によれば、温度調節手段が一酸化炭素変成器の温度を目標温度より高い温度に調節した状態で第1ガス供給状態から第2ガス供給状態に切り換えると共に非電力供給状態から電力供給状態に切り換えるため、一酸化炭素変成器の温度が低下したとしても、目標温度を大幅に下回ることを回避できる。
上記目的を達成するための本発明に係る燃料電池発電装置の運転方法の特徴構成は、炭化水素を含む原燃料を水蒸気の存在下で改質処理して水素を含む水素含有ガスを生成する改質器と、前記改質器で生成された水素含有ガス中の水素を発電反応の燃料として消費する燃料電池と、可燃性ガスを燃焼して、その燃焼熱を前記改質器に供給する燃焼器と、前記燃料電池の出力電力を調節するパワーコンディショナと、前記改質器への原燃料の供給量を調節する原燃料流量調節手段と、前記改質器への水蒸気の供給量を調節する水蒸気流量調節手段とを備える燃料電池発電装置の運転方法であって、
前記燃料電池発電装置は、前記改質器からの水素含有ガスの供給状態が、前記改質器で生成した水素含有ガスを、前記燃料電池の発電反応で消費させずに前記燃焼器へ供給して前記可燃性ガスとして燃焼させる第1ガス供給状態と、前記改質器で生成した水素含有ガスを前記燃料電池に供給して当該水素含有ガスに含まれる一部の水素を前記燃料電池での発電反応で消費させると共に当該発電反応で消費されずに前記燃料電池から排出される残りの水素を前記燃焼器に供給して前記可燃性ガスとして燃焼させる第2ガス供給状態との何れかの供給状態に切り換え可能に構成され、
前記燃料電池が前記パワーコンディショナを経由して前記電力消費装置へ電力を出力していない非電力供給状態において前記第1ガス供給状態で、前記改質器が、前記燃料電池の発電反応で消費されずに前記可燃性ガスとして前記燃焼器での燃焼に消費される第2量の水素を含む水素含有ガスを生成するように、前記原燃料流量調節手段が前記改質器への原燃料の供給量を調節し且つ前記水蒸気流量調節手段が前記改質器への水蒸気の供給量を調節する第1工程と、
前記第1工程に引き続いて、前記燃料電池が前記パワーコンディショナを経由して出力電力を電力消費装置へ供給する電力供給状態において前記第2ガス供給状態で前記燃料電池で目標出力電力を発生させるとき、前記改質器が、当該目標出力電力を発生させるための発電反応で消費される第1量の水素と、当該発電反応で消費されずに前記可燃性ガスとして前記燃焼器での燃焼に消費される前記第2量の水素との合計量の水素を含む水素含有ガスを生成するように、前記原燃料流量調節手段が前記改質器への原燃料の供給量を調節し且つ前記水蒸気流量調節手段が前記改質器への水蒸気の供給量を調節する第2工程とを有し、
前記第1工程及び前記第2工程において前記燃焼器での燃焼に消費される水素の前記第2量は、当該第2量の水素を前記燃焼器で燃焼した場合に前記改質器へ供給される熱量が、前記目標出力電力を発生させるための発電反応で消費される前記第1量の水素と当該発電反応で消費されずに前記可燃性ガスとして前記燃焼器での燃焼に消費される前記第2量の水素との合計量の水素を前記改質器で生成するための改質処理に要する熱量を満足するように設定されている点にある。
上記特徴構成によれば、第2工程で燃料電池で目標出力電力を発生するのに先立って、非電力供給状態において燃焼器で燃焼される水素の量が第2量に調節され、燃焼器から改質器へその燃焼熱が供給される第1工程が行われる。この第2量は、第1工程及び第2工程において燃焼器で燃焼した場合に改質器へ供給される熱量が、目標出力電力を発生させるための発電反応で消費される第1量の水素とその発電反応で消費されずに可燃性ガスとして燃焼器での燃焼に消費される第2量の水素との合計量の水素を改質器で生成するための改質処理に要する熱量を満足するように設定されている。
つまり、燃料電池から電力消費装置への電力供給を開始する前後の第1工程及び第2工程において、燃焼器に供給されて燃焼される水素の量は第2量で互いに同じである。その結果、燃焼器から改質器へ供給できる熱量も、燃料電池から電力消費装置への電力供給を開始する前後の第1工程及び第2工程において互いに同じであり、燃料電池から目標出力電力を発生させるときに改質器での改質反応に要する熱量を満足している。そして、電力消費装置で要求される電力に相当する目標出力電力を燃料電池で発生させる時点で、改質器での改質反応に要する熱量は充分な状態となっており、その結果、改質器で第1量と第2量との合計量の水素を生成することができる状態となっている。
従って、従来の燃料電池発電装置の運転方法で行われていたような運転手順、即ち、燃焼器から改質器へ供給する熱量を徐々に増大させて、最終的に、燃料電池で目標出力電力を発生する際の運転に必要な熱量を燃焼器から改質器へ供給できるようにする運転手順を経なくても、早期に燃料電池で目標出力電力を発生する際の運転に必要な熱量を燃焼器から改質器へ供給できる。加えて、燃料電池に水素を直接供給するための水素貯蔵・供給装置などは不要であるため、装置のコスト上昇や大型化及び複雑化を回避できる。
燃料電池発電装置の構成を示す図である。 燃料電池発電装置の運転方法を説明する図である。
以下に図面を参照して本発明に係る燃料電池発電装置について説明する。
図1は、燃料電池発電装置の構成を示す図である。図示するように、本発明に係る燃料電池発電装置は、炭化水素を含む原燃料を水蒸気の存在下で改質処理して水素を含む水素含有ガスを生成する改質器2と、改質器2で生成された水素含有ガス中の水素を発電反応の燃料として消費する燃料電池FCと、可燃性ガスを燃焼して、その燃焼熱を改質器2に供給する燃焼器5と、燃料電池FCの出力電力を調節する電力変換器であるパワーコンディショナ9と、改質器2への原燃料の供給量を調節する原燃料流量調節手段としての原燃料流量調節弁10と、改質器2への水蒸気の供給量を調節する水蒸気流量調節手段としてのポンプ11とを備える。燃料電池FCとしては、例えば固体高分子形燃料電池などを用いることができる。加えて、図1に示す燃料電池発電装置は、脱硫器1と、水蒸気発生器6と、一酸化炭素変成器3と、一酸化炭素除去器4と、燃料電池発電装置の動作を制御する制御装置12とを備える。
脱硫器1は、原燃料を改質器2に供給する原燃料供給路15の途中に設けられ、供給される原燃料(例えば都市ガス)などに付臭剤として含まれる硫黄化合物を脱硫処理する。脱硫器1への原燃料の供給量、即ち、改質器2への原燃料の供給量は、制御装置12が、脱硫器1よりも上流側の原燃料供給路15に設けられる原燃料流量調節弁10を用いて調節する。
水蒸気発生器6は、水供給路16の途中に設けられ、供給される水を、燃焼器5から排出される熱を用いて蒸発させて、改質器2に水蒸気を供給する。具体的には、水蒸気発生器6に隣接して設けられる熱交換器8には、燃焼器5から排出された燃焼排ガスが改質器2への熱供給を行った後で燃焼排ガス路21を介して供給され、その燃焼排ガスが有する熱が水蒸気発生器6に伝達されて水の蒸発に利用される。本実施形態において、水供給路16は、脱硫器1よりも下流側の原燃料供給路15に合流するように構成されている。その結果、改質器2には、水蒸気と脱硫処理後の原燃料とが混合して供給されることになる。また、本実施形態の燃料電池発電装置は、水蒸気発生器6を加熱可能な電気ヒーターH1も備えている。つまり、水蒸気発生器6は、熱交換器8及び電気ヒーターH1の少なくとも何れか一方から得られる熱を利用して、供給される水を蒸発させるように構成されている。水蒸気発生器6への水の供給量、即ち、改質器2への水蒸気の供給量は、制御装置12が、水蒸気発生器6よりも上流側の水供給路16に設けられるポンプ11を用いて調節する。
燃焼器5は、可燃性ガスを燃焼して燃焼熱を発生させる。可燃性ガスとしては、後述するように、燃料電池FCの燃料極(図示せず)から排出された排燃料ガス(発電反応で消費されなかった水素を含むガス)を用いることができる。尚、説明は省略するが、燃焼器5には可燃性ガスの燃焼用の酸素も供給されている。
改質器2は、原燃料を水蒸気の存在下で改質処理して、水素を主成分とする水素含有ガスを生成する。具体的には、改質器2には、水蒸気と脱硫処理後の原燃料とが混合された状態で供給される。そして、改質器2は、隣接して設けられる燃焼器5で発生された燃焼熱を利用して原燃料を水蒸気改質して、水素を主成分とし、副生成物としての一酸化炭素と二酸化炭素とを含む水素含有ガスを生成する。改質器2での改質処理によって生成された水素含有ガスは、改質器2よりも下流側の水素含有ガス供給路17へと送り出される。
一酸化炭素変成器3は、水素含有ガス供給路17の途中に設けられ、改質器2にて生成された水素含有ガスに含まれる一酸化炭素を低減するように処理する。具体的には、一酸化炭素変成器3において、改質器2で生成された水素含有ガス中に含まれている一酸化炭素と水蒸気とが反応して、一酸化炭素が二酸化炭素に変成処理される。また、本実施形態の燃料電池発電装置は、一酸化炭素変成器3の温度を調節する温度調節手段としての電気ヒーターH2を備える。そして、制御装置12は、一酸化炭素変成器3の温度が目標温度になるように電気ヒーターH2の動作を制御する。
一酸化炭素除去器4は、水素含有ガス供給路17の途中に設けられ、一酸化炭素変成器3から排出される変成処理後の水素含有ガス中に残留している一酸化炭素を除去する。例えば、一酸化炭素除去器4において、変成処理後の水素含有ガス中に残っている一酸化炭素が、新たに添加された空気中の酸素によって酸化除去される。その結果、一酸化炭素濃度の非常に低い、水素リッチな水素含有ガスが生成される。また、本実施形態の燃料電池発電装置は、一酸化炭素除去器4の温度を調節する電気ヒーターH3を備える。そして、制御装置12は、一酸化炭素除去器4の温度が目標温度になるように電気ヒーターH3の動作を制御する。
燃料電池FCは、一酸化炭素除去器4によって一酸化炭素濃度が低減された後の水素含有ガスの供給を水素含有ガス供給路17を介して受ける。具体的には、燃料電池FCが有する燃料極(図示せず)には上記水素含有ガスが供給され、燃料電池FCが有する酸素極(図示せず)には酸素(空気)が供給されて、発電反応が行われる。燃料電池FCの出力電力(即ち、発電反応の量)は、制御装置12が、燃料電池FCにとっての電力負荷となるパワーコンディショナ9を用いて調節し、その電力が電力消費装置7に供給される。尚、燃料電池FCに供給される水素の量が、パワーコンディショナ9によって調節される燃料電池FCの出力電力を発生させるための発電反応に要する水素の量よりも多ければ、その過剰の水素は、燃料電池FCでの発電反応で消費されることなく燃料電池FCの燃料極から排出される。そして、燃料電池FCの燃料極から排出された排燃料ガス(発電反応で消費されなかった水素を含むガス)は、可燃性ガス供給路20を通って燃焼器5に供給され、可燃性ガスとして燃焼される。
本実施形態では、一酸化炭素除去器4と燃料電池FCとの間の水素含有ガス供給路17の途中にその流路を開閉可能な第1開閉弁13が設けられている。また、一酸化炭素除去器4とその第1開閉弁13との間の水素含有ガス供給路17の途中には分岐部18が設けられ、その分岐部18と可燃性ガス供給路20とはバイパス路19で接続される。また、バイパス路19の途中には、その流路を開閉可能な第2開閉弁14が設けられている。そして、第1開閉弁13が閉じられ且つ第2開閉弁14が開かれているとき、一酸化炭素除去器4から下流側に流れてくるガスは、燃料電池FCに供給されず、バイパス路19を通って燃焼器5へと供給される。
本実施形態の燃料電池発電装置では、改質器2からの水素含有ガスの供給状態は2通りある。一つは、改質器2で生成した水素を燃料電池FCの発電反応で消費させずに燃焼器5へ供給して可燃性ガスとして燃焼させる第1ガス供給状態である。もう一つは、改質器2で生成した水素含有ガスに含まれる一部の水素を燃料電池FCでの発電反応で消費させると共にその発電反応で消費されずに燃料電池FCから排出される残りの水素を燃焼器5に供給して可燃性ガスとして燃焼させる第2ガス供給状態である。
具体的には、制御装置12は、燃料電池発電装置を第1ガス供給状態に切り換えるとき、第1開閉弁13を閉じ且つ第2開閉弁14を開く。その結果、一酸化炭素除去器4から下流側に流れてくるガスは、燃料電池FCに供給されずにバイパス路19を通って燃焼器5へと供給されるため、水素含有ガスを燃料電池FCの発電反応で消費させずに燃焼器5へ供給して可燃性ガスとして燃焼させることができる。
従って、制御装置12は、燃料電池発電装置を第1ガス供給状態に切り換えているとき、燃料電池FCで発電反応を行わせておらず、電力消費装置7に電力供給を行っていない非電力供給状態で燃料電池発電装置を動作させることができる。
また、制御装置12は、燃料電池発電装置を第2ガス供給状態に切り換えるとき、第1開閉弁13を開き且つ第2開閉弁14を閉じる。その結果、一酸化炭素除去器4から下流側に流れてくるガスは、バイパス路19に供給されずに燃料電池FCへと供給されるため、改質器2で生成した水素含有ガスに含まれる一部の水素を燃料電池FCでの発電反応で消費させると共にその発電反応で消費されずに燃料電池FCから排出される残りの水素を燃焼器5に供給して可燃性ガスとして燃焼させることができる。
従って、制御装置12は、燃料電池発電装置を第2ガス供給状態に切り換えているとき、燃料電池FCがパワーコンディショナ9を経由して出力電力を電力消費装置7へ供給する電力供給状態で燃料電池発電装置を動作させることができる。
〔燃料電池発電装置の運転方法〕
次に、燃料電池発電装置の運転方法について説明する。図2は、燃料電池発電装置の運転方法を説明する図である。図2(a)は、燃料電池FCの出力電力の推移を示すグラフであり、図2(b)は、改質器2で生成する水素の量の推移を示すグラフであり、図2(c)は、燃焼器5へ供給する水素の量の推移を示すグラフであり、図2(d)は、改質器2への原燃料の供給量の推移を示すグラフであり、図2(e)は、改質器2への水蒸気の供給量の推移を示すグラフである。図2(a)〜図2(e)の全てにおいて、制御装置12は、時刻t1で燃料電池発電装置を電力供給状態から非電力供給状態に切り換えている。
図2(a)に示すように、制御装置12は、時刻t1以降に、燃料電池FCがパワーコンディショナ9を経由して出力電力(図2(a)では「目標出力電力」)を電力消費装置7へ供給する電力供給状態で燃料電池発電装置を動作させる。本実施形態において「目標出力電力」は、図2(a)に示すように、燃料電池FCにとっての最小発電出力と定格発電出力との間の電力である。このように、本実施形態において時刻t1に燃料電池FCがパワーコンディショナ9を経由して出力を開始する目標出力電力は、電力消費装置7で必要とされる電力に見合っており、従来型の燃料電池発電装置の起動時に暫定的に目標とされる最小出力電力とは異なっている。そして、図2(b)及び図2(c)に示すように、制御装置12の制御により、時刻t1以降において、改質器2からの水素含有ガスの供給状態を第2ガス供給状態に切り換えて燃料電池FCで目標出力電力を発生させるとき、改質器2が、その目標出力電力を発生させるための発電反応で消費される第1量の水素と、その発電反応で消費されずに可燃性ガスとして燃焼器5での燃焼に消費される第2量の水素との合計量の水素を含む水素含有ガスを生成するように、原燃料流量調節弁10が改質器2への原燃料の供給量を「Qc2」に調節し且つポンプ11が改質器2への水蒸気の供給量を「Qs2」に調節する。
ここで、時刻t1以降に改質器2へ供給される原燃料(図2(d)に示す)中のカーボンに対する水蒸気(図2(e)に示す)の当量比(以下、「S/C」と記載することもある)は、改質器2が有する改質触媒におけるカーボン析出の防止や、改質器2の下流側に設けられる一酸化炭素変成器3の出口ガス中のCO濃度を一定値以下に収めるのに適した値に調節されている。
図2(b)及び図2(c)に示している「第2量」、即ち、燃焼器5での燃焼に消費される水素の第2量は、その第2量の水素を燃焼器5が燃焼した場合に改質器2へ供給される熱量が、改質器2で、上記目標出力電力を発生させるための発電反応で消費される第1量の水素と燃料電池FCの発電反応で消費されずに可燃性ガスとして燃焼器5での燃焼に消費される第2量の水素との合計量の水素を生成するための改質処理に要する熱量を満足するように設定されている。
更に、図2(b)及び図2(c)に示すように、制御装置12は、時刻t1以前に、即ち、上述した電力供給状態において燃料電池FCが目標出力電力を発生するのに先立って、燃料電池FCがパワーコンディショナ9を経由して電力消費装置7へ電力を出力していない非電力供給状態において第1ガス供給状態で、改質器2が、燃料電池FCの発電反応で消費されずに可燃性ガスとして燃焼器5での燃焼に消費される第2量の水素を含む水素含有ガスを生成するように、原燃料流量調節弁10が改質器2への原燃料の供給量を「Qc1」に調節し且つポンプ11に対して改質器2への水蒸気の供給量を「Qs2」に調節している。
以上のように、時刻t1以降において燃料電池FCが目標出力電力を発生する場合、改質器2は、その目標出力電力を発生させるための発電反応で消費される第1量の水素と、その発電反応で消費されずに可燃性ガスとして燃焼器5での燃焼に消費される第2量の水素との合計量の水素を含む水素含有ガスを生成しなければならない。特に、燃焼器5は、改質器2での改質処理を促進するために、改質器2で第1量と第2量との合計量の水素を生成するための改質処理に要する熱量を発生して改質器2へ供給しなければならない。
そこで、本発明に係る燃料電池発電装置の運転方法では、燃料電池FCが時刻t1以降に目標発電電力を発生する第2工程に先立って、後述する第1工程を時刻t1以前に行う。即ち、時刻t1以前に行われる第1工程は、燃料電池FCがパワーコンディショナ9を経由して電力消費装置7へ電力を出力していない非電力供給状態において第1ガス供給状態で、改質器2が、燃料電池FCの発電反応で消費されずに可燃性ガスとして燃焼器5での燃焼に消費される第2量の水素を含む水素含有ガスを生成するように、原燃料流量調節弁10が改質器2への原燃料の供給量を調節し且つポンプ11が改質器2への水蒸気の供給量を調節する工程である。そして、時刻t1以降に行われる第2工程は、第1工程に引き続いて、燃料電池FCがパワーコンディショナ9を経由して出力電力を電力消費装置7へ供給する電力供給状態において第2ガス供給状態で燃料電池FCで目標出力電力を発生させるとき、改質器2が、当該目標出力電力を発生させるための発電反応で消費される第1量の水素と、当該発電反応で消費されずに可燃性ガスとして燃焼器5での燃焼に消費される第2量の水素との合計量の水素を含む水素含有ガスを生成するように、原燃料流量調節弁10が改質器2への原燃料の供給量を調節し且つポンプ11が改質器2への水蒸気の供給量を調節する工程である。
尚、上記第1工程を、時刻t1よりもどのくらい前の時刻から開始する、即ち、どのくらいの期間行うのかは、燃料電池発電装置の構成等に応じて適宜設定可能である。
このような運転方法を採用することで、図2(a)〜図2(c)に示すように、燃料電池FCで目標出力電力を発生する第2工程に先立つ第1工程において、非電力供給状態において燃焼器5で燃焼される水素の量が第2量に調節され、燃焼器5から改質器2へその燃焼熱が供給される。つまり、燃料電池FCから電力消費装置7への電力供給を開始する前後の第1工程及び第2工程において、燃焼器5に供給されて燃焼される水素の量は第2量で互いに同じである。その結果、燃焼器5から改質器2へ供給できる熱量も、燃料電池FCから電力消費装置7への電力供給を開始する前後の第1工程及び第2工程において互いに同じであり、燃料電池FCから目標出力電力を発生させるときに改質器2での改質反応に要する熱量を満足している。
つまり、電力消費装置7で要求される電力に相当する目標出力電力を燃料電池FCで発生させようとする時刻t1よりも前の時点で、改質器2での改質反応に要する熱量は充分な状態となっており、その結果、改質器2で第1量と第2量との合計量の水素を生成することができる状態となっている。従って、従来の燃料電池発電装置で行われていたような運転手順、即ち、燃焼器5から改質器2へ供給する熱量を徐々に増大させて、最終的に、燃料電池FCで目標出力電力を発生する際の運転に必要な熱量を燃焼器5から改質器2へ供給できるようにする運転手順を経なくても、早期に燃料電池FCで目標出力電力を発生する際の運転に必要な熱量を燃焼器5から改質器2へ供給できる。加えて、燃料電池FCに水素を直接供給するための水素貯蔵・供給装置などは不要であるため、装置のコスト上昇や大型化及び複雑化を回避できる。
加えて、本実施形態では、時刻t1以前に改質器2へ供給される原燃料(図2(d)に示す)中のカーボンに対する水蒸気(図2(e)に示す)の当量比:S/Cは、時刻t1以降でのS/Cよりも大きい値(即ち、水蒸気過剰)に設定している。特に、制御装置12は、時刻t1以前に改質器2へ供給する水蒸気量を、上述したように時刻t1以降に改質器2へ供給する必要のある水蒸気量:Qs2と同じに調節している。つまり、時刻t1以前のS/Cと時刻t1以降のS/Cとを同じに設定するのであれば、時刻t1以前に改質器2へ供給する水蒸気量を図2(e)に破線で示すQs1に調節すればよいが、実際は時刻t1以前において改質器2へ供給する水蒸気量をQs2(>Qs1)に調節している。つまり、時刻t1以降に改質器2へ供給されているべき水蒸気量Qs2を、時刻t1に先立って改質器2へ供給しようとしている。
言い換えると、制御装置12は、ポンプ11の動作を制御して、時刻t1以前の非電力供給状態において第1ガス供給状態で、改質器2が第2量の水素を含む水素含有ガスを生成しているときの水蒸気発生器6への水の供給量を、時刻t1以降の電力供給状態において第2ガス供給状態で、改質器2が第1量の水素と第2量の水素との合計量の水素を含む水素含有ガスを生成しているときの水蒸気発生器6への水の供給量と同じに調節している。このような制御を行うことで、水蒸気発生器6での水の蒸発に時間を要したとしても、燃料電池FCから電力消費装置7への電力供給を開始する時刻t1の時点では、水蒸気発生器6から改質器2へ供給される水蒸気量が、燃料電池FCで目標出力電力を発生するときに改質器2が第1量の水素と第2量の水素との合計量の水素を含む水素含有ガスを生成するのに要する水蒸気量から見て不足していない状態になっていることを期待できる。
<別実施形態>
<1>
上記実施形態において、温度調節手段としての電気ヒーターH2が一酸化炭素変成器3の温度を上記目標温度より高い温度に調節した状態で、時刻t1において、第1ガス供給状態から第2ガス供給状態に切り換えると共に非電力供給状態から電力供給状態に切り換えるように構成してもよい。つまり、時刻t1において、一酸化炭素変成器3が処理すべきガス量が急激に増大すると、一酸化炭素変成器3の温度が低下することがあるので、予め目標温度より高い温度に調節した状態で、一酸化炭素変成器3が処理すべきガス量を増大させる。その結果、改質器で生成された水素含有ガスが一酸化炭素変成器3に流入し始めたときに一酸化炭素変成器3の温度が低下したとしても、目標温度を大幅に下回ることを回避でき、一酸化炭素変成器3の活性が低下することを回避できる。
<2>
上記実施形態において、燃料電池発電装置の構成や運転方法は上述した具体例に限定されず、適宜変更可能である。例えば、図2(b)〜図2(e)に示したガス量の値は本発明の趣旨を説明する目的で描いたものであり、実際のガス量の値を示したものとは限らない。
他にも、上記実施形態では、水蒸気発生器6を加熱するために熱交換器8及び電気ヒーターH1を設けた構成を説明したが、電気ヒーターH1を設けない構成であってもよい。
<3>
上記実施形態では、図2(e)に例示したように、制御装置12が、時刻t1以前に改質器2へ供給する水蒸気量を、時刻t1以降に改質器2へ供給する必要のある水蒸気量:Qs2と同じに調節している例を説明したが、時刻t1の前後で改質器2へ供給する水蒸気量を異ならせてもよい。例えば、制御装置12が、時刻t1以前に改質器2へ供給する水蒸気量が図2(e)に破線で示すQs1になるようにポンプ11から水蒸気発生器6への水の供給量を調節し、時刻t1以後に改質器2へ供給する水蒸気量がQs2となるようにポンプ11から水蒸気発生器6への水の供給量を調節してもよい。
本発明は、装置のコスト上昇や大型化及び複雑化を回避しながら、早期に燃料電池から目標出力電力を供給可能にする燃料電池発電装置に利用できる。
2 改質器
3 一酸化炭素変成器
5 燃焼器
6 水蒸気発生器
7 電力消費装置
9 パワーコンディショナ
10 原燃料流量調節弁(原燃料流量調節手段)
11 ポンプ(水蒸気流量調節手段)
FC 燃料電池
H2 電気ヒーター(温度調節手段)

Claims (4)

  1. 炭化水素を含む原燃料を水蒸気の存在下で改質処理して水素を含む水素含有ガスを生成する改質器と、前記改質器で生成された水素含有ガス中の水素を発電反応の燃料として消費する燃料電池と、可燃性ガスを燃焼して、その燃焼熱を前記改質器に供給する燃焼器と、前記燃料電池の出力電力を調節するパワーコンディショナと、前記改質器への原燃料の供給量を調節する原燃料流量調節手段と、前記改質器への水蒸気の供給量を調節する水蒸気流量調節手段とを備える燃料電池発電装置であって、
    前記改質器からの水素含有ガスの供給状態が、前記改質器で生成した水素含有ガスを、前記燃料電池の発電反応で消費させずに前記燃焼器へ供給して前記可燃性ガスとして燃焼させる第1ガス供給状態と、前記改質器で生成した水素含有ガスを前記燃料電池に供給して当該水素含有ガスに含まれる一部の水素を前記燃料電池での発電反応で消費させると共に当該発電反応で消費されずに前記燃料電池から排出される残りの水素を前記燃焼器に供給して前記可燃性ガスとして燃焼させる第2ガス供給状態との何れかの供給状態に切り換え可能に構成され、
    前記燃料電池が前記パワーコンディショナを経由して出力電力を電力消費装置へ供給する電力供給状態において前記第2ガス供給状態で前記燃料電池で目標出力電力を発生させるとき、前記改質器が、当該目標出力電力を発生させるための発電反応で消費される第1量の水素と、当該発電反応で消費されずに前記可燃性ガスとして前記燃焼器での燃焼に消費される第2量の水素との合計量の水素を含む水素含有ガスを生成するように、前記原燃料流量調節手段が前記改質器への原燃料の供給量を調節し且つ前記水蒸気流量調節手段が前記改質器への水蒸気の供給量を調節し、
    前記燃焼器での燃焼に消費される水素の前記第2量は、当該第2量の水素を前記燃焼器で燃焼した場合に前記改質器へ供給される熱量が、前記目標出力電力を発生させるための発電反応で消費される前記第1量の水素と当該発電反応で消費されずに前記可燃性ガスとして前記燃焼器での燃焼に消費される前記第2量の水素との合計量の水素を前記改質器で生成するための改質処理に要する熱量を満足するように設定され、
    前記電力供給状態において前記燃料電池が前記目標出力電力を発生するのに先立って、前記燃料電池が前記パワーコンディショナを経由して前記電力消費装置へ電力を出力していない非電力供給状態において前記第1ガス供給状態で、前記改質器が、前記燃料電池の発電反応で消費されずに前記可燃性ガスとして前記燃焼器での燃焼に消費される前記第2量の水素を含む水素含有ガスを生成するように、前記原燃料流量調節手段が前記改質器への原燃料の供給量を調節し且つ前記水蒸気流量調節手段が前記改質器への水蒸気の供給量を調節する燃料電池発電装置。
  2. 供給される水を、前記燃焼器から排出される熱を用いて蒸発させて、前記改質器に水蒸気を供給する水蒸気発生器を備え、
    前記水蒸気流量調節手段は、前記水蒸気発生器に供給する水の量を調節することで、前記改質器への水蒸気の供給量を調節するように構成され、
    前記水蒸気流量調節手段は、前記非電力供給状態において前記第1ガス供給状態で、前記改質器が前記第2量の水素を含む水素含有ガスを生成しているときの前記水蒸気発生器への水の供給量を、前記電力供給状態において前記第2ガス供給状態で、前記改質器が前記第1量の水素と前記第2量の水素との合計量の水素を含む水素含有ガスを生成しているときの前記水蒸気発生器への水の供給量と同じに調節している請求項1に記載の燃料電池発電装置。
  3. 前記改質器で生成される水素含有ガスに含まれる一酸化炭素を二酸化炭素に変成する一酸化炭素変成器と、前記一酸化炭素変成器の温度を調節する温度調節手段とを備え、
    前記温度調節手段が前記一酸化炭素変成器の温度を目標温度より高い温度に調節した状態で、前記第1ガス供給状態から前記第2ガス供給状態に切り換えると共に前記非電力供給状態から前記電力供給状態に切り換えるように構成されている請求項1又は2に記載の燃料電池発電装置。
  4. 炭化水素を含む原燃料を水蒸気の存在下で改質処理して水素を含む水素含有ガスを生成する改質器と、前記改質器で生成された水素含有ガス中の水素を発電反応の燃料として消費する燃料電池と、可燃性ガスを燃焼して、その燃焼熱を前記改質器に供給する燃焼器と、前記燃料電池の出力電力を調節するパワーコンディショナと、前記改質器への原燃料の供給量を調節する原燃料流量調節手段と、前記改質器への水蒸気の供給量を調節する水蒸気流量調節手段とを備える燃料電池発電装置の運転方法であって、
    前記燃料電池発電装置は、前記改質器からの水素含有ガスの供給状態が、前記改質器で生成した水素含有ガスを、前記燃料電池の発電反応で消費させずに前記燃焼器へ供給して前記可燃性ガスとして燃焼させる第1ガス供給状態と、前記改質器で生成した水素含有ガスを前記燃料電池に供給して当該水素含有ガスに含まれる一部の水素を前記燃料電池での発電反応で消費させると共に当該発電反応で消費されずに前記燃料電池から排出される残りの水素を前記燃焼器に供給して前記可燃性ガスとして燃焼させる第2ガス供給状態との何れかの供給状態に切り換え可能に構成され、
    前記燃料電池が前記パワーコンディショナを経由して電力消費装置へ電力を出力していない非電力供給状態において前記第1ガス供給状態で、前記改質器が、前記燃料電池の発電反応で消費されずに前記可燃性ガスとして前記燃焼器での燃焼に消費される第2量の水素を含む水素含有ガスを生成するように、前記原燃料流量調節手段が前記改質器への原燃料の供給量を調節し且つ前記水蒸気流量調節手段が前記改質器への水蒸気の供給量を調節する第1工程と、
    前記第1工程に引き続いて、前記燃料電池が前記パワーコンディショナを経由して出力電力を前記電力消費装置へ供給する電力供給状態において前記第2ガス供給状態で前記燃料電池で目標出力電力を発生させるとき、前記改質器が、当該目標出力電力を発生させるための発電反応で消費される第1量の水素と、当該発電反応で消費されずに前記可燃性ガスとして前記燃焼器での燃焼に消費される前記第2量の水素との合計量の水素を含む水素含有ガスを生成するように、前記原燃料流量調節手段が前記改質器への原燃料の供給量を調節し且つ前記水蒸気流量調節手段が前記改質器への水蒸気の供給量を調節する第2工程とを有し、
    前記第1工程及び前記第2工程において前記燃焼器での燃焼に消費される水素の前記第2量は、当該第2量の水素を前記燃焼器で燃焼した場合に前記改質器へ供給される熱量が、前記目標出力電力を発生させるための発電反応で消費される前記第1量の水素と当該発電反応で消費されずに前記可燃性ガスとして前記燃焼器での燃焼に消費される前記第2量の水素との合計量の水素を前記改質器で生成するための改質処理に要する熱量を満足するように設定されている燃料電池発電装置の運転方法。
JP2012228264A 2012-10-15 2012-10-15 燃料電池発電装置及びその運転方法 Pending JP2014082062A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012228264A JP2014082062A (ja) 2012-10-15 2012-10-15 燃料電池発電装置及びその運転方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012228264A JP2014082062A (ja) 2012-10-15 2012-10-15 燃料電池発電装置及びその運転方法

Publications (1)

Publication Number Publication Date
JP2014082062A true JP2014082062A (ja) 2014-05-08

Family

ID=50786092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012228264A Pending JP2014082062A (ja) 2012-10-15 2012-10-15 燃料電池発電装置及びその運転方法

Country Status (1)

Country Link
JP (1) JP2014082062A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101643103B1 (ko) * 2015-08-27 2016-07-28 현대중공업 주식회사 선박
KR101696550B1 (ko) * 2015-07-31 2017-01-16 현대중공업 주식회사 선박
KR101704913B1 (ko) * 2015-07-31 2017-02-09 현대중공업 주식회사 선박
KR101704912B1 (ko) * 2015-07-31 2017-02-09 현대중공업 주식회사 선박

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004288562A (ja) * 2003-03-25 2004-10-14 Ebara Ballard Corp 燃料電池発電システム
JP2007200609A (ja) * 2006-01-24 2007-08-09 Aisin Seiki Co Ltd 燃料電池システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004288562A (ja) * 2003-03-25 2004-10-14 Ebara Ballard Corp 燃料電池発電システム
JP2007200609A (ja) * 2006-01-24 2007-08-09 Aisin Seiki Co Ltd 燃料電池システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101696550B1 (ko) * 2015-07-31 2017-01-16 현대중공업 주식회사 선박
KR101704913B1 (ko) * 2015-07-31 2017-02-09 현대중공업 주식회사 선박
KR101704912B1 (ko) * 2015-07-31 2017-02-09 현대중공업 주식회사 선박
KR101643103B1 (ko) * 2015-08-27 2016-07-28 현대중공업 주식회사 선박

Similar Documents

Publication Publication Date Title
JP5135209B2 (ja) 水素生成装置、これを備える燃料電池システムおよびその運転方法
JP2014082062A (ja) 燃料電池発電装置及びその運転方法
JP2007200609A (ja) 燃料電池システム
JP5480684B2 (ja) 水素含有ガス生成装置の起動時運転方法
JP5628791B2 (ja) 水素生成装置、それを備える燃料電池システム、水素生成装置の運転方法、及び燃料電池システムの運転方法
JP4450563B2 (ja) 燃料電池用の改質装置
JP2014047083A (ja) 水素含有ガス生成装置及び水素含有ガス生成量調節方法
JP2008066096A (ja) 燃料電池システム
JP2015140285A (ja) 水素含有ガス生成装置の運転方法及び水素含有ガス生成装置
JP3897682B2 (ja) 水素含有ガス供給構造、及びそれを備えた燃料電池システム
JP6468910B2 (ja) 燃料電池システム
JP5021895B2 (ja) 燃料電池発電システム
JP6925151B2 (ja) 燃料電池システム
WO2012032744A1 (ja) 燃料電池システム
WO2012081214A1 (ja) 発電システム及びその運転方法
JP5624606B2 (ja) 燃料電池システム及び燃料電池システムの運転方法
JP2011204430A (ja) 燃料電池システム
JP5257186B2 (ja) 燃料電池発電装置
JP6637778B2 (ja) 燃料電池システム
JP2018160428A (ja) 燃料電池システムの運転方法
JP2009151986A (ja) 燃料電池システム
JP2011032133A (ja) 燃料製造装置及びその始動方法
JP6722893B2 (ja) 燃料電池システム
JP6270507B2 (ja) 水素含有ガス生成装置の起動運転方法及び水素含有ガス生成装置
JP2005268190A (ja) 燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161101