WO2011116838A1 - Procédé de fabrication de pièces moulées sous pression - Google Patents

Procédé de fabrication de pièces moulées sous pression Download PDF

Info

Publication number
WO2011116838A1
WO2011116838A1 PCT/EP2010/062089 EP2010062089W WO2011116838A1 WO 2011116838 A1 WO2011116838 A1 WO 2011116838A1 EP 2010062089 W EP2010062089 W EP 2010062089W WO 2011116838 A1 WO2011116838 A1 WO 2011116838A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
working space
housing
nanoparticles
kneading
Prior art date
Application number
PCT/EP2010/062089
Other languages
German (de)
English (en)
Inventor
Rüdiger Franke
Original Assignee
Rheinfelden Alloys Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42167439&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2011116838(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to KR1020127024127A priority Critical patent/KR20130055563A/ko
Priority to ES10743166T priority patent/ES2423326T3/es
Priority to CN201080065674XA priority patent/CN102834203A/zh
Priority to DK10743166.0T priority patent/DK2393619T3/da
Priority to SI201030249T priority patent/SI2393619T1/sl
Priority to RU2012143377/02A priority patent/RU2012143377A/ru
Priority to BR112012023916A priority patent/BR112012023916A2/pt
Application filed by Rheinfelden Alloys Gmbh & Co. Kg filed Critical Rheinfelden Alloys Gmbh & Co. Kg
Priority to US13/634,394 priority patent/US20130220568A1/en
Priority to PL10743166T priority patent/PL2393619T3/pl
Priority to AU2010349399A priority patent/AU2010349399A1/en
Priority to EP10743166A priority patent/EP2393619B1/fr
Priority to CA2792432A priority patent/CA2792432A1/fr
Priority to MX2012010807A priority patent/MX2012010807A/es
Publication of WO2011116838A1 publication Critical patent/WO2011116838A1/fr
Priority to HRP20130605AT priority patent/HRP20130605T1/hr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/007Semi-solid pressure die casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/08Cold chamber machines, i.e. with unheated press chamber into which molten metal is ladled
    • B22D17/10Cold chamber machines, i.e. with unheated press chamber into which molten metal is ladled with horizontal press motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/30Accessories for supplying molten metal, e.g. in rations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D25/00Special casting characterised by the nature of the product
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0089Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with other, not previously mentioned inorganic compounds as the main non-metallic constituent, e.g. sulfides, glass
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • C22C2026/002Carbon nanotubes

Definitions

  • the invention relates to a method for the production of die-cast parts from an aluminum alloy.
  • Die castings made of aluminum alloys find u. a. in the automotive industry for reasons of increasingly required weight reduction more and more application.
  • a casting wall thickness of about 2 mm usually not be exceeded.
  • the filling of the die with partially solid molten metal by the use of thixo or rheocasting leads to a better mold filling and, consequently, to a possible further reduction of the casting wall thickness to about 1 mm.
  • the reduced force absorption capacity is increasingly becoming the limiting factor. This disadvantage could in itself be counteracted by adding nanoparticles to an aluminum alloy matrix.
  • the invention has for its object to provide a method of the type mentioned, with which continuously a partially solid aluminum alloy melt can be provided inexpensively and further processed to die-cast parts.
  • Another object of the invention is to provide a process for the production of nanoparticle-reinforced aluminum alloy die-cast parts, with which a partially solid aluminum alloy melt continuously under the action of process-typical Shear forces with a high fine dispersion of nanoparticles can be inexpensively provided and further processed into die-cast parts.
  • the aluminum alloy in a mixing and kneading machine having a housing with a working space enclosed by an inner housing jacket and a housing housing rotating about a longitudinal axis and translationally in the longitudinal axis back and forth, with worm blades provided worm shaft, and exposed to the inner housing shell, projecting into the work space kneading bolt high shear forces, wherein liquid aluminum alloy supplied at one end of the housing to the working space and at the other end of the housing the working space as a partially solid aluminum alloy with a predetermined solid content removed, transferred into a filling chamber of a die casting machine and pushed into a casting mold by means of a piston, wherein the solid portion of the aluminum alloy in the working space by targeted cooling and heating of the working space on the given Fe is adjusted.
  • the high shear forces present in the partially solidified phase state in the kneading process cause a constant comminution of forming dendritic branches, which leads to an increased ductility of the die-cast parts.
  • the high compressive forces also lead to a higher heat transfer, which ultimately allows a more precise adjustment of the solid content in the aluminum alloy.
  • the inventive solution of the second object leads to the fact that nanoparticles in a mixing and kneading machine with a housing with a work space enclosed by an inner housing jacket and a rotating in the inner housing shell about a longitudinal axis and translationally in the longitudinal axis back and forth, provided with Knethoffln Worm shaft, and with attached to the inner housing shell, protruding into the working space kneading bolt mixed with the aluminum alloy and finely dispersed by high shear forces in the aluminum alloy, wherein liquid aluminum alloy and nanoparticles at one end of the housing the Ar- supplied at the other end of the housing the working space as a partially solid aluminum alloy with a predetermined solids content and finely dispersed in the aluminum alloy nanoparticles, transferred to a filling chamber of a die casting machine and is pushed by a piston into a mold, wherein the solid content of the aluminum alloy in the working space is set by selective cooling and heating of the working space to the predetermined fixed proportion.
  • the inner housing shell is surrounded by an outer housing jacket to form a preferably hollow-cylindrical space, and cold and / or hot gases are passed through the gap for cooling and heating up the working space.
  • cold and / or hot gases are passed through the gap for cooling and heating up the working space.
  • hot gases preferably combustion gases
  • the gases are preferably passed in countercurrent to the transport direction of the aluminum alloy through the gap.
  • the solids content of the aluminum alloy is preferably adjusted to 40 to 80%, in particular to more than 50%.
  • the partially solid aluminum alloy is removed from the working space as a semi-solid metal strand.
  • the continuously emerging, partially solid metal strand is subdivided into partially solid metal portions and the partially solid metal portions are transferred into the filling chamber of the die casting machine.
  • the weight fraction of the nanoparticles in the alloy is preferably between about 0.1 to 10%.
  • Suitable, inexpensive nanoparticles are preferably made of fumed silica, such as. B. Aerosil ®.
  • other nanoparticles can be used, such as.
  • CNT carbon nanotubes
  • Aerosil ® method produced nanoscale particles of metal and Halbmetalloxiden, such as.
  • Fig. 1 shows a longitudinal section through a die casting machine
  • Fig. 2 is a longitudinal section through a part of a mixing and
  • FIG. 3 shows a cross section through the mixing and kneading machine of Fig. 1.
  • Fig. 5 shows the continuous production of semi-solid starting material
  • a plant shown in FIG. 1 for die-casting of optionally die-cast aluminum alloy parts reinforced with nanoparticles has a pressure casting machine 10 and a die casting machine 10 preceded by mixing and kneading machine 30.
  • the only partially reproduced in the drawing die casting machine 10 is a commercially available machine for conventional die casting of aluminum alloys and has u. a. a filling chamber 12 connected to a fixed side 18 of a casting mold and having an opening 16 for receiving the metal to be ejected from the filling chamber 12 by means of a piston 20 and to be injected into a mold cavity 14 of the casting mold.
  • the mixing and kneading machine 30 is shown in detail in FIGS. 2 and 3.
  • the basic structure of such a mixing and kneading machine is known for example from CH-A-278 575.
  • the mixing and kneading machine 30 has a housing 31 with a working space 34 enclosed by an inner housing jacket 32, in which a worm shaft 36 which rotates in the inner housing jacket 32 about a longitudinal axis x and moves translationally in the longitudinal axis x is.
  • the worm shaft 36 is interrupted in the circumferential direction to form individual Kneteriel 38. In this way arise between the individual kneading blades 38 axial passage openings 40.
  • kneading bolts 42 From the inside of the inner housing shell 32 project kneading bolts 42 into the working space 34 inside.
  • the housing-side kneading bolts 42 engage in the axial passage openings 40 of the arranged on the main or worm shaft 36 Knethoffl 38 a.
  • a drive shaft 44 arranged concentrically with respect to the worm shaft 36 is guided out of the inner housing shell 32 at the end side and connected to a drive unit, not shown in the drawing, for carrying out a rotational movement of the worm shaft 36.
  • a cooperating with the worm shaft 36 means for performing the translational movement of the worm shaft 36th
  • the cylindrical inner housing shell 32 of the mixing and kneading machine 30 delimiting the working space 34 is defined by a cylindrical outer housing. surrounded by semantel 46.
  • the inner housing shell 32 and the outer housing shell 46 form a double jacket and enclose a hollow cylindrical space 48.
  • a filling opening 50 for supplying liquid aluminum alloy and optionally nanoparticles into the working space 34 is provided.
  • two separate fill openings may be provided for the aluminum alloy and for the nanoparticles. In principle, it is also possible to mix the nanoparticles of the liquid aluminum alloy into the kneading and mixing machine 30 before the metal is introduced.
  • an outlet opening 52 is provided for removing semi-solid aluminum alloy with optionally dispersed nanoparticles in it.
  • inlet openings 54, 56 for introducing cold or hot gases into the intermediate space 48 are provided in the outer housing shell 46.
  • outlet openings 58, 60 for the exit of the gases from the intermediate space 48 are provided on the end of the housing 36 near the drive end of the worm shaft.
  • FIG. 4 shows a schematic representation of characteristic shear and Dehnungsströmfelder in a product mass P, as in a trained in the prior art mixing and kneading machine 30 through a a kneading stud 42 passing Knethoff 38 occur.
  • the direction of rotation of the kneading blade 38 is schematically indicated by a curved arrow A, while the translational movement of the kneading blade 38 is indicated by a double arrow B. Due to the rotational movement of the kneading blade 38 whose tip divides the product mass P, as indicated by arrows C, D.
  • a maximum approximation of kneading blade 38 and kneading pin 42 is produced per shear cycle by the sinusoidal axial movement of the respective kneading blade 38 on a line and thus a maximum shear rate in the product mass P.
  • An aluminum alloy melt held just above the liquidus temperature of the alloy is metered into the working space 34 alone or together with nanoparticles via the filling opening 50.
  • By crushing the partially solidified aluminum alloy with nanoparticles between the kneading blades 38 and the kneading pin 42 high shear forces are applied, which lead both to the comminution of dendrite branches and cause fine dispersion of the present in the form of agglomerates nanoparticles.
  • An efficient, homogenizing mixing results from the superposition of radial and longitudinal mixing effect.
  • the solid portion of the aluminum alloy in the working space 34 becomes such is set to be in the desired range upon removal of the metal through the outlet port 52.
  • the desired solid content of the aluminum alloy is adjusted by measuring the change in the viscosity of the molten metal in the kneading and mixing machine 30.
  • the viscosity increasing with increasing solid fraction of the partially solid aluminum alloy can be detected, for example, by measuring the rotational resistance on the drive shaft 44 of the worm shaft 36.
  • By determining the rotational resistance for defined fixed fractions it is possible to determine corresponding setpoint values to which measured actual values are regulated by controlling the flow of cold and hot gases through the intermediate space 48 between the inner and outer housing shells 32, 46.
  • the aluminum alloy containing the desired solid fraction and optionally finely dispersed nanoparticles is introduced via the filling opening 16 into the filling chamber 12 of the die casting machine 10 and cyclically shot from the filling chamber 12 into the mold cavity 14 of the casting mold by the piston 20 in a known manner.
  • the aluminum alloy containing the desired solid fraction and optionally finely dispersed nanoparticles is continuously ejected via the outlet opening 52 in the form of a partially solid metal strand 70.
  • partially solid metal portions 72 are cut to length, for example, with a rotating knife.
  • the partially fixed metal portions 72 usually correspond in each case to the production of a single printing element. cast metal required amount of metal and are transferred individually for each shot in the filling chamber 12 of the die casting machine 10 and shot from this intermittently by means of the piston 20 in a known manner from the filling chamber 12 into the mold cavity 14 of the mold.
  • the semi-solid metal strand 70 leaves the mixing and kneading machine 30 in the direction of the longitudinal axis x of the worm shaft 36 in the horizontal direction, but is also another, z. B. vertical, exit direction conceivable.
  • the cross section of the metal strand 70 depends on the cross section of the outlet opening 52 and is usually circular.
  • the partially fixed metal portions 72 can be gripped, for example, with a pair of pliers and transferred into the filling chamber 12 of the die casting machine 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Continuous Casting (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

L'invention concerne un procédé de fabrication de pièces moulées sous pression à base d'un alliage d'aluminium, dans lequel l'alliage d'aluminium est exposé à des forces de cisaillement élevées dans une machine de mélange et de pétrissage (30), comprenant un boîtier (31) doté d'un espace de travail (34) entouré d'une enveloppe de boîtier intérieure (32) et une vis sans fin (36) tournant dans l'enveloppe de boîtier intérieure (32) autour d'un axe longitudinal (x) et se déplaçant en va-et-vient par translation dans l'axe longitudinal (x), dotée d'ailettes de pétrissage (38) et des boulons de pétrissage (38) fixés sur l'enveloppe de boîtier intérieure (32) et dépassant à l'intérieur de l'espace de travail (34), de l'alliage d'aluminium liquide étant amené sur une extrémité du boîtier (31) à l'espace de travail (34) et étant prélevé sur l'autre extrémité du boîtier (31) sur l'espace de travail (34) sous forme d'alliage d'aluminium partiellement rigide à fraction rigide prédéfinie, étant transféré dans une chambre de remplissage (12) d'une machine à coulée sous pression (10) et étant injecté au moyen d'un piston (20) dans un moule de coulée, la fraction rigide de l'alliage d'aluminium dans l'espace de travail (34) étant réglée par refroidissement ciblé et réchauffement ciblé de l'espace de travail (34) sur la fraction rigide prédéfinie.
PCT/EP2010/062089 2010-03-24 2010-08-19 Procédé de fabrication de pièces moulées sous pression WO2011116838A1 (fr)

Priority Applications (14)

Application Number Priority Date Filing Date Title
MX2012010807A MX2012010807A (es) 2010-03-24 2010-08-19 Metodo para producir partes fundidas a presion.
BR112012023916A BR112012023916A2 (pt) 2010-03-24 2010-08-19 processo para a produção de partes fundidas em molde
CN201080065674XA CN102834203A (zh) 2010-03-24 2010-08-19 制造模铸部件的方法
DK10743166.0T DK2393619T3 (da) 2010-03-24 2010-08-19 Fremgangsmåde til fremstilling af trykstøbte dele
US13/634,394 US20130220568A1 (en) 2010-03-24 2010-08-19 Process for Producing Die-Cast Parts
RU2012143377/02A RU2012143377A (ru) 2010-03-24 2010-08-19 Способ изготовления деталей методом литья под давлением
ES10743166T ES2423326T3 (es) 2010-03-24 2010-08-19 Procedimiento para la fabricación de piezas de colada a presión
KR1020127024127A KR20130055563A (ko) 2010-03-24 2010-08-19 다이캐스팅 부품의 제조방법
SI201030249T SI2393619T1 (sl) 2010-03-24 2010-08-19 Postopek izdelave pod pritiskom vlitih delov
PL10743166T PL2393619T3 (pl) 2010-03-24 2010-08-19 Metoda wytwarzania elementów odlewanych ciśnieniowo
AU2010349399A AU2010349399A1 (en) 2010-03-24 2010-08-19 Method for producing die-cast parts
EP10743166A EP2393619B1 (fr) 2010-03-24 2010-08-19 Procédé de fabrication de pièces moulées sous pression
CA2792432A CA2792432A1 (fr) 2010-03-24 2010-08-19 Procede de fabrication de pieces moulees sous pression
HRP20130605AT HRP20130605T1 (en) 2010-03-24 2013-07-01 Method for producing die-cast parts

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP10157519 2010-03-24
EP10157519.9 2010-03-24

Publications (1)

Publication Number Publication Date
WO2011116838A1 true WO2011116838A1 (fr) 2011-09-29

Family

ID=42167439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/062089 WO2011116838A1 (fr) 2010-03-24 2010-08-19 Procédé de fabrication de pièces moulées sous pression

Country Status (16)

Country Link
US (1) US20130220568A1 (fr)
EP (1) EP2393619B1 (fr)
KR (1) KR20130055563A (fr)
CN (1) CN102834203A (fr)
AU (1) AU2010349399A1 (fr)
BR (1) BR112012023916A2 (fr)
CA (1) CA2792432A1 (fr)
DK (1) DK2393619T3 (fr)
ES (1) ES2423326T3 (fr)
HR (1) HRP20130605T1 (fr)
MX (1) MX2012010807A (fr)
PL (1) PL2393619T3 (fr)
PT (1) PT2393619E (fr)
RU (1) RU2012143377A (fr)
SI (1) SI2393619T1 (fr)
WO (1) WO2011116838A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012152846A1 (fr) 2011-05-11 2012-11-15 Rheinfelden Alloys Gmbh & Co. Kg Système d'étanchéité
EP2564953A1 (fr) * 2011-09-05 2013-03-06 Rheinfelden Alloys GmbH & Co. KG Procédé de production de pièces formées
CN103008610A (zh) * 2012-12-18 2013-04-03 华南理工大学 锌合金蜗轮的挤压铸造方法
AT518825A1 (de) * 2016-05-31 2018-01-15 Lkr Leichtmetallkompetenzzentrum Ranshofen Gmbh Verfahren zur Herstellung eines Profils aus einer Metalllegierung
AT518824A1 (de) * 2016-05-31 2018-01-15 Lkr Leichtmetallkompetenzzentrum Ranshofen Gmbh Verfahren zur Herstellung eines Profils aus einer Metalllegierung
DE102021203642B3 (de) 2021-04-13 2022-09-08 Volkswagen Aktiengesellschaft Lagerkern für ein Gummi-Metalllager, Gummi-Metalllager und Kraftfahrzeug mit einem solchen

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010061959A1 (de) * 2010-11-25 2012-05-31 Rolls-Royce Deutschland Ltd & Co Kg Verfahren zur Herstellung von hochtemperaturbeständigen Triebwerksbauteilen

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH278575A (de) 1949-11-04 1951-10-31 List Heinz Misch- und Knetmaschine.
EP0590402A1 (fr) * 1992-09-29 1994-04-06 MAGNETI MARELLI S.p.A. Procédé pour fabriquer des lingots d'après le procédé Rheocast spécialement pour des pièces d'oeuvre à haute rigidité
EP0645206A1 (fr) * 1993-09-29 1995-03-29 MAGNETI MARELLI S.p.A. Dispositif et procédé pour le moulage par injection d'articles avec un excellent fonctionnement mécanique, d'un métal à l'état de mélange liquide-solide
WO1998016334A2 (fr) * 1996-10-04 1998-04-23 Semi-Solid Technologies, Inc. Appareil et procede destines a la production et au moulage integres de materiau semi-solide
DE19907118C1 (de) * 1999-02-19 2000-05-25 Krauss Maffei Kunststofftech Spritzgießvorrichtung für metallische Werkstoffe
GB2354471A (en) * 1999-09-24 2001-03-28 Univ Brunel Producung semisolid metal slurries and shaped components therefrom
US20010023755A1 (en) * 1995-09-01 2001-09-27 Kaname Kono Method and apparatus for manufacturing light metal alloy
US20030006020A1 (en) * 1998-07-24 2003-01-09 Richard Kevin L. Semi-solid casting apparatus and method
US20030201088A1 (en) * 1998-03-31 2003-10-30 Takata Corporation Method and apparatus for manufacturing metallic parts by injection molding from the semi-solid state
US7509993B1 (en) * 2005-08-13 2009-03-31 Wisconsin Alumni Research Foundation Semi-solid forming of metal-matrix nanocomposites

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2892224A (en) * 1957-05-09 1959-06-30 Nat Lead Co Heating of dies by internal combustion
DE2401654C2 (de) * 1974-01-15 1975-11-20 Matthias 4150 Krefeld Welsch Verfahren und Vorrichtung zur Herstellung von Aluminium
CA2530871A1 (fr) * 2003-07-02 2005-01-13 Honda Motor Co., Ltd. Moulage d'un metal semi-solidifie sous forme de bouillie concentree
PT1815958E (pt) * 2006-02-06 2008-10-28 Buss Ag Máquina de misturar e amassar
CN101070571B (zh) * 2006-05-12 2011-04-20 日精树脂工业株式会社 制造碳纳米材料和金属材料的复合材料的方法
JP4224083B2 (ja) * 2006-06-15 2009-02-12 日精樹脂工業株式会社 複合金属材料の製造方法及び複合金属成形品の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH278575A (de) 1949-11-04 1951-10-31 List Heinz Misch- und Knetmaschine.
EP0590402A1 (fr) * 1992-09-29 1994-04-06 MAGNETI MARELLI S.p.A. Procédé pour fabriquer des lingots d'après le procédé Rheocast spécialement pour des pièces d'oeuvre à haute rigidité
EP0645206A1 (fr) * 1993-09-29 1995-03-29 MAGNETI MARELLI S.p.A. Dispositif et procédé pour le moulage par injection d'articles avec un excellent fonctionnement mécanique, d'un métal à l'état de mélange liquide-solide
US20010023755A1 (en) * 1995-09-01 2001-09-27 Kaname Kono Method and apparatus for manufacturing light metal alloy
WO1998016334A2 (fr) * 1996-10-04 1998-04-23 Semi-Solid Technologies, Inc. Appareil et procede destines a la production et au moulage integres de materiau semi-solide
US20030201088A1 (en) * 1998-03-31 2003-10-30 Takata Corporation Method and apparatus for manufacturing metallic parts by injection molding from the semi-solid state
US20030006020A1 (en) * 1998-07-24 2003-01-09 Richard Kevin L. Semi-solid casting apparatus and method
DE19907118C1 (de) * 1999-02-19 2000-05-25 Krauss Maffei Kunststofftech Spritzgießvorrichtung für metallische Werkstoffe
GB2354471A (en) * 1999-09-24 2001-03-28 Univ Brunel Producung semisolid metal slurries and shaped components therefrom
US7509993B1 (en) * 2005-08-13 2009-03-31 Wisconsin Alumni Research Foundation Semi-solid forming of metal-matrix nanocomposites

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012152846A1 (fr) 2011-05-11 2012-11-15 Rheinfelden Alloys Gmbh & Co. Kg Système d'étanchéité
EP2564953A1 (fr) * 2011-09-05 2013-03-06 Rheinfelden Alloys GmbH & Co. KG Procédé de production de pièces formées
WO2013034383A1 (fr) * 2011-09-05 2013-03-14 Rheinfelden Alloys Gmbh & Co. Kg Procédé pour produire des pièces moulées
CN103008610A (zh) * 2012-12-18 2013-04-03 华南理工大学 锌合金蜗轮的挤压铸造方法
CN103008610B (zh) * 2012-12-18 2015-05-27 华南理工大学 锌合金蜗轮的挤压铸造方法
AT518825A1 (de) * 2016-05-31 2018-01-15 Lkr Leichtmetallkompetenzzentrum Ranshofen Gmbh Verfahren zur Herstellung eines Profils aus einer Metalllegierung
AT518824A1 (de) * 2016-05-31 2018-01-15 Lkr Leichtmetallkompetenzzentrum Ranshofen Gmbh Verfahren zur Herstellung eines Profils aus einer Metalllegierung
DE102021203642B3 (de) 2021-04-13 2022-09-08 Volkswagen Aktiengesellschaft Lagerkern für ein Gummi-Metalllager, Gummi-Metalllager und Kraftfahrzeug mit einem solchen

Also Published As

Publication number Publication date
ES2423326T3 (es) 2013-09-19
RU2012143377A (ru) 2014-05-10
PL2393619T3 (pl) 2013-09-30
CN102834203A (zh) 2012-12-19
EP2393619A1 (fr) 2011-12-14
EP2393619B1 (fr) 2013-04-03
SI2393619T1 (sl) 2013-08-30
DK2393619T3 (da) 2013-07-08
BR112012023916A2 (pt) 2016-08-02
AU2010349399A1 (en) 2012-09-27
PT2393619E (pt) 2013-07-09
CA2792432A1 (fr) 2011-09-29
HRP20130605T1 (en) 2013-08-31
KR20130055563A (ko) 2013-05-28
MX2012010807A (es) 2013-01-22
US20130220568A1 (en) 2013-08-29

Similar Documents

Publication Publication Date Title
EP2393619B1 (fr) Procédé de fabrication de pièces moulées sous pression
DE69916708T2 (de) Verfahren und Vorrichtung zum Spritzgiessen halbflüssiger Metalle
WO2000049192A1 (fr) Procede de fabrication d'une matiere composite a matrice metallique et dispositif de mise en oeuvre dudit procede
EP0718059B1 (fr) Décrotteur d'oxyde
DE102004041770A1 (de) Vorrichtung und ein Verfahren zur Mikropartikulierung von Filtrationsretentaten
DE60107690T2 (de) Verfahren und vorrichtung zur herstellung von metall-legierungs-gussteilen
DE10062310C2 (de) Verfahren zur Behandlung metallischer Werkstoffe
DE69916707T2 (de) Verfahren und Vorrichtung zum Spritzgiessen halbflüssiger Metalle
DE3525872C2 (fr)
EP2586546A1 (fr) Procédé de fabrication de noyaux de sel
DE1961970A1 (de) Vorrichtung zum Mischen und Plastifizieren von Kunststoffen,Kautschuk und anderen hochviskosen Materialien unter Einwirkung von regelbaren Druck-,Friktions- und Scherkraeften
EP3251768A1 (fr) Procédé de fabrication d'un profilé en alliage métallique
EP3013500B1 (fr) Procédé permettant de produire un rotor d'un turbocompresseur
DE3130968C2 (fr)
DE102007020638B4 (de) Schleudergießverfahren und Anordnung für eine Schleudergießvorrichtung
EP1661974B1 (fr) Procédé pour la fabrication des bougies
DE19918229C2 (de) Verfahren zum Herstellen von Rohlingen für Zylinderlaufbüchsen
EP0422173B1 (fr) Procede et dispositif pour produire des poudres de charge propulsive monobasiques en utilisant un alcool ou un ether en tant que solvant
EP3251766A1 (fr) Procédé et appareil d'extrusion d'un profilé en alliage métallique
DE60210126T2 (de) Herstellung von ausgangsmaterial zur verformung in halbfestem zustand
CH704535A2 (de) Misch- und Knetmaschine für kontinuierliche Aufbereitungsprozesse.
EP1349686A1 (fr) Procede d'obtention d'une suspension d'alliage partiellement solidifiee et dispositifs y relatifs
EP0940206A1 (fr) Décrotteur d'oxyde
DE19918228C2 (de) Verfahren zum Herstellen von Rohlingen für Zylinderlaufbüchsen
DE19918231C2 (de) Verfahren zum Herstellen von Rohlingen für Zylinderlaufbüchsen

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080065674.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010743166

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10743166

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010349399

Country of ref document: AU

Ref document number: 2503/KOLNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2792432

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20127024127

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2012/010807

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2010349399

Country of ref document: AU

Date of ref document: 20100819

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012143377

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 13634394

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1201004959

Country of ref document: TH

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012023916

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012023916

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120921