WO2011115376A2 - 세퍼레이터 및 이를 구비한 전기화학소자 - Google Patents
세퍼레이터 및 이를 구비한 전기화학소자 Download PDFInfo
- Publication number
- WO2011115376A2 WO2011115376A2 PCT/KR2011/001393 KR2011001393W WO2011115376A2 WO 2011115376 A2 WO2011115376 A2 WO 2011115376A2 KR 2011001393 W KR2011001393 W KR 2011001393W WO 2011115376 A2 WO2011115376 A2 WO 2011115376A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- meth
- acrylate
- separator
- inorganic particles
- acrylamide
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/446—Composite material consisting of a mixture of organic and inorganic materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/431—Inorganic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/443—Particulate material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
- H01M50/454—Separators, membranes or diaphragms characterised by the material having a layered structure comprising a non-fibrous layer and a fibrous layer superimposed on one another
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
- H01M50/457—Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
- H01M50/491—Porosity
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a separator of an electrochemical device such as a lithium secondary battery and an electrochemical device having the same, and more particularly, a separator including a porous coating layer formed of a mixture of inorganic particles and a binder polymer on a porous substrate surface, and a separator. It relates to an electrochemical device.
- lithium secondary batteries developed in the early 1990s among the currently applied secondary batteries have a higher operating voltage and significantly higher energy density than conventional batteries such as Ni-MH, Ni-Cd, and sulfuric acid-lead batteries that use an aqueous electrolyte solution. It is attracting attention as an advantage.
- Electrochemical devices such as lithium rechargeable batteries are produced by many companies, but their safety characteristics are different. Ensuring the safety of these electrochemical devices is very important. The most important consideration is that an electrochemical device should not cause injury to the user in case of malfunction. For this purpose, safety standards strictly regulate the ignition and smoke in the electrochemical device. In the safety characteristics of the electrochemical device, there is a high possibility that an explosion occurs when the electrochemical device is overheated to cause thermal runaway or the separator penetrates. In particular, polyolefin-based porous substrates commonly used as separators for electrochemical devices exhibit extreme heat shrinkage behavior at temperatures of 100 degrees or more due to material characteristics and manufacturing process characteristics including stretching, and thus, a short circuit between the anode and the cathode. There is a problem that causes.
- Korean Patent Publication No. 10-2007-231 Korean Patent Publication No. 10-2007-231, etc., at least one surface of the porous substrate 1 having a plurality of pores, inorganic particles (3) and a binder polymer (A separator 10 is proposed in which a mixture of 5) is coated to form a porous coating layer (see FIG. 1).
- the inorganic particles 3 in the porous coating layer coated on the porous substrate 1 serve as a kind of spacer that can maintain the physical form of the porous coating layer so that the porous substrate is thermally contracted when the electrochemical device is overheated. Will be suppressed.
- the binder polymer 5 fixes the inorganic particles 3 in contact with the porous substrate 1 to the porous substrate 1 while fixing the inorganic particles 3 to each other.
- inorganic particles in order for the porous coating layer coated on the separator to suppress heat shrinkage of the porous substrate, inorganic particles must be sufficiently contained in a predetermined amount or more.
- the content of the inorganic particles increases, the content of the binder polymer becomes relatively small. Accordingly, the inorganic particles of the porous coating layer may be detached by the stress generated during the assembly process of the electrochemical device such as winding. Desorbed inorganic particles act as local defects of the electrochemical device, which adversely affects the safety of the electrochemical device. Therefore, there is a need for the development of a binder polymer that can enhance the adhesion of the porous coating layer to the porous substrate.
- the thickness of the separator to increase the capacity of the electrochemical device is limited because the porous coating layer must be formed thicker so that the function of the porous coating layer can be performed.
- the technical problem to be solved by the present invention is to solve the above-mentioned problems, exhibit a high packing density, easy to realize thinning of the battery without impairing stability, and good adhesion to the porous substrate, thereby assembling the electrochemical device.
- the problem that the inorganic particles are detached from the improved separator provided with a porous coating layer is to provide an electrochemical device having the same.
- the separator of the present invention (A) a porous substrate having pores; And (B) a porous coating layer formed on at least one surface of the porous substrate, including a mixture of inorganic particles and a binder polymer,
- the binder polymer comprises (a) a first monomer unit comprising at least one or more of an amine group or an amide group and (b) a second monomer unit of (meth) acrylate having an alkyl group having 1 to 14 carbon atoms. It contains the copolymer containing.
- the content of the first monomer unit is 10 to 80 mol% based on the entire copolymer, and the content of the second monomer unit is preferably 20 to 90 mol%.
- the copolymer further comprises (c) a third monomer unit containing a cyano group, and the content of the preferred third monomer unit is 5 to 50 mol% based on the entire copolymer. to be.
- the copolymer is preferably crosslinked with each other by the crosslinkable functional group by including a monomer unit having a crosslinkable functional group.
- the content of the binder polymer is preferably 2 to 30 parts by weight based on 100 parts by weight of the inorganic particles, and D, which is a packing density of the porous coating layer provided in the separator, is 0.40 ⁇ D inorg ⁇ D ⁇ 0.70. It is preferable to exist in the range of xD inorg .
- D (Sg-Fg) / (St-Et)
- Sg is the weight (g) of the unit area (m 2 ) of the separator having the porous coating layer formed on the porous substrate
- Fg is the unit area (m) of the porous substrate.
- 2 ) is the weight (g)
- St is the thickness ( ⁇ m) of the separator in which the porous coating layer is formed on the porous substrate
- Ft is the thickness ( ⁇ m) of the porous substrate.
- Such a separator of the present invention may be interposed between an anode and a cathode to be used in an electrochemical device such as a lithium secondary electron or a super capacitor device.
- the separator of the present invention has a high packing density of the porous coating layer, and shows good adhesion to the porous substrate. Accordingly, the resistance is reduced and the electrochemical device thin film can be easily realized without inhibiting stability, thereby increasing the capacity of the electrochemical device. In addition, the problem that the inorganic particles in the porous coating layer is detached due to resistance to thermal and mechanical impact is improved.
- FIG. 1 is a schematic cross-sectional view of a separator having a porous coating layer.
- the separator of the present invention comprises: (A) a porous substrate having pores; And (B) a porous coating layer formed on at least one surface of the porous substrate including a mixture of inorganic particles and a binder polymer, wherein the binder polymer includes (a) at least one of an amine group or an amide group in a side chain thereof. And a copolymer comprising a first monomer unit and (b) a second monomer unit of (meth) acrylate having an alkyl group having 1 to 14 carbon atoms.
- Such a copolymer may be represented by (first monomer unit) m ⁇ (second monomer unit) n (0 ⁇ m ⁇ 1, 0 ⁇ n ⁇ 1), which includes a first monomer unit and a second monomer unit If it is a copolymer, the form of all copolymers, such as a random copolymer and a block copolymer, is included.
- the first monomer unit and the second monomer unit included in the copolymer impart high adhesion between the inorganic material or between the inorganic material and the porous substrate.
- the porous coating layer formed using the same has little defect and shows a high packing density. Accordingly, when the separator of the present invention is used, it is easy to realize thinning of the battery, high stability against external impact, and desorption of inorganic particles. The phenomenon is improved.
- the first monomer unit containing at least one of an amine group or an amide group in the side chain may be 2-(((butoxyamino) carbonyl) oxy) ethyl (meth) acrylate, 2- (diethylamino) ethyl ( Meth) acrylate, 2- (dimethylamino) ethyl (meth) acrylate, 3- (diethylamino) propyl (meth) acrylate, 3- (dimethylamino) propyl (meth) acrylate, methyl 2-acetoami Degree (meth) acrylate, 2- (meth) acrylamidoglycolic acid, 2- (meth) acrylamido-2-methyl-1-propanesulfonic acid, (3- (meth) acrylamidopropyl) trimethyl ammonium Chloride, N- (meth) acryloylamido-ethoxyethanol, 3- (meth) acryloyl amino-1-propanol, N
- the second monomer unit of (meth) acrylate having an alkyl group having 1 to 14 carbon atoms (methyl) methacrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl ( Meta) acrylate, n-butyl (meth) acrylate, t-butyl (meth) acrylate, sec-butyl (meth) acrylate, pentyl (meth) acrylate, 2-ethylbutyl (meth) acrylate, 2 -Ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate, isononyl (meth) acrylate, lauryl (meth) acrylate, tetradecyl (meth) acrylate, etc.
- the packing density of the porous coating layer may be lowered because the alkyl group becomes too long and the nonpolarity becomes large.
- the content of the first monomer unit is preferably 10 to 80 mol%, more preferably 15 to 80 mol% based on the entire copolymer. If the content is less than 10 mol%, the packing density and adhesion of the porous coating layer may be lowered. If the content exceeds 80 mol%, the electrical resistance may be excessively increased as the packing density of the porous coating layer is excessively increased.
- the content of the second monomer unit is preferably 20 to 90 mol% based on the entire copolymer. If the content is less than 20 mol%, the adhesion to the porous substrate may be lowered. If the content is more than 90 mol%, the packing property of the porous coating layer may be lowered as the content of the first monomer unit is lowered.
- the copolymer further comprises (c) a third monomer unit containing a cyano group, wherein the third monomer unit is ethyl cis- (beta-cyano) (meth) Acrylate, (meth) acrylonitrile, 2- (vinyloxy) ethanenitrile, 2- (vinyloxy) propanenitrile, cyanomethyl (meth) acrylate, cyanoethyl (meth) acrylate, cyanopropyl ( Meth) acrylate, etc. are mentioned.
- the content of the preferred third monomer unit is 5 to 50 mol% based on the entire copolymer.
- the copolymer is preferably crosslinked with each other by the crosslinkable functional group by including a monomer unit having a crosslinkable functional group.
- a crosslinkable functional group a hydroxyl group, a primary amine group, a secondary amine group, an acidic group, an epoxy group, an oxetane group, an imidazole group, an oxazoline group, etc. can be illustrated,
- the monomer which has such a crosslinkable functional group is mentioned.
- 1 to 20 mol% may be further copolymerized, and then a curing agent such as an isocyanate compound, an epoxy compound, an oxetane compound, an aziridine compound, or a metal chelating agent may be added to crosslink the copolymers with each other.
- a curing agent such as an isocyanate compound, an epoxy compound, an oxetane compound, an aziridine compound, or a metal chelating agent may be added to crosslink the copolymers with each other.
- the copolymer described above may further include other monomer units within the scope of not impairing the object of the present invention.
- alkoxy diethylene glycol (meth) acrylic acid ester having 1 to 8 carbon atoms alkoxy triethylene glycol (meth) acrylic acid ester, alkoxy tetraethylene glycol (meth) acrylic acid ester, phenoxy (Meth) acrylic acid alkylene oxide adducts such as diethylene glycol (meth) acrylic acid esters, alkoxy dipropylene glycol (meth) acrylic acid esters, alkoxy tripropylene glycol (meth) acrylic acid esters, phenoxy dipropylene glycol (meth) acrylic acid esters And the like can be further copolymerized.
- binder polymer it will be apparent to those skilled in the art that a binder polymer may be used in combination with the above-described copolymer without departing from the object of the present invention.
- the inorganic particles used for forming the porous coating layer are not particularly limited as long as they are electrochemically stable. That is, the inorganic particles that can be used in the present invention are not particularly limited as long as the oxidation and / or reduction reactions do not occur in the operating voltage range (for example, 0 to 5 V on the basis of Li / Li + ) of the applied electrochemical device. In particular, in the case of using the inorganic particles having the ion transport ability, it is possible to improve the performance by increasing the ion conductivity in the electrochemical device.
- the ionic conductivity of the electrolyte may be improved by contributing to an increase in the dissociation degree of the electrolyte salt such as lithium salt in the liquid electrolyte.
- the inorganic particles preferably include high dielectric constant inorganic particles having a dielectric constant of 5 or more, preferably 10 or more, inorganic particles having a lithium ion transfer ability, or a mixture thereof.
- inorganic particles having a dielectric constant of 5 or more include BaTiO 3 , Pb (Zr x , Ti 1-x ) O 3 (PZT), Pb 1-x La x Zr 1-y Ti y O 3 (PLZT, where , 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1), (1-x) Pb (Mg 1/3 Nb 2/3 ) O 3 -xPbTiO 3 (PMN-PT), Hafnia (HfO 2 ), SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, ZnO, ZrO 2 , Y 2 O 3 , Al 2 O 3 , SiC, TiO 2, etc. may be used
- it has piezoelectricity, in which electric charge is generated when tension or compression is applied by applying a constant pressure, and a potential difference occurs between both sides, thereby preventing internal short circuit of both electrodes due to external impact.
- synergistic effects of the high dielectric constant inorganic particles and the inorganic particles having lithium ion transfer ability may be doubled.
- the inorganic particles having a lithium ion transfer capacity refers to an inorganic particle containing lithium element but having a function of transferring lithium ions without storing lithium, and the inorganic particles having a lithium ion transfer capacity are formed inside the particle structure. Since lithium ions can be transferred and transported due to a kind of defect present, lithium ion conductivity in the battery is improved, thereby improving battery performance.
- Non-limiting examples of the inorganic particles having a lithium ion transfer capacity is lithium phosphate (Li 3 PO 4 ), lithium titanium phosphate (Li x Ti y (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3) , Lithium aluminum titanium phosphate (Li x Al y Ti z (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 3), 14Li 2 O-9Al 2 O 3 -38TiO 2 -39P (LiAlTiP) x O y series glass such as 2 O 5 (0 ⁇ x ⁇ 4, 0 ⁇ y ⁇ 13), lithium lanthanum titanate (Li x La y TiO 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3 ), Li germanium thiophosphate such as Li 3.25 Ge 0.25 P 0.75 S 4 (Li x Ge y P z S
- the average particle diameter of the inorganic particles of the porous coating layer is not limited, but in order to form a coating layer with a uniform thickness and an appropriate porosity, it is preferable to be in the range of 0.001 to 10 ⁇ m as much as possible. If it is less than 0.001 ⁇ m dispersibility is not easy to control the physical properties of the separator, if it exceeds 10 ⁇ m the thickness of the porous coating layer may increase the mechanical properties, and due to too large pore size battery charge The probability of internal short circuit during discharge increases.
- the content of the binder polymer of the porous coating layer coated on the separator according to the present invention is preferably 2 to 30 parts by weight, more preferably 5 to 15 parts by weight based on 100 parts by weight of the inorganic particles.
- the content of the binder polymer is less than 2 parts by weight, problems such as desorption of inorganic materials may occur.
- the binder polymer may block pores of the porous substrate to increase resistance and reduce the porosity of the porous coating layer. have.
- the packing density D of the porous coating layer may be defined as the density of the porous coating layer loaded at a height of 1 ⁇ m per unit area (m 2 ) of the porous substrate, where D is 0.40 ⁇ D inorg ⁇ D It is preferred to be in the range of ⁇ 0.70 ⁇ D inorg :
- Sg is the weight (g) of the unit area (m 2 ) of the separator in which the porous coating layer is formed on the porous substrate,
- Fg is the weight (g) of the unit area (m 2 ) of the porous substrate
- St is the thickness ( ⁇ m) of the separator where the porous coating layer is formed on the porous substrate
- Ft is the thickness of the porous substrate ( ⁇ m)
- D inorg is the density (g / m 2 ⁇ ⁇ m) of the inorganic particles used. If two or more kinds of inorganic particles are used, D inorg is calculated by reflecting the density and the fraction of each inorganic particle used.
- D is less than the lower limit described above, the structure of the porous coating layer may be loosened, and thus the heat shrinkage inhibiting function of the porous substrate may be reduced, and the resistance to mechanical impact may also be reduced.
- D exceeds the aforementioned upper limit, physical properties due to an increase in packing density may be improved, but the porosity of the porous coating layer may be lowered, thereby lowering the electrical conductivity of the separator.
- the thickness of the porous coating layer composed of inorganic particles and a binder polymer is not particularly limited, but is preferably in the range of 0.5 to 10 ⁇ m.
- the porous substrate having a plurality of pores includes polyolefin, polyethylene terephthalate, polybutylene terephthalate, polyacetal, polyamide, polycarbonate, polyimide, polyether ether ketone, polyether sulfone It can be used as long as it can be commonly used as a porous substrate of the electrochemical device, such as a porous substrate formed of at least one of polyphenylene oxide, polyphenylene sulfide, polyethylene naphthalene. As a porous substrate. Both film and nonwoven forms can be used.
- the thickness of the porous substrate is not particularly limited, but is preferably 5 to 50 ⁇ m, and the pore size and pore present in the porous substrate are also not particularly limited, but are preferably 0.01 to 50 ⁇ m and 10 to 95%, respectively.
- a copolymer including the aforementioned first monomer unit and the second monomer unit is prepared, and dissolved in a solvent to prepare a binder polymer solution.
- inorganic particles are added and dispersed in a solution of the binder polymer.
- the solubility index is similar to that of the binder polymer to be used, and the boiling point is preferably low. This is to facilitate uniform mixing and subsequent solvent removal.
- solvents include acetone, tetrahydrofuran, methylene chloride, chloroform, dimethylformamide, N-methyl-2-pyrrolidone ( N-methyl-2-pyrrolidone, NMP), cyclohexane, water or a mixture thereof.
- the crushing time is suitably 1 to 20 hours, the average particle diameter of the crushed inorganic particles is preferably 0.001 to 10 ⁇ m as mentioned above.
- the shredding method a conventional method can be used, and a ball mill method is particularly preferable.
- Coating the solution of the binder polymer in which the inorganic particles are dispersed on the porous substrate may be a conventional coating method known in the art, for example, dip coating, die coating, roll Various methods such as coating, comma coating, or a mixture thereof can be used.
- the porous coating layer may be selectively formed only on both sides or one side of the porous substrate.
- the separator of the present invention prepared as described above may be used as a separator of an electrochemical device. That is, the separator of the present invention can be usefully used as the separator interposed between the positive electrode and the negative electrode.
- Electrochemical devices include all devices that undergo an electrochemical reaction, and specific examples include capacitors such as all kinds of primary, secondary cells, fuel cells, solar cells, or supercapacitor elements.
- a lithium secondary battery including a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery or a lithium ion polymer secondary battery among the secondary batteries is preferable.
- the electrochemical device may be manufactured according to conventional methods known in the art, and for example, may be manufactured by injecting an electrolyte after lamination between the positive electrode and the negative electrode through the above-described separator. .
- the electrode to be applied with the separator of the present invention is not particularly limited, and according to a conventional method known in the art, the electrode active material may be prepared in a form bound to the electrode current collector.
- the positive electrode active material of the electrode active material may be a conventional positive electrode active material that can be used for the positive electrode of the conventional electrochemical device, in particular lithium manganese oxide, lithium cobalt oxide, lithium nickel oxide, lithium iron oxide, lithium iron It is preferable to use an oxide or a lithium composite oxide in combination thereof.
- Non-limiting examples of the negative electrode active material may be a conventional negative electrode active material that can be used for the negative electrode of the conventional electrochemical device, in particular lithium metal or lithium alloys, carbon, petroleum coke, activated carbon, Lithium adsorbents such as graphite or other carbons are preferred.
- Non-limiting examples of the positive electrode current collector is a foil made by aluminum, nickel or a combination thereof, and non-limiting examples of the negative electrode current collector by copper, gold, nickel or copper alloy or a combination thereof Foils produced.
- Electrolyte that may be used in the present invention is A + B - A salt of the structure, such as, A + is Li +, Na +, K + comprises an alkaline metal cation or an ion composed of a combination thereof, such as, and B - is PF 6 -, BF 4 -, Cl - , Br -, I -, ClO 4 -, AsF 6 -, CH 3 CO 2 -, CF 3 SO 3 -, N (CF 3 SO 2) 2 -, C (CF 2 SO 2 )
- Salts containing ions consisting of anions such as 3 - or combinations thereof include propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl carbonate (DPC) , Dimethyl sulfoxide, acetonitrile, dimethoxyethane, diethoxyethane, tetrahydrofuran, N-methyl-2-pyrrolidone (
- the electrolyte injection may be performed at an appropriate stage of the battery manufacturing process, depending on the manufacturing process and the required physical properties of the final product. That is, it may be applied before the battery assembly or at the end of battery assembly.
- the separator of the present invention As a process of applying the separator of the present invention to a battery, a lamination (stacking) and folding (folding) process of the separator and the electrode is possible in addition to the general winding process. Since the separator of the present invention has excellent peeling resistance, the inorganic particles are not detached well in the battery assembly process described above.
- DMAAm is NN-dimethylacrylamide (N, N-dimethylacrylamide)
- DMAEA is NN-dimethylaminoethyl acrylate (N, N-dimethylaminoethyl acrylate)
- AN is acrylonitrile
- EA is ethyl acrylate
- BA is n-butyl acrlate
- IBA isobutyl acrlate
- AA is acrylic acid
- HBA is hydroxy Hydroxybutyl acrlate.
- the particle diameter of the inorganic particles of the slurry thus prepared may be controlled according to the size (particle size) and ball mill time of the beads used in the ball mill, but in Example 1, the slurry was pulverized to about 400 nm.
- the slurry thus prepared was coated on both or one side of a polyethylene porous membrane (porosity 45%) having a thickness of 12 ⁇ m.
- the air permeability, heat shrinkage, peel strength, packing density D of the porous coating layer were measured according to the following method, and are shown in Table 2 below.
- the air permeability was evaluated by the time taken for the separator to fully pass 100 ml of air (s).
- the thermal contraction rate stored the separator for 1 hour at 150 degree
- Peeling force is fixed on the glass plate using a double-sided tape, and then firmly fixed the tape (3M transparent tape) to the exposed porous coating layer, and then the force required to peel off the tape using the strength measurement device (gf / 15mm Evaluated
- N-methyl-2, a solvent was prepared by using carbon powder as a negative electrode active material, polyvinylidene fluoride (PVdF) as a binder, and carbon black as a conductive material, respectively, at 96%, 3%, and 1% by weight.
- a negative electrode mixture slurry was prepared by adding to Rollidone (NMP). The negative electrode mixture slurry was coated on a copper (Cu) thin film, which is a negative electrode current collector having a thickness of 10 ⁇ m, to prepare a negative electrode through drying, and then roll press was performed.
- PVdF polyvinylidene fluoride
- Cu copper
- a lithium cobalt composite oxide as a positive electrode active material 92% by weight of a lithium cobalt composite oxide as a positive electrode active material, 4% by weight of carbon black as a conductive material, and 4% by weight of PVDF as a binder were added to N-methyl-2 pyrrolidone (NMP) as a solvent to slurry a positive electrode mixture.
- NMP N-methyl-2 pyrrolidone
- the positive electrode mixture slurry was applied to an aluminum (Al) thin film of a positive electrode current collector having a thickness of 20 ⁇ m, and a positive electrode was manufactured by drying, followed by roll press.
- LiPF6 lithium hexa 1 mole of fluorophosphate
- the manufactured battery was tested for hot box test and cycle performance at 60 ° C., and the results are shown in Tables 3 and 4, respectively.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Cell Separators (AREA)
- Laminated Bodies (AREA)
- Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
단량체 종류 | 공중합체 1 | 공중합체 2 | 공중합체 3 | 공중합체 4 | 공중합체 5 | 공중합체 6 |
DMAAm | 40 | 31 | 60 | 20 | - | - |
DMAEA | 20 | 4 | - | - | 35 | - |
AN | 40 | 15 | - | 10 | 15 | 30 |
EA | - | 46 | 10 | 66 | 30 | 30 |
BA | - | - | 10 | 28 | 20 | |
IBA | - | - | 16 | - | - | 20 |
AA | - | 4 | 4 | 4 | - | - |
HBA | - | - | - | - | 2 | - |
실시예 | 비교예 | ||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 1 | 2 | 3 | 4 | |
사용된 공중합체의 번호 | 1 | 2 | 2 | 3 | 4 | 5 | 1 | 6 | PVdF-HFP | PVdF-HFP | PVdF-HFP |
무기물 입자 | Al2O3 | Al2O3 | Al2O3 | Al2O3 | Al2O3 | Al2O3 | Al2O3+BaTiO3 | Al2O3 | Al2O3 | Al2O3 | Al2O3 |
경화제 | - | epoxy | epoxy | epoxy | epoxy | isocyanate | - | - | - | - | |
다공성 코팅층 형태(한면의 두께, ㎛) | 양면(3) | 양면(2) | 단면(2) | 양면(3) | 양면(2) | 양면(3) | 양면(2) | 양면(3) | 양면(4) | 양면(2) | 단면(3) |
통기도(s/100ml) | 380 | 364 | 332 | 420 | 380 | 395 | 374 | 345 | 380 | 323 | 344 |
열수축율(%) | <4 | <5 | <8 | <4 | <10 | <5 | <6 | >34 | >20 | >60 | >62 |
박리력(gf/15mm) | 62 | 42 | 44 | 56 | 40 | 43 | 66 | 15 | 17 | 15 | 17 |
패킹밀도(D) | 0.59×Dinorg | 0.55×Dinorg | 0.51×Dinorg | 0.58×Dinorg | 0.46×Dinorg | 0.56×Dinorg | 0.55×Dinorg | 0.36×Dinorg | 0.39×Dinorg | 0.34×Dinorg | 0.37×Dinorg |
실시예 | 비교예 | ||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 1 | 2 | 3 | 4 | |
150℃, 1시간 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ |
150℃, 2시간 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ |
160℃, 1시간 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | 폭발 |
160℃, 2시간 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | 폭발 | 폭발 | 폭발 | 폭발 |
실시예 | 비교예 | ||||||||||
사이클회수 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 1 | 2 | 3 | 4 |
100 | 97% | 99% | 98% | 99% | 97% | 99% | 99% | 95% | 95% | 93% | 95% |
200 | 95% | 96% | 95% | 97% | 96% | 96% | 96% | 91% | 90% | 89% | 91% |
300 | 93% | 93% | 92% | 94% | 93% | 93% | 92% | 88% | 88% | 85% | 88% |
Claims (17)
- (A) 기공들을 갖는 다공성 기재; 및(B) 상기 다공성 기재의 적어도 일면 위에 무기물 입자들과 바인더 고분자의 혼합물을 포함하여 형성된 다공성 코팅층을 구비하고,상기 바인더 고분자는 (a) 측쇄에 아민기 또는 아마이드기 중 적어도 하나 이상을 포함하는 제1 단량체 유니트 및 (b) 탄소수가 1 내지 14인 알킬기를 갖는 (메타)아크릴레이트로 된 제2 단량체 유니트를 포함하는 공중합체를 함유하는 세퍼레이터.
- 제 1항에 있어서,상기 제1 단량체 유니트의 함량은 공중합체 전체를 기준으로 10 내지 80 몰%이고, 상기 제2 단량체 유니트의 함량은 20 내지 90 몰%인 것을 특징으로 하는 세퍼레이터.
- 제 1항에 있어서,상기 제1 단량체 유니트는 2-(((부톡시아미노)카보닐)옥시)에틸(메타)아크릴레이트, 2-(디에틸아미노)에틸(메타)아크릴레이트, 2-(디메틸아미노)에틸(메타)아크릴레이트, 3-(디에틸아미노)프로필(메타)아크릴레이트, 3-(디메틸아미노)프로필(메타)아크릴레이트, 메틸 2-아세토아미도(메타)아크릴레이트, 2-(메타)아크릴아미도글리콜산, 2-(메타)아크릴아미도-2-메틸-1-프로판설폰산, (3-(메타)아크릴아미도프로필)트리메틸 암모늄 클로라이드, N-(메타)아크릴로일아미도-에톡시에탄올, 3-(메타)아크릴로일 아미노-1-프로판올, N-(부톡시메틸)(메타)아크릴로아마이드, N-tert-부틸(메타)아크릴아마이드, 디아세톤(메타)아크릴아마이드, N,N-디메틸(메타)아크릴아마이드, N-(이소부톡시메틸)아크릴아마이드, N-(이소프로필)(메타)아크릴아마이드, (메타)아크릴아마이드, N-페닐(메타)아크릴아마이드, N-(트리스(히드록시메틸)메틸)(메타)아크릴아마이드, N-N'-(1,3-페닐렌)디말레이미드, N-N'-(1,4-페닐렌)디말레이미드, N-N'-(1,2-디하이드록시에틸렌)비스아크릴아마이드, N-N'-에틸렌비스(메타)아크릴아마이드 및 N-비닐피롤리디논으로 이루어진 군으로부터 선택된 적어도 어느 하나인 것을 특징으로 하는 세퍼레이터.
- 제 1항에 있어서,상기 제2 단량체 유니트는 (메틸)메타 아크릴레이트, 에틸(메타)아크릴레이트, n-프로필 (메타)아크릴레이트, 이소프로필 (메타)아크릴레이트, n-부틸 (메타)아크릴레이트, t-부틸 (메타)아크릴레이트, sec-부틸 (메타)아크릴레이트, 펜틸 (메타)아크릴레이트, 2-에틸부틸 (메타)아크릴레이트, 2-에틸헥실 (메타)아크릴레이트, n-옥틸 (메타)아크릴레이트, 이소옥틸 (메타)아크릴레이트, 이소노닐 (메타)아크릴레이트, 라우릴 (메타)아크릴레이트 및 테트라데실 (메타)아크릴레이트로 이루어진 군으로부터 선택된 적어도 어느 하나인 것을 특징으로 하는 세퍼레이터.
- 제 1항에 있어서,상기 공중합체는 (c) 시아노기를 포함하는 제3 단량체 유니트를 더 포함하는 것을 특징으로 하는 세퍼레이터.
- 제 5항에 있어서,상기 제3단량체 유니트의 함량은 공중합체 전체를 기준으로 5 내지 50 몰%인 것을 특징으로 하는 세퍼레이터.
- 제 1항에 있어서,상기 공중합체는 가교성 관능기를 갖는 단량체 유니트를 포함하고, 상기 가교성 관능기에 의해 서로 가교된 것을 특징으로 하는 세퍼레이터.
- 제 1항에 있어서,상기 무기물 입자들의 평균 입경은 0.001 내지 10 ㎛인 것을 특징으로 하는 세퍼레이터.
- 제 1항에 있어서,상기 무기물 입자들은 유전율 상수가 5 이상인 무기물 입자, 리튬 이온 전달 능력을 갖는 무기물 입자 및 이들의 혼합물로 이루어진 군으로부터 선택된 것을 특징으로 하는 세퍼레이터.
- 제 9항에 있어서,상기 유전율 상수가 5 이상인 무기물 입자는 BaTiO3, Pb(Zrx,Ti1-x)O3 (PZT), Pb1-xLaxZr1-yTiyO3 (PLZT, 여기서, 0 < x < 1, 0 < y < 1임), (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT), 하프니아(HfO2), SrTiO3, SnO2, CeO2, MgO, NiO, CaO, ZnO, ZrO2, Y2O3, Al2O3, SiC 및 TiO2로 이루어진 군으로부터 선택된 적어도 어느 어느 하나인 것을 특징으로 하는 세퍼레이터.
- 제 9항에 있어서,상기 리튬 이온 전달 능력을 갖는 무기물 입자는 리튬포스페이트(Li3PO4), 리튬티타늄포스페이트(LixTiy(PO4)3, 0 < x < 2, 0 < y < 3), 리튬알루미늄티타늄포스페이트(LixAlyTiz(PO4)3, 0 < x < 2, 0 < y < 1, 0 < z < 3), (LiAlTiP)xOy 계열 glass(0 < x < 4, 0 < y < 13), 리튬란탄티타네이트(LixLayTiO3, 0 < x < 2, 0 < y < 3), 리튬게르마니움티오포스페이트(LixGeyPzSw, 0 < x < 4, 0 < y < 1, 0 < z < 1, 0 < w < 5), 리튬나이트라이드(LixNy, 0 < x < 4, 0 < y < 2), SiS2 (LixSiySz, 0 < x < 3, 0 < y < 2, 0 < z < 4) 계열 glass 및 P2S5 (LixPySz, 0 < x < 3, 0 < y < 3, 0 < z < 7) 계열 glass로 이루어진 군으로부터 선택된 적어도 어느 하나인 것을 특징으로 하는 세퍼레이터.
- 제 1항에 있어서,상기 바인더 고분자의 함량은 상기 무기물 입자 100 중량부를 기준으로 2 내지 30 중량부인 것을 특징으로 하는 세퍼레이터.
- 제 1항에 있어서,상기 다공성 코팅층의 패킹 밀도 D는 0.40×Dinorg ≤ D ≤ 0.70×Dinorg의 범위 내인 것을 특징으로 하는 세퍼레이터:여기서, D = (Sg-Fg)/(St-Et)이고,Sg는 다공성 코팅층이 다공성 기재에 형성된 세퍼레이터의 단위면적(m2)의 무게(g)이고,Fg는 다공성 기재의 단위면적(m2)의 무게(g)이고,St는 다공성 코팅층이 다공성 기재에 형성된 세퍼레이터의 두께(㎛)이고,Ft는 다공성 기재의 두께(㎛)이고,Dinorg은 사용된 무기물 입자의 밀도(g/m2×㎛)이다.
- 제 1항에 있어서,상기 다공성 코팅층의 두께는 0.5 내지 10 ㎛인 것을 특징으로 하는 세퍼레이터.
- 제 1항에 있어서,상기 다공성 기재는 폴리올레핀, 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리아세탈, 폴리아미드, 폴리카보네이트, 폴리이미드, 폴리에테르에테르케톤, 폴리에테르설폰, 폴레페닐렌옥사이드, 폴리페닐렌설파이드 및 폴리에틸렌나프탈렌으로 이루어진 군으로부터 선택된 적어도 어느 하나로 형성된 것을 특징으로 하는 세퍼레이터.
- 양극, 음극, 상기 양극과 음극 사이에 개재된 분리막을 포함하는 전기화학소자에 있어서,상기 분리막이 제 1항 내지 제 15항 중 어느 한 항의 세퍼레이터인 것을 특징으로 하는 전기화학소자.
- 제 16항에 있어서,상기 전기화학소자는 리튬 이차전지인 것을 특징으로 하는 전기화학소자.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11756507.7A EP2549564B1 (en) | 2010-03-17 | 2011-02-28 | Separator and electrochemical device having same |
CN201180024478.2A CN102893427B (zh) | 2010-03-17 | 2011-02-28 | 隔膜及包含该隔膜的电化学装置 |
CA2793246A CA2793246C (en) | 2010-03-17 | 2011-02-28 | Separator and electrochemical device comprising the same |
JP2012558065A JP6208945B2 (ja) | 2010-03-17 | 2011-02-28 | セパレータ及びこれを備えた電気化学素子 |
US13/621,399 US9666849B2 (en) | 2010-03-17 | 2012-09-17 | Separator having improved porous coating layer having high packing density and electrochemical device comprising the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2010-0023891 | 2010-03-17 | ||
KR1020100023891A KR101187767B1 (ko) | 2010-03-17 | 2010-03-17 | 세퍼레이터 및 이를 구비한 전기화학소자 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/621,399 Continuation US9666849B2 (en) | 2010-03-17 | 2012-09-17 | Separator having improved porous coating layer having high packing density and electrochemical device comprising the same |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2011115376A2 true WO2011115376A2 (ko) | 2011-09-22 |
WO2011115376A3 WO2011115376A3 (ko) | 2011-12-01 |
Family
ID=44649690
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2011/001393 WO2011115376A2 (ko) | 2010-03-17 | 2011-02-28 | 세퍼레이터 및 이를 구비한 전기화학소자 |
Country Status (8)
Country | Link |
---|---|
US (1) | US9666849B2 (ko) |
EP (1) | EP2549564B1 (ko) |
JP (1) | JP6208945B2 (ko) |
KR (1) | KR101187767B1 (ko) |
CN (1) | CN102893427B (ko) |
CA (1) | CA2793246C (ko) |
TW (1) | TWI432542B (ko) |
WO (1) | WO2011115376A2 (ko) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012111956A3 (ko) * | 2011-02-15 | 2012-12-20 | 주식회사 엘지화학 | 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자 |
US20130224552A1 (en) * | 2012-02-29 | 2013-08-29 | Ki Chul HONG | Separator including coating layer and battery including the same |
US20130224553A1 (en) * | 2012-02-29 | 2013-08-29 | Ki Chul HONG | Separator including coating layer and battery including the same |
US20130224554A1 (en) * | 2012-02-29 | 2013-08-29 | Ki Chul HONG | Separator including coating layer containing polyimide, and battery including the same |
US20130224556A1 (en) * | 2012-02-29 | 2013-08-29 | Ki Chul HONG | Separator including coating layer of inorganic and organic mixture, and battery including the same |
US20150037652A1 (en) * | 2012-02-24 | 2015-02-05 | Research & Business Foundation Sungkyunkwan University | Separator having improved thermal resistance, and electrochemical device having same |
US20150034249A1 (en) * | 2013-01-16 | 2015-02-05 | Lg Chem, Ltd. | Apparatus for preparing electrode assembly |
US9130215B2 (en) | 2011-02-15 | 2015-09-08 | Lg Chem, Ltd. | Separator, method for producing the same and electrochemical device including the same |
EP2869363A4 (en) * | 2012-10-05 | 2016-04-13 | Lg Chemical Ltd | SEPARATOR AND ELECTROCHEMICAL DEVICE THEREWITH |
CN111033801A (zh) * | 2017-09-29 | 2020-04-17 | 松下知识产权经营株式会社 | 非水电解质二次电池 |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130149589A1 (en) * | 2011-12-07 | 2013-06-13 | Oliver Gronwald | Electrochemical cells comprising a nitrogen-containing polymer |
US9450223B2 (en) | 2012-02-06 | 2016-09-20 | Samsung Sdi Co., Ltd. | Lithium secondary battery |
KR101683212B1 (ko) | 2012-02-07 | 2016-12-06 | 삼성에스디아이 주식회사 | 리튬 이차 전지의 제조 방법 |
JPWO2015008626A1 (ja) * | 2013-07-18 | 2017-03-02 | Jsr株式会社 | 蓄電デバイス用バインダー組成物、蓄電デバイス用スラリー、蓄電デバイス電極、セパレーターおよび蓄電デバイス |
KR101868240B1 (ko) * | 2013-09-24 | 2018-06-15 | 토요잉크Sc홀딩스주식회사 | 비수 이차전지용 바인더, 비수 이차전지용 수지 조성물, 비수 이차전지 세퍼레이터, 비수 이차전지 전극 및 비수 이차전지 |
TWI557169B (zh) | 2013-10-31 | 2016-11-11 | Lg化學股份有限公司 | 有機/無機複合多孔膜以及含有該膜之隔離體與電極結構 |
WO2015076602A1 (ko) * | 2013-11-21 | 2015-05-28 | 삼성에스디아이 주식회사 | 개선된 굴곡강도를 가지는 전극 조립체, 이의 제조 방법 및 이를 포함하는 전기 화학 전지 |
KR20150106810A (ko) | 2013-11-21 | 2015-09-22 | 삼성에스디아이 주식회사 | 분리막 및 이를 이용한 이차 전지 |
JP5877213B2 (ja) * | 2014-01-24 | 2016-03-02 | 旭化成イーマテリアルズ株式会社 | 積層体、蓄電デバイス用セパレータ、蓄電デバイス、リチウムイオン二次電池および共重合体 |
JP6678389B2 (ja) * | 2014-12-26 | 2020-04-08 | 三星エスディアイ株式会社Samsung SDI Co., Ltd. | 二次電池用バインダ、二次電池用セパレータ、及び二次電池 |
US10050246B2 (en) * | 2014-12-26 | 2018-08-14 | Samsug SDI Co., Ltd. | Binder for rechargeable battery, separator for rechargeable battery including same, and rechargeable battery including same |
US11584861B2 (en) | 2016-05-17 | 2023-02-21 | Samsung Sdi Co., Ltd. | Separator for rechargeable battery and rechargeable lithium battery including the same |
CN107785520A (zh) * | 2016-08-29 | 2018-03-09 | 比亚迪股份有限公司 | 一种陶瓷隔膜和锂离子电池及其制备方法 |
CN106229555A (zh) * | 2016-08-31 | 2016-12-14 | 井冈山大学 | 聚合氮杂冠醚涂层隔膜提高锰系锂离子电池使用寿命的方法 |
KR102138258B1 (ko) * | 2016-10-07 | 2020-07-28 | 주식회사 엘지화학 | 리튬이온 이차전지용 분리막 및 이를 포함하는 리튬이온 이차전지 |
CN111149243B (zh) * | 2017-09-28 | 2023-01-06 | 日本瑞翁株式会社 | 二次电池用粘结剂组合物、二次电池用浆料组合物、二次电池用功能层、二次电池用电极层以及二次电池 |
KR102295081B1 (ko) * | 2017-11-17 | 2021-08-27 | 주식회사 엘지에너지솔루션 | 접착력 측정방법 |
KR102414896B1 (ko) * | 2017-11-29 | 2022-07-01 | 에스케이이노베이션 주식회사 | 이차전지용 복합분리막 및 이를 포함하는 리튬이차전지 |
US11489232B2 (en) * | 2017-12-27 | 2022-11-01 | Lg Energy Solution, Ltd. | Method for manufacturing separator, separator formed thereby, and electrochemical device including same |
KR102312278B1 (ko) * | 2018-12-21 | 2021-10-12 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지 |
KR102306447B1 (ko) * | 2018-12-26 | 2021-09-28 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지 |
KR102306446B1 (ko) * | 2018-12-28 | 2021-09-28 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지 |
KR102342669B1 (ko) * | 2019-01-16 | 2021-12-22 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지 |
WO2020190101A1 (ko) * | 2019-03-21 | 2020-09-24 | 주식회사 엘지화학 | 전기화학소자용 분리막 및 이의 제조 방법 |
KR102139884B1 (ko) * | 2019-03-29 | 2020-07-30 | 도레이배터리세퍼레이터필름 한국유한회사 | 폴리올레핀 미세 다공막 |
KR20220155022A (ko) * | 2021-05-14 | 2022-11-22 | 삼성에스디아이 주식회사 | 세퍼레이터, 이를 채용한 리튬이차전지, 및 이의 제조방법 |
KR20230040511A (ko) | 2021-09-16 | 2023-03-23 | 주식회사 엘지에너지솔루션 | 분리막과 전극 사이의 접착력 추산 방법 |
CN113937417B (zh) * | 2021-10-27 | 2022-08-02 | 长园泽晖新能源材料研究院(珠海)有限公司 | 一种光固化改性的锂离子电池隔膜及其制备方法 |
WO2023182119A1 (ja) * | 2022-03-22 | 2023-09-28 | 荒川化学工業株式会社 | 蓄電デバイスセパレータバインダー水溶液、蓄電デバイスセパレータスラリー、蓄電デバイスセパレータ、蓄電デバイスセパレータ/電極積層体及び蓄電デバイス |
WO2023178690A1 (zh) * | 2022-03-25 | 2023-09-28 | 宁德时代新能源科技股份有限公司 | 粘结剂及相关的隔离膜、极片、电池、电池模块、电池包和用电装置 |
EP4365998A4 (en) * | 2022-09-01 | 2024-07-17 | Contemporary Amperex Technology Co Ltd | BINDING AGENT, SEPARATOR AND LITHIUM-ION BATTERY WITH THE SEPARATOR |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070000231A (ko) | 2005-06-27 | 2007-01-02 | 주식회사 엘지화학 | 이질적 표면을 갖는 2층 구조의 유/무기 복합 다공성분리막 및 이를 이용한 전기 화학 소자 |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04198291A (ja) * | 1990-11-26 | 1992-07-17 | Japan Synthetic Rubber Co Ltd | 蓄電池のガラスマット接着用共重合体ラテックス |
US6096456A (en) * | 1995-09-29 | 2000-08-01 | Showa Denko K.K. | Film for a separator of electrochemical apparatus, and production method and use thereof |
KR100269204B1 (ko) * | 1997-04-10 | 2000-10-16 | 윤종용 | 고분자 고체 전해질, 그 제조방법 및 이 고분자 고체 전해질을 채용한 리튬 2차전지 |
DE19850826A1 (de) | 1998-11-04 | 2000-05-11 | Basf Ag | Als Separatoren in elektrochemischen Zellen geeignete Verbundkörper |
TW519777B (en) | 1999-10-18 | 2003-02-01 | Zeon Corp | The binder composition for the secondary battery electrode of lithium ion and its utilization |
JP4632015B2 (ja) | 2000-03-31 | 2011-02-16 | 株式会社Gsユアサ | 電池用セパレータおよびリチウム二次電池 |
DE10238945B4 (de) * | 2002-08-24 | 2013-01-03 | Evonik Degussa Gmbh | Elektrischer Separator mit Abschaltmechanismus, Verfahren zu dessen Herstellung, Verwendung des Separators in Lithium-Batterien und Batterie mit dem Separator |
JP4381054B2 (ja) * | 2002-11-13 | 2009-12-09 | 日東電工株式会社 | 電池用セパレータのための部分架橋接着剤担持多孔質フィルムとその利用 |
US20040175625A1 (en) | 2003-03-06 | 2004-09-09 | Lotfi Hedhli | Non-perfluorinated resins containing ionic or ionizable groups and products containing the same |
JP4601338B2 (ja) * | 2004-06-24 | 2010-12-22 | 日東電工株式会社 | 電池用正極/反応性ポリマー担持多孔質フィルム/負極積層体 |
JP4601375B2 (ja) * | 2004-10-01 | 2010-12-22 | 日東電工株式会社 | 電池用セパレータとこれを用いる電池の製造方法 |
KR100758482B1 (ko) * | 2004-12-07 | 2007-09-12 | 주식회사 엘지화학 | 표면 처리된 다공성 필름 및 이를 이용한 전기 화학 소자 |
WO2006123892A1 (en) * | 2005-05-17 | 2006-11-23 | Lg Chem, Ltd. | Polymer binder for electrochemcal device comprising multiply stacked electrochemical cells |
JP2007169550A (ja) | 2005-12-26 | 2007-07-05 | Dainippon Ink & Chem Inc | 樹脂成型体用組成物及び燃料電池用セパレータ |
TWI368347B (en) * | 2006-02-16 | 2012-07-11 | Lg Chemical Ltd | Electrode including organic/inorganic composite coating layer and electrochemical device prepared thereby |
KR100754746B1 (ko) * | 2007-03-07 | 2007-09-03 | 주식회사 엘지화학 | 다공성 활성층이 코팅된 유기/무기 복합 분리막 및 이를구비한 전기화학소자 |
JP2008287888A (ja) * | 2007-05-15 | 2008-11-27 | Asahi Kasei Chemicals Corp | 非水電解液二次電池用コーティング組成物 |
KR100947181B1 (ko) * | 2007-11-19 | 2010-03-15 | 주식회사 엘지화학 | 다공성 코팅층이 형성된 세퍼레이터 및 이를 구비한전기화학소자 |
KR100913176B1 (ko) * | 2007-11-28 | 2009-08-19 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지 |
KR101002161B1 (ko) | 2007-11-29 | 2010-12-17 | 주식회사 엘지화학 | 다공성 코팅층이 형성된 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자 |
US20100221965A1 (en) * | 2008-01-29 | 2010-09-02 | Hitachi Maxell, Ltd. | Slurry for forming insulating layer, separator for electrochemical device, method for producing the same, and electrochemical device |
KR101040482B1 (ko) * | 2008-03-04 | 2011-06-09 | 주식회사 엘지화학 | 다공성 코팅층이 코팅된 세퍼레이터 및 이를 구비한 전기화학소자 |
JP5603543B2 (ja) * | 2008-07-07 | 2014-10-08 | 日立マクセル株式会社 | 電池用セパレータおよび非水電解液電池 |
CN102171860B (zh) | 2008-08-05 | 2013-12-25 | 日本瑞翁株式会社 | 锂离子二次电池用电极 |
US8815435B2 (en) * | 2008-08-19 | 2014-08-26 | Teijin Limited | Separator for nonaqueous secondary battery |
KR20110063437A (ko) * | 2008-08-29 | 2011-06-10 | 제온 코포레이션 | 다공막, 2 차 전지 전극 및 리튬 이온 2 차 전지 |
WO2010074202A1 (ja) * | 2008-12-26 | 2010-07-01 | 日本ゼオン株式会社 | リチウムイオン二次電池用セパレーター及びリチウムイオン二次電池 |
US8771859B2 (en) * | 2009-03-13 | 2014-07-08 | Hitachi Maxell, Ltd. | Separator for battery and nonaqueous electrolyte battery using same |
KR101615792B1 (ko) | 2009-09-30 | 2016-04-26 | 제온 코포레이션 | 2 차 전지용 다공막 및 2 차 전지 |
-
2010
- 2010-03-17 KR KR1020100023891A patent/KR101187767B1/ko active IP Right Grant
-
2011
- 2011-02-28 CN CN201180024478.2A patent/CN102893427B/zh active Active
- 2011-02-28 CA CA2793246A patent/CA2793246C/en active Active
- 2011-02-28 EP EP11756507.7A patent/EP2549564B1/en active Active
- 2011-02-28 WO PCT/KR2011/001393 patent/WO2011115376A2/ko active Application Filing
- 2011-02-28 JP JP2012558065A patent/JP6208945B2/ja active Active
- 2011-03-17 TW TW100109122A patent/TWI432542B/zh active
-
2012
- 2012-09-17 US US13/621,399 patent/US9666849B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070000231A (ko) | 2005-06-27 | 2007-01-02 | 주식회사 엘지화학 | 이질적 표면을 갖는 2층 구조의 유/무기 복합 다공성분리막 및 이를 이용한 전기 화학 소자 |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9954211B2 (en) | 2011-02-15 | 2018-04-24 | Lg Chem, Ltd. | Separator, method for producing the same and electrochemical device including the same |
US9130215B2 (en) | 2011-02-15 | 2015-09-08 | Lg Chem, Ltd. | Separator, method for producing the same and electrochemical device including the same |
WO2012111956A3 (ko) * | 2011-02-15 | 2012-12-20 | 주식회사 엘지화학 | 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자 |
US9911958B2 (en) * | 2012-02-24 | 2018-03-06 | Research & Business Foundation Sungkyunkwan University | Separator with enhanced heat resistance and electrochemical device containing the same |
US20150037652A1 (en) * | 2012-02-24 | 2015-02-05 | Research & Business Foundation Sungkyunkwan University | Separator having improved thermal resistance, and electrochemical device having same |
US20130224552A1 (en) * | 2012-02-29 | 2013-08-29 | Ki Chul HONG | Separator including coating layer and battery including the same |
US20130224553A1 (en) * | 2012-02-29 | 2013-08-29 | Ki Chul HONG | Separator including coating layer and battery including the same |
US20130224554A1 (en) * | 2012-02-29 | 2013-08-29 | Ki Chul HONG | Separator including coating layer containing polyimide, and battery including the same |
US20130224556A1 (en) * | 2012-02-29 | 2013-08-29 | Ki Chul HONG | Separator including coating layer of inorganic and organic mixture, and battery including the same |
US9412988B2 (en) * | 2012-02-29 | 2016-08-09 | Cheil Industries, Inc. | Separator including coating layer of inorganic and organic mixture, and battery including the same |
US9634311B2 (en) * | 2012-02-29 | 2017-04-25 | Cheil Industries, Inc. | Separator including coating layer and battery including the same |
US9685647B2 (en) * | 2012-02-29 | 2017-06-20 | Cheil Industries, Inc. | Separator including coating layer and battery including the same |
EP2869363A4 (en) * | 2012-10-05 | 2016-04-13 | Lg Chemical Ltd | SEPARATOR AND ELECTROCHEMICAL DEVICE THEREWITH |
US9768439B2 (en) * | 2013-01-16 | 2017-09-19 | Lg Chem, Ltd. | Apparatus for preparing electrode assembly |
US20150034249A1 (en) * | 2013-01-16 | 2015-02-05 | Lg Chem, Ltd. | Apparatus for preparing electrode assembly |
CN111033801A (zh) * | 2017-09-29 | 2020-04-17 | 松下知识产权经营株式会社 | 非水电解质二次电池 |
CN111033801B (zh) * | 2017-09-29 | 2023-05-02 | 松下知识产权经营株式会社 | 非水电解质二次电池 |
Also Published As
Publication number | Publication date |
---|---|
KR101187767B1 (ko) | 2012-10-05 |
WO2011115376A3 (ko) | 2011-12-01 |
EP2549564A4 (en) | 2013-10-30 |
CA2793246C (en) | 2014-02-18 |
CN102893427B (zh) | 2016-01-06 |
CA2793246A1 (en) | 2011-09-22 |
US9666849B2 (en) | 2017-05-30 |
JP6208945B2 (ja) | 2017-10-04 |
JP2013522843A (ja) | 2013-06-13 |
TW201207058A (en) | 2012-02-16 |
US20130017429A1 (en) | 2013-01-17 |
EP2549564A2 (en) | 2013-01-23 |
TWI432542B (zh) | 2014-04-01 |
KR20110104791A (ko) | 2011-09-23 |
CN102893427A (zh) | 2013-01-23 |
EP2549564B1 (en) | 2016-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011115376A2 (ko) | 세퍼레이터 및 이를 구비한 전기화학소자 | |
KR101254693B1 (ko) | 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자 | |
WO2012111956A2 (ko) | 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자 | |
WO2013005898A1 (ko) | 전기화학소자용 전극 조립체 및 이를 구비한 전기화학소자 | |
WO2016093589A1 (ko) | 안전성이 향상된 전극조립체, 그의 제조방법 및 상기 전극조립체를 포함하는 전기화학소자 | |
WO2011105866A2 (ko) | 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자의 제조방법 | |
WO2013070031A1 (ko) | 세퍼레이터 및 이를 구비한 전기화학소자 | |
WO2009110726A2 (en) | Separator having porous coating layer and electrochemical device containing the same | |
WO2012046966A2 (ko) | 사이클 특성이 개선된 전기화학소자 | |
WO2012150838A2 (ko) | 다공성 코팅층을 구비한 세퍼레이터 및 이를 구비한 전기화학소자 | |
WO2012128440A1 (ko) | 전극조립체 및 이의 제조방법 | |
WO2011065765A2 (ko) | 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자 | |
WO2010076989A2 (ko) | 다공성 코팅층을 구비한 세퍼레이터 및 이를 구비한 전기화학소자 | |
WO2009096671A2 (en) | Separator for progressing united force to electrode and electrochemical containing the same | |
WO2013157902A1 (ko) | 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자 | |
WO2011105865A2 (ko) | 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자의 제조방법 | |
WO2016171519A1 (ko) | 리튬 이차전지용 분리막 및 그의 제조방법 | |
WO2012138039A1 (ko) | 세퍼레이터 및 이를 구비하는 전기화학소자 | |
WO2014054919A1 (ko) | 세퍼레이터 및 이를 구비한 전기화학소자 | |
WO2013100519A1 (ko) | 세퍼레이터의 제조방법 및 이에 따라 제조된 세퍼레이터를 구비한 전기화학소자 | |
WO2014073937A1 (ko) | 세퍼레이터의 제조방법, 그에 의해 제조된 세퍼레이터 및 그를 포함하는 전기화학소자 | |
WO2010024559A2 (ko) | 다공성 코팅층을 구비한 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자 | |
WO2016148408A1 (ko) | 일체형 전극조립체 및 이를 포함하는 전기화학소자 | |
WO2013066052A1 (ko) | 세퍼레이터 및 이를 구비한 전기화학소자 | |
WO2015072753A1 (ko) | 젤리-롤형 전극 조립체 및 이를 구비한 이차전지 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180024478.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11756507 Country of ref document: EP Kind code of ref document: A2 |
|
REEP | Request for entry into the european phase |
Ref document number: 2011756507 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011756507 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2793246 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012558065 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |