WO2015076602A1 - 개선된 굴곡강도를 가지는 전극 조립체, 이의 제조 방법 및 이를 포함하는 전기 화학 전지 - Google Patents

개선된 굴곡강도를 가지는 전극 조립체, 이의 제조 방법 및 이를 포함하는 전기 화학 전지 Download PDF

Info

Publication number
WO2015076602A1
WO2015076602A1 PCT/KR2014/011234 KR2014011234W WO2015076602A1 WO 2015076602 A1 WO2015076602 A1 WO 2015076602A1 KR 2014011234 W KR2014011234 W KR 2014011234W WO 2015076602 A1 WO2015076602 A1 WO 2015076602A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode assembly
separator
thickness
kgf
electrode
Prior art date
Application number
PCT/KR2014/011234
Other languages
English (en)
French (fr)
Inventor
김기욱
김남효
윤효상
천지현
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140133339A external-priority patent/KR101690515B1/ko
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to US15/038,352 priority Critical patent/US20160293999A1/en
Publication of WO2015076602A1 publication Critical patent/WO2015076602A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrode assembly having improved flexural strength in a battery, a method of manufacturing the same, and an electrochemical cell including the same.
  • a nickel-cadnium battery, a nickel-hydrogen battery, a nickel-zinc battery, a lithium secondary battery, etc. are used, for example.
  • lithium secondary batteries have been used in many fields because of their advantages such as small size and large size, high operating voltage, and high energy density per unit weight.
  • the electrode assembly is the main component of such a lithium secondary battery.
  • the membrane wound between the electrode and the electrode tends to detach due to an increase in the area and / or weight due to the size of the separator, and thus the adhesion force between the separator and the electrode is increased. An increase is required.
  • the shape stability of the electrode assembly is required to be able to prevent the shape change, such as the battery is warped due to continuous charge and discharge.
  • an electrode assembly that includes a separator having an adhesive force applicable to a large-area electrochemical cell and can improve the shape stability of the cell.
  • An object of the present invention is to provide an electrode assembly having excellent adhesion between an electrode and a separator in an electrode assembly, and improved form stability, and an electrochemical cell using the same.
  • the positive electrode is coated with a positive electrode active material
  • the negative electrode is coated with a negative electrode active material
  • a separator interposed between the positive electrode and the negative electrode, at 20 °C to 110 °C for 1 second to 15 seconds
  • an electrode assembly having a flexural strength of at least 15 kgf / cm 2 is provided.
  • an electrochemical cell in particular a lithium secondary battery, comprising an electrode assembly according to the embodiment.
  • the adhesion between the electrode and the separator constituting the electrode assembly is excellent. Therefore, the separation of the separator in the electrode assembly manufacturing process can be prevented to reduce the process failure rate, it is possible to long-term storage.
  • the electrode assembly according to the embodiments of the present invention is excellent in shape stability, the shape change can be minimized even for long-term charge and discharge.
  • the manufactured battery may have high efficiency charge and discharge characteristics, and may prevent degradation of battery performance.
  • FIG. 1 is an internal cross-sectional view of a portion of an electrode assembly according to an embodiment of the present invention, the electrode assembly comprising: a positive electrode 6 having a positive electrode active material layer 5 formed on a positive electrode current collector 4; A negative electrode 12 having a negative electrode active material layer 10 formed on the negative electrode current collector 11; And a separation membrane 9 disposed between the anode 6 and the cathode 12 and bonded to the anode or the cathode, respectively, and a porous adhesive layer 7 and 7 ′ formed on both sides of the porous substrate 8 and the porous substrate. ).
  • FIG. 2 is an internal cross-sectional view of a portion of an electrode assembly according to another embodiment of the present invention, the electrode assembly comprising: a positive electrode 6 having a positive electrode active material layer 5 formed on a positive electrode current collector 4; A negative electrode 12 having a negative electrode active material layer 10 formed on the negative electrode current collector 11; And a separator 9 disposed between the anode 6 and the cathode 12 and bonded to the anode or the cathode, respectively, and including a porous substrate 8 and a porous adhesive layer 7 formed on one surface of the porous substrate. do.
  • a cathode including a cathode active material and a cathode current collector, a cathode including a cathode active material and a cathode current collector, and a separator disposed between the cathode and the cathode, 20 °C to
  • An electrode assembly having a flexural strength of at least 15 kgf / cm 2 when compressed at 110 ° C. for 1 to 15 seconds at a pressure of 1 kgf / cm 2 to 30 kgf / cm 2 is provided.
  • the flexural strength of 15 kgf / cm 2 or more is related to the shape stability of the electrode assembly. have. Through this, it is possible to minimize the change in the shape of the battery, such as the battery is warped in spite of the continuous charge and discharge over a long period of time can have a high efficiency of charge and discharge characteristics, it is possible to prevent the degradation of the battery performance.
  • the bending strength may be measured by ASTM D790 using a three point bending machine (eg, UTM), but is not limited thereto.
  • the flexural strength may be specifically in the range of 17 kgf / cm 2 to 50 kgf / cm 2 , and more specifically in the range of 20 kgf / cm 2 to 30 kgf / cm 2 .
  • an electrode assembly includes a positive electrode 6 having a positive electrode active material layer 5 formed on a positive electrode current collector 4; A negative electrode 12 having a negative electrode active material layer 10 formed on the negative electrode current collector 11; And a separator 9 disposed between the positive electrode 6 and the negative electrode 12 and bonded to the positive electrode or the negative electrode, respectively.
  • the separator 9 may include a porous substrate 8 and porous adhesive layers 7 and 7 ′ formed on both surfaces of the porous substrate 8.
  • the porous substrate 8 may use a porous substrate that has a plurality of pores and can be used for an electrochemical device.
  • the porous substrate 8 includes, but is not limited to, polyethylene, polypropylene, polyethylene terephthalate, polybutylene terephthalate, polyester, polyacetal, polyamide, polyimide, polycarbonate, polyether ether ketone, polyaryl ether ketone, poly Any one polymer selected from the group consisting of etherimide, polyamideimide, polybenzimidazole, polyethersulfone, polyphenylene oxide, cyclic olefin copolymer, polyphenylene sulfide and polyethylene naphthalene or mixtures of two or more thereof It may be a polymer film formed.
  • the porous substrate 8 may be a polyolefin-based substrate, the polyolefin-based substrate is excellent in the shutdown (shut down) function can contribute to improving the safety of the battery.
  • the polyolefin-based substrate may be selected from the group consisting of, for example, polyethylene monolayer, polypropylene monolayer, polyethylene / polypropylene double membrane, polypropylene / polyethylene / polypropylene triple membrane, and polyethylene / polypropylene / polyethylene triple membrane.
  • the polyolefin resin may include a non-olefin resin in addition to the olefin resin, or may include a copolymer of an olefin and a non-olefin monomer.
  • the thickness of the porous substrate 8 may be 1 ⁇ m to 40 ⁇ m, more specifically 5 ⁇ m to 15 ⁇ m. When using the substrate within the thickness range, it is possible to produce a separator having a suitable thickness, thick enough to prevent a short circuit between the positive and negative electrodes of the battery, but not thick enough to increase the internal resistance of the battery.
  • the porous adhesive layers 7 and 7 ′ may be formed on both sides of the porous substrate 8 and may be formed of a porous adhesive layer composition.
  • the porous adhesive layer composition may include an organic binder and a solvent.
  • the organic binder may be an acrylic copolymer, and may be, for example, an acrylic copolymer including a repeating unit derived from a (meth) acrylate monomer.
  • the acrylic copolymer may further include an acetate group-containing monomer-derived repeating unit in addition to the (meth) acrylate-based monomer-derived repeating unit.
  • the porous adhesive layer may maintain an electrolyte solution to maintain good ionic conductivity between electrodes, and may not inhibit the porosity of the porous substrate.
  • the glass transition temperature (Tg) of the acrylic copolymer may be in the range of less than 100 °C, for example, 20 °C to 60 °C, specifically 30 °C to 45 °C. Within this range, the separator may be positioned between the electrodes to form good adhesion at a temperature at which the separator is compressed, thereby ensuring shape stability.
  • An acrylic copolymer having a (meth) acrylate-based monomer-derived repeating unit and / or an acetate group-containing monomer-derived repeating unit that can be used in one embodiment of the present invention forms good adhesion at the temperature pressed between the positive electrode and the negative electrode.
  • the acrylic copolymer may be, for example, selected from the group consisting of butyl (meth) acrylate, propyl (meth) acrylate, ethyl (meth) acrylate and methyl (meth) acrylate. It may be a copolymer produced by polymerizing one or more (meth) acrylate monomers.
  • the acrylic copolymer may include at least one (meth) acrylate monomer selected from the group consisting of butyl (meth) acrylate, propyl (meth) acrylate, ethyl (meth) acrylate and methyl (meth) acrylate. It may be a copolymer produced by polymerizing at least one acetate group-containing monomer selected from the group consisting of vinyl acetate and allyl acetate.
  • the acetate group-containing monomer-derived repeating unit may be a repeating unit of Formula 1:
  • R 1 is a single bond, linear or branched alkyl having 1 to 6 carbon atoms
  • R 2 is hydrogen or methyl
  • l is an integer between 1 and 100, respectively.
  • the acetate group-containing monomer-derived repeating unit may be a repeating unit derived from an acetate group-containing monomer selected from at least one selected from the group consisting of vinyl acetate and allyl acetate.
  • the acrylic copolymer may be prepared by polymerizing (meth) acrylate monomers or by polymerizing (meth) acrylate monomers with other monomers other than the (meth) acrylate monomers.
  • the other monomer may be an acetate group-containing monomer.
  • the (meth) acrylate-based monomer and other monomers may have a molar ratio of 3: 7 to 7: 3, specifically 4: 6 to 6: 4, more specifically about 5: 5.
  • the acrylic copolymer may be, for example, a butyl (meth) acrylate monomer, a methyl (meth) acrylate monomer, and a vinyl acetate and / or allyl acetate monomer in a molar ratio of 3 to 5: 0.5 to 1.5: 4 to 6, specifically
  • it can be prepared by polymerization reaction in a molar ratio of 4: 1: 5.
  • the porous adhesive layer composition may further include an inorganic particle.
  • Inorganic particles used in one embodiment of the present invention is not particularly limited and may be used inorganic particles commonly used in the art.
  • Non-limiting examples of the inorganic particles that can be used in one embodiment of the present invention include Al 2 O 3 , SiO 2 , B 2 O 3 , Ga 2 O 3 , TiO 2 or SnO 2 . These can be used individually or in mixture of 2 or more types.
  • As the inorganic particles used in the embodiment of the present invention for example, Al 2 O 3 (alumina) can be used.
  • the size of the inorganic particles used in one embodiment of the present invention is not particularly limited, but the average particle size may be 1 nm to 2,000 nm, for example, 100 nm to 1,000 nm, 300 nm to 500 nm.
  • the inorganic particles may be used in the form of an inorganic dispersion in which it is dispersed in a suitable solvent.
  • the appropriate solvent is not particularly limited and may be a solvent commonly used in the art.
  • Acetone can be used as a suitable solvent for dispersing the inorganic particles, for example.
  • the inorganic dispersion may be prepared by a conventional method without any particular limitation. For example, Al 2 O 3 may be added to acetone in an appropriate amount, and the inorganic dispersion may be milled and dispersed using a bead mill. Dispersions can be prepared.
  • the inorganic particles may be included in an amount of 70 wt% to 95 wt%, specifically 75 wt% to 90 wt%, and more specifically 80 wt% to 90 wt%, based on the total weight of the porous adhesive layer.
  • the heat dissipation characteristics of the inorganic particles may be sufficiently exhibited, and when the porous adhesive layer is formed on the porous substrate using the inorganic particles, heat shrinkage of the separator may be effectively suppressed.
  • Non-limiting examples of the solvent that can be used in one embodiment of the present invention is acetone, dimethyl formamide, acetone, dimethyl sulfoxide, dimethyl acetamide, dimethyl carbonate ) Or N-methylpyrrolidone (N-methylpyrrolydone) and the like.
  • the content of the solvent may be 20 wt% to 99 wt%, specifically 50 wt% to 95 wt%, and more specifically 70 wt% to 95 wt%, based on the weight of the porous adhesive layer composition.
  • the solvent is contained in the above range, the preparation of the porous adhesive layer composition may be facilitated, and the drying process of the porous adhesive layer may be performed smoothly.
  • the thickness of the porous adhesive layers 7, 7 ′ may be 1 ⁇ m to 15 ⁇ m, specifically 1 to 10 ⁇ m, more specifically 1 ⁇ m to 8 ⁇ m, or 1 ⁇ m to 5 ⁇ m.
  • the porous adhesive layer within the thickness range, it is possible to obtain an excellent thermal stability and adhesion by forming a porous adhesive layer of an appropriate thickness, and to prevent the internal resistance of the battery from increasing by preventing the thickness of the entire separator from being too thick. Can be.
  • the compression thickness change rate of Equation 1 may be 10% or more.
  • % Change in crimp thickness [(thickness of electrode assembly crimped at 20 ° C.—thickness of electrode assembly crimped at 100 ° C.) / Thickness of electrode assembly crimped at 20 ° C.] ⁇ 100
  • the thickness of the electrode assembly pressed at 20 °C is the electrode assembly stacked in the order of the anode / separator / cathode in 1 to 10 seconds, at a pressure of 1 to 30 kgf / cm 2 at 20 °C 1 hour after
  • the thickness of the center of the electrode assembly measured, and the thickness of the electrode assembly pressed at 100 ° C. is the thickness of the center of the electrode assembly measured at 1 ° C. at a pressure of 1 to 30 kgf / cm 2 at 100 ° C. for 1 to 10 seconds and after 1 hour. .
  • the adhesive force is excellent at high temperature (eg, 100 ° C.) compression between the electrode and the separator, thereby preventing the separation of the membrane within the electrode assembly, thereby reducing the process failure rate, and prolonged storage.
  • the compressive thickness change rate may be specifically 13% or more and less than 50%, more specifically 15% or more and less than 47%, even more specifically 20% or more and less than 45%.
  • the larger the change rate of the compression thickness the more the adhesion between the separator and the positive electrode or the negative electrode may be improved.
  • an electrode assembly according to another embodiment of the present invention includes a positive electrode 6 having a positive electrode active material layer 5 formed on a positive electrode current collector 4; A negative electrode 12 having a negative electrode active material layer 10 formed on the negative electrode current collector 11; And a separator 9 disposed between the positive electrode 6 and the negative electrode 12 and adhered to the positive electrode or the negative electrode.
  • the separator 9 may include a porous substrate 8 and a porous adhesive layer 7 formed on one surface of the porous substrate 8.
  • the electrode assembly according to the present embodiment is different from the electrode assembly according to the exemplary embodiment of the present invention except that the porous adhesive layer 7 is formed only on one side of the separator 9, not on both sides of the porous substrate 8. Since the components are substantially the same, a detailed description thereof will be omitted below.
  • the electrode assembly according to the present embodiment has a flexural strength of 15 kgf / cm 2 or more when compressed at a pressure of 1 kgf / cm 2 to 30 kgf / cm 2 at 20 ° C. to 110 ° C. for 1 second to 15 seconds.
  • it may be 17 kgf / cm 2 to 50 kgf / cm 2 , specifically 20 kgf / cm 2 to 30 kgf / cm 2 . That is, even when the porous adhesive layer 7 is formed only on one surface of the porous substrate 8, the adhesive layer may exhibit sufficient adhesive force with the electrode (anode or cathode), thereby minimizing deformation of the battery even in continuous charge and discharge.
  • the electrode assembly of the present embodiment may further include other types of organic binders in addition to the acrylic copolymers disclosed herein as organic binders in the porous adhesive layer. It is substantially the same as the electrode assembly according to one embodiment of the present invention or another embodiment of the present invention, except that the organic adhesive is further included in the porous adhesive layer. Therefore, below, it demonstrates centering on the other binder further included besides an acryl-type copolymer. In this embodiment, the adhesive force and heat resistance can be further improved by additionally including another binder.
  • a polyvinylidene fluoride-based binder may be used, for example, polyvinylidene fluoride (PVDF) homopolymer, polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP) ), Polyvinylidene fluoride-trichloroethylene (PVDF-TCE), polyvinylidene fluoride-tritriethylene (polyvinylidene fluoride-trifluoroethylene, PVDF-CTFE) and the like.
  • PVDF polyvinylidene fluoride
  • PVDF-HFP polyvinylidene fluoride-hexafluoropropylene
  • PVDF-TCE Polyvinylidene fluoride-trichloroethylene
  • PVDF-CTFE polyvinylidene fluoride-tritriethylene
  • the weight ratio of the acrylic copolymer and the added binder may be used from 9.9: 0.1 to 2.5: 7.5. Specifically, it may be used as 9.9: 0.1 to 5: 5, more specifically 9: 1 to 5.5: 4.5, 8: 2 to 6: 4.
  • 9.9: 0.1 to 5: 5 more specifically 9: 1 to 5.5: 4.5, 8: 2 to 6: 4.
  • the PVdF-based binder may have a weight average molecular weight (Mw) of 500,000 to 1,500,000 (g / mol). In embodiments, the PVdF-based binder may have a weight average molecular weight (Mw) of 1,000,000 to 1,500,000 (g / mol). In another example, two or more kinds having different weight average molecular weights may be used in combination. For example, one or more types of weight average molecular weights of 1,000,000 g / mol or less and one or more types of 1,000,000 g / mol or more can be mixed and used.
  • PVdF-based binder within the above molecular weight range enhances the adhesion between the porous adhesive layer and the porous substrate, thereby effectively suppressing thermal shrinkage of the porous substrate, which is weak to heat, and can produce a separator sufficiently improved in electrolyte impregnation. And there is an advantage that can produce a battery that uses the electrical output efficiently by utilizing it.
  • a positive electrode is formed by forming a positive electrode active material layer on a positive electrode current collector
  • a negative electrode is formed by forming a negative electrode active material layer on a negative electrode current collector
  • the positive electrode and It may comprise disposing a separator as disclosed herein between the cathode.
  • a method of manufacturing an electrode assembly wherein a separator is disposed between an anode and a cathode, and the structure of the anode / separator / cathode is 1 kgf / cm 2 to 30 kgf at 20 ° C. to 110 ° C. for 1 second to 10 seconds. It may further comprise pressing at a pressure of / cm 2 .
  • the acrylic system of the present application After disposing the separator prepared by the above method between the positive electrode and the negative electrode at 20 °C to 110 °C for 1 second to 10 seconds, pressed at a pressure of 1 kgf / cm 2 to 30 kgf / cm 2 , the acrylic system of the present application
  • the copolymer can form a strong bond with the positive or negative electrode to improve the shape preservation of the electrode assembly.
  • the crimping conditions take into account the temperature at which the porous substrate of the separator is not significantly heat-shrinked and the adhesion temperature of the porous adhesive layer of the separator. Specifically, 5 kgf / cm 2 to 10 seconds at room temperature or 80 ° C. to 100 ° C. for 1 second to 5 seconds. It may be to apply a pressure of kgf / cm 2 .
  • an anode and placing a separator between a cathode and an electrode assembly at 20 °C to 110 °C 1 second to 10 seconds 1kgf / cm 2 to a pressure of 30kgf / cm 2
  • the electrolyte is injected, and the second compression at a pressure of 1 kgf / cm 2 to 30 kgf / cm 2 for 30 seconds to 180 seconds at 60 °C to 110 °C further It may include.
  • the battery case may be an aluminum pouch or the like, but is not limited thereto.
  • a method of manufacturing an electrode assembly wherein the electrode assembly is injected into the electrode assembly for 6 hours to 48 hours and 10 hours after the injection of the electrolyte in the method of manufacturing the electrode assembly according to the embodiment of the present invention. It may further include storing in the range of °C to 30 °C.
  • the acrylic copolymer of the present application forms a stronger bond with the positive electrode or the negative electrode, thereby improving shape preservation of the electrode assembly.
  • the positive electrode may include a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector.
  • the positive electrode active material layer may include a positive electrode active material, a binder, and optionally a conductive material.
  • aluminum (Al), nickel (Ni), or the like may be used, but is not limited thereto.
  • the cathode active material a compound capable of reversible intercalation and deintercalation of lithium may be used. Specifically, at least one of cobalt, manganese, nickel, aluminum, iron, or a combination of metal and lithium composite oxide or phosphoric acid may be used.
  • lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, lithium nickel cobalt manganese oxide, lithium nickel cobalt aluminum oxide, lithium iron phosphate or a combination thereof may be used.
  • the binder not only adheres the positive electrode active material particles well to each other, but also serves to adhere the positive electrode active material to the positive electrode current collector, and specific examples thereof include polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, and polyvinyl chloride.
  • the conductive material provides conductivity to the electrode, and examples thereof include natural graphite, artificial graphite, carbon black, carbon fiber, metal powder, and metal fiber, but are not limited thereto. These can be used individually or in mixture of 2 or more types.
  • metal powder and the metal fiber metals such as copper, nickel, aluminum, and silver may be used.
  • the negative electrode may include a negative electrode current collector and a negative electrode active material layer formed on the negative electrode current collector.
  • the cathode current collector may be copper (Cu), gold (Au), nickel (Ni), copper alloy, etc., but is not limited thereto.
  • the negative electrode active material layer may include a negative electrode active material, a binder, and optionally a conductive material.
  • the negative electrode active material may be a material capable of reversibly intercalating and deintercalating lithium ions, a lithium metal, an alloy of lithium metal, a material capable of doping and undoping lithium, a transition metal oxide, or a combination thereof. Can be used.
  • Examples of a material capable of reversibly intercalating and deintercalating the lithium ions include carbon-based materials, and examples thereof include crystalline carbon, amorphous carbon, or a combination thereof.
  • Examples of the crystalline carbon may be amorphous, plate, flake, spherical or fibrous natural graphite or artificial graphite.
  • Examples of the amorphous carbon include soft carbon or hard carbon, mesophase pitch carbide, calcined coke, and the like.
  • Examples of the alloy of the lithium metal include lithium and Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, and Sn. Alloys of the metals selected may be used.
  • Examples of materials capable of doping and undoping lithium include Si, SiO x (0 ⁇ x ⁇ 2), Si-C composites, Si-Y alloys, Sn, SnO 2 , Sn-C composites, Sn-Y, and the like. And at least one of these and SiO 2 may be mixed and used.
  • the element Y Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Tl, Ge, P, As, Sb, Bi, S, Se, Te, Po and combinations thereof.
  • the transition metal oxide include vanadium oxide and lithium vanadium oxide.
  • kinds of the binder and the conductive material used in the negative electrode are the same as the binder and the conductive material used in the above-described positive electrode.
  • the positive electrode and the negative electrode may be prepared by mixing each active material, a binder, and optionally a conductive material in a solvent to prepare each active material composition, and applying the active material composition to each current collector.
  • N-methylpyrrolidone may be used as the solvent, but is not limited thereto.
  • the electrolyte solution may be one in which a salt of a structure such as A + B ⁇ is dissolved or dissociated in an organic solvent.
  • the organic solvent serves as a medium through which ions involved in the electrochemical reaction can move.
  • Specific examples thereof may be selected from carbonate solvents, ester solvents, ether solvents, ketone solvents, alcohol solvents and aprotic solvents.
  • the carbonate solvent include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC), ethylmethyl carbonate (EMC), ethylene Carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and the like.
  • the dielectric constant may be increased, and the solvent may have a low viscosity.
  • the cyclic carbonate compound and the chain carbonate compound may be mixed and used in a volume ratio of 1: 1 to 1: 9.
  • the ester solvents include methyl acetate, ethyl acetate, n-propyl acetate, dimethyl acetate, methyl propionate, ethyl propionate, ⁇ -butyrolactone, decanolide, valerolactone, and meronate. Melononolactone, caprolactone, and the like.
  • ether solvent examples include dibutyl ether, tetraglyme, diglyme, dimethoxyethane, 2-methyltetrahydrofuran, tetrahydrofuran and the like. Cyclohexanone etc. are mentioned as said ketone solvent, Ethyl alcohol, isopropyl alcohol, etc. are mentioned as said alcohol solvent.
  • the organic solvents may be used alone or in combination of two or more thereof, and the mixing ratio in the case of mixing two or more kinds may be appropriately adjusted according to the desired battery performance.
  • Non-limiting examples of A + include a cation consisting of an alkali metal cation such as Li + , Na + or K + , or a combination thereof.
  • the B - Non-limiting examples of the, PF 6 -, SbF 6 - , BF 4 -, AlCl 4 -, AlO 2 -, Cl -, Br -, I -, ClO 4 -, AsF 6 -, B (C 2 O 4) 2 -, CH 3 CO 2 -, N (SO 3 C 2 F 5) 2 -, C 4 F 9 SO 3 -, CF 3 SO 3 -, N ( CF 3 SO 2) 2 - or C (CF 2 SO 2) 3 - anions, such as, or may be an anion consisting of a combination thereof.
  • lithium salts can be used, which are dissolved in an organic solvent to act as a source of lithium ions to enable the operation of basic electrochemical cells and to promote the movement of lithium ions between the positive and negative electrodes.
  • the lithium salt include LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiN (SO 3 C 2 F 5 ) 2 , LiN (CF 3 SO 2 ) 2 , LiC 4 F 9 SO 3 , LiClO 4 , LiAlO 2 , LiAlCl 4 , LiN (C x F 2x + 1 SO 2 ) (C y F 2y + 1 SO 2 ) (x and y are natural numbers), LiCl, LiI, LiB (C 2 O 4 ) 2 or a combination thereof Can be mentioned.
  • the concentration of the lithium salt can be used within the range of 0.1M to 2.0M.
  • concentration of the lithium salt is within the above range, since the electrolyte has an appropriate conductivity and viscosity, it can exhibit excellent electrolyte performance, and lithium ions can move effectively.
  • the electrochemical battery according to an embodiment of the present invention may be specifically a lithium secondary battery such as a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery or a lithium ion polymer secondary battery.
  • a lithium secondary battery such as a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery or a lithium ion polymer secondary battery.
  • Alumina dispersion was prepared by adding alumina (LS235, Nippon Light Metal) to acetone at 25% by weight and then performing beads mill dispersion at 25 ° C. for 2 hours.
  • the first binder solution and the alumina dispersion were mixed so that the binder solid content and the alumina solid content were 1/5, and acetone was added so that the total solid content was 10% by weight to prepare a porous adhesive layer composition solution.
  • a 12 ⁇ m thick polyethylene fabric (W scope) was coated on both sides of the porous adhesive layer composition with a thickness of 2 ⁇ m, thereby preparing a separator having a total thickness of about 16 ⁇ m.
  • PVdF-based binder KF9300 (Kurehasa, Mw: 1,200,000 g / mol) was dissolved in acetone, DMAc mixed solvent to be a 7% by weight solid solution, and stirred at 40 ° C.
  • Alumina dispersion was prepared by adding alumina (LS235, Nippon Light Metal) to acetone at 25% by weight and then performing beads mill dispersion at 25 ° C. for 2 hours.
  • the first and second binder solutions and the alumina dispersion were mixed so that the binder solid content and the alumina solid content were 1/5 such that the weight ratio of the acrylic binder and the PVdF binder was 8/2, and the total solid content was 10% by weight.
  • Acetone was added to prepare a porous adhesive layer composition solution.
  • a 12 ⁇ m thick polyethylene fabric (W scope) was coated on each side of the porous adhesive layer composition with a thickness of 2 ⁇ m to prepare a separator having a total thickness of about 16 ⁇ m.
  • a separation membrane was manufactured in the same manner as in Preparation Example 2, except that the weight ratio of the acrylic binder and the PVdF binder was 7/3 in Preparation Example 2.
  • a separation membrane was manufactured in the same manner as in Preparation Example 2, except that the weight ratio of the acrylic binder and the PVdF binder was 6/4 in Preparation Example 2.
  • a separation membrane was manufactured in the same manner as in Preparation Example 2, except that the weight ratio of the acrylic binder and the PVdF binder was 3/7 in Preparation Example 2.
  • the porous adhesive layer composition was coated on one surface of polyethylene fabric with a thickness of 2 ⁇ m to prepare a separator in the same manner as in Preparation Example 1 except that the total thickness of the separator was about 14 ⁇ m.
  • a separation membrane was manufactured in the same manner as in Preparation Example 2, except that the weight ratio of the acrylic binder and the PVdF binder was 1/9 in Preparation Example 2.
  • a separation membrane was manufactured in the same manner as in Preparation Example 2, except that the weight ratio of the acrylic binder and the PVdF binder was 0.5 / 9.5 in Preparation Example 2.
  • a separation membrane was manufactured in the same manner as in Preparation Example 2, except that the PVdF binder was used instead of the acrylic copolymer binder in Preparation Example 2.
  • LCO LiCoO 2
  • PVdF polyvinylidene fluoride
  • a cathode active material coating composition was prepared using carbon black as a conductive agent.
  • the positive electrode active material coating composition was such that the weight ratio of active material: binder: conductive material was 94: 3: 3, and the positive electrode active material coating composition was added to N-methyl-2-pyrrolidone using a planetary despa mixer. After dispersing and slimming, both sides were coated with a doctor blade on a 14 ⁇ m thick aluminum foil having a thickness of 94 ⁇ m and dried.
  • a negative electrode active material coating composition was prepared using SBR (Styrene-Butadiene Rubber) and CMC (Carboxy Methyl Celluose) as a binder.
  • SBR Styrene-Butadiene Rubber
  • CMC Carboxy Methyl Celluose
  • the negative electrode active material: binder weight ratio was 96: 4 and the weight ratio of the SBR and CMC was 1: 1.
  • a negative electrode was prepared in the same manner as in the preparation of the positive electrode, except that both surfaces were coated at 120 ⁇ m with a copper foil having a thickness of 8 ⁇ m.
  • the positive electrode and the negative electrode were cut into 100 cm ⁇ 4.2 cm, respectively, and the separator prepared in Preparation Example 1 was cut into 100 cm ⁇ 4.4 cm, and then interposed between the positive electrode and the negative electrode and 7 cm (length direction) ⁇ 4.4 cm (width direction). ) To prepare an electrode assembly.
  • Example 1 the electrode assembly of Example 2 was prepared in the same manner as in Example 1 except that the separator of Preparation Example 2 was used as the separator.
  • Example 1 the electrode assembly of Example 3 was prepared in the same manner as in Example 1 except that the separator of Preparation Example 3 was used as the separator.
  • Example 1 except that the separator of Preparation Example 4 was used as a separator, the electrode assembly of Example 4 was prepared in the same manner as in Example 1.
  • Example 1 the electrode assembly of Example 5 was prepared in the same manner as in Example 1, except that the separator of Preparation Example 5 was used as the separator.
  • Example 1 using the separator of Preparation Example 6 as a separator, and replacing the positive electrode on the separator surface on which the porous adhesive layer is formed, and the negative electrode on the separator surface without the porous adhesive layer as in Example 1
  • the electrode assembly of Example 6 was prepared.
  • Example 1 the electrode assembly of Comparative Example 1 was prepared in the same manner as in Example 1 except that the separator of Comparative Preparation Example 1 was used as the separator.
  • Example 1 the electrode assembly of Comparative Example 2 was prepared in the same manner as in Example 1 except that the separator of Comparative Preparation Example 2 was used as the separator.
  • Example 1 the electrode assembly of Comparative Example 3 was prepared in the same manner as in Example 1 except that the separator of Comparative Preparation Example 3 was used as the separator.
  • the electrode assemblies prepared in Examples 1 to 6 and Comparative Examples 1 to 3 were pressed at 80 ° C., 90 ° C., 100 ° C., and 110 ° C. for 10 seconds at a pressure of 9 kgf / cm 2 , respectively. Then, using a three-point bending machine (UTM) according to ASTM D790, the flexural strength of the electrode assembly is lowered at a speed of 2.8 mm / min while the MD direction of the electrode assembly is turned to the left and right with a distance between the chucks of 60 mm. Measured.
  • UDM three-point bending machine
  • the electrode assemblies prepared in Examples 1 to 6 and Comparative Examples 1 to 3 were pressed for 3 seconds at a pressure of 9 kgf / cm 2 at 20 ° C., and after 1 hour, the thickness of the center part was measured using a 15 cm steel ruler. After pressing for 10 seconds at 100 ° C. at a pressure of 9 kgf / cm 2 , the thickness of the center part was measured using a 15 cm steel ruler after 1 hour. Compression thickness change rate was measured using the compression thickness at 20 ° C. and the compression thickness at 100 ° C. through the following equation.
  • % Change in crimp thickness [(thickness of electrode assembly crimped at 20 ° C.—thickness of electrode assembly crimped at 100 ° C.) / Thickness of electrode assembly crimped at 20 ° C.] ⁇ 100
  • the electrode assemblies of Examples 2, 3 and Comparative Example 3 were pressed at a pressure of 9 kgf / cm 2 at 100 ° C. for 3 seconds, and then placed in an aluminum pouch, and an electrolyte solution was added and sealed.
  • As the electrolyte 2.7 g of a mixed organic solvent of ethylene carbonate (EC) / ethylmethyl carbonate (EMC) / (volume ratio of EC: EMC mixed ratio of 30/70) in which LiPF 6 was dissolved at a concentration of 1.1 M was used. Thereafter, the mixture was stored at room temperature for 12 hours, and then pressed at a pressure of 9 kgf / cm 2 for 30 seconds at 100 ° C, and then stored at room temperature for 12 hours.
  • EC ethylene carbonate
  • EMC ethylmethyl carbonate
  • the thickness of the center portion of the electrode assembly was measured using a 15 cm steel ruler. Thereafter, after opening the pouch to remove the gas, charging and discharging were repeated 500 times under the condition of 0.7C, and the thickness of the center of the electrode assembly was measured.
  • the compression thickness change rate is 10% or more. It was confirmed that the adhesion between the electrode and the separator is excellent. In addition, the flexural strength was 15kgf / cm 2 or more, it was confirmed that the shape stability of the electrode assembly is excellent.
  • the manufactured battery may have high efficiency charge and discharge characteristics, and may prevent degradation of battery performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은, 양극 활물질 및 양극 전류 집전체를 포함하는 양극; 음극 활물질 및 음극 전류 집전체를 포함하는 음극; 및 상기 양극과 음극 사이에 개재된 분리막을 포함하며, 20 ℃ 내지 110 ℃에서 1초 내지 15초간, 1 kgf/cm2 내지 30kgf/cm2의 압력으로 압착하였을 때, 굴곡 강도가 15kgf/cm2 이상인 전극 조립체, 이의 제조 방법 및 이를 포함하는 전기화학 전지에 관한 것이다.

Description

개선된 굴곡강도를 가지는 전극 조립체, 이의 제조 방법 및 이를 포함하는 전기 화학 전지
본 발명은 전지 내 굴곡강도가 개선된 전극 조립체, 이의 제조 방법 및 이를 포함하는 전기 화학 전지에 관한 것이다.
일반적으로 비디오 카메라, 휴대 전화, 휴대 컴퓨터와 같은 휴대용 전자기기는 경량화 및 고기능화가 진행됨에 따라 그 구동 전원으로 사용되는 이차 전지에 관한 많은 연구가 이루어지고 있다. 이러한 이차 전지는, 예를 들어 니켈-카드늄 전지, 니켈-수소 전지, 니켈-아연 전지, 리튬 이차 전지 등이 사용되고 있다. 이중, 리튬 이차 전지는 소형 및 대형화가 가능하며, 작동 전압이 높고, 단위 중량당 에너지 밀도가 높다는 이점 때문에 많은 분야에서 사용되고 있다.
전극 조립체는 그러한 리튬 이차 전지의 주요 구성 요소이다. 그러나, 대면적화된 분리막을 전극 사이에 개재하여 프레스하는 전극 조립체 제조공정에서 분리막의 대형화에 따른 면적 및/또는 중량 증가로 인해 전극과 전극 사이에 권취된 분리막이 이탈되기 쉬어, 분리막과 전극 간의 접착력 증가가 요구된다. 또한, 지속적인 충방전에 의해 전지가 뒤틀리는 등, 형태가 변화하는 것을 방지할 수 있도록 전극 조립체의 형태 안정성이 우수할 것이 요구된다.
이와 관련하여, 분리막과 전극 간의 접착력 및 분리막의 내열성 향상을 위하여 분리막의 다공성 기재의 일면 또는 양면에 유/무기 혼합 다공성 접착층을 형성하는 것이 알려져 있으나(대한민국 등록특허 제10-0775310호), 목적하는 접착력을 충분히 확보할 수 없어 다양한 사이즈와 형태를 지닌 분리막에 일괄적으로 적용되기 어렵다.
따라서, 대면적화된 전기 화학 전지에 적용이 가능한 접착력을 지닌 분리막을 포함하며, 전지의 형태 안정성을 개선시킬 수 있는 전극 조립체의 개발이 필요하다.
본 발명은 전극 조립체 내 전극과 분리막 간의 접착력이 우수하며, 형태 안정성이 개선된 전극 조립체 및 이를 이용한 전기 화학 전지를 제공하는 것을 목적으로 한다.
본 발명의 일 실시예에 따르면, 양극 활물질이 도포되어 있는 양극, 음극 활물질이 도포되어 있는 음극, 및 상기 양극과 음극 사이에 개재된 분리막을 포함하며, 20 ℃ 내지 110 ℃에서 1초 내지 15초간, 1 kgf/cm2 내지 30 kgf/cm2 의 압력으로 압착하였을 때, 굴곡 강도가 15 kgf/cm2 이상인 전극 조립체가 제공된다.
본 발명의 다른 일 실시예에 따르면, 상기 일 실시예에 따른 전극 조립체를 포함하는 전기 화학 전지, 특히 리튬 이차 전지가 제공된다.
본 발명의 실시예들에 따른 전극 조립체에 있어서, 전극 조립체를 구성하는 전극과 분리막 간의 접착력이 뛰어나다. 따라서 전극 조립체 제조 공정에서 분리막이 이탈되는 것을 방지하여 공정 불량률을 감소시킬 수 있으며, 장기간 보존이 가능하다.
또한, 본 발명의 실시예들에 따른 전극 조립체는 형태 안정성이 우수하여, 장기간 지속되는 충방전에도 형태 변화가 최소화될 수 있다. 이를 통해, 제조된 전지는 고효율의 충방전 특성을 가질 수 있으며, 전지 성능의 저하를 방지할 수 있다.
도 1은 본 발명의 일 실시예에 따른 전극 조립체 일부의 내부 단면도로, 상기 전극 조립체는 양극 전류집전체(4)에 양극 활물질층(5)이 형성된 양극(6); 음극 전류집전체(11)에 음극 활물질층(10)이 형성된 음극(12); 및 상기 양극(6)과 상기 음극(12) 사이에 배치되어 양극 혹은 음극과 각각 접착되며, 다공성 기재(8)와 다공성 기재의 양면에 형성된 다공성 접착층(7, 7')을 포함하는 분리막(9)을 포함한다.
도 2는 본 발명의 다른 실시예에 따른 전극 조립체 일부의 내부 단면도로, 상기 전극 조립체는 양극 전류집전체(4)에 양극 활물질층(5)이 형성된 양극(6); 음극 전류집전체(11)에 음극 활물질층(10)이 형성된 음극(12); 및 상기 양극(6)과 상기 음극(12) 사이에 배치되어 양극 혹은 음극과 각각 접착되며, 다공성 기재(8)와 다공성 기재의 일면에 형성된 다공성 접착층(7)을 포함하는 분리막(9)을 포함한다.
이하 본 발명에 대해 보다 상세히 설명한다. 본원 명세서에 기재되어 있지 않은 내용은 본 발명의 기술 분야 또는 유사 분야에서 숙련된 자이면 충분히 인식하고 유추할 수 있는 것이므로 그 설명을 생략한다.
이하, 도 1을 참조하여 본 발명의 일 실시예에 따른 전극 조립체에 대해 설명한다. 본 발명의 일 실시예에 따르면, 양극 활물질 및 양극 전류 집전체를 포함하는 양극, 음극 활물질 및 음극 전류 집전체를 포함하는 음극, 및 상기 양극과 음극 사이에 배치된 분리막을 포함하며, 20 ℃ 내지 110 ℃에서 1초 내지 15초간, 1 kgf/cm2 내지 30 kgf/cm2의 압력으로 압착하였을 때, 굴곡 강도가 15 kgf/cm2 이상인 전극 조립체가 제공된다.
전극 조립체를 20 ℃ 내지 110 ℃에서 1초 내지 15초간, 1 kgf/cm2 내지 30 kgf/cm2의 압력으로 압착하였을 때, 굴곡 강도가 15kgf/cm2 이상인 것은 전극 조립체의 형태 안정성과 관련이 있다. 이를 통해, 장기간에 걸친 지속적 충방전에도 불구하고 전지가 뒤틀리는 등 전지의 형태가 변화하는 것을 최소화시킬 수 있어서 고효율의 충방전 특성을 가질 수 있으며, 전지 성능의 저하를 방지할 수 있다. 상기 굴곡 강도는 3 포인트 벤딩 기계(3 point bending machine)(예: UTM)를 이용하여 ASTM D790에 의해 측정될 수 있으나, 이에 제한되는 것은 아니다. 상기 굴곡 강도는 구체적으로 17 kgf/cm2 내지 50 kgf/cm2 의 범위일 수 있으며, 보다 구체적으로 20 kgf/cm2 내지 30 kgf/cm2 의 범위일 수 있다.
도 1을 참조하면, 상기 실시예에 따른 전극 조립체는, 양극 전류집전체(4)에 양극 활물질층(5)이 형성된 양극(6); 음극 전류집전체(11)에 음극 활물질층(10)이 형성된 음극(12); 및 상기 양극(6)과 상기 음극(12) 사이에 배치되어 양극 혹은 음극과 각각 접착된 분리막(9)을 포함할 수 있다. 상기 분리막(9)은 다공성 기재(8)과 상기 다공성 기재(8)의 양면에 형성된 다공성 접착층(7,7')을 포함할 수 있다.
다공성 기재(8)는 다수의 기공을 가지며 통상 전기화학소자에 사용될 수 있는 다공성 기재를 사용할 수 있다. 다공성 기재(8)로는 비제한적으로 폴리에틸렌, 폴리프로필렌, 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리에스테르, 폴리아세탈, 폴리아미드, 폴리이미드, 폴리카보네이트, 폴리에테르에테르케톤, 폴리아릴에테르케톤, 폴리에테르이미드, 폴리아미드이미드, 폴리벤즈이미다졸, 폴리에테르설폰, 폴리페닐렌옥사이드, 사이클릭 올레핀 코폴리머, 폴리페닐렌설파이드 및 폴리에틸렌나프탈렌으로 이루어진 군으로부터 선택된 어느 하나의 고분자 또는 이들 중 이종 이상의 혼합물로 형성된 고분자막일 수 있다. 일 예에서, 다공성 기재(8)는 폴리올레핀계 기재일 수 있으며, 폴리올레핀계 기재는 셧 다운(shut down) 기능이 우수하여 전지의 안전성 향상에 기여할 수 있다. 폴리올레핀계 기재는 예를 들어 폴리에틸렌 단일막, 폴리프로필렌 단일막, 폴리에틸렌/폴리프로필렌 이중막, 폴리프로필렌/폴리에틸렌/폴리프로필렌 삼중막 및 폴리에틸렌/폴리프로필렌/폴리에틸렌 삼중막으로 이루어진 군에서 선택될 수 있다. 다른 예에서, 폴리올레핀계 수지는 올레핀 수지 외에 비올레핀 수지를 포함하거나, 올레핀과 비올레핀 모노머의 공중합체를 포함할 수 있다. 다공성 기재(8)의 두께는 1 ㎛ 내지 40 ㎛일 수 있고, 보다 구체적으로는 5 ㎛ 내지 15 ㎛일 수 있다. 상기 두께 범위 내의 기재를 사용하는 경우, 전지의 양극과 음극의 단락을 방지할 수 있을 만큼 충분히 두꺼우면서도 전지의 내부 저항을 증가시킬 만큼 두껍지는 않은, 적절한 두께를 갖는 분리막을 제조할 수 있다.
다공성 접착층(7,7')은 다공성 기재(8)의 양면에 형성될 수 있으며, 다공성 접착층 조성물로 형성될 수 있다. 상기 다공성 접착층 조성물은 유기 바인더, 및 용매를 포함할 수 있다.
상기 유기 바인더는 아크릴계 공중합체일 수 있으며, 예를 들어 (메트)아크릴레이트계 단량체 유래 반복단위를 포함하는 아크릴계 공중합체일 수 있다. 또한, 상기 아크릴계 공중합체는 (메트)아크릴레이트계 단량체 유래 반복단위 외에 아세테이트기 함유 단량체 유래 반복단위를 추가로 포함할 수 있다. 바인더로 (메트)아크릴레이트계 단량체 유래 반복단위, 및/또는 아세테이트기 함유 단량체 유래 반복단위를 갖는 아크릴계 공중합체를 사용하면 분리막이 실제 사용되는 환경인 이차 전지 내에서 양극 혹은 음극과의 접착력이 강하여 전극 조립체 공정에서 분리막이 이탈되는 것을 방지하여 공정 불량율을 감소시킬 수 있으며, 장기간 보존이 가능하다. 또한, 다공성 접착층이 전해액을 보유함으로써 전극간 양호한 이온 전도성을 유지할 수 있으며, 다공성 기재의 기공도를 저해하지 않을 수 있다.
상기 아크릴계 공중합체의 유리전이온도(Tg)는 100℃ 미만, 예를 들어, 20 ℃ 내지 60 ℃, 구체적으로 30 ℃ 내지 45 ℃의 범위일 수 있다. 상기 범위이면 분리막을 전극 사이에 위치시키고 이를 압착하는 온도에서 양호한 접착을 형성하여 형태 안정성을 확보할 수 있다.
본 발명의 일 실시예에서 사용될 수 있는 (메트)아크릴레이트계 단량체 유래 반복단위, 및/또는 아세테이트기 함유 단량체 유래 반복단위를 갖는 아크릴계 공중합체는 양극과 음극 사이에서 압착하는 온도에서 양호한 접착력을 형성할 수 있는 것이라면 특별히 제한되지 않으나, 예를 들어, 상기 아크릴계 공중합체는 부틸 (메트)아크릴레이트, 프로필 (메트)아크릴레이트, 에틸 (메트)아크릴레이트 및 메틸 (메트)아크릴레이트로 이루어진 군으로부터 선택된 1종 이상의 (메트)아크릴레이트계 단량체를 중합시켜 생성된 공중합체일 수 있다. 또는, 상기 아크릴계 공중합체는 부틸 (메트)아크릴레이트, 프로필 (메트)아크릴레이트, 에틸 (메트)아크릴레이트 및 메틸 (메트)아크릴레이트로 이루어진 군으로부터 선택된 1종 이상의 (메트)아크릴레이트계 단량체와, 비닐 아세테이트 및 알릴 아세테이트로 이루어진 군으로부터 선택된 1종 이상의 아세테이트기 함유 단량체를 중합시켜 생성된 공중합체일 수 있다.
상기 아세테이트기 함유 단량체 유래 반복단위는 화학식 1의 반복단위일 수 있다:
[화학식 1]
Figure PCTKR2014011234-appb-I000001
상기 화학식 1에서, R1은 단일 결합이거나, 직쇄 또는 분지된 탄소수 1 내지 6의 알킬이고, R2는 수소이거나 메틸이고, l은 각각 1 내지 100 사이의 정수이다.
예를 들어, 상기 아세테이트기 함유 단량체 유래 반복단위는 비닐 아세테이트 및 알릴 아세테이트로 이루어진 군으로부터 하나 이상 선택된 아세테이트기 함유 단량체 유래 반복단위일 수 있다. 상기 아크릴계 공중합체는 (메트)아크릴레이트계 단량체들을 중합시켜 제조되거나, (메트)아크릴레이트계 단량체와 (메트)아크릴레이트계 외의 기타 단량체를 중합시켜 제조될 수 있다. 예를 들어, 상기 기타 단량체는 아세테이트기 함유 단량체일 수 있다. 이 경우, (메트)아크릴레이트계 단량체와 기타 단량체, 구체적으로는 아세테이트기 함유 단량체는 몰비 3:7 내지 7:3, 구체적으로 4:6 내지 6:4, 보다 구체적으로는 약 5:5의 비로 중합하여 제조될 수 있다. 상기 아크릴계 공중합체는 예를 들어, 부틸 (메트)아크릴레이트 단량체, 메틸 (메트)아크릴레이트 단량체, 및 비닐 아세테이트 및/또는 알릴 아세테이트 단량체를, 몰비 3 내지 5 : 0.5 내지 1.5 : 4 내지 6, 구체적으로, 4 : 1 : 5의 몰비로 중합 반응시켜 제조될 수 있다.
본 발명의 일 실시예에서, 상기 다공성 접착층 조성물은 무기입자를 추가로 포함할 수 있다.
본 발명의 일 실시예에서 사용되는 무기 입자는 특별히 제한되지 아니하며 당해 기술 분야에서 통상적으로 사용하는 무기 입자를 사용할 수 있다. 본 발명의 일 실시예에서 사용 가능한 무기 입자의 비제한적인 예로는 Al2O3, SiO2, B2O3, Ga2O3, TiO2 또는 SnO2 등을 들 수 있다. 이들은 단독 또는 2종 이상을 혼합하여 사용할 수 있다. 본 발명의 일 실시예에서 사용되는 무기 입자로는 예를 들어, Al2O3(알루미나)를 사용할 수 있다. 본 발명의 일 실시예에서 사용되는 무기 입자의 크기는 특별히 제한되지 아니하나, 평균 입경이 1 nm 내지 2,000 nm일 수 있고, 예를 들어, 100 nm 내지 1,000 nm, 300 nm 내지 500 nm 일 수 있다. 상기 크기 범위의 무기 입자를 사용하는 경우, 다공성 접착층 조성액 내에서의 무기 입자의 분산성 및 다공성 접착층 형성의 공정성이 저하되는 것을 방지할 수 있고 다공성 접착층의 두께가 적절히 조절되어 기계적 물성의 저하 및 전기적 저항의 증가를 방지할 수 있다. 또한, 분리막에 생성되는 기공의 크기가 적절히 조절되어 전지의 충방전 시 내부 단락이 일어날 확률을 낮출 수 있는 이점이 있다. 다공성 접착층 조성물의 제조에 있어서 상기 무기 입자는 이를 적절한 용매에 분산시킨 무기 분산액 형태로 이용될 수 있다. 상기 적절한 용매는 특별히 제한되지 아니하며 당해 기술 분야에서 통상적으로 사용하는 용매를 사용할 수 있다. 상기 무기 입자를 분산시키는 적절한 용매로서 예를 들어, 아세톤을 사용할 수 있다. 상기 무기 분산액을 제조하는 방법은 특별한 제한 없이 통상적인 방법에 의할 수 있으며, 예를 들어 Al2O3를 아세톤에 적정 함량으로 첨가하고 비즈 밀(Beads mill)을 이용해 밀링하여 분산시키는 방식으로 무기 분산액을 제조할 수 있다. 다공성 접착층 내에서 상기 무기입자는 다공성 접착층 전체 중량을 기준으로 70 중량% 내지 95 중량%, 구체적으로 75 중량% 내지 90 중량%, 보다 구체적으로 80 중량% 내지 90중량%로 포함될 수 있다. 상기 범위 내로 무기 입자를 함유하는 경우, 무기 입자의 방열 특성이 충분히 발휘될 수 있으며 이를 이용하여 다공성 기재에 다공성 접착층을 형성시킬 경우 분리막의 열수축을 효과적으로 억제할 수 있다.
본 발명의 일 실시예에서 사용 가능한 상기 용매의 비제한적인 예로는 아세톤, 디메틸포름아미드(Dimethyl formamide), 아세톤, 디메틸설폭사이드(Dimethyl sulfoxide), 디메틸아세트아미드(Dimethyl acetamide), 디메틸카보네이트(Dimethyl carbonate) 또는 N-메틸피롤리돈(N-methylpyrrolydone) 등을 들 수 있다. 다공성 접착층 조성물의 중량을 기준으로 용매의 함량은 20 중량% 내지 99 중량%일 수 있고, 구체적으로 50 중량% 내지 95 중량%일 수 있으며, 보다 구체적으로 70 중량% 내지 95 중량%일 수 있다. 상기 범위의 용매를 함유하는 경우 다공성 접착층 조성물의 제조가 용이해지며 다공성 접착층의 건조 공정이 원활히 수행될 수 있다.
다공성 접착층(7,7')의 두께는 1 ㎛ 내지 15 ㎛일 수 있고, 구체적으로는 1 내지 10 ㎛, 보다 구체적으로 1 ㎛ 내지 8 ㎛, 또는 1 ㎛ 내지 5 ㎛일 수 있다. 상기 두께 범위 내의 다공성 접착층을 사용하는 경우, 적절한 두께의 다공성 접착층을 형성하여 우수한 열적 안정성 및 접착력을 얻을 수 있으며, 전체 분리막의 두께가 지나치게 두꺼워지는 것을 방지하여 전지의 내부 저항이 증가하는 것을 억제할 수 있다.
본 실시예에 따른 전극 조립체는 하기 식 1의 압착 두께 변화율이 10% 이상일 수 있다.
[식 1]
압착 두께 변화율(%) = [(20 ℃에서 압착한 전극 조립체의 두께 ― 100 ℃에서 압착한 전극 조립체의 두께)/ 20 ℃에서 압착한 전극 조립체의 두께]×100
상기 식 1에서, 20 ℃에서 압착한 전극 조립체의 두께는 양극/분리막/음극 순으로 적층된 전극 조립체를 20 ℃에서 1 내지 10 초간, 1 내지 30 kgf/cm2 의 압력으로 압착하고 1시간 후 측정된 전극 조립체의 중앙부 두께이며, 100℃에서 압착한 전극 조립체의 두께는 100 ℃에서 1 내지 10초간, 1 내지 30 kgf/cm2의 압력으로 압착하고 1시간 후 측정한 전극 조립체의 중앙부 두께이다. 상기 압착 두께 변화율의 범위를 만족하는 경우, 전극과 분리막 간의 고온(예: 100℃) 압착시 접착력이 우수하여, 전극 조립체 내에서 분리막이 이탈되는 것을 방지하여 공정 불량율을 감소시킬 수 있으며, 장기간 보존이 가능하다. 상기 압착 두께 변화율은 구체적으로 13 % 이상 50 % 미만, 보다 구체적으로는 15 % 이상 47 % 미만, 보다 더 구체적으로는 20 % 이상 45 % 미만일 수 있다. 압착 두께 변화율이 클수록 분리막과 양극 혹은 음극간의 접착력이 보다 개선될 수 있다.
이하 도 2를 참조하여 본 발명의 다른 실시예에 다른 전극 조립체에 대해 설명한다. 도 2를 참조하면, 본 발명의 다른 실시예에 따른 전극 조립체는, 양극 전류집전체(4)에 양극 활물질층(5)이 형성된 양극(6); 음극 전류집전체(11)에 음극 활물질층(10)이 형성된 음극(12); 및 상기 양극(6)과 상기 음극(12) 사이에 배치되어 양극 혹은 음극에 접착된 분리막(9)을 포함할 수 있다. 상기 분리막(9)은 다공성 기재(8)과 다공성 기재(8)의 일면에 형성된 다공성 접착층(7)을 포함할 수 있다. 본 실시예에 따른 전극 조립체는 분리막(9)의 다공성 기재(8)의 양면 상이 아닌 일면 상에만 다공성 접착층(7)을 형성한다는 점을 제외하고는 본 발명의 일 실시예에 따른 전극 조립체와 다른 구성요소는 실질적으로 동일하므로 이하에서는 상세한 설명을 생략한다.
본 실시예에 따른 전극 조립체는 20 ℃ 내지 110 ℃에서 1초 내지 15초간, 1 kgf/cm2 내지 30 kgf/cm2의 압력으로 압착하였을 때, 굴곡 강도가 15 kgf/cm2 이상, 예를 들어, 17 kgf/cm2 내지 50 kgf/cm2, 구체적으로 20 kgf/cm2 내지 30 kgf/cm2 일 수 있다. 즉, 다공성 접착층(7)이 다공성 기재(8)의 일면에만 형성된 경우에도 전극(양극 또는 음극)과의 충분한 접착력을 나타내어 지속적인 충방전에도 전지 형태가 변형되는 것을 최소화할 수 있다.
이하, 본 발명의 또 다른 실시예에 따른 전극 조립체에 대해 설명한다. 본 실시예의 전극 조립체는 다공성 접착층에 유기 바인더로 본원에 개시된 아크릴계 공중합체 외에 다른 종류의 유기 바인더를 추가로 포함할 수 있다. 다공성 접착층에 유기 바인더를 추가로 포함한다는 점을 제외하고는 상술한 본 발명의 일 실시예 또는 본 발명의 다른 실시예에 따른 전극 조립체와 실질적으로 동일하다. 따라서, 이하에서는 아크릴계 공중합체 외에 추가로 포함되는 다른 바인더를 중심으로 설명한다. 본 실시예에서는 다른 바인더를 추가로 포함함으로써 접착력 및 내열성을 더욱 향상시킬 수 있다.
아크릴계 공중합체 외에 추가될 수 있는 바인더의 예로, 폴리비닐리덴 플루오라이드(Polyvinylidene fluoride, PVdF) 호모폴리머, 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 코폴리머 (Polyvinylidene fluoride-Hexafluoropropylene copolymer, PVdF-HFP), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈(polyvinylpyrrolidone), 폴리비닐아세테이트(polyvinylacetate), 폴리에틸렌옥사이드(polyethylene oxide), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부틸레이트(cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸풀루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 풀루란 (pullulan), 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose), 및 아크릴로니트릴스티렌부타디엔 공중합체 (acrylonitrilestyrene-butadiene copolymer)로 이루어진 군으로부터 선택된 단독 또는 이들의 혼합물을 들 수 있다. 보다 구체적으로, 폴리비닐리덴 플루오라이드계 바인더를 사용할 수 있으며, 그 예는 폴리비닐리덴 플루오라이드(polyvinylidenefluoride, PVDF) 호모폴리머, 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌(polyvinylidenefluoride-hexafluoropropylene, PVDF-HFP), 폴리비닐리덴 플루오라이드-트리클로로에틸렌(polyvinylidene fluoride-trichloroethylene, PVDF-TCE), 폴리비닐리덴플루오라이드-클로로트리플로로에틸렌(polyvinylidenefluoride-trifluoroethylene, PVDF-CTFE) 등을 들 수 있다.
상기 아크릴계 공중합체와 상기 추가되는 바인더의 중량비는 9.9:0.1 내지 2.5:7.5로 사용될 수 있다. 구체적으로 9.9:0.1 내지 5:5, 보다 구체적으로는 9:1 내지 5.5:4.5, 8:2 내지 6:4 로 사용될 수 있다. 상기 범위 내에서 사용되는 경우, 분리막이 충분한 접착력을 유지하면서 형태 안정성이 우수한 전극 조립체를 제조할 수 있다. 이를 통해, 제조된 전지 성능 저하를 방지할 수 있으며, 전지는 고효율의 충방전 특성을 가질 수 있다.
PVdF계 바인더를 추가로 포함하는 경우, PVdF계 바인더는 중량평균분자량(Mw)이 500,000 내지 1,500,000 (g/mol) 일 수 있다. 구체예에서, PVdF계 바인더는 중량평균분자량(Mw)이 1,000,000 내지 1,500,000 (g/mol) 일 수 있다. 다른 예에서, 중량평균분자량이 상이한 2종 이상을 혼합하여 사용할 수 있다. 예를 들어, 중량평균분자량이 1,000,000 g/mol 이하인 1종 이상과 1,000,000 g/mol 이상인 1종 이상을 혼합하여 사용할 수 있다. 상기 분자량 범위 내의 PVdF계 바인더를 사용하면 다공성 접착층과 다공성 기재 사이의 접착력이 강화되어, 열에 약한 다공성 기재가 열에 의해 수축되는 것을 효과적으로 억제할 수 있으며, 또한 전해질 함침성을 충분히 향상된 분리막을 제조할 수 있으며 이를 활용하여 전기 출력이 효율적으로 일어나는 전지를 생산할 수 있는 이점이 있다.
이하, 본 발명의 일 실시예에 따른 전극 조립체의 제조방법에 대해 설명한다. 본 발명의 일 실시예에 따른 전극 조립체의 제조 방법은, 양극 전류집전체에 양극 활물질층을 형성하여 양극을 제조하고, 음극 전류집전체에 음극 활물질층을 형성하여 음극을 제조하고, 상기 양극 및 음극 사이에 본원에 개시된 바와 같은 분리막을 배치시키는 것을 포함할 수 있다.
본 발명의 다른 실시예에 따른 전극 조립체의 제조 방법은, 양극 및 음극 사이에 분리막을 배치하고 상기 양극/분리막/음극의 구조물을 20 ℃ 내지 110 ℃에서 1 초 내지 10초간 1kgf/cm2 내지 30kgf/cm2 의 압력으로 압착하는 것을 추가로 포함할 수 있다. 상기 양극 및 음극 사이에 상기와 같은 방법에 의해 제조된 분리막을 배치시킨 후 20 ℃ 내지 110 ℃에서 1초 내지 10초간, 1 kgf/cm2 내지 30kgf/cm2의 압력으로 압착하면, 본원의 아크릴계 공중합체가 양극 혹은 음극과 강한 접착을 형성하여 전극 조립체의 형태 보존성이 개선될 수 있다. 상기 압착 조건은 분리막의 다공성 기재가 현저하게 열수축되지 않는 온도 및 분리막의 다공성 접착층의 접착 온도를 고려한 것이며, 구체적으로는 상온 또는 80 ℃ 내지 100 ℃에서 1 초 내지 5초간 5 kgf/cm2 내지 10 kgf/cm2의 압력을 가하는 것일 수 있다.
본 발명의 또 다른 실시예에 따른 전극 조립체의 제조 방법은, 양극 및 음극 사이에 분리막을 배치하고 전극 조립체를 20 ℃ 내지 110 ℃에서 1 초 내지 10초간 1kgf/cm2 내지 30kgf/cm2 의 압력으로 1차 압착하고, 전지 케이스에 내장시킨 뒤, 전해액을 주입하고, 60 ℃ 내지 110 ℃에서 30 초 내지 180초간 1 kgf/cm2 내지 30 kgf/cm2의 압력으로 2차 압착하는 것을 추가로 포함할 수 있다. 이 때, 상기 전지 케이스는 알루미늄 파우치 등이 될 수 있으나 이에 제한되는 것은 아니다.
본 발명의 또 다른 실시예에 따른 전극 조립체의 제조 방법은 상술한 본 발명의 상기 실시예에 따른 전극 조립체의 제조방법에서 전해액 주입 후 상기 2차 압착 전, 전극 조립체를 6시간 내지 48시간, 10 ℃ 내지 30 ℃의 범위에서 보관하는 것을 추가로 포함할 수 있다. 상기 2차 압착에 의해 본원의 아크릴계 공중합체가 양극 혹은 음극과 보다 강한 접착을 형성하여 전극 조립체의 형태 보존성이 개선될 수 있다.
상기 양극은 양극 전류집전체 및 상기 양극 전류집전체 위에 형성되는 양극 활물질층을 포함할 수 있다. 상기 양극 활물질층은 양극 활물질, 바인더 및 선택적으로 도전재를 포함할 수 있다. 상기 양극 전류집전체로는 알루미늄(Al), 니켈(Ni) 등을 사용할 수 있으나, 이에 한정되지 않는다. 상기 양극 활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 사용할 수 있다. 구체적으로 코발트, 망간, 니켈, 알루미늄, 철 또는 이들의 조합의 금속과 리튬과의 복합 산화물 또는 복합 인산화물 중에서 1종 이상을 사용할 수 있다. 더욱 구체적으로, 리튬 코발트 산화물, 리튬 니켈 산화물, 리튬 망간 산화물, 리튬 니켈 코발트 망간 산화물, 리튬 니켈 코발트 알루미늄 산화물, 리튬 철 인산화물 또는 이들의 조합을 사용할 수 있다. 상기 바인더는 양극 활물질 입자들을 서로 잘 부착시킬 뿐 아니라 양극 활물질을 양극 집전체에 잘 부착시키는 역할을 하며, 구체적인 예로는 폴리비닐알코올, 카르복시메틸셀룰로오스, 히드록시프로필셀룰로오스, 디아세틸셀룰로오스, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드 함유 폴리머, 폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 스티렌-부타디엔 러버, 아크릴레이티드 스티렌-부타디엔 러버, 에폭시 수지, 나일론 등이 있으나, 이에 한정되지 않는다. 이들은 단독으로 또는 2종 이상 혼합하여 사용할 수 있다. 상기 도전재는 전극에 도전성을 부여하는 것으로, 그 예로 천연흑연, 인조흑연, 카본블랙, 탄소섬유, 금속 분말, 금속 섬유 등이 있으나, 이에 한정되지 않는다. 이들은 단독으로 또는 2종 이상 혼합하여 사용할 수 있다. 상기 금속 분말과 상기 금속 섬유는 구리, 니켈, 알루미늄, 은 등의 금속을 사용할 수 있다.
상기 음극은 음극 전류집전체 및 상기 음극 전류집전체 위에 형성되는 음극 활물질층을 포함할 수 있다. 상기 음극 전류집전체는 구리(Cu), 금(Au), 니켈(Ni), 구리 합금 등을 사용할 수 있으나, 이에 한정되지 않는다. 상기 음극 활물질층은 음극 활물질, 바인더 및 선택적으로 도전재를 포함할 수 있다. 상기 음극 활물질로는 리튬 이온을 가역적으로 인터칼레이션 및 디인터칼레이션할 수 있는 물질, 리튬 금속, 리튬 금속의 합금, 리튬을 도프 및 탈도프할 수 있는 물질, 전이금속 산화물 또는 이들의 조합을 사용할 수 있다. 상기 리튬 이온을 가역적으로 인터칼레이션 및 디인터칼레이션할 수 있는 물질로는 탄소계 물질을 들 수 있으며, 그 예로는 결정질 탄소, 비정질 탄소 또는 이들의 조합을 들 수 있다. 상기 결정질 탄소의 예로는 무정형, 판상, 인편상(flake), 구형 또는 섬유형의 천연흑연 또는 인조흑연을 들 수 있다. 상기 비정질 탄소의 예로는 소프트 카본(soft carbon) 또는 하드 카본(hard carbon), 메조페이스 피치 탄화물, 소성된 코크스 등을 들 수 있다. 상기 리튬 금속의 합금으로는 리튬과 Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al 및 Sn으로 이루어진 군에서 선택되는 금속의 합금이 사용될 수 있다. 상기 리튬을 도프 및 탈도프할 수 있는 물질로는 Si, SiOx(0<x<2), Si-C 복합체, Si-Y 합금, Sn, SnO2, Sn-C 복합체, Sn-Y 등을 들 수 있고, 또한 이들 중 적어도 하나와 SiO2를 혼합하여 사용할 수도 있다. 상기 원소 Y로는 Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Tl, Ge, P, As, Sb, Bi, S, Se, Te, Po 및 이들의 조합으로 이루어진 군에서 선택될 수 있다. 상기 전이금속 산화물로는 바나듐 산화물, 리튬 바나듐 산화물 등을 들 수 있다. 상기 음극에 사용되는 바인더와 도전재의 종류는 전술한 양극에서 사용되는 바인더와 도전재와 같다.
상기 양극과 음극은 각각의 활물질 및 바인더와 선택적으로 도전재를 용매 중에 혼합하여 각 활물질 조성물을 제조하고, 상기 활물질 조성물을 각각의 전류집전체에 도포하여 제조할 수 있다. 이때 상기 용매는 N-메틸피롤리돈 등을 사용할 수 있으나, 이에 한정되지 않는다.
상기 전해액은 A+B- 와 같은 구조의 염이 유기 용매에 용해 또는 해리된 것일 수 있다.
상기 유기용매는 전기화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 한다. 그 구체적인 예로는, 카보네이트계 용매, 에스테르계 용매, 에테르계 용매, 케톤계 용매, 알코올계 용매 및 비양성자성 용매에서 선택될 수 있다. 상기 카보네이트계 용매의 예로는, 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 메틸프로필 카보네이트(MPC), 에틸프로필 카보네이트(EPC), 에틸메틸 카보네이트(EMC), 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 부틸렌 카보네이트(BC) 등을 들 수 있다. 구체적으로, 사슬형 카보네이트 화합물과 환형 카보네이트 화합물을 혼합하여 사용하는 경우 유전율을 높이는 동시에 점성이 작은 용매로 제조될 수 있다. 이때 환형 카보네이트 화합물 및 사슬형 카보네이트 화합물은 1:1 내지 1:9의 부피비로 혼합하여 사용할 수 있다. 상기 에스테르계 용매의 예로는, 메틸아세테이트, 에틸아세테이트, n-프로필아세테이트, 디메틸아세테이트, 메틸프로피오네이트, 에틸프로피오네이트, γ-부티로락톤, 데카놀라이드(decanolide), 발레로락톤, 메발로노락톤(mevalonolactone), 카프로락톤(caprolactone) 등을 들 수 있다. 상기 에테르계 용매의 예로는, 디부틸에테르, 테트라글라임, 디글라임, 디메톡시에탄, 2-메틸테트라히드로퓨란, 테트라히드로퓨란 등을 들 수 있다. 상기 케톤계 용매로는 시클로헥사논 등을 들 수 있고, 상기 알코올계 용매로는 에틸알코올, 이소프로필 알코올 등을 들 수 있다. 상기 유기용매는 단독으로 또는 2종 이상 혼합하여 사용할 수 있으며, 2종 이상 혼합하여 사용하는 경우의 혼합 비율은 목적하는 전지 성능에 따라 적절하게 조절할 수 있다.
상기 A+의 비제한적인 예로는, Li+, Na+ 또는 K+와 같은 알칼리 금속 양이온, 또는 이들의 조합으로 이루어진 양이온을 들 수 있다. 상기 B-의 비제한적인 예로는, PF6 -, SbF6 -, BF4 -, AlCl4 -, AlO2 -, Cl-, Br-, I-, ClO4 -, AsF6 -, B(C2O4)2 -, CH3CO2 -, N(SO3C2F5)2 -, C4F9SO3 -, CF3SO3 -, N (CF3SO2)2 - 또는 C(CF2SO2)3 -와 같은 음이온, 또는 이들의 조합으로 이루어진 음이온을 들 수 있다. 예를 들어, 리튬염을 사용할 수 있으며, 상기 리튬염은 유기용매에 용해되어 리튬 이온의 공급원으로 작용하여 기본적인 전기 화학 전지의 작동을 가능하게 하고, 양극과 음극 사이의 리튬 이온의 이동을 촉진시킬 수 있다. 상기 리튬염의 예로는, LiPF6, LiBF4, LiSbF6, LiAsF6, LiN(SO3C2F5)2, LiN(CF3SO2)2, LiC4F9SO3, LiClO4, LiAlO2, LiAlCl4, LiN(CxF2x+1SO2)(CyF2y+1SO2)(x 및 y는 자연수임), LiCl, LiI, LiB(C2O4)2 또는 이들의 조합을 들 수 있다. 상기 리튬염의 농도는 0.1M 내지 2.0M 범위 내에서 사용할 수 있다. 리튬염의 농도가 상기 범위 내인 경우, 전해액이 적절한 전도도 및 점도를 가지므로 우수한 전해액 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
본 발명의 일 실시예에 따른 상기 전기 화학 전지는 구체적으로는 리튬 금속 이차 전지, 리튬 이온 이차 전지, 리튬 폴리머 이차 전지 또는 리튬 이온 폴리머 이차 전지 등과 같은 리튬 이차 전지일 수 있다.
이하, 실시예, 비교예 및 실험예를 기술함으로써 본 발명을 보다 상세히 설명한다. 다만, 하기의 실시예, 비교예 및 실험예는 본 발명의 일 예시에 불과하며 본 발명의 내용이 이에 한정되는 것으로 해석되어서는 아니된다.
제조예
제조예 1 : 분리막의 제조
부틸 메타아크릴레이트(Buthyl Methacrylate, BMA), 메틸 메타크릴레이트(Methyl Methacrylate, MMA), 비닐 아세테이트(Vinyl Acetate, VAc) 가 4/1/5 몰비율로 중합된 아크릴계 공중합체 바인더(Tg: 35 ℃, Mw: 600K(GPC))를 아세톤(acetone)에 고형분 10 중량%로 용해시키고 교반기를 이용해 40 ℃에서 2시간 동안 교반하여 제1 바인더 용액을 제조하였다. 알루미나 (LS235, 일본경금속)를 아세톤에 25 중량%로 첨가 후 25 ℃에서 2시간 동안 비즈밀 분산을 하여 알루미나 분산액을 제조하였다. 바인더 고형분과 알루미나 고형분이 1/5 비율이 되도록 제1 바인더 용액 및 알루미나 분산액을 혼합하였으며, 전체 고형분이 10 중량%가 되도록 아세톤을 첨가하여 다공성 접착층 조성액을 제조하였다. 두께가 12 ㎛인 폴리에틸렌 원단(W scope)의 양면에 상기 다공성 접착층 조성액으로 각각 2 ㎛ 두께로 코팅하여 총 두께 16 ㎛정도의 분리막을 제작하였다.
제조예 2 : 분리막의 제조
부틸 메타아크릴레이트(Buthyl Methacrylate, BMA), 메틸 메타크릴레이트(Methyl Methacrylate, MMA), 비닐 아세테이트(Vinyl Acetate, VAc) 가 4/1/5 몰비율로 중합된 아크릴계 공중합체 바인더(Tg: 35 ℃, Mw: 600K(GPC))를 아세톤(acetone)에 고형분 10 중량%로 용해시키고 교반기를 이용해 40 ℃에서 2시간 동안 교반하여 제1 바인더 용액을 제조하였다. PVdF계 바인더 KF9300 (쿠레하사, Mw: 1,200,000 g/mol)을 아세톤, DMAc 혼합 용매에 고형분 7 중량% 용액이 되도록 용해시키고 교반기를 이용해 40 ℃에서 4시간 동안 교반하여 제2 바인더 용액을 제조하였다. 알루미나 (LS235, 일본경금속)를 아세톤에 25 중량%로 첨가 후 25 ℃에서 2시간 동안 비즈밀 분산을 하여 알루미나 분산액을 제조하였다. 위의 아크릴계 바인더와 PVdF계 바인더의 중량비가 8/2이 되도록, 바인더 고형분과 알루미나 고형분이 1/5 비율이 되도록 제1, 제2 바인더 용액 및 알루미나 분산액을 혼합하였으며, 전체 고형분이 10 중량%가 되도록 아세톤을 첨가하여 다공성 접착층 조성액을 제조하였다. 두께가 12 ㎛인 폴리에틸렌 원단(W scope)의 양면에 상기 다공성 접착층 조성액으로 각각 2㎛ 두께로 코팅하여 총 두께 16 ㎛ 정도의 분리막을 제작하였다.
제조예 3 : 분리막의 제조
상기 제조예 2에서 아크릴계 바인더와 PVdF계 바인더의 중량비가 7/3이 되도록 한 것을 제외하고는 제조예 2와 동일한 방법으로 분리막을 제조하였다.
제조예 4 : 분리막의 제조
상기 제조예 2에서 아크릴계 바인더와 PVdF계 바인더의 중량비가 6/4이 되도록 한 것을 제외하고는 제조예 2와 동일한 방법으로 분리막을 제조하였다.
제조예 5 : 분리막의 제조
상기 제조예 2에서 아크릴계 바인더와 PVdF계 바인더의 중량비가 3/7이 되도록 한 것을 제외하고는 제조예 2와 동일한 방법으로 분리막을 제조하였다.
제조예 6 : 분리막의 제조
상기 제조예 1에서 상기 다공성 접착층 조성액을 폴리에틸렌 원단의 일면에 2 ㎛ 두께로 코팅하여 분리막의 총 두께가 14 ㎛ 정도가 되게 한 것을 제외하고는 제조예 1과 동일한 방법으로 분리막을 제조하였다.
비교제조예 1 : 분리막의 제조
상기 제조예 2에서 아크릴계 바인더와 PVdF계 바인더의 중량비가 1/9이 되도록 한 것을 제외하고는 제조예 2와 동일한 방법으로 분리막을 제조하였다.
비교제조예 2 : 분리막의 제조
상기 제조예 2에서 아크릴계 바인더와 PVdF계 바인더의 중량비가 0.5/9.5이 되도록 한 것을 제외하고는 제조예 2와 동일한 방법으로 분리막을 제조하였다.
비교제조예 3 : 분리막의 제조
상기 제조예 2에서 아크릴계 공중합체 바인더를 사용하지 않고, PVdF계 바인더만을 사용한 것을 제외하고는 제조예 2와 동일한 방법으로 분리막을 제조하였다.
상기 제조예 1 내지 6 및 비교제조예 1 내지 3에 따른 각 분리막의 바인더 조성을 하기 표 1에 나타낸다.
표 1
아크릴계 바인더 PVdF계 바인더
제조예 1 100 0
제조예 2 80 20
제조예 3 70 30
제조예 4 60 40
제조예 5 30 70
제조예 6 100 0
비교제조예 1 10 90
비교제조예 2 5 95
비교제조예 3 0 100
실시예
실시예 1 : 전극 조립체의 제조
양극 활물질로 LCO (LiCoO2)를 사용하였고, 바인더로는 PVdF(Polyvinylidene Fluoride)를 사용하였으며, 도전제로는 카본블랙을 사용하여 양극 활물질 코팅 조성물을 제조하였다. 이 때 양극 활물질 코팅 조성물은 활물질:바인더:도전재의 중량 비율이 94:3:3이 되도록 하였으며, 상기 양극 활물질 코팅 조성물을 혼합기(Planetary Despa Mixer)를 이용하여 N-메틸-2-피롤리돈에 분산시켜 슬리리화한 후 닥터블레이드를 이용하여 두께 14 μm의 알루미늄 호일에 두께 94μm로 양면 코팅하고 건조하였다. 이 후 롤프레스로 프레스를 실시하고 진공건조(vacuum dryer) 설비로 코팅층 내 수분을 제거하여 양극을 제조하였다. 음극 활물질로 그라파이트(Graphite)를 사용하였고, 바인더로는 SBR(Styrene-Butadiene Rubber)과 CMC(Carboxy Methyl Celluose)을 사용하여 음극 활물질 코팅 조성물을 제조하였다. 이 때, 음극 활물질:바인더 중량비율 96:4가 되도록 하였고 상기 SBR과 CMC의 중량비는 1:1이 되게 하였다. 이 후, 두께 8μm의 구리 호일에 120μm로 양면 코팅한 것을 제외하고는 양극 제조와 동일하게 하여 음극을 제조하였다. 상기 양극 및 음극을 100cm×4.2cm 으로 각각 재단하고, 상기 제조예 1에서 제조된 분리막을 100cm×4.4cm 로 재단한 후, 양극 및 음극 사이에 개재시키고 7cm(길이방향)×4.4cm(폭방향)으로 권취하여 전극 조립체를 제조하였다.
실시예 2 : 전극 조립체의 제조
상기 실시예 1에서, 분리막으로 제조예 2의 분리막을 사용한 것을 제외하고는 실시예 1과 동일하게 실시하여 실시예 2의 전극 조립체를 제조하였다.
실시예 3 : 전극 조립체의 제조
상기 실시예 1에서, 분리막으로 제조예 3의 분리막을 사용한 것을 제외하고는 실시예 1과 동일하게 실시하여 실시예 3의 전극 조립체를 제조하였다.
실시예 4 : 전극 조립체의 제조
상기 실시예 1에서, 분리막으로 제조예 4의 분리막을 사용한 것을 제외하고는 실시예 1과 동일하게 실시하여 실시예 4의 전극 조립체를 제조하였다.
실시예 5 : 전극 조립체의 제조
상기 실시예 1에서, 분리막으로 제조예 5의 분리막을 사용한 것을 제외하고는 실시예 1과 동일하게 실시하여 실시예 5의 전극 조립체를 제조하였다.
실시예 6 : 전극 조립체의 제조
상기 실시예 1에서, 분리막으로 제조예 6의 분리막을 사용하고, 다공성 접착층이 형성된 분리막 면에 양극을 대치시키고, 다공성 접착층이 없는 분리막 면에 음극을 대치시킨 것을 제외하고는 실시예 1과 동일하게 실시하여 실시예 6의 전극 조립체를 제조하였다.
비교예 1 : 전극 조립체의 제조
상기 실시예 1에서, 분리막으로 비교제조예 1의 분리막을 사용한 것을 제외하고는 실시예 1과 동일하게 실시하여 비교예 1의 전극 조립체를 제조하였다.
비교예 2 : 전극 조립체의 제조
상기 실시예 1에서, 분리막으로 비교제조예 2의 분리막을 사용한 것을 제외하고는 실시예 1과 동일하게 실시하여 비교예 2의 전극 조립체를 제조하였다.
비교예 3 : 전극 조립체의 제조
상기 실시예 1에서, 분리막으로 비교제조예 3의 분리막을 사용한 것을 제외하고는 실시예 1과 동일하게 실시하여 비교예 3의 전극 조립체를 제조하였다.
실험예
상기 실시예 1 내지 6 및 비교예 1 내지 3에서 제조된 전극 조립체에 대해 아래에 개시된 측정 방법으로 굴곡 강도 및 압착 두께 변화율 측정하고, 그 결과를 표 2에 나타내었다.
굴곡 강도
실시예 1 내지 6 및 비교예 1 내지 3에서 제조된 전극 조립체를 9kgf/cm2의 압력으로 각각 80 ℃, 90 ℃, 100 ℃, 110 ℃ 에서 10초간 압착하였다. 그 후, 3 point bending machine(UTM)을 사용하여 ASTM D790에 의하되, 척간 거리 60mm로 하여 전극 조립체의 MD방향이 좌우로 향하게 올려 놓고 속도 2.8mm/min의 속도로 하강시키면서 전극 조립체의 굴곡 강도를 측정하였다.
압착 두께 변화율
실시예 1 내지 6 및 비교예 1 내지 3에서 제조된 전극 조립체를 20 ℃에서 9kgf/cm2의 압력으로 3초간 압착하고 1시간 후 15cm 스틸자를 이용하여 중앙부의 두께를 측정하였다. 100℃에서 9kgf/cm2의 압력으로 10초간 압착하고 1시간 후 15cm 스틸자를 이용하여 중앙부의 두께를 측정하였다. 20 ℃에서의 압착 두께와 100 ℃에서의 압착 두께를 이용하여 아래 식을 통해 압착 두께 변화율을 측정하였다.
압착 두께 변화율(%) = [(20 ℃에서 압착한 전극 조립체의 두께 ―100 ℃에서 압착한 전극 조립체의 두께)/ 20 ℃에서 압착한 전극 조립체의 두께]×100
표 2
프레스 온도별 굴곡 강도(kgf/cm2) 압착 두께(mm) 및 압착 두께 변화율(%)
80℃ 90℃ 100℃ 110℃ 20℃press 100℃press 변화율(%)
실시예 1 43 47 50 50 6.5 5 23
실시예 2 41 44 47 48 6.5 5 23
실시예 3 36 39 40 40 6.5 5 23
실시예 4 17 20 23 24 6.5 5.5 15.38
실시예 5 15 20 23 25 6.5 5.5 15.38
실시예 6 39 40 42 43 6.5 5 23
비교예 1 7 8 9 10 6.5 6.0 7.69
비교예 2 3 5 6 6 6.5 6.0 7.69
비교예 3 (굴곡점 없음, 측정 불가) 6.5 6.0 7.69
사이클 후 두께 변화율
상기 실시예 2, 3 및 비교예 3에서 제조된 전극 조립체를 사용하여 아래 기재된 방법으로 전지를 제조한 후, 사이클 후 두께 변화율을 측정하고, 그 결과를 하기 표 3에 나타내었다.
상기 실시예 2, 3 및 비교예 3의 전극 조립체를 100 ℃에서 3초간 9kgf/cm2의 압력으로 압착 후, 알루미늄 파우치에 넣고 전해액을 투입하고 밀봉하였다. 전해액은 1.1M 농도의 LiPF6가 용해된 에틸렌 카보네이트(EC) / 에틸메틸 카보네이트(EMC) /(부피비로 EC:EMC 혼합비는 30/70)의 혼합 유기용매 2.7 g을 사용하였다. 이 후, 상온에서 12시간 보관 후, 100℃에서 30초간 9 kgf/cm2의 압력으로 압착한 뒤, 상온에서 12시간 보관시켰다. 이 후, 충방전기에 0.2C 조건으로 1시간 보충전을 실시한 뒤, 15cm 스틸자를 이용하여 전극조립체 중앙부의 두께를 측정하였다. 이 후, 파우치를 열어 가스를 제거한 후 0.7C의 조건으로 충방전을 500회 반복 실시하고 전극조립체 중앙부의 두께를 측정하였다.
표 3
보충전 후 두께(mm) 500 cycle 후 두께(mm) 사이클 후 두께 변화율(%)
실시예 2 3.0 3.5 16.7
실시예 3 3.0 3.5 16.7
비교예 3 3.0 4.0 33.3
상기 표 2, 3을 참조하면, 아크릴계 공중합체만을 사용하거나, 아크릴계 공중합체 및 폴리비닐리덴 플루오라이드계 바인더의 중량비를 9.9:0.1 내지 2.5:7.5로 사용하는 경우, 압착 두께 변화율이 10% 이상으로 나타나서, 전극과 분리막 간의 접착력이 뛰어나다는 것을 확인하였다. 또한 굴곡 강도가 15kgf/cm2 이상으로 나타나서, 전극 조립체의 형태 안정성이 우수함을 확인하였다.
따라서 전극 조립체 공정에서 분리막이 이탈되는 것을 방지하여 공정 불량율을 감소시킬 수 있으며, 장기간 보존이 가능하다. 장기간 지속되는 충방전에도 형태 변화가 최소화될 수 있다. 이는 사이클 후 두께 변화율이 10% 이하인 것을 통해서 확인하였다. 이를 통해, 제조된 전지는 고효율의 충방전 특성을 가질 수 있으며, 전지 성능의 저하를 방지할 수 있다.

Claims (16)

  1. 양극 활물질 및 양극 전류 집전체를 포함하는 양극;
    음극 활물질 및 음극 전류 집전체를 포함하는 음극; 및
    상기 양극과 음극 사이에 개재된 분리막을 포함하며,
    20 ℃ 내지 110 ℃에서 1초 내지 15초간, 1 kgf/cm2 내지 30kgf/cm2 의 압력으로 압착하였을 때, 굴곡 강도가 15kgf/cm2 이상인 전극 조립체.
  2. 제1항에 있어서, 상기 분리막이 다공성 기재, 및 상기 다공성 기재의 일면 혹은 양면에 형성된, (메트)아크릴레이트계 단량체 유래 반복단위를 갖는 아크릴계 공중합체를 포함하는 다공성 접착층을 포함하는 전극 조립체.
  3. 제2항에 있어서, 상기 아크릴계 공중합체가 아세테이트기 함유 단량체 유래 반복단위를 추가로 갖는 전극 조립체.
  4. 제2항에 있어서, 상기 (메타)아크릴레이트계 단량체 유래 반복단위는 메틸(메타)아크릴레이트, 에틸(메타)아크릴레이트, 프로필(메타)아크릴레이트 및 부틸(메타)아크릴레이트로 이루어진 군으로부터 선택된 1종 이상의 단량체로부터 유래된 반복단위인 전극 조립체.
  5. 제3항에 있어서, 상기 아세테이트기 함유 단량체 유래 반복단위는 알릴 아세테이트 또는 비닐 아세테이트로부터 유래된 반복단위인 전극 조립체.
  6. 제2항 또는 제3항에 있어서, 상기 다공성 접착층이 무기입자를 추가로 포함하며, 상기 무기입자가 다공성 접착층의 전체 중량을 기준으로 70 중량% 내지 95 중량%인 전극 조립체.
  7. 제2항 또는 제3항에 있어서, 상기 다공성 접착층은 폴리비닐리덴 플루오라이드계 바인더를 추가적으로 포함하는 전극 조립체.
  8. 제7항에 있어서, 상기 폴리비닐리덴 플루오라이드계 바인더는 폴리비닐리덴 플루오라이드(polyvinylidenefluoride, PVDF) 호모폴리머, 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌(polyvinylidenefluoride-hexafluoropropylene, PVDF-HFP), 폴리비닐리덴 플루오라이드-트리클로로에틸렌(polyvinylidene fluoride-trichloroethylene, PVDF-TCE), 폴리비닐리덴플루오라이드-클로로트리플로로에틸렌(polyvinylidenefluoride-trifluoroethylene, PVDF-CTFE) 중 선택되는 1종 이상인 전극 조립체.
  9. 제7항에 있어서, 상기 아크릴계 공중합체와 상기 폴리비닐리덴 플루오라이드계 바인더의 중량비가 9.9:0.1 내지 2.5:7.5 인 전극 조립체.
  10. 제1항 내지 제3항 중 어느 하나의 항에 있어서, 상기 전극 조립체는 하기 식 1의 압착 두께 변화율이 10 % 이상인 전극 조립체.
    [식 1]
    압착 두께 변화율(%) = [(20 ℃에서 압착한 전극 조립체의 두께 ―100 ℃에서 압착한 전극 조립체의 두께)/ 20 ℃에서 압착한 전극 조립체의 두께]×100
    상기 식 1에서, 20 ℃에서 압착한 전극 조립체의 두께는 양극/분리막/음극 순으로 적층된 전극 조립체를 20 ℃에서 1 내지 10 초간, 1 내지 30 kgf/cm2 의 압력으로 압착하고 1시간 후 측정된 전극 조립체의 중앙부 두께이며, 100℃에서 압착한 전극 조립체의 두께는 100 ℃에서 1 내지 10초간, 1 내지 30 kgf/cm2의 압력으로 압착하고 1시간 후 측정한 전극 조립체의 중앙부 두께이다.
  11. 제1항 내지 제3항 중 어느 하나의 항에 따른 전극 조립체를 포함하는 전기 화학 전지.
  12. 제11항에 있어서, 상기 전기 화학 전지는 리튬 폴리머 이차 전지 또는 리튬 이온 폴리머 이차 전지인 전기 화학 전지.
  13. 양극 전류집전체에 양극 활물질층을 형성하여 양극을 제조하고,
    음극 전류집전체에 음극 활물질층을 형성하여 음극을 제조하고,
    상기 양극 및 음극 사이에 분리막을 배치시키고,
    상기 양극/분리막/음극 구조물을 20 ℃ 내지 110 ℃에서 1 초 내지 10초간 1 kgf/cm2 내지 30kgf/cm2으로 압착하는 것을 포함하는 전극 조립체의 제조 방법.
  14. 제13항에 있어서, 상기 압착 후 전해질을 주입하고 60 ℃ 내지 110 ℃에서 30 초 내지 180초간, 1 kgf/cm2 내지 30 kgf/cm2으로 2차 압착하는 것을 추가로 포함하는, 제조 방법.
  15. 제13항에 있어서, 상기 분리막이 다공성 기재, 및 상기 다공성 기재의 일면 혹은 양면에 형성된, (메트)아크릴레이트계 단량체 유래 반복단위를 갖는 아크릴계 공중합체를 포함하는 다공성 접착층을 포함하는, 제조 방법.
  16. 제15항에 있어서, 상기 아크릴계 공중합체가 아세테이트기 함유 단량체 유래 반복단위를 추가로 갖는, 제조 방법.
PCT/KR2014/011234 2013-11-21 2014-11-21 개선된 굴곡강도를 가지는 전극 조립체, 이의 제조 방법 및 이를 포함하는 전기 화학 전지 WO2015076602A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/038,352 US20160293999A1 (en) 2013-11-21 2014-11-21 Electrode assembly having improved flexural rigidity, method for preparing same, and electrochemical battery comprising same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20130142324 2013-11-21
KR10-2013-0142324 2013-11-21
KR20140041124 2014-04-07
KR10-2014-0041124 2014-04-07
KR1020140133339A KR101690515B1 (ko) 2013-11-21 2014-10-02 개선된 굴곡강도를 가지는 전극 조립체, 이의 제조 방법 및 이를 포함하는 전기 화학 전지
KR10-2014-0133339 2014-10-02

Publications (1)

Publication Number Publication Date
WO2015076602A1 true WO2015076602A1 (ko) 2015-05-28

Family

ID=53179800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/011234 WO2015076602A1 (ko) 2013-11-21 2014-11-21 개선된 굴곡강도를 가지는 전극 조립체, 이의 제조 방법 및 이를 포함하는 전기 화학 전지

Country Status (1)

Country Link
WO (1) WO2015076602A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107394090A (zh) * 2016-05-17 2017-11-24 三星Sdi株式会社 用于可再充电电池组的隔膜和包含其的可再充电锂电池组
CN110859053A (zh) * 2018-06-26 2020-03-03 深圳市星源材质科技股份有限公司 一种复合锂电池隔膜及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070077231A (ko) * 2006-01-23 2007-07-26 주식회사 엘지화학 분리막의 코팅층에 계면활성제를 포함하고 있는 리튬이차전지
KR20090063445A (ko) * 2007-12-14 2009-06-18 삼성에스디아이 주식회사 전극조립체 및 이를 구비하는 이차 전지
KR20110104791A (ko) * 2010-03-17 2011-09-23 주식회사 엘지화학 세퍼레이터 및 이를 구비한 전기화학소자
JP2012089444A (ja) * 2010-10-22 2012-05-10 Toyota Central R&D Labs Inc リチウム二次電池及びそれを搭載した車両
JP2013168373A (ja) * 2011-06-03 2013-08-29 Fuji Silysia Chemical Ltd セパレータ、電気化学素子、及びセパレータの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070077231A (ko) * 2006-01-23 2007-07-26 주식회사 엘지화학 분리막의 코팅층에 계면활성제를 포함하고 있는 리튬이차전지
KR20090063445A (ko) * 2007-12-14 2009-06-18 삼성에스디아이 주식회사 전극조립체 및 이를 구비하는 이차 전지
KR20110104791A (ko) * 2010-03-17 2011-09-23 주식회사 엘지화학 세퍼레이터 및 이를 구비한 전기화학소자
JP2012089444A (ja) * 2010-10-22 2012-05-10 Toyota Central R&D Labs Inc リチウム二次電池及びそれを搭載した車両
JP2013168373A (ja) * 2011-06-03 2013-08-29 Fuji Silysia Chemical Ltd セパレータ、電気化学素子、及びセパレータの製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107394090A (zh) * 2016-05-17 2017-11-24 三星Sdi株式会社 用于可再充电电池组的隔膜和包含其的可再充电锂电池组
US10707467B2 (en) 2016-05-17 2020-07-07 Samsung Sdi Co., Ltd. Separator for rechargeable battery and rechargeable lithium battery including the same
CN110859053A (zh) * 2018-06-26 2020-03-03 深圳市星源材质科技股份有限公司 一种复合锂电池隔膜及其制备方法
EP3817092A4 (en) * 2018-06-26 2021-07-14 Shenzhen Senior Technology Material Co., Ltd. LITHIUM COMPOSITE BATTERY SEPARATOR AND PROCESS FOR PREPARATION

Similar Documents

Publication Publication Date Title
KR101690515B1 (ko) 개선된 굴곡강도를 가지는 전극 조립체, 이의 제조 방법 및 이를 포함하는 전기 화학 전지
KR100670483B1 (ko) 리튬 이차 전지
KR100770105B1 (ko) 리튬 이차 전지
KR100686816B1 (ko) 리튬 이차 전지
KR102496375B1 (ko) 리튬전지용 전극 복합분리막 어셈블리 및 이를 포함한 리튬전지
WO2019088672A1 (ko) 전기화학소자용 음극 활물질, 상기 음극 활물질을 포함하는 음극 및 이를 포함하는 전기화학소자
KR20170037453A (ko) 리튬전지용 전극 복합분리막 어셈블리 및 이를 포함한 리튬전지
WO2017188537A1 (ko) 다공성 접착층을 포함하는 분리막 및 이를 이용한 리튬 이차 전지
WO2015102140A1 (ko) 이차전지용 음극 및 이를 포함하는 리튬 이차전지
WO2020185014A1 (ko) 음극 및 이를 포함하는 이차전지
WO2020105974A1 (ko) 이차 전지의 활성화 방법
KR100778975B1 (ko) 리튬 이차 전지
WO2015076573A1 (ko) 이차 전지
WO2016140454A1 (ko) 접착력이 강화된 분리막을 포함하는 전지셀
WO2016209014A1 (ko) 리튬 이차전지의 제조방법 및 이를 사용하여 제조되는 리튬 이차전지
WO2019083332A2 (ko) 실리콘-탄소 복합체 및 이를 포함하는 리튬 이차전지
WO2020071814A1 (ko) 실리콘계 화합물을 포함하는 다층 구조 음극 및 이를 포함하는 리튬 이차전지
WO2020149681A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2018147558A1 (ko) 장수명에 적합한 이차전지용 전극의 제조방법
WO2021045580A1 (ko) 음극 전극의 전소듐화 방법, 전소듐화 음극, 및 이를 포함하는 리튬 이차전지
WO2018062883A2 (ko) 메쉬 형태의 절연층을 포함하는 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지
WO2015076574A1 (ko) 분리막 및 이를 이용한 이차 전지
WO2019147082A1 (ko) 리튬 이차전지용 음극 및 상기 음극을 포함하는 리튬 이온 이차 전지
WO2021133127A1 (ko) 수계 양극용 슬러리, 양극 조성물 및 이 양극 조성물을 포함하는 리튬 이온 이차전지, 그리고 이들의 제조 방법
WO2015076602A1 (ko) 개선된 굴곡강도를 가지는 전극 조립체, 이의 제조 방법 및 이를 포함하는 전기 화학 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14863941

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15038352

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14863941

Country of ref document: EP

Kind code of ref document: A1