WO2011114750A1 - 回転式圧縮機 - Google Patents

回転式圧縮機 Download PDF

Info

Publication number
WO2011114750A1
WO2011114750A1 PCT/JP2011/001630 JP2011001630W WO2011114750A1 WO 2011114750 A1 WO2011114750 A1 WO 2011114750A1 JP 2011001630 W JP2011001630 W JP 2011001630W WO 2011114750 A1 WO2011114750 A1 WO 2011114750A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
piston
cylinder chamber
compression mechanism
blade
Prior art date
Application number
PCT/JP2011/001630
Other languages
English (en)
French (fr)
Inventor
岡本哲也
芝本祥孝
古庄和宏
外島隆造
河野孝幸
楊洋
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN201180014587.6A priority Critical patent/CN102812250B/zh
Priority to EP11755940.1A priority patent/EP2549111B1/en
Priority to AU2011228481A priority patent/AU2011228481B2/en
Priority to US13/635,585 priority patent/US8936448B2/en
Publication of WO2011114750A1 publication Critical patent/WO2011114750A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/32Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members
    • F04C18/324Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members with vanes hinged to the inner member and reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/04Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents of internal-axis type
    • F04C18/045Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents of internal-axis type having a C-shaped piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle

Definitions

  • the present invention relates to a rotary compressor having an eccentric rotation type compression mechanism, and in particular, a rotation in which a plurality of cylinder chambers are formed in a compression mechanism by disposing an annular piston inside an annular cylinder chamber of a cylinder.
  • the present invention relates to a type compressor.
  • the two-stage compression mechanism can be compressed in three stages, or the three-stage compression mechanism can be compressed in four stages. If it is going to make it, it is necessary to increase a cylinder chamber. In order to increase the number of cylinder chambers, it is necessary to arrange two large and small annular pistons in a double manner. As a result, the mechanism may be complicated. In addition, it is conceivable to provide two or more compression mechanisms, but even in that case, the mechanism becomes complicated. In this way, if the number of cylinder chambers is increased, the number of parts increases, the manufacturing cost increases, the structure becomes complicated, and the compressor becomes larger.
  • the present invention was devised in view of such problems, and its purpose is to put an eccentric rotation type compression mechanism having a plurality of cylinder chambers into practical use in a configuration that can suppress cost increase and structural complexity. Is to be able to do it.
  • a first invention includes a cylinder (21, 31) having an annular cylinder space, a piston (22, 32) arranged eccentrically with respect to the cylinder (21, 31), and the piston (22, 32).
  • a piston shaft (22a, 22b, 32a, 32b) having an eccentric rotational movement with respect to the cylinder (21, 31). It is premised on a rotary compressor having an end plate portion (22c, 32c) that closes the cylinder space.
  • the cylinder (21, 31) has an end plate storage space in which the end plate (22c, 32c) of the piston (22, 32) is stored so as to be capable of eccentric rotational movement. While the space constitutes the main cylinder chamber (C1), the sub-cylinder chamber (C2) is formed by the end plate storage space.
  • the compression mechanism when the main cylinder chamber (C1) is composed of two cylinder chambers, the compression mechanism has three cylinder chambers including the sub cylinder chamber (C2). When the main cylinder chamber (C1) is composed of three cylinder chambers, the compression mechanism has four cylinder chambers including the sub cylinder chamber (C2).
  • the space on the outer periphery of the end plate that is not normally used as a cylinder chamber is also a cylinder chamber, so the number of cylinder chambers is increased by one.
  • the main cylinder chamber (C1) includes an innermost cylinder chamber (23a, 33a), an inner cylinder chamber ( 23b, 33b) and the outer cylinder chamber (23c, 33c), and the outer cylinder chamber (23d, 33d) located on the radially outer peripheral side of the outer cylinder chamber (23c, 33c) by the sub cylinder chamber (C2). ) Is formed.
  • the compression mechanism since the main cylinder chamber (C1) is composed of three cylinder chambers, the compression mechanism includes the outermost cylinder chamber (23d, 33d) which is the sub cylinder chamber (C2). There will be four cylinder chambers.
  • the cylinder (21, 31) is arranged concentrically about the rotation center of the drive shaft (53), an outer cylinder, Part (21b, 31b) and outermost cylinder part (21c, 31c), and the piston (22, 32) is arranged on the same center as the eccentric part formed on the drive shaft (53) It has an annular inner piston part (22a, 32a) and an outer piston part (22b, 32b), and the end plate part (22c, 32c) (the outer peripheral surface thereof) is connected to both piston parts (22a, 22b, 32a, 32b).
  • the inner piston part (22a, 32a) is arranged on the inner diameter side of the inner cylinder part (21a, 31a) and the outer piston part (22b, 32b) is arranged on the inner cylinder part (21a, 31a). Between the outer cylinder part (21b, 31b) and the inner piston part (22a, 32a) The innermost cylinder chamber (23a, 33a) is formed between the inner peripheral surface of the inner part (21a, 31a) and the outer peripheral surface of the inner cylinder part (21a, 31a) and the outer piston part (22b, 32b).
  • the inner cylinder chamber (23b, 33b) is formed between the outer peripheral surface and the outer peripheral surface of the outer piston portion (22b, 32b) and the outer peripheral surface of the outer cylinder portion (21b, 31b).
  • a cylinder chamber (23c, 33c) is formed, and the outermost cylinder chamber (23d, 33d) is disposed between the outer peripheral surface of the end plate portion (22c, 32c) and the inner peripheral surface of the outermost cylinder portion (21c, 31c). It is characterized by being formed.
  • the innermost cylinder chamber (23a, 33a), the inner cylinder chamber (23b, 33b), the outer cylinder chamber (23c, 33c), and the outermost cylinder chamber (23d, 33d) of the compression mechanism are provided.
  • the innermost cylinder chamber (23a, 33a), the inner cylinder chamber (23b, 33b), and the outer cylinder chamber (23c, 33c) are formed at positions with reference to the same plane, and the outermost cylinder chamber (23d, 33d) is formed at a position based on a plane different from the reference planes of the innermost cylinder chambers (23a, 33a), the inner cylinder chambers (23b, 33b), and the outer cylinder chambers (23c, 33c).
  • coolant are compressed using these four cylinder chambers.
  • a blade (24, 34) for partitioning each cylinder chamber into a suction side and a discharge side, and the blade (24, 34) is arranged on the outer piston portion (22b). , 32b) and a swinging bush portion (24c, 34c) coupled to be swingable, and the innermost cylinder chamber (23a, 33a) positioned radially inside the swinging bush portion (24c, 34c) And the inner cylinder chamber (23b, 33b), the inner blade portion (B1) dividing the suction side and the discharge side, and the outer cylinder chamber (23c) located radially outside the swing bush portion (24c, 34c).
  • the oscillating bush (24c, 34c) may be an integral part of the inner blade part (B1), the outer first blade part (B2) and the outer second blade part (B3), or separate parts. May be.
  • the four cylinder chambers are divided into the suction side and the discharge side by the blade portions.
  • a fluid such as a refrigerant is compressed in each cylinder chamber partitioned into the suction side and the discharge side.
  • the cylinder (21, 31) has a slide groove (21f, 21g, 31f, 31g) for holding the blade (24, 34) slidably in the surface direction.
  • the inner piston portion (22a, 32a) has an outer peripheral surface relative to the outer peripheral surface of the inner blade portion (B1) centered on the swing bush portion (24c, 34c).
  • a first rocking permissible surface (n1) that allows rocking motion is formed, and the rocking bush part (24c, 34c) is provided on the outer peripheral surface of the end plate part (22c, 32c) with respect to the outer peripheral surface.
  • a second rocking permissible surface (n2) that allows the relative rocking motion of the outer second blade part (B3) as the center is formed.
  • the blades (24, 34) are placed in the slide grooves (21f, 21g, 31f, 31g) of the cylinder (21, 31).
  • the piston (22, 32) swings about the swing bush portion (24c, 34c) while sliding in the surface direction of the blade (24, 34).
  • the first swing allowance surface (n1) is formed on the outer peripheral surface of the inner piston portion (22a, 32a)
  • the second swing allowance surface (n2) is formed on the outer peripheral surface of the end plate portion (22c, 32c). Therefore, smooth operation of the cylinders (21, 31), the pistons (22, 32) and the blades (24, 34) during the operation of the compression mechanism is ensured.
  • the blade (24, 34) is constituted by an integral part including the swing bush portion (24c, 34c), and the first swing allowable surface (n1) Is formed on the basis of an arc shape in which a minute gap is formed with respect to the locus of relative swinging motion of the inner blade part (B1) centering on the swinging bush part (24c, 34c),
  • the second rocking permissible surface (n2) has a fine gap with respect to the locus of the relative rocking motion of the outer second blade part (B3) around the rocking bush part (24c, 34c). It is characterized by being formed on the basis of the arc shape to be formed.
  • the tip of the inner blade portion (B1) and the first swing allowance A slight gap is formed between the surface (n1), and a slight gap is formed between the tip of the outer second blade portion (B3) and the second swing allowable surface (n2).
  • the slight gap is preferably a micron-order gap that allows an oil film to be formed by the lubricating oil.
  • a seventh invention is characterized in that, in any one of the first to sixth inventions, the compression mechanism has a plurality of pairs of cylinders (21, 31) and pistons (22, 32). Yes.
  • this seventh invention there are a plurality of pairs of cylinders (21, 31) and pistons (22, 32), each of which is arranged on the outer periphery of the end plate portion (22c, 32c) of the piston (22, 32) (C2 )have. Therefore, the number of cylinder chambers is increased by the number of pairs of cylinders (21, 31) and pistons (22, 32).
  • the eighth invention is characterized in that, in the seventh invention, the compression mechanism has two sets of cylinders (21, 31) and pistons (22, 32).
  • the space on the outer periphery of the end plate that is not normally used as a cylinder chamber is also a cylinder chamber, so the number of cylinder chambers is increased by one.
  • the compression mechanism has three cylinder chambers including the sub cylinder chamber (C2), and the main cylinder chamber (C1) In the case of three cylinder chambers, the compression mechanism has four cylinder chambers together with the sub cylinder chamber (C2).
  • the outer peripheral space of the end plate is a space that is usually formed only to enable the end plate to rotate, and is an invalid space with respect to the fluid compression function.
  • the outer peripheral space of the end plate is a cylinder.
  • the number of cylinder chambers can be increased without creating an invalid space.
  • the cylinder chamber is increased, the number of parts does not increase and the manufacturing cost does not increase, and the problem that the structure becomes complicated and the compressor becomes large does not occur.
  • an eccentric rotation type compression mechanism having a plurality of cylinder chambers can be easily put into practical use.
  • the main cylinder chamber (C1) is composed of three cylinder chambers and the sub cylinder chamber (C2) is formed, so that the compression mechanism has four cylinder chambers. . Therefore, a compression mechanism of a four cylinder chamber that could not be configured without using two compression mechanisms having two cylinder chambers between a pair of cylinders (21, 31) and an annular piston (22, 32). This can be realized with only one set of cylinders (21, 31) and annular pistons (22, 32). Therefore, it is possible to reliably prevent the mechanism from becoming complicated and large.
  • a fluid such as a refrigerant can be compressed by the four cylinder chambers including the outermost cylinder chambers (23d, 33d) formed at positions with reference to a different plane.
  • a compression mechanism having four cylinder chambers between a pair of cylinders (21, 31) and pistons (22, 32) can be realized.
  • the oscillating bush (24c, 34c), the inner blade (B1), the outer first blade (B2), and the outer second blade (B3) may be configured integrally.
  • the compression mechanism can be put into practical use with a simple configuration.
  • the first swing allowance surface (n1) is formed on the outer peripheral surface of the inner piston portion (22a, 32a), and the second swing allowance is provided on the outer peripheral surface of the end plate portion (22c, 32c). Since the surface (n2) is formed, four cylinder chambers are secured while ensuring smooth operation of the cylinders (21, 31), pistons (22, 32) and blades (24, 34) during operation of the compression mechanism. The compression operation can be performed reliably.
  • the tip of the inner blade portion (B1) and the first swing allowable surface ( n1) is formed with a slight gap, and a slight gap is formed between the tip of the outer second blade portion (B3) and the second swing allowable surface (n2). If this gap becomes a micron-order gap and is dimensioned to the extent that it is covered with an oil film formed with lubricating oil supplied to each rocking permissible surface, from the discharge side to the suction side of each cylinder chamber.
  • the compression mechanism can be operated smoothly while preventing fluid leakage, and the tips of the blades (24, 34) are not worn and sliding loss does not occur.
  • the swinging bush part (24c, 34c) is a separate part from the blade (24, 34), there is a risk of fluid leakage between them, but in this invention the swinging bush part (24c, 34c) Since it is integrated with the blades (24, 34), the above leakage does not occur. Further, in this configuration, since the blades (24, 34) are formed of integral parts, an increase in the number of parts can be prevented. In this case, the blades (24, 34) may be integrated by combining the respective parts, or may be formed as an integral part by cutting.
  • the seventh aspect of the invention there are a plurality of pairs of cylinders (21, 31) and pistons (22, 32), each of which is a sub-cylinder chamber on the outer periphery of the end plate (22c, 32c) of the piston (22, 32). Since (C2) is provided, the number of cylinder chambers is increased by the number of pairs of cylinders (21, 31) and pistons (22, 32). Therefore, the cylinder chamber can be increased more efficiently, and multistage compression can be facilitated.
  • the eighth aspect of the invention there are two sets of cylinders (21, 31) and pistons (22, 32), and each is a sub-cylinder on the outer periphery of the end plate (22c, 32c) of the piston (22, 32). Since the chamber (C2) is provided, two cylinder chambers are added in the same manner as the set of the cylinder (21, 31) and the piston (22, 32). If comprised in this way, when the cylinders (21, 31) and pistons (22, 32) of each group are made the same structure, a mutual moment is canceled by shifting the phase of corresponding cylinder chambers 180 degrees. Therefore, pulsation, vibration, or noise can be reduced.
  • FIG. 1 is a longitudinal sectional view of a compressor according to an embodiment of the present invention.
  • FIG. 2 is a partially enlarged view of FIG.
  • FIG. 3A is a cross-sectional view of the compression mechanism portion of the compressor according to the embodiment of the present invention
  • FIG. 3B is another cross-sectional view of the compression mechanism portion of the compressor.
  • FIG. 4 is an enlarged view showing a part of another longitudinal section of the compressor according to the embodiment of the present invention.
  • FIG. 5 is an enlarged perspective view of a blade according to the embodiment of the present invention.
  • FIG. 6 is a partially enlarged view of the compression mechanism section according to the embodiment of the present invention.
  • FIG. 7 is an operation state diagram of the compression mechanism section according to the embodiment of the present invention.
  • FIG. 8 is an operation state diagram of the compression mechanism section according to the embodiment of the present invention.
  • FIG. 9 is an enlarged perspective view of a blade according to another embodiment.
  • FIG. 10 is a cross-sectional view of another compression mechanism.
  • FIG. 11 is an enlarged perspective view of a blade according to another embodiment.
  • FIG. 12 is an enlarged perspective view of a blade according to another embodiment.
  • the compressor (1) is a rotary compressor, and as shown in FIG. 1, two compression mechanism parts (a first compression mechanism part (20) and a second compression mechanism part) are provided in a casing (10).
  • the compression mechanism (40) in which the mechanism portion (30) is stacked in the axial direction of the drive shaft (53) and the electric motor (50) as the drive mechanism are housed, and is configured to be completely sealed.
  • the compressor (1) is used, for example, in a refrigerant circuit of an air conditioner to compress refrigerant (working fluid) sucked from an evaporator and discharge it to a condenser.
  • the casing (10) includes a cylindrical body (11), an upper end plate (12) fixed to the upper end of the body (11), and a lower part fixed to the lower end of the body (11). End plate (13).
  • the body (11) includes a refrigerant in the annular cylinder chambers (23a, ..., 23d, 33a, ..., 33d) of the first compression mechanism (20) and the second compression mechanism (30), which will be described in detail later.
  • the electric motor (50) is disposed above the compression mechanism (40) in the casing (10) and includes a stator (51) and a rotor (52).
  • the stator (51) is fixed to the body (11) of the casing (10).
  • the drive shaft (53) is connected to the rotor (52) so as to rotate integrally.
  • the drive shaft (53) extends downward from the rotor (52), and a first eccentric part (53a) and a second eccentric part (53b) are formed in the lower part.
  • the upper first eccentric portion (53a) is formed with a larger diameter than the upper and lower main shaft portions of the first eccentric portion (53a), and is eccentric by a predetermined amount from the axis of the drive shaft (53).
  • the lower second eccentric portion (53b) is formed with the same diameter as the first eccentric portion (53a), and is offset from the shaft center of the drive shaft (53) by the same amount as the first eccentric portion (53a). I have a heart.
  • the first eccentric portion (53a) and the second eccentric portion (53b) are 180 ° out of phase with each other about the axis of the drive shaft (53).
  • the first compression mechanism section (20) and the second compression mechanism section (30) are stacked in two stages, and are configured between the front head (16) and the rear head (17) fixed to the casing (10).
  • the first compression mechanism (20) is disposed on the electric motor (50) side (upper side in FIG. 1)
  • the second compression mechanism (30) is disposed on the bottom side (lower side in FIG. 1) of the casing (10).
  • the front head (16) is constituted by a main body (16a) and a lid (16b)
  • the rear head (17) is also constituted by a main body (17a) and a lid (17b).
  • a middle plate (19) is provided between the front head (16) and the rear head (17).
  • the middle plate (19) is shared by the first compression mechanism (20) and the second compression mechanism (30).
  • the middle plate (19) is constituted by two members (19a, 19b) arranged in the axial direction of the drive shaft (53).
  • the middle plate (19) includes a main body portion (19a) on the first compression mechanism portion (20) side and a lid portion (19b) superimposed below the main body portion (19a).
  • a through hole (19c) through which the drive shaft (53) passes is formed at the center of the middle plate (19).
  • the through hole (19c) is a hole having an inner diameter slightly larger than the diameters of the first eccentric portion (53a) and the second eccentric portion (53b) of the drive shaft.
  • the first compression mechanism (20) includes a first cylinder (21) fixed to the body (11) of the casing (10) and a first shaft of the drive shaft (53).
  • a first piston (22) attached to one eccentric portion (53a) and rotating eccentrically with respect to the first cylinder (21), and formed between the first cylinder (21) and the first piston (22).
  • a first blade (24) that partitions four cylinder chambers (23a, 23b, 23c, 23d) into a high pressure chamber (23aH, 23bH, 23cH, 23dH) and a low pressure chamber (23aL, 23bL, 23cL, 23dL) It has.
  • the second compression mechanism section (30) is turned upside down with respect to the first compression mechanism section (20).
  • the second compression mechanism (30) is attached to a second cylinder (31) fixed to the body (11) of the casing (10) and a second eccentric part (53b) of the drive shaft (53).
  • a second piston (32) rotating eccentrically with respect to the second cylinder (31), and four cylinder chambers (33a, 33b) formed between the second cylinder (31) and the second piston (32) , 33c, 33d) includes a second blade (34) that partitions the high pressure chamber (33aH, 33bH, 33cH, 33dH) and the low pressure chamber (33aL, 33bL, 33cL, 33dL).
  • the main body (16a) of the front head (16) constitutes the first cylinder (21), and the main body (17a) of the rear head (17) constitutes the second cylinder (31).
  • the first cylinder (21) and the second cylinder (31) are the fixed side, and the first piston (22) and the second piston (32) are the movable side.
  • the first piston (22) has an eccentric rotational movement with respect to the first cylinder (21), and the second piston (32) has an eccentric rotational movement with respect to the second cylinder (31). Yes.
  • the first cylinder (21) includes an inner cylinder portion (21a) and an outer cylinder portion (21b) that are positioned concentrically with the drive shaft (53) to form an annular space (cylinder space), and the outer cylinder portion ( 21b) is provided with an outermost cylinder portion (21c) extending downward from the outer peripheral portion and a cylinder side end plate portion (21d) connecting the upper end portions of the inner cylinder portion (21a) and the outer cylinder portion (21b).
  • the inner cylinder part (21a) is formed in a C shape in which a part of the ring is divided (see FIG. 3A).
  • a slide groove (21g) is formed at a parting position of the inner cylinder part (21a).
  • the second cylinder (31) includes an inner cylinder portion (31a) and an outer cylinder portion (31b) that are positioned concentrically with the drive shaft (53) to form an annular space (cylinder space), and the outer cylinder portion (
  • the outermost cylinder part (31c) extending upward from the outer peripheral part of 31b) and the cylinder side end plate part (31d) connecting the lower ends of the inner cylinder part (31a) and the outer cylinder part (31b) are provided.
  • the inner cylinder part (21a) is formed in a C shape in which a part of the ring is divided (see FIG. 3A).
  • a slide groove (31g) is formed at a parting position of the inner cylinder part (31a).
  • the first piston (22) includes an inner piston portion (22a) that is fitted to the first eccentric portion (53a) and is concentric with the first eccentric portion (53a), and the inner piston portion (22a).
  • the outer piston part (annular piston part) (22b) positioned concentrically with the inner piston part (22a) in the annular space on the outer peripheral side of the two piston parts (22a, 22b) is connected to the lower end part
  • the outer peripheral surface has a piston side end plate portion (22c) that is located concentrically with the inner piston portion (22a) and the outer piston portion (22b).
  • the inner piston part (22a) has a notch part (n1) formed on the outer peripheral surface, and the outer piston part (22b) is formed in a C-shape with a part of the ring cut (see FIG. 3A). ). Further, a notch (n2) is formed in the outer peripheral portion of the piston side end plate portion (22c) (see FIG. 3B).
  • the piston side end plate portion (22c) is configured to close three cylinder chambers (cylinder spaces) (23a, 23b, 23c) constituting the main cylinder chamber (C1) of the present invention.
  • the first cylinder (21) has an end plate storage space (sub cylinder chamber) (C2) for storing the piston side end plate portion (22c) of the first piston (22) so as to be capable of eccentric rotational movement. Yes.
  • the second piston (32) includes an inner piston portion (32a) that is fitted to the second eccentric portion (53b) and is concentric with the second eccentric portion (53b), and the inner piston portion (32a).
  • the outer piston part (annular piston part) (32b) positioned concentrically with the inner piston part (32a) in the annular space on the outer peripheral side of the two piston parts (32a, 32b) is connected to the upper end part
  • the outer peripheral surface has a piston side end plate portion (32c) positioned concentrically with the inner piston portion (32a) and the outer piston portion (32b).
  • the inner piston part (32a) has a notch part (n1) formed on the outer peripheral surface, and the outer piston part (32b) is formed in a C-shape with a part of the ring cut (see FIG. 3A). ). Further, a notch (n2) is formed in the outer peripheral portion of the piston side end plate portion (32c) (see FIG. 3B).
  • the piston side end plate portion (32c) is configured to close three cylinder chambers (cylinder spaces) (33a, 33b, 23c) constituting the main cylinder chamber (C1) of the present invention.
  • the second cylinder (31) has an end plate storage space (sub cylinder chamber) (C2) for storing the piston side end plate portion (32c) of the second piston (32) so as to be capable of eccentric rotational movement. Yes.
  • the first cylinder (21) constituting the main body (16a) of the front head (16) and the second cylinder (31) constituting the main body (17a) of the rear head (17) are each provided with the drive shaft (53).
  • a bearing portion (21e, 31e) for supporting the is formed.
  • the drive shaft (53) penetrates the first compression mechanism part (20) and the second compression mechanism part (30) in the vertical direction, and the first eccentric part (53a )
  • the second eccentric portion (53b) have a through shaft structure in which the main shaft portions on both sides in the axial direction are held by the casing (10) via the bearing portions (21e, 31e).
  • the first and second compression mechanism portions (20, 30) are provided with an outer piston portion (22) in order to change the cylinder volume.
  • , 32) and the corresponding cylinder (21, 31) except for the axial length of the cylinder (21, 31) are substantially the same in structure, and thus represent the first compression mechanism (20). This will be described as an example.
  • the first blade (24) has a plate-like long portion (24a) and a short portion (24b) having a thickness, and a pair of swing bush portions (24c) having a substantially semicircular cross-sectional shape. These three parts are integrally formed.
  • the first blade (24) is compressed with respect to the swinging bush part (24c) and the swinging bush part (24c) coupled to the outer piston part (22b) so as to be swingable.
  • An inner blade portion (B1) which is located radially inside the mechanism (40) and partitions an innermost cylinder chamber (23a) and an inner cylinder chamber (23b), which will be described later, into a suction side and a discharge side, and the swinging bush portion
  • An outer first blade portion (B2) which is located on the radially outer side of (24c) and divides an outer cylinder chamber (23c), which will be described later, into a suction side and a discharge side, and the radial direction of the swinging bush portion (24c)
  • An outer second blade portion (B3) that is located outside and divides an outermost cylinder chamber (23d), which will be described later, into a suction side and a discharge side is provided.
  • the long part (24a) is composed of a swinging bush part (24c), an inner blade part (B1), and an outer first blade part (B2), and the short part (24b) is an outer second blade. Part (B3).
  • the inner blade portion (B1) has a tip that faces the outer peripheral surface of the inner piston portion (22a) from the outside in the radial direction
  • the outer second blade portion (B2) has a front end that faces the outer peripheral surface of the piston side end plate portion (22c). It faces from the outside in the radial direction.
  • the long part (24a) extends in the radial direction between the cylinder side end plate part (21d) and the piston side end plate part (22c), and the outer end is a groove formed in the outer cylinder part (21b).
  • (Sliding groove) (21f) is accommodated slidably in the radial direction (blade surface direction).
  • the part (inner blade part (B1)) inside the swinging bush part (24c) of the long part (24a) is slid into the slide groove (21g) formed at the dividing position of the inner cylinder part (21a).
  • the inner end is opposed to the notch (n1) of the inner piston part (22a) with a micron-order fine gap interposed therebetween.
  • the notch (n1) constitutes a first swing allowing surface that allows relative swinging motion of the inner blade part (B1) around the swing bushing part (24c).
  • the first rocking permissible surface (n1) has an arc shape having a slightly larger diameter than the locus of relative rocking movement of the inner blade part (B1) with the rocking bush part (24c) as the center.
  • a fine gap is formed between the locus drawn by the tip of the inner blade portion (B1) when the inner blade portion (B1) swings and the first swing allowable surface (n1). Yes.
  • the fine gap is exaggerated.
  • the short part (24b) extends in the radial direction between the long part (24a) and the middle plate (19), and has a diameter in a groove (slide groove) (21f) formed in the outermost cylinder part (21c). It is slidably accommodated in the direction.
  • the inner end of the short part (24b) faces the notch part (n2) of the piston side end plate part (22c) with a micron-order gap therebetween.
  • the notch (n2) constitutes a second rocking permissible surface that allows relative rocking motion of the outer second blade part (B3) around the rocking bush (24c).
  • the second rocking permissible surface (n2) has a slightly smaller diameter than the locus of the relative rocking motion of the outer second blade part (B3) centering on the rocking bush part (24c).
  • a fine gap is formed between the locus drawn by the tip of the outer second blade portion (B3) when the outer second blade portion (B3) swings and the second swing allowable surface (n2). It is like that. In FIG. 6, the fine gap is exaggerated.
  • the pair of oscillating bush portions (24c) is formed so as to bulge on both sides of the long portion (24a) in the vicinity of the central portion in the radial direction of the long portion (24a).
  • the outer peripheral surfaces of the pair of swing bush portions (24c) constitute a part of the outer peripheral surface of a cylinder having a predetermined radius.
  • the pair of swinging bush portions (24c) is swingably accommodated in bush grooves (c1, c2) formed at the parting points of the outer piston portion (22b).
  • the pair of swing bush portions (24c) is configured such that the outer piston portion (22b) swings with respect to the first blade (24).
  • the first piston (22) moves the center point of the pair of swing bush portions (24c) relative to the first blade (24) as the first eccentric portion (53a) rotates eccentrically.
  • the first blade (24) slides in the longitudinal direction (surface direction) with respect to the groove (21f) and the slide groove (21g) of the inner cylinder part (21a). Move forward and backward in the same direction.
  • the main cylinder chamber (C1) includes an innermost cylinder chamber (23a), an inner cylinder chamber (23b), and an outer cylinder chamber (23c) formed in order from the radially inner periphery to the outer periphery.
  • the sub-cylinder chamber (C2) forms an outermost cylinder chamber (23d) located on the radially outer peripheral side of the outer cylinder chamber (23c).
  • the specific configuration of the cylinder chamber is as follows.
  • the inner piston part (22a) is arranged on the inner diameter side of the inner cylinder part (21a), and the outer piston part (22b) is arranged between the inner cylinder part (21a) and the outer cylinder part (21b).
  • the innermost cylinder chamber (23a) is formed between the two. Further, an annular space is formed between the outer peripheral surface of the inner cylinder portion (21a) and the inner peripheral surface of the outer cylinder portion (21b) located concentrically.
  • This annular space is partitioned into two cylinder chambers (23b, 23c) by an outer piston portion (22b) disposed in the annular space.
  • an inner cylinder chamber (23b) is formed between the outer peripheral surface of the inner cylinder part (21a) and the inner peripheral surface of the outer piston part (22b), and the outer peripheral surface and the outer side of the outer piston part (22b).
  • An outer cylinder chamber (23c) is formed between the inner peripheral surface of the cylinder portion (21b).
  • the piston side end plate portion (22c) has an upper surface facing the three cylinder chambers (23a, 23b, 23c), and a lower surface facing the upper surface of the middle plate (19) (the upper surface of the main body portion (19a)).
  • the outer peripheral surface is opposed to the inner peripheral surface of the outermost cylinder part (21c).
  • an outermost cylinder chamber (23d) is formed between the outer peripheral surface of the piston side end plate portion (22c) and the outermost cylinder portion (21c).
  • the compressor (1) includes the first compression mechanism part (20) and the second compression mechanism part (30) each having four cylinder chambers (23a, ..., 23d, 33a, ..., 33d). It has.
  • the inner piston portion (22a, 32a) and the inner cylinder portion (21a, 31a) of the first compression mechanism portion (20) and the second compression mechanism portion (30) are arranged on the outer peripheral surface and the inner side of the inner piston portion (22a, 32a).
  • the outer peripheral surface of the inner cylinder portion (21a, 31a) and the inner peripheral surface of the outer piston portion (22b, 32b) are substantially at one point (second contact) at a position 180 degrees out of phase with the contact.
  • the outer piston part (22b, 32b) and the outer cylinder part (21b, 31b) have an outer peripheral surface at a position that is 180 degrees out of phase with the contact (the same position as the first contact). It is substantially in contact at one point (third contact), and the outer peripheral surface of the piston side end plate (22c, 32c) and the outermost cylinder (21c, 31c) And the peripheral surface is in contact with the substantially at one point (4 contact).
  • the respective contacts (first contact to fourth contact) of the first piston (22) and the first cylinder (21) are changed to FIGS. 7 (A) to (D) and FIGS. 8 (A) to (D), respectively.
  • the respective contacts (first to fourth contacts) of the second piston (32) and the second cylinder (31) are driven relative to the corresponding contacts of the first piston (22) and the first cylinder (21). It is shifted by 180 ° around the axis of the shaft (53). That is, when viewed from above the drive shaft (53), when the operating state of the first compression mechanism (20) is as shown in FIGS. 7A and 8A, the operating state of the second compression mechanism (30). FIG. 7C and FIG. 8C.
  • the compression mechanism (40) is configured as a four-stage compression mechanism that compresses the refrigerant into four stages in the eight cylinder chambers (23a,..., 23d, 33a,..., 33d).
  • the cylinder chamber of the first stage compression mechanism is formed by the outermost cylinder chambers (23d, 33d) of the first compression mechanism portion (20) and the second compression mechanism portion (30).
  • a cylinder chamber of the second stage compression mechanism is formed by the outer cylinder chamber (23c) and the inner cylinder chamber (23b) of the first compression mechanism portion (20), and the outer cylinder chamber of the second compression mechanism portion (30).
  • the cylinder chamber of the third stage compression mechanism is formed by (33c) and the inner cylinder chamber (33b).
  • the cylinder chamber of the fourth stage compression mechanism is formed by the innermost cylinder chambers (23a, 33a) of the first compression mechanism portion (20) and the second compression mechanism portion (30).
  • the compressor (1) of the present embodiment includes a cylinder (21, 31) having an annular cylinder space, and an annular piston (22, 31) arranged eccentrically with respect to the cylinder (21, 31). 32), and a plurality of cylinder chambers (23a, ..., 23d, 33a, ..., 33d) are formed between the cylinders (21, 31) and the pistons (22, 32). , 23d, 33a, ..., 33d, each having a compression mechanism (20, 30) formed with one suction port and one discharge port communicating with each of the cylinder chambers (23a, ..., 23d, 33a, ..., 33d).
  • cylinder chambers (23a, ..., 23d, 33a, ..., 33d) are formed between the pair of cylinders (21,31) and pistons (22,32), and these cylinder chambers (23a, ..., 23d, 33d), the cylinder chamber (23d, 33d) of the first stage compression mechanism that compresses the low-pressure refrigerant in the first stage, and the second stage compression mechanism that compresses the discharged refrigerant of the first stage compression mechanism in the second stage.
  • the compression mechanism (40) has suction ports (P1, P2, P3) and discharge ports (P11, P12, P13, P14) of the cylinder chambers (23a,..., 23d, 33a,..., 33d). Each is formed.
  • the middle plate (19) includes a suction port (P1) and a discharge port of the outermost cylinder chambers (23d, 33d) of the first compression mechanism (20) and the second compression mechanism (30). (P11) is formed.
  • the front head (16) includes a suction port (P2) shared by the outer cylinder chamber (23c) and the inner cylinder chamber (23b) of the first compression mechanism section (20), and the first compression mechanism section (20). And the suction port (P3) of the innermost cylinder chamber (23a).
  • the suction port (P2) may be provided separately in the outer cylinder chamber (23c) and the inner cylinder chamber (23b) of the first compression mechanism (20).
  • the front head (16) has a discharge port (P12) in the outer cylinder chamber (23c) of the first compression mechanism (20) and a discharge in the inner cylinder chamber (23b) of the first compression mechanism (20).
  • a port (P13) and a discharge port (P14) of the innermost cylinder chamber (23a) of the first compression mechanism (20) are formed.
  • the rear head (17) includes a suction port (P2) shared by the outer cylinder chamber (33c) and the inner cylinder chamber (33b) of the second compression mechanism section (30), and the second compression mechanism section (30).
  • a suction port (P3) of the innermost cylinder chamber (33a) is formed.
  • the suction port (P2) may be provided separately in the outer cylinder chamber (33c) and the inner cylinder chamber (33b) of the second compression mechanism section (30).
  • the rear head (17) includes a discharge port (P12) of the outer cylinder chamber (33c) of the second compression mechanism (30) and a discharge port of the inner cylinder chamber (33b) of the second compression mechanism (30). (P13) and a discharge port (P14) of the innermost cylinder chamber (33a) of the second compression mechanism section (30) are formed.
  • the compression mechanism (40) is connected to the suction ports (P1, P2, P3) of the cylinder chambers (23a,..., 23d, 33a,. 23d, 33a,..., 33d) are formed with suction passages (71,..., 75) for sucking refrigerant.
  • the middle plate (19) communicates with the suction ports (P1, P1) of the outermost cylinder chambers (23d, 33d) of the first compression mechanism (20) and the second compression mechanism (30).
  • a suction passage (71) is formed.
  • a suction passage (72) communicating with the common suction port (P2) of the outer cylinder chamber (23c) and the inner cylinder chamber (23b) of the first compression mechanism section (20) is connected to the front head (16).
  • a suction passage (73) communicating with the suction port (P3) of the innermost cylinder chamber (23a) of the one compression mechanism section (20) is formed.
  • the rear head (17) has a suction passage (74) communicating with a suction port (P2) shared by the outer cylinder chamber (33c) and the inner cylinder chamber (33b) of the second compression mechanism (30), and a second A suction passage (75) for guiding the refrigerant to the suction port (P3) of the innermost cylinder chamber (33a) of the compression mechanism (30) is formed.
  • the suction pipes (60,..., 64) for guiding the refrigerant from the outside to the inside of the casing (10) are connected to the suction passages (71,..., 75), respectively.
  • the compression mechanism (40) is connected to the discharge ports (P11, P12, P13, P14) of the cylinder chambers (23a,..., 23d, 33a,. ..., 23d, 33a, ..., 33d) are formed with discharge spaces (81, ..., 85) through which refrigerant is discharged.
  • the middle plate (19) communicates with the discharge ports (P11, P11) of the outermost cylinder chambers (23d, 33d) of the first compression mechanism (20) and the second compression mechanism (30).
  • a discharge space (81) is formed.
  • the front head (16) has a discharge space (82) communicating with the discharge ports (P12, P13) of the outer cylinder chamber (23c) and the inner cylinder chamber (23b) of the first compression mechanism section (20), and a first A discharge space (83) communicating with the discharge port (P14) of the innermost cylinder chamber (23a) of the one compression mechanism (20) is formed.
  • the discharge space (82) may be provided separately for each discharge port (P12, P13).
  • the rear head (17) has a discharge space (84) through which refrigerant is discharged from the outer cylinder chamber (33c) and the inner cylinder chamber (33b) of the second compression mechanism section (30), and the second compression mechanism section ( A discharge space (85) through which refrigerant is discharged from the innermost cylinder chamber (33a) of 30) is formed.
  • the discharge space (84) may be provided separately for each discharge port (P12, P13).
  • Each of the discharge spaces (81,..., 85) includes a muffler space portion (81a,..., 85a) for suppressing pulsation and a passage portion (81b,..., 85a) communicating with the muffler space portion (81a,..., 85a). 85b).
  • a discharge valve (88) for opening and closing each discharge port (P11,..., P14) is provided in the muffler space (81a,..., 85a) of each discharge space (81,..., 85).
  • discharge pipes (65, ..., 69) for guiding the discharged refrigerant to the outside of the casing (10) are connected to the passage portions (81b, ..., 85b) of the discharge spaces (81, ..., 85), respectively. ing.
  • the discharge space (81) is formed so as to straddle the main body (19a) and the lid (19b) of the middle plate (19).
  • the muffler space portion (81a) of the discharge space (81) is formed so as to straddle the main body portion (19a) and the lid portion (19b) which are two members of the middle plate (19).
  • the muffler space portion (83a) of the discharge space (83) is formed so as to straddle the main body portion (16a) and the lid portion (16b) of the front head (16), while the discharge space (82)
  • the muffler space (82a) is formed on the main body (16a) side and is closed by the lid (16b).
  • the muffler space (84a, 85a) of the discharge space (84, 85) is formed on the main body (17a) side of the rear head (17) and is closed by the lid (17b). Yes.
  • the rotation of the rotor (52) is transmitted to the first piston (22) via the first eccentric part (53a) of the drive shaft (53).
  • the first piston (22) swings about the center point of the swing bush portion (24c) and moves forward and backward in the longitudinal direction of the first blade (24) together with the first blade (24). .
  • the first piston (22) revolves while swinging with respect to the first cylinder (21), and is predetermined in the four cylinder chambers (23a, 23b, 23c, 23d) of the first compression mechanism (20). The compression operation is performed.
  • a micron-order fine gap is formed between the tip of the inner blade part (B1) and the surface of the notch part (n1) of the inner piston part (22a), and they are not in contact with each other. .
  • a micron-order fine gap is formed between the tip of the outer second blade (B3) and the surface of the notch (n2) of the piston side end plate (22c). It becomes. An oil film of lubricating oil is formed in the fine gap. Therefore, leakage of the refrigerant from the high pressure side to the low pressure side of the cylinder chamber (C1, C2) is not a substantial problem.
  • the drive shaft (53) rotates clockwise from the state shown in FIG. As the state changes, the volume of the low pressure chamber (23aL, 23cL) increases, and the refrigerant is sucked into the low pressure chamber (23aL, 23cL) from the suction port (P3, P2). Further, when the drive shaft (53) makes one revolution and again enters the state of FIG. 7 (A), the suction of the refrigerant into the low pressure chambers (23aL, 23cL) is completed.
  • the low-pressure chamber (23aL, 23cL) becomes a high-pressure chamber (23aH, 23cH) in which the refrigerant is compressed, and a new low-pressure chamber (23aL, 23cL) is formed across the first blade (24).
  • the suction of the refrigerant is repeated in the low-pressure chamber (23aL, 23cL), while the volume of the high-pressure chamber (23aH, 23cH) decreases, and the refrigerant in the high-pressure chamber (23aH, 23cH) Is compressed.
  • the discharge valve (88 , 88) opens, and the refrigerant flows out of the casing (10) from the discharge space (83, 82) through the discharge pipe (65, 66).
  • the drive shaft (53) rotates clockwise from the state of FIG. 8 (A) and changes to the state of FIGS. 8 (B) to 8 (D). Accordingly, the volume of the low pressure chamber (23dL) increases, and the refrigerant is sucked into the low pressure chamber (23dL) from the suction port (P1). Further, when the drive shaft (53) makes one revolution and again enters the state of FIG. 8 (A), the suction of the refrigerant into the low pressure chamber (23dL) is completed.
  • the low pressure chamber (23dL) becomes a high pressure chamber (23dH) in which the refrigerant is compressed, and a new low pressure chamber (23dL) is formed across the first blade (24).
  • the drive shaft (53) rotates clockwise from the state of FIG. 7 (C) and changes to the state of FIGS. 7 (D) to 7 (B). Accordingly, the volume of the low pressure chamber (23bL) increases, and the refrigerant is sucked into the low pressure chamber (23bL) from the suction port (P2). Further, when the drive shaft (53) makes one revolution and again enters the state of FIG. 7 (C), the suction of the refrigerant into the low pressure chamber (23bL) is completed.
  • the low pressure chamber (23bL) becomes a high pressure chamber (23bH) in which the refrigerant is compressed, and a new low pressure chamber (23bL) is formed across the first blade (24).
  • suction of the refrigerant is repeated in the low pressure chamber (23bL), while the volume of the high pressure chamber (23bH) is reduced, and the refrigerant is compressed in the high pressure chamber (23bH).
  • the discharge valve (88) opens due to the pressure of the refrigerant in the high pressure chamber (23bH), and the refrigerant Out of the casing (10) from the discharge space (82) through the discharge pipe (66).
  • the refrigerant suction start timing and the discharge start timing are substantially 180 ° different between the outer cylinder chamber (23c) and the inner cylinder chamber (23b). As a result, the discharge pulsation is reduced, and vibration and noise are reduced.
  • the rotation of the rotor (52) is transmitted to the second piston (32) via the second eccentric part (53b) of the drive shaft (53), and the second piston ( 32) swings with the center point of the swing bush portion (34c) as the swing center, and moves forward and backward in the longitudinal direction of the second blade (34) together with the second blade (34).
  • the second piston (32) revolves while swinging with respect to the second cylinder (31), and is predetermined in the four cylinder chambers (33a, 33b, 33c, 33d) of the second compression mechanism (30). The compression operation is performed.
  • the compression operation in the second compression mechanism section (30) is substantially the same as the compression operation of the first compression mechanism section (20), and the refrigerant is compressed in each cylinder chamber (33a, 33b, 33c, 33d). Is done.
  • the pressure in the high pressure chamber (33aH, 33bH, 33cH, 33dH) becomes a predetermined value and the differential pressure from each discharge space (85, 84, 84, 81)
  • the discharge valve (88, 88, 88, 88, 88) is opened by the pressure of the refrigerant in the high pressure chamber (33aH, 33bH, 33cH, 33dH), and the refrigerant is discharged into each discharge space (85, 84, 84, 81).
  • the refrigerant flows from the suction pipe (62) to the outermost cylinder chamber (23d) of the first compression mechanism section (20), which is the cylinder chamber of the first stage compression mechanism, and the second compression mechanism.
  • the air is sucked into the outermost cylinder chamber (33d) of the section (30), compressed, and discharged from the cylinder chamber of the first stage compression mechanism through the discharge pipe (67).
  • the outer cylinder chamber (23c) of the first compression mechanism section (20) which is the cylinder chamber of the second stage compression mechanism, from the suction pipe (61).
  • the refrigerant discharged from the cylinder chamber of the fourth-stage compression mechanism sequentially flows through a radiator, an expansion mechanism, and an evaporator of a refrigerant circuit (not shown), and is sucked into the compressor (1) again. Then, the refrigeration cycle is performed by sequentially repeating the compression process in the compressor (1), the heat radiation process in the radiator, the expansion process in the expansion mechanism, and the evaporation process in the evaporator.
  • the space on the outer periphery of the piston side end plate portion (22c, 32c) that is not normally used as a cylinder chamber is also the cylinder chamber (C2), so that the number of cylinder chambers is increased by one.
  • the main cylinder chamber (C1) is composed of three cylinder chambers, each compression mechanism (20, 30) has four cylinder chambers including the sub cylinder chamber (C2).
  • the outer peripheral space of the piston side end plate part (22c, 32c) is a space that is normally formed only to enable the piston side end plate part (22c, 32c) to rotate, and is ineffective for refrigerant compression.
  • the space is used as the sub cylinder chamber (C2), so that the number of cylinder chambers can be increased without creating an invalid space.
  • the compression mechanism (20, 30) of the four cylinder chamber can be realized with a simple configuration. Therefore, when the number of cylinder chambers is increased, the number of parts does not increase and the manufacturing cost does not increase, and the problem that the structure becomes complicated and the compressor becomes large does not occur. As a result, an eccentric rotation type compression mechanism having a plurality of cylinder chambers can be easily put into practical use, and multistage compression can be easily realized, so that the efficiency of the compressor can be increased.
  • a blade (24) having a swinging bush portion (24c), an inner blade portion (B1), an outer first blade portion (B2), and an outer second blade portion (B3) a set of cylinders
  • a compression mechanism having four cylinder chambers between (21, 31) and the piston (22, 32) can be easily realized.
  • first swing allowance surface (n1) is formed on the outer peripheral surface of the inner piston portion (22a, 32a)
  • the second swing allowance surface (n2) is formed on the outer peripheral surface of the piston side end plate portion (22c, 32c).
  • the four cylinder chambers ensure smooth operation of the cylinder (21, 31), piston (22, 32) and blade (24, 34) during operation of the compression mechanism (20, 30). The compression operation can be performed reliably.
  • each cylinder chamber (C1, C2) The compression mechanism (20, 30) can be operated smoothly while preventing fluid leakage from the discharge side to the suction side, and the tip of the blade does not wear and sliding loss does not occur. Further, in this configuration, since the blade is composed of integral parts, an increase in the number of parts can be prevented.
  • the cylinder chamber of the first stage compression mechanism is divided into the outermost cylinder chamber (23d) of the first compression mechanism portion (20) and the outermost cylinder chamber (33d) of the second compression mechanism portion (30).
  • the cylinder chamber of the second stage compression mechanism is composed of the outer cylinder chamber (23c) of the first compression mechanism portion (20) and the outer cylinder chamber (33c) of the second compression mechanism portion (30),
  • the cylinder chamber of the third stage compression mechanism is composed of an inner cylinder chamber (23b) of the first compression mechanism section (20) and an inner cylinder chamber (33b) of the second compression mechanism section (30), and the fourth stage compression mechanism.
  • the cylinder chamber may be composed of an innermost cylinder chamber (23a) of the first compression mechanism (20) and an innermost cylinder chamber (33a) of the second compression mechanism (30).
  • the suction cylinder (61) and the discharge pipe (66) are provided separately for the outer cylinder chamber (23c) and the inner cylinder chamber (23b) of the first compression mechanism section (20), and the second compression is provided.
  • the outer cylinder chamber (33c) and the inner cylinder chamber (33b) of the mechanism (30) may be provided separately without sharing the suction pipe (63) and the discharge pipe (68).
  • the axial direction length dimension of an inner side piston part (22a, 32a) and an outer side piston part (22b, 32b) is made into the 1st compression mechanism part (20) and the 2nd compression mechanism part (30). It is not necessary to change.
  • the blades (24, 34) do not necessarily have to be formed as an integral part, and may be a combination of a plurality of members.
  • the inner blade part (B1) and the outer first blade part (B2) are formed as an integral part, while the outer second blade part (B3) and the swinging bush part (24c) are formed. This is an example in which these are combined as separate members.
  • the swinging bush portion (24c) is not integrated with the inner blade portion (B1), the outer first blade portion (B2), and the outer second blade portion (B3), as shown in FIG.
  • the notch part (n1) of the inner piston part (22a) and the notch part (n2) of the piston side end plate part (22c) may not be formed, but the tip of the inner blade part (B1) is connected to the inner piston part (22a ) And a back pressure pressing mechanism (70) for pressing the tip of the outer second blade portion (B3) against the piston side end plate portion (22c) is required.
  • the inner blade part (B1), the outer first blade part (B2), and the outer second blade part (B3) are formed as an integral part, while the swinging bush part (24c) is formed.
  • the inner blade part (B1), the outer first blade part (B2), and the outer second blade part (B3) are formed as an integral part, and the swinging bush part (24c) is long.
  • the groove (24d) at the intermediate position of the portion (24a) is fitted and fixed.
  • the blade (24) is integrated as shown in FIG. 3, the notch (n1) of the inner piston part (22a) and the notch (n2) of the piston side end plate part (22c) are formed.
  • the back pressure pressing mechanism may not be provided.
  • the compression mechanism (40) is configured to perform four-stage compression.
  • the outer peripheral surface of the piston side end plate portion (22c, 32c) is used as the sub cylinder chamber (C2).
  • the number of compression stages may be changed as appropriate (single-stage compression may be used).
  • four cylinder chambers (23a, ..., 23d, 33a, ..., 33d) are formed by one set of the cylinders (21, 31) and the pistons (22, 32).
  • the number of cylinder chambers may be changed, for example, the number of main cylinder chambers (C1) is two and the number of sub cylinder chambers (C2) is one.
  • two sets of cylinders (21, 31) and pistons (22, 32) are used.
  • the number of cylinders (22, 32) may be one, three, or more.
  • the number of sets of pistons (22, 32) may be changed.
  • the present invention is useful for a rotary compressor in which a plurality of cylinder chambers are formed in a compression mechanism by disposing an annular piston inside an annular cylinder chamber of a cylinder.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

 環状のシリンダ空間(C1)を有するシリンダ(21,31)と、シリンダ(21,31)に対して偏心して配置されたピストン(22,32)と、ピストン(22,32)に連結された駆動軸(53)とを有し、ピストン(22,32)が、シリンダ(21,31)に対して偏心回転運動をするピストン部(22a,22b)とシリンダ空間(C1)を閉塞するピストン側鏡板部(22c,32c)とを備え、複数のシリンダ室(23a,…,23d,33a,…,33d)が形成された偏心回転型の圧縮機構(20,30)を、コストアップや構造複雑化を抑えて実用化するために、シリンダ(21,31)に、ピストン側鏡板部(22c,32c)を偏心回転運動可能に収納する鏡板収納空間を形成し、シリンダ空間(C1)が主シリンダ室を構成する一方、鏡板収納空間を副シリンダ室(C2)にする。

Description

回転式圧縮機
 本発明は、偏心回転型の圧縮機構を有する回転式圧縮機に関し、特に、シリンダが有する環状のシリンダ室の内部に環状ピストンを配置することにより、圧縮機構に複数のシリンダ室が形成された回転式圧縮機に関するものである。
 従来より、シリンダが有する環状のシリンダ室の内部に環状ピストンを配置することにより、圧縮機構に複数のシリンダ室が形成された回転式圧縮機が提案されている(例えば、特許文献1,2参照)。特許文献1の圧縮機では、シリンダ室は、環状ピストンの内側と外側に2室形成されている。また、特許文献2の圧縮機では、シリンダ室は、3室形成されている。
 ところで、一般に、冷凍サイクルにおいて、圧縮行程の圧縮段数を増やせばサイクル効率が向上する。そこで、上記特許文献1の圧縮機を2段圧縮冷凍サイクルに用いたり、特許文献2の圧縮機を3段圧縮冷凍サイクルに用いたりすることが考えられる。
特開2007-113493号公報 特開2006-307762号公報
 しかし、上記特許文献1,2の圧縮機を用いてさらに効率を上げるために、2段圧縮の圧縮機構を3段圧縮可能な構成にしたり、3段圧縮の圧縮機構を4段圧縮可能な構成にしたりしようとすると、シリンダ室を増やす必要がある。シリンダ室を増やすためには、大小2つの環状ピストンを二重に配置することなどが必要になり、その結果、機構が複雑になることが考えられる。また、圧縮機構を2つ以上設けることも考えられるが、その場合でも機構が複雑になる。このように、シリンダ室を増やそうとすると、部品点数が増えて製造コストが高くなり、構造も複雑になって圧縮機が大型化する問題が生じてしまう。
 本発明は、このような問題点に鑑みて創案されたものであり、その目的は、複数のシリンダ室を有する偏心回転型の圧縮機構を、コストアップや構造複雑化を抑えられる構成で実用化できるようにすることである。
 第1の発明は、環状のシリンダ空間を有するシリンダ(21,31)と、該シリンダ(21,31)に対して偏心して配置されたピストン(22,32)と、該ピストン(22,32)に連結された駆動軸(53)とを有し、該ピストン(22,32)が、上記シリンダ(21,31)に対して偏心回転運動をするピストン部(22a,22b,32a,32b)と該シリンダ空間を閉塞する鏡板部(22c,32c)とを備えた回転式圧縮機を前提としている。
 そして、この回転式圧縮機は、上記シリンダ(21,31)が、上記ピストン(22,32)の鏡板部(22c,32c)を偏心回転運動可能に収納する鏡板収納空間を有し、上記シリンダ空間が主シリンダ室(C1)を構成する一方、上記鏡板収納空間により副シリンダ室(C2)が形成されていることを特徴としている。
 この第1の発明では、主シリンダ室(C1)が2つのシリンダ室から構成されている場合、圧縮機構は、副シリンダ室(C2)を合わせて3つのシリンダ室を有することになる。また、主シリンダ室(C1)が3つのシリンダ室から構成されている場合、圧縮機構は、副シリンダ室(C2)を併せて4つのシリンダ室を有することになる。そして、この発明では、通常はシリンダ室として用いられることのない鏡板の外周の空間もシリンダ室になるため、シリンダ室の数が1つ増えることになる。
 第2の発明は、第1の発明において、上記主シリンダ室(C1)が、径方向内周側から外周側に向かって順に形成された最内側シリンダ室(23a,33a)、内側シリンダ室(23b,33b)及び外側シリンダ室(23c,33c)を含み、上記副シリンダ室(C2)により、上記外側シリンダ室(23c,33c)の径方向外周側に位置する最外側シリンダ室(23d,33d)が形成されていることを特徴としている。
 この第2の発明では、主シリンダ室(C1)が3つのシリンダ室から構成されているので、圧縮機構は、副シリンダ室(C2)である最外側シリンダ室(23d,33d)を含めると、4つのシリンダ室を有することになる。
 第3の発明は、第2の発明において、上記シリンダ(21,31)が、上記駆動軸(53)の回転中心を中心として同心上に配置された内側シリンダ部(21a,31a)、外側シリンダ部(21b,31b)及び最外側シリンダ部(21c,31c)を有し、上記ピストン(22,32)が、上記駆動軸(53)に形成されている偏心部と同一中心上に配置された環状の内側ピストン部(22a,32a)及び外側ピストン部(22b,32b)を有するとともに、上記鏡板部(22c,32c)(の外周面)が両ピストン部(22a,22b,32a,32b)と同心上に配置され、上記内側ピストン部(22a,32a)が内側シリンダ部(21a,31a)の内径側に配置されるとともに、外側ピストン部(22b,32b)が内側シリンダ部(21a,31a)と外側シリンダ部(21b,31b)の間に配置され、内側ピストン部(22a,32a)の外周面と内側シリンダ部(21a,31a)の内周面との間に上記最内側シリンダ室(23a,33a)が形成され、内側シリンダ部(21a,31a)の外周面と外側ピストン部(22b,32b)の内周面との間に上記内側シリンダ室(23b,33b)が形成され、外側ピストン部(22b,32b)の外周面と外側シリンダ部(21b,31b)の内周面との間に上記外側シリンダ室(23c,33c)が形成され、上記鏡板部(22c,32c)の外周面と最外側シリンダ部(21c,31c)の内周面との間に上記最外側シリンダ室(23d,33d)が形成されていることを特徴としている。
 この第3の発明では、圧縮機構が有する最内側シリンダ室(23a,33a)と内側シリンダ室(23b,33b)と外側シリンダ室(23c,33c)と最外側シリンダ室(23d,33d)の4室のうち、最内側シリンダ室(23a,33a)と内側シリンダ室(23b,33b)と外側シリンダ室(23c,33c)は同一平面を基準とする位置に形成され、最外側シリンダ室(23d,33d)は、最内側シリンダ室(23a,33a)と内側シリンダ室(23b,33b)と外側シリンダ室(23c,33c)の基準平面とは異なる平面を基準とする位置に形成される。そして、この4つのシリンダ室を用いて、冷媒などの流体が圧縮される。
 第4の発明は、第3の発明において、上記各シリンダ室を吸入側と吐出側に区画するブレード(24,34)を有し、上記ブレード(24,34)が、上記外側ピストン部(22b,32b)に揺動可能に連結される揺動ブッシュ部(24c,34c)と、該揺動ブッシュ部(24c,34c)の径方向内側に位置して上記最内側シリンダ室(23a,33a)と内側シリンダ室(23b,33b)を吸入側と吐出側に区画する内側ブレード部(B1)と、該揺動ブッシュ部(24c,34c)の径方向外側に位置して上記外側シリンダ室(23c,33c)を吸入側と吐出側に区画する外側第1ブレード部(B2)と、該該揺動ブッシュ部(24c,34c)の径方向外側に位置して上記最外側シリンダ室(23d,33d)を吸入側と吐出側に区画する外側第2ブレード部(B3)とを備えていることを特徴としている。上記揺動ブッシュ部(24c,34c)は、内側ブレード部(B1)と外側第1ブレード部(B2)と外側第2ブレード部(B3)に対して一体部品にしてもよいし、別部品にしてもよい。
 この第4の発明では、4つのシリンダ室が各ブレード部により吸入側と吐出側に区画される。そして、吸入側と吐出側に区画される各シリンダ室において、冷媒などの流体が圧縮される。
 第5の発明は、第4の発明において、上記シリンダ(21,31)には、上記ブレード(24,34)をその面方向へスライド可能に保持するスライド溝(21f,21g,31f,31g)が形成され、上記内側ピストン部(22a,32a)の外周面には、該外周面に対して上記揺動ブッシュ部(24c,34c)を中心とする上記内側ブレード部(B1)の相対的な揺動動作を許容する第1揺動許容面(n1)が形成され、上記鏡板部(22c,32c)の外周面には、該外周面に対して上記揺動ブッシュ部(24c,34c)を中心とする上記外側第2ブレード部(B3)の相対的な揺動動作を許容する第2揺動許容面(n2)が形成されていることを特徴としている。
 この第5の発明では、圧縮機構が動作するときは、図3に示すように、上記ブレード(24,34)がシリンダ(21,31)のスライド溝(21f,21g,31f,31g)の中を該ブレード(24,34)の面方向にスライドしながら、ピストン(22,32)が揺動ブッシュ部(24c,34c)を中心として揺動する。また、内側ピストン部(22a,32a)の外周面に第1揺動許容面(n1)を形成し、鏡板部(22c,32c)の外周面に第2揺動許容面(n2)を形成しているので、圧縮機構の動作中におけるシリンダ(21,31)とピストン(22,32)とブレード(24,34)のスムーズな動作が確保される。
 第6の発明は、第5の発明において、上記ブレード(24,34)が揺動ブッシュ部(24c,34c)を含めて一体的な部品により構成され、上記第1揺動許容面(n1)が、上記揺動ブッシュ部(24c,34c)を中心とする上記内側ブレード部(B1)の相対的な揺動動作の軌跡に対して微細隙間が形成される円弧形状を基準にして形成され、上記第2揺動許容面(n2)が、上記揺動ブッシュ部(24c,34c)を中心とする上記外側第2ブレード部(B3)の相対的な揺動動作の軌跡に対して微細隙間が形成される円弧形状を基準にして形成されていることを特徴としている。
 この第6の発明では、図6において、ブレード(24,34)が揺動ブッシュ部(24c,34c)を中心として揺動するときに、内側ブレード部(B1)の先端と第1揺動許容面(n1)との間にわずかな隙間が形成され、外側第2ブレード部(B3)の先端と第2揺動許容面(n2)との間にわずかな隙間が形成される。この場合、上記のわずかな隙間は、潤滑油により油膜が形成される程度のミクロンオーダーの隙間にしておくとよい。
 第7の発明は、第1から第6の発明の何れか1つにおいて、上記圧縮機構が、シリンダ(21,31)とピストン(22,32)の組を複数有していることを特徴としている。
 この第7の発明では、シリンダ(21,31)とピストン(22,32)の組が複数あり、それぞれがピストン(22,32)の鏡板部(22c,32c)の外周に副シリンダ室(C2)を有している。したがって、シリンダ(21,31)とピストン(22,32)の組の数だけシリンダ室が増えることになる。
 第8の発明は、第7の発明において、上記圧縮機構が、シリンダ(21,31)とピストン(22,32)の組を2組有していることを特徴としている。
 この第8の発明では、シリンダ(21,31)とピストン(22,32)の組が2組あり、それぞれがピストン(22,32)の鏡板部(22c,32c)の外周に副シリンダ室(C2)を有している。したがって、シリンダ(21,31)とピストン(22,32)の組と同じようにシリンダ室が2つ増えることになる。
 本発明によれば、通常はシリンダ室として用いられることのない鏡板の外周の空間もシリンダ室になるため、シリンダ室の数が1つ増えることになる。そして、主シリンダ室(C1)が2つのシリンダ室から構成されている場合、圧縮機構は、副シリンダ室(C2)を合わせて3つのシリンダ室を有することになり、主シリンダ室(C1)が3つのシリンダ室から構成されている場合、圧縮機構は、副シリンダ室(C2)を併せて4つのシリンダ室を有することになる。
 鏡板の外周の空間は、通常は鏡板の旋回動作を可能にするためだけに形成される空間であり、流体の圧縮機能に関しては無効な空間であるが、本発明では鏡板の外周の空間をシリンダ室として用いることにより、無効な空間にはせずにシリンダ室の数を増やせるようにしている。そして、シリンダ室を増やす場合に、部品点数が増えたり製造コストが高くなったりすることはなく、構造が複雑になったり圧縮機が大型化したりする問題も生じない。その結果、複数のシリンダ室を有する偏心回転型の圧縮機構を容易に実用化できる。
 上記第2の発明によれば、主シリンダ室(C1)を3つのシリンダ室から構成するとともに、副シリンダ室(C2)を形成しているので、圧縮機構が4つのシリンダ室を有することになる。したがって、従来は1組のシリンダ(21,31)と環状ピストン(22,32)との間に2つのシリンダ室を有する圧縮機構を2組用いないと構成できなかった4シリンダ室の圧縮機構を、1組のシリンダ(21,31)と環状ピストン(22,32)だけで実現できる。したがって、機構の複雑化や大型化を確実に防止できる。
 上記第3の発明によれば、同一平面を基準とする位置に形成される最内側シリンダ室(23a,33a)と内側シリンダ室(23b,33b)と外側シリンダ室(23c,33c)に加えて、それとは異なる平面を基準とする位置に形成される最外側シリンダ室(23d,33d)を含む4つのシリンダ室により、冷媒などの流体を圧縮することができる。そして、最外側シリンダ室(23d,33d)を鏡板の外周の空間に形成することにより、機構の複雑化や大型化を防止できる。
 上記第4の発明によれば、揺動ブッシュ部(24c,34c)と内側ブレード部(B1)と外側第1ブレード部(B2)と外側第2ブレード部(B3)とを有するブレード(24,34)を用いることにより、1組のシリンダ(21,31)とピストン(22,32)の間に4つのシリンダ室を有する圧縮機構を実現できる。その場合、揺動ブッシュ部(24c,34c)と内側ブレード部(B1)と外側第1ブレード部(B2)と外側第2ブレード部(B3)は、一体的に構成してもよいし、別部材で構成してもよいが、いずれの場合でも簡単な構成で圧縮機構を実用化できる。
 上記第5の発明によれば、内側ピストン部(22a,32a)の外周面に第1揺動許容面(n1)を形成し、鏡板部(22c,32c)の外周面に第2揺動許容面(n2)を形成しているので、圧縮機構の動作中におけるシリンダ(21,31)とピストン(22,32)とブレード(24,34)のスムーズな動作を確保しつつ、4つのシリンダ室での圧縮動作を確実に行うことができる。
 上記第6の発明によれば、ブレード(24,34)が揺動ブッシュ部(24c,34c)を中心として揺動するときに、内側ブレード部(B1)の先端と第1揺動許容面(n1)との間にわずかな隙間が形成され、外側第2ブレード部(B3)の先端と第2揺動許容面(n2)との間にわずかな隙間が形成される。この隙間がミクロンオーダーの隙間になり、各揺動許容面に供給される潤滑油で形成される油膜で塞がれる程度に寸法設定しておけば、各シリンダ室の吐出側から吸入側への流体の漏れを防止しつつ、圧縮機構を円滑に動作させることができ、ブレード(24,34)の先端が摩耗しないし、摺動損失も生じない。また、揺動ブッシュ部(24c,34c)がブレード(24,34)と別部品であれば、その間で流体の漏れが生じるおそれがあるが、この発明では揺動ブッシュ部(24c,34c)をブレード(24,34)と一体にしているので、上記の漏れが生じない。さらに、この構成においては、ブレード(24,34)を一体的な部品により構成しているので部品点数の増加を防止できる。この場合、ブレード(24,34)は各部を組み合わせて一体化したものでもよいし、切削加工により一体部品として形成してもよい。
 上記第7の発明によれば、シリンダ(21,31)とピストン(22,32)の組が複数あり、それぞれがピストン(22,32)の鏡板部(22c,32c)の外周に副シリンダ室(C2)を有しているので、シリンダ(21,31)とピストン(22,32)の組の数だけシリンダ室が増えることになる。したがって、シリンダ室をより効率的に増やすことが可能になり、多段圧縮化も容易になる。
 上記第8の発明によれば、シリンダ(21,31)とピストン(22,32)の組が2組あり、それぞれがピストン(22,32)の鏡板部(22c,32c)の外周に副シリンダ室(C2)を有しているので、シリンダ(21,31)とピストン(22,32)の組と同じようにシリンダ室が2つ増えることになる。このように構成すると、各組のシリンダ(21,31)とピストン(22,32)を同じ構成にした場合に、対応するシリンダ室同士の位相を180°ずらすことによって、互いのモーメントを相殺することが可能になるので、脈動や振動、あるいは騒音を低減することができる。
図1は、本発明の実施形態に係る圧縮機の縦断面図である。 図2は、図1の部分拡大図である。 図3(A)は、本発明の実施形態に係る圧縮機の圧縮機構部の横断面図であり、図3(B)は、上記圧縮機の圧縮機構部の他の横断面図である。 図4は、本発明の実施形態に係る圧縮機の他の縦断面の一部を拡大して示す図である。 図5は、本発明の実施形態に係るブレードの拡大斜視図である。 図6は、本発明の実施形態に係る圧縮機構部の部分拡大図である。 図7は、本発明の実施形態に係る圧縮機構部の動作状態図である。 図8は、本発明の実施形態に係る圧縮機構部の動作状態図である。 図9は、他の実施形態に係るブレードの拡大斜視図である。 図10は、他の圧縮機構部の横断面図である。 図11は、他の実施形態に係るブレードの拡大斜視図である。 図12は、他の実施形態に係るブレードの拡大斜視図である。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。
 この実施形態に係る圧縮機(1)は回転式圧縮機であり、図1に示すように、ケーシング(10)内に、2つの圧縮機構部(第1圧縮機構部(20)及び第2圧縮機構部(30))が駆動軸(53)の軸方向に積み重ねられた圧縮機構(40)と、駆動機構である電動機(50)とが収納され、全密閉型に構成されている。上記圧縮機(1)は、例えば、空気調和装置の冷媒回路において、蒸発器から吸入した冷媒(作動流体)を圧縮して凝縮器へ吐出するために用いられる。
 上記ケーシング(10)は、円筒状の胴部(11)と、該胴部(11)の上端部に固定された上部鏡板(12)と、胴部(11)の下端部に固定された下部鏡板(13)とから構成されている。上記胴部(11)には、詳細について後述する第1圧縮機構部(20)及び第2圧縮機構部(30)の環状のシリンダ室(23a,…,23d,33a,…,33d)に冷媒を導くための吸入管(60,…,64)と、上記シリンダ室(23a,…,23d,33a,…,33d)において圧縮された冷媒を吐出するための吐出管(65,…,69)とが貫通して設けられている。
 上記電動機(50)は、上記ケーシング(10)内において、上記圧縮機構(40)よりも上方に配置され、ステータ(51)とロータ(52)とを備えている。ステータ(51)は、ケーシング(10)の胴部(11)に固定されている。一方、ロータ(52)には駆動軸(53)が一体となって回転するように連結されている。該駆動軸(53)はロータ(52)から下方に延伸し、下部には第1偏心部(53a)及び第2偏心部(53b)が形成されている。上側の第1偏心部(53a)は、該第1偏心部(53a)の上下の主軸部分よりも大径に形成され、駆動軸(53)の軸心から所定量だけ偏心している。一方、下側の第2偏心部(53b)は、上記第1偏心部(53a)と同径に形成され、第1偏心部(53a)と同じ量だけ駆動軸(53)の軸心から偏心している。第1偏心部(53a)と上記第2偏心部(53b)とは、駆動軸(53)の軸心を中心として互いに180°位相がずれている。
 上記第1圧縮機構部(20)及び第2圧縮機構部(30)は上下二段に重ねられて、ケーシング(10)に固定されたフロントヘッド(16)からリアヘッド(17)までの間に構成されている。第1圧縮機構部(20)が電動機(50)側(図1の上側)に配置され、第2圧縮機構部(30)がケーシング(10)の底部側(図1の下側)に配置されている。本実施形態では、フロントヘッド(16)は本体部(16a)と蓋部(16b)とによって構成され、リアヘッド(17)も本体部(17a)と蓋部(17b)とによって構成されている。また、フロントヘッド(16)とリアヘッド(17)の間には、ミドルプレート(19)が設けられている。
 上記ミドルプレート(19)は、第1圧縮機構部(20)及び第2圧縮機構部(30)に共有されている。また、ミドルプレート(19)は、駆動軸(53)の軸方向に並ぶ2つの部材(19a,19b)によって構成されている。具体的には、ミドルプレート(19)は、第1圧縮機構部(20)側の本体部(19a)と、該本体部(19a)の下方に重ね合わされた蓋部(19b)とを備えている。ミドルプレート(19)の中心部には、駆動軸(53)が貫通する貫通孔(19c)が形成されている。この貫通孔(19c)は、上記駆動軸の第1偏心部(53a)及び第2偏心部(53b)の直径よりも内径が少し大きな孔である。
 図2から図5に示すように、上記第1圧縮機構部(20)は、ケーシング(10)の胴部(11)に固定された第1シリンダ(21)と、駆動軸(53)の第1偏心部(53a)に取り付けられて第1シリンダ(21)に対して偏心回転をする第1ピストン(22)と、これら第1シリンダ(21)と第1ピストン(22)との間に形成される4つのシリンダ室(23a,23b,23c,23d)を高圧室(23aH,23bH,23cH,23dH)と低圧室(23aL,23bL,23cL,23dL)とに区画する第1ブレード(24)とを備えている。
 一方、上記第2圧縮機構部(30)は、該第1圧縮機構部(20)に対して上下反転している。該第2圧縮機構部(30)は、ケーシング(10)の胴部(11)に固定された第2シリンダ(31)と、駆動軸(53)の第2偏心部(53b)に取り付けられて第2シリンダ(31)に対して偏心回転をする第2ピストン(32)と、これら第2シリンダ(31)と第2ピストン(32)との間に形成される4つのシリンダ室(33a,33b,33c,33d)を高圧室(33aH,33bH,33cH,33dH)と低圧室(33aL,33bL,33cL,33dL)とに区画する第2ブレード(34)とを備えている。
 この実施形態では、フロントヘッド(16)の本体部(16a)が第1シリンダ(21)を構成し、リアヘッド(17)の本体部(17a)が第2シリンダ(31)を構成している。また、本実施形態では、第1シリンダ(21)及び第2シリンダ(31)が固定側で、第1ピストン(22)及び第2ピストン(32)が可動側である。そして、第1ピストン(22)が第1シリンダ(21)に対して偏心回転運動をし、第2ピストン(32)が第2シリンダ(31)に対して偏心回転運動をするように構成されている。
 上記第1シリンダ(21)は、駆動軸(53)と同心上に位置して環状空間(シリンダ空間)を形成する内側シリンダ部(21a)及び外側シリンダ部(21b)と、該外側シリンダ部(21b)の外周部から下方に延伸する最外側シリンダ部(21c)と、内側シリンダ部(21a)及び外側シリンダ部(21b)の上端部を連接するシリンダ側鏡板部(21d)とを備えている。内側シリンダ部(21a)は円環の一部分が分断されたC型形状に形成されている(図3(A)参照)。内側シリンダ部(21a)の分断箇所にはスライド溝(21g)が形成されている。
 上記第2シリンダ(31)は、駆動軸(53)と同心上に位置して環状空間(シリンダ空間)を形成する内側シリンダ部(31a)及び外側シリンダ部(31b)と、該外側シリンダ部(31b)の外周部から上方に延伸する最外側シリンダ部(31c)と、内側シリンダ部(31a)及び外側シリンダ部(31b)の下端部を連接するシリンダ側鏡板部(31d)とを備えている。内側シリンダ部(21a)は円環の一部分が分断されたC型形状に形成されている(図3(A)参照)。内側シリンダ部(31a)の分断箇所にはスライド溝(31g)が形成されている。
 上記第1ピストン(22)は、第1偏心部(53a)に嵌合して該第1偏心部(53a)と同心上に位置する内側ピストン部(22a)と、該内側ピストン部(22a)の外周側の環状空間内で該内側ピストン部(22a)と同心上に位置する外側ピストン部(環状ピストン部)(22b)と、該2つのピストン部(22a,22b)の下端部を連結するとともに外周面が内側ピストン部(22a)及び外側ピストン部(22b)と同心上に位置するピストン側鏡板部(22c)とを有している。
 内側ピストン部(22a)は、外周面に切欠部(n1)が形成され、外側ピストン部(22b)は円環の一部分が分断されたC型形状に形成されている(図3(A)参照)。また、ピストン側鏡板部(22c)の外周部には切欠部(n2)が形成されている(図3(B)参照)。ピストン側鏡板部(22c)は、本発明の主シリンダ室(C1)を構成する3つのシリンダ室(シリンダ空間)(23a,23b,23c)を閉塞するように構成されている。また、上記第1シリンダ(21)は、上記第1ピストン(22)が有するピストン側鏡板部(22c)を偏心回転運動可能に収納する鏡板収納空間(副シリンダ室)(C2)を有している。
 上記第2ピストン(32)は、第2偏心部(53b)に嵌合して該第2偏心部(53b)と同心上に位置する内側ピストン部(32a)と、該内側ピストン部(32a)の外周側の環状空間内で該内側ピストン部(32a)と同心上に位置する外側ピストン部(環状ピストン部)(32b)と、該2つのピストン部(32a,32b)の上端部を連結するとともに外周面が内側ピストン部(32a)及び外側ピストン部(32b)と同心上に位置するピストン側鏡板部(32c)とを有している。
 内側ピストン部(32a)は、外周面に切欠部(n1)が形成され、外側ピストン部(32b)は円環の一部分が分断されたC型形状に形成されている(図3(A)参照)。また、ピストン側鏡板部(32c)の外周部には切欠部(n2)が形成されている(図3(B)参照)。ピストン側鏡板部(32c)は、本発明の主シリンダ室(C1)を構成する3つのシリンダ室(シリンダ空間)(33a,33b,23c)を閉塞するように構成されている。また、上記第2シリンダ(31)は、上記第2ピストン(32)が有するピストン側鏡板部(32c)を偏心回転運動可能に収納する鏡板収納空間(副シリンダ室)(C2)を有している。
 フロントヘッド(16)の本体部(16a)を構成する第1シリンダ(21)とリアヘッド(17)の本体部(17a)を構成する第2シリンダ(31)には、それぞれ上記駆動軸(53)を支持するための軸受部(21e,31e)が形成されている。本実施形態の圧縮機(1)は、上記駆動軸(53)が上記第1圧縮機構部(20)及び上記第2圧縮機構部(30)を上下方向に貫通し、第1偏心部(53a)及び第2偏心部(53b)の軸方向両側の主軸部分が軸受部(21e,31e)を介してケーシング(10)に保持される貫通軸構造となっている。
 次に、第1、第2圧縮機構部(20,30)の内部構造について説明するが、第1、第2圧縮機構部(20,30)は、シリンダ容積を変えるために外側ピストン部(22,32)の軸方向長さ寸法とそれに対応するシリンダ(21,31)の軸方向長さ寸法を除いては互いに実質的に同一の構成であるため、第1圧縮機構部(20)を代表例として説明する。
 上記第1ブレード(24)は、厚みを有する板状の長尺部(24a)及び短尺部(24b)と、断面形状が略半円形状の一対の揺動ブッシュ部(24c)とを有し、これら3つの部分は一体に形成されている。
 具体的には、上記第1ブレード(24)は、上記外側ピストン部(22b)に揺動可能に連結される揺動ブッシュ部(24c)と、該揺動ブッシュ部(24c)に対して圧縮機構(40)の径方向内側に位置するとともに後述する最内側シリンダ室(23a)と内側シリンダ室(23b)を吸入側と吐出側に区画する内側ブレード部(B1)と、該揺動ブッシュ部(24c)の径方向外側に位置して後述する外側シリンダ室(23c)を吸入側と吐出側に区画する外側第1ブレード部(B2)と、該該揺動ブッシュ部(24c)の径方向外側に位置して後述する最外側シリンダ室(23d)を吸入側と吐出側に区画する外側第2ブレード部(B3)とを備えている。そして、上記長尺部(24a)は揺動ブッシュ部(24c)と内側ブレード部(B1)と外側第1ブレード部(B2)とから構成され、上記短尺部(24b)は、外側第2ブレード部(B3)により構成されている。上記内側ブレード部(B1)は先端が内側ピストン部(22a)の外周面に径方向外側から対向し、上記外側第2ブレード部(B2)は先端がピストン側鏡板部(22c)の外周面に径方向外側から対向している。
 上記長尺部(24a)は、シリンダ側鏡板部(21d)とピストン側鏡板部(22c)との間において径方向に長く延び、外端部が、外側シリンダ部(21b)に形成された溝(スライド溝)(21f)に径方向(ブレードの面方向)へ摺動自在に収容されている。長尺部(24a)の揺動ブッシュ部(24c)よりも内側の部分(内側ブレード部(B1))は、内側シリンダ部(21a)の分断箇所に形成されているスライド溝(21g)に摺動可能に挿入され、内端は内側ピストン部(22a)の切欠部(n1)にミクロンオーダーの微細隙間を挟んで対向している。
 図6において、上記切欠部(n1)は、上記揺動ブッシュ部(24c)を中心とする上記内側ブレード部(B1)の相対的な揺動動作を許容する第1揺動許容面を構成している。この第1揺動許容面(n1)は、上記揺動ブッシュ部(24c)を中心とする上記内側ブレード部(B1)の相対的な揺動動作の軌跡よりもわずかに大きい径寸法の円弧形状を基準にして形成され、内側ブレード部(B1)が揺動動作をする際にその先端が描く軌跡と第1揺動許容面(n1)との間に微細隙間が形成されるようになっている。なお、図6では微細隙間を誇張して表している。
 上記短尺部(24b)は、長尺部(24a)とミドルプレート(19)との間において径方向に延び、最外側シリンダ部(21c)に形成された溝(スライド溝)(21f)に径方向に摺動自在に収容されている。短尺部(24b)の内端は、ピストン側鏡板部(22c)の切欠部(n2)にミクロンオーダーの隙間を挟んで対向している。
 上記切欠部(n2)は、上記揺動ブッシュ部(24c)を中心とする上記外側第2ブレード部(B3)の相対的な揺動動作を許容する第2揺動許容面を構成している。この第2揺動許容面(n2)は、上記揺動ブッシュ部(24c)を中心とする上記外側第2ブレード部(B3)の相対的な揺動動作の軌跡よりもわずかに小さい径寸法の円弧形状を基準にして形成され、外側第2ブレード部(B3)が揺動動作をする際にその先端が描く軌跡と第2揺動許容面(n2)との間に微細隙間が形成されるようになっている。なお、図6では微細隙間を誇張して表している。
 上記一対の揺動ブッシュ部(24c)は、長尺部(24a)の径方向中央部付近において、長尺部(24a)の両側に膨出するように形成されている。一対の揺動ブッシュ部(24c)の外周面は、所定半径の円筒の外周面の一部を構成している。そして、一対の揺動ブッシュ部(24c)は、外側ピストン部(22b)の分断箇所に形成されたブッシュ溝(c1,c2)に揺動自在に収容されている。一対の揺動ブッシュ部(24c)は、外側ピストン部(22b)が第1ブレード(24)に対して揺動するように構成されている。
 このような構成により、第1ピストン(22)は、第1偏心部(53a)の偏心回転に伴って、第1ブレード(24)に対して一対の揺動ブッシュ部(24c)の中心点を揺動中心として揺動すると共に、上記溝(21f)及び上記内側シリンダ部(21a)のスライド溝(21g)に対する上記第1ブレード(24)の長手方向(面方向)への摺動に伴って同方向に進退する。
 上記主シリンダ室(C1)は、上述したように、径方向内周側から外周側に向かって順に形成された最内側シリンダ室(23a)、内側シリンダ室(23b)及び外側シリンダ室(23c)を含み、上記副シリンダ室(C2)により、上記外側シリンダ室(23c)の径方向外周側に位置する最外側シリンダ室(23d)が形成されている。シリンダ室の具体的な構成は以下の通りである。
 上記内側ピストン部(22a)は内側シリンダ部(21a)の内径側に配置され、外側ピストン部(22b)は内側シリンダ部(21a)と外側シリンダ部(21b)の間に配置されている。第1偏心部(53a)に摺動自在に嵌合する内側ピストン部(22a)と、該内側ピストン部(22a)の外周面よりも大径の内周面を有する内側シリンダ部(21a)との間に、最内側シリンダ室(23a)が形成されている。また、同心上に位置する内側シリンダ部(21a)の外周面と外側シリンダ部(21b)の内周面との間には環状空間が形成されている。この環状空間は、該環状空間内に配置された外側ピストン部(22b)によって、内外2つのシリンダ室(23b,23c)に区画されている。具体的には、内側シリンダ部(21a)の外周面と外側ピストン部(22b)の内周面との間に内側シリンダ室(23b)が形成され、外側ピストン部(22b)の外周面と外側シリンダ部(21b)の内周面との間に外側シリンダ室(23c)が形成されている。さらに、ピストン側鏡板部(22c)は、上面が上記3つのシリンダ室(23a,23b,23c)に面する一方、下面がミドルプレート(19)の上面(本体部(19a)の上面)に面するように設けられ、外周面は最外側シリンダ部(21c)の内周面と対向している。これにより、ピストン側鏡板部(22c)の外周面と最外側シリンダ部(21c)との間に最外側シリンダ室(23d)が形成されている。
 このように、上記圧縮機(1)は、それぞれが4つのシリンダ室(23a,…,23d,33a,…,33d)を有する第1圧縮機構部(20)と第2圧縮機構部(30)を備えている。
 第1圧縮機構部(20)と第2圧縮機構部(30)の内側ピストン部(22a,32a)と内側シリンダ部(21a,31a)は、内側ピストン部(22a,32a)の外周面と内側シリンダ部(21a,31a)の内周面とが1点(第1接点)で実質的に接する状態(厳密にはミクロンオーダーの隙間があるが、その隙間での冷媒の漏れが問題にならない状態)において、その接点と位相が180°異なる位置で、内側シリンダ部(21a,31a)の外周面と外側ピストン部(22b,32b)の内周面とが1点(第2接点)で実質的に接し、その接点と位相が180°異なる位置(第1接点と位相が同じ位置)で、外側ピストン部(22b,32b)の外周面と外側シリンダ部(21b,31b)の内周面とが1点(第3接点)で実質的に接すると共に、ピストン側鏡板部(22c,32c)の外周面と最外側シリンダ部(21c,31c)の内周面とが1点(第4接点)で実質的に接するようになっている。
 以上の構成において、駆動軸(53)が回転すると、第1ピストン(22)は、揺動ブッシュ部(24c)の中心点を揺動中心として揺動し、第1ブレード(24)と共に該第1ブレード(24)の長手方向へ進退する。また、駆動軸(53)が回転すると、第2ピストン(32)は、揺動ブッシュ部(34c)の中心点を揺動中心として揺動し、第2ブレード(34)と共に該第2ブレード(34)の長手方向へ進退する。
 上記動作により、第1ピストン(22)と第1シリンダ(21)の各接点(第1接点~第4接点)がそれぞれ図7(A)~(D)、図8(A)~(D)へ順に移動する。一方、第2ピストン(32)と第2シリンダ(31)の各接点(第1接点~第4接点)は、第1ピストン(22)と第1シリンダ(21)の対応する接点に対して駆動軸(53)の軸心回りに180°ずれている。つまり、駆動軸(53)の上側から見て、第1圧縮機構部(20)の動作状態が図7(A)及び図8(A)のとき、第2圧縮機構部(30)の動作状態は図7(C)及び図8(C)となる。
 また、本実施形態では、圧縮機構(40)は、8つのシリンダ室(23a,…,23d,33a,…,33d)において冷媒を4段階に圧縮する4段圧縮機構に構成されている。
 具体的には、第1圧縮機構部(20)及び第2圧縮機構部(30)の最外側シリンダ室(23d,33d)によって第1段圧縮機構のシリンダ室が形成されている。また、第1圧縮機構部(20)の外側シリンダ室(23c)と内側シリンダ室(23b)とによって第2段圧縮機構のシリンダ室が形成され、第2圧縮機構部(30)の外側シリンダ室(33c)と内側シリンダ室(33b)とによって第3段圧縮機構のシリンダ室が形成されている。さらに、第1圧縮機構部(20)及び第2圧縮機構部(30)の最内側シリンダ室(23a,33a)によって第4段圧縮機構のシリンダ室が形成されている。
 このように、本実施形態の圧縮機(1)は、環状のシリンダ空間を有するシリンダ(21,31)と、該シリンダ(21,31)に対して偏心して配置された環状のピストン(22,32)とを有し、該シリンダ(21,31)とピストン(22,32)の間に複数のシリンダ室(23a,…,23d,33a,…,33d)が形成されるとともに、下記のように各シリンダ室(23a,…,23d,33a,…,33d)に連通する吸入ポートと吐出ポートが一つずつ形成された圧縮機構(20,30)を有する回転式圧縮機であって、一組のシリンダ(21,31)とピストン(22,32)の間に4つのシリンダ室(23a,…,23d,33a,…,33d)が形成され、これらのシリンダ室(23a,…,23d,33a,…,33d)により、低圧冷媒を第1段圧縮する第1段圧縮機構のシリンダ室(23d,33d)、第1段圧縮機構の吐出冷媒を第2段圧縮する第2段圧縮機構のシリンダ室(23c,23b)、第2段圧縮機構の吐出冷媒を第3段圧縮する第3段圧縮機構のシリンダ室(33c,33b)、及び第3段圧縮機構の吐出冷媒を第4段圧縮する第4段圧縮機構のシリンダ室(23a,33a)が形成されているものである。なお、冷媒は、第1段圧縮機構と第2段圧縮機構の間、第2段圧縮機構と第3段圧縮機構の間、そして第3段圧縮機構と第4段圧縮機構の間において、それぞれ冷却機構によって冷却される。
 また、上記圧縮機構(40)には、各シリンダ室(23a,…,23d,33a,…,33d)の吸入ポート(P1,P2,P3)及び吐出ポート(P11,P12,P13,P14)がそれぞれ形成されている。
 具体的には、ミドルプレート(19)には、上記第1圧縮機構部(20)及び第2圧縮機構部(30)の最外側シリンダ室(23d,33d)の吸入ポート(P1)及び吐出ポート(P11)がそれぞれ形成されている。
 また、フロントヘッド(16)には、第1圧縮機構部(20)の外側シリンダ室(23c)及び内側シリンダ室(23b)が共用する吸入ポート(P2)と、第1圧縮機構部(20)の最内側シリンダ室(23a)の吸入ポート(P3)とが形成されている。吸入ポート(P2)は、第1圧縮機構部(20)の外側シリンダ室(23c)及び内側シリンダ室(23b)に別々に設けてもよい。また、フロントヘッド(16)には、第1圧縮機構部(20)の外側シリンダ室(23c)の吐出ポート(P12)と、第1圧縮機構部(20)の内側シリンダ室(23b)の吐出ポート(P13)と、第1圧縮機構部(20)の最内側シリンダ室(23a)の吐出ポート(P14)とが形成されている。
 一方、リアヘッド(17)には、第2圧縮機構部(30)の外側シリンダ室(33c)及び内側シリンダ室(33b)が共用する吸入ポート(P2)と、第2圧縮機構部(30)の最内側シリンダ室(33a)の吸入ポート(P3)とが形成されている。吸入ポート(P2)は、第2圧縮機構部(30)の外側シリンダ室(33c)及び内側シリンダ室(33b)に別々に設けてもよい。また、リアヘッド(17)には、第2圧縮機構部(30)の外側シリンダ室(33c)の吐出ポート(P12)と、第2圧縮機構部(30)の内側シリンダ室(33b)の吐出ポート(P13)と、第2圧縮機構部(30)の最内側シリンダ室(33a)の吐出ポート(P14)とが形成されている。
 また、上記圧縮機構(40)には、各シリンダ室(23a,…,23d,33a,…,33d)の吸入ポート(P1,P2,P3)に接続されて、各シリンダ室(23a,…,23d,33a,…,33d)に冷媒を吸入させるための吸入通路(71,…,75)が形成されている。
 具体的には、ミドルプレート(19)に、第1圧縮機構部(20)及び第2圧縮機構部(30)の最外側シリンダ室(23d,33d)の吸入ポート(P1,P1)に連通する吸入通路(71)が形成されている。
 また、フロントヘッド(16)に、第1圧縮機構部(20)の外側シリンダ室(23c)及び内側シリンダ室(23b)の共用の吸入ポート(P2)に連通する吸入通路(72)と、第1圧縮機構部(20)の最内側シリンダ室(23a)の吸入ポート(P3)に連通する吸入通路(73)とが形成されている。
 また、リアヘッド(17)に、第2圧縮機構部(30)の外側シリンダ室(33c)及び内側シリンダ室(33b)の共用の吸入ポート(P2)に連通する吸入通路(74)と、第2圧縮機構部(30)の最内側シリンダ室(33a)の吸入ポート(P3)に冷媒を導く吸入通路(75)とが形成されている。
 上記各吸入通路(71,…,75)には、ケーシング(10)の外部から内部に冷媒を導く吸入管(60,…,64)がそれぞれ接続されている。
 また、上記圧縮機構(40)には、各シリンダ室(23a,…,23d,33a,…,33d)の吐出ポート(P11,P12,P13,P14)に接続されて、各シリンダ室(23a,…,23d,33a,…,33d)から冷媒が吐出される吐出空間(81,…,85)が形成されている。
 具体的には、ミドルプレート(19)に、第1圧縮機構部(20)及び第2圧縮機構部(30)の最外側シリンダ室(23d,33d)の吐出ポート(P11,P11)に連通する吐出空間(81)が形成されている。
 また、フロントヘッド(16)に、第1圧縮機構部(20)の外側シリンダ室(23c)及び内側シリンダ室(23b)の吐出ポート(P12,P13)に連通する吐出空間(82)と、第1圧縮機構部(20)の最内側シリンダ室(23a)の吐出ポート(P14)に連通する吐出空間(83)とが形成されている。吐出空間(82)は、各吐出ポート(P12,P13)に別々に設けてもよい。
 一方、リアヘッド(17)に、第2圧縮機構部(30)の外側シリンダ室(33c)と内側シリンダ室(33b)から冷媒が吐出される吐出空間(84)と、上記第2圧縮機構部(30)の最内側シリンダ室(33a)から冷媒が吐出される吐出空間(85)とが形成されている。吐出空間(84)は、各吐出ポート(P12,P13)に別々に設けてもよい。
 上記各吐出空間(81,…,85)は、脈動を抑制するマフラー空間部(81a,…,85a)と、該マフラー空間部(81a,…,85a)に連通する通路部(81b,…,85b)とによって形成されている。
 上記各吐出空間(81,…,85)のマフラー空間部(81a,…,85a)には、各吐出ポート(P11,…,P14)を開閉する吐出弁(88)がそれぞれ設けられている。一方、上記各吐出空間(81,…,85)の通路部(81b,…,85b)には、吐出冷媒をケーシング(10)の外部へ導く吐出管(65,…,69)がそれぞれ接続されている。
 上記吐出空間(81)は、ミドルプレート(19)の本体部(19a)と蓋部(19b)に跨るように形成されている。具体的には、吐出空間(81)のマフラー空間部(81a)が、ミドルプレート(19)の2つの部材である本体部(19a)と蓋部(19b)とに跨るように形成されている。また、上記吐出空間(83)のマフラー空間部(83a)は、フロントヘッド(16)の本体部(16a)と蓋部(16b)とに跨るように形成される一方、吐出空間(82)のマフラー空間部(82a)は、本体部(16a)側に形成されて蓋部(16b)によって閉塞されるように構成されている。さらに、上記吐出空間(84,85)のマフラー空間部(84a,85a)は、リアヘッド(17)の本体部(17a)側に形成されて蓋部(17b)によって閉塞されるように構成されている。
   -運転動作-
 次に、圧縮機(1)の運転動作について説明する。ここで、第1、第2圧縮機構部(20,30)の動作は、位相が互いに180°異なる状態で行われる。
 電動機(50)を起動すると、第1圧縮機構部(20)では、ロータ(52)の回転が駆動軸(53)の第1偏心部(53a)を介して第1ピストン(22)に伝達され、該第1ピストン(22)は、揺動ブッシュ部(24c)の中心点を揺動中心として揺動すると共に、第1ブレード(24)と共に該第1ブレード(24)の長手方向へ進退する。これにより、第1ピストン(22)が第1シリンダ(21)に対して揺動しながら公転し、第1圧縮機構部(20)の4つのシリンダ室(23a,23b,23c,23d)において所定の圧縮動作が行われる。
 このとき、内側ブレード部(B1)の先端と内側ピストン部(22a)の切欠部(n1)の表面との間には、ミクロンオーダーの微細隙間が形成される状態となり、両者は非接触となる。また、外側第2ブレード部(B3)の先端とピストン側鏡板部(22c)の切欠部(n2)の表面との間にも、ミクロンオーダーの微細隙間が形成される状態となり、両者は非接触となる。上記の微細隙間には、潤滑油の油膜が形成される。したがって、シリンダ室(C1,C2)の高圧側から低圧側への冷媒の漏れは、実質的に問題にはならない。
 最内側シリンダ室(23a)及び外側シリンダ室(23c)では、図7(A)の状態から駆動軸(53)が図の右回りに回転して図7(B)~図7(D)の状態へ変化するのに伴い、低圧室(23aL,23cL)の容積が増大し、冷媒が吸入ポート(P3,P2)から低圧室(23aL,23cL)にそれぞれ吸入される。また、駆動軸(53)が一回転して再び図7(A)の状態になると、上記低圧室(23aL,23cL)への冷媒の吸入が完了する。そして、上記低圧室(23aL,23cL)は冷媒が圧縮される高圧室(23aH,23cH)となり、第1ブレード(24)を隔てて新たな低圧室(23aL,23cL)が形成される。駆動軸(53)がさらに回転すると、上記低圧室(23aL,23cL)において冷媒の吸入が繰り返される一方、高圧室(23aH,23cH)の容積が減少し、該高圧室(23aH,23cH)で冷媒が圧縮される。高圧室(23aH,23cH)の圧力が所定値となって吐出空間(83,82)との差圧が設定値に達すると、該高圧室(23aH,23cH)の冷媒の圧力によって吐出弁(88,88)が開き、冷媒が吐出空間(83,82)から吐出管(65,66)を通ってケーシング(10)から流出する。
 また、最外側シリンダ室(23d)では、図8(A)の状態から駆動軸(53)が図の右回りに回転して図8(B)~図8(D)の状態へ変化するのに伴い、低圧室(23dL)の容積が増大し、冷媒が吸入ポート(P1)から低圧室(23dL)にそれぞれ吸入される。また、駆動軸(53)が一回転して再び図8(A)の状態になると、上記低圧室(23dL)への冷媒の吸入が完了する。そして、上記低圧室(23dL)は冷媒が圧縮される高圧室(23dH)となり、第1ブレード(24)を隔てて新たな低圧室(23dL)が形成される。駆動軸(53)がさらに回転すると、上記低圧室(23dL)において冷媒の吸入が繰り返される一方、高圧室(23dH)の容積が減少し、該高圧室(23dH)で冷媒が圧縮される。高圧室(23dH)の圧力が所定値となって吐出空間(81)との差圧が設定値に達すると、該高圧室(23dH)の冷媒の圧力によって吐出弁(88)が開き、冷媒が吐出空間(81)から吐出管(67)を通ってケーシング(10)から流出する。
 一方、内側シリンダ室(23b)では、図7(C)の状態から駆動軸(53)が図の右回りに回転して図7(D)~図7(B)の状態へ変化するのに伴い、低圧室(23bL)の容積が増大し、冷媒が吸入ポート(P2)から低圧室(23bL)にそれぞれ吸入される。また、駆動軸(53)が一回転して再び図7(C)の状態になると、上記低圧室(23bL)への冷媒の吸入が完了する。そして、上記低圧室(23bL)は冷媒が圧縮される高圧室(23bH)となり、第1ブレード(24)を隔てて新たな低圧室(23bL)が形成される。駆動軸(53)がさらに回転すると、上記低圧室(23bL)において冷媒の吸入が繰り返される一方、高圧室(23bH)の容積が減少し、該高圧室(23bH)で冷媒が圧縮される。高圧室(23bH)の圧力が所定値となって吐出空間(82)との差圧が設定値に達すると、該高圧室(23bH)の冷媒の圧力によって吐出弁(88)が開き、冷媒が吐出空間(82)から吐出管(66)を通ってケーシング(10)から流出する。
 なお、外側シリンダ室(23c)と内側シリンダ室(23b)とでは、冷媒の吸入開始のタイミング及び吐出開始のタイミングがほぼ180°異なる。このことにより、吐出脈動が小さくなり、振動や騒音が低減される。
 一方、第2圧縮機構部(30)では、ロータ(52)の回転が駆動軸(53)の第2偏心部(53b)を介して第2ピストン(32)に伝達され、該第2ピストン(32)は、揺動ブッシュ部(34c)の中心点を揺動中心として揺動すると共に、第2ブレード(34)と共に該第2ブレード(34)の長手方向へ進退する。これにより、第2ピストン(32)が第2シリンダ(31)に対して揺動しながら公転し、第2圧縮機構部(30)の4つのシリンダ室(33a,33b,33c,33d)において所定の圧縮動作が行われる。
 上記第2圧縮機構部(30)における圧縮動作は、実質的に第1圧縮機構部(20)の圧縮動作と同じであり、冷媒が各シリンダ室(33a,33b,33c,33d)内で圧縮される。各シリンダ室(33a,33b,33c,33d)において、高圧室(33aH,33bH,33cH,33dH)の圧力が所定値となって各吐出空間(85,84,84,81)との差圧が設定値に達すると、該高圧室(33aH,33bH,33cH,33dH)の冷媒の圧力によって吐出弁(88,88,88,88)が開き、冷媒が各吐出空間(85,84,84,81)から吐出管(69,68,68,67)を通ってケーシング(10)から流出する。
 圧縮機構(40)の動作中に、冷媒は、吸入管(62)から第1段圧縮機構のシリンダ室である第1圧縮機構部(20)の最外側シリンダ室(23d)と第2圧縮機構部(30)の最外側シリンダ室(33d)に吸入されて圧縮され、第1段圧縮機構のシリンダ室から吐出管(67)を通って吐出される。第1段圧縮機構のシリンダ室から吐出された冷媒は、冷却された後、吸入管(61)から第2段圧縮機構のシリンダ室である第1圧縮機構部(20)の外側シリンダ室(23c)と内側シリンダ室(23b)に吸入されてさらに圧縮され、第2段圧縮機構のシリンダ室から吐出管(66)を通って吐出される。第2段圧縮機構のシリンダ室から吐出された冷媒は、冷却された後、吸入管(63)から第3段圧縮機構のシリンダ室である第2圧縮機構部(30)の外側シリンダ室(33c)と内側シリンダ室(33b)に吸入されてさらに圧縮され、第3段圧縮機構のシリンダ室から吐出管(68)を通って吐出される。第3段圧縮機構のシリンダ室から吐出された冷媒は、冷却された後、吸入管(60,64)から第4段圧縮機構のシリンダ室である第1圧縮機構部(20)の最内側シリンダ室(23a)と第2圧縮機構部(30)の最内側シリンダ室(33a)に吸入されてさらに圧縮され、第4段圧縮機構のシリンダ室から吐出管(65,69)を通って吐出される。
 第4段圧縮機構のシリンダ室から吐出された冷媒は、図示していない冷媒回路の放熱器、膨張機構、蒸発器を順に流れ、再度圧縮機(1)に吸入される。そして、圧縮機(1)における圧縮行程、放熱器における放熱工程、膨張機構における膨張行程、蒸発器における蒸発行程を順に繰り返すことにより、冷凍サイクルが行われる。
  -実施形態の効果-
 この実施形態によれば、通常はシリンダ室として用いられることのないピストン側鏡板部(22c,32c)の外周の空間もシリンダ室(C2)になるため、シリンダ室の数が1つ増えることになる。そして、主シリンダ室(C1)が3つのシリンダ室から構成されているので、各圧縮機構(20,30)は、副シリンダ室(C2)を入れて4つのシリンダ室を有することになる。
 ピストン側鏡板部(22c,32c)の外周の空間は、通常はピストン側鏡板部(22c,32c)の旋回動作を可能にするためだけに形成される空間であり、冷媒の圧縮に関しては無効な空間であるが、本実施形態ではその空間を副シリンダ室(C2)として用いることにより、無効な空間にはせずにシリンダ室の数を増やせるようにしている。
 そして、同一平面を基準とする位置に形成される最内側シリンダ室(23a)と内側シリンダ室(23b)と外側シリンダ室(23c)に加えて、それとは異なる平面を基準とする位置に形成される最外側シリンダ室(23d)を含む4つのシリンダ室により、4シリンダ室の圧縮機構(20,30)を、簡単な構成で実現できる。したがって、シリンダ室を増やす場合に、部品点数が増えたり製造コストが高くなったりすることはなく、構造が複雑になったり圧縮機が大型化したりする問題も生じない。その結果、複数のシリンダ室を有する偏心回転型の圧縮機構を容易に実用化できるし、多段圧縮を容易に実現できるので、圧縮機の効率を高めることが可能になる。
 また、揺動ブッシュ部(24c)と内側ブレード部(B1)と外側第1ブレード部(B2)と外側第2ブレード部(B3)とを有するブレード(24)を用いることにより、1組のシリンダ(21,31)とピストン(22,32)の間に4つのシリンダ室を有する圧縮機構を容易に実現できる。
 さらに、内側ピストン部(22a,32a)の外周面に第1揺動許容面(n1)を形成し、ピストン側鏡板部(22c,32c)の外周面に第2揺動許容面(n2)を形成しているので、圧縮機構(20,30)の動作中におけるシリンダ(21,31)とピストン(22,32)とブレード(24,34)のスムーズな動作を確保しつつ、4つのシリンダ室での圧縮動作を確実に行うことができる。
 特に、ブレード(24,34)が揺動ブッシュ部(24c,34c)を中心として揺動するときに、内側ブレード部(B1)の先端と第1揺動許容面(n1)との間にわずかな隙間が形成され、外側第2ブレード部(B3)の先端と第2揺動許容面(n2)との間にわずかな隙間が形成される。そして、この隙間がミクロンオーダーの隙間になり、各揺動許容面に供給される潤滑油で形成される油膜で塞がれる程度に寸法設定しているので、各シリンダ室(C1,C2)の吐出側から吸入側への流体の漏れを防止しつつ、圧縮機構(20,30)を円滑に動作させることができ、ブレードの先端が摩耗しないし、摺動損失も生じない。また、この構成においては、ブレードを一体的な部品により構成しているので部品点数の増加を防止できる。
 また、シリンダ(21,31)とピストン(22,32)の組が2組あり、対応するシリンダ室同士の位相を180°ずらしているので、互いのモーメントを相殺することが可能になる。したがって、脈動や振動、あるいは騒音を低減することができる。
  -実施形態の変形例-
 上記圧縮機構(40)について、第1段圧縮機構のシリンダ室を第1圧縮機構部(20)の最外側シリンダ室(23d)と第2圧縮機構部(30)の最外側シリンダ室(33d)とから構成し、第2段圧縮機構のシリンダ室を第1圧縮機構部(20)の外側シリンダ室(23c)と第2圧縮機構部(30)の外側シリンダ室(33c)とから構成し、第3段圧縮機構のシリンダ室を第1圧縮機構部(20)の内側シリンダ室(23b)と第2圧縮機構部(30)の内側シリンダ室(33b)とから構成し、第4段圧縮機構のシリンダ室を第1圧縮機構部(20)の最内側シリンダ室(23a)と第2圧縮機構部(30)の最内側シリンダ室(33a)とから構成してもよい。
 その場合、第1圧縮機構部(20)の外側シリンダ室(23c)と内側シリンダ室(23b)について吸入管(61)と吐出管(66)をそれぞれ共用せずに別々に設け、第2圧縮機構部(30)の外側シリンダ室(33c)と内側シリンダ室(33b)についても吸入管(63)と吐出管(68)をそれぞれ共用せずに別々に設けるとよい。また、この構成では、第1圧縮機構部(20)と第2圧縮機構部(30)とで、内側ピストン部(22a,32a)や外側ピストン部(22b,32b)の軸方向長さ寸法を変えなくてもよい。
 このようにしても、図1の実施形態と同様の効果を奏することができる。
 《その他の実施形態》
 上記実施形態については、以下のような構成としてもよい。
 上記ブレード(24,34)は、必ずしも一体の部品により形成しなくてもよく、複数の部材を組み合わせたものにしてもよい。例えば、図9に示す例は、内側ブレード部(B1)と外側第1ブレード部(B2)を一体の部品で形成する一方、外側第2ブレード部(B3)と揺動ブッシュ部(24c)を別部材にして、これらを組み合わせた例である。この構成において、内側ブレード部(B1)と外側第1ブレード部(B2)と外側第2ブレード部(B3)に対して揺動ブッシュ部(24c)が一体化されないので、図10に示すように、内側ピストン部(22a)の切欠部(n1)とピストン側鏡板部(22c)の切欠部(n2)を形成しなくてもよいが、内側ブレード部(B1)の先端を内側ピストン部(22a)に押し付け、外側第2ブレード部(B3)の先端をピストン側鏡板部(22c)に押し付ける背圧押し付け機構(70)が必要になる。
 また、図11に示す例は、内側ブレード部(B1)と外側第1ブレード部(B2)と外側第2ブレード部(B3)を一体の部品で形成する一方、揺動ブッシュ部(24c)を別部材にして、これらを組み合わせた例である。この場合も、内側ピストン部(22a)の切欠部(n1)とピストン側鏡板部(22c)の切欠部(n2)を形成しなくてもよいが、図9と同様に背圧押し付け機構が必要である。
 また、図12に示す例は、内側ブレード部(B1)と外側第1ブレード部(B2)と外側第2ブレード部(B3)を一体部品で形成し、揺動ブッシュ部(24c)を長尺部(24a)の中間位置の溝(24d)にはめ込んで固定するようにした例である。この場合はブレード(24)が図3のように一体化されるため、内側ピストン部(22a)の切欠部(n1)とピストン側鏡板部(22c)の切欠部(n2)を形成する一方、背圧押し付け機構は設けなくてもよい。
 一方、上記実施形態では、4段圧縮を行うように圧縮機構(40)を構成しているが、本発明ではピストン側鏡板部(22c,32c)の外周面を副シリンダ室(C2)として用いていればよく、圧縮段数は適宜変更してもよい(単段圧縮でもよい)。また、上記実施形態では、シリンダ(21,31)とピストン(22,32)の1組で4室のシリンダ室(23a,…,23d,33a,…,33d)を形成するようにしているが、主シリンダ室(C1)を2室にして副シリンダ室(C2)を1室にするなど、シリンダ室の数を変更してもよい。さらに、上記実施形態では、シリンダ(21,31)とピストン(22,32)の組を2組用いるようにしているが、1組にしたり、3組以上にしたりするなど、シリンダ(22,32)とピストン(22,32)の組の数に関して構成を変更してもよい。
 なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
 以上説明したように、本発明は、シリンダが有する環状のシリンダ室の内部に環状ピストンを配置することにより、圧縮機構に複数のシリンダ室が形成された回転式圧縮機について有用である。
21,31 シリンダ
21a,31a 内側シリンダ部
21b,31b 外側シリンダ部
21c,31c 最外側シリンダ部
21f,21g,31f,31g スライド溝
22,32 環状ピストン
22a,32a 内側ピストン部
22b,32b 外側ピストン部
22c,32c ピストン側鏡板部
23a,33a 最内側シリンダ室
23b,33b 内側シリンダ室
23c,33c 外側シリンダ室
23d,33d 最外側シリンダ室
24,34 ブレード
24c,34c 揺動ブッシュ部
53 駆動軸
B1 内側ブレード部
B2 外側第1ブレード部
B3 外側第2ブレード部
C1 主シリンダ室
C2 副シリンダ室
n1 第1揺動許容面
n2 第2揺動許容面

Claims (8)

  1.  環状のシリンダ空間を有するシリンダ(21,31)と、該シリンダ(21,31)に対して偏心して配置されたピストン(22,32)と、該ピストン(22,32)に連結された駆動軸(53)とを有し、該ピストン(22,32)が、上記シリンダ(21,31)に対して偏心回転運動をするピストン部(22a,22b,32a,32b)と該シリンダ空間を閉塞する鏡板部(22c,32c)とを備えた回転式圧縮機であって、
     上記シリンダ(21,31)は、上記ピストン(22,32)の鏡板部(22c,32c)を偏心回転運動可能に収納する鏡板収納空間を有し、
     上記シリンダ空間が主シリンダ室(C1)を構成する一方、上記鏡板収納空間により副シリンダ室(C2)が形成されていることを特徴とする回転式圧縮機。
  2.  請求項1において、
     上記主シリンダ室(C1)は、径方向内周側から外周側に向かって順に形成された最内側シリンダ室(23a,33a)、内側シリンダ室(23b,33b)及び外側シリンダ室(23c,33c)を含み、
     上記副シリンダ室(C2)により、上記外側シリンダ室(23c,33c)の径方向外周側に位置する最外側シリンダ室(23d,33d)が形成されていることを特徴とする回転式圧縮機。
  3.  請求項2において、
     上記シリンダ(21,31)は、上記駆動軸(53)の回転中心を中心として同心上に配置された内側シリンダ部(21a,31a)、外側シリンダ部(21b,31b)及び最外側シリンダ部(21c,31c)を有し、
     上記ピストン(22,32)は、上記駆動軸(53)に形成されている偏心部と同一中心上に配置された環状の内側ピストン部(22a,32a)及び外側ピストン部(22b,32b)を有するとともに、上記鏡板部(22c,32c)が両ピストン部(22a,22b,32a,32b)と同心上に配置され、
     上記内側ピストン部(22a,32a)が内側シリンダ部(21a,31a)の内径側に配置されるとともに、外側ピストン部(22b,32b)が内側シリンダ部(21a,31a)と外側シリンダ部(21b,31b)の間に配置され、
     内側ピストン部(22a,32a)の外周面と内側シリンダ部(21a,31a)の内周面との間に上記最内側シリンダ室(23a,33a)が形成され、
     内側シリンダ部(21a,31a)の外周面と外側ピストン部(22b,32b)の内周面との間に上記内側シリンダ室(23b,33b)が形成され、
     外側ピストン部(22b,32b)の外周面と外側シリンダ部(21b,31b)の内周面との間に上記外側シリンダ室(23c,33c)が形成され、
     上記鏡板部(22c,32c)の外周面と最外側シリンダ部(21c,31c)の内周面との間に上記最外側シリンダ室(23d,33d)が形成されていることを特徴とする回転式圧縮機。
  4.  請求項3において、
     上記各シリンダ室(23,33)を吸入側と吐出側に区画するブレード(24,34)を有し、
     上記ブレード(24,34)は、上記外側ピストン部(22b,32b)に揺動可能に連結される揺動ブッシュ部(24c,34c)と、該揺動ブッシュ部(24c,34c)の径方向内側に位置して上記最内側シリンダ室(23a,33a)と内側シリンダ室(23b,33b)を吸入側と吐出側に区画する内側ブレード部(B1)と、該揺動ブッシュ部(24c,34c)の径方向外側に位置して上記外側シリンダ室(23c,33c)を吸入側と吐出側に区画する外側第1ブレード部(B2)と、該該揺動ブッシュ部(24c,34c)の径方向外側に位置して上記最外側シリンダ室(23d,33d)を吸入側と吐出側に区画する外側第2ブレード部(B3)とを備えていることを特徴とする回転式圧縮機。
  5.  請求項4において、
     上記シリンダ(21,31)には、上記ブレード(24,34)をその面方向へスライド可能に保持するスライド溝(21f,21g,31f,31g)が形成され、
     上記内側ピストン部(22a,32a)の外周面には、該外周面に対して上記揺動ブッシュ部(24c,34c)を中心とする上記内側ブレード部(B1)の相対的な揺動動作を許容する第1揺動許容面(n1)が形成され、
     上記鏡板部(22c,32c)の外周面には、該外周面に対して上記揺動ブッシュ部(24c,34c)を中心とする上記外側第2ブレード部(B3)の相対的な揺動動作を許容する第2揺動許容面(n2)が形成されていることを特徴とする回転式圧縮機。
  6.  請求項5において、
     上記ブレード(24,34)が一体的な部品により構成され、
     上記第1揺動許容面(n1)は、上記揺動ブッシュ部(24c,34c)を中心とする上記内側ブレード部(B1)の相対的な揺動動作の軌跡に対して微細隙間が形成される円弧形状を基準にして形成され、
     上記第2揺動許容面(n2)は、上記揺動ブッシュ部(24c,34c)を中心とする上記外側第2ブレード部(B3)の相対的な揺動動作の軌跡に対して微細隙間が形成される円弧形状を基準にして形成されていることを特徴とする回転式圧縮機。
  7.  請求項1において、
     上記圧縮機構は、シリンダ(21,31)とピストン(22,32)の組を複数有していることを特徴とする回転式圧縮機。
  8.  請求項7において、
     上記圧縮機構は、シリンダ(21,31)とピストン(22,32)の組を2組有していることを特徴とする回転式圧縮機。
PCT/JP2011/001630 2010-03-19 2011-03-18 回転式圧縮機 WO2011114750A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180014587.6A CN102812250B (zh) 2010-03-19 2011-03-18 回转式压缩机
EP11755940.1A EP2549111B1 (en) 2010-03-19 2011-03-18 Rotary compressor
AU2011228481A AU2011228481B2 (en) 2010-03-19 2011-03-18 Rotary compressor
US13/635,585 US8936448B2 (en) 2010-03-19 2011-03-18 Rotary compressor having main cylinder chamber and sub-cylinder chamber with an end plate received therein

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-064814 2010-03-19
JP2010064814A JP4962585B2 (ja) 2010-03-19 2010-03-19 回転式圧縮機

Publications (1)

Publication Number Publication Date
WO2011114750A1 true WO2011114750A1 (ja) 2011-09-22

Family

ID=44648860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001630 WO2011114750A1 (ja) 2010-03-19 2011-03-18 回転式圧縮機

Country Status (6)

Country Link
US (1) US8936448B2 (ja)
EP (1) EP2549111B1 (ja)
JP (1) JP4962585B2 (ja)
CN (1) CN102812250B (ja)
AU (1) AU2011228481B2 (ja)
WO (1) WO2011114750A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014003060A1 (ja) * 2012-06-26 2014-01-03 株式会社デンソー 回転型圧縮機
US20160018136A1 (en) * 2013-03-26 2016-01-21 Toshiba Carrier Corporation Multiple cylinder rotary compressor and refrigeration cycle apparatus

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5861457B2 (ja) * 2011-12-28 2016-02-16 ダイキン工業株式会社 回転式圧縮機
JP6089571B2 (ja) * 2012-10-17 2017-03-08 ダイキン工業株式会社 回転式圧縮機
JP6136519B2 (ja) * 2013-04-19 2017-05-31 ダイキン工業株式会社 回転式圧縮機
US10472252B2 (en) * 2014-03-07 2019-11-12 Danco, Inc. Smart water filter system
JP6394126B2 (ja) * 2014-07-07 2018-09-26 ダイキン工業株式会社 回転式圧縮機
CN205117411U (zh) * 2014-09-29 2016-03-30 摩尔动力(北京)技术股份有限公司 摆动滑动机构
DE102015007694A1 (de) * 2015-06-17 2016-12-22 Andreas Stihl Ag & Co. Kg Elektromagnetisches Ventil für ein Kraftstoffsystem
CN106704189A (zh) * 2015-08-10 2017-05-24 珠海格力节能环保制冷技术研究中心有限公司 压缩机和换热系统
KR20170050076A (ko) * 2015-10-29 2017-05-11 주식회사 엘지화학 혼합기 및 이를 포함하는 반응기
US10030658B2 (en) * 2016-04-27 2018-07-24 Mark W. Wood Concentric vane compressor
US11480178B2 (en) 2016-04-27 2022-10-25 Mark W. Wood Multistage compressor system with intercooler
WO2018084868A1 (en) 2016-11-07 2018-05-11 Wood Mark W Scroll compressor with circular surface terminations
CN106168214A (zh) * 2016-06-29 2016-11-30 珠海格力节能环保制冷技术研究中心有限公司 一种转缸增焓活塞压缩机及具有其的空调系统
US11686309B2 (en) 2016-11-07 2023-06-27 Mark W. Wood Scroll compressor with circular surface terminations
TWI726764B (zh) 2020-07-07 2021-05-01 楊進煌 迴轉式流體傳送裝置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6111488A (ja) * 1984-06-27 1986-01-18 Toshiba Corp スクロ−ル圧縮機
JP2006307762A (ja) 2005-04-28 2006-11-09 Daikin Ind Ltd 回転式流体機械
JP2006348773A (ja) * 2005-06-13 2006-12-28 Daikin Ind Ltd 回転式流体機械
JP2007113493A (ja) 2005-10-20 2007-05-10 Daikin Ind Ltd 回転式圧縮機
JP4396773B2 (ja) * 2008-02-04 2010-01-13 ダイキン工業株式会社 流体機械

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3387107B2 (ja) * 1991-09-30 2003-03-17 ソニー株式会社 変調回路
JP2006177228A (ja) * 2004-12-22 2006-07-06 Hitachi Home & Life Solutions Inc ロータリ2段圧縮機及びそれを用いた空気調和機
JP4367567B2 (ja) 2008-02-04 2009-11-18 ダイキン工業株式会社 圧縮機及び冷凍装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6111488A (ja) * 1984-06-27 1986-01-18 Toshiba Corp スクロ−ル圧縮機
JP2006307762A (ja) 2005-04-28 2006-11-09 Daikin Ind Ltd 回転式流体機械
WO2006117940A1 (ja) * 2005-04-28 2006-11-09 Daikin Industries, Ltd. 回転式流体機械
JP2006348773A (ja) * 2005-06-13 2006-12-28 Daikin Ind Ltd 回転式流体機械
JP2007113493A (ja) 2005-10-20 2007-05-10 Daikin Ind Ltd 回転式圧縮機
JP4396773B2 (ja) * 2008-02-04 2010-01-13 ダイキン工業株式会社 流体機械

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014003060A1 (ja) * 2012-06-26 2014-01-03 株式会社デンソー 回転型圧縮機
JP2014005795A (ja) * 2012-06-26 2014-01-16 Denso Corp 回転型圧縮機
CN104471250A (zh) * 2012-06-26 2015-03-25 株式会社电装 旋转式压缩机
US20160018136A1 (en) * 2013-03-26 2016-01-21 Toshiba Carrier Corporation Multiple cylinder rotary compressor and refrigeration cycle apparatus
US10180271B2 (en) * 2013-03-26 2019-01-15 Toshiba Carrier Corporation Multiple cylinder rotary compressor and refrigeration cycle apparatus

Also Published As

Publication number Publication date
AU2011228481B2 (en) 2014-05-22
AU2011228481A1 (en) 2012-10-04
US20130011290A1 (en) 2013-01-10
JP2011196270A (ja) 2011-10-06
EP2549111A4 (en) 2014-12-31
EP2549111A1 (en) 2013-01-23
EP2549111B1 (en) 2018-01-24
CN102812250A (zh) 2012-12-05
US8936448B2 (en) 2015-01-20
JP4962585B2 (ja) 2012-06-27
CN102812250B (zh) 2015-04-22

Similar Documents

Publication Publication Date Title
JP4962585B2 (ja) 回転式圧縮機
JP3778203B2 (ja) 回転式圧縮機
WO2010038360A1 (ja) 冷凍装置
WO2005108795A1 (ja) 回転式流体機械
WO2005111427A1 (ja) 回転式圧縮機
JP5861457B2 (ja) 回転式圧縮機
JP6394126B2 (ja) 回転式圧縮機
JP5488093B2 (ja) 圧縮機
JP5668556B2 (ja) 回転式圧縮機
JP2009085216A (ja) 回転式流体機械
JP2010090789A (ja) 回転式圧縮機
JP2010065650A (ja) 回転式圧縮機
JP5782765B2 (ja) 回転式圧縮機
JP2011214573A (ja) 回転式圧縮機
JP5499841B2 (ja) 回転式圧縮機
JP2013024209A (ja) 可変容積比型圧縮機
JP5664380B2 (ja) 回転式圧縮機
JP5217856B2 (ja) 回転式圧縮機
JP2014129786A (ja) 回転式圧縮機
JP2008082267A (ja) 圧縮機
JP6459255B2 (ja) 回転式圧縮機
JP6136519B2 (ja) 回転式圧縮機
JP5760786B2 (ja) 回転式流体機械
JP2015190401A (ja) 回転式圧縮機
JP2014211136A (ja) 回転式圧縮機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180014587.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11755940

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011755940

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011228481

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 13635585

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011228481

Country of ref document: AU

Date of ref document: 20110318

Kind code of ref document: A